Merge branch 'master' of ../netdev-next/
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2011 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/bitops.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/netdevice.h>
35 #include <linux/ipv6.h>
36 #include <linux/slab.h>
37 #include <net/checksum.h>
38 #include <net/ip6_checksum.h>
39 #include <linux/net_tstamp.h>
40 #include <linux/mii.h>
41 #include <linux/ethtool.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <linux/pci.h>
45 #include <linux/pci-aspm.h>
46 #include <linux/delay.h>
47 #include <linux/interrupt.h>
48 #include <linux/if_ether.h>
49 #include <linux/aer.h>
50 #include <linux/prefetch.h>
51 #ifdef CONFIG_IGB_DCA
52 #include <linux/dca.h>
53 #endif
54 #include "igb.h"
55
56 #define MAJ 3
57 #define MIN 0
58 #define BUILD 6
59 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
60 __stringify(BUILD) "-k"
61 char igb_driver_name[] = "igb";
62 char igb_driver_version[] = DRV_VERSION;
63 static const char igb_driver_string[] =
64 "Intel(R) Gigabit Ethernet Network Driver";
65 static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
66
67 static const struct e1000_info *igb_info_tbl[] = {
68 [board_82575] = &e1000_82575_info,
69 };
70
71 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
97 /* required last entry */
98 {0, }
99 };
100
101 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
102
103 void igb_reset(struct igb_adapter *);
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
110 static void __devexit igb_remove(struct pci_dev *pdev);
111 static void igb_init_hw_timer(struct igb_adapter *adapter);
112 static int igb_sw_init(struct igb_adapter *);
113 static int igb_open(struct net_device *);
114 static int igb_close(struct net_device *);
115 static void igb_configure_tx(struct igb_adapter *);
116 static void igb_configure_rx(struct igb_adapter *);
117 static void igb_clean_all_tx_rings(struct igb_adapter *);
118 static void igb_clean_all_rx_rings(struct igb_adapter *);
119 static void igb_clean_tx_ring(struct igb_ring *);
120 static void igb_clean_rx_ring(struct igb_ring *);
121 static void igb_set_rx_mode(struct net_device *);
122 static void igb_update_phy_info(unsigned long);
123 static void igb_watchdog(unsigned long);
124 static void igb_watchdog_task(struct work_struct *);
125 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
126 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
127 struct rtnl_link_stats64 *stats);
128 static int igb_change_mtu(struct net_device *, int);
129 static int igb_set_mac(struct net_device *, void *);
130 static void igb_set_uta(struct igb_adapter *adapter);
131 static irqreturn_t igb_intr(int irq, void *);
132 static irqreturn_t igb_intr_msi(int irq, void *);
133 static irqreturn_t igb_msix_other(int irq, void *);
134 static irqreturn_t igb_msix_ring(int irq, void *);
135 #ifdef CONFIG_IGB_DCA
136 static void igb_update_dca(struct igb_q_vector *);
137 static void igb_setup_dca(struct igb_adapter *);
138 #endif /* CONFIG_IGB_DCA */
139 static bool igb_clean_tx_irq(struct igb_q_vector *);
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
142 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
143 static void igb_tx_timeout(struct net_device *);
144 static void igb_reset_task(struct work_struct *);
145 static void igb_vlan_mode(struct net_device *netdev, u32 features);
146 static void igb_vlan_rx_add_vid(struct net_device *, u16);
147 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
148 static void igb_restore_vlan(struct igb_adapter *);
149 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
150 static void igb_ping_all_vfs(struct igb_adapter *);
151 static void igb_msg_task(struct igb_adapter *);
152 static void igb_vmm_control(struct igb_adapter *);
153 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
154 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
155 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
156 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
157 int vf, u16 vlan, u8 qos);
158 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
159 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
160 struct ifla_vf_info *ivi);
161 static void igb_check_vf_rate_limit(struct igb_adapter *);
162
163 #ifdef CONFIG_PM
164 static int igb_suspend(struct pci_dev *, pm_message_t);
165 static int igb_resume(struct pci_dev *);
166 #endif
167 static void igb_shutdown(struct pci_dev *);
168 #ifdef CONFIG_IGB_DCA
169 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
170 static struct notifier_block dca_notifier = {
171 .notifier_call = igb_notify_dca,
172 .next = NULL,
173 .priority = 0
174 };
175 #endif
176 #ifdef CONFIG_NET_POLL_CONTROLLER
177 /* for netdump / net console */
178 static void igb_netpoll(struct net_device *);
179 #endif
180 #ifdef CONFIG_PCI_IOV
181 static unsigned int max_vfs = 0;
182 module_param(max_vfs, uint, 0);
183 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
184 "per physical function");
185 #endif /* CONFIG_PCI_IOV */
186
187 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
188 pci_channel_state_t);
189 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
190 static void igb_io_resume(struct pci_dev *);
191
192 static struct pci_error_handlers igb_err_handler = {
193 .error_detected = igb_io_error_detected,
194 .slot_reset = igb_io_slot_reset,
195 .resume = igb_io_resume,
196 };
197
198
199 static struct pci_driver igb_driver = {
200 .name = igb_driver_name,
201 .id_table = igb_pci_tbl,
202 .probe = igb_probe,
203 .remove = __devexit_p(igb_remove),
204 #ifdef CONFIG_PM
205 /* Power Management Hooks */
206 .suspend = igb_suspend,
207 .resume = igb_resume,
208 #endif
209 .shutdown = igb_shutdown,
210 .err_handler = &igb_err_handler
211 };
212
213 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
214 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
215 MODULE_LICENSE("GPL");
216 MODULE_VERSION(DRV_VERSION);
217
218 struct igb_reg_info {
219 u32 ofs;
220 char *name;
221 };
222
223 static const struct igb_reg_info igb_reg_info_tbl[] = {
224
225 /* General Registers */
226 {E1000_CTRL, "CTRL"},
227 {E1000_STATUS, "STATUS"},
228 {E1000_CTRL_EXT, "CTRL_EXT"},
229
230 /* Interrupt Registers */
231 {E1000_ICR, "ICR"},
232
233 /* RX Registers */
234 {E1000_RCTL, "RCTL"},
235 {E1000_RDLEN(0), "RDLEN"},
236 {E1000_RDH(0), "RDH"},
237 {E1000_RDT(0), "RDT"},
238 {E1000_RXDCTL(0), "RXDCTL"},
239 {E1000_RDBAL(0), "RDBAL"},
240 {E1000_RDBAH(0), "RDBAH"},
241
242 /* TX Registers */
243 {E1000_TCTL, "TCTL"},
244 {E1000_TDBAL(0), "TDBAL"},
245 {E1000_TDBAH(0), "TDBAH"},
246 {E1000_TDLEN(0), "TDLEN"},
247 {E1000_TDH(0), "TDH"},
248 {E1000_TDT(0), "TDT"},
249 {E1000_TXDCTL(0), "TXDCTL"},
250 {E1000_TDFH, "TDFH"},
251 {E1000_TDFT, "TDFT"},
252 {E1000_TDFHS, "TDFHS"},
253 {E1000_TDFPC, "TDFPC"},
254
255 /* List Terminator */
256 {}
257 };
258
259 /*
260 * igb_regdump - register printout routine
261 */
262 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
263 {
264 int n = 0;
265 char rname[16];
266 u32 regs[8];
267
268 switch (reginfo->ofs) {
269 case E1000_RDLEN(0):
270 for (n = 0; n < 4; n++)
271 regs[n] = rd32(E1000_RDLEN(n));
272 break;
273 case E1000_RDH(0):
274 for (n = 0; n < 4; n++)
275 regs[n] = rd32(E1000_RDH(n));
276 break;
277 case E1000_RDT(0):
278 for (n = 0; n < 4; n++)
279 regs[n] = rd32(E1000_RDT(n));
280 break;
281 case E1000_RXDCTL(0):
282 for (n = 0; n < 4; n++)
283 regs[n] = rd32(E1000_RXDCTL(n));
284 break;
285 case E1000_RDBAL(0):
286 for (n = 0; n < 4; n++)
287 regs[n] = rd32(E1000_RDBAL(n));
288 break;
289 case E1000_RDBAH(0):
290 for (n = 0; n < 4; n++)
291 regs[n] = rd32(E1000_RDBAH(n));
292 break;
293 case E1000_TDBAL(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RDBAL(n));
296 break;
297 case E1000_TDBAH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_TDBAH(n));
300 break;
301 case E1000_TDLEN(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_TDLEN(n));
304 break;
305 case E1000_TDH(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_TDH(n));
308 break;
309 case E1000_TDT(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_TDT(n));
312 break;
313 case E1000_TXDCTL(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_TXDCTL(n));
316 break;
317 default:
318 printk(KERN_INFO "%-15s %08x\n",
319 reginfo->name, rd32(reginfo->ofs));
320 return;
321 }
322
323 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
324 printk(KERN_INFO "%-15s ", rname);
325 for (n = 0; n < 4; n++)
326 printk(KERN_CONT "%08x ", regs[n]);
327 printk(KERN_CONT "\n");
328 }
329
330 /*
331 * igb_dump - Print registers, tx-rings and rx-rings
332 */
333 static void igb_dump(struct igb_adapter *adapter)
334 {
335 struct net_device *netdev = adapter->netdev;
336 struct e1000_hw *hw = &adapter->hw;
337 struct igb_reg_info *reginfo;
338 int n = 0;
339 struct igb_ring *tx_ring;
340 union e1000_adv_tx_desc *tx_desc;
341 struct my_u0 { u64 a; u64 b; } *u0;
342 struct igb_buffer *buffer_info;
343 struct igb_ring *rx_ring;
344 union e1000_adv_rx_desc *rx_desc;
345 u32 staterr;
346 int i = 0;
347
348 if (!netif_msg_hw(adapter))
349 return;
350
351 /* Print netdevice Info */
352 if (netdev) {
353 dev_info(&adapter->pdev->dev, "Net device Info\n");
354 printk(KERN_INFO "Device Name state "
355 "trans_start last_rx\n");
356 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
357 netdev->name,
358 netdev->state,
359 netdev->trans_start,
360 netdev->last_rx);
361 }
362
363 /* Print Registers */
364 dev_info(&adapter->pdev->dev, "Register Dump\n");
365 printk(KERN_INFO " Register Name Value\n");
366 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
367 reginfo->name; reginfo++) {
368 igb_regdump(hw, reginfo);
369 }
370
371 /* Print TX Ring Summary */
372 if (!netdev || !netif_running(netdev))
373 goto exit;
374
375 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
376 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
377 " leng ntw timestamp\n");
378 for (n = 0; n < adapter->num_tx_queues; n++) {
379 tx_ring = adapter->tx_ring[n];
380 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
381 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
382 n, tx_ring->next_to_use, tx_ring->next_to_clean,
383 (u64)buffer_info->dma,
384 buffer_info->length,
385 buffer_info->next_to_watch,
386 (u64)buffer_info->time_stamp);
387 }
388
389 /* Print TX Rings */
390 if (!netif_msg_tx_done(adapter))
391 goto rx_ring_summary;
392
393 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
394
395 /* Transmit Descriptor Formats
396 *
397 * Advanced Transmit Descriptor
398 * +--------------------------------------------------------------+
399 * 0 | Buffer Address [63:0] |
400 * +--------------------------------------------------------------+
401 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
402 * +--------------------------------------------------------------+
403 * 63 46 45 40 39 38 36 35 32 31 24 15 0
404 */
405
406 for (n = 0; n < adapter->num_tx_queues; n++) {
407 tx_ring = adapter->tx_ring[n];
408 printk(KERN_INFO "------------------------------------\n");
409 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
410 printk(KERN_INFO "------------------------------------\n");
411 printk(KERN_INFO "T [desc] [address 63:0 ] "
412 "[PlPOCIStDDM Ln] [bi->dma ] "
413 "leng ntw timestamp bi->skb\n");
414
415 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
416 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
417 buffer_info = &tx_ring->buffer_info[i];
418 u0 = (struct my_u0 *)tx_desc;
419 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
420 " %04X %3X %016llX %p", i,
421 le64_to_cpu(u0->a),
422 le64_to_cpu(u0->b),
423 (u64)buffer_info->dma,
424 buffer_info->length,
425 buffer_info->next_to_watch,
426 (u64)buffer_info->time_stamp,
427 buffer_info->skb);
428 if (i == tx_ring->next_to_use &&
429 i == tx_ring->next_to_clean)
430 printk(KERN_CONT " NTC/U\n");
431 else if (i == tx_ring->next_to_use)
432 printk(KERN_CONT " NTU\n");
433 else if (i == tx_ring->next_to_clean)
434 printk(KERN_CONT " NTC\n");
435 else
436 printk(KERN_CONT "\n");
437
438 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
439 print_hex_dump(KERN_INFO, "",
440 DUMP_PREFIX_ADDRESS,
441 16, 1, phys_to_virt(buffer_info->dma),
442 buffer_info->length, true);
443 }
444 }
445
446 /* Print RX Rings Summary */
447 rx_ring_summary:
448 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
449 printk(KERN_INFO "Queue [NTU] [NTC]\n");
450 for (n = 0; n < adapter->num_rx_queues; n++) {
451 rx_ring = adapter->rx_ring[n];
452 printk(KERN_INFO " %5d %5X %5X\n", n,
453 rx_ring->next_to_use, rx_ring->next_to_clean);
454 }
455
456 /* Print RX Rings */
457 if (!netif_msg_rx_status(adapter))
458 goto exit;
459
460 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
461
462 /* Advanced Receive Descriptor (Read) Format
463 * 63 1 0
464 * +-----------------------------------------------------+
465 * 0 | Packet Buffer Address [63:1] |A0/NSE|
466 * +----------------------------------------------+------+
467 * 8 | Header Buffer Address [63:1] | DD |
468 * +-----------------------------------------------------+
469 *
470 *
471 * Advanced Receive Descriptor (Write-Back) Format
472 *
473 * 63 48 47 32 31 30 21 20 17 16 4 3 0
474 * +------------------------------------------------------+
475 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
476 * | Checksum Ident | | | | Type | Type |
477 * +------------------------------------------------------+
478 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
479 * +------------------------------------------------------+
480 * 63 48 47 32 31 20 19 0
481 */
482
483 for (n = 0; n < adapter->num_rx_queues; n++) {
484 rx_ring = adapter->rx_ring[n];
485 printk(KERN_INFO "------------------------------------\n");
486 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
487 printk(KERN_INFO "------------------------------------\n");
488 printk(KERN_INFO "R [desc] [ PktBuf A0] "
489 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
490 "<-- Adv Rx Read format\n");
491 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
492 "[vl er S cks ln] ---------------- [bi->skb] "
493 "<-- Adv Rx Write-Back format\n");
494
495 for (i = 0; i < rx_ring->count; i++) {
496 buffer_info = &rx_ring->buffer_info[i];
497 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
498 u0 = (struct my_u0 *)rx_desc;
499 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
500 if (staterr & E1000_RXD_STAT_DD) {
501 /* Descriptor Done */
502 printk(KERN_INFO "RWB[0x%03X] %016llX "
503 "%016llX ---------------- %p", i,
504 le64_to_cpu(u0->a),
505 le64_to_cpu(u0->b),
506 buffer_info->skb);
507 } else {
508 printk(KERN_INFO "R [0x%03X] %016llX "
509 "%016llX %016llX %p", i,
510 le64_to_cpu(u0->a),
511 le64_to_cpu(u0->b),
512 (u64)buffer_info->dma,
513 buffer_info->skb);
514
515 if (netif_msg_pktdata(adapter)) {
516 print_hex_dump(KERN_INFO, "",
517 DUMP_PREFIX_ADDRESS,
518 16, 1,
519 phys_to_virt(buffer_info->dma),
520 rx_ring->rx_buffer_len, true);
521 if (rx_ring->rx_buffer_len
522 < IGB_RXBUFFER_1024)
523 print_hex_dump(KERN_INFO, "",
524 DUMP_PREFIX_ADDRESS,
525 16, 1,
526 phys_to_virt(
527 buffer_info->page_dma +
528 buffer_info->page_offset),
529 PAGE_SIZE/2, true);
530 }
531 }
532
533 if (i == rx_ring->next_to_use)
534 printk(KERN_CONT " NTU\n");
535 else if (i == rx_ring->next_to_clean)
536 printk(KERN_CONT " NTC\n");
537 else
538 printk(KERN_CONT "\n");
539
540 }
541 }
542
543 exit:
544 return;
545 }
546
547
548 /**
549 * igb_read_clock - read raw cycle counter (to be used by time counter)
550 */
551 static cycle_t igb_read_clock(const struct cyclecounter *tc)
552 {
553 struct igb_adapter *adapter =
554 container_of(tc, struct igb_adapter, cycles);
555 struct e1000_hw *hw = &adapter->hw;
556 u64 stamp = 0;
557 int shift = 0;
558
559 /*
560 * The timestamp latches on lowest register read. For the 82580
561 * the lowest register is SYSTIMR instead of SYSTIML. However we never
562 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
563 */
564 if (hw->mac.type == e1000_82580) {
565 stamp = rd32(E1000_SYSTIMR) >> 8;
566 shift = IGB_82580_TSYNC_SHIFT;
567 }
568
569 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
570 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
571 return stamp;
572 }
573
574 /**
575 * igb_get_hw_dev - return device
576 * used by hardware layer to print debugging information
577 **/
578 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
579 {
580 struct igb_adapter *adapter = hw->back;
581 return adapter->netdev;
582 }
583
584 /**
585 * igb_init_module - Driver Registration Routine
586 *
587 * igb_init_module is the first routine called when the driver is
588 * loaded. All it does is register with the PCI subsystem.
589 **/
590 static int __init igb_init_module(void)
591 {
592 int ret;
593 printk(KERN_INFO "%s - version %s\n",
594 igb_driver_string, igb_driver_version);
595
596 printk(KERN_INFO "%s\n", igb_copyright);
597
598 #ifdef CONFIG_IGB_DCA
599 dca_register_notify(&dca_notifier);
600 #endif
601 ret = pci_register_driver(&igb_driver);
602 return ret;
603 }
604
605 module_init(igb_init_module);
606
607 /**
608 * igb_exit_module - Driver Exit Cleanup Routine
609 *
610 * igb_exit_module is called just before the driver is removed
611 * from memory.
612 **/
613 static void __exit igb_exit_module(void)
614 {
615 #ifdef CONFIG_IGB_DCA
616 dca_unregister_notify(&dca_notifier);
617 #endif
618 pci_unregister_driver(&igb_driver);
619 }
620
621 module_exit(igb_exit_module);
622
623 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
624 /**
625 * igb_cache_ring_register - Descriptor ring to register mapping
626 * @adapter: board private structure to initialize
627 *
628 * Once we know the feature-set enabled for the device, we'll cache
629 * the register offset the descriptor ring is assigned to.
630 **/
631 static void igb_cache_ring_register(struct igb_adapter *adapter)
632 {
633 int i = 0, j = 0;
634 u32 rbase_offset = adapter->vfs_allocated_count;
635
636 switch (adapter->hw.mac.type) {
637 case e1000_82576:
638 /* The queues are allocated for virtualization such that VF 0
639 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
640 * In order to avoid collision we start at the first free queue
641 * and continue consuming queues in the same sequence
642 */
643 if (adapter->vfs_allocated_count) {
644 for (; i < adapter->rss_queues; i++)
645 adapter->rx_ring[i]->reg_idx = rbase_offset +
646 Q_IDX_82576(i);
647 }
648 case e1000_82575:
649 case e1000_82580:
650 case e1000_i350:
651 default:
652 for (; i < adapter->num_rx_queues; i++)
653 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
654 for (; j < adapter->num_tx_queues; j++)
655 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
656 break;
657 }
658 }
659
660 static void igb_free_queues(struct igb_adapter *adapter)
661 {
662 int i;
663
664 for (i = 0; i < adapter->num_tx_queues; i++) {
665 kfree(adapter->tx_ring[i]);
666 adapter->tx_ring[i] = NULL;
667 }
668 for (i = 0; i < adapter->num_rx_queues; i++) {
669 kfree(adapter->rx_ring[i]);
670 adapter->rx_ring[i] = NULL;
671 }
672 adapter->num_rx_queues = 0;
673 adapter->num_tx_queues = 0;
674 }
675
676 /**
677 * igb_alloc_queues - Allocate memory for all rings
678 * @adapter: board private structure to initialize
679 *
680 * We allocate one ring per queue at run-time since we don't know the
681 * number of queues at compile-time.
682 **/
683 static int igb_alloc_queues(struct igb_adapter *adapter)
684 {
685 struct igb_ring *ring;
686 int i;
687
688 for (i = 0; i < adapter->num_tx_queues; i++) {
689 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
690 if (!ring)
691 goto err;
692 ring->count = adapter->tx_ring_count;
693 ring->queue_index = i;
694 ring->dev = &adapter->pdev->dev;
695 ring->netdev = adapter->netdev;
696 /* For 82575, context index must be unique per ring. */
697 if (adapter->hw.mac.type == e1000_82575)
698 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
699 adapter->tx_ring[i] = ring;
700 }
701
702 for (i = 0; i < adapter->num_rx_queues; i++) {
703 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
704 if (!ring)
705 goto err;
706 ring->count = adapter->rx_ring_count;
707 ring->queue_index = i;
708 ring->dev = &adapter->pdev->dev;
709 ring->netdev = adapter->netdev;
710 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
711 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
712 /* set flag indicating ring supports SCTP checksum offload */
713 if (adapter->hw.mac.type >= e1000_82576)
714 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
715 adapter->rx_ring[i] = ring;
716 }
717
718 igb_cache_ring_register(adapter);
719
720 return 0;
721
722 err:
723 igb_free_queues(adapter);
724
725 return -ENOMEM;
726 }
727
728 #define IGB_N0_QUEUE -1
729 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
730 {
731 u32 msixbm = 0;
732 struct igb_adapter *adapter = q_vector->adapter;
733 struct e1000_hw *hw = &adapter->hw;
734 u32 ivar, index;
735 int rx_queue = IGB_N0_QUEUE;
736 int tx_queue = IGB_N0_QUEUE;
737
738 if (q_vector->rx_ring)
739 rx_queue = q_vector->rx_ring->reg_idx;
740 if (q_vector->tx_ring)
741 tx_queue = q_vector->tx_ring->reg_idx;
742
743 switch (hw->mac.type) {
744 case e1000_82575:
745 /* The 82575 assigns vectors using a bitmask, which matches the
746 bitmask for the EICR/EIMS/EIMC registers. To assign one
747 or more queues to a vector, we write the appropriate bits
748 into the MSIXBM register for that vector. */
749 if (rx_queue > IGB_N0_QUEUE)
750 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
751 if (tx_queue > IGB_N0_QUEUE)
752 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
753 if (!adapter->msix_entries && msix_vector == 0)
754 msixbm |= E1000_EIMS_OTHER;
755 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
756 q_vector->eims_value = msixbm;
757 break;
758 case e1000_82576:
759 /* 82576 uses a table-based method for assigning vectors.
760 Each queue has a single entry in the table to which we write
761 a vector number along with a "valid" bit. Sadly, the layout
762 of the table is somewhat counterintuitive. */
763 if (rx_queue > IGB_N0_QUEUE) {
764 index = (rx_queue & 0x7);
765 ivar = array_rd32(E1000_IVAR0, index);
766 if (rx_queue < 8) {
767 /* vector goes into low byte of register */
768 ivar = ivar & 0xFFFFFF00;
769 ivar |= msix_vector | E1000_IVAR_VALID;
770 } else {
771 /* vector goes into third byte of register */
772 ivar = ivar & 0xFF00FFFF;
773 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
774 }
775 array_wr32(E1000_IVAR0, index, ivar);
776 }
777 if (tx_queue > IGB_N0_QUEUE) {
778 index = (tx_queue & 0x7);
779 ivar = array_rd32(E1000_IVAR0, index);
780 if (tx_queue < 8) {
781 /* vector goes into second byte of register */
782 ivar = ivar & 0xFFFF00FF;
783 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
784 } else {
785 /* vector goes into high byte of register */
786 ivar = ivar & 0x00FFFFFF;
787 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
788 }
789 array_wr32(E1000_IVAR0, index, ivar);
790 }
791 q_vector->eims_value = 1 << msix_vector;
792 break;
793 case e1000_82580:
794 case e1000_i350:
795 /* 82580 uses the same table-based approach as 82576 but has fewer
796 entries as a result we carry over for queues greater than 4. */
797 if (rx_queue > IGB_N0_QUEUE) {
798 index = (rx_queue >> 1);
799 ivar = array_rd32(E1000_IVAR0, index);
800 if (rx_queue & 0x1) {
801 /* vector goes into third byte of register */
802 ivar = ivar & 0xFF00FFFF;
803 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
804 } else {
805 /* vector goes into low byte of register */
806 ivar = ivar & 0xFFFFFF00;
807 ivar |= msix_vector | E1000_IVAR_VALID;
808 }
809 array_wr32(E1000_IVAR0, index, ivar);
810 }
811 if (tx_queue > IGB_N0_QUEUE) {
812 index = (tx_queue >> 1);
813 ivar = array_rd32(E1000_IVAR0, index);
814 if (tx_queue & 0x1) {
815 /* vector goes into high byte of register */
816 ivar = ivar & 0x00FFFFFF;
817 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
818 } else {
819 /* vector goes into second byte of register */
820 ivar = ivar & 0xFFFF00FF;
821 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
822 }
823 array_wr32(E1000_IVAR0, index, ivar);
824 }
825 q_vector->eims_value = 1 << msix_vector;
826 break;
827 default:
828 BUG();
829 break;
830 }
831
832 /* add q_vector eims value to global eims_enable_mask */
833 adapter->eims_enable_mask |= q_vector->eims_value;
834
835 /* configure q_vector to set itr on first interrupt */
836 q_vector->set_itr = 1;
837 }
838
839 /**
840 * igb_configure_msix - Configure MSI-X hardware
841 *
842 * igb_configure_msix sets up the hardware to properly
843 * generate MSI-X interrupts.
844 **/
845 static void igb_configure_msix(struct igb_adapter *adapter)
846 {
847 u32 tmp;
848 int i, vector = 0;
849 struct e1000_hw *hw = &adapter->hw;
850
851 adapter->eims_enable_mask = 0;
852
853 /* set vector for other causes, i.e. link changes */
854 switch (hw->mac.type) {
855 case e1000_82575:
856 tmp = rd32(E1000_CTRL_EXT);
857 /* enable MSI-X PBA support*/
858 tmp |= E1000_CTRL_EXT_PBA_CLR;
859
860 /* Auto-Mask interrupts upon ICR read. */
861 tmp |= E1000_CTRL_EXT_EIAME;
862 tmp |= E1000_CTRL_EXT_IRCA;
863
864 wr32(E1000_CTRL_EXT, tmp);
865
866 /* enable msix_other interrupt */
867 array_wr32(E1000_MSIXBM(0), vector++,
868 E1000_EIMS_OTHER);
869 adapter->eims_other = E1000_EIMS_OTHER;
870
871 break;
872
873 case e1000_82576:
874 case e1000_82580:
875 case e1000_i350:
876 /* Turn on MSI-X capability first, or our settings
877 * won't stick. And it will take days to debug. */
878 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
879 E1000_GPIE_PBA | E1000_GPIE_EIAME |
880 E1000_GPIE_NSICR);
881
882 /* enable msix_other interrupt */
883 adapter->eims_other = 1 << vector;
884 tmp = (vector++ | E1000_IVAR_VALID) << 8;
885
886 wr32(E1000_IVAR_MISC, tmp);
887 break;
888 default:
889 /* do nothing, since nothing else supports MSI-X */
890 break;
891 } /* switch (hw->mac.type) */
892
893 adapter->eims_enable_mask |= adapter->eims_other;
894
895 for (i = 0; i < adapter->num_q_vectors; i++)
896 igb_assign_vector(adapter->q_vector[i], vector++);
897
898 wrfl();
899 }
900
901 /**
902 * igb_request_msix - Initialize MSI-X interrupts
903 *
904 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
905 * kernel.
