igb: Update RXDCTL/TXDCTL configurations
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2011 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/bitops.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/netdevice.h>
35 #include <linux/ipv6.h>
36 #include <linux/slab.h>
37 #include <net/checksum.h>
38 #include <net/ip6_checksum.h>
39 #include <linux/net_tstamp.h>
40 #include <linux/mii.h>
41 #include <linux/ethtool.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <linux/pci.h>
45 #include <linux/pci-aspm.h>
46 #include <linux/delay.h>
47 #include <linux/interrupt.h>
48 #include <linux/if_ether.h>
49 #include <linux/aer.h>
50 #include <linux/prefetch.h>
51 #ifdef CONFIG_IGB_DCA
52 #include <linux/dca.h>
53 #endif
54 #include "igb.h"
55
56 #define MAJ 3
57 #define MIN 0
58 #define BUILD 6
59 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
60 __stringify(BUILD) "-k"
61 char igb_driver_name[] = "igb";
62 char igb_driver_version[] = DRV_VERSION;
63 static const char igb_driver_string[] =
64 "Intel(R) Gigabit Ethernet Network Driver";
65 static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
66
67 static const struct e1000_info *igb_info_tbl[] = {
68 [board_82575] = &e1000_82575_info,
69 };
70
71 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
97 /* required last entry */
98 {0, }
99 };
100
101 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
102
103 void igb_reset(struct igb_adapter *);
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
110 static void __devexit igb_remove(struct pci_dev *pdev);
111 static void igb_init_hw_timer(struct igb_adapter *adapter);
112 static int igb_sw_init(struct igb_adapter *);
113 static int igb_open(struct net_device *);
114 static int igb_close(struct net_device *);
115 static void igb_configure_tx(struct igb_adapter *);
116 static void igb_configure_rx(struct igb_adapter *);
117 static void igb_clean_all_tx_rings(struct igb_adapter *);
118 static void igb_clean_all_rx_rings(struct igb_adapter *);
119 static void igb_clean_tx_ring(struct igb_ring *);
120 static void igb_clean_rx_ring(struct igb_ring *);
121 static void igb_set_rx_mode(struct net_device *);
122 static void igb_update_phy_info(unsigned long);
123 static void igb_watchdog(unsigned long);
124 static void igb_watchdog_task(struct work_struct *);
125 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
126 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
127 struct rtnl_link_stats64 *stats);
128 static int igb_change_mtu(struct net_device *, int);
129 static int igb_set_mac(struct net_device *, void *);
130 static void igb_set_uta(struct igb_adapter *adapter);
131 static irqreturn_t igb_intr(int irq, void *);
132 static irqreturn_t igb_intr_msi(int irq, void *);
133 static irqreturn_t igb_msix_other(int irq, void *);
134 static irqreturn_t igb_msix_ring(int irq, void *);
135 #ifdef CONFIG_IGB_DCA
136 static void igb_update_dca(struct igb_q_vector *);
137 static void igb_setup_dca(struct igb_adapter *);
138 #endif /* CONFIG_IGB_DCA */
139 static bool igb_clean_tx_irq(struct igb_q_vector *);
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
142 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
143 static void igb_tx_timeout(struct net_device *);
144 static void igb_reset_task(struct work_struct *);
145 static void igb_vlan_mode(struct net_device *netdev, u32 features);
146 static void igb_vlan_rx_add_vid(struct net_device *, u16);
147 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
148 static void igb_restore_vlan(struct igb_adapter *);
149 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
150 static void igb_ping_all_vfs(struct igb_adapter *);
151 static void igb_msg_task(struct igb_adapter *);
152 static void igb_vmm_control(struct igb_adapter *);
153 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
154 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
155 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
156 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
157 int vf, u16 vlan, u8 qos);
158 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
159 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
160 struct ifla_vf_info *ivi);
161 static void igb_check_vf_rate_limit(struct igb_adapter *);
162
163 #ifdef CONFIG_PM
164 static int igb_suspend(struct pci_dev *, pm_message_t);
165 static int igb_resume(struct pci_dev *);
166 #endif
167 static void igb_shutdown(struct pci_dev *);
168 #ifdef CONFIG_IGB_DCA
169 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
170 static struct notifier_block dca_notifier = {
171 .notifier_call = igb_notify_dca,
172 .next = NULL,
173 .priority = 0
174 };
175 #endif
176 #ifdef CONFIG_NET_POLL_CONTROLLER
177 /* for netdump / net console */
178 static void igb_netpoll(struct net_device *);
179 #endif
180 #ifdef CONFIG_PCI_IOV
181 static unsigned int max_vfs = 0;
182 module_param(max_vfs, uint, 0);
183 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
184 "per physical function");
185 #endif /* CONFIG_PCI_IOV */
186
187 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
188 pci_channel_state_t);
189 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
190 static void igb_io_resume(struct pci_dev *);
191
192 static struct pci_error_handlers igb_err_handler = {
193 .error_detected = igb_io_error_detected,
194 .slot_reset = igb_io_slot_reset,
195 .resume = igb_io_resume,
196 };
197
198
199 static struct pci_driver igb_driver = {
200 .name = igb_driver_name,
201 .id_table = igb_pci_tbl,
202 .probe = igb_probe,
203 .remove = __devexit_p(igb_remove),
204 #ifdef CONFIG_PM
205 /* Power Management Hooks */
206 .suspend = igb_suspend,
207 .resume = igb_resume,
208 #endif
209 .shutdown = igb_shutdown,
210 .err_handler = &igb_err_handler
211 };
212
213 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
214 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
215 MODULE_LICENSE("GPL");
216 MODULE_VERSION(DRV_VERSION);
217
218 struct igb_reg_info {
219 u32 ofs;
220 char *name;
221 };
222
223 static const struct igb_reg_info igb_reg_info_tbl[] = {
224
225 /* General Registers */
226 {E1000_CTRL, "CTRL"},
227 {E1000_STATUS, "STATUS"},
228 {E1000_CTRL_EXT, "CTRL_EXT"},
229
230 /* Interrupt Registers */
231 {E1000_ICR, "ICR"},
232
233 /* RX Registers */
234 {E1000_RCTL, "RCTL"},
235 {E1000_RDLEN(0), "RDLEN"},
236 {E1000_RDH(0), "RDH"},
237 {E1000_RDT(0), "RDT"},
238 {E1000_RXDCTL(0), "RXDCTL"},
239 {E1000_RDBAL(0), "RDBAL"},
240 {E1000_RDBAH(0), "RDBAH"},
241
242 /* TX Registers */
243 {E1000_TCTL, "TCTL"},
244 {E1000_TDBAL(0), "TDBAL"},
245 {E1000_TDBAH(0), "TDBAH"},
246 {E1000_TDLEN(0), "TDLEN"},
247 {E1000_TDH(0), "TDH"},
248 {E1000_TDT(0), "TDT"},
249 {E1000_TXDCTL(0), "TXDCTL"},
250 {E1000_TDFH, "TDFH"},
251 {E1000_TDFT, "TDFT"},
252 {E1000_TDFHS, "TDFHS"},
253 {E1000_TDFPC, "TDFPC"},
254
255 /* List Terminator */
256 {}
257 };
258
259 /*
260 * igb_regdump - register printout routine
261 */
262 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
263 {
264 int n = 0;
265 char rname[16];
266 u32 regs[8];
267
268 switch (reginfo->ofs) {
269 case E1000_RDLEN(0):
270 for (n = 0; n < 4; n++)
271 regs[n] = rd32(E1000_RDLEN(n));
272 break;
273 case E1000_RDH(0):
274 for (n = 0; n < 4; n++)
275 regs[n] = rd32(E1000_RDH(n));
276 break;
277 case E1000_RDT(0):
278 for (n = 0; n < 4; n++)
279 regs[n] = rd32(E1000_RDT(n));
280 break;
281 case E1000_RXDCTL(0):
282 for (n = 0; n < 4; n++)
283 regs[n] = rd32(E1000_RXDCTL(n));
284 break;
285 case E1000_RDBAL(0):
286 for (n = 0; n < 4; n++)
287 regs[n] = rd32(E1000_RDBAL(n));
288 break;
289 case E1000_RDBAH(0):
290 for (n = 0; n < 4; n++)
291 regs[n] = rd32(E1000_RDBAH(n));
292 break;
293 case E1000_TDBAL(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RDBAL(n));
296 break;
297 case E1000_TDBAH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_TDBAH(n));
300 break;
301 case E1000_TDLEN(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_TDLEN(n));
304 break;
305 case E1000_TDH(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_TDH(n));
308 break;
309 case E1000_TDT(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_TDT(n));
312 break;
313 case E1000_TXDCTL(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_TXDCTL(n));
316 break;
317 default:
318 printk(KERN_INFO "%-15s %08x\n",
319 reginfo->name, rd32(reginfo->ofs));
320 return;
321 }
322
323 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
324 printk(KERN_INFO "%-15s ", rname);
325 for (n = 0; n < 4; n++)
326 printk(KERN_CONT "%08x ", regs[n]);
327 printk(KERN_CONT "\n");
328 }
329
330 /*
331 * igb_dump - Print registers, tx-rings and rx-rings
332 */
333 static void igb_dump(struct igb_adapter *adapter)
334 {
335 struct net_device *netdev = adapter->netdev;
336 struct e1000_hw *hw = &adapter->hw;
337 struct igb_reg_info *reginfo;
338 int n = 0;
339 struct igb_ring *tx_ring;
340 union e1000_adv_tx_desc *tx_desc;
341 struct my_u0 { u64 a; u64 b; } *u0;
342 struct igb_buffer *buffer_info;
343 struct igb_ring *rx_ring;
344 union e1000_adv_rx_desc *rx_desc;
345 u32 staterr;
346 int i = 0;
347
348 if (!netif_msg_hw(adapter))
349 return;
350
351 /* Print netdevice Info */
352 if (netdev) {
353 dev_info(&adapter->pdev->dev, "Net device Info\n");
354 printk(KERN_INFO "Device Name state "
355 "trans_start last_rx\n");
356 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
357 netdev->name,
358 netdev->state,
359 netdev->trans_start,
360 netdev->last_rx);
361 }
362
363 /* Print Registers */
364 dev_info(&adapter->pdev->dev, "Register Dump\n");
365 printk(KERN_INFO " Register Name Value\n");
366 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
367 reginfo->name; reginfo++) {
368 igb_regdump(hw, reginfo);
369 }
370
371 /* Print TX Ring Summary */
372 if (!netdev || !netif_running(netdev))
373 goto exit;
374
375 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
376 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
377 " leng ntw timestamp\n");
378 for (n = 0; n < adapter->num_tx_queues; n++) {
379 tx_ring = adapter->tx_ring[n];
380 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
381 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
382 n, tx_ring->next_to_use, tx_ring->next_to_clean,
383 (u64)buffer_info->dma,
384 buffer_info->length,
385 buffer_info->next_to_watch,
386 (u64)buffer_info->time_stamp);
387 }
388
389 /* Print TX Rings */
390 if (!netif_msg_tx_done(adapter))
391 goto rx_ring_summary;
392
393 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
394
395 /* Transmit Descriptor Formats
396 *
397 * Advanced Transmit Descriptor
398 * +--------------------------------------------------------------+
399 * 0 | Buffer Address [63:0] |
400 * +--------------------------------------------------------------+
401 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
402 * +--------------------------------------------------------------+
403 * 63 46 45 40 39 38 36 35 32 31 24 15 0
404 */
405
406 for (n = 0; n < adapter->num_tx_queues; n++) {
407 tx_ring = adapter->tx_ring[n];
408 printk(KERN_INFO "------------------------------------\n");
409 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
410 printk(KERN_INFO "------------------------------------\n");
411 printk(KERN_INFO "T [desc] [address 63:0 ] "
412 "[PlPOCIStDDM Ln] [bi->dma ] "
413 "leng ntw timestamp bi->skb\n");
414
415 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
416 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
417 buffer_info = &tx_ring->buffer_info[i];
418 u0 = (struct my_u0 *)tx_desc;
419 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
420 " %04X %3X %016llX %p", i,
421 le64_to_cpu(u0->a),
422 le64_to_cpu(u0->b),
423 (u64)buffer_info->dma,
424 buffer_info->length,
425 buffer_info->next_to_watch,
426 (u64)buffer_info->time_stamp,
427 buffer_info->skb);
428 if (i == tx_ring->next_to_use &&
429 i == tx_ring->next_to_clean)
430 printk(KERN_CONT " NTC/U\n");
431 else if (i == tx_ring->next_to_use)
432 printk(KERN_CONT " NTU\n");
433 else if (i == tx_ring->next_to_clean)
434 printk(KERN_CONT " NTC\n");
435 else
436 printk(KERN_CONT "\n");
437
438 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
439 print_hex_dump(KERN_INFO, "",
440 DUMP_PREFIX_ADDRESS,
441 16, 1, phys_to_virt(buffer_info->dma),
442 buffer_info->length, true);
443 }
444 }
445
446 /* Print RX Rings Summary */
447 rx_ring_summary:
448 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
449 printk(KERN_INFO "Queue [NTU] [NTC]\n");
450 for (n = 0; n < adapter->num_rx_queues; n++) {
451 rx_ring = adapter->rx_ring[n];
452 printk(KERN_INFO " %5d %5X %5X\n", n,
453 rx_ring->next_to_use, rx_ring->next_to_clean);
454 }
455
456 /* Print RX Rings */
457 if (!netif_msg_rx_status(adapter))
458 goto exit;
459
460 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
461
462 /* Advanced Receive Descriptor (Read) Format
463 * 63 1 0
464 * +-----------------------------------------------------+
465 * 0 | Packet Buffer Address [63:1] |A0/NSE|
466 * +----------------------------------------------+------+
467 * 8 | Header Buffer Address [63:1] | DD |
468 * +-----------------------------------------------------+
469 *
470 *
471 * Advanced Receive Descriptor (Write-Back) Format
472 *
473 * 63 48 47 32 31 30 21 20 17 16 4 3 0
474 * +------------------------------------------------------+
475 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
476 * | Checksum Ident | | | | Type | Type |
477 * +------------------------------------------------------+
478 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
479 * +------------------------------------------------------+
480 * 63 48 47 32 31 20 19 0
481 */
482
483 for (n = 0; n < adapter->num_rx_queues; n++) {
484 rx_ring = adapter->rx_ring[n];
485 printk(KERN_INFO "------------------------------------\n");
486 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
487 printk(KERN_INFO "------------------------------------\n");
488 printk(KERN_INFO "R [desc] [ PktBuf A0] "
489 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
490 "<-- Adv Rx Read format\n");
491 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
492 "[vl er S cks ln] ---------------- [bi->skb] "
493 "<-- Adv Rx Write-Back format\n");
494
495 for (i = 0; i < rx_ring->count; i++) {
496 buffer_info = &rx_ring->buffer_info[i];
497 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
498 u0 = (struct my_u0 *)rx_desc;
499 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
500 if (staterr & E1000_RXD_STAT_DD) {
501 /* Descriptor Done */
502 printk(KERN_INFO "RWB[0x%03X] %016llX "
503 "%016llX ---------------- %p", i,
504 le64_to_cpu(u0->a),
505 le64_to_cpu(u0->b),
506 buffer_info->skb);
507 } else {
508 printk(KERN_INFO "R [0x%03X] %016llX "
509 "%016llX %016llX %p", i,
510 le64_to_cpu(u0->a),
511 le64_to_cpu(u0->b),
512 (u64)buffer_info->dma,
513 buffer_info->skb);
514
515 if (netif_msg_pktdata(adapter)) {
516 print_hex_dump(KERN_INFO, "",
517 DUMP_PREFIX_ADDRESS,
518 16, 1,
519 phys_to_virt(buffer_info->dma),
520 rx_ring->rx_buffer_len, true);
521 if (rx_ring->rx_buffer_len
522 < IGB_RXBUFFER_1024)
523 print_hex_dump(KERN_INFO, "",
524 DUMP_PREFIX_ADDRESS,
525 16, 1,
526 phys_to_virt(
527 buffer_info->page_dma +
528 buffer_info->page_offset),
529 PAGE_SIZE/2, true);
530 }
531 }
532
533 if (i == rx_ring->next_to_use)
534 printk(KERN_CONT " NTU\n");
535 else if (i == rx_ring->next_to_clean)
536 printk(KERN_CONT " NTC\n");
537 else
538 printk(KERN_CONT "\n");
539
540 }
541 }
542
543 exit:
544 return;
545 }
546
547
548 /**
549 * igb_read_clock - read raw cycle counter (to be used by time counter)
550 */
551 static cycle_t igb_read_clock(const struct cyclecounter *tc)
552 {
553 struct igb_adapter *adapter =
554 container_of(tc, struct igb_adapter, cycles);
555 struct e1000_hw *hw = &adapter->hw;
556 u64 stamp = 0;
557 int shift = 0;
558
559 /*
560 * The timestamp latches on lowest register read. For the 82580
561 * the lowest register is SYSTIMR instead of SYSTIML. However we never
562 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
563 */
564 if (hw->mac.type == e1000_82580) {
565 stamp = rd32(E1000_SYSTIMR) >> 8;
566 shift = IGB_82580_TSYNC_SHIFT;
567 }
568
569 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
570 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
571 return stamp;
572 }
573
574 /**
575 * igb_get_hw_dev - return device
576 * used by hardware layer to print debugging information
577 **/
578 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
579 {
580 struct igb_adapter *adapter = hw->back;
581 return adapter->netdev;
582 }
583
584 /**
585 * igb_init_module - Driver Registration Routine
586 *
587 * igb_init_module is the first routine called when the driver is
588 * loaded. All it does is register with the PCI subsystem.
589 **/
590 static int __init igb_init_module(void)
591 {
592 int ret;
593 printk(KERN_INFO "%s - version %s\n",
594 igb_driver_string, igb_driver_version);
595
596 printk(KERN_INFO "%s\n", igb_copyright);
597
598 #ifdef CONFIG_IGB_DCA
599 dca_register_notify(&dca_notifier);
600 #endif
601 ret = pci_register_driver(&igb_driver);
602 return ret;
603 }
604
605 module_init(igb_init_module);
606
607 /**
608 * igb_exit_module - Driver Exit Cleanup Routine
609 *
610 * igb_exit_module is called just before the driver is removed
611 * from memory.
612 **/
613 static void __exit igb_exit_module(void)
614 {
615 #ifdef CONFIG_IGB_DCA
616 dca_unregister_notify(&dca_notifier);
617 #endif
618 pci_unregister_driver(&igb_driver);
619 }
620
621 module_exit(igb_exit_module);
622
623 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
624 /**
625 * igb_cache_ring_register - Descriptor ring to register mapping
626 * @adapter: board private structure to initialize
627 *
628 * Once we know the feature-set enabled for the device, we'll cache
629 * the register offset the descriptor ring is assigned to.