906 **/
907 static int igb_request_msix(struct igb_adapter *adapter)
908 {
909 struct net_device *netdev = adapter->netdev;
910 struct e1000_hw *hw = &adapter->hw;
911 int i, err = 0, vector = 0;
912
913 err = request_irq(adapter->msix_entries[vector].vector,
914 igb_msix_other, 0, netdev->name, adapter);
915 if (err)
916 goto out;
917 vector++;
918
919 for (i = 0; i < adapter->num_q_vectors; i++) {
920 struct igb_q_vector *q_vector = adapter->q_vector[i];
921
922 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
923
924 if (q_vector->rx_ring && q_vector->tx_ring)
925 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
926 q_vector->rx_ring->queue_index);
927 else if (q_vector->tx_ring)
928 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
929 q_vector->tx_ring->queue_index);
930 else if (q_vector->rx_ring)
931 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
932 q_vector->rx_ring->queue_index);
933 else
934 sprintf(q_vector->name, "%s-unused", netdev->name);
935
936 err = request_irq(adapter->msix_entries[vector].vector,
937 igb_msix_ring, 0, q_vector->name,
938 q_vector);
939 if (err)
940 goto out;
941 vector++;
942 }
943
944 igb_configure_msix(adapter);
945 return 0;
946 out:
947 return err;
948 }
949
950 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
951 {
952 if (adapter->msix_entries) {
953 pci_disable_msix(adapter->pdev);
954 kfree(adapter->msix_entries);
955 adapter->msix_entries = NULL;
956 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
957 pci_disable_msi(adapter->pdev);
958 }
959 }
960
961 /**
962 * igb_free_q_vectors - Free memory allocated for interrupt vectors
963 * @adapter: board private structure to initialize
964 *
965 * This function frees the memory allocated to the q_vectors. In addition if
966 * NAPI is enabled it will delete any references to the NAPI struct prior
967 * to freeing the q_vector.
968 **/
969 static void igb_free_q_vectors(struct igb_adapter *adapter)
970 {
971 int v_idx;
972
973 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
974 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
975 adapter->q_vector[v_idx] = NULL;
976 if (!q_vector)
977 continue;
978 netif_napi_del(&q_vector->napi);
979 kfree(q_vector);
980 }
981 adapter->num_q_vectors = 0;
982 }
983
984 /**
985 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
986 *
987 * This function resets the device so that it has 0 rx queues, tx queues, and
988 * MSI-X interrupts allocated.
989 */
990 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
991 {
992 igb_free_queues(adapter);
993 igb_free_q_vectors(adapter);
994 igb_reset_interrupt_capability(adapter);
995 }
996
997 /**
998 * igb_set_interrupt_capability - set MSI or MSI-X if supported
999 *
1000 * Attempt to configure interrupts using the best available
1001 * capabilities of the hardware and kernel.
1002 **/
1003 static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1004 {
1005 int err;
1006 int numvecs, i;
1007
1008 /* Number of supported queues. */
1009 adapter->num_rx_queues = adapter->rss_queues;
1010 if (adapter->vfs_allocated_count)
1011 adapter->num_tx_queues = 1;
1012 else
1013 adapter->num_tx_queues = adapter->rss_queues;
1014
1015 /* start with one vector for every rx queue */
1016 numvecs = adapter->num_rx_queues;
1017
1018 /* if tx handler is separate add 1 for every tx queue */
1019 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1020 numvecs += adapter->num_tx_queues;
1021
1022 /* store the number of vectors reserved for queues */
1023 adapter->num_q_vectors = numvecs;
1024
1025 /* add 1 vector for link status interrupts */
1026 numvecs++;
1027 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1028 GFP_KERNEL);
1029 if (!adapter->msix_entries)
1030 goto msi_only;
1031
1032 for (i = 0; i < numvecs; i++)
1033 adapter->msix_entries[i].entry = i;
1034
1035 err = pci_enable_msix(adapter->pdev,
1036 adapter->msix_entries,
1037 numvecs);
1038 if (err == 0)
1039 goto out;
1040
1041 igb_reset_interrupt_capability(adapter);
1042
1043 /* If we can't do MSI-X, try MSI */
1044 msi_only:
1045 #ifdef CONFIG_PCI_IOV
1046 /* disable SR-IOV for non MSI-X configurations */
1047 if (adapter->vf_data) {
1048 struct e1000_hw *hw = &adapter->hw;
1049 /* disable iov and allow time for transactions to clear */
1050 pci_disable_sriov(adapter->pdev);
1051 msleep(500);
1052
1053 kfree(adapter->vf_data);
1054 adapter->vf_data = NULL;
1055 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1056 wrfl();
1057 msleep(100);
1058 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1059 }
1060 #endif
1061 adapter->vfs_allocated_count = 0;
1062 adapter->rss_queues = 1;
1063 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1064 adapter->num_rx_queues = 1;
1065 adapter->num_tx_queues = 1;
1066 adapter->num_q_vectors = 1;
1067 if (!pci_enable_msi(adapter->pdev))
1068 adapter->flags |= IGB_FLAG_HAS_MSI;
1069 out:
1070 /* Notify the stack of the (possibly) reduced queue counts. */
1071 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1072 return netif_set_real_num_rx_queues(adapter->netdev,
1073 adapter->num_rx_queues);
1074 }
1075
1076 /**
1077 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1078 * @adapter: board private structure to initialize
1079 *
1080 * We allocate one q_vector per queue interrupt. If allocation fails we
1081 * return -ENOMEM.
1082 **/
1083 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1084 {
1085 struct igb_q_vector *q_vector;
1086 struct e1000_hw *hw = &adapter->hw;
1087 int v_idx;
1088
1089 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1090 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1091 if (!q_vector)
1092 goto err_out;
1093 q_vector->adapter = adapter;
1094 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1095 q_vector->itr_val = IGB_START_ITR;
1096 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1097 adapter->q_vector[v_idx] = q_vector;
1098 }
1099 return 0;
1100
1101 err_out:
1102 igb_free_q_vectors(adapter);
1103 return -ENOMEM;
1104 }
1105
1106 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1107 int ring_idx, int v_idx)
1108 {
1109 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1110
1111 q_vector->rx_ring = adapter->rx_ring[ring_idx];
1112 q_vector->rx_ring->q_vector = q_vector;
1113 q_vector->itr_val = adapter->rx_itr_setting;
1114 if (q_vector->itr_val && q_vector->itr_val <= 3)
1115 q_vector->itr_val = IGB_START_ITR;
1116 }
1117
1118 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1119 int ring_idx, int v_idx)
1120 {
1121 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1122
1123 q_vector->tx_ring = adapter->tx_ring[ring_idx];
1124 q_vector->tx_ring->q_vector = q_vector;
1125 q_vector->itr_val = adapter->tx_itr_setting;
1126 if (q_vector->itr_val && q_vector->itr_val <= 3)
1127 q_vector->itr_val = IGB_START_ITR;
1128 }
1129
1130 /**
1131 * igb_map_ring_to_vector - maps allocated queues to vectors
1132 *
1133 * This function maps the recently allocated queues to vectors.
1134 **/
1135 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1136 {
1137 int i;
1138 int v_idx = 0;
1139
1140 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1141 (adapter->num_q_vectors < adapter->num_tx_queues))
1142 return -ENOMEM;
1143
1144 if (adapter->num_q_vectors >=
1145 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1146 for (i = 0; i < adapter->num_rx_queues; i++)
1147 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1148 for (i = 0; i < adapter->num_tx_queues; i++)
1149 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1150 } else {
1151 for (i = 0; i < adapter->num_rx_queues; i++) {
1152 if (i < adapter->num_tx_queues)
1153 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1154 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1155 }
1156 for (; i < adapter->num_tx_queues; i++)
1157 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1158 }
1159 return 0;
1160 }
1161
1162 /**
1163 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1164 *
1165 * This function initializes the interrupts and allocates all of the queues.
1166 **/
1167 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1168 {
1169 struct pci_dev *pdev = adapter->pdev;
1170 int err;
1171
1172 err = igb_set_interrupt_capability(adapter);
1173 if (err)
1174 return err;
1175
1176 err = igb_alloc_q_vectors(adapter);
1177 if (err) {
1178 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1179 goto err_alloc_q_vectors;
1180 }
1181
1182 err = igb_alloc_queues(adapter);
1183 if (err) {
1184 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1185 goto err_alloc_queues;
1186 }
1187
1188 err = igb_map_ring_to_vector(adapter);
1189 if (err) {
1190 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1191 goto err_map_queues;
1192 }
1193
1194
1195 return 0;
1196 err_map_queues:
1197 igb_free_queues(adapter);
1198 err_alloc_queues:
1199 igb_free_q_vectors(adapter);
1200 err_alloc_q_vectors:
1201 igb_reset_interrupt_capability(adapter);
1202 return err;
1203 }
1204
1205 /**
1206 * igb_request_irq - initialize interrupts
1207 *
1208 * Attempts to configure interrupts using the best available
1209 * capabilities of the hardware and kernel.
1210 **/
1211 static int igb_request_irq(struct igb_adapter *adapter)
1212 {
1213 struct net_device *netdev = adapter->netdev;
1214 struct pci_dev *pdev = adapter->pdev;
1215 int err = 0;
1216
1217 if (adapter->msix_entries) {
1218 err = igb_request_msix(adapter);
1219 if (!err)
1220 goto request_done;
1221 /* fall back to MSI */
1222 igb_clear_interrupt_scheme(adapter);
1223 if (!pci_enable_msi(adapter->pdev))
1224 adapter->flags |= IGB_FLAG_HAS_MSI;
1225 igb_free_all_tx_resources(adapter);
1226 igb_free_all_rx_resources(adapter);
1227 adapter->num_tx_queues = 1;
1228 adapter->num_rx_queues = 1;
1229 adapter->num_q_vectors = 1;
1230 err = igb_alloc_q_vectors(adapter);
1231 if (err) {
1232 dev_err(&pdev->dev,
1233 "Unable to allocate memory for vectors\n");
1234 goto request_done;
1235 }
1236 err = igb_alloc_queues(adapter);
1237 if (err) {
1238 dev_err(&pdev->dev,
1239 "Unable to allocate memory for queues\n");
1240 igb_free_q_vectors(adapter);
1241 goto request_done;
1242 }
1243 igb_setup_all_tx_resources(adapter);
1244 igb_setup_all_rx_resources(adapter);
1245 } else {
1246 igb_assign_vector(adapter->q_vector[0], 0);
1247 }
1248
1249 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1250 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
1251 netdev->name, adapter);
1252 if (!err)
1253 goto request_done;
1254
1255 /* fall back to legacy interrupts */
1256 igb_reset_interrupt_capability(adapter);
1257 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1258 }
1259
1260 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
1261 netdev->name, adapter);
1262
1263 if (err)
1264 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1265 err);
1266
1267 request_done:
1268 return err;
1269 }
1270
1271 static void igb_free_irq(struct igb_adapter *adapter)
1272 {
1273 if (adapter->msix_entries) {
1274 int vector = 0, i;
1275
1276 free_irq(adapter->msix_entries[vector++].vector, adapter);
1277
1278 for (i = 0; i < adapter->num_q_vectors; i++) {
1279 struct igb_q_vector *q_vector = adapter->q_vector[i];
1280 free_irq(adapter->msix_entries[vector++].vector,
1281 q_vector);
1282 }
1283 } else {
1284 free_irq(adapter->pdev->irq, adapter);
1285 }
1286 }
1287
1288 /**
1289 * igb_irq_disable - Mask off interrupt generation on the NIC
1290 * @adapter: board private structure
1291 **/
1292 static void igb_irq_disable(struct igb_adapter *adapter)
1293 {
1294 struct e1000_hw *hw = &adapter->hw;
1295
1296 /*
1297 * we need to be careful when disabling interrupts. The VFs are also
1298 * mapped into these registers and so clearing the bits can cause
1299 * issues on the VF drivers so we only need to clear what we set
1300 */
1301 if (adapter->msix_entries) {
1302 u32 regval = rd32(E1000_EIAM);
1303 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1304 wr32(E1000_EIMC, adapter->eims_enable_mask);
1305 regval = rd32(E1000_EIAC);
1306 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1307 }
1308
1309 wr32(E1000_IAM, 0);
1310 wr32(E1000_IMC, ~0);
1311 wrfl();
1312 if (adapter->msix_entries) {
1313 int i;
1314 for (i = 0; i < adapter->num_q_vectors; i++)
1315 synchronize_irq(adapter->msix_entries[i].vector);
1316 } else {
1317 synchronize_irq(adapter->pdev->irq);
1318 }
1319 }
1320
1321 /**
1322 * igb_irq_enable - Enable default interrupt generation settings
1323 * @adapter: board private structure
1324 **/
1325 static void igb_irq_enable(struct igb_adapter *adapter)
1326 {
1327 struct e1000_hw *hw = &adapter->hw;
1328
1329 if (adapter->msix_entries) {
1330 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1331 u32 regval = rd32(E1000_EIAC);
1332 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1333 regval = rd32(E1000_EIAM);
1334 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1335 wr32(E1000_EIMS, adapter->eims_enable_mask);
1336 if (adapter->vfs_allocated_count) {
1337 wr32(E1000_MBVFIMR, 0xFF);
1338 ims |= E1000_IMS_VMMB;
1339 }
1340 if (adapter->hw.mac.type == e1000_82580)
1341 ims |= E1000_IMS_DRSTA;
1342
1343 wr32(E1000_IMS, ims);
1344 } else {
1345 wr32(E1000_IMS, IMS_ENABLE_MASK |
1346 E1000_IMS_DRSTA);
1347 wr32(E1000_IAM, IMS_ENABLE_MASK |
1348 E1000_IMS_DRSTA);
1349 }
1350 }
1351
1352 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1353 {
1354 struct e1000_hw *hw = &adapter->hw;
1355 u16 vid = adapter->hw.mng_cookie.vlan_id;
1356 u16 old_vid = adapter->mng_vlan_id;
1357
1358 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1359 /* add VID to filter table */
1360 igb_vfta_set(hw, vid, true);
1361 adapter->mng_vlan_id = vid;
1362 } else {
1363 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1364 }
1365
1366 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1367 (vid != old_vid) &&
1368 !test_bit(old_vid, adapter->active_vlans)) {
1369 /* remove VID from filter table */
1370 igb_vfta_set(hw, old_vid, false);
1371 }
1372 }
1373
1374 /**
1375 * igb_release_hw_control - release control of the h/w to f/w
1376 * @adapter: address of board private structure
1377 *
1378 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1379 * For ASF and Pass Through versions of f/w this means that the
1380 * driver is no longer loaded.
1381 *
1382 **/
1383 static void igb_release_hw_control(struct igb_adapter *adapter)
1384 {
1385 struct e1000_hw *hw = &adapter->hw;
1386 u32 ctrl_ext;
1387
1388 /* Let firmware take over control of h/w */
1389 ctrl_ext = rd32(E1000_CTRL_EXT);
1390 wr32(E1000_CTRL_EXT,
1391 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1392 }
1393
1394 /**
1395 * igb_get_hw_control - get control of the h/w from f/w
1396 * @adapter: address of board private structure
1397 *
1398 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1399 * For ASF and Pass Through versions of f/w this means that
1400 * the driver is loaded.
1401 *
1402 **/
1403 static void igb_get_hw_control(struct igb_adapter *adapter)
1404 {
1405 struct e1000_hw *hw = &adapter->hw;
1406 u32 ctrl_ext;
1407
1408 /* Let firmware know the driver has taken over */
1409 ctrl_ext = rd32(E1000_CTRL_EXT);
1410 wr32(E1000_CTRL_EXT,
1411 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1412 }
1413
1414 /**
1415 * igb_configure - configure the hardware for RX and TX
1416 * @adapter: private board structure
1417 **/
1418 static void igb_configure(struct igb_adapter *adapter)
1419 {
1420 struct net_device *netdev = adapter->netdev;
1421 int i;
1422
1423 igb_get_hw_control(adapter);
1424 igb_set_rx_mode(netdev);
1425
1426 igb_restore_vlan(adapter);
1427
1428 igb_setup_tctl(adapter);
1429 igb_setup_mrqc(adapter);
1430 igb_setup_rctl(adapter);
1431
1432 igb_configure_tx(adapter);
1433 igb_configure_rx(adapter);
1434
1435 igb_rx_fifo_flush_82575(&adapter->hw);
1436
1437 /* call igb_desc_unused which always leaves
1438 * at least 1 descriptor unused to make sure
1439 * next_to_use != next_to_clean */
1440 for (i = 0; i < adapter->num_rx_queues; i++) {
1441 struct igb_ring *ring = adapter->rx_ring[i];
1442 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1443 }
1444 }
1445
1446 /**
1447 * igb_power_up_link - Power up the phy/serdes link
1448 * @adapter: address of board private structure
1449 **/
1450 void igb_power_up_link(struct igb_adapter *adapter)
1451 {
1452 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1453 igb_power_up_phy_copper(&adapter->hw);
1454 else
1455 igb_power_up_serdes_link_82575(&adapter->hw);
1456 }
1457
1458 /**
1459 * igb_power_down_link - Power down the phy/serdes link
1460 * @adapter: address of board private structure
1461 */
1462 static void igb_power_down_link(struct igb_adapter *adapter)
1463 {
1464 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1465 igb_power_down_phy_copper_82575(&adapter->hw);
1466 else
1467 igb_shutdown_serdes_link_82575(&adapter->hw);
1468 }
1469
1470 /**
1471 * igb_up - Open the interface and prepare it to handle traffic
1472 * @adapter: board private structure
1473 **/
1474 int igb_up(struct igb_adapter *adapter)
1475 {
1476 struct e1000_hw *hw = &adapter->hw;
1477 int i;
1478
1479 /* hardware has been reset, we need to reload some things */
1480 igb_configure(adapter);
1481
1482 clear_bit(__IGB_DOWN, &adapter->state);
1483
1484 for (i = 0; i < adapter->num_q_vectors; i++) {
1485 struct igb_q_vector *q_vector = adapter->q_vector[i];
1486 napi_enable(&q_vector->napi);
1487 }
1488 if (adapter->msix_entries)
1489 igb_configure_msix(adapter);
1490 else
1491 igb_assign_vector(adapter->q_vector[0], 0);
1492
1493 /* Clear any pending interrupts. */
1494 rd32(E1000_ICR);
1495 igb_irq_enable(adapter);
1496
1497 /* notify VFs that reset has been completed */
1498 if (adapter->vfs_allocated_count) {
1499 u32 reg_data = rd32(E1000_CTRL_EXT);
1500 reg_data |= E1000_CTRL_EXT_PFRSTD;
1501 wr32(E1000_CTRL_EXT, reg_data);
1502 }
1503
1504 netif_tx_start_all_queues(adapter->netdev);
1505
1506 /* start the watchdog. */
1507 hw->mac.get_link_status = 1;
1508 schedule_work(&adapter->watchdog_task);
1509
1510 return 0;
1511 }
1512
1513 void igb_down(struct igb_adapter *adapter)
1514 {
1515 struct net_device *netdev = adapter->netdev;
1516 struct e1000_hw *hw = &adapter->hw;
1517 u32 tctl, rctl;
1518 int i;
1519
1520 /* signal that we're down so the interrupt handler does not
1521 * reschedule our watchdog timer */
1522 set_bit(__IGB_DOWN, &adapter->state);
1523
1524 /* disable receives in the hardware */
1525 rctl = rd32(E1000_RCTL);
1526 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1527 /* flush and sleep below */
1528
1529 netif_tx_stop_all_queues(netdev);
1530
1531 /* disable transmits in the hardware */
1532 tctl = rd32(E1000_TCTL);
1533 tctl &= ~E1000_TCTL_EN;
1534 wr32(E1000_TCTL, tctl);
1535 /* flush both disables and wait for them to finish */
1536 wrfl();
1537 msleep(10);
1538
1539 for (i = 0; i < adapter->num_q_vectors; i++) {
1540 struct igb_q_vector *q_vector = adapter->q_vector[i];
1541 napi_disable(&q_vector->napi);
1542 }
1543
1544 igb_irq_disable(adapter);
1545
1546 del_timer_sync(&adapter->watchdog_timer);
1547 del_timer_sync(&adapter->phy_info_timer);
1548
1549 netif_carrier_off(netdev);
1550
1551 /* record the stats before reset*/
1552 spin_lock(&adapter->stats64_lock);
1553 igb_update_stats(adapter, &adapter->stats64);
1554 spin_unlock(&adapter->stats64_lock);
1555
1556 adapter->link_speed = 0;
1557 adapter->link_duplex = 0;
1558
1559 if (!pci_channel_offline(adapter->pdev))
1560 igb_reset(adapter);
1561 igb_clean_all_tx_rings(adapter);
1562 igb_clean_all_rx_rings(adapter);
1563 #ifdef CONFIG_IGB_DCA
1564
1565 /* since we reset the hardware DCA settings were cleared */
1566 igb_setup_dca(adapter);
1567 #endif
1568 }
1569
1570 void igb_reinit_locked(struct igb_adapter *adapter)
1571 {
1572 WARN_ON(in_interrupt());
1573 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1574 msleep(1);
1575 igb_down(adapter);
1576 igb_up(adapter);
1577 clear_bit(__IGB_RESETTING, &adapter->state);
1578 }
1579
1580 void igb_reset(struct igb_adapter *adapter)
1581 {
1582 struct pci_dev *pdev = adapter->pdev;
1583 struct e1000_hw *hw = &adapter->hw;
1584 struct e1000_mac_info *mac = &hw->mac;
1585 struct e1000_fc_info *fc = &hw->fc;
1586 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1587 u16 hwm;
1588
1589 /* Repartition Pba for greater than 9k mtu
1590 * To take effect CTRL.RST is required.
1591 */
1592 switch (mac->type) {
1593 case e1000_i350:
1594 case e1000_82580:
1595 pba = rd32(E1000_RXPBS);
1596 pba = igb_rxpbs_adjust_82580(pba);
1597 break;
1598 case e1000_82576:
1599 pba = rd32(E1000_RXPBS);
1600 pba &= E1000_RXPBS_SIZE_MASK_82576;
1601 break;
1602 case e1000_82575:
1603 default:
1604 pba = E1000_PBA_34K;
1605 break;
1606 }
1607
1608 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1609 (mac->type < e1000_82576)) {
1610 /* adjust PBA for jumbo frames */
1611 wr32(E1000_PBA, pba);
1612
1613 /* To maintain wire speed transmits, the Tx FIFO should be
1614 * large enough to accommodate two full transmit packets,
1615 * rounded up to the next 1KB and expressed in KB. Likewise,
1616 * the Rx FIFO should be large enough to accommodate at least
1617 * one full receive packet and is similarly rounded up and
1618 * expressed in KB. */
1619 pba = rd32(E1000_PBA);
1620 /* upper 16 bits has Tx packet buffer allocation size in KB */
1621 tx_space = pba >> 16;
1622 /* lower 16 bits has Rx packet buffer allocation size in KB */
1623 pba &= 0xffff;
1624 /* the tx fifo also stores 16 bytes of information about the tx
1625 * but don't include ethernet FCS because hardware appends it */
1626 min_tx_space = (adapter->max_frame_size +
1627 sizeof(union e1000_adv_tx_desc) -
1628 ETH_FCS_LEN) * 2;
1629 min_tx_space = ALIGN(min_tx_space, 1024);
1630 min_tx_space >>= 10;
1631 /* software strips receive CRC, so leave room for it */
1632 min_rx_space = adapter->max_frame_size;
1633 min_rx_space = ALIGN(min_rx_space, 1024);
1634 min_rx_space >>= 10;
1635
1636 /* If current Tx allocation is less than the min Tx FIFO size,
1637 * and the min Tx FIFO size is less than the current Rx FIFO
1638 * allocation, take space away from current Rx allocation */
1639 if (tx_space < min_tx_space &&
1640 ((min_tx_space - tx_space) < pba)) {
1641 pba = pba - (min_tx_space - tx_space);
1642
1643 /* if short on rx space, rx wins and must trump tx
1644 * adjustment */
1645 if (pba < min_rx_space)
1646 pba = min_rx_space;
1647 }
1648 wr32(E1000_PBA, pba);
1649 }
1650
1651 /* flow control settings */
1652 /* The high water mark must be low enough to fit one full frame
1653 * (or the size used for early receive) above it in the Rx FIFO.
1654 * Set it to the lower of:
1655 * - 90% of the Rx FIFO size, or
1656 * - the full Rx FIFO size minus one full frame */
1657 hwm = min(((pba << 10) * 9 / 10),
1658 ((pba << 10) - 2 * adapter->max_frame_size));
1659
1660 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1661 fc->low_water = fc->high_water - 16;
1662 fc->pause_time = 0xFFFF;
1663 fc->send_xon = 1;
1664 fc->current_mode = fc->requested_mode;
1665
1666 /* disable receive for all VFs and wait one second */
1667 if (adapter->vfs_allocated_count) {
1668 int i;
1669 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1670 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1671
1672 /* ping all the active vfs to let them know we are going down */
1673 igb_ping_all_vfs(adapter);
1674
1675 /* disable transmits and receives */
1676 wr32(E1000_VFRE, 0);
1677 wr32(E1000_VFTE, 0);
1678 }
1679
1680 /* Allow time for pending master requests to run */
1681 hw->mac.ops.reset_hw(hw);
1682 wr32(E1000_WUC, 0);
1683
1684 if (hw->mac.ops.init_hw(hw))
1685 dev_err(&pdev->dev, "Hardware Error\n");
1686 if (hw->mac.type > e1000_82580) {
1687 if (adapter->flags & IGB_FLAG_DMAC) {
1688 u32 reg;
1689
1690 /*
1691 * DMA Coalescing high water mark needs to be higher
1692 * than * the * Rx threshold. The Rx threshold is
1693 * currently * pba - 6, so we * should use a high water
1694 * mark of pba * - 4. */
1695 hwm = (pba - 4) << 10;
1696
1697 reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
1698 & E1000_DMACR_DMACTHR_MASK);
1699
1700 /* transition to L0x or L1 if available..*/
1701 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1702
1703 /* watchdog timer= +-1000 usec in 32usec intervals */
1704 reg |= (1000 >> 5);
1705 wr32(E1000_DMACR, reg);
1706
1707 /* no lower threshold to disable coalescing(smart fifb)
1708 * -UTRESH=0*/
1709 wr32(E1000_DMCRTRH, 0);
1710
1711 /* set hwm to PBA - 2 * max frame size */
1712 wr32(E1000_FCRTC, hwm);
1713
1714 /*
1715 * This sets the time to wait before requesting tran-
1716 * sition to * low power state to number of usecs needed
1717 * to receive 1 512 * byte frame at gigabit line rate
1718 */
1719 reg = rd32(E1000_DMCTLX);
1720 reg |= IGB_DMCTLX_DCFLUSH_DIS;
1721
1722 /* Delay 255 usec before entering Lx state. */
1723 reg |= 0xFF;
1724 wr32(E1000_DMCTLX, reg);
1725
1726 /* free space in Tx packet buffer to wake from DMAC */
1727 wr32(E1000_DMCTXTH,
1728 (IGB_MIN_TXPBSIZE -
1729 (IGB_TX_BUF_4096 + adapter->max_frame_size))
1730 >> 6);
1731
1732 /* make low power state decision controlled by DMAC */
1733 reg = rd32(E1000_PCIEMISC);
1734 reg |= E1000_PCIEMISC_LX_DECISION;
1735 wr32(E1000_PCIEMISC, reg);
1736 } /* end if IGB_FLAG_DMAC set */
1737 }
1738 if (hw->mac.type == e1000_82580) {
1739 u32 reg = rd32(E1000_PCIEMISC);
1740 wr32(E1000_PCIEMISC,
1741 reg & ~E1000_PCIEMISC_LX_DECISION);
1742 }
1743 if (!netif_running(adapter->netdev))
1744 igb_power_down_link(adapter);
1745
1746 igb_update_mng_vlan(adapter);
1747
1748 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1749 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1750
1751 igb_get_phy_info(hw);
1752 }
1753
1754 static u32 igb_fix_features(struct net_device *netdev, u32 features)
1755 {
1756 /*
1757 * Since there is no support for separate rx/tx vlan accel
1758 * enable/disable make sure tx flag is always in same state as rx.
1759 */
1760 if (features & NETIF_F_HW_VLAN_RX)
1761 features |= NETIF_F_HW_VLAN_TX;
1762 else
1763 features &= ~NETIF_F_HW_VLAN_TX;
1764
1765 return features;
1766 }
1767
1768 static int igb_set_features(struct net_device *netdev, u32 features)
1769 {
1770 struct igb_adapter *adapter = netdev_priv(netdev);
1771 int i;
1772 u32 changed = netdev->features ^ features;
1773
1774 for (i = 0; i < adapter->num_rx_queues; i++) {
1775 if (features & NETIF_F_RXCSUM)
1776 adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
1777 else
1778 adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
1779 }
1780
1781 if (changed & NETIF_F_HW_VLAN_RX)
1782 igb_vlan_mode(netdev, features);
1783
1784 return 0;
1785 }
1786
1787 static const struct net_device_ops igb_netdev_ops = {
1788 .ndo_open = igb_open,
1789 .ndo_stop = igb_close,
1790 .ndo_start_xmit = igb_xmit_frame_adv,
1791 .ndo_get_stats64 = igb_get_stats64,
1792 .ndo_set_rx_mode = igb_set_rx_mode,
1793 .ndo_set_mac_address = igb_set_mac,
1794 .ndo_change_mtu = igb_change_mtu,
1795 .ndo_do_ioctl = igb_ioctl,
1796 .ndo_tx_timeout = igb_tx_timeout,
1797 .ndo_validate_addr = eth_validate_addr,
1798 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1799 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1800 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1801 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1802 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1803 .ndo_get_vf_config = igb_ndo_get_vf_config,
1804 #ifdef CONFIG_NET_POLL_CONTROLLER
1805 .ndo_poll_controller = igb_netpoll,
1806 #endif
1807 .ndo_fix_features = igb_fix_features,
1808 .ndo_set_features = igb_set_features,
1809 };
1810
1811 /**
1812 * igb_probe - Device Initialization Routine
1813 * @pdev: PCI device information struct
1814 * @ent: entry in igb_pci_tbl
1815 *
1816 * Returns 0 on success, negative on failure
1817 *
1818 * igb_probe initializes an adapter identified by a pci_dev structure.
1819 * The OS initialization, configuring of the adapter private structure,
1820 * and a hardware reset occur.
1821 **/
1822 static int __devinit igb_probe(struct pci_dev *pdev,
1823 const struct pci_device_id *ent)
1824 {
1825 struct net_device *netdev;
1826 struct igb_adapter *adapter;
1827 struct e1000_hw *hw;
1828 u16 eeprom_data = 0;
1829 s32 ret_val;
1830 static int global_quad_port_a; /* global quad port a indication */
1831 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1832 unsigned long mmio_start, mmio_len;
1833 int err, pci_using_dac;
1834 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1835 u8 part_str[E1000_PBANUM_LENGTH];
1836
1837 /* Catch broken hardware that put the wrong VF device ID in
1838 * the PCIe SR-IOV capability.
1839 */
1840 if (pdev->is_virtfn) {
1841 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1842 pci_name(pdev), pdev->vendor, pdev->device);
1843 return -EINVAL;
1844 }
1845
1846 err = pci_enable_device_mem(pdev);
1847 if (err)
1848 return err;
1849
1850 pci_using_dac = 0;
1851 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1852 if (!err) {
1853 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1854 if (!err)
1855 pci_using_dac = 1;
1856 } else {
1857 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1858 if (err) {
1859 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1860 if (err) {
1861 dev_err(&pdev->dev, "No usable DMA "
1862 "configuration, aborting\n");
1863 goto err_dma;
1864 }
1865 }
1866 }
1867
1868 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1869 IORESOURCE_MEM),
1870 igb_driver_name);
1871 if (err)
1872 goto err_pci_reg;
1873
1874 pci_enable_pcie_error_reporting(pdev);
1875
1876 pci_set_master(pdev);
1877 pci_save_state(pdev);
1878
1879 err = -ENOMEM;
1880 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1881 IGB_ABS_MAX_TX_QUEUES);
1882 if (!netdev)
1883 goto err_alloc_etherdev;
1884
1885 SET_NETDEV_DEV(netdev, &pdev->dev);
1886
1887 pci_set_drvdata(pdev, netdev);
1888 adapter = netdev_priv(netdev);
1889 adapter->netdev = netdev;
1890 adapter->pdev = pdev;
1891 hw = &adapter->hw;
1892 hw->back = adapter;
1893 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1894
1895 mmio_start = pci_resource_start(pdev, 0);
1896 mmio_len = pci_resource_len(pdev, 0);
1897
1898 err = -EIO;
1899 hw->hw_addr = ioremap(mmio_start, mmio_len);
1900 if (!hw->hw_addr)
1901 goto err_ioremap;
1902
1903 netdev->netdev_ops = &igb_netdev_ops;
1904 igb_set_ethtool_ops(netdev);
1905 netdev->watchdog_timeo = 5 * HZ;
1906
1907 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1908
1909 netdev->mem_start = mmio_start;
1910 netdev->mem_end = mmio_start + mmio_len;
1911
1912 /* PCI config space info */
1913 hw->vendor_id = pdev->vendor;
1914 hw->device_id = pdev->device;
1915 hw->revision_id = pdev->revision;
1916 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1917 hw->subsystem_device_id = pdev->subsystem_device;
1918
1919 /* Copy the default MAC, PHY and NVM function pointers */
1920 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1921 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1922 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1923 /* Initialize skew-specific constants */
1924 err = ei->get_invariants(hw);
1925 if (err)
1926 goto err_sw_init;
1927
1928 /* setup the private structure */
1929 err = igb_sw_init(adapter);
1930 if (err)
1931 goto err_sw_init;
1932
1933 igb_get_bus_info_pcie(hw);
1934
1935 hw->phy.autoneg_wait_to_complete = false;
1936
1937 /* Copper options */
1938 if (hw->phy.media_type == e1000_media_type_copper) {
1939 hw->phy.mdix = AUTO_ALL_MODES;
1940 hw->phy.disable_polarity_correction = false;
1941 hw->phy.ms_type = e1000_ms_hw_default;
1942 }
1943
1944 if (igb_check_reset_block(hw))
1945 dev_info(&pdev->dev,
1946 "PHY reset is blocked due to SOL/IDER session.\n");
1947
1948 netdev->hw_features = NETIF_F_SG |
1949 NETIF_F_IP_CSUM |
1950 NETIF_F_IPV6_CSUM |
1951 NETIF_F_TSO |
1952 NETIF_F_TSO6 |
1953 NETIF_F_RXCSUM |
1954 NETIF_F_HW_VLAN_RX;
1955
1956 netdev->features = netdev->hw_features |
1957 NETIF_F_HW_VLAN_TX |
1958 NETIF_F_HW_VLAN_FILTER;
1959
1960 netdev->vlan_features |= NETIF_F_TSO;
1961 netdev->vlan_features |= NETIF_F_TSO6;
1962 netdev->vlan_features |= NETIF_F_IP_CSUM;
1963 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1964 netdev->vlan_features |= NETIF_F_SG;
1965
1966 if (pci_using_dac) {
1967 netdev->features |= NETIF_F_HIGHDMA;
1968 netdev->vlan_features |= NETIF_F_HIGHDMA;
1969 }
1970
1971 if (hw->mac.type >= e1000_82576) {
1972 netdev->hw_features |= NETIF_F_SCTP_CSUM;
1973 netdev->features |= NETIF_F_SCTP_CSUM;
1974 }
1975
1976 netdev->priv_flags |= IFF_UNICAST_FLT;
1977
1978 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1979
1980 /* before reading the NVM, reset the controller to put the device in a
1981 * known good starting state */
1982 hw->mac.ops.reset_hw(hw);
1983
1984 /* make sure the NVM is good */
1985 if (hw->nvm.ops.validate(hw) < 0) {
1986 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1987 err = -EIO;
1988 goto err_eeprom;
1989 }
1990
1991 /* copy the MAC address out of the NVM */
1992 if (hw->mac.ops.read_mac_addr(hw))
1993 dev_err(&pdev->dev, "NVM Read Error\n");
1994
1995 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1996 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1997
1998 if (!is_valid_ether_addr(netdev->perm_addr)) {
1999 dev_err(&pdev->dev, "Invalid MAC Address\n");
2000 err = -EIO;
2001 goto err_eeprom;
2002 }
2003
2004 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2005 (unsigned long) adapter);
2006 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2007 (unsigned long) adapter);
2008
2009 INIT_WORK(&adapter->reset_task, igb_reset_task);
2010 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2011
2012 /* Initialize link properties that are user-changeable */
2013 adapter->fc_autoneg = true;
2014 hw->mac.autoneg = true;
2015 hw->phy.autoneg_advertised = 0x2f;
2016
2017 hw->fc.requested_mode = e1000_fc_default;
2018 hw->fc.current_mode = e1000_fc_default;
2019
2020 igb_validate_mdi_setting(hw);
2021
2022 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2023 * enable the ACPI Magic Packet filter
2024 */
2025
2026 if (hw->bus.func == 0)
2027 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2028 else if (hw->mac.type >= e1000_82580)
2029 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2030 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2031 &eeprom_data);
2032 else if (hw->bus.func == 1)
2033 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2034
2035 if (eeprom_data & eeprom_apme_mask)
2036 adapter->eeprom_wol |= E1000_WUFC_MAG;
2037
2038 /* now that we have the eeprom settings, apply the special cases where
2039 * the eeprom may be wrong or the board simply won't support wake on
2040 * lan on a particular port */
2041 switch (pdev->device) {
2042 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2043 adapter->eeprom_wol = 0;
2044 break;
2045 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2046 case E1000_DEV_ID_82576_FIBER:
2047 case E1000_DEV_ID_82576_SERDES:
2048 /* Wake events only supported on port A for dual fiber
2049 * regardless of eeprom setting */
2050 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2051 adapter->eeprom_wol = 0;
2052 break;
2053 case E1000_DEV_ID_82576_QUAD_COPPER:
2054 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2055 /* if quad port adapter, disable WoL on all but port A */
2056 if (global_quad_port_a != 0)
2057 adapter->eeprom_wol = 0;
2058 else
2059 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2060 /* Reset for multiple quad port adapters */
2061 if (++global_quad_port_a == 4)
2062 global_quad_port_a = 0;
2063 break;
2064 }
2065
2066 /* initialize the wol settings based on the eeprom settings */
2067 adapter->wol = adapter->eeprom_wol;
2068 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2069
2070 /* reset the hardware with the new settings */
2071 igb_reset(adapter);
2072
2073 /* let the f/w know that the h/w is now under the control of the
2074 * driver. */
2075 igb_get_hw_control(adapter);
2076
2077 strcpy(netdev->name, "eth%d");
2078 err = register_netdev(netdev);
2079 if (err)
2080 goto err_register;
2081
2082 igb_vlan_mode(netdev, netdev->features);
2083
2084 /* carrier off reporting is important to ethtool even BEFORE open */
2085 netif_carrier_off(netdev);
2086
2087 #ifdef CONFIG_IGB_DCA
2088 if (dca_add_requester(&pdev->dev) == 0) {
2089 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2090 dev_info(&pdev->dev, "DCA enabled\n");
2091 igb_setup_dca(adapter);
2092 }
2093
2094 #endif
2095 /* do hw tstamp init after resetting */
2096 igb_init_hw_timer(adapter);
2097
2098 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2099 /* print bus type/speed/width info */
2100 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2101 netdev->name,
2102 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2103 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2104 "unknown"),
2105 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2106 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2107 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2108 "unknown"),
2109 netdev->dev_addr);
2110
2111 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2112 if (ret_val)
2113 strcpy(part_str, "Unknown");
2114 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2115 dev_info(&pdev->dev,
2116 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2117 adapter->msix_entries ? "MSI-X" :
2118 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2119 adapter->num_rx_queues, adapter->num_tx_queues);
2120 switch (hw->mac.type) {
2121 case e1000_i350:
2122 igb_set_eee_i350(hw);
2123 break;
2124 default:
2125 break;
2126 }
2127 return 0;
2128
2129 err_register:
2130 igb_release_hw_control(adapter);
2131 err_eeprom:
2132 if (!igb_check_reset_block(hw))
2133 igb_reset_phy(hw);
2134
2135 if (hw->flash_address)
2136 iounmap(hw->flash_address);
2137 err_sw_init:
2138 igb_clear_interrupt_scheme(adapter);
2139 iounmap(hw->hw_addr);
2140 err_ioremap:
2141 free_netdev(netdev);
2142 err_alloc_etherdev:
2143 pci_release_selected_regions(pdev,
2144 pci_select_bars(pdev, IORESOURCE_MEM));
2145 err_pci_reg:
2146 err_dma:
2147 pci_disable_device(pdev);
2148 return err;
2149 }
2150
2151 /**
2152 * igb_remove - Device Removal Routine
2153 * @pdev: PCI device information struct
2154 *
2155 * igb_remove is called by the PCI subsystem to alert the driver
2156 * that it should release a PCI device. The could be caused by a
2157 * Hot-Plug event, or because the driver is going to be removed from
2158 * memory.
2159 **/
2160 static void __devexit igb_remove(struct pci_dev *pdev)
2161 {
2162 struct net_device *netdev = pci_get_drvdata(pdev);
2163 struct igb_adapter *adapter = netdev_priv(netdev);
2164 struct e1000_hw *hw = &adapter->hw;
2165
2166 /*
2167 * The watchdog timer may be rescheduled, so explicitly
2168 * disable watchdog from being rescheduled.
2169 */
2170 set_bit(__IGB_DOWN, &adapter->state);
2171 del_timer_sync(&adapter->watchdog_timer);
2172 del_timer_sync(&adapter->phy_info_timer);
2173
2174 cancel_work_sync(&adapter->reset_task);
2175 cancel_work_sync(&adapter->watchdog_task);
2176
2177 #ifdef CONFIG_IGB_DCA
2178 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2179 dev_info(&pdev->dev, "DCA disabled\n");
2180 dca_remove_requester(&pdev->dev);
2181 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2182 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2183 }
2184 #endif
2185
2186 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2187 * would have already happened in close and is redundant. */
2188 igb_release_hw_control(adapter);
2189
2190 unregister_netdev(netdev);
2191
2192 igb_clear_interrupt_scheme(adapter);
2193
2194 #ifdef CONFIG_PCI_IOV
2195 /* reclaim resources allocated to VFs */
2196 if (adapter->vf_data) {
2197 /* disable iov and allow time for transactions to clear */
2198 pci_disable_sriov(pdev);
2199 msleep(500);
2200
2201 kfree(adapter->vf_data);
2202 adapter->vf_data = NULL;
2203 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2204 wrfl();
2205 msleep(100);
2206 dev_info(&pdev->dev, "IOV Disabled\n");
2207 }
2208 #endif
2209
2210 iounmap(hw->hw_addr);
2211 if (hw->flash_address)
2212 iounmap(hw->flash_address);
2213 pci_release_selected_regions(pdev,
2214 pci_select_bars(pdev, IORESOURCE_MEM));
2215
2216 free_netdev(netdev);
2217
2218 pci_disable_pcie_error_reporting(pdev);
2219
2220 pci_disable_device(pdev);
2221 }
2222
2223 /**
2224 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2225 * @adapter: board private structure to initialize
2226 *
2227 * This function initializes the vf specific data storage and then attempts to
2228 * allocate the VFs. The reason for ordering it this way is because it is much
2229 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2230 * the memory for the VFs.
2231 **/
2232 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2233 {
2234 #ifdef CONFIG_PCI_IOV
2235 struct pci_dev *pdev = adapter->pdev;
2236
2237 if (adapter->vfs_allocated_count) {
2238 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2239 sizeof(struct vf_data_storage),
2240 GFP_KERNEL);
2241 /* if allocation failed then we do not support SR-IOV */
2242 if (!adapter->vf_data) {
2243 adapter->vfs_allocated_count = 0;
2244 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2245 "Data Storage\n");
2246 }
2247 }
2248
2249 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2250 kfree(adapter->vf_data);
2251 adapter->vf_data = NULL;
2252 #endif /* CONFIG_PCI_IOV */
2253 adapter->vfs_allocated_count = 0;
2254 #ifdef CONFIG_PCI_IOV
2255 } else {
2256 unsigned char mac_addr[ETH_ALEN];
2257 int i;
2258 dev_info(&pdev->dev, "%d vfs allocated\n",
2259 adapter->vfs_allocated_count);
2260 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2261 random_ether_addr(mac_addr);
2262 igb_set_vf_mac(adapter, i, mac_addr);
2263 }
2264 /* DMA Coalescing is not supported in IOV mode. */
2265 if (adapter->flags & IGB_FLAG_DMAC)
2266 adapter->flags &= ~IGB_FLAG_DMAC;
2267 }
2268 #endif /* CONFIG_PCI_IOV */
2269 }
2270
2271
2272 /**
2273 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2274 * @adapter: board private structure to initialize
2275 *
2276 * igb_init_hw_timer initializes the function pointer and values for the hw
2277 * timer found in hardware.
2278 **/
2279 static void igb_init_hw_timer(struct igb_adapter *adapter)
2280 {
2281 struct e1000_hw *hw = &adapter->hw;
2282
2283 switch (hw->mac.type) {
2284 case e1000_i350:
2285 case e1000_82580:
2286 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2287 adapter->cycles.read = igb_read_clock;
2288 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2289 adapter->cycles.mult = 1;
2290 /*
2291 * The 82580 timesync updates the system timer every 8ns by 8ns
2292 * and the value cannot be shifted. Instead we need to shift
2293 * the registers to generate a 64bit timer value. As a result
2294 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2295 * 24 in order to generate a larger value for synchronization.
2296 */
2297 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2298 /* disable system timer temporarily by setting bit 31 */
2299 wr32(E1000_TSAUXC, 0x80000000);
2300 wrfl();
2301
2302 /* Set registers so that rollover occurs soon to test this. */
2303 wr32(E1000_SYSTIMR, 0x00000000);
2304 wr32(E1000_SYSTIML, 0x80000000);
2305 wr32(E1000_SYSTIMH, 0x000000FF);
2306 wrfl();
2307
2308 /* enable system timer by clearing bit 31 */
2309 wr32(E1000_TSAUXC, 0x0);
2310 wrfl();
2311
2312 timecounter_init(&adapter->clock,
2313 &adapter->cycles,
2314 ktime_to_ns(ktime_get_real()));
2315 /*
2316 * Synchronize our NIC clock against system wall clock. NIC
2317 * time stamp reading requires ~3us per sample, each sample
2318 * was pretty stable even under load => only require 10
2319 * samples for each offset comparison.
2320 */
2321 memset(&adapter->compare, 0, sizeof(adapter->compare));
2322 adapter->compare.source = &adapter->clock;
2323 adapter->compare.target = ktime_get_real;
2324 adapter->compare.num_samples = 10;
2325 timecompare_update(&adapter->compare, 0);
2326 break;
2327 case e1000_82576:
2328 /*
2329 * Initialize hardware timer: we keep it running just in case
2330 * that some program needs it later on.
2331 */
2332 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2333 adapter->cycles.read = igb_read_clock;
2334 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2335 adapter->cycles.mult = 1;
2336 /**
2337 * Scale the NIC clock cycle by a large factor so that
2338 * relatively small clock corrections can be added or
2339 * subtracted at each clock tick. The drawbacks of a large
2340 * factor are a) that the clock register overflows more quickly
2341 * (not such a big deal) and b) that the increment per tick has
2342 * to fit into 24 bits. As a result we need to use a shift of
2343 * 19 so we can fit a value of 16 into the TIMINCA register.
2344 */
2345 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2346 wr32(E1000_TIMINCA,
2347 (1 << E1000_TIMINCA_16NS_SHIFT) |
2348 (16 << IGB_82576_TSYNC_SHIFT));
2349
2350 /* Set registers so that rollover occurs soon to test this. */
2351 wr32(E1000_SYSTIML, 0x00000000);
2352 wr32(E1000_SYSTIMH, 0xFF800000);
2353 wrfl();
2354
2355 timecounter_init(&adapter->clock,
2356 &adapter->cycles,
2357 ktime_to_ns(ktime_get_real()));
2358 /*
2359 * Synchronize our NIC clock against system wall clock. NIC
2360 * time stamp reading requires ~3us per sample, each sample
2361 * was pretty stable even under load => only require 10
2362 * samples for each offset comparison.
2363 */
2364 memset(&adapter->compare, 0, sizeof(adapter->compare));
2365 adapter->compare.source = &adapter->clock;
2366 adapter->compare.target = ktime_get_real;
2367 adapter->compare.num_samples = 10;
2368 timecompare_update(&adapter->compare, 0);
2369 break;
2370 case e1000_82575:
2371 /* 82575 does not support timesync */
2372 default:
2373 break;
2374 }
2375
2376 }
2377
2378 /**
2379 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2380 * @adapter: board private structure to initialize
2381 *
2382 * igb_sw_init initializes the Adapter private data structure.
2383 * Fields are initialized based on PCI device information and
2384 * OS network device settings (MTU size).
2385 **/
2386 static int __devinit igb_sw_init(struct igb_adapter *adapter)
2387 {
2388 struct e1000_hw *hw = &adapter->hw;
2389 struct net_device *netdev = adapter->netdev;
2390 struct pci_dev *pdev = adapter->pdev;
2391
2392 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2393
2394 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2395 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2396 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2397 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2398
2399 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2400 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2401
2402 spin_lock_init(&adapter->stats64_lock);
2403 #ifdef CONFIG_PCI_IOV
2404 switch (hw->mac.type) {
2405 case e1000_82576:
2406 case e1000_i350:
2407 if (max_vfs > 7) {
2408 dev_warn(&pdev->dev,
2409 "Maximum of 7 VFs per PF, using max\n");
2410 adapter->vfs_allocated_count = 7;
2411 } else
2412 adapter->vfs_allocated_count = max_vfs;
2413 break;
2414 default:
2415 break;
2416 }
2417 #endif /* CONFIG_PCI_IOV */
2418 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2419 /* i350 cannot do RSS and SR-IOV at the same time */
2420 if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2421 adapter->rss_queues = 1;
2422
2423 /*
2424 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2425 * then we should combine the queues into a queue pair in order to
2426 * conserve interrupts due to limited supply
2427 */
2428 if ((adapter->rss_queues > 4) ||
2429 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2430 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2431
2432 /* This call may decrease the number of queues */
2433 if (igb_init_interrupt_scheme(adapter)) {
2434 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2435 return -ENOMEM;
2436 }
2437
2438 igb_probe_vfs(adapter);
2439
2440 /* Explicitly disable IRQ since the NIC can be in any state. */
2441 igb_irq_disable(adapter);
2442
2443 if (hw->mac.type == e1000_i350)
2444 adapter->flags &= ~IGB_FLAG_DMAC;
2445
2446 set_bit(__IGB_DOWN, &adapter->state);
2447 return 0;
2448 }
2449
2450 /**
2451 * igb_open - Called when a network interface is made active
2452 * @netdev: network interface device structure
2453 *
2454 * Returns 0 on success, negative value on failure
2455 *
2456 * The open entry point is called when a network interface is made
2457 * active by the system (IFF_UP). At this point all resources needed
2458 * for transmit and receive operations are allocated, the interrupt
2459 * handler is registered with the OS, the watchdog timer is started,
2460 * and the stack is notified that the interface is ready.
2461 **/
2462 static int igb_open(struct net_device *netdev)
2463 {
2464 struct igb_adapter *adapter = netdev_priv(netdev);
2465 struct e1000_hw *hw = &adapter->hw;
2466 int err;
2467 int i;
2468
2469 /* disallow open during test */
2470 if (test_bit(__IGB_TESTING, &adapter->state))
2471 return -EBUSY;
2472
2473 netif_carrier_off(netdev);
2474
2475 /* allocate transmit descriptors */
2476 err = igb_setup_all_tx_resources(adapter);
2477 if (err)
2478 goto err_setup_tx;
2479
2480 /* allocate receive descriptors */
2481 err = igb_setup_all_rx_resources(adapter);
2482 if (err)
2483 goto err_setup_rx;
2484
2485 igb_power_up_link(adapter);
2486
2487 /* before we allocate an interrupt, we must be ready to handle it.
2488 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2489 * as soon as we call pci_request_irq, so we have to setup our
2490 * clean_rx handler before we do so. */
2491 igb_configure(adapter);
2492
2493 err = igb_request_irq(adapter);
2494 if (err)
2495 goto err_req_irq;
2496
2497 /* From here on the code is the same as igb_up() */
2498 clear_bit(__IGB_DOWN, &adapter->state);
2499
2500 for (i = 0; i < adapter->num_q_vectors; i++) {
2501 struct igb_q_vector *q_vector = adapter->q_vector[i];
2502 napi_enable(&q_vector->napi);
2503 }
2504
2505 /* Clear any pending interrupts. */
2506 rd32(E1000_ICR);
2507
2508 igb_irq_enable(adapter);
2509
2510 /* notify VFs that reset has been completed */
2511 if (adapter->vfs_allocated_count) {
2512 u32 reg_data = rd32(E1000_CTRL_EXT);
2513 reg_data |= E1000_CTRL_EXT_PFRSTD;
2514 wr32(E1000_CTRL_EXT, reg_data);
2515 }
2516
2517 netif_tx_start_all_queues(netdev);
2518
2519 /* start the watchdog. */
2520 hw->mac.get_link_status = 1;
2521 schedule_work(&adapter->watchdog_task);
2522
2523 return 0;
2524
2525 err_req_irq:
2526 igb_release_hw_control(adapter);
2527 igb_power_down_link(adapter);
2528 igb_free_all_rx_resources(adapter);
2529 err_setup_rx:
2530 igb_free_all_tx_resources(adapter);
2531 err_setup_tx:
2532 igb_reset(adapter);
2533
2534 return err;
2535 }
2536
2537 /**
2538 * igb_close - Disables a network interface
2539 * @netdev: network interface device structure
2540 *
2541 * Returns 0, this is not allowed to fail
2542 *
2543 * The close entry point is called when an interface is de-activated
2544 * by the OS. The hardware is still under the driver's control, but
2545 * needs to be disabled. A global MAC reset is issued to stop the
2546 * hardware, and all transmit and receive resources are freed.