630 **/
631 static void igb_cache_ring_register(struct igb_adapter *adapter)
632 {
633 int i = 0, j = 0;
634 u32 rbase_offset = adapter->vfs_allocated_count;
635
636 switch (adapter->hw.mac.type) {
637 case e1000_82576:
638 /* The queues are allocated for virtualization such that VF 0
639 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
640 * In order to avoid collision we start at the first free queue
641 * and continue consuming queues in the same sequence
642 */
643 if (adapter->vfs_allocated_count) {
644 for (; i < adapter->rss_queues; i++)
645 adapter->rx_ring[i]->reg_idx = rbase_offset +
646 Q_IDX_82576(i);
647 }
648 case e1000_82575:
649 case e1000_82580:
650 case e1000_i350:
651 default:
652 for (; i < adapter->num_rx_queues; i++)
653 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
654 for (; j < adapter->num_tx_queues; j++)
655 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
656 break;
657 }
658 }
659
660 static void igb_free_queues(struct igb_adapter *adapter)
661 {
662 int i;
663
664 for (i = 0; i < adapter->num_tx_queues; i++) {
665 kfree(adapter->tx_ring[i]);
666 adapter->tx_ring[i] = NULL;
667 }
668 for (i = 0; i < adapter->num_rx_queues; i++) {
669 kfree(adapter->rx_ring[i]);
670 adapter->rx_ring[i] = NULL;
671 }
672 adapter->num_rx_queues = 0;
673 adapter->num_tx_queues = 0;
674 }
675
676 /**
677 * igb_alloc_queues - Allocate memory for all rings
678 * @adapter: board private structure to initialize
679 *
680 * We allocate one ring per queue at run-time since we don't know the
681 * number of queues at compile-time.
682 **/
683 static int igb_alloc_queues(struct igb_adapter *adapter)
684 {
685 struct igb_ring *ring;
686 int i;
687
688 for (i = 0; i < adapter->num_tx_queues; i++) {
689 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
690 if (!ring)
691 goto err;
692 ring->count = adapter->tx_ring_count;
693 ring->queue_index = i;
694 ring->dev = &adapter->pdev->dev;
695 ring->netdev = adapter->netdev;
696 /* For 82575, context index must be unique per ring. */
697 if (adapter->hw.mac.type == e1000_82575)
698 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
699 adapter->tx_ring[i] = ring;
700 }
701
702 for (i = 0; i < adapter->num_rx_queues; i++) {
703 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
704 if (!ring)
705 goto err;
706 ring->count = adapter->rx_ring_count;
707 ring->queue_index = i;
708 ring->dev = &adapter->pdev->dev;
709 ring->netdev = adapter->netdev;
710 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
711 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
712 /* set flag indicating ring supports SCTP checksum offload */
713 if (adapter->hw.mac.type >= e1000_82576)
714 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
715 adapter->rx_ring[i] = ring;
716 }
717
718 igb_cache_ring_register(adapter);
719
720 return 0;
721
722 err:
723 igb_free_queues(adapter);
724
725 return -ENOMEM;
726 }
727
728 #define IGB_N0_QUEUE -1
729 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
730 {
731 u32 msixbm = 0;
732 struct igb_adapter *adapter = q_vector->adapter;
733 struct e1000_hw *hw = &adapter->hw;
734 u32 ivar, index;
735 int rx_queue = IGB_N0_QUEUE;
736 int tx_queue = IGB_N0_QUEUE;
737
738 if (q_vector->rx_ring)
739 rx_queue = q_vector->rx_ring->reg_idx;
740 if (q_vector->tx_ring)
741 tx_queue = q_vector->tx_ring->reg_idx;
742
743 switch (hw->mac.type) {
744 case e1000_82575:
745 /* The 82575 assigns vectors using a bitmask, which matches the
746 bitmask for the EICR/EIMS/EIMC registers. To assign one
747 or more queues to a vector, we write the appropriate bits
748 into the MSIXBM register for that vector. */
749 if (rx_queue > IGB_N0_QUEUE)
750 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
751 if (tx_queue > IGB_N0_QUEUE)
752 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
753 if (!adapter->msix_entries && msix_vector == 0)
754 msixbm |= E1000_EIMS_OTHER;
755 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
756 q_vector->eims_value = msixbm;
757 break;
758 case e1000_82576:
759 /* 82576 uses a table-based method for assigning vectors.
760 Each queue has a single entry in the table to which we write
761 a vector number along with a "valid" bit. Sadly, the layout
762 of the table is somewhat counterintuitive. */
763 if (rx_queue > IGB_N0_QUEUE) {
764 index = (rx_queue & 0x7);
765 ivar = array_rd32(E1000_IVAR0, index);
766 if (rx_queue < 8) {
767 /* vector goes into low byte of register */
768 ivar = ivar & 0xFFFFFF00;
769 ivar |= msix_vector | E1000_IVAR_VALID;
770 } else {
771 /* vector goes into third byte of register */
772 ivar = ivar & 0xFF00FFFF;
773 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
774 }
775 array_wr32(E1000_IVAR0, index, ivar);
776 }
777 if (tx_queue > IGB_N0_QUEUE) {
778 index = (tx_queue & 0x7);
779 ivar = array_rd32(E1000_IVAR0, index);
780 if (tx_queue < 8) {
781 /* vector goes into second byte of register */
782 ivar = ivar & 0xFFFF00FF;
783 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
784 } else {
785 /* vector goes into high byte of register */
786 ivar = ivar & 0x00FFFFFF;
787 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
788 }
789 array_wr32(E1000_IVAR0, index, ivar);
790 }
791 q_vector->eims_value = 1 << msix_vector;
792 break;
793 case e1000_82580:
794 case e1000_i350:
795 /* 82580 uses the same table-based approach as 82576 but has fewer
796 entries as a result we carry over for queues greater than 4. */
797 if (rx_queue > IGB_N0_QUEUE) {
798 index = (rx_queue >> 1);
799 ivar = array_rd32(E1000_IVAR0, index);
800 if (rx_queue & 0x1) {
801 /* vector goes into third byte of register */
802 ivar = ivar & 0xFF00FFFF;
803 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
804 } else {
805 /* vector goes into low byte of register */
806 ivar = ivar & 0xFFFFFF00;
807 ivar |= msix_vector | E1000_IVAR_VALID;
808 }
809 array_wr32(E1000_IVAR0, index, ivar);
810 }
811 if (tx_queue > IGB_N0_QUEUE) {
812 index = (tx_queue >> 1);
813 ivar = array_rd32(E1000_IVAR0, index);
814 if (tx_queue & 0x1) {
815 /* vector goes into high byte of register */
816 ivar = ivar & 0x00FFFFFF;
817 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
818 } else {
819 /* vector goes into second byte of register */
820 ivar = ivar & 0xFFFF00FF;
821 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
822 }
823 array_wr32(E1000_IVAR0, index, ivar);
824 }
825 q_vector->eims_value = 1 << msix_vector;
826 break;
827 default:
828 BUG();
829 break;
830 }
831
832 /* add q_vector eims value to global eims_enable_mask */
833 adapter->eims_enable_mask |= q_vector->eims_value;
834
835 /* configure q_vector to set itr on first interrupt */
836 q_vector->set_itr = 1;
837 }
838
839 /**
840 * igb_configure_msix - Configure MSI-X hardware
841 *
842 * igb_configure_msix sets up the hardware to properly
843 * generate MSI-X interrupts.
844 **/
845 static void igb_configure_msix(struct igb_adapter *adapter)
846 {
847 u32 tmp;
848 int i, vector = 0;
849 struct e1000_hw *hw = &adapter->hw;
850
851 adapter->eims_enable_mask = 0;
852
853 /* set vector for other causes, i.e. link changes */
854 switch (hw->mac.type) {
855 case e1000_82575:
856 tmp = rd32(E1000_CTRL_EXT);
857 /* enable MSI-X PBA support*/
858 tmp |= E1000_CTRL_EXT_PBA_CLR;
859
860 /* Auto-Mask interrupts upon ICR read. */
861 tmp |= E1000_CTRL_EXT_EIAME;
862 tmp |= E1000_CTRL_EXT_IRCA;
863
864 wr32(E1000_CTRL_EXT, tmp);
865
866 /* enable msix_other interrupt */
867 array_wr32(E1000_MSIXBM(0), vector++,
868 E1000_EIMS_OTHER);
869 adapter->eims_other = E1000_EIMS_OTHER;
870
871 break;
872
873 case e1000_82576:
874 case e1000_82580:
875 case e1000_i350:
876 /* Turn on MSI-X capability first, or our settings
877 * won't stick. And it will take days to debug. */
878 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
879 E1000_GPIE_PBA | E1000_GPIE_EIAME |
880 E1000_GPIE_NSICR);
881
882 /* enable msix_other interrupt */
883 adapter->eims_other = 1 << vector;
884 tmp = (vector++ | E1000_IVAR_VALID) << 8;
885
886 wr32(E1000_IVAR_MISC, tmp);
887 break;
888 default:
889 /* do nothing, since nothing else supports MSI-X */
890 break;
891 } /* switch (hw->mac.type) */
892
893 adapter->eims_enable_mask |= adapter->eims_other;
894
895 for (i = 0; i < adapter->num_q_vectors; i++)
896 igb_assign_vector(adapter->q_vector[i], vector++);
897
898 wrfl();
899 }
900
901 /**
902 * igb_request_msix - Initialize MSI-X interrupts
903 *
904 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
905 * kernel.
906 **/
907 static int igb_request_msix(struct igb_adapter *adapter)
908 {
909 struct net_device *netdev = adapter->netdev;
910 struct e1000_hw *hw = &adapter->hw;
911 int i, err = 0, vector = 0;
912
913 err = request_irq(adapter->msix_entries[vector].vector,
914 igb_msix_other, 0, netdev->name, adapter);
915 if (err)
916 goto out;
917 vector++;
918
919 for (i = 0; i < adapter->num_q_vectors; i++) {
920 struct igb_q_vector *q_vector = adapter->q_vector[i];
921
922 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
923
924 if (q_vector->rx_ring && q_vector->tx_ring)
925 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
926 q_vector->rx_ring->queue_index);
927 else if (q_vector->tx_ring)
928 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
929 q_vector->tx_ring->queue_index);
930 else if (q_vector->rx_ring)
931 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
932 q_vector->rx_ring->queue_index);
933 else
934 sprintf(q_vector->name, "%s-unused", netdev->name);
935
936 err = request_irq(adapter->msix_entries[vector].vector,
937 igb_msix_ring, 0, q_vector->name,
938 q_vector);
939 if (err)
940 goto out;
941 vector++;
942 }
943
944 igb_configure_msix(adapter);
945 return 0;
946 out:
947 return err;
948 }
949
950 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
951 {
952 if (adapter->msix_entries) {
953 pci_disable_msix(adapter->pdev);
954 kfree(adapter->msix_entries);
955 adapter->msix_entries = NULL;
956 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
957 pci_disable_msi(adapter->pdev);
958 }
959 }
960
961 /**
962 * igb_free_q_vectors - Free memory allocated for interrupt vectors
963 * @adapter: board private structure to initialize
964 *
965 * This function frees the memory allocated to the q_vectors. In addition if
966 * NAPI is enabled it will delete any references to the NAPI struct prior
967 * to freeing the q_vector.
968 **/
969 static void igb_free_q_vectors(struct igb_adapter *adapter)
970 {
971 int v_idx;
972
973 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
974 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
975 adapter->q_vector[v_idx] = NULL;
976 if (!q_vector)
977 continue;
978 netif_napi_del(&q_vector->napi);
979 kfree(q_vector);
980 }
981 adapter->num_q_vectors = 0;
982 }
983
984 /**
985 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
986 *
987 * This function resets the device so that it has 0 rx queues, tx queues, and
988 * MSI-X interrupts allocated.
989 */
990 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
991 {
992 igb_free_queues(adapter);
993 igb_free_q_vectors(adapter);
994 igb_reset_interrupt_capability(adapter);
995 }
996
997 /**
998 * igb_set_interrupt_capability - set MSI or MSI-X if supported
999 *
1000 * Attempt to configure interrupts using the best available
1001 * capabilities of the hardware and kernel.
1002 **/
1003 static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1004 {
1005 int err;
1006 int numvecs, i;
1007
1008 /* Number of supported queues. */
1009 adapter->num_rx_queues = adapter->rss_queues;
1010 if (adapter->vfs_allocated_count)
1011 adapter->num_tx_queues = 1;
1012 else
1013 adapter->num_tx_queues = adapter->rss_queues;
1014
1015 /* start with one vector for every rx queue */
1016 numvecs = adapter->num_rx_queues;
1017
1018 /* if tx handler is separate add 1 for every tx queue */
1019 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1020 numvecs += adapter->num_tx_queues;
1021
1022 /* store the number of vectors reserved for queues */
1023 adapter->num_q_vectors = numvecs;
1024
1025 /* add 1 vector for link status interrupts */
1026 numvecs++;
1027 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1028 GFP_KERNEL);
1029 if (!adapter->msix_entries)
1030 goto msi_only;
1031
1032 for (i = 0; i < numvecs; i++)
1033 adapter->msix_entries[i].entry = i;
1034
1035 err = pci_enable_msix(adapter->pdev,
1036 adapter->msix_entries,
1037 numvecs);
1038 if (err == 0)
1039 goto out;
1040
1041 igb_reset_interrupt_capability(adapter);
1042
1043 /* If we can't do MSI-X, try MSI */
1044 msi_only:
1045 #ifdef CONFIG_PCI_IOV
1046 /* disable SR-IOV for non MSI-X configurations */
1047 if (adapter->vf_data) {
1048 struct e1000_hw *hw = &adapter->hw;
1049 /* disable iov and allow time for transactions to clear */
1050 pci_disable_sriov(adapter->pdev);
1051 msleep(500);
1052
1053 kfree(adapter->vf_data);
1054 adapter->vf_data = NULL;
1055 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1056 wrfl();
1057 msleep(100);
1058 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1059 }
1060 #endif
1061 adapter->vfs_allocated_count = 0;
1062 adapter->rss_queues = 1;
1063 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1064 adapter->num_rx_queues = 1;
1065 adapter->num_tx_queues = 1;
1066 adapter->num_q_vectors = 1;
1067 if (!pci_enable_msi(adapter->pdev))
1068 adapter->flags |= IGB_FLAG_HAS_MSI;
1069 out:
1070 /* Notify the stack of the (possibly) reduced queue counts. */
1071 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1072 return netif_set_real_num_rx_queues(adapter->netdev,
1073 adapter->num_rx_queues);
1074 }
1075
1076 /**
1077 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1078 * @adapter: board private structure to initialize
1079 *
1080 * We allocate one q_vector per queue interrupt. If allocation fails we
1081 * return -ENOMEM.
1082 **/
1083 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1084 {
1085 struct igb_q_vector *q_vector;
1086 struct e1000_hw *hw = &adapter->hw;
1087 int v_idx;
1088
1089 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1090 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1091 if (!q_vector)
1092 goto err_out;
1093 q_vector->adapter = adapter;
1094 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1095 q_vector->itr_val = IGB_START_ITR;
1096 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1097 adapter->q_vector[v_idx] = q_vector;
1098 }
1099 return 0;
1100
1101 err_out:
1102 igb_free_q_vectors(adapter);
1103 return -ENOMEM;
1104 }
1105
1106 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1107 int ring_idx, int v_idx)
1108 {
1109 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1110
1111 q_vector->rx_ring = adapter->rx_ring[ring_idx];
1112 q_vector->rx_ring->q_vector = q_vector;
1113 q_vector->itr_val = adapter->rx_itr_setting;
1114 if (q_vector->itr_val && q_vector->itr_val <= 3)
1115 q_vector->itr_val = IGB_START_ITR;
1116 }
1117
1118 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1119 int ring_idx, int v_idx)
1120 {
1121 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1122
1123 q_vector->tx_ring = adapter->tx_ring[ring_idx];
1124 q_vector->tx_ring->q_vector = q_vector;
1125 q_vector->itr_val = adapter->tx_itr_setting;
1126 if (q_vector->itr_val && q_vector->itr_val <= 3)
1127 q_vector->itr_val = IGB_START_ITR;
1128 }
1129
1130 /**
1131 * igb_map_ring_to_vector - maps allocated queues to vectors
1132 *
1133 * This function maps the recently allocated queues to vectors.
1134 **/
1135 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1136 {
1137 int i;
1138 int v_idx = 0;
1139
1140 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1141 (adapter->num_q_vectors < adapter->num_tx_queues))
1142 return -ENOMEM;
1143
1144 if (adapter->num_q_vectors >=
1145 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1146 for (i = 0; i < adapter->num_rx_queues; i++)
1147 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1148 for (i = 0; i < adapter->num_tx_queues; i++)
1149 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1150 } else {
1151 for (i = 0; i < adapter->num_rx_queues; i++) {
1152 if (i < adapter->num_tx_queues)
1153 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1154 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1155 }
1156 for (; i < adapter->num_tx_queues; i++)
1157 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1158 }
1159 return 0;
1160 }
1161
1162 /**
1163 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1164 *
1165 * This function initializes the interrupts and allocates all of the queues.
1166 **/
1167 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1168 {
1169 struct pci_dev *pdev = adapter->pdev;
1170 int err;
1171
1172 err = igb_set_interrupt_capability(adapter);
1173 if (err)
1174 return err;
1175
1176 err = igb_alloc_q_vectors(adapter);
1177 if (err) {
1178 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1179 goto err_alloc_q_vectors;
1180 }
1181
1182 err = igb_alloc_queues(adapter);
1183 if (err) {
1184 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1185 goto err_alloc_queues;
1186 }
1187
1188 err = igb_map_ring_to_vector(adapter);
1189 if (err) {
1190 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1191 goto err_map_queues;
1192 }
1193
1194
1195 return 0;
1196 err_map_queues:
1197 igb_free_queues(adapter);
1198 err_alloc_queues:
1199 igb_free_q_vectors(adapter);
1200 err_alloc_q_vectors:
1201 igb_reset_interrupt_capability(adapter);
1202 return err;
1203 }
1204
1205 /**
1206 * igb_request_irq - initialize interrupts
1207 *
1208 * Attempts to configure interrupts using the best available
1209 * capabilities of the hardware and kernel.
1210 **/
1211 static int igb_request_irq(struct igb_adapter *adapter)
1212 {
1213 struct net_device *netdev = adapter->netdev;
1214 struct pci_dev *pdev = adapter->pdev;
1215 int err = 0;
1216
1217 if (adapter->msix_entries) {
1218 err = igb_request_msix(adapter);
1219 if (!err)
1220 goto request_done;
1221 /* fall back to MSI */
1222 igb_clear_interrupt_scheme(adapter);
1223 if (!pci_enable_msi(adapter->pdev))
1224 adapter->flags |= IGB_FLAG_HAS_MSI;
1225 igb_free_all_tx_resources(adapter);
1226 igb_free_all_rx_resources(adapter);
1227 adapter->num_tx_queues = 1;
1228 adapter->num_rx_queues = 1;
1229 adapter->num_q_vectors = 1;
1230 err = igb_alloc_q_vectors(adapter);
1231 if (err) {
1232 dev_err(&pdev->dev,
1233 "Unable to allocate memory for vectors\n");
1234 goto request_done;
1235 }
1236 err = igb_alloc_queues(adapter);
1237 if (err) {
1238 dev_err(&pdev->dev,
1239 "Unable to allocate memory for queues\n");
1240 igb_free_q_vectors(adapter);
1241 goto request_done;
1242 }
1243 igb_setup_all_tx_resources(adapter);
1244 igb_setup_all_rx_resources(adapter);
1245 } else {
1246 igb_assign_vector(adapter->q_vector[0], 0);
1247 }
1248
1249 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1250 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
1251 netdev->name, adapter);
1252 if (!err)
1253 goto request_done;
1254
1255 /* fall back to legacy interrupts */
1256 igb_reset_interrupt_capability(adapter);
1257 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1258 }
1259
1260 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
1261 netdev->name, adapter);
1262
1263 if (err)
1264 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1265 err);
1266
1267 request_done:
1268 return err;
1269 }
1270
1271 static void igb_free_irq(struct igb_adapter *adapter)
1272 {
1273 if (adapter->msix_entries) {
1274 int vector = 0, i;
1275
1276 free_irq(adapter->msix_entries[vector++].vector, adapter);
1277
1278 for (i = 0; i < adapter->num_q_vectors; i++) {
1279 struct igb_q_vector *q_vector = adapter->q_vector[i];
1280 free_irq(adapter->msix_entries[vector++].vector,
1281 q_vector);
1282 }
1283 } else {
1284 free_irq(adapter->pdev->irq, adapter);
1285 }
1286 }
1287
1288 /**
1289 * igb_irq_disable - Mask off interrupt generation on the NIC
1290 * @adapter: board private structure
1291 **/
1292 static void igb_irq_disable(struct igb_adapter *adapter)
1293 {
1294 struct e1000_hw *hw = &adapter->hw;
1295
1296 /*
1297 * we need to be careful when disabling interrupts. The VFs are also
1298 * mapped into these registers and so clearing the bits can cause
1299 * issues on the VF drivers so we only need to clear what we set
1300 */
1301 if (adapter->msix_entries) {
1302 u32 regval = rd32(E1000_EIAM);
1303 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1304 wr32(E1000_EIMC, adapter->eims_enable_mask);
1305 regval = rd32(E1000_EIAC);
1306 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1307 }
1308
1309 wr32(E1000_IAM, 0);
1310 wr32(E1000_IMC, ~0);
1311 wrfl();
1312 if (adapter->msix_entries) {
1313 int i;
1314 for (i = 0; i < adapter->num_q_vectors; i++)
1315 synchronize_irq(adapter->msix_entries[i].vector);
1316 } else {
1317 synchronize_irq(adapter->pdev->irq);
1318 }
1319 }
1320
1321 /**
1322 * igb_irq_enable - Enable default interrupt generation settings
1323 * @adapter: board private structure
1324 **/
1325 static void igb_irq_enable(struct igb_adapter *adapter)
1326 {
1327 struct e1000_hw *hw = &adapter->hw;
1328
1329 if (adapter->msix_entries) {
1330 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1331 u32 regval = rd32(E1000_EIAC);
1332 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1333 regval = rd32(E1000_EIAM);
1334 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1335 wr32(E1000_EIMS, adapter->eims_enable_mask);
1336 if (adapter->vfs_allocated_count) {
1337 wr32(E1000_MBVFIMR, 0xFF);
1338 ims |= E1000_IMS_VMMB;
1339 }
1340 if (adapter->hw.mac.type == e1000_82580)
1341 ims |= E1000_IMS_DRSTA;
1342
1343 wr32(E1000_IMS, ims);
1344 } else {
1345 wr32(E1000_IMS, IMS_ENABLE_MASK |
1346 E1000_IMS_DRSTA);
1347 wr32(E1000_IAM, IMS_ENABLE_MASK |
1348 E1000_IMS_DRSTA);
1349 }
1350 }
1351
1352 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1353 {
1354 struct e1000_hw *hw = &adapter->hw;
1355 u16 vid = adapter->hw.mng_cookie.vlan_id;
1356 u16 old_vid = adapter->mng_vlan_id;
1357
1358 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1359 /* add VID to filter table */
1360 igb_vfta_set(hw, vid, true);
1361 adapter->mng_vlan_id = vid;
1362 } else {
1363 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1364 }
1365
1366 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1367 (vid != old_vid) &&
1368 !test_bit(old_vid, adapter->active_vlans)) {
1369 /* remove VID from filter table */
1370 igb_vfta_set(hw, old_vid, false);
1371 }
1372 }
1373
1374 /**
1375 * igb_release_hw_control - release control of the h/w to f/w
1376 * @adapter: address of board private structure
1377 *
1378 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1379 * For ASF and Pass Through versions of f/w this means that the
1380 * driver is no longer loaded.
1381 *
1382 **/
1383 static void igb_release_hw_control(struct igb_adapter *adapter)
1384 {
1385 struct e1000_hw *hw = &adapter->hw;
1386 u32 ctrl_ext;
1387
1388 /* Let firmware take over control of h/w */
1389 ctrl_ext = rd32(E1000_CTRL_EXT);
1390 wr32(E1000_CTRL_EXT,
1391 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1392 }
1393
1394 /**
1395 * igb_get_hw_control - get control of the h/w from f/w
1396 * @adapter: address of board private structure
1397 *
1398 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1399 * For ASF and Pass Through versions of f/w this means that
1400 * the driver is loaded.
1401 *
1402 **/
1403 static void igb_get_hw_control(struct igb_adapter *adapter)
1404 {
1405 struct e1000_hw *hw = &adapter->hw;
1406 u32 ctrl_ext;
1407
1408 /* Let firmware know the driver has taken over */
1409 ctrl_ext = rd32(E1000_CTRL_EXT);
1410 wr32(E1000_CTRL_EXT,
1411 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1412 }
1413
1414 /**
1415 * igb_configure - configure the hardware for RX and TX
1416 * @adapter: private board structure
1417 **/
1418 static void igb_configure(struct igb_adapter *adapter)
1419 {
1420 struct net_device *netdev = adapter->netdev;
1421 int i;
1422
1423 igb_get_hw_control(adapter);
1424 igb_set_rx_mode(netdev);
1425
1426 igb_restore_vlan(adapter);
1427
1428 igb_setup_tctl(adapter);
1429 igb_setup_mrqc(adapter);
1430 igb_setup_rctl(adapter);
1431
1432 igb_configure_tx(adapter);
1433 igb_configure_rx(adapter);
1434
1435 igb_rx_fifo_flush_82575(&adapter->hw);
1436
1437 /* call igb_desc_unused which always leaves
1438 * at least 1 descriptor unused to make sure
1439 * next_to_use != next_to_clean */
1440 for (i = 0; i < adapter->num_rx_queues; i++) {
1441 struct igb_ring *ring = adapter->rx_ring[i];
1442 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1443 }
1444 }
1445
1446 /**
1447 * igb_power_up_link - Power up the phy/serdes link
1448 * @adapter: address of board private structure
1449 **/
1450 void igb_power_up_link(struct igb_adapter *adapter)
1451 {
1452 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1453 igb_power_up_phy_copper(&adapter->hw);
1454 else
1455 igb_power_up_serdes_link_82575(&adapter->hw);
1456 }
1457
1458 /**
1459 * igb_power_down_link - Power down the phy/serdes link
1460 * @adapter: address of board private structure
1461 */
1462 static void igb_power_down_link(struct igb_adapter *adapter)
1463 {
1464 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1465 igb_power_down_phy_copper_82575(&adapter->hw);
1466 else
1467 igb_shutdown_serdes_link_82575(&adapter->hw);
1468 }
1469
1470 /**
1471 * igb_up - Open the interface and prepare it to handle traffic
1472 * @adapter: board private structure
1473 **/
1474 int igb_up(struct igb_adapter *adapter)
1475 {
1476 struct e1000_hw *hw = &adapter->hw;
1477 int i;
1478
1479 /* hardware has been reset, we need to reload some things */
1480 igb_configure(adapter);
1481
1482 clear_bit(__IGB_DOWN, &adapter->state);
1483
1484 for (i = 0; i < adapter->num_q_vectors; i++) {
1485 struct igb_q_vector *q_vector = adapter->q_vector[i];
1486 napi_enable(&q_vector->napi);
1487 }
1488 if (adapter->msix_entries)
1489 igb_configure_msix(adapter);
1490 else
1491 igb_assign_vector(adapter->q_vector[0], 0);
1492
1493 /* Clear any pending interrupts. */
1494 rd32(E1000_ICR);
1495 igb_irq_enable(adapter);
1496
1497 /* notify VFs that reset has been completed */
1498 if (adapter->vfs_allocated_count) {
1499 u32 reg_data = rd32(E1000_CTRL_EXT);
1500 reg_data |= E1000_CTRL_EXT_PFRSTD;
1501 wr32(E1000_CTRL_EXT, reg_data);
1502 }
1503
1504 netif_tx_start_all_queues(adapter->netdev);
1505
1506 /* start the watchdog. */
1507 hw->mac.get_link_status = 1;
1508 schedule_work(&adapter->watchdog_task);
1509
1510 return 0;
1511 }
1512
1513 void igb_down(struct igb_adapter *adapter)
1514 {
1515 struct net_device *netdev = adapter->netdev;
1516 struct e1000_hw *hw = &adapter->hw;
1517 u32 tctl, rctl;
1518 int i;
1519
1520 /* signal that we're down so the interrupt handler does not
1521 * reschedule our watchdog timer */
1522 set_bit(__IGB_DOWN, &adapter->state);
1523
1524 /* disable receives in the hardware */
1525 rctl = rd32(E1000_RCTL);
1526 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1527 /* flush and sleep below */
1528
1529 netif_tx_stop_all_queues(netdev);
1530
1531 /* disable transmits in the hardware */
1532 tctl = rd32(E1000_TCTL);
1533 tctl &= ~E1000_TCTL_EN;
1534 wr32(E1000_TCTL, tctl);
1535 /* flush both disables and wait for them to finish */
1536 wrfl();
1537 msleep(10);
1538
1539 for (i = 0; i < adapter->num_q_vectors; i++) {
1540 struct igb_q_vector *q_vector = adapter->q_vector[i];
1541 napi_disable(&q_vector->napi);
1542 }
1543
1544 igb_irq_disable(adapter);
1545
1546 del_timer_sync(&adapter->watchdog_timer);
1547 del_timer_sync(&adapter->phy_info_timer);
1548
1549 netif_carrier_off(netdev);
1550
1551 /* record the stats before reset*/
1552 spin_lock(&adapter->stats64_lock);
1553 igb_update_stats(adapter, &adapter->stats64);
1554 spin_unlock(&adapter->stats64_lock);
1555
1556 adapter->link_speed = 0;
1557 adapter->link_duplex = 0;
1558
1559 if (!pci_channel_offline(adapter->pdev))
1560 igb_reset(adapter);
1561 igb_clean_all_tx_rings(adapter);
1562 igb_clean_all_rx_rings(adapter);
1563 #ifdef CONFIG_IGB_DCA
1564
1565 /* since we reset the hardware DCA settings were cleared */
1566 igb_setup_dca(adapter);
1567 #endif
1568 }
1569
1570 void igb_reinit_locked(struct igb_adapter *adapter)
1571 {
1572 WARN_ON(in_interrupt());
1573 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1574 msleep(1);
1575 igb_down(adapter);
1576 igb_up(adapter);
1577 clear_bit(__IGB_RESETTING, &adapter->state);
1578 }
1579
1580 void igb_reset(struct igb_adapter *adapter)
1581 {
1582 struct pci_dev *pdev = adapter->pdev;
1583 struct e1000_hw *hw = &adapter->hw;
1584 struct e1000_mac_info *mac = &hw->mac;
1585 struct e1000_fc_info *fc = &hw->fc;
1586 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1587 u16 hwm;
1588
1589 /* Repartition Pba for greater than 9k mtu
1590 * To take effect CTRL.RST is required.
1591 */
1592 switch (mac->type) {
1593 case e1000_i350:
1594 case e1000_82580:
1595 pba = rd32(E1000_RXPBS);
1596 pba = igb_rxpbs_adjust_82580(pba);
1597 break;
1598 case e1000_82576:
1599 pba = rd32(E1000_RXPBS);
1600 pba &= E1000_RXPBS_SIZE_MASK_82576;
1601 break;
1602 case e1000_82575:
1603 default:
1604 pba = E1000_PBA_34K;
1605 break;
1606 }
1607
1608 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1609 (mac->type < e1000_82576)) {
1610 /* adjust PBA for jumbo frames */
1611 wr32(E1000_PBA, pba);
1612
1613 /* To maintain wire speed transmits, the Tx FIFO should be
1614 * large enough to accommodate two full transmit packets,
1615 * rounded up to the next 1KB and expressed in KB. Likewise,
1616 * the Rx FIFO should be large enough to accommodate at least
1617 * one full receive packet and is similarly rounded up and
1618 * expressed in KB. */
1619 pba = rd32(E1000_PBA);
1620 /* upper 16 bits has Tx packet buffer allocation size in KB */
1621 tx_space = pba >> 16;
1622 /* lower 16 bits has Rx packet buffer allocation size in KB */
1623 pba &= 0xffff;
1624 /* the tx fifo also stores 16 bytes of information about the tx
1625 * but don't include ethernet FCS because hardware appends it */
1626 min_tx_space = (adapter->max_frame_size +
1627 sizeof(union e1000_adv_tx_desc) -
1628 ETH_FCS_LEN) * 2;
1629 min_tx_space = ALIGN(min_tx_space, 1024);
1630 min_tx_space >>= 10;
1631 /* software strips receive CRC, so leave room for it */
1632 min_rx_space = adapter->max_frame_size;
1633 min_rx_space = ALIGN(min_rx_space, 1024);
1634 min_rx_space >>= 10;
1635
1636 /* If current Tx allocation is less than the min Tx FIFO size,
1637 * and the min Tx FIFO size is less than the current Rx FIFO
1638 * allocation, take space away from current Rx allocation */
1639 if (tx_space < min_tx_space &&
1640 ((min_tx_space - tx_space) < pba)) {
1641 pba = pba - (min_tx_space - tx_space);
1642
1643 /* if short on rx space, rx wins and must trump tx
1644 * adjustment */
1645 if (pba < min_rx_space)
1646 pba = min_rx_space;
1647 }
1648 wr32(E1000_PBA, pba);
1649 }
1650
1651 /* flow control settings */
1652 /* The high water mark must be low enough to fit one full frame
1653 * (or the size used for early receive) above it in the Rx FIFO.
1654 * Set it to the lower of:
1655 * - 90% of the Rx FIFO size, or
1656 * - the full Rx FIFO size minus one full frame */
1657 hwm = min(((pba << 10) * 9 / 10),
1658 ((pba << 10) - 2 * adapter->max_frame_size));
1659
1660 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1661 fc->low_water = fc->high_water - 16;
1662 fc->pause_time = 0xFFFF;
1663 fc->send_xon = 1;
1664 fc->current_mode = fc->requested_mode;
1665
1666 /* disable receive for all VFs and wait one second */
1667 if (adapter->vfs_allocated_count) {
1668 int i;
1669 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1670 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1671
1672 /* ping all the active vfs to let them know we are going down */
1673 igb_ping_all_vfs(adapter);
1674
1675 /* disable transmits and receives */
1676 wr32(E1000_VFRE, 0);
1677 wr32(E1000_VFTE, 0);
1678 }
1679
1680 /* Allow time for pending master requests to run */
1681 hw->mac.ops.reset_hw(hw);
1682 wr32(E1000_WUC, 0);
1683
1684 if (hw->mac.ops.init_hw(hw))
1685 dev_err(&pdev->dev, "Hardware Error\n");
1686 if (hw->mac.type > e1000_82580) {
1687 if (adapter->flags & IGB_FLAG_DMAC) {
1688 u32 reg;
1689
1690 /*
1691 * DMA Coalescing high water mark needs to be higher
1692 * than * the * Rx threshold. The Rx threshold is
1693 * currently * pba - 6, so we * should use a high water
1694 * mark of pba * - 4. */
1695 hwm = (pba - 4) << 10;
1696
1697 reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
1698 & E1000_DMACR_DMACTHR_MASK);
1699
1700 /* transition to L0x or L1 if available..*/
1701 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1702
1703 /* watchdog timer= +-1000 usec in 32usec intervals */
1704 reg |= (1000 >> 5);
1705 wr32(E1000_DMACR, reg);
1706
1707 /* no lower threshold to disable coalescing(smart fifb)
1708 * -UTRESH=0*/
1709 wr32(E1000_DMCRTRH, 0);
1710
1711 /* set hwm to PBA - 2 * max frame size */
1712 wr32(E1000_FCRTC, hwm);
1713
1714 /*
1715 * This sets the time to wait before requesting tran-
1716 * sition to * low power state to number of usecs needed
1717 * to receive 1 512 * byte frame at gigabit line rate
1718 */
1719 reg = rd32(E1000_DMCTLX);
1720 reg |= IGB_DMCTLX_DCFLUSH_DIS;
1721
1722 /* Delay 255 usec before entering Lx state. */
1723 reg |= 0xFF;
1724 wr32(E1000_DMCTLX, reg);
1725
1726 /* free space in Tx packet buffer to wake from DMAC */
1727 wr32(E1000_DMCTXTH,
1728 (IGB_MIN_TXPBSIZE -
1729 (IGB_TX_BUF_4096 + adapter->max_frame_size))
1730 >> 6);
1731
1732 /* make low power state decision controlled by DMAC */
1733 reg = rd32(E1000_PCIEMISC);
1734 reg |= E1000_PCIEMISC_LX_DECISION;
1735 wr32(E1000_PCIEMISC, reg);
1736 } /* end if IGB_FLAG_DMAC set */
1737 }
1738 if (hw->mac.type == e1000_82580) {
1739 u32 reg = rd32(E1000_PCIEMISC);
1740 wr32(E1000_PCIEMISC,
1741 reg & ~E1000_PCIEMISC_LX_DECISION);
1742 }
1743 if (!netif_running(adapter->netdev))
1744 igb_power_down_link(adapter);
1745
1746 igb_update_mng_vlan(adapter);
1747
1748 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1749 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1750
1751 igb_get_phy_info(hw);
1752 }
1753
1754 static u32 igb_fix_features(struct net_device *netdev, u32 features)
1755 {
1756 /*
1757 * Since there is no support for separate rx/tx vlan accel
1758 * enable/disable make sure tx flag is always in same state as rx.
1759 */
1760 if (features & NETIF_F_HW_VLAN_RX)
1761 features |= NETIF_F_HW_VLAN_TX;
1762 else
1763 features &= ~NETIF_F_HW_VLAN_TX;
1764
1765 return features;
1766 }
1767
1768 static int igb_set_features(struct net_device *netdev, u32 features)
1769 {
1770 struct igb_adapter *adapter = netdev_priv(netdev);
1771 int i;
1772 u32 changed = netdev->features ^ features;
1773
1774 for (i = 0; i < adapter->num_rx_queues; i++) {
1775 if (features & NETIF_F_RXCSUM)
1776 adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
1777 else
1778 adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
1779 }
1780
1781 if (changed & NETIF_F_HW_VLAN_RX)
1782 igb_vlan_mode(netdev, features);
1783
1784 return 0;
1785 }
1786
1787 static const struct net_device_ops igb_netdev_ops = {
1788 .ndo_open = igb_open,
1789 .ndo_stop = igb_close,
1790 .ndo_start_xmit = igb_xmit_frame_adv,
1791 .ndo_get_stats64 = igb_get_stats64,
1792 .ndo_set_rx_mode = igb_set_rx_mode,
1793 .ndo_set_mac_address = igb_set_mac,
1794 .ndo_change_mtu = igb_change_mtu,
1795 .ndo_do_ioctl = igb_ioctl,
1796 .ndo_tx_timeout = igb_tx_timeout,
1797 .ndo_validate_addr = eth_validate_addr,
1798 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1799 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1800 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1801 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1802 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1803 .ndo_get_vf_config = igb_ndo_get_vf_config,
1804 #ifdef CONFIG_NET_POLL_CONTROLLER
1805 .ndo_poll_controller = igb_netpoll,
1806 #endif
1807 .ndo_fix_features = igb_fix_features,
1808 .ndo_set_features = igb_set_features,
1809 };
1810
1811 /**
1812 * igb_probe - Device Initialization Routine
1813 * @pdev: PCI device information struct
1814 * @ent: entry in igb_pci_tbl
1815 *
1816 * Returns 0 on success, negative on failure
1817 *
1818 * igb_probe initializes an adapter identified by a pci_dev structure.