2547 **/
2548 static int igb_close(struct net_device *netdev)
2549 {
2550 struct igb_adapter *adapter = netdev_priv(netdev);
2551
2552 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2553 igb_down(adapter);
2554
2555 igb_free_irq(adapter);
2556
2557 igb_free_all_tx_resources(adapter);
2558 igb_free_all_rx_resources(adapter);
2559
2560 return 0;
2561 }
2562
2563 /**
2564 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2565 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2566 *
2567 * Return 0 on success, negative on failure
2568 **/
2569 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2570 {
2571 struct device *dev = tx_ring->dev;
2572 int size;
2573
2574 size = sizeof(struct igb_buffer) * tx_ring->count;
2575 tx_ring->buffer_info = vzalloc(size);
2576 if (!tx_ring->buffer_info)
2577 goto err;
2578
2579 /* round up to nearest 4K */
2580 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2581 tx_ring->size = ALIGN(tx_ring->size, 4096);
2582
2583 tx_ring->desc = dma_alloc_coherent(dev,
2584 tx_ring->size,
2585 &tx_ring->dma,
2586 GFP_KERNEL);
2587
2588 if (!tx_ring->desc)
2589 goto err;
2590
2591 tx_ring->next_to_use = 0;
2592 tx_ring->next_to_clean = 0;
2593 return 0;
2594
2595 err:
2596 vfree(tx_ring->buffer_info);
2597 dev_err(dev,
2598 "Unable to allocate memory for the transmit descriptor ring\n");
2599 return -ENOMEM;
2600 }
2601
2602 /**
2603 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2604 * (Descriptors) for all queues
2605 * @adapter: board private structure
2606 *
2607 * Return 0 on success, negative on failure
2608 **/
2609 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2610 {
2611 struct pci_dev *pdev = adapter->pdev;
2612 int i, err = 0;
2613
2614 for (i = 0; i < adapter->num_tx_queues; i++) {
2615 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2616 if (err) {
2617 dev_err(&pdev->dev,
2618 "Allocation for Tx Queue %u failed\n", i);
2619 for (i--; i >= 0; i--)
2620 igb_free_tx_resources(adapter->tx_ring[i]);
2621 break;
2622 }
2623 }
2624
2625 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2626 int r_idx = i % adapter->num_tx_queues;
2627 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
2628 }
2629 return err;
2630 }
2631
2632 /**
2633 * igb_setup_tctl - configure the transmit control registers
2634 * @adapter: Board private structure
2635 **/
2636 void igb_setup_tctl(struct igb_adapter *adapter)
2637 {
2638 struct e1000_hw *hw = &adapter->hw;
2639 u32 tctl;
2640
2641 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2642 wr32(E1000_TXDCTL(0), 0);
2643
2644 /* Program the Transmit Control Register */
2645 tctl = rd32(E1000_TCTL);
2646 tctl &= ~E1000_TCTL_CT;
2647 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2648 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2649
2650 igb_config_collision_dist(hw);
2651
2652 /* Enable transmits */
2653 tctl |= E1000_TCTL_EN;
2654
2655 wr32(E1000_TCTL, tctl);
2656 }
2657
2658 /**
2659 * igb_configure_tx_ring - Configure transmit ring after Reset
2660 * @adapter: board private structure
2661 * @ring: tx ring to configure
2662 *
2663 * Configure a transmit ring after a reset.
2664 **/
2665 void igb_configure_tx_ring(struct igb_adapter *adapter,
2666 struct igb_ring *ring)
2667 {
2668 struct e1000_hw *hw = &adapter->hw;
2669 u32 txdctl;
2670 u64 tdba = ring->dma;
2671 int reg_idx = ring->reg_idx;
2672
2673 /* disable the queue */
2674 txdctl = rd32(E1000_TXDCTL(reg_idx));
2675 wr32(E1000_TXDCTL(reg_idx),
2676 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2677 wrfl();
2678 mdelay(10);
2679
2680 wr32(E1000_TDLEN(reg_idx),
2681 ring->count * sizeof(union e1000_adv_tx_desc));
2682 wr32(E1000_TDBAL(reg_idx),
2683 tdba & 0x00000000ffffffffULL);
2684 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2685
2686 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2687 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2688 writel(0, ring->head);
2689 writel(0, ring->tail);
2690
2691 txdctl |= IGB_TX_PTHRESH;
2692 txdctl |= IGB_TX_HTHRESH << 8;
2693 txdctl |= IGB_TX_WTHRESH << 16;
2694
2695 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2696 wr32(E1000_TXDCTL(reg_idx), txdctl);
2697 }
2698
2699 /**
2700 * igb_configure_tx - Configure transmit Unit after Reset
2701 * @adapter: board private structure
2702 *
2703 * Configure the Tx unit of the MAC after a reset.
2704 **/
2705 static void igb_configure_tx(struct igb_adapter *adapter)
2706 {
2707 int i;
2708
2709 for (i = 0; i < adapter->num_tx_queues; i++)
2710 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2711 }
2712
2713 /**
2714 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2715 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2716 *
2717 * Returns 0 on success, negative on failure
2718 **/
2719 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2720 {
2721 struct device *dev = rx_ring->dev;
2722 int size, desc_len;
2723
2724 size = sizeof(struct igb_buffer) * rx_ring->count;
2725 rx_ring->buffer_info = vzalloc(size);
2726 if (!rx_ring->buffer_info)
2727 goto err;
2728
2729 desc_len = sizeof(union e1000_adv_rx_desc);
2730
2731 /* Round up to nearest 4K */
2732 rx_ring->size = rx_ring->count * desc_len;
2733 rx_ring->size = ALIGN(rx_ring->size, 4096);
2734
2735 rx_ring->desc = dma_alloc_coherent(dev,
2736 rx_ring->size,
2737 &rx_ring->dma,
2738 GFP_KERNEL);
2739
2740 if (!rx_ring->desc)
2741 goto err;
2742
2743 rx_ring->next_to_clean = 0;
2744 rx_ring->next_to_use = 0;
2745
2746 return 0;
2747
2748 err:
2749 vfree(rx_ring->buffer_info);
2750 rx_ring->buffer_info = NULL;
2751 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2752 " ring\n");
2753 return -ENOMEM;
2754 }
2755
2756 /**
2757 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2758 * (Descriptors) for all queues
2759 * @adapter: board private structure
2760 *
2761 * Return 0 on success, negative on failure
2762 **/
2763 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2764 {
2765 struct pci_dev *pdev = adapter->pdev;
2766 int i, err = 0;
2767
2768 for (i = 0; i < adapter->num_rx_queues; i++) {
2769 err = igb_setup_rx_resources(adapter->rx_ring[i]);
2770 if (err) {
2771 dev_err(&pdev->dev,
2772 "Allocation for Rx Queue %u failed\n", i);
2773 for (i--; i >= 0; i--)
2774 igb_free_rx_resources(adapter->rx_ring[i]);
2775 break;
2776 }
2777 }
2778
2779 return err;
2780 }
2781
2782 /**
2783 * igb_setup_mrqc - configure the multiple receive queue control registers
2784 * @adapter: Board private structure
2785 **/
2786 static void igb_setup_mrqc(struct igb_adapter *adapter)
2787 {
2788 struct e1000_hw *hw = &adapter->hw;
2789 u32 mrqc, rxcsum;
2790 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2791 union e1000_reta {
2792 u32 dword;
2793 u8 bytes[4];
2794 } reta;
2795 static const u8 rsshash[40] = {
2796 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2797 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2798 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2799 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2800
2801 /* Fill out hash function seeds */
2802 for (j = 0; j < 10; j++) {
2803 u32 rsskey = rsshash[(j * 4)];
2804 rsskey |= rsshash[(j * 4) + 1] << 8;
2805 rsskey |= rsshash[(j * 4) + 2] << 16;
2806 rsskey |= rsshash[(j * 4) + 3] << 24;
2807 array_wr32(E1000_RSSRK(0), j, rsskey);
2808 }
2809
2810 num_rx_queues = adapter->rss_queues;
2811
2812 if (adapter->vfs_allocated_count) {
2813 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2814 switch (hw->mac.type) {
2815 case e1000_i350:
2816 case e1000_82580:
2817 num_rx_queues = 1;
2818 shift = 0;
2819 break;
2820 case e1000_82576:
2821 shift = 3;
2822 num_rx_queues = 2;
2823 break;
2824 case e1000_82575:
2825 shift = 2;
2826 shift2 = 6;
2827 default:
2828 break;
2829 }
2830 } else {
2831 if (hw->mac.type == e1000_82575)
2832 shift = 6;
2833 }
2834
2835 for (j = 0; j < (32 * 4); j++) {
2836 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2837 if (shift2)
2838 reta.bytes[j & 3] |= num_rx_queues << shift2;
2839 if ((j & 3) == 3)
2840 wr32(E1000_RETA(j >> 2), reta.dword);
2841 }
2842
2843 /*
2844 * Disable raw packet checksumming so that RSS hash is placed in
2845 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2846 * offloads as they are enabled by default
2847 */
2848 rxcsum = rd32(E1000_RXCSUM);
2849 rxcsum |= E1000_RXCSUM_PCSD;
2850
2851 if (adapter->hw.mac.type >= e1000_82576)
2852 /* Enable Receive Checksum Offload for SCTP */
2853 rxcsum |= E1000_RXCSUM_CRCOFL;
2854
2855 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2856 wr32(E1000_RXCSUM, rxcsum);
2857
2858 /* If VMDq is enabled then we set the appropriate mode for that, else
2859 * we default to RSS so that an RSS hash is calculated per packet even
2860 * if we are only using one queue */
2861 if (adapter->vfs_allocated_count) {
2862 if (hw->mac.type > e1000_82575) {
2863 /* Set the default pool for the PF's first queue */
2864 u32 vtctl = rd32(E1000_VT_CTL);
2865 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2866 E1000_VT_CTL_DISABLE_DEF_POOL);
2867 vtctl |= adapter->vfs_allocated_count <<
2868 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2869 wr32(E1000_VT_CTL, vtctl);
2870 }
2871 if (adapter->rss_queues > 1)
2872 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2873 else
2874 mrqc = E1000_MRQC_ENABLE_VMDQ;
2875 } else {
2876 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2877 }
2878 igb_vmm_control(adapter);
2879
2880 /*
2881 * Generate RSS hash based on TCP port numbers and/or
2882 * IPv4/v6 src and dst addresses since UDP cannot be
2883 * hashed reliably due to IP fragmentation
2884 */
2885 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2886 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2887 E1000_MRQC_RSS_FIELD_IPV6 |
2888 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2889 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2890
2891 wr32(E1000_MRQC, mrqc);
2892 }
2893
2894 /**
2895 * igb_setup_rctl - configure the receive control registers
2896 * @adapter: Board private structure
2897 **/
2898 void igb_setup_rctl(struct igb_adapter *adapter)
2899 {
2900 struct e1000_hw *hw = &adapter->hw;
2901 u32 rctl;
2902
2903 rctl = rd32(E1000_RCTL);
2904
2905 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2906 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2907
2908 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2909 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2910
2911 /*
2912 * enable stripping of CRC. It's unlikely this will break BMC
2913 * redirection as it did with e1000. Newer features require
2914 * that the HW strips the CRC.
2915 */
2916 rctl |= E1000_RCTL_SECRC;
2917
2918 /* disable store bad packets and clear size bits. */
2919 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2920
2921 /* enable LPE to prevent packets larger than max_frame_size */
2922 rctl |= E1000_RCTL_LPE;
2923
2924 /* disable queue 0 to prevent tail write w/o re-config */
2925 wr32(E1000_RXDCTL(0), 0);
2926
2927 /* Attention!!! For SR-IOV PF driver operations you must enable
2928 * queue drop for all VF and PF queues to prevent head of line blocking
2929 * if an un-trusted VF does not provide descriptors to hardware.
2930 */
2931 if (adapter->vfs_allocated_count) {
2932 /* set all queue drop enable bits */
2933 wr32(E1000_QDE, ALL_QUEUES);
2934 }
2935
2936 wr32(E1000_RCTL, rctl);
2937 }
2938
2939 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2940 int vfn)
2941 {
2942 struct e1000_hw *hw = &adapter->hw;
2943 u32 vmolr;
2944
2945 /* if it isn't the PF check to see if VFs are enabled and
2946 * increase the size to support vlan tags */
2947 if (vfn < adapter->vfs_allocated_count &&
2948 adapter->vf_data[vfn].vlans_enabled)
2949 size += VLAN_TAG_SIZE;
2950
2951 vmolr = rd32(E1000_VMOLR(vfn));
2952 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2953 vmolr |= size | E1000_VMOLR_LPE;
2954 wr32(E1000_VMOLR(vfn), vmolr);
2955
2956 return 0;
2957 }
2958
2959 /**
2960 * igb_rlpml_set - set maximum receive packet size
2961 * @adapter: board private structure
2962 *
2963 * Configure maximum receivable packet size.
2964 **/
2965 static void igb_rlpml_set(struct igb_adapter *adapter)
2966 {
2967 u32 max_frame_size;
2968 struct e1000_hw *hw = &adapter->hw;
2969 u16 pf_id = adapter->vfs_allocated_count;
2970
2971 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
2972
2973 /* if vfs are enabled we set RLPML to the largest possible request
2974 * size and set the VMOLR RLPML to the size we need */
2975 if (pf_id) {
2976 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2977 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2978 }
2979
2980 wr32(E1000_RLPML, max_frame_size);
2981 }
2982
2983 static inline void igb_set_vmolr(struct igb_adapter *adapter,
2984 int vfn, bool aupe)
2985 {
2986 struct e1000_hw *hw = &adapter->hw;
2987 u32 vmolr;
2988
2989 /*
2990 * This register exists only on 82576 and newer so if we are older then
2991 * we should exit and do nothing
2992 */
2993 if (hw->mac.type < e1000_82576)
2994 return;
2995
2996 vmolr = rd32(E1000_VMOLR(vfn));
2997 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2998 if (aupe)
2999 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3000 else
3001 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3002
3003 /* clear all bits that might not be set */
3004 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3005
3006 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3007 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3008 /*
3009 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3010 * multicast packets
3011 */
3012 if (vfn <= adapter->vfs_allocated_count)
3013 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3014
3015 wr32(E1000_VMOLR(vfn), vmolr);
3016 }
3017
3018 /**
3019 * igb_configure_rx_ring - Configure a receive ring after Reset
3020 * @adapter: board private structure
3021 * @ring: receive ring to be configured
3022 *
3023 * Configure the Rx unit of the MAC after a reset.
3024 **/
3025 void igb_configure_rx_ring(struct igb_adapter *adapter,
3026 struct igb_ring *ring)
3027 {
3028 struct e1000_hw *hw = &adapter->hw;
3029 u64 rdba = ring->dma;
3030 int reg_idx = ring->reg_idx;
3031 u32 srrctl, rxdctl;
3032
3033 /* disable the queue */
3034 rxdctl = rd32(E1000_RXDCTL(reg_idx));
3035 wr32(E1000_RXDCTL(reg_idx),
3036 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
3037
3038 /* Set DMA base address registers */
3039 wr32(E1000_RDBAL(reg_idx),
3040 rdba & 0x00000000ffffffffULL);
3041 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3042 wr32(E1000_RDLEN(reg_idx),
3043 ring->count * sizeof(union e1000_adv_rx_desc));
3044
3045 /* initialize head and tail */
3046 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
3047 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3048 writel(0, ring->head);
3049 writel(0, ring->tail);
3050
3051 /* set descriptor configuration */
3052 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
3053 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
3054 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3055 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3056 srrctl |= IGB_RXBUFFER_16384 >>
3057 E1000_SRRCTL_BSIZEPKT_SHIFT;
3058 #else
3059 srrctl |= (PAGE_SIZE / 2) >>
3060 E1000_SRRCTL_BSIZEPKT_SHIFT;
3061 #endif
3062 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3063 } else {
3064 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
3065 E1000_SRRCTL_BSIZEPKT_SHIFT;
3066 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3067 }
3068 if (hw->mac.type == e1000_82580)
3069 srrctl |= E1000_SRRCTL_TIMESTAMP;
3070 /* Only set Drop Enable if we are supporting multiple queues */
3071 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3072 srrctl |= E1000_SRRCTL_DROP_EN;
3073
3074 wr32(E1000_SRRCTL(reg_idx), srrctl);
3075
3076 /* set filtering for VMDQ pools */
3077 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3078
3079 /* enable receive descriptor fetching */
3080 rxdctl = rd32(E1000_RXDCTL(reg_idx));
3081 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3082 rxdctl &= 0xFFF00000;
3083 rxdctl |= IGB_RX_PTHRESH;
3084 rxdctl |= IGB_RX_HTHRESH << 8;
3085 rxdctl |= IGB_RX_WTHRESH << 16;
3086 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3087 }
3088
3089 /**
3090 * igb_configure_rx - Configure receive Unit after Reset
3091 * @adapter: board private structure
3092 *
3093 * Configure the Rx unit of the MAC after a reset.
3094 **/
3095 static void igb_configure_rx(struct igb_adapter *adapter)
3096 {
3097 int i;
3098
3099 /* set UTA to appropriate mode */
3100 igb_set_uta(adapter);
3101
3102 /* set the correct pool for the PF default MAC address in entry 0 */
3103 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3104 adapter->vfs_allocated_count);
3105
3106 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3107 * the Base and Length of the Rx Descriptor Ring */
3108 for (i = 0; i < adapter->num_rx_queues; i++)
3109 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3110 }
3111
3112 /**
3113 * igb_free_tx_resources - Free Tx Resources per Queue
3114 * @tx_ring: Tx descriptor ring for a specific queue
3115 *
3116 * Free all transmit software resources
3117 **/
3118 void igb_free_tx_resources(struct igb_ring *tx_ring)
3119 {
3120 igb_clean_tx_ring(tx_ring);
3121
3122 vfree(tx_ring->buffer_info);
3123 tx_ring->buffer_info = NULL;
3124
3125 /* if not set, then don't free */
3126 if (!tx_ring->desc)
3127 return;
3128
3129 dma_free_coherent(tx_ring->dev, tx_ring->size,
3130 tx_ring->desc, tx_ring->dma);
3131
3132 tx_ring->desc = NULL;
3133 }
3134
3135 /**
3136 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3137 * @adapter: board private structure
3138 *
3139 * Free all transmit software resources
3140 **/
3141 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3142 {
3143 int i;
3144
3145 for (i = 0; i < adapter->num_tx_queues; i++)
3146 igb_free_tx_resources(adapter->tx_ring[i]);
3147 }
3148
3149 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3150 struct igb_buffer *buffer_info)
3151 {
3152 if (buffer_info->dma) {
3153 if (buffer_info->mapped_as_page)
3154 dma_unmap_page(tx_ring->dev,
3155 buffer_info->dma,
3156 buffer_info->length,
3157 DMA_TO_DEVICE);
3158 else
3159 dma_unmap_single(tx_ring->dev,
3160 buffer_info->dma,
3161 buffer_info->length,
3162 DMA_TO_DEVICE);
3163 buffer_info->dma = 0;
3164 }
3165 if (buffer_info->skb) {
3166 dev_kfree_skb_any(buffer_info->skb);
3167 buffer_info->skb = NULL;
3168 }
3169 buffer_info->time_stamp = 0;
3170 buffer_info->length = 0;
3171 buffer_info->next_to_watch = 0;
3172 buffer_info->mapped_as_page = false;
3173 }
3174
3175 /**
3176 * igb_clean_tx_ring - Free Tx Buffers
3177 * @tx_ring: ring to be cleaned
3178 **/
3179 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3180 {
3181 struct igb_buffer *buffer_info;
3182 unsigned long size;
3183 unsigned int i;
3184
3185 if (!tx_ring->buffer_info)
3186 return;
3187 /* Free all the Tx ring sk_buffs */
3188
3189 for (i = 0; i < tx_ring->count; i++) {
3190 buffer_info = &tx_ring->buffer_info[i];
3191 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3192 }
3193
3194 size = sizeof(struct igb_buffer) * tx_ring->count;
3195 memset(tx_ring->buffer_info, 0, size);
3196
3197 /* Zero out the descriptor ring */
3198 memset(tx_ring->desc, 0, tx_ring->size);
3199
3200 tx_ring->next_to_use = 0;
3201 tx_ring->next_to_clean = 0;
3202 }
3203
3204 /**
3205 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3206 * @adapter: board private structure
3207 **/
3208 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3209 {
3210 int i;
3211
3212 for (i = 0; i < adapter->num_tx_queues; i++)
3213 igb_clean_tx_ring(adapter->tx_ring[i]);
3214 }
3215
3216 /**
3217 * igb_free_rx_resources - Free Rx Resources
3218 * @rx_ring: ring to clean the resources from
3219 *
3220 * Free all receive software resources
3221 **/
3222 void igb_free_rx_resources(struct igb_ring *rx_ring)
3223 {
3224 igb_clean_rx_ring(rx_ring);
3225
3226 vfree(rx_ring->buffer_info);
3227 rx_ring->buffer_info = NULL;
3228
3229 /* if not set, then don't free */
3230 if (!rx_ring->desc)
3231 return;
3232
3233 dma_free_coherent(rx_ring->dev, rx_ring->size,
3234 rx_ring->desc, rx_ring->dma);
3235
3236 rx_ring->desc = NULL;
3237 }
3238
3239 /**
3240 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3241 * @adapter: board private structure
3242 *
3243 * Free all receive software resources
3244 **/
3245 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3246 {
3247 int i;
3248
3249 for (i = 0; i < adapter->num_rx_queues; i++)
3250 igb_free_rx_resources(adapter->rx_ring[i]);
3251 }
3252
3253 /**
3254 * igb_clean_rx_ring - Free Rx Buffers per Queue
3255 * @rx_ring: ring to free buffers from
3256 **/
3257 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3258 {
3259 struct igb_buffer *buffer_info;
3260 unsigned long size;
3261 unsigned int i;
3262
3263 if (!rx_ring->buffer_info)
3264 return;
3265
3266 /* Free all the Rx ring sk_buffs */
3267 for (i = 0; i < rx_ring->count; i++) {
3268 buffer_info = &rx_ring->buffer_info[i];
3269 if (buffer_info->dma) {
3270 dma_unmap_single(rx_ring->dev,
3271 buffer_info->dma,
3272 rx_ring->rx_buffer_len,
3273 DMA_FROM_DEVICE);
3274 buffer_info->dma = 0;
3275 }
3276
3277 if (buffer_info->skb) {
3278 dev_kfree_skb(buffer_info->skb);
3279 buffer_info->skb = NULL;
3280 }
3281 if (buffer_info->page_dma) {
3282 dma_unmap_page(rx_ring->dev,
3283 buffer_info->page_dma,
3284 PAGE_SIZE / 2,
3285 DMA_FROM_DEVICE);
3286 buffer_info->page_dma = 0;
3287 }
3288 if (buffer_info->page) {
3289 put_page(buffer_info->page);
3290 buffer_info->page = NULL;
3291 buffer_info->page_offset = 0;
3292 }
3293 }
3294
3295 size = sizeof(struct igb_buffer) * rx_ring->count;
3296 memset(rx_ring->buffer_info, 0, size);
3297
3298 /* Zero out the descriptor ring */
3299 memset(rx_ring->desc, 0, rx_ring->size);
3300
3301 rx_ring->next_to_clean = 0;
3302 rx_ring->next_to_use = 0;
3303 }
3304
3305 /**
3306 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3307 * @adapter: board private structure
3308 **/
3309 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3310 {
3311 int i;
3312
3313 for (i = 0; i < adapter->num_rx_queues; i++)
3314 igb_clean_rx_ring(adapter->rx_ring[i]);
3315 }
3316
3317 /**
3318 * igb_set_mac - Change the Ethernet Address of the NIC
3319 * @netdev: network interface device structure
3320 * @p: pointer to an address structure
3321 *
3322 * Returns 0 on success, negative on failure
3323 **/
3324 static int igb_set_mac(struct net_device *netdev, void *p)
3325 {
3326 struct igb_adapter *adapter = netdev_priv(netdev);
3327 struct e1000_hw *hw = &adapter->hw;
3328 struct sockaddr *addr = p;
3329
3330 if (!is_valid_ether_addr(addr->sa_data))
3331 return -EADDRNOTAVAIL;
3332
3333 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3334 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3335
3336 /* set the correct pool for the new PF MAC address in entry 0 */
3337 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3338 adapter->vfs_allocated_count);
3339
3340 return 0;
3341 }
3342
3343 /**
3344 * igb_write_mc_addr_list - write multicast addresses to MTA
3345 * @netdev: network interface device structure
3346 *
3347 * Writes multicast address list to the MTA hash table.
3348 * Returns: -ENOMEM on failure
3349 * 0 on no addresses written
3350 * X on writing X addresses to MTA
3351 **/
3352 static int igb_write_mc_addr_list(struct net_device *netdev)
3353 {
3354 struct igb_adapter *adapter = netdev_priv(netdev);
3355 struct e1000_hw *hw = &adapter->hw;
3356 struct netdev_hw_addr *ha;
3357 u8 *mta_list;
3358 int i;
3359
3360 if (netdev_mc_empty(netdev)) {
3361 /* nothing to program, so clear mc list */
3362 igb_update_mc_addr_list(hw, NULL, 0);
3363 igb_restore_vf_multicasts(adapter);
3364 return 0;
3365 }
3366
3367 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3368 if (!mta_list)
3369 return -ENOMEM;
3370
3371 /* The shared function expects a packed array of only addresses. */
3372 i = 0;
3373 netdev_for_each_mc_addr(ha, netdev)
3374 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3375
3376 igb_update_mc_addr_list(hw, mta_list, i);
3377 kfree(mta_list);
3378
3379 return netdev_mc_count(netdev);
3380 }
3381
3382 /**
3383 * igb_write_uc_addr_list - write unicast addresses to RAR table
3384 * @netdev: network interface device structure
3385 *
3386 * Writes unicast address list to the RAR table.
3387 * Returns: -ENOMEM on failure/insufficient address space
3388 * 0 on no addresses written
3389 * X on writing X addresses to the RAR table
3390 **/
3391 static int igb_write_uc_addr_list(struct net_device *netdev)
3392 {
3393 struct igb_adapter *adapter = netdev_priv(netdev);
3394 struct e1000_hw *hw = &adapter->hw;
3395 unsigned int vfn = adapter->vfs_allocated_count;
3396 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3397 int count = 0;
3398
3399 /* return ENOMEM indicating insufficient memory for addresses */
3400 if (netdev_uc_count(netdev) > rar_entries)
3401 return -ENOMEM;
3402
3403 if (!netdev_uc_empty(netdev) && rar_entries) {
3404 struct netdev_hw_addr *ha;
3405
3406 netdev_for_each_uc_addr(ha, netdev) {
3407 if (!rar_entries)
3408 break;
3409 igb_rar_set_qsel(adapter, ha->addr,
3410 rar_entries--,
3411 vfn);
3412 count++;
3413 }
3414 }
3415 /* write the addresses in reverse order to avoid write combining */
3416 for (; rar_entries > 0 ; rar_entries--) {
3417 wr32(E1000_RAH(rar_entries), 0);
3418 wr32(E1000_RAL(rar_entries), 0);
3419 }
3420 wrfl();
3421
3422 return count;
3423 }
3424
3425 /**
3426 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3427 * @netdev: network interface device structure
3428 *
3429 * The set_rx_mode entry point is called whenever the unicast or multicast
3430 * address lists or the network interface flags are updated. This routine is
3431 * responsible for configuring the hardware for proper unicast, multicast,
3432 * promiscuous mode, and all-multi behavior.
3433 **/
3434 static void igb_set_rx_mode(struct net_device *netdev)
3435 {
3436 struct igb_adapter *adapter = netdev_priv(netdev);
3437 struct e1000_hw *hw = &adapter->hw;
3438 unsigned int vfn = adapter->vfs_allocated_count;
3439 u32 rctl, vmolr = 0;
3440 int count;
3441
3442 /* Check for Promiscuous and All Multicast modes */
3443 rctl = rd32(E1000_RCTL);
3444
3445 /* clear the effected bits */
3446 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3447
3448 if (netdev->flags & IFF_PROMISC) {
3449 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3450 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3451 } else {
3452 if (netdev->flags & IFF_ALLMULTI) {
3453 rctl |= E1000_RCTL_MPE;
3454 vmolr |= E1000_VMOLR_MPME;
3455 } else {
3456 /*
3457 * Write addresses to the MTA, if the attempt fails
3458 * then we should just turn on promiscuous mode so
3459 * that we can at least receive multicast traffic
3460 */
3461 count = igb_write_mc_addr_list(netdev);
3462 if (count < 0) {
3463 rctl |= E1000_RCTL_MPE;
3464 vmolr |= E1000_VMOLR_MPME;
3465 } else if (count) {
3466 vmolr |= E1000_VMOLR_ROMPE;
3467 }
3468 }
3469 /*
3470 * Write addresses to available RAR registers, if there is not
3471 * sufficient space to store all the addresses then enable
3472 * unicast promiscuous mode
3473 */
3474 count = igb_write_uc_addr_list(netdev);
3475 if (count < 0) {
3476 rctl |= E1000_RCTL_UPE;
3477 vmolr |= E1000_VMOLR_ROPE;
3478 }
3479 rctl |= E1000_RCTL_VFE;
3480 }
3481 wr32(E1000_RCTL, rctl);
3482
3483 /*
3484 * In order to support SR-IOV and eventually VMDq it is necessary to set
3485 * the VMOLR to enable the appropriate modes. Without this workaround
3486 * we will have issues with VLAN tag stripping not being done for frames
3487 * that are only arriving because we are the default pool
3488 */
3489 if (hw->mac.type < e1000_82576)
3490 return;
3491
3492 vmolr |= rd32(E1000_VMOLR(vfn)) &
3493 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3494 wr32(E1000_VMOLR(vfn), vmolr);
3495 igb_restore_vf_multicasts(adapter);
3496 }
3497
3498 static void igb_check_wvbr(struct igb_adapter *adapter)
3499 {
3500 struct e1000_hw *hw = &adapter->hw;
3501 u32 wvbr = 0;
3502
3503 switch (hw->mac.type) {
3504 case e1000_82576:
3505 case e1000_i350:
3506 if (!(wvbr = rd32(E1000_WVBR)))
3507 return;
3508 break;
3509 default:
3510 break;
3511 }
3512
3513 adapter->wvbr |= wvbr;
3514 }
3515
3516 #define IGB_STAGGERED_QUEUE_OFFSET 8
3517
3518 static void igb_spoof_check(struct igb_adapter *adapter)
3519 {
3520 int j;
3521
3522 if (!adapter->wvbr)
3523 return;
3524
3525 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3526 if (adapter->wvbr & (1 << j) ||
3527 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3528 dev_warn(&adapter->pdev->dev,
3529 "Spoof event(s) detected on VF %d\n", j);
3530 adapter->wvbr &=
3531 ~((1 << j) |
3532 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3533 }
3534 }
3535 }
3536
3537 /* Need to wait a few seconds after link up to get diagnostic information from
3538 * the phy */
3539 static void igb_update_phy_info(unsigned long data)
3540 {
3541 struct igb_adapter *adapter = (struct igb_adapter *) data;
3542 igb_get_phy_info(&adapter->hw);
3543 }
3544
3545 /**
3546 * igb_has_link - check shared code for link and determine up/down
3547 * @adapter: pointer to driver private info
3548 **/
3549 bool igb_has_link(struct igb_adapter *adapter)
3550 {
3551 struct e1000_hw *hw = &adapter->hw;
3552 bool link_active = false;
3553 s32 ret_val = 0;
3554
3555 /* get_link_status is set on LSC (link status) interrupt or
3556 * rx sequence error interrupt. get_link_status will stay
3557 * false until the e1000_check_for_link establishes link
3558 * for copper adapters ONLY
3559 */
3560 switch (hw->phy.media_type) {
3561 case e1000_media_type_copper:
3562 if (hw->mac.get_link_status) {
3563 ret_val = hw->mac.ops.check_for_link(hw);
3564 link_active = !hw->mac.get_link_status;
3565 } else {
3566 link_active = true;
3567 }
3568 break;
3569 case e1000_media_type_internal_serdes:
3570 ret_val = hw->mac.ops.check_for_link(hw);
3571 link_active = hw->mac.serdes_has_link;
3572 break;
3573 default:
3574 case e1000_media_type_unknown:
3575 break;
3576 }
3577
3578 return link_active;
3579 }
3580
3581 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3582 {
3583 bool ret = false;
3584 u32 ctrl_ext, thstat;
3585
3586 /* check for thermal sensor event on i350, copper only */
3587 if (hw->mac.type == e1000_i350) {
3588 thstat = rd32(E1000_THSTAT);
3589 ctrl_ext = rd32(E1000_CTRL_EXT);
3590
3591 if ((hw->phy.media_type == e1000_media_type_copper) &&
3592 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3593 ret = !!(thstat & event);
3594 }
3595 }
3596
3597 return ret;
3598 }
3599
3600 /**
3601 * igb_watchdog - Timer Call-back
3602 * @data: pointer to adapter cast into an unsigned long
3603 **/
3604 static void igb_watchdog(unsigned long data)
3605 {
3606 struct igb_adapter *adapter = (struct igb_adapter *)data;
3607 /* Do the rest outside of interrupt context */
3608 schedule_work(&adapter->watchdog_task);
3609 }
3610
3611 static void igb_watchdog_task(struct work_struct *work)
3612 {
3613 struct igb_adapter *adapter = container_of(work,
3614 struct igb_adapter,
3615 watchdog_task);
3616 struct e1000_hw *hw = &adapter->hw;
3617 struct net_device *netdev = adapter->netdev;
3618 u32 link;
3619 int i;
3620
3621 link = igb_has_link(adapter);
3622 if (link) {
3623 if (!netif_carrier_ok(netdev)) {
3624 u32 ctrl;
3625 hw->mac.ops.get_speed_and_duplex(hw,
3626 &adapter->link_speed,
3627 &adapter->link_duplex);
3628
3629 ctrl = rd32(E1000_CTRL);
3630 /* Links status message must follow this format */
3631 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3632 "Flow Control: %s\n",
3633 netdev->name,
3634 adapter->link_speed,
3635 adapter->link_duplex == FULL_DUPLEX ?
3636 "Full Duplex" : "Half Duplex",
3637 ((ctrl & E1000_CTRL_TFCE) &&
3638 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3639 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3640 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
3641
3642 /* check for thermal sensor event */
3643 if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
3644 printk(KERN_INFO "igb: %s The network adapter "
3645 "link speed was downshifted "
3646 "because it overheated.\n",
3647 netdev->name);
3648 }
3649
3650 /* adjust timeout factor according to speed/duplex */
3651 adapter->tx_timeout_factor = 1;
3652 switch (adapter->link_speed) {
3653 case SPEED_10:
3654 adapter->tx_timeout_factor = 14;
3655 break;
3656 case SPEED_100:
3657 /* maybe add some timeout factor ? */
3658 break;
3659 }
3660
3661 netif_carrier_on(netdev);
3662
3663 igb_ping_all_vfs(adapter);
3664 igb_check_vf_rate_limit(adapter);
3665
3666 /* link state has changed, schedule phy info update */
3667 if (!test_bit(__IGB_DOWN, &adapter->state))
3668 mod_timer(&adapter->phy_info_timer,
3669 round_jiffies(jiffies + 2 * HZ));
3670 }
3671 } else {
3672 if (netif_carrier_ok(netdev)) {
3673 adapter->link_speed = 0;
3674 adapter->link_duplex = 0;
3675
3676 /* check for thermal sensor event */
3677 if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
3678 printk(KERN_ERR "igb: %s The network adapter "
3679 "was stopped because it "
3680 "overheated.\n",
3681 netdev->name);
3682 }
3683
3684 /* Links status message must follow this format */
3685 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3686 netdev->name);
3687 netif_carrier_off(netdev);
3688
3689 igb_ping_all_vfs(adapter);
3690
3691 /* link state has changed, schedule phy info update */
3692 if (!test_bit(__IGB_DOWN, &adapter->state))
3693 mod_timer(&adapter->phy_info_timer,
3694 round_jiffies(jiffies + 2 * HZ));
3695 }
3696 }
3697
3698 spin_lock(&adapter->stats64_lock);
3699 igb_update_stats(adapter, &adapter->stats64);
3700 spin_unlock(&adapter->stats64_lock);
3701
3702 for (i = 0; i < adapter->num_tx_queues; i++) {
3703 struct igb_ring *tx_ring = adapter->tx_ring[i];
3704 if (!netif_carrier_ok(netdev)) {
3705 /* We've lost link, so the controller stops DMA,
3706 * but we've got queued Tx work that's never going
3707 * to get done, so reset controller to flush Tx.
3708 * (Do the reset outside of interrupt context). */
3709 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3710 adapter->tx_timeout_count++;
3711 schedule_work(&adapter->reset_task);
3712 /* return immediately since reset is imminent */
3713 return;
3714 }
3715 }
3716
3717 /* Force detection of hung controller every watchdog period */
3718 tx_ring->detect_tx_hung = true;
3719 }
3720
3721 /* Cause software interrupt to ensure rx ring is cleaned */
3722 if (adapter->msix_entries) {
3723 u32 eics = 0;
3724 for (i = 0; i < adapter->num_q_vectors; i++) {
3725 struct igb_q_vector *q_vector = adapter->q_vector[i];
3726 eics |= q_vector->eims_value;
3727 }
3728 wr32(E1000_EICS, eics);
3729 } else {
3730 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3731 }
3732
3733 igb_spoof_check(adapter);
3734
3735 /* Reset the timer */
3736 if (!test_bit(__IGB_DOWN, &adapter->state))
3737 mod_timer(&adapter->watchdog_timer,
3738 round_jiffies(jiffies + 2 * HZ));
3739 }
3740
3741 enum latency_range {
3742 lowest_latency = 0,
3743 low_latency = 1,
3744 bulk_latency = 2,
3745 latency_invalid = 255
3746 };
3747
3748 /**
3749 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3750 *
3751 * Stores a new ITR value based on strictly on packet size. This
3752 * algorithm is less sophisticated than that used in igb_update_itr,
3753 * due to the difficulty of synchronizing statistics across multiple
3754 * receive rings. The divisors and thresholds used by this function
3755 * were determined based on theoretical maximum wire speed and testing
3756 * data, in order to minimize response time while increasing bulk
3757 * throughput.
3758 * This functionality is controlled by the InterruptThrottleRate module
3759 * parameter (see igb_param.c)
3760 * NOTE: This function is called only when operating in a multiqueue
3761 * receive environment.
3762 * @q_vector: pointer to q_vector
3763 **/
3764 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3765 {
3766 int new_val = q_vector->itr_val;
3767 int avg_wire_size = 0;
3768 struct igb_adapter *adapter = q_vector->adapter;
3769 struct igb_ring *ring;
3770 unsigned int packets;
3771
3772 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3773 * ints/sec - ITR timer value of 120 ticks.
3774 */
3775 if (adapter->link_speed != SPEED_1000) {
3776 new_val = 976;
3777 goto set_itr_val;
3778 }
3779
3780 ring = q_vector->rx_ring;
3781 if (ring) {
3782 packets = ACCESS_ONCE(ring->total_packets);
3783
3784 if (packets)
3785 avg_wire_size = ring->total_bytes / packets;
3786 }
3787
3788 ring = q_vector->tx_ring;
3789 if (ring) {
3790 packets = ACCESS_ONCE(ring->total_packets);
3791
3792 if (packets)
3793 avg_wire_size = max_t(u32, avg_wire_size,
3794 ring->total_bytes / packets);
3795 }
3796
3797 /* if avg_wire_size isn't set no work was done */
3798 if (!avg_wire_size)
3799 goto clear_counts;
3800
3801 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3802 avg_wire_size += 24;
3803
3804 /* Don't starve jumbo frames */
3805 avg_wire_size = min(avg_wire_size, 3000);
3806
3807 /* Give a little boost to mid-size frames */
3808 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3809 new_val = avg_wire_size / 3;
3810 else
3811 new_val = avg_wire_size / 2;
3812
3813 /* when in itr mode 3 do not exceed 20K ints/sec */
3814 if (adapter->rx_itr_setting == 3 && new_val < 196)
3815 new_val = 196;
3816
3817 set_itr_val:
3818 if (new_val != q_vector->itr_val) {
3819 q_vector->itr_val = new_val;
3820 q_vector->set_itr = 1;
3821 }
3822 clear_counts:
3823 if (q_vector->rx_ring) {
3824 q_vector->rx_ring->total_bytes = 0;
3825 q_vector->rx_ring->total_packets = 0;
3826 }
3827 if (q_vector->tx_ring) {
3828 q_vector->tx_ring->total_bytes = 0;
3829 q_vector->tx_ring->total_packets = 0;
3830 }
3831 }
3832
3833 /**
3834 * igb_update_itr - update the dynamic ITR value based on statistics
3835 * Stores a new ITR value based on packets and byte
3836 * counts during the last interrupt. The advantage of per interrupt
3837 * computation is faster updates and more accurate ITR for the current
3838 * traffic pattern. Constants in this function were computed
3839 * based on theoretical maximum wire speed and thresholds were set based
3840 * on testing data as well as attempting to minimize response time
3841 * while increasing bulk throughput.
3842 * this functionality is controlled by the InterruptThrottleRate module
3843 * parameter (see igb_param.c)
3844 * NOTE: These calculations are only valid when operating in a single-
3845 * queue environment.
3846 * @adapter: pointer to adapter
3847 * @itr_setting: current q_vector->itr_val
3848 * @packets: the number of packets during this measurement interval
3849 * @bytes: the number of bytes during this measurement interval
3850 **/
3851 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3852 int packets, int bytes)
3853 {
3854 unsigned int retval = itr_setting;
3855
3856 if (packets == 0)
3857 goto update_itr_done;
3858
3859 switch (itr_setting) {
3860 case lowest_latency:
3861 /* handle TSO and jumbo frames */
3862 if (bytes/packets > 8000)
3863 retval = bulk_latency;
3864 else if ((packets < 5) && (bytes > 512))
3865 retval = low_latency;
3866 break;
3867 case low_latency: /* 50 usec aka 20000 ints/s */
3868 if (bytes > 10000) {
3869 /* this if handles the TSO accounting */
3870 if (bytes/packets > 8000) {
3871 retval = bulk_latency;
3872 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3873 retval = bulk_latency;
3874 } else if ((packets > 35)) {
3875 retval = lowest_latency;
3876 }
3877 } else if (bytes/packets > 2000) {
3878 retval = bulk_latency;
3879 } else if (packets <= 2 && bytes < 512) {
3880 retval = lowest_latency;
3881 }
3882 break;
3883 case bulk_latency: /* 250 usec aka 4000 ints/s */
3884 if (bytes > 25000) {
3885 if (packets > 35)
3886 retval = low_latency;
3887 } else if (bytes < 1500) {
3888 retval = low_latency;
3889 }
3890 break;
3891 }
3892
3893 update_itr_done:
3894 return retval;
3895 }
3896
3897 static void igb_set_itr(struct igb_adapter *adapter)
3898 {
3899 struct igb_q_vector *q_vector = adapter->q_vector[0];
3900 u16 current_itr;
3901 u32 new_itr = q_vector->itr_val;
3902
3903 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3904 if (adapter->link_speed != SPEED_1000) {
3905 current_itr = 0;
3906 new_itr = 4000;
3907 goto set_itr_now;
3908 }
3909
3910 adapter->rx_itr = igb_update_itr(adapter,
3911 adapter->rx_itr,
3912 q_vector->rx_ring->total_packets,
3913 q_vector->rx_ring->total_bytes);
3914
3915 adapter->tx_itr = igb_update_itr(adapter,
3916 adapter->tx_itr,
3917 q_vector->tx_ring->total_packets,
3918 q_vector->tx_ring->total_bytes);
3919 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3920
3921 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3922 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3923 current_itr = low_latency;
3924
3925 switch (current_itr) {
3926 /* counts and packets in update_itr are dependent on these numbers */
3927 case lowest_latency:
3928 new_itr = 56; /* aka 70,000 ints/sec */
3929 break;
3930 case low_latency:
3931 new_itr = 196; /* aka 20,000 ints/sec */
3932 break;
3933 case bulk_latency:
3934 new_itr = 980; /* aka 4,000 ints/sec */
3935 break;
3936 default:
3937 break;
3938 }
3939
3940 set_itr_now:
3941 q_vector->rx_ring->total_bytes = 0;
3942 q_vector->rx_ring->total_packets = 0;
3943 q_vector->tx_ring->total_bytes = 0;
3944 q_vector->tx_ring->total_packets = 0;
3945
3946 if (new_itr != q_vector->itr_val) {
3947 /* this attempts to bias the interrupt rate towards Bulk
3948 * by adding intermediate steps when interrupt rate is
3949 * increasing */
3950 new_itr = new_itr > q_vector->itr_val ?
3951 max((new_itr * q_vector->itr_val) /
3952 (new_itr + (q_vector->itr_val >> 2)),
3953 new_itr) :
3954 new_itr;
3955 /* Don't write the value here; it resets the adapter's
3956 * internal timer, and causes us to delay far longer than
3957 * we should between interrupts. Instead, we write the ITR
3958 * value at the beginning of the next interrupt so the timing
3959 * ends up being correct.
3960 */
3961 q_vector->itr_val = new_itr;
3962 q_vector->set_itr = 1;
3963 }
3964 }
3965
3966 #define IGB_TX_FLAGS_CSUM 0x00000001
3967 #define IGB_TX_FLAGS_VLAN 0x00000002
3968 #define IGB_TX_FLAGS_TSO 0x00000004
3969 #define IGB_TX_FLAGS_IPV4 0x00000008
3970 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3971 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3972 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3973
3974 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3975 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3976 {
3977 struct e1000_adv_tx_context_desc *context_desc;
3978 unsigned int i;
3979 int err;
3980 struct igb_buffer *buffer_info;
3981 u32 info = 0, tu_cmd = 0;
3982 u32 mss_l4len_idx;
3983 u8 l4len;
3984
3985 if (skb_header_cloned(skb)) {
3986 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3987 if (err)
3988 return err;
3989 }
3990
3991 l4len = tcp_hdrlen(skb);
3992 *hdr_len += l4len;
3993
3994 if (skb->protocol == htons(ETH_P_IP)) {
3995 struct iphdr *iph = ip_hdr(skb);
3996 iph->tot_len = 0;
3997 iph->check = 0;
3998 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3999 iph->daddr, 0,
4000 IPPROTO_TCP,
4001 0);
4002 } else if (skb_is_gso_v6(skb)) {
4003 ipv6_hdr(skb)->payload_len = 0;
4004 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4005 &ipv6_hdr(skb)->daddr,
4006 0, IPPROTO_TCP, 0);
4007 }
4008
4009 i = tx_ring->next_to_use;
4010
4011 buffer_info = &tx_ring->buffer_info[i];
4012 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
4013 /* VLAN MACLEN IPLEN */
4014 if (tx_flags & IGB_TX_FLAGS_VLAN)
4015 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
4016 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
4017 *hdr_len += skb_network_offset(skb);
4018 info |= skb_network_header_len(skb);
4019 *hdr_len += skb_network_header_len(skb);
4020 context_desc->vlan_macip_lens = cpu_to_le32(info);
4021
4022 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4023 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
4024
4025 if (skb->protocol == htons(ETH_P_IP))
4026 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
4027 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4028
4029 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
4030
4031 /* MSS L4LEN IDX */
4032 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
4033 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
4034
4035 /* For 82575, context index must be unique per ring. */
4036 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
4037 mss_l4len_idx |= tx_ring->reg_idx << 4;
4038
4039 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4040 context_desc->seqnum_seed = 0;
4041
4042 buffer_info->time_stamp = jiffies;
4043 buffer_info->next_to_watch = i;
4044 buffer_info->dma = 0;
4045 i++;
4046 if (i == tx_ring->count)
4047 i = 0;
4048
4049 tx_ring->next_to_use = i;
4050
4051 return true;
4052 }
4053
4054 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
4055 struct sk_buff *skb, u32 tx_flags)
4056 {
4057 struct e1000_adv_tx_context_desc *context_desc;
4058 struct device *dev = tx_ring->dev;
4059 struct igb_buffer *buffer_info;
4060 u32 info = 0, tu_cmd = 0;
4061 unsigned int i;
4062
4063 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
4064 (tx_flags & IGB_TX_FLAGS_VLAN)) {
4065 i = tx_ring->next_to_use;
4066 buffer_info = &tx_ring->buffer_info[i];
4067 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
4068
4069 if (tx_flags & IGB_TX_FLAGS_VLAN)
4070 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
4071
4072 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
4073 if (skb->ip_summed == CHECKSUM_PARTIAL)
4074 info |= skb_network_header_len(skb);
4075
4076 context_desc->vlan_macip_lens = cpu_to_le32(info);
4077
4078 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
4079
4080 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4081 __be16 protocol;
4082
4083 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
4084 const struct vlan_ethhdr *vhdr =
4085 (const struct vlan_ethhdr*)skb->data;
4086
4087 protocol = vhdr->h_vlan_encapsulated_proto;
4088 } else {
4089 protocol = skb->protocol;
4090 }
4091
4092 switch (protocol) {
4093 case cpu_to_be16(ETH_P_IP):
4094 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
4095 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4096 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4097 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
4098 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4099 break;
4100 case cpu_to_be16(ETH_P_IPV6):
4101 /* XXX what about other V6 headers?? */
4102 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4103 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4104 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
4105 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4106 break;
4107 default:
4108 if (unlikely(net_ratelimit()))
4109 dev_warn(dev,
4110 "partial checksum but proto=%x!\n",
4111 skb->protocol);
4112 break;
4113 }
4114 }
4115
4116 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
4117 context_desc->seqnum_seed = 0;
4118 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
4119 context_desc->mss_l4len_idx =
4120 cpu_to_le32(tx_ring->reg_idx << 4);
4121
4122 buffer_info->time_stamp = jiffies;
4123 buffer_info->next_to_watch = i;
4124 buffer_info->dma = 0;
4125
4126 i++;
4127 if (i == tx_ring->count)
4128 i = 0;
4129 tx_ring->next_to_use = i;
4130
4131 return true;
4132 }
4133 return false;
4134 }
4135
4136 #define IGB_MAX_TXD_PWR 16
4137 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
4138
4139 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
4140 unsigned int first)
4141 {
4142 struct igb_buffer *buffer_info;
4143 struct device *dev = tx_ring->dev;
4144 unsigned int hlen = skb_headlen(skb);
4145 unsigned int count = 0, i;
4146 unsigned int f;
4147 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
4148
4149 i = tx_ring->next_to_use;
4150
4151 buffer_info = &tx_ring->buffer_info[i];
4152 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
4153 buffer_info->length = hlen;
4154 /* set time_stamp *before* dma to help avoid a possible race */
4155 buffer_info->time_stamp = jiffies;
4156 buffer_info->next_to_watch = i;
4157 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
4158 DMA_TO_DEVICE);
4159 if (dma_mapping_error(dev, buffer_info->dma))
4160 goto dma_error;
4161
4162 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
4163 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
4164 unsigned int len = frag->size;
4165
4166 count++;
4167 i++;
4168 if (i == tx_ring->count)
4169 i = 0;
4170
4171 buffer_info = &tx_ring->buffer_info[i];
4172 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
4173 buffer_info->length = len;
4174 buffer_info->time_stamp = jiffies;
4175 buffer_info->next_to_watch = i;
4176 buffer_info->mapped_as_page = true;
4177 buffer_info->dma = skb_frag_dma_map(dev, frag, 0, len,
4178 DMA_TO_DEVICE);
4179 if (dma_mapping_error(dev, buffer_info->dma))
4180 goto dma_error;
4181
4182 }
4183
4184 tx_ring->buffer_info[i].skb = skb;
4185 tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
4186 /* multiply data chunks by size of headers */
4187 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
4188 tx_ring->buffer_info[i].gso_segs = gso_segs;
4189 tx_ring->buffer_info[first].next_to_watch = i;
4190
4191 return ++count;
4192
4193 dma_error:
4194 dev_err(dev, "TX DMA map failed\n");
4195
4196 /* clear timestamp and dma mappings for failed buffer_info mapping */
4197 buffer_info->dma = 0;
4198 buffer_info->time_stamp = 0;
4199 buffer_info->length = 0;
4200 buffer_info->next_to_watch = 0;
4201 buffer_info->mapped_as_page = false;
4202
4203 /* clear timestamp and dma mappings for remaining portion of packet */
4204 while (count--) {
4205 if (i == 0)
4206 i = tx_ring->count;
4207 i--;
4208 buffer_info = &tx_ring->buffer_info[i];
4209 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4210 }
4211
4212 return 0;
4213 }
4214
4215 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
4216 u32 tx_flags, int count, u32 paylen,
4217 u8 hdr_len)
4218 {
4219 union e1000_adv_tx_desc *tx_desc;
4220 struct igb_buffer *buffer_info;
4221 u32 olinfo_status = 0, cmd_type_len;
4222 unsigned int i = tx_ring->next_to_use;
4223
4224 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
4225 E1000_ADVTXD_DCMD_DEXT);
4226
4227 if (tx_flags & IGB_TX_FLAGS_VLAN)
4228 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4229
4230 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4231 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4232
4233 if (tx_flags & IGB_TX_FLAGS_TSO) {
4234 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4235
4236 /* insert tcp checksum */
4237 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4238
4239 /* insert ip checksum */
4240 if (tx_flags & IGB_TX_FLAGS_IPV4)
4241 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4242
4243 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4244 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4245 }
4246
4247 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4248 (tx_flags & (IGB_TX_FLAGS_CSUM |
4249 IGB_TX_FLAGS_TSO |
4250 IGB_TX_FLAGS_VLAN)))
4251 olinfo_status |= tx_ring->reg_idx << 4;
4252
4253 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4254
4255 do {
4256 buffer_info = &tx_ring->buffer_info[i];
4257 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4258 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4259 tx_desc->read.cmd_type_len =
4260 cpu_to_le32(cmd_type_len | buffer_info->length);
4261 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4262 count--;
4263 i++;
4264 if (i == tx_ring->count)
4265 i = 0;
4266 } while (count > 0);
4267
4268 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
4269 /* Force memory writes to complete before letting h/w
4270 * know there are new descriptors to fetch. (Only
4271 * applicable for weak-ordered memory model archs,
4272 * such as IA-64). */
4273 wmb();
4274
4275 tx_ring->next_to_use = i;
4276 writel(i, tx_ring->tail);
4277 /* we need this if more than one processor can write to our tail
4278 * at a time, it syncronizes IO on IA64/Altix systems */
4279 mmiowb();
4280 }
4281
4282 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4283 {
4284 struct net_device *netdev = tx_ring->netdev;
4285
4286 netif_stop_subqueue(netdev, tx_ring->queue_index);
4287
4288 /* Herbert's original patch had:
4289 * smp_mb__after_netif_stop_queue();
4290 * but since that doesn't exist yet, just open code it. */
4291 smp_mb();
4292
4293 /* We need to check again in a case another CPU has just
4294 * made room available. */
4295 if (igb_desc_unused(tx_ring) < size)
4296 return -EBUSY;
4297
4298 /* A reprieve! */
4299 netif_wake_subqueue(netdev, tx_ring->queue_index);
4300
4301 u64_stats_update_begin(&tx_ring->tx_syncp2);
4302 tx_ring->tx_stats.restart_queue2++;
4303 u64_stats_update_end(&tx_ring->tx_syncp2);
4304
4305 return 0;
4306 }
4307
4308 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4309 {
4310 if (igb_desc_unused(tx_ring) >= size)
4311 return 0;
4312 return __igb_maybe_stop_tx(tx_ring, size);
4313 }
4314
4315 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4316 struct igb_ring *tx_ring)
4317 {
4318 int tso = 0, count;
4319 u32 tx_flags = 0;
4320 u16 first;
4321 u8 hdr_len = 0;
4322
4323 /* need: 1 descriptor per page,
4324 * + 2 desc gap to keep tail from touching head,
4325 * + 1 desc for skb->data,
4326 * + 1 desc for context descriptor,
4327 * otherwise try next time */
4328 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4329 /* this is a hard error */
4330 return NETDEV_TX_BUSY;
4331 }
4332
4333 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4334 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4335 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4336 }
4337
4338 if (vlan_tx_tag_present(skb)) {
4339 tx_flags |= IGB_TX_FLAGS_VLAN;
4340 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4341 }
4342
4343 if (skb->protocol == htons(ETH_P_IP))
4344 tx_flags |= IGB_TX_FLAGS_IPV4;
4345
4346 first = tx_ring->next_to_use;
4347 if (skb_is_gso(skb)) {
4348 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
4349
4350 if (tso < 0) {
4351 dev_kfree_skb_any(skb);
4352 return NETDEV_TX_OK;
4353 }
4354 }
4355
4356 if (tso)
4357 tx_flags |= IGB_TX_FLAGS_TSO;
4358 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
4359 (skb->ip_summed == CHECKSUM_PARTIAL))
4360 tx_flags |= IGB_TX_FLAGS_CSUM;
4361
4362 /*
4363 * count reflects descriptors mapped, if 0 or less then mapping error
4364 * has occurred and we need to rewind the descriptor queue
4365 */
4366 count = igb_tx_map_adv(tx_ring, skb, first);
4367 if (!count) {
4368 dev_kfree_skb_any(skb);
4369 tx_ring->buffer_info[first].time_stamp = 0;
4370 tx_ring->next_to_use = first;
4371 return NETDEV_TX_OK;
4372 }
4373
4374 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4375
4376 /* Make sure there is space in the ring for the next send. */
4377 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4378
4379 return NETDEV_TX_OK;
4380 }
4381
4382 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4383 struct net_device *netdev)
4384 {
4385 struct igb_adapter *adapter = netdev_priv(netdev);
4386 struct igb_ring *tx_ring;
4387 int r_idx = 0;
4388
4389 if (test_bit(__IGB_DOWN, &adapter->state)) {
4390 dev_kfree_skb_any(skb);
4391 return NETDEV_TX_OK;
4392 }
4393
4394 if (skb->len <= 0) {
4395 dev_kfree_skb_any(skb);
4396 return NETDEV_TX_OK;
4397 }
4398
4399 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
4400 tx_ring = adapter->multi_tx_table[r_idx];
4401
4402 /* This goes back to the question of how to logically map a tx queue
4403 * to a flow. Right now, performance is impacted slightly negatively
4404 * if using multiple tx queues. If the stack breaks away from a
4405 * single qdisc implementation, we can look at this again. */
4406 return igb_xmit_frame_ring_adv(skb, tx_ring);
4407 }
4408
4409 /**
4410 * igb_tx_timeout - Respond to a Tx Hang
4411 * @netdev: network interface device structure
4412 **/
4413 static void igb_tx_timeout(struct net_device *netdev)
4414 {
4415 struct igb_adapter *adapter = netdev_priv(netdev);
4416 struct e1000_hw *hw = &adapter->hw;
4417
4418 /* Do the reset outside of interrupt context */
4419 adapter->tx_timeout_count++;
4420
4421 if (hw->mac.type == e1000_82580)
4422 hw->dev_spec._82575.global_device_reset = true;
4423
4424 schedule_work(&adapter->reset_task);
4425 wr32(E1000_EICS,
4426 (adapter->eims_enable_mask & ~adapter->eims_other));
4427 }
4428
4429 static void igb_reset_task(struct work_struct *work)
4430 {
4431 struct igb_adapter *adapter;
4432 adapter = container_of(work, struct igb_adapter, reset_task);
4433
4434 igb_dump(adapter);
4435 netdev_err(adapter->netdev, "Reset adapter\n");
4436 igb_reinit_locked(adapter);
4437 }
4438
4439 /**
4440 * igb_get_stats64 - Get System Network Statistics
4441 * @netdev: network interface device structure
4442 * @stats: rtnl_link_stats64 pointer
4443 *
4444 **/
4445 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4446 struct rtnl_link_stats64 *stats)
4447 {
4448 struct igb_adapter *adapter = netdev_priv(netdev);
4449
4450 spin_lock(&adapter->stats64_lock);
4451 igb_update_stats(adapter, &adapter->stats64);
4452 memcpy(stats, &adapter->stats64, sizeof(*stats));
4453 spin_unlock(&adapter->stats64_lock);
4454
4455 return stats;
4456 }
4457
4458 /**
4459 * igb_change_mtu - Change the Maximum Transfer Unit
4460 * @netdev: network interface device structure
4461 * @new_mtu: new value for maximum frame size
4462 *
4463 * Returns 0 on success, negative on failure
4464 **/
4465 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4466 {
4467 struct igb_adapter *adapter = netdev_priv(netdev);
4468 struct pci_dev *pdev = adapter->pdev;
4469 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4470 u32 rx_buffer_len, i;
4471
4472 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4473 dev_err(&pdev->dev, "Invalid MTU setting\n");
4474 return -EINVAL;
4475 }
4476
4477 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4478 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4479 return -EINVAL;
4480 }
4481
4482 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4483 msleep(1);
4484
4485 /* igb_down has a dependency on max_frame_size */
4486 adapter->max_frame_size = max_frame;
4487
4488 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4489 * means we reserve 2 more, this pushes us to allocate from the next
4490 * larger slab size.