1819 * The OS initialization, configuring of the adapter private structure,
1820 * and a hardware reset occur.
1821 **/
1822 static int __devinit igb_probe(struct pci_dev *pdev,
1823 const struct pci_device_id *ent)
1824 {
1825 struct net_device *netdev;
1826 struct igb_adapter *adapter;
1827 struct e1000_hw *hw;
1828 u16 eeprom_data = 0;
1829 s32 ret_val;
1830 static int global_quad_port_a; /* global quad port a indication */
1831 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1832 unsigned long mmio_start, mmio_len;
1833 int err, pci_using_dac;
1834 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1835 u8 part_str[E1000_PBANUM_LENGTH];
1836
1837 /* Catch broken hardware that put the wrong VF device ID in
1838 * the PCIe SR-IOV capability.
1839 */
1840 if (pdev->is_virtfn) {
1841 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1842 pci_name(pdev), pdev->vendor, pdev->device);
1843 return -EINVAL;
1844 }
1845
1846 err = pci_enable_device_mem(pdev);
1847 if (err)
1848 return err;
1849
1850 pci_using_dac = 0;
1851 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1852 if (!err) {
1853 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1854 if (!err)
1855 pci_using_dac = 1;
1856 } else {
1857 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1858 if (err) {
1859 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1860 if (err) {
1861 dev_err(&pdev->dev, "No usable DMA "
1862 "configuration, aborting\n");
1863 goto err_dma;
1864 }
1865 }
1866 }
1867
1868 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1869 IORESOURCE_MEM),
1870 igb_driver_name);
1871 if (err)
1872 goto err_pci_reg;
1873
1874 pci_enable_pcie_error_reporting(pdev);
1875
1876 pci_set_master(pdev);
1877 pci_save_state(pdev);
1878
1879 err = -ENOMEM;
1880 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1881 IGB_ABS_MAX_TX_QUEUES);
1882 if (!netdev)
1883 goto err_alloc_etherdev;
1884
1885 SET_NETDEV_DEV(netdev, &pdev->dev);
1886
1887 pci_set_drvdata(pdev, netdev);
1888 adapter = netdev_priv(netdev);
1889 adapter->netdev = netdev;
1890 adapter->pdev = pdev;
1891 hw = &adapter->hw;
1892 hw->back = adapter;
1893 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1894
1895 mmio_start = pci_resource_start(pdev, 0);
1896 mmio_len = pci_resource_len(pdev, 0);
1897
1898 err = -EIO;
1899 hw->hw_addr = ioremap(mmio_start, mmio_len);
1900 if (!hw->hw_addr)
1901 goto err_ioremap;
1902
1903 netdev->netdev_ops = &igb_netdev_ops;
1904 igb_set_ethtool_ops(netdev);
1905 netdev->watchdog_timeo = 5 * HZ;
1906
1907 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1908
1909 netdev->mem_start = mmio_start;
1910 netdev->mem_end = mmio_start + mmio_len;
1911
1912 /* PCI config space info */
1913 hw->vendor_id = pdev->vendor;
1914 hw->device_id = pdev->device;
1915 hw->revision_id = pdev->revision;
1916 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1917 hw->subsystem_device_id = pdev->subsystem_device;
1918
1919 /* Copy the default MAC, PHY and NVM function pointers */
1920 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1921 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1922 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1923 /* Initialize skew-specific constants */
1924 err = ei->get_invariants(hw);
1925 if (err)
1926 goto err_sw_init;
1927
1928 /* setup the private structure */
1929 err = igb_sw_init(adapter);
1930 if (err)
1931 goto err_sw_init;
1932
1933 igb_get_bus_info_pcie(hw);
1934
1935 hw->phy.autoneg_wait_to_complete = false;
1936
1937 /* Copper options */
1938 if (hw->phy.media_type == e1000_media_type_copper) {
1939 hw->phy.mdix = AUTO_ALL_MODES;
1940 hw->phy.disable_polarity_correction = false;
1941 hw->phy.ms_type = e1000_ms_hw_default;
1942 }
1943
1944 if (igb_check_reset_block(hw))
1945 dev_info(&pdev->dev,
1946 "PHY reset is blocked due to SOL/IDER session.\n");
1947
1948 netdev->hw_features = NETIF_F_SG |
1949 NETIF_F_IP_CSUM |
1950 NETIF_F_IPV6_CSUM |
1951 NETIF_F_TSO |
1952 NETIF_F_TSO6 |
1953 NETIF_F_RXCSUM |
1954 NETIF_F_HW_VLAN_RX;
1955
1956 netdev->features = netdev->hw_features |
1957 NETIF_F_HW_VLAN_TX |
1958 NETIF_F_HW_VLAN_FILTER;
1959
1960 netdev->vlan_features |= NETIF_F_TSO;
1961 netdev->vlan_features |= NETIF_F_TSO6;
1962 netdev->vlan_features |= NETIF_F_IP_CSUM;
1963 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1964 netdev->vlan_features |= NETIF_F_SG;
1965
1966 if (pci_using_dac) {
1967 netdev->features |= NETIF_F_HIGHDMA;
1968 netdev->vlan_features |= NETIF_F_HIGHDMA;
1969 }
1970
1971 if (hw->mac.type >= e1000_82576) {
1972 netdev->hw_features |= NETIF_F_SCTP_CSUM;
1973 netdev->features |= NETIF_F_SCTP_CSUM;
1974 }
1975
1976 netdev->priv_flags |= IFF_UNICAST_FLT;
1977
1978 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1979
1980 /* before reading the NVM, reset the controller to put the device in a
1981 * known good starting state */
1982 hw->mac.ops.reset_hw(hw);
1983
1984 /* make sure the NVM is good */
1985 if (hw->nvm.ops.validate(hw) < 0) {
1986 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1987 err = -EIO;
1988 goto err_eeprom;
1989 }
1990
1991 /* copy the MAC address out of the NVM */
1992 if (hw->mac.ops.read_mac_addr(hw))
1993 dev_err(&pdev->dev, "NVM Read Error\n");
1994
1995 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1996 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1997
1998 if (!is_valid_ether_addr(netdev->perm_addr)) {
1999 dev_err(&pdev->dev, "Invalid MAC Address\n");
2000 err = -EIO;
2001 goto err_eeprom;
2002 }
2003
2004 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2005 (unsigned long) adapter);
2006 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2007 (unsigned long) adapter);
2008
2009 INIT_WORK(&adapter->reset_task, igb_reset_task);
2010 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2011
2012 /* Initialize link properties that are user-changeable */
2013 adapter->fc_autoneg = true;
2014 hw->mac.autoneg = true;
2015 hw->phy.autoneg_advertised = 0x2f;
2016
2017 hw->fc.requested_mode = e1000_fc_default;
2018 hw->fc.current_mode = e1000_fc_default;
2019
2020 igb_validate_mdi_setting(hw);
2021
2022 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2023 * enable the ACPI Magic Packet filter
2024 */
2025
2026 if (hw->bus.func == 0)
2027 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2028 else if (hw->mac.type >= e1000_82580)
2029 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2030 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2031 &eeprom_data);
2032 else if (hw->bus.func == 1)
2033 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2034
2035 if (eeprom_data & eeprom_apme_mask)
2036 adapter->eeprom_wol |= E1000_WUFC_MAG;
2037
2038 /* now that we have the eeprom settings, apply the special cases where
2039 * the eeprom may be wrong or the board simply won't support wake on
2040 * lan on a particular port */
2041 switch (pdev->device) {
2042 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2043 adapter->eeprom_wol = 0;
2044 break;
2045 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2046 case E1000_DEV_ID_82576_FIBER:
2047 case E1000_DEV_ID_82576_SERDES:
2048 /* Wake events only supported on port A for dual fiber
2049 * regardless of eeprom setting */
2050 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2051 adapter->eeprom_wol = 0;
2052 break;
2053 case E1000_DEV_ID_82576_QUAD_COPPER:
2054 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2055 /* if quad port adapter, disable WoL on all but port A */
2056 if (global_quad_port_a != 0)
2057 adapter->eeprom_wol = 0;
2058 else
2059 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2060 /* Reset for multiple quad port adapters */
2061 if (++global_quad_port_a == 4)
2062 global_quad_port_a = 0;
2063 break;
2064 }
2065
2066 /* initialize the wol settings based on the eeprom settings */
2067 adapter->wol = adapter->eeprom_wol;
2068 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2069
2070 /* reset the hardware with the new settings */
2071 igb_reset(adapter);
2072
2073 /* let the f/w know that the h/w is now under the control of the
2074 * driver. */
2075 igb_get_hw_control(adapter);
2076
2077 strcpy(netdev->name, "eth%d");
2078 err = register_netdev(netdev);
2079 if (err)
2080 goto err_register;
2081
2082 igb_vlan_mode(netdev, netdev->features);
2083
2084 /* carrier off reporting is important to ethtool even BEFORE open */
2085 netif_carrier_off(netdev);
2086
2087 #ifdef CONFIG_IGB_DCA
2088 if (dca_add_requester(&pdev->dev) == 0) {
2089 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2090 dev_info(&pdev->dev, "DCA enabled\n");
2091 igb_setup_dca(adapter);
2092 }
2093
2094 #endif
2095 /* do hw tstamp init after resetting */
2096 igb_init_hw_timer(adapter);
2097
2098 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2099 /* print bus type/speed/width info */
2100 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2101 netdev->name,
2102 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2103 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2104 "unknown"),
2105 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2106 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2107 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2108 "unknown"),
2109 netdev->dev_addr);
2110
2111 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2112 if (ret_val)
2113 strcpy(part_str, "Unknown");
2114 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2115 dev_info(&pdev->dev,
2116 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2117 adapter->msix_entries ? "MSI-X" :
2118 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2119 adapter->num_rx_queues, adapter->num_tx_queues);
2120 switch (hw->mac.type) {
2121 case e1000_i350:
2122 igb_set_eee_i350(hw);
2123 break;
2124 default:
2125 break;
2126 }
2127 return 0;
2128
2129 err_register:
2130 igb_release_hw_control(adapter);
2131 err_eeprom:
2132 if (!igb_check_reset_block(hw))
2133 igb_reset_phy(hw);
2134
2135 if (hw->flash_address)
2136 iounmap(hw->flash_address);
2137 err_sw_init:
2138 igb_clear_interrupt_scheme(adapter);
2139 iounmap(hw->hw_addr);
2140 err_ioremap:
2141 free_netdev(netdev);
2142 err_alloc_etherdev:
2143 pci_release_selected_regions(pdev,
2144 pci_select_bars(pdev, IORESOURCE_MEM));
2145 err_pci_reg:
2146 err_dma:
2147 pci_disable_device(pdev);
2148 return err;
2149 }
2150
2151 /**
2152 * igb_remove - Device Removal Routine
2153 * @pdev: PCI device information struct
2154 *
2155 * igb_remove is called by the PCI subsystem to alert the driver
2156 * that it should release a PCI device. The could be caused by a
2157 * Hot-Plug event, or because the driver is going to be removed from
2158 * memory.
2159 **/
2160 static void __devexit igb_remove(struct pci_dev *pdev)
2161 {
2162 struct net_device *netdev = pci_get_drvdata(pdev);
2163 struct igb_adapter *adapter = netdev_priv(netdev);
2164 struct e1000_hw *hw = &adapter->hw;
2165
2166 /*
2167 * The watchdog timer may be rescheduled, so explicitly
2168 * disable watchdog from being rescheduled.
2169 */
2170 set_bit(__IGB_DOWN, &adapter->state);
2171 del_timer_sync(&adapter->watchdog_timer);
2172 del_timer_sync(&adapter->phy_info_timer);
2173
2174 cancel_work_sync(&adapter->reset_task);
2175 cancel_work_sync(&adapter->watchdog_task);
2176
2177 #ifdef CONFIG_IGB_DCA
2178 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2179 dev_info(&pdev->dev, "DCA disabled\n");
2180 dca_remove_requester(&pdev->dev);
2181 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2182 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2183 }
2184 #endif
2185
2186 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2187 * would have already happened in close and is redundant. */
2188 igb_release_hw_control(adapter);
2189
2190 unregister_netdev(netdev);
2191
2192 igb_clear_interrupt_scheme(adapter);
2193
2194 #ifdef CONFIG_PCI_IOV
2195 /* reclaim resources allocated to VFs */
2196 if (adapter->vf_data) {
2197 /* disable iov and allow time for transactions to clear */
2198 pci_disable_sriov(pdev);
2199 msleep(500);
2200
2201 kfree(adapter->vf_data);
2202 adapter->vf_data = NULL;
2203 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2204 wrfl();
2205 msleep(100);
2206 dev_info(&pdev->dev, "IOV Disabled\n");
2207 }
2208 #endif
2209
2210 iounmap(hw->hw_addr);
2211 if (hw->flash_address)
2212 iounmap(hw->flash_address);
2213 pci_release_selected_regions(pdev,
2214 pci_select_bars(pdev, IORESOURCE_MEM));
2215
2216 free_netdev(netdev);
2217
2218 pci_disable_pcie_error_reporting(pdev);
2219
2220 pci_disable_device(pdev);
2221 }
2222
2223 /**
2224 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2225 * @adapter: board private structure to initialize
2226 *
2227 * This function initializes the vf specific data storage and then attempts to
2228 * allocate the VFs. The reason for ordering it this way is because it is much
2229 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2230 * the memory for the VFs.
2231 **/
2232 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2233 {
2234 #ifdef CONFIG_PCI_IOV
2235 struct pci_dev *pdev = adapter->pdev;
2236
2237 if (adapter->vfs_allocated_count) {
2238 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2239 sizeof(struct vf_data_storage),
2240 GFP_KERNEL);
2241 /* if allocation failed then we do not support SR-IOV */
2242 if (!adapter->vf_data) {
2243 adapter->vfs_allocated_count = 0;
2244 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2245 "Data Storage\n");
2246 }
2247 }
2248
2249 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2250 kfree(adapter->vf_data);
2251 adapter->vf_data = NULL;
2252 #endif /* CONFIG_PCI_IOV */
2253 adapter->vfs_allocated_count = 0;
2254 #ifdef CONFIG_PCI_IOV
2255 } else {
2256 unsigned char mac_addr[ETH_ALEN];
2257 int i;
2258 dev_info(&pdev->dev, "%d vfs allocated\n",
2259 adapter->vfs_allocated_count);
2260 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2261 random_ether_addr(mac_addr);
2262 igb_set_vf_mac(adapter, i, mac_addr);
2263 }
2264 /* DMA Coalescing is not supported in IOV mode. */
2265 if (adapter->flags & IGB_FLAG_DMAC)
2266 adapter->flags &= ~IGB_FLAG_DMAC;
2267 }
2268 #endif /* CONFIG_PCI_IOV */
2269 }
2270
2271
2272 /**
2273 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2274 * @adapter: board private structure to initialize
2275 *
2276 * igb_init_hw_timer initializes the function pointer and values for the hw
2277 * timer found in hardware.
2278 **/
2279 static void igb_init_hw_timer(struct igb_adapter *adapter)
2280 {
2281 struct e1000_hw *hw = &adapter->hw;
2282
2283 switch (hw->mac.type) {
2284 case e1000_i350:
2285 case e1000_82580:
2286 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2287 adapter->cycles.read = igb_read_clock;
2288 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2289 adapter->cycles.mult = 1;
2290 /*
2291 * The 82580 timesync updates the system timer every 8ns by 8ns
2292 * and the value cannot be shifted. Instead we need to shift
2293 * the registers to generate a 64bit timer value. As a result
2294 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2295 * 24 in order to generate a larger value for synchronization.
2296 */
2297 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2298 /* disable system timer temporarily by setting bit 31 */
2299 wr32(E1000_TSAUXC, 0x80000000);
2300 wrfl();
2301
2302 /* Set registers so that rollover occurs soon to test this. */
2303 wr32(E1000_SYSTIMR, 0x00000000);
2304 wr32(E1000_SYSTIML, 0x80000000);
2305 wr32(E1000_SYSTIMH, 0x000000FF);
2306 wrfl();
2307
2308 /* enable system timer by clearing bit 31 */
2309 wr32(E1000_TSAUXC, 0x0);
2310 wrfl();
2311
2312 timecounter_init(&adapter->clock,
2313 &adapter->cycles,
2314 ktime_to_ns(ktime_get_real()));
2315 /*
2316 * Synchronize our NIC clock against system wall clock. NIC
2317 * time stamp reading requires ~3us per sample, each sample
2318 * was pretty stable even under load => only require 10
2319 * samples for each offset comparison.
2320 */
2321 memset(&adapter->compare, 0, sizeof(adapter->compare));
2322 adapter->compare.source = &adapter->clock;
2323 adapter->compare.target = ktime_get_real;
2324 adapter->compare.num_samples = 10;
2325 timecompare_update(&adapter->compare, 0);
2326 break;
2327 case e1000_82576:
2328 /*
2329 * Initialize hardware timer: we keep it running just in case
2330 * that some program needs it later on.
2331 */
2332 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2333 adapter->cycles.read = igb_read_clock;
2334 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2335 adapter->cycles.mult = 1;
2336 /**
2337 * Scale the NIC clock cycle by a large factor so that
2338 * relatively small clock corrections can be added or
2339 * subtracted at each clock tick. The drawbacks of a large
2340 * factor are a) that the clock register overflows more quickly
2341 * (not such a big deal) and b) that the increment per tick has
2342 * to fit into 24 bits. As a result we need to use a shift of
2343 * 19 so we can fit a value of 16 into the TIMINCA register.
2344 */
2345 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2346 wr32(E1000_TIMINCA,
2347 (1 << E1000_TIMINCA_16NS_SHIFT) |
2348 (16 << IGB_82576_TSYNC_SHIFT));
2349
2350 /* Set registers so that rollover occurs soon to test this. */
2351 wr32(E1000_SYSTIML, 0x00000000);
2352 wr32(E1000_SYSTIMH, 0xFF800000);
2353 wrfl();
2354
2355 timecounter_init(&adapter->clock,
2356 &adapter->cycles,
2357 ktime_to_ns(ktime_get_real()));
2358 /*
2359 * Synchronize our NIC clock against system wall clock. NIC
2360 * time stamp reading requires ~3us per sample, each sample
2361 * was pretty stable even under load => only require 10
2362 * samples for each offset comparison.
2363 */
2364 memset(&adapter->compare, 0, sizeof(adapter->compare));
2365 adapter->compare.source = &adapter->clock;
2366 adapter->compare.target = ktime_get_real;
2367 adapter->compare.num_samples = 10;
2368 timecompare_update(&adapter->compare, 0);
2369 break;
2370 case e1000_82575:
2371 /* 82575 does not support timesync */
2372 default:
2373 break;
2374 }
2375
2376 }
2377
2378 /**
2379 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2380 * @adapter: board private structure to initialize
2381 *
2382 * igb_sw_init initializes the Adapter private data structure.
2383 * Fields are initialized based on PCI device information and
2384 * OS network device settings (MTU size).