4491 * i.e. RXBUFFER_2048 --> size-4096 slab
4492 */
4493
4494 if (adapter->hw.mac.type == e1000_82580)
4495 max_frame += IGB_TS_HDR_LEN;
4496
4497 if (max_frame <= IGB_RXBUFFER_1024)
4498 rx_buffer_len = IGB_RXBUFFER_1024;
4499 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4500 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
4501 else
4502 rx_buffer_len = IGB_RXBUFFER_128;
4503
4504 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4505 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4506 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4507
4508 if ((adapter->hw.mac.type == e1000_82580) &&
4509 (rx_buffer_len == IGB_RXBUFFER_128))
4510 rx_buffer_len += IGB_RXBUFFER_64;
4511
4512 if (netif_running(netdev))
4513 igb_down(adapter);
4514
4515 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4516 netdev->mtu, new_mtu);
4517 netdev->mtu = new_mtu;
4518
4519 for (i = 0; i < adapter->num_rx_queues; i++)
4520 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4521
4522 if (netif_running(netdev))
4523 igb_up(adapter);
4524 else
4525 igb_reset(adapter);
4526
4527 clear_bit(__IGB_RESETTING, &adapter->state);
4528
4529 return 0;
4530 }
4531
4532 /**
4533 * igb_update_stats - Update the board statistics counters
4534 * @adapter: board private structure
4535 **/
4536
4537 void igb_update_stats(struct igb_adapter *adapter,
4538 struct rtnl_link_stats64 *net_stats)
4539 {
4540 struct e1000_hw *hw = &adapter->hw;
4541 struct pci_dev *pdev = adapter->pdev;
4542 u32 reg, mpc;
4543 u16 phy_tmp;
4544 int i;
4545 u64 bytes, packets;
4546 unsigned int start;
4547 u64 _bytes, _packets;
4548
4549 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4550
4551 /*
4552 * Prevent stats update while adapter is being reset, or if the pci
4553 * connection is down.
4554 */
4555 if (adapter->link_speed == 0)
4556 return;
4557 if (pci_channel_offline(pdev))
4558 return;
4559
4560 bytes = 0;
4561 packets = 0;
4562 for (i = 0; i < adapter->num_rx_queues; i++) {
4563 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4564 struct igb_ring *ring = adapter->rx_ring[i];
4565
4566 ring->rx_stats.drops += rqdpc_tmp;
4567 net_stats->rx_fifo_errors += rqdpc_tmp;
4568
4569 do {
4570 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4571 _bytes = ring->rx_stats.bytes;
4572 _packets = ring->rx_stats.packets;
4573 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4574 bytes += _bytes;
4575 packets += _packets;
4576 }
4577
4578 net_stats->rx_bytes = bytes;
4579 net_stats->rx_packets = packets;
4580
4581 bytes = 0;
4582 packets = 0;
4583 for (i = 0; i < adapter->num_tx_queues; i++) {
4584 struct igb_ring *ring = adapter->tx_ring[i];
4585 do {
4586 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4587 _bytes = ring->tx_stats.bytes;
4588 _packets = ring->tx_stats.packets;
4589 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4590 bytes += _bytes;
4591 packets += _packets;
4592 }
4593 net_stats->tx_bytes = bytes;
4594 net_stats->tx_packets = packets;
4595
4596 /* read stats registers */
4597 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4598 adapter->stats.gprc += rd32(E1000_GPRC);
4599 adapter->stats.gorc += rd32(E1000_GORCL);
4600 rd32(E1000_GORCH); /* clear GORCL */
4601 adapter->stats.bprc += rd32(E1000_BPRC);
4602 adapter->stats.mprc += rd32(E1000_MPRC);
4603 adapter->stats.roc += rd32(E1000_ROC);
4604
4605 adapter->stats.prc64 += rd32(E1000_PRC64);
4606 adapter->stats.prc127 += rd32(E1000_PRC127);
4607 adapter->stats.prc255 += rd32(E1000_PRC255);
4608 adapter->stats.prc511 += rd32(E1000_PRC511);
4609 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4610 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4611 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4612 adapter->stats.sec += rd32(E1000_SEC);
4613
4614 mpc = rd32(E1000_MPC);
4615 adapter->stats.mpc += mpc;
4616 net_stats->rx_fifo_errors += mpc;
4617 adapter->stats.scc += rd32(E1000_SCC);
4618 adapter->stats.ecol += rd32(E1000_ECOL);
4619 adapter->stats.mcc += rd32(E1000_MCC);
4620 adapter->stats.latecol += rd32(E1000_LATECOL);
4621 adapter->stats.dc += rd32(E1000_DC);
4622 adapter->stats.rlec += rd32(E1000_RLEC);
4623 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4624 adapter->stats.xontxc += rd32(E1000_XONTXC);
4625 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4626 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4627 adapter->stats.fcruc += rd32(E1000_FCRUC);
4628 adapter->stats.gptc += rd32(E1000_GPTC);
4629 adapter->stats.gotc += rd32(E1000_GOTCL);
4630 rd32(E1000_GOTCH); /* clear GOTCL */
4631 adapter->stats.rnbc += rd32(E1000_RNBC);
4632 adapter->stats.ruc += rd32(E1000_RUC);
4633 adapter->stats.rfc += rd32(E1000_RFC);
4634 adapter->stats.rjc += rd32(E1000_RJC);
4635 adapter->stats.tor += rd32(E1000_TORH);
4636 adapter->stats.tot += rd32(E1000_TOTH);
4637 adapter->stats.tpr += rd32(E1000_TPR);
4638
4639 adapter->stats.ptc64 += rd32(E1000_PTC64);
4640 adapter->stats.ptc127 += rd32(E1000_PTC127);
4641 adapter->stats.ptc255 += rd32(E1000_PTC255);
4642 adapter->stats.ptc511 += rd32(E1000_PTC511);
4643 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4644 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4645
4646 adapter->stats.mptc += rd32(E1000_MPTC);
4647 adapter->stats.bptc += rd32(E1000_BPTC);
4648
4649 adapter->stats.tpt += rd32(E1000_TPT);
4650 adapter->stats.colc += rd32(E1000_COLC);
4651
4652 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4653 /* read internal phy specific stats */
4654 reg = rd32(E1000_CTRL_EXT);
4655 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4656 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4657 adapter->stats.tncrs += rd32(E1000_TNCRS);
4658 }
4659
4660 adapter->stats.tsctc += rd32(E1000_TSCTC);
4661 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4662
4663 adapter->stats.iac += rd32(E1000_IAC);
4664 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4665 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4666 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4667 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4668 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4669 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4670 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4671 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4672
4673 /* Fill out the OS statistics structure */
4674 net_stats->multicast = adapter->stats.mprc;
4675 net_stats->collisions = adapter->stats.colc;
4676
4677 /* Rx Errors */
4678
4679 /* RLEC on some newer hardware can be incorrect so build
4680 * our own version based on RUC and ROC */
4681 net_stats->rx_errors = adapter->stats.rxerrc +
4682 adapter->stats.crcerrs + adapter->stats.algnerrc +
4683 adapter->stats.ruc + adapter->stats.roc +
4684 adapter->stats.cexterr;
4685 net_stats->rx_length_errors = adapter->stats.ruc +
4686 adapter->stats.roc;
4687 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4688 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4689 net_stats->rx_missed_errors = adapter->stats.mpc;
4690
4691 /* Tx Errors */
4692 net_stats->tx_errors = adapter->stats.ecol +
4693 adapter->stats.latecol;
4694 net_stats->tx_aborted_errors = adapter->stats.ecol;
4695 net_stats->tx_window_errors = adapter->stats.latecol;
4696 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4697
4698 /* Tx Dropped needs to be maintained elsewhere */
4699
4700 /* Phy Stats */
4701 if (hw->phy.media_type == e1000_media_type_copper) {
4702 if ((adapter->link_speed == SPEED_1000) &&
4703 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4704 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4705 adapter->phy_stats.idle_errors += phy_tmp;
4706 }
4707 }
4708
4709 /* Management Stats */
4710 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4711 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4712 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4713
4714 /* OS2BMC Stats */
4715 reg = rd32(E1000_MANC);
4716 if (reg & E1000_MANC_EN_BMC2OS) {
4717 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4718 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4719 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4720 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4721 }
4722 }
4723
4724 static irqreturn_t igb_msix_other(int irq, void *data)
4725 {
4726 struct igb_adapter *adapter = data;
4727 struct e1000_hw *hw = &adapter->hw;
4728 u32 icr = rd32(E1000_ICR);
4729 /* reading ICR causes bit 31 of EICR to be cleared */
4730
4731 if (icr & E1000_ICR_DRSTA)
4732 schedule_work(&adapter->reset_task);
4733
4734 if (icr & E1000_ICR_DOUTSYNC) {
4735 /* HW is reporting DMA is out of sync */
4736 adapter->stats.doosync++;
4737 /* The DMA Out of Sync is also indication of a spoof event
4738 * in IOV mode. Check the Wrong VM Behavior register to
4739 * see if it is really a spoof event. */
4740 igb_check_wvbr(adapter);
4741 }
4742
4743 /* Check for a mailbox event */
4744 if (icr & E1000_ICR_VMMB)
4745 igb_msg_task(adapter);
4746
4747 if (icr & E1000_ICR_LSC) {
4748 hw->mac.get_link_status = 1;
4749 /* guard against interrupt when we're going down */
4750 if (!test_bit(__IGB_DOWN, &adapter->state))
4751 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4752 }
4753
4754 if (adapter->vfs_allocated_count)
4755 wr32(E1000_IMS, E1000_IMS_LSC |
4756 E1000_IMS_VMMB |
4757 E1000_IMS_DOUTSYNC);
4758 else
4759 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4760 wr32(E1000_EIMS, adapter->eims_other);
4761
4762 return IRQ_HANDLED;
4763 }
4764
4765 static void igb_write_itr(struct igb_q_vector *q_vector)
4766 {
4767 struct igb_adapter *adapter = q_vector->adapter;
4768 u32 itr_val = q_vector->itr_val & 0x7FFC;
4769
4770 if (!q_vector->set_itr)
4771 return;
4772
4773 if (!itr_val)
4774 itr_val = 0x4;
4775
4776 if (adapter->hw.mac.type == e1000_82575)
4777 itr_val |= itr_val << 16;
4778 else
4779 itr_val |= 0x8000000;
4780
4781 writel(itr_val, q_vector->itr_register);
4782 q_vector->set_itr = 0;
4783 }
4784
4785 static irqreturn_t igb_msix_ring(int irq, void *data)
4786 {
4787 struct igb_q_vector *q_vector = data;
4788
4789 /* Write the ITR value calculated from the previous interrupt. */
4790 igb_write_itr(q_vector);
4791
4792 napi_schedule(&q_vector->napi);
4793
4794 return IRQ_HANDLED;
4795 }
4796
4797 #ifdef CONFIG_IGB_DCA
4798 static void igb_update_dca(struct igb_q_vector *q_vector)
4799 {
4800 struct igb_adapter *adapter = q_vector->adapter;
4801 struct e1000_hw *hw = &adapter->hw;
4802 int cpu = get_cpu();
4803
4804 if (q_vector->cpu == cpu)
4805 goto out_no_update;
4806
4807 if (q_vector->tx_ring) {
4808 int q = q_vector->tx_ring->reg_idx;
4809 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4810 if (hw->mac.type == e1000_82575) {
4811 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4812 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4813 } else {
4814 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4815 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4816 E1000_DCA_TXCTRL_CPUID_SHIFT;
4817 }
4818 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4819 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4820 }
4821 if (q_vector->rx_ring) {
4822 int q = q_vector->rx_ring->reg_idx;
4823 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4824 if (hw->mac.type == e1000_82575) {
4825 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4826 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4827 } else {
4828 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4829 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4830 E1000_DCA_RXCTRL_CPUID_SHIFT;
4831 }
4832 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4833 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4834 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4835 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4836 }
4837 q_vector->cpu = cpu;
4838 out_no_update:
4839 put_cpu();
4840 }
4841
4842 static void igb_setup_dca(struct igb_adapter *adapter)
4843 {
4844 struct e1000_hw *hw = &adapter->hw;
4845 int i;
4846
4847 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4848 return;
4849
4850 /* Always use CB2 mode, difference is masked in the CB driver. */
4851 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4852
4853 for (i = 0; i < adapter->num_q_vectors; i++) {
4854 adapter->q_vector[i]->cpu = -1;
4855 igb_update_dca(adapter->q_vector[i]);
4856 }
4857 }
4858
4859 static int __igb_notify_dca(struct device *dev, void *data)
4860 {
4861 struct net_device *netdev = dev_get_drvdata(dev);
4862 struct igb_adapter *adapter = netdev_priv(netdev);
4863 struct pci_dev *pdev = adapter->pdev;
4864 struct e1000_hw *hw = &adapter->hw;
4865 unsigned long event = *(unsigned long *)data;
4866
4867 switch (event) {
4868 case DCA_PROVIDER_ADD:
4869 /* if already enabled, don't do it again */
4870 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4871 break;
4872 if (dca_add_requester(dev) == 0) {
4873 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4874 dev_info(&pdev->dev, "DCA enabled\n");
4875 igb_setup_dca(adapter);
4876 break;
4877 }
4878 /* Fall Through since DCA is disabled. */
4879 case DCA_PROVIDER_REMOVE:
4880 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4881 /* without this a class_device is left
4882 * hanging around in the sysfs model */
4883 dca_remove_requester(dev);
4884 dev_info(&pdev->dev, "DCA disabled\n");
4885 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4886 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4887 }
4888 break;
4889 }
4890
4891 return 0;
4892 }
4893
4894 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4895 void *p)
4896 {
4897 int ret_val;
4898
4899 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4900 __igb_notify_dca);
4901
4902 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4903 }
4904 #endif /* CONFIG_IGB_DCA */
4905
4906 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4907 {
4908 struct e1000_hw *hw = &adapter->hw;
4909 u32 ping;
4910 int i;
4911
4912 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4913 ping = E1000_PF_CONTROL_MSG;
4914 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4915 ping |= E1000_VT_MSGTYPE_CTS;
4916 igb_write_mbx(hw, &ping, 1, i);
4917 }
4918 }
4919
4920 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4921 {
4922 struct e1000_hw *hw = &adapter->hw;
4923 u32 vmolr = rd32(E1000_VMOLR(vf));
4924 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4925
4926 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
4927 IGB_VF_FLAG_MULTI_PROMISC);
4928 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4929
4930 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4931 vmolr |= E1000_VMOLR_MPME;
4932 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
4933 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4934 } else {
4935 /*
4936 * if we have hashes and we are clearing a multicast promisc
4937 * flag we need to write the hashes to the MTA as this step
4938 * was previously skipped
4939 */
4940 if (vf_data->num_vf_mc_hashes > 30) {
4941 vmolr |= E1000_VMOLR_MPME;
4942 } else if (vf_data->num_vf_mc_hashes) {
4943 int j;
4944 vmolr |= E1000_VMOLR_ROMPE;
4945 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4946 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4947 }
4948 }
4949
4950 wr32(E1000_VMOLR(vf), vmolr);
4951
4952 /* there are flags left unprocessed, likely not supported */
4953 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4954 return -EINVAL;
4955
4956 return 0;
4957
4958 }
4959
4960 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4961 u32 *msgbuf, u32 vf)
4962 {
4963 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4964 u16 *hash_list = (u16 *)&msgbuf[1];
4965 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4966 int i;
4967
4968 /* salt away the number of multicast addresses assigned
4969 * to this VF for later use to restore when the PF multi cast
4970 * list changes
4971 */
4972 vf_data->num_vf_mc_hashes = n;
4973
4974 /* only up to 30 hash values supported */
4975 if (n > 30)
4976 n = 30;
4977
4978 /* store the hashes for later use */
4979 for (i = 0; i < n; i++)
4980 vf_data->vf_mc_hashes[i] = hash_list[i];
4981
4982 /* Flush and reset the mta with the new values */
4983 igb_set_rx_mode(adapter->netdev);
4984
4985 return 0;
4986 }
4987
4988 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4989 {
4990 struct e1000_hw *hw = &adapter->hw;
4991 struct vf_data_storage *vf_data;
4992 int i, j;
4993
4994 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4995 u32 vmolr = rd32(E1000_VMOLR(i));
4996 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4997
4998 vf_data = &adapter->vf_data[i];
4999
5000 if ((vf_data->num_vf_mc_hashes > 30) ||
5001 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5002 vmolr |= E1000_VMOLR_MPME;
5003 } else if (vf_data->num_vf_mc_hashes) {
5004 vmolr |= E1000_VMOLR_ROMPE;
5005 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5006 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5007 }
5008 wr32(E1000_VMOLR(i), vmolr);
5009 }
5010 }
5011
5012 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5013 {
5014 struct e1000_hw *hw = &adapter->hw;
5015 u32 pool_mask, reg, vid;
5016 int i;
5017
5018 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5019
5020 /* Find the vlan filter for this id */
5021 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5022 reg = rd32(E1000_VLVF(i));
5023
5024 /* remove the vf from the pool */
5025 reg &= ~pool_mask;
5026
5027 /* if pool is empty then remove entry from vfta */
5028 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5029 (reg & E1000_VLVF_VLANID_ENABLE)) {
5030 reg = 0;
5031 vid = reg & E1000_VLVF_VLANID_MASK;
5032 igb_vfta_set(hw, vid, false);
5033 }
5034
5035 wr32(E1000_VLVF(i), reg);
5036 }
5037
5038 adapter->vf_data[vf].vlans_enabled = 0;
5039 }
5040
5041 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5042 {
5043 struct e1000_hw *hw = &adapter->hw;
5044 u32 reg, i;
5045
5046 /* The vlvf table only exists on 82576 hardware and newer */
5047 if (hw->mac.type < e1000_82576)
5048 return -1;
5049
5050 /* we only need to do this if VMDq is enabled */
5051 if (!adapter->vfs_allocated_count)
5052 return -1;
5053
5054 /* Find the vlan filter for this id */
5055 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5056 reg = rd32(E1000_VLVF(i));
5057 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5058 vid == (reg & E1000_VLVF_VLANID_MASK))
5059 break;
5060 }
5061
5062 if (add) {
5063 if (i == E1000_VLVF_ARRAY_SIZE) {
5064 /* Did not find a matching VLAN ID entry that was
5065 * enabled. Search for a free filter entry, i.e.