2385 **/
2386 static int __devinit igb_sw_init(struct igb_adapter *adapter)
2387 {
2388 struct e1000_hw *hw = &adapter->hw;
2389 struct net_device *netdev = adapter->netdev;
2390 struct pci_dev *pdev = adapter->pdev;
2391
2392 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2393
2394 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2395 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2396 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2397 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2398
2399 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2400 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2401
2402 spin_lock_init(&adapter->stats64_lock);
2403 #ifdef CONFIG_PCI_IOV
2404 switch (hw->mac.type) {
2405 case e1000_82576:
2406 case e1000_i350:
2407 if (max_vfs > 7) {
2408 dev_warn(&pdev->dev,
2409 "Maximum of 7 VFs per PF, using max\n");
2410 adapter->vfs_allocated_count = 7;
2411 } else
2412 adapter->vfs_allocated_count = max_vfs;
2413 break;
2414 default:
2415 break;
2416 }
2417 #endif /* CONFIG_PCI_IOV */
2418 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2419 /* i350 cannot do RSS and SR-IOV at the same time */
2420 if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2421 adapter->rss_queues = 1;
2422
2423 /*
2424 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2425 * then we should combine the queues into a queue pair in order to
2426 * conserve interrupts due to limited supply
2427 */
2428 if ((adapter->rss_queues > 4) ||
2429 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2430 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2431
2432 /* This call may decrease the number of queues */
2433 if (igb_init_interrupt_scheme(adapter)) {
2434 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2435 return -ENOMEM;
2436 }
2437
2438 igb_probe_vfs(adapter);
2439
2440 /* Explicitly disable IRQ since the NIC can be in any state. */
2441 igb_irq_disable(adapter);
2442
2443 if (hw->mac.type == e1000_i350)
2444 adapter->flags &= ~IGB_FLAG_DMAC;
2445
2446 set_bit(__IGB_DOWN, &adapter->state);
2447 return 0;
2448 }
2449
2450 /**
2451 * igb_open - Called when a network interface is made active
2452 * @netdev: network interface device structure
2453 *
2454 * Returns 0 on success, negative value on failure
2455 *
2456 * The open entry point is called when a network interface is made
2457 * active by the system (IFF_UP). At this point all resources needed
2458 * for transmit and receive operations are allocated, the interrupt
2459 * handler is registered with the OS, the watchdog timer is started,
2460 * and the stack is notified that the interface is ready.
2461 **/
2462 static int igb_open(struct net_device *netdev)
2463 {
2464 struct igb_adapter *adapter = netdev_priv(netdev);
2465 struct e1000_hw *hw = &adapter->hw;
2466 int err;
2467 int i;
2468
2469 /* disallow open during test */
2470 if (test_bit(__IGB_TESTING, &adapter->state))
2471 return -EBUSY;
2472
2473 netif_carrier_off(netdev);
2474
2475 /* allocate transmit descriptors */
2476 err = igb_setup_all_tx_resources(adapter);
2477 if (err)
2478 goto err_setup_tx;
2479
2480 /* allocate receive descriptors */
2481 err = igb_setup_all_rx_resources(adapter);
2482 if (err)
2483 goto err_setup_rx;
2484
2485 igb_power_up_link(adapter);
2486
2487 /* before we allocate an interrupt, we must be ready to handle it.
2488 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2489 * as soon as we call pci_request_irq, so we have to setup our
2490 * clean_rx handler before we do so. */
2491 igb_configure(adapter);
2492
2493 err = igb_request_irq(adapter);
2494 if (err)
2495 goto err_req_irq;
2496
2497 /* From here on the code is the same as igb_up() */
2498 clear_bit(__IGB_DOWN, &adapter->state);
2499
2500 for (i = 0; i < adapter->num_q_vectors; i++) {
2501 struct igb_q_vector *q_vector = adapter->q_vector[i];
2502 napi_enable(&q_vector->napi);
2503 }
2504
2505 /* Clear any pending interrupts. */
2506 rd32(E1000_ICR);
2507
2508 igb_irq_enable(adapter);
2509
2510 /* notify VFs that reset has been completed */
2511 if (adapter->vfs_allocated_count) {
2512 u32 reg_data = rd32(E1000_CTRL_EXT);
2513 reg_data |= E1000_CTRL_EXT_PFRSTD;
2514 wr32(E1000_CTRL_EXT, reg_data);
2515 }
2516
2517 netif_tx_start_all_queues(netdev);
2518
2519 /* start the watchdog. */
2520 hw->mac.get_link_status = 1;
2521 schedule_work(&adapter->watchdog_task);
2522
2523 return 0;
2524
2525 err_req_irq:
2526 igb_release_hw_control(adapter);
2527 igb_power_down_link(adapter);
2528 igb_free_all_rx_resources(adapter);
2529 err_setup_rx:
2530 igb_free_all_tx_resources(adapter);
2531 err_setup_tx:
2532 igb_reset(adapter);
2533
2534 return err;
2535 }
2536
2537 /**
2538 * igb_close - Disables a network interface
2539 * @netdev: network interface device structure
2540 *
2541 * Returns 0, this is not allowed to fail
2542 *
2543 * The close entry point is called when an interface is de-activated
2544 * by the OS. The hardware is still under the driver's control, but
2545 * needs to be disabled. A global MAC reset is issued to stop the
2546 * hardware, and all transmit and receive resources are freed.
2547 **/
2548 static int igb_close(struct net_device *netdev)
2549 {
2550 struct igb_adapter *adapter = netdev_priv(netdev);
2551
2552 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2553 igb_down(adapter);
2554
2555 igb_free_irq(adapter);
2556
2557 igb_free_all_tx_resources(adapter);
2558 igb_free_all_rx_resources(adapter);
2559
2560 return 0;
2561 }
2562
2563 /**
2564 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2565 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2566 *
2567 * Return 0 on success, negative on failure
2568 **/
2569 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2570 {
2571 struct device *dev = tx_ring->dev;
2572 int size;
2573
2574 size = sizeof(struct igb_buffer) * tx_ring->count;
2575 tx_ring->buffer_info = vzalloc(size);
2576 if (!tx_ring->buffer_info)
2577 goto err;
2578
2579 /* round up to nearest 4K */
2580 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2581 tx_ring->size = ALIGN(tx_ring->size, 4096);
2582
2583 tx_ring->desc = dma_alloc_coherent(dev,
2584 tx_ring->size,
2585 &tx_ring->dma,
2586 GFP_KERNEL);
2587
2588 if (!tx_ring->desc)
2589 goto err;
2590
2591 tx_ring->next_to_use = 0;
2592 tx_ring->next_to_clean = 0;
2593 return 0;
2594
2595 err:
2596 vfree(tx_ring->buffer_info);
2597 dev_err(dev,
2598 "Unable to allocate memory for the transmit descriptor ring\n");
2599 return -ENOMEM;
2600 }
2601
2602 /**
2603 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2604 * (Descriptors) for all queues
2605 * @adapter: board private structure
2606 *
2607 * Return 0 on success, negative on failure
2608 **/
2609 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2610 {
2611 struct pci_dev *pdev = adapter->pdev;
2612 int i, err = 0;
2613
2614 for (i = 0; i < adapter->num_tx_queues; i++) {
2615 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2616 if (err) {
2617 dev_err(&pdev->dev,
2618 "Allocation for Tx Queue %u failed\n", i);
2619 for (i--; i >= 0; i--)
2620 igb_free_tx_resources(adapter->tx_ring[i]);
2621 break;
2622 }
2623 }
2624
2625 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2626 int r_idx = i % adapter->num_tx_queues;
2627 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
2628 }
2629 return err;
2630 }
2631
2632 /**
2633 * igb_setup_tctl - configure the transmit control registers
2634 * @adapter: Board private structure
2635 **/
2636 void igb_setup_tctl(struct igb_adapter *adapter)
2637 {
2638 struct e1000_hw *hw = &adapter->hw;
2639 u32 tctl;
2640
2641 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2642 wr32(E1000_TXDCTL(0), 0);
2643
2644 /* Program the Transmit Control Register */
2645 tctl = rd32(E1000_TCTL);
2646 tctl &= ~E1000_TCTL_CT;
2647 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2648 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2649
2650 igb_config_collision_dist(hw);
2651
2652 /* Enable transmits */
2653 tctl |= E1000_TCTL_EN;
2654
2655 wr32(E1000_TCTL, tctl);
2656 }
2657
2658 /**
2659 * igb_configure_tx_ring - Configure transmit ring after Reset
2660 * @adapter: board private structure
2661 * @ring: tx ring to configure
2662 *
2663 * Configure a transmit ring after a reset.
2664 **/
2665 void igb_configure_tx_ring(struct igb_adapter *adapter,
2666 struct igb_ring *ring)
2667 {
2668 struct e1000_hw *hw = &adapter->hw;
2669 u32 txdctl = 0;
2670 u64 tdba = ring->dma;
2671 int reg_idx = ring->reg_idx;
2672
2673 /* disable the queue */
2674 wr32(E1000_TXDCTL(reg_idx), 0);
2675 wrfl();
2676 mdelay(10);
2677
2678 wr32(E1000_TDLEN(reg_idx),
2679 ring->count * sizeof(union e1000_adv_tx_desc));
2680 wr32(E1000_TDBAL(reg_idx),
2681 tdba & 0x00000000ffffffffULL);
2682 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2683
2684 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2685 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2686 wr32(E1000_TDH(reg_idx), 0);
2687 writel(0, ring->tail);
2688
2689 txdctl |= IGB_TX_PTHRESH;
2690 txdctl |= IGB_TX_HTHRESH << 8;
2691 txdctl |= IGB_TX_WTHRESH << 16;
2692
2693 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2694 wr32(E1000_TXDCTL(reg_idx), txdctl);
2695 }
2696
2697 /**
2698 * igb_configure_tx - Configure transmit Unit after Reset
2699 * @adapter: board private structure
2700 *
2701 * Configure the Tx unit of the MAC after a reset.
2702 **/
2703 static void igb_configure_tx(struct igb_adapter *adapter)
2704 {
2705 int i;
2706
2707 for (i = 0; i < adapter->num_tx_queues; i++)
2708 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2709 }
2710
2711 /**
2712 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2713 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2714 *
2715 * Returns 0 on success, negative on failure
2716 **/
2717 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2718 {
2719 struct device *dev = rx_ring->dev;
2720 int size, desc_len;
2721
2722 size = sizeof(struct igb_buffer) * rx_ring->count;
2723 rx_ring->buffer_info = vzalloc(size);
2724 if (!rx_ring->buffer_info)
2725 goto err;
2726
2727 desc_len = sizeof(union e1000_adv_rx_desc);
2728
2729 /* Round up to nearest 4K */
2730 rx_ring->size = rx_ring->count * desc_len;
2731 rx_ring->size = ALIGN(rx_ring->size, 4096);
2732
2733 rx_ring->desc = dma_alloc_coherent(dev,
2734 rx_ring->size,
2735 &rx_ring->dma,
2736 GFP_KERNEL);
2737
2738 if (!rx_ring->desc)
2739 goto err;
2740
2741 rx_ring->next_to_clean = 0;
2742 rx_ring->next_to_use = 0;
2743
2744 return 0;
2745
2746 err:
2747 vfree(rx_ring->buffer_info);
2748 rx_ring->buffer_info = NULL;
2749 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2750 " ring\n");
2751 return -ENOMEM;
2752 }
2753
2754 /**
2755 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2756 * (Descriptors) for all queues
2757 * @adapter: board private structure
2758 *
2759 * Return 0 on success, negative on failure
2760 **/
2761 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2762 {
2763 struct pci_dev *pdev = adapter->pdev;
2764 int i, err = 0;
2765
2766 for (i = 0; i < adapter->num_rx_queues; i++) {
2767 err = igb_setup_rx_resources(adapter->rx_ring[i]);
2768 if (err) {
2769 dev_err(&pdev->dev,
2770 "Allocation for Rx Queue %u failed\n", i);
2771 for (i--; i >= 0; i--)
2772 igb_free_rx_resources(adapter->rx_ring[i]);
2773 break;
2774 }
2775 }
2776
2777 return err;
2778 }
2779
2780 /**
2781 * igb_setup_mrqc - configure the multiple receive queue control registers
2782 * @adapter: Board private structure
2783 **/
2784 static void igb_setup_mrqc(struct igb_adapter *adapter)
2785 {
2786 struct e1000_hw *hw = &adapter->hw;
2787 u32 mrqc, rxcsum;
2788 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2789 union e1000_reta {
2790 u32 dword;
2791 u8 bytes[4];
2792 } reta;
2793 static const u8 rsshash[40] = {
2794 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2795 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2796 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2797 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2798
2799 /* Fill out hash function seeds */
2800 for (j = 0; j < 10; j++) {
2801 u32 rsskey = rsshash[(j * 4)];
2802 rsskey |= rsshash[(j * 4) + 1] << 8;
2803 rsskey |= rsshash[(j * 4) + 2] << 16;
2804 rsskey |= rsshash[(j * 4) + 3] << 24;
2805 array_wr32(E1000_RSSRK(0), j, rsskey);
2806 }
2807
2808 num_rx_queues = adapter->rss_queues;
2809
2810 if (adapter->vfs_allocated_count) {
2811 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2812 switch (hw->mac.type) {
2813 case e1000_i350:
2814 case e1000_82580:
2815 num_rx_queues = 1;
2816 shift = 0;
2817 break;
2818 case e1000_82576:
2819 shift = 3;
2820 num_rx_queues = 2;
2821 break;
2822 case e1000_82575:
2823 shift = 2;
2824 shift2 = 6;
2825 default:
2826 break;
2827 }
2828 } else {
2829 if (hw->mac.type == e1000_82575)
2830 shift = 6;
2831 }
2832
2833 for (j = 0; j < (32 * 4); j++) {
2834 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2835 if (shift2)
2836 reta.bytes[j & 3] |= num_rx_queues << shift2;
2837 if ((j & 3) == 3)
2838 wr32(E1000_RETA(j >> 2), reta.dword);
2839 }
2840
2841 /*
2842 * Disable raw packet checksumming so that RSS hash is placed in
2843 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2844 * offloads as they are enabled by default
2845 */
2846 rxcsum = rd32(E1000_RXCSUM);
2847 rxcsum |= E1000_RXCSUM_PCSD;
2848
2849 if (adapter->hw.mac.type >= e1000_82576)
2850 /* Enable Receive Checksum Offload for SCTP */
2851 rxcsum |= E1000_RXCSUM_CRCOFL;
2852
2853 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2854 wr32(E1000_RXCSUM, rxcsum);
2855
2856 /* If VMDq is enabled then we set the appropriate mode for that, else
2857 * we default to RSS so that an RSS hash is calculated per packet even
2858 * if we are only using one queue */
2859 if (adapter->vfs_allocated_count) {
2860 if (hw->mac.type > e1000_82575) {
2861 /* Set the default pool for the PF's first queue */
2862 u32 vtctl = rd32(E1000_VT_CTL);
2863 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2864 E1000_VT_CTL_DISABLE_DEF_POOL);
2865 vtctl |= adapter->vfs_allocated_count <<
2866 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2867 wr32(E1000_VT_CTL, vtctl);
2868 }
2869 if (adapter->rss_queues > 1)
2870 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2871 else
2872 mrqc = E1000_MRQC_ENABLE_VMDQ;
2873 } else {
2874 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2875 }
2876 igb_vmm_control(adapter);
2877
2878 /*
2879 * Generate RSS hash based on TCP port numbers and/or
2880 * IPv4/v6 src and dst addresses since UDP cannot be
2881 * hashed reliably due to IP fragmentation
2882 */
2883 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2884 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2885 E1000_MRQC_RSS_FIELD_IPV6 |
2886 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2887 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2888
2889 wr32(E1000_MRQC, mrqc);
2890 }
2891
2892 /**
2893 * igb_setup_rctl - configure the receive control registers
2894 * @adapter: Board private structure
2895 **/
2896 void igb_setup_rctl(struct igb_adapter *adapter)
2897 {
2898 struct e1000_hw *hw = &adapter->hw;
2899 u32 rctl;
2900
2901 rctl = rd32(E1000_RCTL);
2902
2903 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2904 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2905
2906 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2907 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2908
2909 /*
2910 * enable stripping of CRC. It's unlikely this will break BMC
2911 * redirection as it did with e1000. Newer features require
2912 * that the HW strips the CRC.
2913 */
2914 rctl |= E1000_RCTL_SECRC;
2915
2916 /* disable store bad packets and clear size bits. */
2917 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2918
2919 /* enable LPE to prevent packets larger than max_frame_size */
2920 rctl |= E1000_RCTL_LPE;
2921
2922 /* disable queue 0 to prevent tail write w/o re-config */
2923 wr32(E1000_RXDCTL(0), 0);
2924
2925 /* Attention!!! For SR-IOV PF driver operations you must enable
2926 * queue drop for all VF and PF queues to prevent head of line blocking
2927 * if an un-trusted VF does not provide descriptors to hardware.
2928 */
2929 if (adapter->vfs_allocated_count) {
2930 /* set all queue drop enable bits */
2931 wr32(E1000_QDE, ALL_QUEUES);
2932 }
2933
2934 wr32(E1000_RCTL, rctl);
2935 }
2936
2937 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2938 int vfn)
2939 {
2940 struct e1000_hw *hw = &adapter->hw;
2941 u32 vmolr;
2942
2943 /* if it isn't the PF check to see if VFs are enabled and
2944 * increase the size to support vlan tags */
2945 if (vfn < adapter->vfs_allocated_count &&
2946 adapter->vf_data[vfn].vlans_enabled)
2947 size += VLAN_TAG_SIZE;
2948
2949 vmolr = rd32(E1000_VMOLR(vfn));
2950 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2951 vmolr |= size | E1000_VMOLR_LPE;
2952 wr32(E1000_VMOLR(vfn), vmolr);
2953
2954 return 0;
2955 }
2956
2957 /**
2958 * igb_rlpml_set - set maximum receive packet size
2959 * @adapter: board private structure
2960 *
2961 * Configure maximum receivable packet size.
2962 **/
2963 static void igb_rlpml_set(struct igb_adapter *adapter)
2964 {
2965 u32 max_frame_size;
2966 struct e1000_hw *hw = &adapter->hw;
2967 u16 pf_id = adapter->vfs_allocated_count;
2968
2969 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
2970
2971 /* if vfs are enabled we set RLPML to the largest possible request
2972 * size and set the VMOLR RLPML to the size we need */
2973 if (pf_id) {
2974 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2975 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2976 }
2977
2978 wr32(E1000_RLPML, max_frame_size);
2979 }
2980
2981 static inline void igb_set_vmolr(struct igb_adapter *adapter,
2982 int vfn, bool aupe)
2983 {
2984 struct e1000_hw *hw = &adapter->hw;
2985 u32 vmolr;
2986
2987 /*
2988 * This register exists only on 82576 and newer so if we are older then
2989 * we should exit and do nothing
2990 */
2991 if (hw->mac.type < e1000_82576)
2992 return;
2993
2994 vmolr = rd32(E1000_VMOLR(vfn));
2995 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2996 if (aupe)
2997 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2998 else
2999 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3000
3001 /* clear all bits that might not be set */
3002 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3003
3004 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3005 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3006 /*
3007 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3008 * multicast packets
3009 */
3010 if (vfn <= adapter->vfs_allocated_count)
3011 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3012
3013 wr32(E1000_VMOLR(vfn), vmolr);
3014 }
3015
3016 /**
3017 * igb_configure_rx_ring - Configure a receive ring after Reset
3018 * @adapter: board private structure
3019 * @ring: receive ring to be configured
3020 *
3021 * Configure the Rx unit of the MAC after a reset.
3022 **/
3023 void igb_configure_rx_ring(struct igb_adapter *adapter,
3024 struct igb_ring *ring)
3025 {
3026 struct e1000_hw *hw = &adapter->hw;
3027 u64 rdba = ring->dma;
3028 int reg_idx = ring->reg_idx;
3029 u32 srrctl = 0, rxdctl = 0;
3030
3031 /* disable the queue */
3032 wr32(E1000_RXDCTL(reg_idx), 0);
3033
3034 /* Set DMA base address registers */
3035 wr32(E1000_RDBAL(reg_idx),
3036 rdba & 0x00000000ffffffffULL);
3037 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3038 wr32(E1000_RDLEN(reg_idx),
3039 ring->count * sizeof(union e1000_adv_rx_desc));
3040
3041 /* initialize head and tail */
3042 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
3043 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3044 wr32(E1000_RDH(reg_idx), 0);
3045 writel(0, ring->tail);
3046
3047 /* set descriptor configuration */
3048 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
3049 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
3050 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3051 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3052 srrctl |= IGB_RXBUFFER_16384 >>
3053 E1000_SRRCTL_BSIZEPKT_SHIFT;
3054 #else
3055 srrctl |= (PAGE_SIZE / 2) >>
3056 E1000_SRRCTL_BSIZEPKT_SHIFT;
3057 #endif
3058 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3059 } else {
3060 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
3061 E1000_SRRCTL_BSIZEPKT_SHIFT;
3062 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3063 }
3064 if (hw->mac.type == e1000_82580)
3065 srrctl |= E1000_SRRCTL_TIMESTAMP;
3066 /* Only set Drop Enable if we are supporting multiple queues */
3067 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3068 srrctl |= E1000_SRRCTL_DROP_EN;
3069
3070 wr32(E1000_SRRCTL(reg_idx), srrctl);
3071
3072 /* set filtering for VMDQ pools */
3073 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3074
3075 rxdctl |= IGB_RX_PTHRESH;
3076 rxdctl |= IGB_RX_HTHRESH << 8;
3077 rxdctl |= IGB_RX_WTHRESH << 16;
3078
3079 /* enable receive descriptor fetching */
3080 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3081 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3082 }
3083
3084 /**
3085 * igb_configure_rx - Configure receive Unit after Reset
3086 * @adapter: board private structure
3087 *
3088 * Configure the Rx unit of the MAC after a reset.
3089 **/
3090 static void igb_configure_rx(struct igb_adapter *adapter)
3091 {
3092 int i;
3093
3094 /* set UTA to appropriate mode */
3095 igb_set_uta(adapter);
3096
3097 /* set the correct pool for the PF default MAC address in entry 0 */
3098 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3099 adapter->vfs_allocated_count);
3100
3101 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3102 * the Base and Length of the Rx Descriptor Ring */
3103 for (i = 0; i < adapter->num_rx_queues; i++)
3104 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3105 }
3106
3107 /**
3108 * igb_free_tx_resources - Free Tx Resources per Queue
3109 * @tx_ring: Tx descriptor ring for a specific queue
3110 *
3111 * Free all transmit software resources
3112 **/
3113 void igb_free_tx_resources(struct igb_ring *tx_ring)
3114 {
3115 igb_clean_tx_ring(tx_ring);
3116
3117 vfree(tx_ring->buffer_info);
3118 tx_ring->buffer_info = NULL;
3119
3120 /* if not set, then don't free */
3121 if (!tx_ring->desc)
3122 return;
3123
3124 dma_free_coherent(tx_ring->dev, tx_ring->size,
3125 tx_ring->desc, tx_ring->dma);
3126
3127 tx_ring->desc = NULL;
3128 }
3129
3130 /**
3131 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3132 * @adapter: board private structure
3133 *
3134 * Free all transmit software resources
3135 **/
3136 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3137 {
3138 int i;
3139
3140 for (i = 0; i < adapter->num_tx_queues; i++)
3141 igb_free_tx_resources(adapter->tx_ring[i]);
3142 }
3143
3144 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3145 struct igb_buffer *buffer_info)
3146 {
3147 if (buffer_info->dma) {
3148 if (buffer_info->mapped_as_page)
3149 dma_unmap_page(tx_ring->dev,
3150 buffer_info->dma,
3151 buffer_info->length,
3152 DMA_TO_DEVICE);
3153 else
3154 dma_unmap_single(tx_ring->dev,
3155 buffer_info->dma,
3156 buffer_info->length,
3157 DMA_TO_DEVICE);
3158 buffer_info->dma = 0;
3159 }
3160 if (buffer_info->skb) {
3161 dev_kfree_skb_any(buffer_info->skb);
3162 buffer_info->skb = NULL;
3163 }
3164 buffer_info->time_stamp = 0;
3165 buffer_info->length = 0;
3166 buffer_info->next_to_watch = 0;
3167 buffer_info->mapped_as_page = false;
3168 }
3169
3170 /**
3171 * igb_clean_tx_ring - Free Tx Buffers
3172 * @tx_ring: ring to be cleaned
3173 **/
3174 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3175 {
3176 struct igb_buffer *buffer_info;
3177 unsigned long size;
3178 unsigned int i;
3179
3180 if (!tx_ring->buffer_info)
3181 return;
3182 /* Free all the Tx ring sk_buffs */
3183
3184 for (i = 0; i < tx_ring->count; i++) {
3185 buffer_info = &tx_ring->buffer_info[i];
3186 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3187 }
3188
3189 size = sizeof(struct igb_buffer) * tx_ring->count;
3190 memset(tx_ring->buffer_info, 0, size);
3191
3192 /* Zero out the descriptor ring */
3193 memset(tx_ring->desc, 0, tx_ring->size);
3194
3195 tx_ring->next_to_use = 0;
3196 tx_ring->next_to_clean = 0;
3197 }
3198
3199 /**
3200 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3201 * @adapter: board private structure
3202 **/
3203 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3204 {
3205 int i;
3206
3207 for (i = 0; i < adapter->num_tx_queues; i++)
3208 igb_clean_tx_ring(adapter->tx_ring[i]);
3209 }
3210
3211 /**
3212 * igb_free_rx_resources - Free Rx Resources
3213 * @rx_ring: ring to clean the resources from
3214 *
3215 * Free all receive software resources
3216 **/
3217 void igb_free_rx_resources(struct igb_ring *rx_ring)
3218 {
3219 igb_clean_rx_ring(rx_ring);
3220
3221 vfree(rx_ring->buffer_info);
3222 rx_ring->buffer_info = NULL;
3223
3224 /* if not set, then don't free */
3225 if (!rx_ring->desc)
3226 return;
3227
3228 dma_free_coherent(rx_ring->dev, rx_ring->size,
3229 rx_ring->desc, rx_ring->dma);
3230
3231 rx_ring->desc = NULL;
3232 }
3233
3234 /**
3235 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3236 * @adapter: board private structure
3237 *
3238 * Free all receive software resources
3239 **/
3240 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3241 {
3242 int i;
3243
3244 for (i = 0; i < adapter->num_rx_queues; i++)
3245 igb_free_rx_resources(adapter->rx_ring[i]);
3246 }
3247
3248 /**
3249 * igb_clean_rx_ring - Free Rx Buffers per Queue
3250 * @rx_ring: ring to free buffers from
3251 **/
3252 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3253 {
3254 struct igb_buffer *buffer_info;
3255 unsigned long size;
3256 unsigned int i;
3257
3258 if (!rx_ring->buffer_info)
3259 return;
3260
3261 /* Free all the Rx ring sk_buffs */
3262 for (i = 0; i < rx_ring->count; i++) {
3263 buffer_info = &rx_ring->buffer_info[i];
3264 if (buffer_info->dma) {
3265 dma_unmap_single(rx_ring->dev,
3266 buffer_info->dma,
3267 rx_ring->rx_buffer_len,
3268 DMA_FROM_DEVICE);
3269 buffer_info->dma = 0;
3270 }
3271
3272 if (buffer_info->skb) {
3273 dev_kfree_skb(buffer_info->skb);
3274 buffer_info->skb = NULL;
3275 }
3276 if (buffer_info->page_dma) {
3277 dma_unmap_page(rx_ring->dev,
3278 buffer_info->page_dma,
3279 PAGE_SIZE / 2,
3280 DMA_FROM_DEVICE);
3281 buffer_info->page_dma = 0;
3282 }
3283 if (buffer_info->page) {
3284 put_page(buffer_info->page);
3285 buffer_info->page = NULL;
3286 buffer_info->page_offset = 0;
3287 }
3288 }
3289
3290 size = sizeof(struct igb_buffer) * rx_ring->count;
3291 memset(rx_ring->buffer_info, 0, size);
3292
3293 /* Zero out the descriptor ring */
3294 memset(rx_ring->desc, 0, rx_ring->size);
3295
3296 rx_ring->next_to_clean = 0;
3297 rx_ring->next_to_use = 0;
3298 }
3299
3300 /**
3301 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3302 * @adapter: board private structure
3303 **/
3304 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3305 {
3306 int i;
3307
3308 for (i = 0; i < adapter->num_rx_queues; i++)
3309 igb_clean_rx_ring(adapter->rx_ring[i]);
3310 }
3311
3312 /**
3313 * igb_set_mac - Change the Ethernet Address of the NIC
3314 * @netdev: network interface device structure
3315 * @p: pointer to an address structure
3316 *
3317 * Returns 0 on success, negative on failure
3318 **/
3319 static int igb_set_mac(struct net_device *netdev, void *p)
3320 {
3321 struct igb_adapter *adapter = netdev_priv(netdev);
3322 struct e1000_hw *hw = &adapter->hw;
3323 struct sockaddr *addr = p;
3324
3325 if (!is_valid_ether_addr(addr->sa_data))
3326 return -EADDRNOTAVAIL;
3327
3328 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3329 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3330
3331 /* set the correct pool for the new PF MAC address in entry 0 */
3332 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3333 adapter->vfs_allocated_count);
3334
3335 return 0;
3336 }
3337
3338 /**
3339 * igb_write_mc_addr_list - write multicast addresses to MTA
3340 * @netdev: network interface device structure
3341 *
3342 * Writes multicast address list to the MTA hash table.
3343 * Returns: -ENOMEM on failure
3344 * 0 on no addresses written
3345 * X on writing X addresses to MTA
3346 **/
3347 static int igb_write_mc_addr_list(struct net_device *netdev)
3348 {
3349 struct igb_adapter *adapter = netdev_priv(netdev);
3350 struct e1000_hw *hw = &adapter->hw;
3351 struct netdev_hw_addr *ha;
3352 u8 *mta_list;
3353 int i;
3354
3355 if (netdev_mc_empty(netdev)) {
3356 /* nothing to program, so clear mc list */
3357 igb_update_mc_addr_list(hw, NULL, 0);
3358 igb_restore_vf_multicasts(adapter);
3359 return 0;
3360 }
3361
3362 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3363 if (!mta_list)
3364 return -ENOMEM;
3365
3366 /* The shared function expects a packed array of only addresses. */
3367 i = 0;
3368 netdev_for_each_mc_addr(ha, netdev)
3369 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3370
3371 igb_update_mc_addr_list(hw, mta_list, i);
3372 kfree(mta_list);
3373
3374 return netdev_mc_count(netdev);
3375 }
3376
3377 /**
3378 * igb_write_uc_addr_list - write unicast addresses to RAR table
3379 * @netdev: network interface device structure
3380 *
3381 * Writes unicast address list to the RAR table.
3382 * Returns: -ENOMEM on failure/insufficient address space
3383 * 0 on no addresses written
3384 * X on writing X addresses to the RAR table
3385 **/
3386 static int igb_write_uc_addr_list(struct net_device *netdev)
3387 {
3388 struct igb_adapter *adapter = netdev_priv(netdev);
3389 struct e1000_hw *hw = &adapter->hw;
3390 unsigned int vfn = adapter->vfs_allocated_count;
3391 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3392 int count = 0;
3393
3394 /* return ENOMEM indicating insufficient memory for addresses */
3395 if (netdev_uc_count(netdev) > rar_entries)
3396 return -ENOMEM;
3397
3398 if (!netdev_uc_empty(netdev) && rar_entries) {
3399 struct netdev_hw_addr *ha;
3400
3401 netdev_for_each_uc_addr(ha, netdev) {
3402 if (!rar_entries)
3403 break;
3404 igb_rar_set_qsel(adapter, ha->addr,
3405 rar_entries--,
3406 vfn);
3407 count++;
3408 }
3409 }
3410 /* write the addresses in reverse order to avoid write combining */
3411 for (; rar_entries > 0 ; rar_entries--) {
3412 wr32(E1000_RAH(rar_entries), 0);
3413 wr32(E1000_RAL(rar_entries), 0);
3414 }
3415 wrfl();
3416
3417 return count;
3418 }
3419
3420 /**
3421 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3422 * @netdev: network interface device structure
3423 *
3424 * The set_rx_mode entry point is called whenever the unicast or multicast
3425 * address lists or the network interface flags are updated. This routine is
3426 * responsible for configuring the hardware for proper unicast, multicast,
3427 * promiscuous mode, and all-multi behavior.
3428 **/
3429 static void igb_set_rx_mode(struct net_device *netdev)
3430 {
3431 struct igb_adapter *adapter = netdev_priv(netdev);
3432 struct e1000_hw *hw = &adapter->hw;
3433 unsigned int vfn = adapter->vfs_allocated_count;
3434 u32 rctl, vmolr = 0;
3435 int count;
3436
3437 /* Check for Promiscuous and All Multicast modes */
3438 rctl = rd32(E1000_RCTL);
3439
3440 /* clear the effected bits */
3441 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3442
3443 if (netdev->flags & IFF_PROMISC) {
3444 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3445 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3446 } else {
3447 if (netdev->flags & IFF_ALLMULTI) {
3448 rctl |= E1000_RCTL_MPE;
3449 vmolr |= E1000_VMOLR_MPME;
3450 } else {
3451 /*
3452 * Write addresses to the MTA, if the attempt fails
3453 * then we should just turn on promiscuous mode so
3454 * that we can at least receive multicast traffic
3455 */
3456 count = igb_write_mc_addr_list(netdev);
3457 if (count < 0) {
3458 rctl |= E1000_RCTL_MPE;
3459 vmolr |= E1000_VMOLR_MPME;
3460 } else if (count) {
3461 vmolr |= E1000_VMOLR_ROMPE;
3462 }
3463 }
3464 /*
3465 * Write addresses to available RAR registers, if there is not
3466 * sufficient space to store all the addresses then enable
3467 * unicast promiscuous mode
3468 */
3469 count = igb_write_uc_addr_list(netdev);
3470 if (count < 0) {
3471 rctl |= E1000_RCTL_UPE;
3472 vmolr |= E1000_VMOLR_ROPE;
3473 }
3474 rctl |= E1000_RCTL_VFE;
3475 }
3476 wr32(E1000_RCTL, rctl);
3477
3478 /*
3479 * In order to support SR-IOV and eventually VMDq it is necessary to set
3480 * the VMOLR to enable the appropriate modes. Without this workaround
3481 * we will have issues with VLAN tag stripping not being done for frames
3482 * that are only arriving because we are the default pool
3483 */
3484 if (hw->mac.type < e1000_82576)
3485 return;
3486
3487 vmolr |= rd32(E1000_VMOLR(vfn)) &
3488 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3489 wr32(E1000_VMOLR(vfn), vmolr);
3490 igb_restore_vf_multicasts(adapter);
3491 }
3492
3493 static void igb_check_wvbr(struct igb_adapter *adapter)
3494 {
3495 struct e1000_hw *hw = &adapter->hw;
3496 u32 wvbr = 0;
3497
3498 switch (hw->mac.type) {
3499 case e1000_82576:
3500 case e1000_i350:
3501 if (!(wvbr = rd32(E1000_WVBR)))
3502 return;
3503 break;
3504 default:
3505 break;
3506 }
3507
3508 adapter->wvbr |= wvbr;
3509 }
3510
3511 #define IGB_STAGGERED_QUEUE_OFFSET 8
3512
3513 static void igb_spoof_check(struct igb_adapter *adapter)
3514 {
3515 int j;
3516
3517 if (!adapter->wvbr)
3518 return;
3519
3520 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3521 if (adapter->wvbr & (1 << j) ||
3522 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3523 dev_warn(&adapter->pdev->dev,
3524 "Spoof event(s) detected on VF %d\n", j);
3525 adapter->wvbr &=
3526 ~((1 << j) |
3527 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3528 }
3529 }
3530 }
3531
3532 /* Need to wait a few seconds after link up to get diagnostic information from
3533 * the phy */
3534 static void igb_update_phy_info(unsigned long data)
3535 {
3536 struct igb_adapter *adapter = (struct igb_adapter *) data;
3537 igb_get_phy_info(&adapter->hw);
3538 }
3539
3540 /**
3541 * igb_has_link - check shared code for link and determine up/down
3542 * @adapter: pointer to driver private info
3543 **/
3544 bool igb_has_link(struct igb_adapter *adapter)
3545 {
3546 struct e1000_hw *hw = &adapter->hw;
3547 bool link_active = false;
3548 s32 ret_val = 0;
3549
3550 /* get_link_status is set on LSC (link status) interrupt or
3551 * rx sequence error interrupt. get_link_status will stay
3552 * false until the e1000_check_for_link establishes link
3553 * for copper adapters ONLY
3554 */
3555 switch (hw->phy.media_type) {
3556 case e1000_media_type_copper:
3557 if (hw->mac.get_link_status) {
3558 ret_val = hw->mac.ops.check_for_link(hw);
3559 link_active = !hw->mac.get_link_status;
3560 } else {
3561 link_active = true;
3562 }
3563 break;
3564 case e1000_media_type_internal_serdes:
3565 ret_val = hw->mac.ops.check_for_link(hw);
3566 link_active = hw->mac.serdes_has_link;
3567 break;
3568 default:
3569 case e1000_media_type_unknown:
3570 break;
3571 }
3572
3573 return link_active;
3574 }
3575
3576 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3577 {
3578 bool ret = false;
3579 u32 ctrl_ext, thstat;
3580
3581 /* check for thermal sensor event on i350, copper only */
3582 if (hw->mac.type == e1000_i350) {
3583 thstat = rd32(E1000_THSTAT);
3584 ctrl_ext = rd32(E1000_CTRL_EXT);
3585
3586 if ((hw->phy.media_type == e1000_media_type_copper) &&
3587 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3588 ret = !!(thstat & event);
3589 }
3590 }
3591
3592 return ret;
3593 }
3594
3595 /**
3596 * igb_watchdog - Timer Call-back
3597 * @data: pointer to adapter cast into an unsigned long
3598 **/
3599 static void igb_watchdog(unsigned long data)
3600 {
3601 struct igb_adapter *adapter = (struct igb_adapter *)data;
3602 /* Do the rest outside of interrupt context */
3603 schedule_work(&adapter->watchdog_task);
3604 }
3605
3606 static void igb_watchdog_task(struct work_struct *work)
3607 {
3608 struct igb_adapter *adapter = container_of(work,
3609 struct igb_adapter,
3610 watchdog_task);
3611 struct e1000_hw *hw = &adapter->hw;
3612 struct net_device *netdev = adapter->netdev;
3613 u32 link;
3614 int i;
3615
3616 link = igb_has_link(adapter);
3617 if (link) {
3618 if (!netif_carrier_ok(netdev)) {
3619 u32 ctrl;
3620 hw->mac.ops.get_speed_and_duplex(hw,
3621 &adapter->link_speed,
3622 &adapter->link_duplex);
3623
3624 ctrl = rd32(E1000_CTRL);
3625 /* Links status message must follow this format */
3626 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3627 "Flow Control: %s\n",
3628 netdev->name,
3629 adapter->link_speed,
3630 adapter->link_duplex == FULL_DUPLEX ?