5066 * one without the enable bit set
5067 */
5068 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5069 reg = rd32(E1000_VLVF(i));
5070 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5071 break;
5072 }
5073 }
5074 if (i < E1000_VLVF_ARRAY_SIZE) {
5075 /* Found an enabled/available entry */
5076 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5077
5078 /* if !enabled we need to set this up in vfta */
5079 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5080 /* add VID to filter table */
5081 igb_vfta_set(hw, vid, true);
5082 reg |= E1000_VLVF_VLANID_ENABLE;
5083 }
5084 reg &= ~E1000_VLVF_VLANID_MASK;
5085 reg |= vid;
5086 wr32(E1000_VLVF(i), reg);
5087
5088 /* do not modify RLPML for PF devices */
5089 if (vf >= adapter->vfs_allocated_count)
5090 return 0;
5091
5092 if (!adapter->vf_data[vf].vlans_enabled) {
5093 u32 size;
5094 reg = rd32(E1000_VMOLR(vf));
5095 size = reg & E1000_VMOLR_RLPML_MASK;
5096 size += 4;
5097 reg &= ~E1000_VMOLR_RLPML_MASK;
5098 reg |= size;
5099 wr32(E1000_VMOLR(vf), reg);
5100 }
5101
5102 adapter->vf_data[vf].vlans_enabled++;
5103 return 0;
5104 }
5105 } else {
5106 if (i < E1000_VLVF_ARRAY_SIZE) {
5107 /* remove vf from the pool */
5108 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5109 /* if pool is empty then remove entry from vfta */
5110 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5111 reg = 0;
5112 igb_vfta_set(hw, vid, false);
5113 }
5114 wr32(E1000_VLVF(i), reg);
5115
5116 /* do not modify RLPML for PF devices */
5117 if (vf >= adapter->vfs_allocated_count)
5118 return 0;
5119
5120 adapter->vf_data[vf].vlans_enabled--;
5121 if (!adapter->vf_data[vf].vlans_enabled) {
5122 u32 size;
5123 reg = rd32(E1000_VMOLR(vf));
5124 size = reg & E1000_VMOLR_RLPML_MASK;
5125 size -= 4;
5126 reg &= ~E1000_VMOLR_RLPML_MASK;
5127 reg |= size;
5128 wr32(E1000_VMOLR(vf), reg);
5129 }
5130 }
5131 }
5132 return 0;
5133 }
5134
5135 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5136 {
5137 struct e1000_hw *hw = &adapter->hw;
5138
5139 if (vid)
5140 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5141 else
5142 wr32(E1000_VMVIR(vf), 0);
5143 }
5144
5145 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5146 int vf, u16 vlan, u8 qos)
5147 {
5148 int err = 0;
5149 struct igb_adapter *adapter = netdev_priv(netdev);
5150
5151 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5152 return -EINVAL;
5153 if (vlan || qos) {
5154 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5155 if (err)
5156 goto out;
5157 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5158 igb_set_vmolr(adapter, vf, !vlan);
5159 adapter->vf_data[vf].pf_vlan = vlan;
5160 adapter->vf_data[vf].pf_qos = qos;
5161 dev_info(&adapter->pdev->dev,
5162 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5163 if (test_bit(__IGB_DOWN, &adapter->state)) {
5164 dev_warn(&adapter->pdev->dev,
5165 "The VF VLAN has been set,"
5166 " but the PF device is not up.\n");
5167 dev_warn(&adapter->pdev->dev,
5168 "Bring the PF device up before"
5169 " attempting to use the VF device.\n");
5170 }
5171 } else {
5172 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5173 false, vf);
5174 igb_set_vmvir(adapter, vlan, vf);
5175 igb_set_vmolr(adapter, vf, true);
5176 adapter->vf_data[vf].pf_vlan = 0;
5177 adapter->vf_data[vf].pf_qos = 0;
5178 }
5179 out:
5180 return err;
5181 }
5182
5183 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5184 {
5185 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5186 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5187
5188 return igb_vlvf_set(adapter, vid, add, vf);
5189 }
5190
5191 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5192 {
5193 /* clear flags - except flag that indicates PF has set the MAC */
5194 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5195 adapter->vf_data[vf].last_nack = jiffies;
5196
5197 /* reset offloads to defaults */
5198 igb_set_vmolr(adapter, vf, true);
5199
5200 /* reset vlans for device */
5201 igb_clear_vf_vfta(adapter, vf);
5202 if (adapter->vf_data[vf].pf_vlan)
5203 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5204 adapter->vf_data[vf].pf_vlan,
5205 adapter->vf_data[vf].pf_qos);
5206 else
5207 igb_clear_vf_vfta(adapter, vf);
5208
5209 /* reset multicast table array for vf */
5210 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5211
5212 /* Flush and reset the mta with the new values */
5213 igb_set_rx_mode(adapter->netdev);
5214 }
5215
5216 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5217 {
5218 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5219
5220 /* generate a new mac address as we were hotplug removed/added */
5221 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5222 random_ether_addr(vf_mac);
5223
5224 /* process remaining reset events */
5225 igb_vf_reset(adapter, vf);
5226 }
5227
5228 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5229 {
5230 struct e1000_hw *hw = &adapter->hw;
5231 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5232 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5233 u32 reg, msgbuf[3];
5234 u8 *addr = (u8 *)(&msgbuf[1]);
5235
5236 /* process all the same items cleared in a function level reset */
5237 igb_vf_reset(adapter, vf);
5238
5239 /* set vf mac address */
5240 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5241
5242 /* enable transmit and receive for vf */
5243 reg = rd32(E1000_VFTE);
5244 wr32(E1000_VFTE, reg | (1 << vf));
5245 reg = rd32(E1000_VFRE);
5246 wr32(E1000_VFRE, reg | (1 << vf));
5247
5248 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5249
5250 /* reply to reset with ack and vf mac address */
5251 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5252 memcpy(addr, vf_mac, 6);
5253 igb_write_mbx(hw, msgbuf, 3, vf);
5254 }
5255
5256 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5257 {
5258 /*
5259 * The VF MAC Address is stored in a packed array of bytes
5260 * starting at the second 32 bit word of the msg array
5261 */
5262 unsigned char *addr = (char *)&msg[1];
5263 int err = -1;
5264
5265 if (is_valid_ether_addr(addr))
5266 err = igb_set_vf_mac(adapter, vf, addr);
5267
5268 return err;
5269 }
5270
5271 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5272 {
5273 struct e1000_hw *hw = &adapter->hw;
5274 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5275 u32 msg = E1000_VT_MSGTYPE_NACK;
5276
5277 /* if device isn't clear to send it shouldn't be reading either */
5278 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5279 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5280 igb_write_mbx(hw, &msg, 1, vf);
5281 vf_data->last_nack = jiffies;
5282 }
5283 }
5284
5285 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5286 {
5287 struct pci_dev *pdev = adapter->pdev;
5288 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5289 struct e1000_hw *hw = &adapter->hw;
5290 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5291 s32 retval;
5292
5293 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5294
5295 if (retval) {
5296 /* if receive failed revoke VF CTS stats and restart init */
5297 dev_err(&pdev->dev, "Error receiving message from VF\n");
5298 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5299 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5300 return;
5301 goto out;
5302 }
5303
5304 /* this is a message we already processed, do nothing */
5305 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5306 return;
5307
5308 /*
5309 * until the vf completes a reset it should not be
5310 * allowed to start any configuration.
5311 */
5312
5313 if (msgbuf[0] == E1000_VF_RESET) {
5314 igb_vf_reset_msg(adapter, vf);
5315 return;
5316 }
5317
5318 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5319 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5320 return;
5321 retval = -1;
5322 goto out;
5323 }
5324
5325 switch ((msgbuf[0] & 0xFFFF)) {
5326 case E1000_VF_SET_MAC_ADDR:
5327 retval = -EINVAL;
5328 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5329 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5330 else
5331 dev_warn(&pdev->dev,
5332 "VF %d attempted to override administratively "
5333 "set MAC address\nReload the VF driver to "
5334 "resume operations\n", vf);
5335 break;
5336 case E1000_VF_SET_PROMISC:
5337 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5338 break;
5339 case E1000_VF_SET_MULTICAST:
5340 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5341 break;
5342 case E1000_VF_SET_LPE:
5343 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5344 break;
5345 case E1000_VF_SET_VLAN:
5346 retval = -1;
5347 if (vf_data->pf_vlan)
5348 dev_warn(&pdev->dev,
5349 "VF %d attempted to override administratively "
5350 "set VLAN tag\nReload the VF driver to "
5351 "resume operations\n", vf);
5352 else
5353 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5354 break;
5355 default:
5356 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5357 retval = -1;
5358 break;
5359 }
5360
5361 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5362 out:
5363 /* notify the VF of the results of what it sent us */
5364 if (retval)
5365 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5366 else
5367 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5368
5369 igb_write_mbx(hw, msgbuf, 1, vf);
5370 }
5371
5372 static void igb_msg_task(struct igb_adapter *adapter)
5373 {
5374 struct e1000_hw *hw = &adapter->hw;
5375 u32 vf;
5376
5377 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5378 /* process any reset requests */
5379 if (!igb_check_for_rst(hw, vf))
5380 igb_vf_reset_event(adapter, vf);
5381
5382 /* process any messages pending */
5383 if (!igb_check_for_msg(hw, vf))
5384 igb_rcv_msg_from_vf(adapter, vf);
5385
5386 /* process any acks */
5387 if (!igb_check_for_ack(hw, vf))
5388 igb_rcv_ack_from_vf(adapter, vf);
5389 }
5390 }
5391
5392 /**
5393 * igb_set_uta - Set unicast filter table address
5394 * @adapter: board private structure
5395 *
5396 * The unicast table address is a register array of 32-bit registers.
5397 * The table is meant to be used in a way similar to how the MTA is used
5398 * however due to certain limitations in the hardware it is necessary to
5399 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5400 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
5401 **/
5402 static void igb_set_uta(struct igb_adapter *adapter)
5403 {
5404 struct e1000_hw *hw = &adapter->hw;
5405 int i;
5406
5407 /* The UTA table only exists on 82576 hardware and newer */
5408 if (hw->mac.type < e1000_82576)
5409 return;
5410
5411 /* we only need to do this if VMDq is enabled */
5412 if (!adapter->vfs_allocated_count)
5413 return;
5414
5415 for (i = 0; i < hw->mac.uta_reg_count; i++)
5416 array_wr32(E1000_UTA, i, ~0);
5417 }
5418
5419 /**
5420 * igb_intr_msi - Interrupt Handler
5421 * @irq: interrupt number
5422 * @data: pointer to a network interface device structure
5423 **/
5424 static irqreturn_t igb_intr_msi(int irq, void *data)
5425 {
5426 struct igb_adapter *adapter = data;
5427 struct igb_q_vector *q_vector = adapter->q_vector[0];
5428 struct e1000_hw *hw = &adapter->hw;
5429 /* read ICR disables interrupts using IAM */
5430 u32 icr = rd32(E1000_ICR);
5431
5432 igb_write_itr(q_vector);
5433
5434 if (icr & E1000_ICR_DRSTA)
5435 schedule_work(&adapter->reset_task);
5436
5437 if (icr & E1000_ICR_DOUTSYNC) {
5438 /* HW is reporting DMA is out of sync */
5439 adapter->stats.doosync++;
5440 }
5441
5442 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5443 hw->mac.get_link_status = 1;
5444 if (!test_bit(__IGB_DOWN, &adapter->state))
5445 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5446 }
5447
5448 napi_schedule(&q_vector->napi);
5449
5450 return IRQ_HANDLED;
5451 }
5452
5453 /**
5454 * igb_intr - Legacy Interrupt Handler
5455 * @irq: interrupt number
5456 * @data: pointer to a network interface device structure
5457 **/
5458 static irqreturn_t igb_intr(int irq, void *data)
5459 {
5460 struct igb_adapter *adapter = data;
5461 struct igb_q_vector *q_vector = adapter->q_vector[0];
5462 struct e1000_hw *hw = &adapter->hw;
5463 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5464 * need for the IMC write */
5465 u32 icr = rd32(E1000_ICR);
5466 if (!icr)
5467 return IRQ_NONE; /* Not our interrupt */
5468
5469 igb_write_itr(q_vector);
5470
5471 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5472 * not set, then the adapter didn't send an interrupt */
5473 if (!(icr & E1000_ICR_INT_ASSERTED))
5474 return IRQ_NONE;
5475
5476 if (icr & E1000_ICR_DRSTA)
5477 schedule_work(&adapter->reset_task);
5478
5479 if (icr & E1000_ICR_DOUTSYNC) {
5480 /* HW is reporting DMA is out of sync */
5481 adapter->stats.doosync++;
5482 }
5483
5484 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5485 hw->mac.get_link_status = 1;
5486 /* guard against interrupt when we're going down */
5487 if (!test_bit(__IGB_DOWN, &adapter->state))
5488 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5489 }
5490
5491 napi_schedule(&q_vector->napi);
5492
5493 return IRQ_HANDLED;
5494 }
5495
5496 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5497 {
5498 struct igb_adapter *adapter = q_vector->adapter;
5499 struct e1000_hw *hw = &adapter->hw;
5500
5501 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5502 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
5503 if (!adapter->msix_entries)
5504 igb_set_itr(adapter);
5505 else
5506 igb_update_ring_itr(q_vector);
5507 }
5508
5509 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5510 if (adapter->msix_entries)
5511 wr32(E1000_EIMS, q_vector->eims_value);
5512 else
5513 igb_irq_enable(adapter);
5514 }
5515 }
5516
5517 /**
5518 * igb_poll - NAPI Rx polling callback
5519 * @napi: napi polling structure
5520 * @budget: count of how many packets we should handle
5521 **/
5522 static int igb_poll(struct napi_struct *napi, int budget)
5523 {
5524 struct igb_q_vector *q_vector = container_of(napi,
5525 struct igb_q_vector,
5526 napi);
5527 int tx_clean_complete = 1, work_done = 0;
5528
5529 #ifdef CONFIG_IGB_DCA
5530 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5531 igb_update_dca(q_vector);
5532 #endif
5533 if (q_vector->tx_ring)
5534 tx_clean_complete = igb_clean_tx_irq(q_vector);
5535
5536 if (q_vector->rx_ring)
5537 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5538
5539 if (!tx_clean_complete)
5540 work_done = budget;
5541
5542 /* If not enough Rx work done, exit the polling mode */
5543 if (work_done < budget) {
5544 napi_complete(napi);
5545 igb_ring_irq_enable(q_vector);
5546 }
5547
5548 return work_done;
5549 }
5550
5551 /**
5552 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5553 * @adapter: board private structure
5554 * @shhwtstamps: timestamp structure to update
5555 * @regval: unsigned 64bit system time value.
5556 *
5557 * We need to convert the system time value stored in the RX/TXSTMP registers
5558 * into a hwtstamp which can be used by the upper level timestamping functions
5559 */
5560 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5561 struct skb_shared_hwtstamps *shhwtstamps,
5562 u64 regval)
5563 {
5564 u64 ns;
5565
5566 /*
5567 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5568 * 24 to match clock shift we setup earlier.
5569 */
5570 if (adapter->hw.mac.type == e1000_82580)
5571 regval <<= IGB_82580_TSYNC_SHIFT;
5572
5573 ns = timecounter_cyc2time(&adapter->clock, regval);
5574 timecompare_update(&adapter->compare, ns);
5575 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5576 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5577 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5578 }
5579
5580 /**
5581 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5582 * @q_vector: pointer to q_vector containing needed info
5583 * @buffer: pointer to igb_buffer structure
5584 *
5585 * If we were asked to do hardware stamping and such a time stamp is
5586 * available, then it must have been for this skb here because we only
5587 * allow only one such packet into the queue.
5588 */
5589 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
5590 {
5591 struct igb_adapter *adapter = q_vector->adapter;
5592 struct e1000_hw *hw = &adapter->hw;
5593 struct skb_shared_hwtstamps shhwtstamps;
5594 u64 regval;
5595
5596 /* if skb does not support hw timestamp or TX stamp not valid exit */
5597 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
5598 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5599 return;
5600
5601 regval = rd32(E1000_TXSTMPL);
5602 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5603
5604 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5605 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5606 }
5607
5608 /**
5609 * igb_clean_tx_irq - Reclaim resources after transmit completes
5610 * @q_vector: pointer to q_vector containing needed info
5611 * returns true if ring is completely cleaned
5612 **/
5613 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5614 {
5615 struct igb_adapter *adapter = q_vector->adapter;
5616 struct igb_ring *tx_ring = q_vector->tx_ring;
5617 struct net_device *netdev = tx_ring->netdev;
5618 struct e1000_hw *hw = &adapter->hw;
5619 struct igb_buffer *buffer_info;
5620 union e1000_adv_tx_desc *tx_desc, *eop_desc;
5621 unsigned int total_bytes = 0, total_packets = 0;
5622 unsigned int i, eop, count = 0;
5623 bool cleaned = false;
5624
5625 i = tx_ring->next_to_clean;
5626 eop = tx_ring->buffer_info[i].next_to_watch;
5627 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5628
5629 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5630 (count < tx_ring->count)) {
5631 rmb(); /* read buffer_info after eop_desc status */
5632 for (cleaned = false; !cleaned; count++) {
5633 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
5634 buffer_info = &tx_ring->buffer_info[i];
5635 cleaned = (i == eop);
5636
5637 if (buffer_info->skb) {
5638 total_bytes += buffer_info->bytecount;
5639 /* gso_segs is currently only valid for tcp */
5640 total_packets += buffer_info->gso_segs;
5641 igb_tx_hwtstamp(q_vector, buffer_info);
5642 }
5643
5644 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
5645 tx_desc->wb.status = 0;
5646
5647 i++;
5648 if (i == tx_ring->count)
5649 i = 0;
5650 }
5651 eop = tx_ring->buffer_info[i].next_to_watch;
5652 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5653 }
5654
5655 tx_ring->next_to_clean = i;
5656
5657 if (unlikely(count &&
5658 netif_carrier_ok(netdev) &&
5659 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5660 /* Make sure that anybody stopping the queue after this
5661 * sees the new next_to_clean.
5662 */
5663 smp_mb();
5664 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5665 !(test_bit(__IGB_DOWN, &adapter->state))) {
5666 netif_wake_subqueue(netdev, tx_ring->queue_index);
5667
5668 u64_stats_update_begin(&tx_ring->tx_syncp);
5669 tx_ring->tx_stats.restart_queue++;
5670 u64_stats_update_end(&tx_ring->tx_syncp);
5671 }
5672 }
5673
5674 if (tx_ring->detect_tx_hung) {
5675 /* Detect a transmit hang in hardware, this serializes the
5676 * check with the clearing of time_stamp and movement of i */
5677 tx_ring->detect_tx_hung = false;
5678 if (tx_ring->buffer_info[i].time_stamp &&
5679 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
5680 (adapter->tx_timeout_factor * HZ)) &&
5681 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5682
5683 /* detected Tx unit hang */
5684 dev_err(tx_ring->dev,
5685 "Detected Tx Unit Hang\n"
5686 " Tx Queue <%d>\n"
5687 " TDH <%x>\n"
5688 " TDT <%x>\n"
5689 " next_to_use <%x>\n"
5690 " next_to_clean <%x>\n"
5691 "buffer_info[next_to_clean]\n"
5692 " time_stamp <%lx>\n"
5693 " next_to_watch <%x>\n"
5694 " jiffies <%lx>\n"
5695 " desc.status <%x>\n",
5696 tx_ring->queue_index,
5697 readl(tx_ring->head),
5698 readl(tx_ring->tail),
5699 tx_ring->next_to_use,
5700 tx_ring->next_to_clean,
5701 tx_ring->buffer_info[eop].time_stamp,
5702 eop,
5703 jiffies,
5704 eop_desc->wb.status);
5705 netif_stop_subqueue(netdev, tx_ring->queue_index);
5706 }
5707 }
5708 tx_ring->total_bytes += total_bytes;
5709 tx_ring->total_packets += total_packets;
5710 u64_stats_update_begin(&tx_ring->tx_syncp);
5711 tx_ring->tx_stats.bytes += total_bytes;
5712 tx_ring->tx_stats.packets += total_packets;
5713 u64_stats_update_end(&tx_ring->tx_syncp);
5714 return count < tx_ring->count;
5715 }
5716
5717 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5718 u32 status_err, struct sk_buff *skb)
5719 {
5720 skb_checksum_none_assert(skb);
5721
5722 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5723 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5724 (status_err & E1000_RXD_STAT_IXSM))
5725 return;
5726
5727 /* TCP/UDP checksum error bit is set */
5728 if (status_err &
5729 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5730 /*
5731 * work around errata with sctp packets where the TCPE aka
5732 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5733 * packets, (aka let the stack check the crc32c)
5734 */
5735 if ((skb->len == 60) &&
5736 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
5737 u64_stats_update_begin(&ring->rx_syncp);
5738 ring->rx_stats.csum_err++;
5739 u64_stats_update_end(&ring->rx_syncp);
5740 }
5741 /* let the stack verify checksum errors */
5742 return;
5743 }
5744 /* It must be a TCP or UDP packet with a valid checksum */
5745 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5746 skb->ip_summed = CHECKSUM_UNNECESSARY;
5747
5748 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
5749 }
5750
5751 static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5752 struct sk_buff *skb)
5753 {
5754 struct igb_adapter *adapter = q_vector->adapter;
5755 struct e1000_hw *hw = &adapter->hw;
5756 u64 regval;
5757
5758 /*
5759 * If this bit is set, then the RX registers contain the time stamp. No
5760 * other packet will be time stamped until we read these registers, so
5761 * read the registers to make them available again. Because only one
5762 * packet can be time stamped at a time, we know that the register
5763 * values must belong to this one here and therefore we don't need to
5764 * compare any of the additional attributes stored for it.
5765 *
5766 * If nothing went wrong, then it should have a shared tx_flags that we
5767 * can turn into a skb_shared_hwtstamps.
5768 */
5769 if (staterr & E1000_RXDADV_STAT_TSIP) {
5770 u32 *stamp = (u32 *)skb->data;
5771 regval = le32_to_cpu(*(stamp + 2));
5772 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5773 skb_pull(skb, IGB_TS_HDR_LEN);
5774 } else {
5775 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5776 return;
5777
5778 regval = rd32(E1000_RXSTMPL);
5779 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5780 }
5781
5782 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5783 }
5784 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5785 union e1000_adv_rx_desc *rx_desc)
5786 {
5787 /* HW will not DMA in data larger than the given buffer, even if it
5788 * parses the (NFS, of course) header to be larger. In that case, it
5789 * fills the header buffer and spills the rest into the page.
5790 */
5791 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5792 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5793 if (hlen > rx_ring->rx_buffer_len)
5794 hlen = rx_ring->rx_buffer_len;
5795 return hlen;
5796 }
5797
5798 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5799 int *work_done, int budget)
5800 {
5801 struct igb_ring *rx_ring = q_vector->rx_ring;
5802 struct net_device *netdev = rx_ring->netdev;
5803 struct device *dev = rx_ring->dev;
5804 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5805 struct igb_buffer *buffer_info , *next_buffer;
5806 struct sk_buff *skb;
5807 bool cleaned = false;
5808 int cleaned_count = 0;
5809 int current_node = numa_node_id();
5810 unsigned int total_bytes = 0, total_packets = 0;
5811 unsigned int i;
5812 u32 staterr;
5813 u16 length;
5814
5815 i = rx_ring->next_to_clean;
5816 buffer_info = &rx_ring->buffer_info[i];
5817 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5818 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5819
5820 while (staterr & E1000_RXD_STAT_DD) {
5821 if (*work_done >= budget)
5822 break;
5823 (*work_done)++;
5824 rmb(); /* read descriptor and rx_buffer_info after status DD */
5825
5826 skb = buffer_info->skb;
5827 prefetch(skb->data - NET_IP_ALIGN);
5828 buffer_info->skb = NULL;
5829
5830 i++;
5831 if (i == rx_ring->count)
5832 i = 0;
5833
5834 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5835 prefetch(next_rxd);
5836 next_buffer = &rx_ring->buffer_info[i];
5837
5838 length = le16_to_cpu(rx_desc->wb.upper.length);
5839 cleaned = true;
5840 cleaned_count++;
5841
5842 if (buffer_info->dma) {
5843 dma_unmap_single(dev, buffer_info->dma,
5844 rx_ring->rx_buffer_len,
5845 DMA_FROM_DEVICE);
5846 buffer_info->dma = 0;
5847 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
5848 skb_put(skb, length);
5849 goto send_up;
5850 }
5851 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5852 }
5853
5854 if (length) {
5855 dma_unmap_page(dev, buffer_info->page_dma,
5856 PAGE_SIZE / 2, DMA_FROM_DEVICE);
5857 buffer_info->page_dma = 0;
5858
5859 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5860 buffer_info->page,
5861 buffer_info->page_offset,
5862 length);
5863
5864 if ((page_count(buffer_info->page) != 1) ||
5865 (page_to_nid(buffer_info->page) != current_node))
5866 buffer_info->page = NULL;
5867 else
5868 get_page(buffer_info->page);
5869
5870 skb->len += length;
5871 skb->data_len += length;
5872 skb->truesize += length;
5873 }
5874
5875 if (!(staterr & E1000_RXD_STAT_EOP)) {
5876 buffer_info->skb = next_buffer->skb;
5877 buffer_info->dma = next_buffer->dma;
5878 next_buffer->skb = skb;
5879 next_buffer->dma = 0;
5880 goto next_desc;
5881 }
5882 send_up:
5883 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5884 dev_kfree_skb_irq(skb);
5885 goto next_desc;
5886 }
5887
5888 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5889 igb_rx_hwtstamp(q_vector, staterr, skb);
5890 total_bytes += skb->len;
5891 total_packets++;
5892
5893 igb_rx_checksum_adv(rx_ring, staterr, skb);
5894
5895 skb->protocol = eth_type_trans(skb, netdev);
5896 skb_record_rx_queue(skb, rx_ring->queue_index);
5897
5898 if (staterr & E1000_RXD_STAT_VP) {
5899 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
5900
5901 __vlan_hwaccel_put_tag(skb, vid);
5902 }
5903 napi_gro_receive(&q_vector->napi, skb);
5904
5905 next_desc:
5906 rx_desc->wb.upper.status_error = 0;
5907
5908 /* return some buffers to hardware, one at a time is too slow */
5909 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5910 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5911 cleaned_count = 0;
5912 }
5913
5914 /* use prefetched values */
5915 rx_desc = next_rxd;
5916 buffer_info = next_buffer;
5917 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5918 }
5919
5920 rx_ring->next_to_clean = i;
5921 cleaned_count = igb_desc_unused(rx_ring);
5922
5923 if (cleaned_count)
5924 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5925
5926 rx_ring->total_packets += total_packets;
5927 rx_ring->total_bytes += total_bytes;
5928 u64_stats_update_begin(&rx_ring->rx_syncp);
5929 rx_ring->rx_stats.packets += total_packets;
5930 rx_ring->rx_stats.bytes += total_bytes;
5931 u64_stats_update_end(&rx_ring->rx_syncp);
5932 return cleaned;
5933 }
5934
5935 /**
5936 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5937 * @adapter: address of board private structure
5938 **/
5939 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5940 {
5941 struct net_device *netdev = rx_ring->netdev;
5942 union e1000_adv_rx_desc *rx_desc;
5943 struct igb_buffer *buffer_info;
5944 struct sk_buff *skb;
5945 unsigned int i;
5946 int bufsz;
5947
5948 i = rx_ring->next_to_use;
5949 buffer_info = &rx_ring->buffer_info[i];
5950
5951 bufsz = rx_ring->rx_buffer_len;
5952
5953 while (cleaned_count--) {
5954 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5955
5956 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5957 if (!buffer_info->page) {
5958 buffer_info->page = netdev_alloc_page(netdev);
5959 if (unlikely(!buffer_info->page)) {
5960 u64_stats_update_begin(&rx_ring->rx_syncp);
5961 rx_ring->rx_stats.alloc_failed++;
5962 u64_stats_update_end(&rx_ring->rx_syncp);
5963 goto no_buffers;
5964 }
5965 buffer_info->page_offset = 0;
5966 } else {
5967 buffer_info->page_offset ^= PAGE_SIZE / 2;
5968 }
5969 buffer_info->page_dma =
5970 dma_map_page(rx_ring->dev, buffer_info->page,
5971 buffer_info->page_offset,
5972 PAGE_SIZE / 2,
5973 DMA_FROM_DEVICE);
5974 if (dma_mapping_error(rx_ring->dev,
5975 buffer_info->page_dma)) {
5976 buffer_info->page_dma = 0;
5977 u64_stats_update_begin(&rx_ring->rx_syncp);
5978 rx_ring->rx_stats.alloc_failed++;
5979 u64_stats_update_end(&rx_ring->rx_syncp);
5980 goto no_buffers;
5981 }
5982 }
5983
5984 skb = buffer_info->skb;
5985 if (!skb) {
5986 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5987 if (unlikely(!skb)) {
5988 u64_stats_update_begin(&rx_ring->rx_syncp);
5989 rx_ring->rx_stats.alloc_failed++;
5990 u64_stats_update_end(&rx_ring->rx_syncp);
5991 goto no_buffers;
5992 }
5993
5994 buffer_info->skb = skb;
5995 }
5996 if (!buffer_info->dma) {
5997 buffer_info->dma = dma_map_single(rx_ring->dev,
5998 skb->data,
5999 bufsz,
6000 DMA_FROM_DEVICE);
6001 if (dma_mapping_error(rx_ring->dev,
6002 buffer_info->dma)) {
6003 buffer_info->dma = 0;
6004 u64_stats_update_begin(&rx_ring->rx_syncp);
6005 rx_ring->rx_stats.alloc_failed++;
6006 u64_stats_update_end(&rx_ring->rx_syncp);
6007 goto no_buffers;
6008 }
6009 }
6010 /* Refresh the desc even if buffer_addrs didn't change because
6011 * each write-back erases this info. */
6012 if (bufsz < IGB_RXBUFFER_1024) {
6013 rx_desc->read.pkt_addr =
6014 cpu_to_le64(buffer_info->page_dma);
6015 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
6016 } else {
6017 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
6018 rx_desc->read.hdr_addr = 0;
6019 }
6020
6021 i++;
6022 if (i == rx_ring->count)
6023 i = 0;
6024 buffer_info = &rx_ring->buffer_info[i];
6025 }
6026
6027 no_buffers:
6028 if (rx_ring->next_to_use != i) {
6029 rx_ring->next_to_use = i;
6030 if (i == 0)
6031 i = (rx_ring->count - 1);
6032 else
6033 i--;
6034
6035 /* Force memory writes to complete before letting h/w
6036 * know there are new descriptors to fetch. (Only
6037 * applicable for weak-ordered memory model archs,
6038 * such as IA-64). */
6039 wmb();
6040 writel(i, rx_ring->tail);
6041 }
6042 }
6043
6044 /**
6045 * igb_mii_ioctl -
6046 * @netdev:
6047 * @ifreq:
6048 * @cmd:
6049 **/
6050 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6051 {
6052 struct igb_adapter *adapter = netdev_priv(netdev);
6053 struct mii_ioctl_data *data = if_mii(ifr);
6054
6055 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6056 return -EOPNOTSUPP;
6057
6058 switch (cmd) {
6059 case SIOCGMIIPHY:
6060 data->phy_id = adapter->hw.phy.addr;
6061 break;
6062 case SIOCGMIIREG:
6063 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6064 &data->val_out))
6065 return -EIO;
6066 break;
6067 case SIOCSMIIREG:
6068 default:
6069 return -EOPNOTSUPP;
6070 }
6071 return 0;
6072 }
6073
6074 /**
6075 * igb_hwtstamp_ioctl - control hardware time stamping
6076 * @netdev:
6077 * @ifreq:
6078 * @cmd:
6079 *
6080 * Outgoing time stamping can be enabled and disabled. Play nice and
6081 * disable it when requested, although it shouldn't case any overhead
6082 * when no packet needs it. At most one packet in the queue may be
6083 * marked for time stamping, otherwise it would be impossible to tell
6084 * for sure to which packet the hardware time stamp belongs.