3631 "Full Duplex" : "Half Duplex",
3632 ((ctrl & E1000_CTRL_TFCE) &&
3633 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3634 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3635 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
3636
3637 /* check for thermal sensor event */
3638 if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
3639 printk(KERN_INFO "igb: %s The network adapter "
3640 "link speed was downshifted "
3641 "because it overheated.\n",
3642 netdev->name);
3643 }
3644
3645 /* adjust timeout factor according to speed/duplex */
3646 adapter->tx_timeout_factor = 1;
3647 switch (adapter->link_speed) {
3648 case SPEED_10:
3649 adapter->tx_timeout_factor = 14;
3650 break;
3651 case SPEED_100:
3652 /* maybe add some timeout factor ? */
3653 break;
3654 }
3655
3656 netif_carrier_on(netdev);
3657
3658 igb_ping_all_vfs(adapter);
3659 igb_check_vf_rate_limit(adapter);
3660
3661 /* link state has changed, schedule phy info update */
3662 if (!test_bit(__IGB_DOWN, &adapter->state))
3663 mod_timer(&adapter->phy_info_timer,
3664 round_jiffies(jiffies + 2 * HZ));
3665 }
3666 } else {
3667 if (netif_carrier_ok(netdev)) {
3668 adapter->link_speed = 0;
3669 adapter->link_duplex = 0;
3670
3671 /* check for thermal sensor event */
3672 if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
3673 printk(KERN_ERR "igb: %s The network adapter "
3674 "was stopped because it "
3675 "overheated.\n",
3676 netdev->name);
3677 }
3678
3679 /* Links status message must follow this format */
3680 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3681 netdev->name);
3682 netif_carrier_off(netdev);
3683
3684 igb_ping_all_vfs(adapter);
3685
3686 /* link state has changed, schedule phy info update */
3687 if (!test_bit(__IGB_DOWN, &adapter->state))
3688 mod_timer(&adapter->phy_info_timer,
3689 round_jiffies(jiffies + 2 * HZ));
3690 }
3691 }
3692
3693 spin_lock(&adapter->stats64_lock);
3694 igb_update_stats(adapter, &adapter->stats64);
3695 spin_unlock(&adapter->stats64_lock);
3696
3697 for (i = 0; i < adapter->num_tx_queues; i++) {
3698 struct igb_ring *tx_ring = adapter->tx_ring[i];
3699 if (!netif_carrier_ok(netdev)) {
3700 /* We've lost link, so the controller stops DMA,
3701 * but we've got queued Tx work that's never going
3702 * to get done, so reset controller to flush Tx.
3703 * (Do the reset outside of interrupt context). */
3704 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3705 adapter->tx_timeout_count++;
3706 schedule_work(&adapter->reset_task);
3707 /* return immediately since reset is imminent */
3708 return;
3709 }
3710 }
3711
3712 /* Force detection of hung controller every watchdog period */
3713 tx_ring->detect_tx_hung = true;
3714 }
3715
3716 /* Cause software interrupt to ensure rx ring is cleaned */
3717 if (adapter->msix_entries) {
3718 u32 eics = 0;
3719 for (i = 0; i < adapter->num_q_vectors; i++) {
3720 struct igb_q_vector *q_vector = adapter->q_vector[i];
3721 eics |= q_vector->eims_value;
3722 }
3723 wr32(E1000_EICS, eics);
3724 } else {
3725 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3726 }
3727
3728 igb_spoof_check(adapter);
3729
3730 /* Reset the timer */
3731 if (!test_bit(__IGB_DOWN, &adapter->state))
3732 mod_timer(&adapter->watchdog_timer,
3733 round_jiffies(jiffies + 2 * HZ));
3734 }
3735
3736 enum latency_range {
3737 lowest_latency = 0,
3738 low_latency = 1,
3739 bulk_latency = 2,
3740 latency_invalid = 255
3741 };
3742
3743 /**
3744 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3745 *
3746 * Stores a new ITR value based on strictly on packet size. This
3747 * algorithm is less sophisticated than that used in igb_update_itr,
3748 * due to the difficulty of synchronizing statistics across multiple
3749 * receive rings. The divisors and thresholds used by this function
3750 * were determined based on theoretical maximum wire speed and testing
3751 * data, in order to minimize response time while increasing bulk
3752 * throughput.
3753 * This functionality is controlled by the InterruptThrottleRate module
3754 * parameter (see igb_param.c)
3755 * NOTE: This function is called only when operating in a multiqueue
3756 * receive environment.
3757 * @q_vector: pointer to q_vector
3758 **/
3759 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3760 {
3761 int new_val = q_vector->itr_val;
3762 int avg_wire_size = 0;
3763 struct igb_adapter *adapter = q_vector->adapter;
3764 struct igb_ring *ring;
3765 unsigned int packets;
3766
3767 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3768 * ints/sec - ITR timer value of 120 ticks.
3769 */
3770 if (adapter->link_speed != SPEED_1000) {
3771 new_val = 976;
3772 goto set_itr_val;
3773 }
3774
3775 ring = q_vector->rx_ring;
3776 if (ring) {
3777 packets = ACCESS_ONCE(ring->total_packets);
3778
3779 if (packets)
3780 avg_wire_size = ring->total_bytes / packets;
3781 }
3782
3783 ring = q_vector->tx_ring;
3784 if (ring) {
3785 packets = ACCESS_ONCE(ring->total_packets);
3786
3787 if (packets)
3788 avg_wire_size = max_t(u32, avg_wire_size,
3789 ring->total_bytes / packets);
3790 }
3791
3792 /* if avg_wire_size isn't set no work was done */
3793 if (!avg_wire_size)
3794 goto clear_counts;
3795
3796 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3797 avg_wire_size += 24;
3798
3799 /* Don't starve jumbo frames */
3800 avg_wire_size = min(avg_wire_size, 3000);
3801
3802 /* Give a little boost to mid-size frames */
3803 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3804 new_val = avg_wire_size / 3;
3805 else
3806 new_val = avg_wire_size / 2;
3807
3808 /* when in itr mode 3 do not exceed 20K ints/sec */
3809 if (adapter->rx_itr_setting == 3 && new_val < 196)
3810 new_val = 196;
3811
3812 set_itr_val:
3813 if (new_val != q_vector->itr_val) {
3814 q_vector->itr_val = new_val;
3815 q_vector->set_itr = 1;
3816 }
3817 clear_counts:
3818 if (q_vector->rx_ring) {
3819 q_vector->rx_ring->total_bytes = 0;
3820 q_vector->rx_ring->total_packets = 0;
3821 }
3822 if (q_vector->tx_ring) {
3823 q_vector->tx_ring->total_bytes = 0;
3824 q_vector->tx_ring->total_packets = 0;
3825 }
3826 }
3827
3828 /**
3829 * igb_update_itr - update the dynamic ITR value based on statistics
3830 * Stores a new ITR value based on packets and byte
3831 * counts during the last interrupt. The advantage of per interrupt
3832 * computation is faster updates and more accurate ITR for the current
3833 * traffic pattern. Constants in this function were computed
3834 * based on theoretical maximum wire speed and thresholds were set based
3835 * on testing data as well as attempting to minimize response time
3836 * while increasing bulk throughput.
3837 * this functionality is controlled by the InterruptThrottleRate module
3838 * parameter (see igb_param.c)
3839 * NOTE: These calculations are only valid when operating in a single-
3840 * queue environment.
3841 * @adapter: pointer to adapter
3842 * @itr_setting: current q_vector->itr_val
3843 * @packets: the number of packets during this measurement interval
3844 * @bytes: the number of bytes during this measurement interval
3845 **/
3846 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3847 int packets, int bytes)
3848 {
3849 unsigned int retval = itr_setting;
3850
3851 if (packets == 0)
3852 goto update_itr_done;
3853
3854 switch (itr_setting) {
3855 case lowest_latency:
3856 /* handle TSO and jumbo frames */
3857 if (bytes/packets > 8000)
3858 retval = bulk_latency;
3859 else if ((packets < 5) && (bytes > 512))
3860 retval = low_latency;
3861 break;
3862 case low_latency: /* 50 usec aka 20000 ints/s */
3863 if (bytes > 10000) {
3864 /* this if handles the TSO accounting */
3865 if (bytes/packets > 8000) {
3866 retval = bulk_latency;
3867 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3868 retval = bulk_latency;
3869 } else if ((packets > 35)) {
3870 retval = lowest_latency;
3871 }
3872 } else if (bytes/packets > 2000) {
3873 retval = bulk_latency;
3874 } else if (packets <= 2 && bytes < 512) {
3875 retval = lowest_latency;
3876 }
3877 break;
3878 case bulk_latency: /* 250 usec aka 4000 ints/s */
3879 if (bytes > 25000) {
3880 if (packets > 35)
3881 retval = low_latency;
3882 } else if (bytes < 1500) {
3883 retval = low_latency;
3884 }
3885 break;
3886 }
3887
3888 update_itr_done:
3889 return retval;
3890 }
3891
3892 static void igb_set_itr(struct igb_adapter *adapter)
3893 {
3894 struct igb_q_vector *q_vector = adapter->q_vector[0];
3895 u16 current_itr;
3896 u32 new_itr = q_vector->itr_val;
3897
3898 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3899 if (adapter->link_speed != SPEED_1000) {
3900 current_itr = 0;
3901 new_itr = 4000;
3902 goto set_itr_now;
3903 }
3904
3905 adapter->rx_itr = igb_update_itr(adapter,
3906 adapter->rx_itr,
3907 q_vector->rx_ring->total_packets,
3908 q_vector->rx_ring->total_bytes);
3909
3910 adapter->tx_itr = igb_update_itr(adapter,
3911 adapter->tx_itr,
3912 q_vector->tx_ring->total_packets,
3913 q_vector->tx_ring->total_bytes);
3914 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3915
3916 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3917 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3918 current_itr = low_latency;
3919
3920 switch (current_itr) {
3921 /* counts and packets in update_itr are dependent on these numbers */
3922 case lowest_latency:
3923 new_itr = 56; /* aka 70,000 ints/sec */
3924 break;
3925 case low_latency:
3926 new_itr = 196; /* aka 20,000 ints/sec */
3927 break;
3928 case bulk_latency:
3929 new_itr = 980; /* aka 4,000 ints/sec */
3930 break;
3931 default:
3932 break;
3933 }
3934
3935 set_itr_now:
3936 q_vector->rx_ring->total_bytes = 0;
3937 q_vector->rx_ring->total_packets = 0;
3938 q_vector->tx_ring->total_bytes = 0;
3939 q_vector->tx_ring->total_packets = 0;
3940
3941 if (new_itr != q_vector->itr_val) {
3942 /* this attempts to bias the interrupt rate towards Bulk
3943 * by adding intermediate steps when interrupt rate is
3944 * increasing */
3945 new_itr = new_itr > q_vector->itr_val ?
3946 max((new_itr * q_vector->itr_val) /
3947 (new_itr + (q_vector->itr_val >> 2)),
3948 new_itr) :
3949 new_itr;
3950 /* Don't write the value here; it resets the adapter's
3951 * internal timer, and causes us to delay far longer than
3952 * we should between interrupts. Instead, we write the ITR
3953 * value at the beginning of the next interrupt so the timing
3954 * ends up being correct.
3955 */
3956 q_vector->itr_val = new_itr;
3957 q_vector->set_itr = 1;
3958 }
3959 }
3960
3961 #define IGB_TX_FLAGS_CSUM 0x00000001
3962 #define IGB_TX_FLAGS_VLAN 0x00000002
3963 #define IGB_TX_FLAGS_TSO 0x00000004
3964 #define IGB_TX_FLAGS_IPV4 0x00000008
3965 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3966 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3967 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3968
3969 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3970 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3971 {
3972 struct e1000_adv_tx_context_desc *context_desc;
3973 unsigned int i;
3974 int err;
3975 struct igb_buffer *buffer_info;
3976 u32 info = 0, tu_cmd = 0;
3977 u32 mss_l4len_idx;
3978 u8 l4len;
3979
3980 if (skb_header_cloned(skb)) {
3981 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3982 if (err)
3983 return err;
3984 }
3985
3986 l4len = tcp_hdrlen(skb);
3987 *hdr_len += l4len;
3988
3989 if (skb->protocol == htons(ETH_P_IP)) {
3990 struct iphdr *iph = ip_hdr(skb);
3991 iph->tot_len = 0;
3992 iph->check = 0;
3993 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3994 iph->daddr, 0,
3995 IPPROTO_TCP,
3996 0);
3997 } else if (skb_is_gso_v6(skb)) {
3998 ipv6_hdr(skb)->payload_len = 0;
3999 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4000 &ipv6_hdr(skb)->daddr,
4001 0, IPPROTO_TCP, 0);
4002 }
4003
4004 i = tx_ring->next_to_use;
4005
4006 buffer_info = &tx_ring->buffer_info[i];
4007 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
4008 /* VLAN MACLEN IPLEN */
4009 if (tx_flags & IGB_TX_FLAGS_VLAN)
4010 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
4011 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
4012 *hdr_len += skb_network_offset(skb);
4013 info |= skb_network_header_len(skb);
4014 *hdr_len += skb_network_header_len(skb);
4015 context_desc->vlan_macip_lens = cpu_to_le32(info);
4016
4017 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4018 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
4019
4020 if (skb->protocol == htons(ETH_P_IP))
4021 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
4022 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4023
4024 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
4025
4026 /* MSS L4LEN IDX */
4027 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
4028 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
4029
4030 /* For 82575, context index must be unique per ring. */
4031 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
4032 mss_l4len_idx |= tx_ring->reg_idx << 4;
4033
4034 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4035 context_desc->seqnum_seed = 0;
4036
4037 buffer_info->time_stamp = jiffies;
4038 buffer_info->next_to_watch = i;
4039 buffer_info->dma = 0;
4040 i++;
4041 if (i == tx_ring->count)
4042 i = 0;
4043
4044 tx_ring->next_to_use = i;
4045
4046 return true;
4047 }
4048
4049 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
4050 struct sk_buff *skb, u32 tx_flags)
4051 {
4052 struct e1000_adv_tx_context_desc *context_desc;
4053 struct device *dev = tx_ring->dev;
4054 struct igb_buffer *buffer_info;
4055 u32 info = 0, tu_cmd = 0;
4056 unsigned int i;
4057
4058 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
4059 (tx_flags & IGB_TX_FLAGS_VLAN)) {
4060 i = tx_ring->next_to_use;
4061 buffer_info = &tx_ring->buffer_info[i];
4062 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
4063
4064 if (tx_flags & IGB_TX_FLAGS_VLAN)
4065 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
4066
4067 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
4068 if (skb->ip_summed == CHECKSUM_PARTIAL)
4069 info |= skb_network_header_len(skb);
4070
4071 context_desc->vlan_macip_lens = cpu_to_le32(info);
4072
4073 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
4074
4075 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4076 __be16 protocol;
4077
4078 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
4079 const struct vlan_ethhdr *vhdr =
4080 (const struct vlan_ethhdr*)skb->data;
4081
4082 protocol = vhdr->h_vlan_encapsulated_proto;
4083 } else {
4084 protocol = skb->protocol;
4085 }
4086
4087 switch (protocol) {
4088 case cpu_to_be16(ETH_P_IP):
4089 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
4090 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4091 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4092 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
4093 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4094 break;
4095 case cpu_to_be16(ETH_P_IPV6):
4096 /* XXX what about other V6 headers?? */
4097 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4098 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4099 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
4100 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4101 break;
4102 default:
4103 if (unlikely(net_ratelimit()))
4104 dev_warn(dev,
4105 "partial checksum but proto=%x!\n",
4106 skb->protocol);
4107 break;
4108 }
4109 }
4110
4111 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
4112 context_desc->seqnum_seed = 0;
4113 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
4114 context_desc->mss_l4len_idx =
4115 cpu_to_le32(tx_ring->reg_idx << 4);
4116
4117 buffer_info->time_stamp = jiffies;
4118 buffer_info->next_to_watch = i;
4119 buffer_info->dma = 0;
4120
4121 i++;
4122 if (i == tx_ring->count)
4123 i = 0;
4124 tx_ring->next_to_use = i;
4125
4126 return true;
4127 }
4128 return false;
4129 }
4130
4131 #define IGB_MAX_TXD_PWR 16
4132 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
4133
4134 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
4135 unsigned int first)
4136 {
4137 struct igb_buffer *buffer_info;
4138 struct device *dev = tx_ring->dev;
4139 unsigned int hlen = skb_headlen(skb);
4140 unsigned int count = 0, i;
4141 unsigned int f;
4142 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
4143
4144 i = tx_ring->next_to_use;
4145
4146 buffer_info = &tx_ring->buffer_info[i];
4147 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
4148 buffer_info->length = hlen;
4149 /* set time_stamp *before* dma to help avoid a possible race */
4150 buffer_info->time_stamp = jiffies;
4151 buffer_info->next_to_watch = i;
4152 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
4153 DMA_TO_DEVICE);
4154 if (dma_mapping_error(dev, buffer_info->dma))
4155 goto dma_error;
4156
4157 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
4158 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
4159 unsigned int len = frag->size;
4160
4161 count++;
4162 i++;
4163 if (i == tx_ring->count)
4164 i = 0;
4165
4166 buffer_info = &tx_ring->buffer_info[i];
4167 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
4168 buffer_info->length = len;
4169 buffer_info->time_stamp = jiffies;
4170 buffer_info->next_to_watch = i;
4171 buffer_info->mapped_as_page = true;
4172 buffer_info->dma = skb_frag_dma_map(dev, frag, 0, len,
4173 DMA_TO_DEVICE);
4174 if (dma_mapping_error(dev, buffer_info->dma))
4175 goto dma_error;
4176
4177 }
4178
4179 tx_ring->buffer_info[i].skb = skb;
4180 tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
4181 /* multiply data chunks by size of headers */
4182 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
4183 tx_ring->buffer_info[i].gso_segs = gso_segs;
4184 tx_ring->buffer_info[first].next_to_watch = i;
4185
4186 return ++count;
4187
4188 dma_error:
4189 dev_err(dev, "TX DMA map failed\n");
4190
4191 /* clear timestamp and dma mappings for failed buffer_info mapping */
4192 buffer_info->dma = 0;
4193 buffer_info->time_stamp = 0;
4194 buffer_info->length = 0;
4195 buffer_info->next_to_watch = 0;
4196 buffer_info->mapped_as_page = false;
4197
4198 /* clear timestamp and dma mappings for remaining portion of packet */
4199 while (count--) {
4200 if (i == 0)
4201 i = tx_ring->count;
4202 i--;
4203 buffer_info = &tx_ring->buffer_info[i];
4204 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4205 }
4206
4207 return 0;
4208 }
4209
4210 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
4211 u32 tx_flags, int count, u32 paylen,
4212 u8 hdr_len)
4213 {
4214 union e1000_adv_tx_desc *tx_desc;
4215 struct igb_buffer *buffer_info;
4216 u32 olinfo_status = 0, cmd_type_len;
4217 unsigned int i = tx_ring->next_to_use;
4218
4219 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
4220 E1000_ADVTXD_DCMD_DEXT);
4221
4222 if (tx_flags & IGB_TX_FLAGS_VLAN)
4223 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4224
4225 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4226 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4227