6085 *
6086 * Incoming time stamping has to be configured via the hardware
6087 * filters. Not all combinations are supported, in particular event
6088 * type has to be specified. Matching the kind of event packet is
6089 * not supported, with the exception of "all V2 events regardless of
6090 * level 2 or 4".
6091 *
6092 **/
6093 static int igb_hwtstamp_ioctl(struct net_device *netdev,
6094 struct ifreq *ifr, int cmd)
6095 {
6096 struct igb_adapter *adapter = netdev_priv(netdev);
6097 struct e1000_hw *hw = &adapter->hw;
6098 struct hwtstamp_config config;
6099 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6100 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6101 u32 tsync_rx_cfg = 0;
6102 bool is_l4 = false;
6103 bool is_l2 = false;
6104 u32 regval;
6105
6106 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6107 return -EFAULT;
6108
6109 /* reserved for future extensions */
6110 if (config.flags)
6111 return -EINVAL;
6112
6113 switch (config.tx_type) {
6114 case HWTSTAMP_TX_OFF:
6115 tsync_tx_ctl = 0;
6116 case HWTSTAMP_TX_ON:
6117 break;
6118 default:
6119 return -ERANGE;
6120 }
6121
6122 switch (config.rx_filter) {
6123 case HWTSTAMP_FILTER_NONE:
6124 tsync_rx_ctl = 0;
6125 break;
6126 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6127 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6128 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6129 case HWTSTAMP_FILTER_ALL:
6130 /*
6131 * register TSYNCRXCFG must be set, therefore it is not
6132 * possible to time stamp both Sync and Delay_Req messages
6133 * => fall back to time stamping all packets
6134 */
6135 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6136 config.rx_filter = HWTSTAMP_FILTER_ALL;
6137 break;
6138 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6139 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6140 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
6141 is_l4 = true;
6142 break;
6143 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6144 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6145 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
6146 is_l4 = true;
6147 break;
6148 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6149 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6150 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6151 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
6152 is_l2 = true;
6153 is_l4 = true;
6154 config.rx_filter = HWTSTAMP_FILTER_SOME;
6155 break;
6156 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6157 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6158 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6159 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
6160 is_l2 = true;
6161 is_l4 = true;
6162 config.rx_filter = HWTSTAMP_FILTER_SOME;
6163 break;
6164 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6165 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6166 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6167 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6168 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
6169 is_l2 = true;
6170 break;
6171 default:
6172 return -ERANGE;
6173 }
6174
6175 if (hw->mac.type == e1000_82575) {
6176 if (tsync_rx_ctl | tsync_tx_ctl)
6177 return -EINVAL;
6178 return 0;
6179 }
6180
6181 /*
6182 * Per-packet timestamping only works if all packets are
6183 * timestamped, so enable timestamping in all packets as
6184 * long as one rx filter was configured.
6185 */
6186 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6187 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6188 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6189 }
6190
6191 /* enable/disable TX */
6192 regval = rd32(E1000_TSYNCTXCTL);
6193 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6194 regval |= tsync_tx_ctl;
6195 wr32(E1000_TSYNCTXCTL, regval);
6196
6197 /* enable/disable RX */
6198 regval = rd32(E1000_TSYNCRXCTL);
6199 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6200 regval |= tsync_rx_ctl;
6201 wr32(E1000_TSYNCRXCTL, regval);
6202
6203 /* define which PTP packets are time stamped */
6204 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
6205
6206 /* define ethertype filter for timestamped packets */
6207 if (is_l2)
6208 wr32(E1000_ETQF(3),
6209 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6210 E1000_ETQF_1588 | /* enable timestamping */
6211 ETH_P_1588)); /* 1588 eth protocol type */
6212 else
6213 wr32(E1000_ETQF(3), 0);
6214
6215 #define PTP_PORT 319
6216 /* L4 Queue Filter[3]: filter by destination port and protocol */
6217 if (is_l4) {
6218 u32 ftqf = (IPPROTO_UDP /* UDP */
6219 | E1000_FTQF_VF_BP /* VF not compared */
6220 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6221 | E1000_FTQF_MASK); /* mask all inputs */
6222 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6223
6224 wr32(E1000_IMIR(3), htons(PTP_PORT));
6225 wr32(E1000_IMIREXT(3),
6226 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6227 if (hw->mac.type == e1000_82576) {
6228 /* enable source port check */
6229 wr32(E1000_SPQF(3), htons(PTP_PORT));
6230 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6231 }
6232 wr32(E1000_FTQF(3), ftqf);
6233 } else {
6234 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6235 }
6236 wrfl();
6237
6238 adapter->hwtstamp_config = config;
6239
6240 /* clear TX/RX time stamp registers, just to be sure */
6241 regval = rd32(E1000_TXSTMPH);
6242 regval = rd32(E1000_RXSTMPH);
6243
6244 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6245 -EFAULT : 0;
6246 }
6247
6248 /**
6249 * igb_ioctl -
6250 * @netdev:
6251 * @ifreq:
6252 * @cmd:
6253 **/
6254 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6255 {
6256 switch (cmd) {
6257 case SIOCGMIIPHY:
6258 case SIOCGMIIREG:
6259 case SIOCSMIIREG:
6260 return igb_mii_ioctl(netdev, ifr, cmd);
6261 case SIOCSHWTSTAMP:
6262 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6263 default:
6264 return -EOPNOTSUPP;
6265 }
6266 }
6267
6268 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6269 {
6270 struct igb_adapter *adapter = hw->back;
6271 u16 cap_offset;
6272
6273 cap_offset = adapter->pdev->pcie_cap;
6274 if (!cap_offset)
6275 return -E1000_ERR_CONFIG;
6276
6277 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6278
6279 return 0;
6280 }
6281
6282 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6283 {
6284 struct igb_adapter *adapter = hw->back;
6285 u16 cap_offset;
6286
6287 cap_offset = adapter->pdev->pcie_cap;
6288 if (!cap_offset)
6289 return -E1000_ERR_CONFIG;
6290
6291 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6292
6293 return 0;
6294 }
6295
6296 static void igb_vlan_mode(struct net_device *netdev, u32 features)
6297 {
6298 struct igb_adapter *adapter = netdev_priv(netdev);
6299 struct e1000_hw *hw = &adapter->hw;
6300 u32 ctrl, rctl;
6301
6302 igb_irq_disable(adapter);
6303
6304 if (features & NETIF_F_HW_VLAN_RX) {
6305 /* enable VLAN tag insert/strip */
6306 ctrl = rd32(E1000_CTRL);
6307 ctrl |= E1000_CTRL_VME;
6308 wr32(E1000_CTRL, ctrl);
6309
6310 /* Disable CFI check */
6311 rctl = rd32(E1000_RCTL);
6312 rctl &= ~E1000_RCTL_CFIEN;
6313 wr32(E1000_RCTL, rctl);
6314 } else {
6315 /* disable VLAN tag insert/strip */
6316 ctrl = rd32(E1000_CTRL);
6317 ctrl &= ~E1000_CTRL_VME;
6318 wr32(E1000_CTRL, ctrl);
6319 }
6320
6321 igb_rlpml_set(adapter);
6322
6323 if (!test_bit(__IGB_DOWN, &adapter->state))
6324 igb_irq_enable(adapter);
6325 }
6326
6327 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6328 {
6329 struct igb_adapter *adapter = netdev_priv(netdev);
6330 struct e1000_hw *hw = &adapter->hw;
6331 int pf_id = adapter->vfs_allocated_count;
6332
6333 /* attempt to add filter to vlvf array */
6334 igb_vlvf_set(adapter, vid, true, pf_id);
6335
6336 /* add the filter since PF can receive vlans w/o entry in vlvf */
6337 igb_vfta_set(hw, vid, true);
6338
6339 set_bit(vid, adapter->active_vlans);
6340 }
6341
6342 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6343 {
6344 struct igb_adapter *adapter = netdev_priv(netdev);
6345 struct e1000_hw *hw = &adapter->hw;
6346 int pf_id = adapter->vfs_allocated_count;
6347 s32 err;
6348
6349 igb_irq_disable(adapter);
6350
6351 if (!test_bit(__IGB_DOWN, &adapter->state))
6352 igb_irq_enable(adapter);
6353
6354 /* remove vlan from VLVF table array */
6355 err = igb_vlvf_set(adapter, vid, false, pf_id);
6356
6357 /* if vid was not present in VLVF just remove it from table */
6358 if (err)
6359 igb_vfta_set(hw, vid, false);
6360
6361 clear_bit(vid, adapter->active_vlans);
6362 }
6363
6364 static void igb_restore_vlan(struct igb_adapter *adapter)
6365 {
6366 u16 vid;
6367
6368 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6369 igb_vlan_rx_add_vid(adapter->netdev, vid);
6370 }
6371
6372 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6373 {
6374 struct pci_dev *pdev = adapter->pdev;
6375 struct e1000_mac_info *mac = &adapter->hw.mac;
6376
6377 mac->autoneg = 0;
6378
6379 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6380 * for the switch() below to work */
6381 if ((spd & 1) || (dplx & ~1))
6382 goto err_inval;
6383
6384 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6385 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6386 spd != SPEED_1000 &&
6387 dplx != DUPLEX_FULL)
6388 goto err_inval;
6389
6390 switch (spd + dplx) {
6391 case SPEED_10 + DUPLEX_HALF:
6392 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6393 break;
6394 case SPEED_10 + DUPLEX_FULL:
6395 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6396 break;
6397 case SPEED_100 + DUPLEX_HALF:
6398 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6399 break;
6400 case SPEED_100 + DUPLEX_FULL:
6401 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6402 break;
6403 case SPEED_1000 + DUPLEX_FULL:
6404 mac->autoneg = 1;
6405 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6406 break;
6407 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6408 default:
6409 goto err_inval;
6410 }
6411 return 0;
6412
6413 err_inval:
6414 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6415 return -EINVAL;
6416 }
6417
6418 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6419 {
6420 struct net_device *netdev = pci_get_drvdata(pdev);
6421 struct igb_adapter *adapter = netdev_priv(netdev);
6422 struct e1000_hw *hw = &adapter->hw;
6423 u32 ctrl, rctl, status;
6424 u32 wufc = adapter->wol;
6425 #ifdef CONFIG_PM
6426 int retval = 0;
6427 #endif
6428
6429 netif_device_detach(netdev);
6430
6431 if (netif_running(netdev))
6432 igb_close(netdev);
6433
6434 igb_clear_interrupt_scheme(adapter);
6435
6436 #ifdef CONFIG_PM
6437 retval = pci_save_state(pdev);
6438 if (retval)
6439 return retval;
6440 #endif
6441
6442 status = rd32(E1000_STATUS);
6443 if (status & E1000_STATUS_LU)
6444 wufc &= ~E1000_WUFC_LNKC;
6445
6446 if (wufc) {
6447 igb_setup_rctl(adapter);
6448 igb_set_rx_mode(netdev);
6449
6450 /* turn on all-multi mode if wake on multicast is enabled */
6451 if (wufc & E1000_WUFC_MC) {
6452 rctl = rd32(E1000_RCTL);
6453 rctl |= E1000_RCTL_MPE;
6454 wr32(E1000_RCTL, rctl);
6455 }
6456
6457 ctrl = rd32(E1000_CTRL);
6458 /* advertise wake from D3Cold */
6459 #define E1000_CTRL_ADVD3WUC 0x00100000
6460 /* phy power management enable */
6461 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6462 ctrl |= E1000_CTRL_ADVD3WUC;
6463 wr32(E1000_CTRL, ctrl);
6464
6465 /* Allow time for pending master requests to run */
6466 igb_disable_pcie_master(hw);
6467
6468 wr32(E1000_WUC, E1000_WUC_PME_EN);
6469 wr32(E1000_WUFC, wufc);
6470 } else {
6471 wr32(E1000_WUC, 0);
6472 wr32(E1000_WUFC, 0);
6473 }
6474
6475 *enable_wake = wufc || adapter->en_mng_pt;
6476 if (!*enable_wake)
6477 igb_power_down_link(adapter);
6478 else
6479 igb_power_up_link(adapter);
6480
6481 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6482 * would have already happened in close and is redundant. */
6483 igb_release_hw_control(adapter);
6484
6485 pci_disable_device(pdev);
6486
6487 return 0;
6488 }
6489
6490 #ifdef CONFIG_PM
6491 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6492 {
6493 int retval;
6494 bool wake;
6495
6496 retval = __igb_shutdown(pdev, &wake);
6497 if (retval)
6498 return retval;
6499
6500 if (wake) {
6501 pci_prepare_to_sleep(pdev);
6502 } else {
6503 pci_wake_from_d3(pdev, false);
6504 pci_set_power_state(pdev, PCI_D3hot);
6505 }
6506
6507 return 0;
6508 }
6509
6510 static int igb_resume(struct pci_dev *pdev)
6511 {
6512 struct net_device *netdev = pci_get_drvdata(pdev);
6513 struct igb_adapter *adapter = netdev_priv(netdev);
6514 struct e1000_hw *hw = &adapter->hw;
6515 u32 err;
6516
6517 pci_set_power_state(pdev, PCI_D0);
6518 pci_restore_state(pdev);
6519 pci_save_state(pdev);
6520
6521 err = pci_enable_device_mem(pdev);
6522 if (err) {
6523 dev_err(&pdev->dev,
6524 "igb: Cannot enable PCI device from suspend\n");
6525 return err;
6526 }
6527 pci_set_master(pdev);
6528
6529 pci_enable_wake(pdev, PCI_D3hot, 0);
6530 pci_enable_wake(pdev, PCI_D3cold, 0);
6531
6532 if (igb_init_interrupt_scheme(adapter)) {
6533 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6534 return -ENOMEM;
6535 }
6536
6537 igb_reset(adapter);
6538
6539 /* let the f/w know that the h/w is now under the control of the
6540 * driver. */
6541 igb_get_hw_control(adapter);
6542
6543 wr32(E1000_WUS, ~0);
6544
6545 if (netif_running(netdev)) {
6546 err = igb_open(netdev);
6547 if (err)
6548 return err;
6549 }
6550
6551 netif_device_attach(netdev);
6552
6553 return 0;
6554 }
6555 #endif
6556
6557 static void igb_shutdown(struct pci_dev *pdev)
6558 {
6559 bool wake;
6560
6561 __igb_shutdown(pdev, &wake);
6562
6563 if (system_state == SYSTEM_POWER_OFF) {
6564 pci_wake_from_d3(pdev, wake);
6565 pci_set_power_state(pdev, PCI_D3hot);
6566 }
6567 }
6568
6569 #ifdef CONFIG_NET_POLL_CONTROLLER
6570 /*
6571 * Polling 'interrupt' - used by things like netconsole to send skbs
6572 * without having to re-enable interrupts. It's not called while
6573 * the interrupt routine is executing.
6574 */
6575 static void igb_netpoll(struct net_device *netdev)
6576 {
6577 struct igb_adapter *adapter = netdev_priv(netdev);
6578 struct e1000_hw *hw = &adapter->hw;
6579 int i;
6580
6581 if (!adapter->msix_entries) {
6582 struct igb_q_vector *q_vector = adapter->q_vector[0];
6583 igb_irq_disable(adapter);
6584 napi_schedule(&q_vector->napi);
6585 return;
6586 }
6587
6588 for (i = 0; i < adapter->num_q_vectors; i++) {
6589 struct igb_q_vector *q_vector = adapter->q_vector[i];
6590 wr32(E1000_EIMC, q_vector->eims_value);
6591 napi_schedule(&q_vector->napi);
6592 }
6593 }
6594 #endif /* CONFIG_NET_POLL_CONTROLLER */
6595
6596 /**
6597 * igb_io_error_detected - called when PCI error is detected
6598 * @pdev: Pointer to PCI device
6599 * @state: The current pci connection state
6600 *
6601 * This function is called after a PCI bus error affecting
6602 * this device has been detected.
6603 */
6604 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6605 pci_channel_state_t state)
6606 {
6607 struct net_device *netdev = pci_get_drvdata(pdev);
6608 struct igb_adapter *adapter = netdev_priv(netdev);
6609
6610 netif_device_detach(netdev);
6611
6612 if (state == pci_channel_io_perm_failure)
6613 return PCI_ERS_RESULT_DISCONNECT;
6614
6615 if (netif_running(netdev))
6616 igb_down(adapter);
6617 pci_disable_device(pdev);
6618
6619 /* Request a slot slot reset. */
6620 return PCI_ERS_RESULT_NEED_RESET;
6621 }
6622
6623 /**
6624 * igb_io_slot_reset - called after the pci bus has been reset.
6625 * @pdev: Pointer to PCI device
6626 *
6627 * Restart the card from scratch, as if from a cold-boot. Implementation
6628 * resembles the first-half of the igb_resume routine.
6629 */
6630 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6631 {
6632 struct net_device *netdev = pci_get_drvdata(pdev);
6633 struct igb_adapter *adapter = netdev_priv(netdev);
6634 struct e1000_hw *hw = &adapter->hw;
6635 pci_ers_result_t result;
6636 int err;
6637
6638 if (pci_enable_device_mem(pdev)) {
6639 dev_err(&pdev->dev,
6640 "Cannot re-enable PCI device after reset.\n");
6641 result = PCI_ERS_RESULT_DISCONNECT;
6642 } else {
6643 pci_set_master(pdev);
6644 pci_restore_state(pdev);
6645 pci_save_state(pdev);
6646
6647 pci_enable_wake(pdev, PCI_D3hot, 0);
6648 pci_enable_wake(pdev, PCI_D3cold, 0);
6649
6650 igb_reset(adapter);
6651 wr32(E1000_WUS, ~0);
6652 result = PCI_ERS_RESULT_RECOVERED;
6653 }
6654
6655 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6656 if (err) {
6657 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6658 "failed 0x%0x\n", err);
6659 /* non-fatal, continue */
6660 }
6661
6662 return result;
6663 }
6664
6665 /**
6666 * igb_io_resume - called when traffic can start flowing again.
6667 * @pdev: Pointer to PCI device
6668 *
6669 * This callback is called when the error recovery driver tells us that
6670 * its OK to resume normal operation. Implementation resembles the
6671 * second-half of the igb_resume routine.
6672 */
6673 static void igb_io_resume(struct pci_dev *pdev)
6674 {
6675 struct net_device *netdev = pci_get_drvdata(pdev);
6676 struct igb_adapter *adapter = netdev_priv(netdev);
6677
6678 if (netif_running(netdev)) {
6679 if (igb_up(adapter)) {
6680 dev_err(&pdev->dev, "igb_up failed after reset\n");
6681 return;
6682 }
6683 }
6684
6685 netif_device_attach(netdev);
6686
6687 /* let the f/w know that the h/w is now under the control of the
6688 * driver. */
6689 igb_get_hw_control(adapter);
6690 }
6691
6692 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6693 u8 qsel)
6694 {
6695 u32 rar_low, rar_high;
6696 struct e1000_hw *hw = &adapter->hw;
6697
6698 /* HW expects these in little endian so we reverse the byte order
6699 * from network order (big endian) to little endian
6700 */
6701 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6702 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6703 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6704
6705 /* Indicate to hardware the Address is Valid. */
6706 rar_high |= E1000_RAH_AV;
6707
6708 if (hw->mac.type == e1000_82575)
6709 rar_high |= E1000_RAH_POOL_1 * qsel;
6710 else
6711 rar_high |= E1000_RAH_POOL_1 << qsel;
6712
6713 wr32(E1000_RAL(index), rar_low);
6714 wrfl();
6715 wr32(E1000_RAH(index), rar_high);
6716 wrfl();
6717 }
6718
6719 static int igb_set_vf_mac(struct igb_adapter *adapter,
6720 int vf, unsigned char *mac_addr)
6721 {
6722 struct e1000_hw *hw = &adapter->hw;
6723 /* VF MAC addresses start at end of receive addresses and moves
6724 * torwards the first, as a result a collision should not be possible */
6725 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6726
6727 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6728
6729 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6730
6731 return 0;
6732 }
6733
6734 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6735 {
6736 struct igb_adapter *adapter = netdev_priv(netdev);
6737 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6738 return -EINVAL;
6739 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6740 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6741 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6742 " change effective.");
6743 if (test_bit(__IGB_DOWN, &adapter->state)) {
6744 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6745 " but the PF device is not up.\n");
6746 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6747 " attempting to use the VF device.\n");
6748 }
6749 return igb_set_vf_mac(adapter, vf, mac);
6750 }
6751
6752 static int igb_link_mbps(int internal_link_speed)
6753 {
6754 switch (internal_link_speed) {
6755 case SPEED_100:
6756 return 100;
6757 case SPEED_1000:
6758 return 1000;
6759 default:
6760 return 0;
6761 }
6762 }
6763
6764 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6765 int link_speed)
6766 {
6767 int rf_dec, rf_int;
6768 u32 bcnrc_val;
6769
6770 if (tx_rate != 0) {
6771 /* Calculate the rate factor values to set */
6772 rf_int = link_speed / tx_rate;
6773 rf_dec = (link_speed - (rf_int * tx_rate));
6774 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6775
6776 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6777 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6778 E1000_RTTBCNRC_RF_INT_MASK);
6779 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6780 } else {
6781 bcnrc_val = 0;
6782 }
6783
6784 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6785 wr32(E1000_RTTBCNRC, bcnrc_val);
6786 }
6787
6788 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6789 {
6790 int actual_link_speed, i;
6791 bool reset_rate = false;
6792
6793 /* VF TX rate limit was not set or not supported */
6794 if ((adapter->vf_rate_link_speed == 0) ||
6795 (adapter->hw.mac.type != e1000_82576))
6796 return;
6797
6798 actual_link_speed = igb_link_mbps(adapter->link_speed);
6799 if (actual_link_speed != adapter->vf_rate_link_speed) {
6800 reset_rate = true;
6801 adapter->vf_rate_link_speed = 0;
6802 dev_info(&adapter->pdev->dev,
6803 "Link speed has been changed. VF Transmit "
6804 "rate is disabled\n");
6805 }
6806
6807 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6808 if (reset_rate)
6809 adapter->vf_data[i].tx_rate = 0;
6810
6811 igb_set_vf_rate_limit(&adapter->hw, i,
6812 adapter->vf_data[i].tx_rate,
6813 actual_link_speed);
6814 }
6815 }
6816
6817 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6818 {
6819 struct igb_adapter *adapter = netdev_priv(netdev);
6820 struct e1000_hw *hw = &adapter->hw;
6821 int actual_link_speed;
6822
6823 if (hw->mac.type != e1000_82576)
6824 return -EOPNOTSUPP;
6825
6826 actual_link_speed = igb_link_mbps(adapter->link_speed);
6827 if ((vf >= adapter->vfs_allocated_count) ||
6828 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6829 (tx_rate < 0) || (tx_rate > actual_link_speed))
6830 return -EINVAL;
6831
6832 adapter->vf_rate_link_speed = actual_link_speed;
6833 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6834 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6835
6836 return 0;
6837 }
6838
6839 static int igb_ndo_get_vf_config(struct net_device *netdev,
6840 int vf, struct ifla_vf_info *ivi)
6841 {
6842 struct igb_adapter *adapter = netdev_priv(netdev);
6843 if (vf >= adapter->vfs_allocated_count)
6844 return -EINVAL;
6845 ivi->vf = vf;
6846 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6847 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
6848 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6849 ivi->qos = adapter->vf_data[vf].pf_qos;
6850 return 0;
6851 }
6852
6853 static void igb_vmm_control(struct igb_adapter *adapter)
6854 {
6855 struct e1000_hw *hw = &adapter->hw;
6856 u32 reg;
6857
6858 switch (hw->mac.type) {
6859 case e1000_82575:
6860 default:
6861 /* replication is not supported for 82575 */
6862 return;
6863 case e1000_82576:
6864 /* notify HW that the MAC is adding vlan tags */
6865 reg = rd32(E1000_DTXCTL);
6866 reg |= E1000_DTXCTL_VLAN_ADDED;
6867 wr32(E1000_DTXCTL, reg);
6868 case e1000_82580:
6869 /* enable replication vlan tag stripping */
6870 reg = rd32(E1000_RPLOLR);
6871 reg |= E1000_RPLOLR_STRVLAN;
6872 wr32(E1000_RPLOLR, reg);
6873 case e1000_i350:
6874 /* none of the above registers are supported by i350 */
6875 break;
6876 }
6877
6878 if (adapter->vfs_allocated_count) {
6879 igb_vmdq_set_loopback_pf(hw, true);
6880 igb_vmdq_set_replication_pf(hw, true);
6881 igb_vmdq_set_anti_spoofing_pf(hw, true,
6882 adapter->vfs_allocated_count);
6883 } else {
6884 igb_vmdq_set_loopback_pf(hw, false);
6885 igb_vmdq_set_replication_pf(hw, false);
6886 }
6887 }
6888
6889 /* igb_main.c */
This page took 0.168011 seconds and 6 git commands to generate.