4228 if (tx_flags & IGB_TX_FLAGS_TSO) {
4229 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4230
4231 /* insert tcp checksum */
4232 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4233
4234 /* insert ip checksum */
4235 if (tx_flags & IGB_TX_FLAGS_IPV4)
4236 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4237
4238 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4239 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4240 }
4241
4242 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4243 (tx_flags & (IGB_TX_FLAGS_CSUM |
4244 IGB_TX_FLAGS_TSO |
4245 IGB_TX_FLAGS_VLAN)))
4246 olinfo_status |= tx_ring->reg_idx << 4;
4247
4248 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4249
4250 do {
4251 buffer_info = &tx_ring->buffer_info[i];
4252 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4253 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4254 tx_desc->read.cmd_type_len =
4255 cpu_to_le32(cmd_type_len | buffer_info->length);
4256 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4257 count--;
4258 i++;
4259 if (i == tx_ring->count)
4260 i = 0;
4261 } while (count > 0);
4262
4263 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
4264 /* Force memory writes to complete before letting h/w
4265 * know there are new descriptors to fetch. (Only
4266 * applicable for weak-ordered memory model archs,
4267 * such as IA-64). */
4268 wmb();
4269
4270 tx_ring->next_to_use = i;
4271 writel(i, tx_ring->tail);
4272 /* we need this if more than one processor can write to our tail
4273 * at a time, it syncronizes IO on IA64/Altix systems */
4274 mmiowb();
4275 }
4276
4277 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4278 {
4279 struct net_device *netdev = tx_ring->netdev;
4280
4281 netif_stop_subqueue(netdev, tx_ring->queue_index);
4282
4283 /* Herbert's original patch had:
4284 * smp_mb__after_netif_stop_queue();
4285 * but since that doesn't exist yet, just open code it. */
4286 smp_mb();
4287
4288 /* We need to check again in a case another CPU has just
4289 * made room available. */
4290 if (igb_desc_unused(tx_ring) < size)
4291 return -EBUSY;
4292
4293 /* A reprieve! */
4294 netif_wake_subqueue(netdev, tx_ring->queue_index);
4295
4296 u64_stats_update_begin(&tx_ring->tx_syncp2);
4297 tx_ring->tx_stats.restart_queue2++;
4298 u64_stats_update_end(&tx_ring->tx_syncp2);
4299
4300 return 0;
4301 }
4302
4303 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4304 {
4305 if (igb_desc_unused(tx_ring) >= size)
4306 return 0;
4307 return __igb_maybe_stop_tx(tx_ring, size);
4308 }
4309
4310 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4311 struct igb_ring *tx_ring)
4312 {
4313 int tso = 0, count;
4314 u32 tx_flags = 0;
4315 u16 first;
4316 u8 hdr_len = 0;
4317
4318 /* need: 1 descriptor per page,
4319 * + 2 desc gap to keep tail from touching head,
4320 * + 1 desc for skb->data,
4321 * + 1 desc for context descriptor,
4322 * otherwise try next time */
4323 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4324 /* this is a hard error */
4325 return NETDEV_TX_BUSY;
4326 }
4327
4328 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4329 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4330 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4331 }
4332
4333 if (vlan_tx_tag_present(skb)) {
4334 tx_flags |= IGB_TX_FLAGS_VLAN;
4335 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4336 }
4337
4338 if (skb->protocol == htons(ETH_P_IP))
4339 tx_flags |= IGB_TX_FLAGS_IPV4;
4340
4341 first = tx_ring->next_to_use;
4342 if (skb_is_gso(skb)) {
4343 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
4344
4345 if (tso < 0) {
4346 dev_kfree_skb_any(skb);
4347 return NETDEV_TX_OK;
4348 }
4349 }
4350
4351 if (tso)
4352 tx_flags |= IGB_TX_FLAGS_TSO;
4353 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
4354 (skb->ip_summed == CHECKSUM_PARTIAL))
4355 tx_flags |= IGB_TX_FLAGS_CSUM;
4356
4357 /*
4358 * count reflects descriptors mapped, if 0 or less then mapping error
4359 * has occurred and we need to rewind the descriptor queue
4360 */
4361 count = igb_tx_map_adv(tx_ring, skb, first);
4362 if (!count) {
4363 dev_kfree_skb_any(skb);
4364 tx_ring->buffer_info[first].time_stamp = 0;
4365 tx_ring->next_to_use = first;
4366 return NETDEV_TX_OK;
4367 }
4368
4369 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4370
4371 /* Make sure there is space in the ring for the next send. */
4372 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4373
4374 return NETDEV_TX_OK;
4375 }
4376
4377 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4378 struct net_device *netdev)
4379 {
4380 struct igb_adapter *adapter = netdev_priv(netdev);
4381 struct igb_ring *tx_ring;
4382 int r_idx = 0;
4383
4384 if (test_bit(__IGB_DOWN, &adapter->state)) {
4385 dev_kfree_skb_any(skb);
4386 return NETDEV_TX_OK;
4387 }
4388
4389 if (skb->len <= 0) {
4390 dev_kfree_skb_any(skb);
4391 return NETDEV_TX_OK;
4392 }
4393
4394 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
4395 tx_ring = adapter->multi_tx_table[r_idx];
4396
4397 /* This goes back to the question of how to logically map a tx queue
4398 * to a flow. Right now, performance is impacted slightly negatively
4399 * if using multiple tx queues. If the stack breaks away from a
4400 * single qdisc implementation, we can look at this again. */
4401 return igb_xmit_frame_ring_adv(skb, tx_ring);
4402 }
4403
4404 /**
4405 * igb_tx_timeout - Respond to a Tx Hang
4406 * @netdev: network interface device structure
4407 **/
4408 static void igb_tx_timeout(struct net_device *netdev)
4409 {
4410 struct igb_adapter *adapter = netdev_priv(netdev);
4411 struct e1000_hw *hw = &adapter->hw;
4412
4413 /* Do the reset outside of interrupt context */
4414 adapter->tx_timeout_count++;
4415
4416 if (hw->mac.type == e1000_82580)
4417 hw->dev_spec._82575.global_device_reset = true;
4418
4419 schedule_work(&adapter->reset_task);
4420 wr32(E1000_EICS,
4421 (adapter->eims_enable_mask & ~adapter->eims_other));
4422 }
4423
4424 static void igb_reset_task(struct work_struct *work)
4425 {
4426 struct igb_adapter *adapter;
4427 adapter = container_of(work, struct igb_adapter, reset_task);
4428
4429 igb_dump(adapter);
4430 netdev_err(adapter->netdev, "Reset adapter\n");
4431 igb_reinit_locked(adapter);
4432 }
4433
4434 /**
4435 * igb_get_stats64 - Get System Network Statistics
4436 * @netdev: network interface device structure
4437 * @stats: rtnl_link_stats64 pointer
4438 *
4439 **/
4440 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4441 struct rtnl_link_stats64 *stats)
4442 {
4443 struct igb_adapter *adapter = netdev_priv(netdev);
4444
4445 spin_lock(&adapter->stats64_lock);
4446 igb_update_stats(adapter, &adapter->stats64);
4447 memcpy(stats, &adapter->stats64, sizeof(*stats));
4448 spin_unlock(&adapter->stats64_lock);
4449
4450 return stats;
4451 }
4452
4453 /**
4454 * igb_change_mtu - Change the Maximum Transfer Unit
4455 * @netdev: network interface device structure
4456 * @new_mtu: new value for maximum frame size
4457 *
4458 * Returns 0 on success, negative on failure
4459 **/
4460 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4461 {
4462 struct igb_adapter *adapter = netdev_priv(netdev);
4463 struct pci_dev *pdev = adapter->pdev;
4464 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4465 u32 rx_buffer_len, i;
4466
4467 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4468 dev_err(&pdev->dev, "Invalid MTU setting\n");
4469 return -EINVAL;
4470 }
4471
4472 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4473 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4474 return -EINVAL;
4475 }
4476
4477 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4478 msleep(1);
4479
4480 /* igb_down has a dependency on max_frame_size */
4481 adapter->max_frame_size = max_frame;
4482
4483 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4484 * means we reserve 2 more, this pushes us to allocate from the next
4485 * larger slab size.
4486 * i.e. RXBUFFER_2048 --> size-4096 slab
4487 */
4488
4489 if (adapter->hw.mac.type == e1000_82580)
4490 max_frame += IGB_TS_HDR_LEN;
4491
4492 if (max_frame <= IGB_RXBUFFER_1024)
4493 rx_buffer_len = IGB_RXBUFFER_1024;
4494 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4495 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
4496 else
4497 rx_buffer_len = IGB_RXBUFFER_128;
4498
4499 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4500 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4501 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4502
4503 if ((adapter->hw.mac.type == e1000_82580) &&
4504 (rx_buffer_len == IGB_RXBUFFER_128))
4505 rx_buffer_len += IGB_RXBUFFER_64;
4506
4507 if (netif_running(netdev))
4508 igb_down(adapter);
4509
4510 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4511 netdev->mtu, new_mtu);
4512 netdev->mtu = new_mtu;
4513
4514 for (i = 0; i < adapter->num_rx_queues; i++)
4515 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4516
4517 if (netif_running(netdev))
4518 igb_up(adapter);
4519 else
4520 igb_reset(adapter);
4521
4522 clear_bit(__IGB_RESETTING, &adapter->state);
4523
4524 return 0;
4525 }
4526
4527 /**
4528 * igb_update_stats - Update the board statistics counters
4529 * @adapter: board private structure
4530 **/
4531
4532 void igb_update_stats(struct igb_adapter *adapter,
4533 struct rtnl_link_stats64 *net_stats)
4534 {
4535 struct e1000_hw *hw = &adapter->hw;
4536 struct pci_dev *pdev = adapter->pdev;
4537 u32 reg, mpc;
4538 u16 phy_tmp;
4539 int i;
4540 u64 bytes, packets;
4541 unsigned int start;
4542 u64 _bytes, _packets;
4543
4544 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4545
4546 /*
4547 * Prevent stats update while adapter is being reset, or if the pci
4548 * connection is down.
4549 */
4550 if (adapter->link_speed == 0)
4551 return;
4552 if (pci_channel_offline(pdev))
4553 return;
4554
4555 bytes = 0;
4556 packets = 0;
4557 for (i = 0; i < adapter->num_rx_queues; i++) {
4558 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4559 struct igb_ring *ring = adapter->rx_ring[i];
4560
4561 ring->rx_stats.drops += rqdpc_tmp;
4562 net_stats->rx_fifo_errors += rqdpc_tmp;
4563
4564 do {
4565 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4566 _bytes = ring->rx_stats.bytes;
4567 _packets = ring->rx_stats.packets;
4568 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4569 bytes += _bytes;
4570 packets += _packets;
4571 }
4572
4573 net_stats->rx_bytes = bytes;
4574 net_stats->rx_packets = packets;
4575
4576 bytes = 0;
4577 packets = 0;
4578 for (i = 0; i < adapter->num_tx_queues; i++) {
4579 struct igb_ring *ring = adapter->tx_ring[i];
4580 do {
4581 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4582 _bytes = ring->tx_stats.bytes;
4583 _packets = ring->tx_stats.packets;
4584 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4585 bytes += _bytes;
4586 packets += _packets;
4587 }
4588 net_stats->tx_bytes = bytes;
4589 net_stats->tx_packets = packets;
4590
4591 /* read stats registers */
4592 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4593 adapter->stats.gprc += rd32(E1000_GPRC);
4594 adapter->stats.gorc += rd32(E1000_GORCL);
4595 rd32(E1000_GORCH); /* clear GORCL */
4596 adapter->stats.bprc += rd32(E1000_BPRC);
4597 adapter->stats.mprc += rd32(E1000_MPRC);
4598 adapter->stats.roc += rd32(E1000_ROC);
4599
4600 adapter->stats.prc64 += rd32(E1000_PRC64);
4601 adapter->stats.prc127 += rd32(E1000_PRC127);
4602 adapter->stats.prc255 += rd32(E1000_PRC255);
4603 adapter->stats.prc511 += rd32(E1000_PRC511);
4604 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4605 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4606 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4607 adapter->stats.sec += rd32(E1000_SEC);
4608
4609 mpc = rd32(E1000_MPC);
4610 adapter->stats.mpc += mpc;
4611 net_stats->rx_fifo_errors += mpc;
4612 adapter->stats.scc += rd32(E1000_SCC);
4613 adapter->stats.ecol += rd32(E1000_ECOL);
4614 adapter->stats.mcc += rd32(E1000_MCC);
4615 adapter->stats.latecol += rd32(E1000_LATECOL);
4616 adapter->stats.dc += rd32(E1000_DC);
4617 adapter->stats.rlec += rd32(E1000_RLEC);
4618 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4619 adapter->stats.xontxc += rd32(E1000_XONTXC);
4620 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4621 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4622 adapter->stats.fcruc += rd32(E1000_FCRUC);
4623 adapter->stats.gptc += rd32(E1000_GPTC);
4624 adapter->stats.gotc += rd32(E1000_GOTCL);
4625 rd32(E1000_GOTCH); /* clear GOTCL */
4626 adapter->stats.rnbc += rd32(E1000_RNBC);
4627 adapter->stats.ruc += rd32(E1000_RUC);
4628 adapter->stats.rfc += rd32(E1000_RFC);
4629 adapter->stats.rjc += rd32(E1000_RJC);
4630 adapter->stats.tor += rd32(E1000_TORH);
4631 adapter->stats.tot += rd32(E1000_TOTH);
4632 adapter->stats.tpr += rd32(E1000_TPR);
4633
4634 adapter->stats.ptc64 += rd32(E1000_PTC64);
4635 adapter->stats.ptc127 += rd32(E1000_PTC127);
4636 adapter->stats.ptc255 += rd32(E1000_PTC255);
4637 adapter->stats.ptc511 += rd32(E1000_PTC511);
4638 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4639 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4640
4641 adapter->stats.mptc += rd32(E1000_MPTC);
4642 adapter->stats.bptc += rd32(E1000_BPTC);
4643
4644 adapter->stats.tpt += rd32(E1000_TPT);
4645 adapter->stats.colc += rd32(E1000_COLC);
4646
4647 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4648 /* read internal phy specific stats */
4649 reg = rd32(E1000_CTRL_EXT);
4650 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4651 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4652 adapter->stats.tncrs += rd32(E1000_TNCRS);
4653 }
4654
4655 adapter->stats.tsctc += rd32(E1000_TSCTC);
4656 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4657
4658 adapter->stats.iac += rd32(E1000_IAC);
4659 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4660 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4661 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4662 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4663 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4664 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4665 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4666 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4667
4668 /* Fill out the OS statistics structure */
4669 net_stats->multicast = adapter->stats.mprc;
4670 net_stats->collisions = adapter->stats.colc;
4671
4672 /* Rx Errors */
4673
4674 /* RLEC on some newer hardware can be incorrect so build
4675 * our own version based on RUC and ROC */
4676 net_stats->rx_errors = adapter->stats.rxerrc +
4677 adapter->stats.crcerrs + adapter->stats.algnerrc +
4678 adapter->stats.ruc + adapter->stats.roc +
4679 adapter->stats.cexterr;
4680 net_stats->rx_length_errors = adapter->stats.ruc +
4681 adapter->stats.roc;
4682 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4683 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4684 net_stats->rx_missed_errors = adapter->stats.mpc;
4685
4686 /* Tx Errors */
4687 net_stats->tx_errors = adapter->stats.ecol +
4688 adapter->stats.latecol;
4689 net_stats->tx_aborted_errors = adapter->stats.ecol;
4690 net_stats->tx_window_errors = adapter->stats.latecol;
4691 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4692
4693 /* Tx Dropped needs to be maintained elsewhere */
4694
4695 /* Phy Stats */
4696 if (hw->phy.media_type == e1000_media_type_copper) {
4697 if ((adapter->link_speed == SPEED_1000) &&
4698 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4699 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4700 adapter->phy_stats.idle_errors += phy_tmp;
4701 }
4702 }
4703
4704 /* Management Stats */
4705 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4706 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4707 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4708
4709 /* OS2BMC Stats */
4710 reg = rd32(E1000_MANC);
4711 if (reg & E1000_MANC_EN_BMC2OS) {
4712 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4713 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4714 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4715 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4716 }
4717 }
4718
4719 static irqreturn_t igb_msix_other(int irq, void *data)
4720 {
4721 struct igb_adapter *adapter = data;
4722 struct e1000_hw *hw = &adapter->hw;
4723 u32 icr = rd32(E1000_ICR);
4724 /* reading ICR causes bit 31 of EICR to be cleared */
4725
4726 if (icr & E1000_ICR_DRSTA)
4727 schedule_work(&adapter->reset_task);
4728
4729 if (icr & E1000_ICR_DOUTSYNC) {
4730 /* HW is reporting DMA is out of sync */
4731 adapter->stats.doosync++;
4732 /* The DMA Out of Sync is also indication of a spoof event
4733 * in IOV mode. Check the Wrong VM Behavior register to
4734 * see if it is really a spoof event. */
4735 igb_check_wvbr(adapter);
4736 }
4737
4738 /* Check for a mailbox event */
4739 if (icr & E1000_ICR_VMMB)
4740 igb_msg_task(adapter);
4741
4742 if (icr & E1000_ICR_LSC) {
4743 hw->mac.get_link_status = 1;
4744 /* guard against interrupt when we're going down */
4745 if (!test_bit(__IGB_DOWN, &adapter->state))
4746 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4747 }
4748
4749 if (adapter->vfs_allocated_count)
4750 wr32(E1000_IMS, E1000_IMS_LSC |
4751 E1000_IMS_VMMB |
4752 E1000_IMS_DOUTSYNC);
4753 else
4754 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4755 wr32(E1000_EIMS, adapter->eims_other);
4756
4757 return IRQ_HANDLED;
4758 }
4759
4760 static void igb_write_itr(struct igb_q_vector *q_vector)
4761 {
4762 struct igb_adapter *adapter = q_vector->adapter;
4763 u32 itr_val = q_vector->itr_val & 0x7FFC;
4764
4765 if (!q_vector->set_itr)
4766 return;
4767
4768 if (!itr_val)
4769 itr_val = 0x4;
4770
4771 if (adapter->hw.mac.type == e1000_82575)
4772 itr_val |= itr_val << 16;
4773 else
4774 itr_val |= 0x8000000;
4775
4776 writel(itr_val, q_vector->itr_register);
4777 q_vector->set_itr = 0;
4778 }
4779
4780 static irqreturn_t igb_msix_ring(int irq, void *data)
4781 {
4782 struct igb_q_vector *q_vector = data;
4783
4784 /* Write the ITR value calculated from the previous interrupt. */
4785 igb_write_itr(q_vector);
4786
4787 napi_schedule(&q_vector->napi);
4788
4789 return IRQ_HANDLED;
4790 }
4791
4792 #ifdef CONFIG_IGB_DCA
4793 static void igb_update_dca(struct igb_q_vector *q_vector)
4794 {
4795 struct igb_adapter *adapter = q_vector->adapter;
4796 struct e1000_hw *hw = &adapter->hw;
4797 int cpu = get_cpu();
4798
4799 if (q_vector->cpu == cpu)
4800 goto out_no_update;
4801
4802 if (q_vector->tx_ring) {
4803 int q = q_vector->tx_ring->reg_idx;
4804 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4805 if (hw->mac.type == e1000_82575) {
4806 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4807 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4808 } else {
4809 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4810 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4811 E1000_DCA_TXCTRL_CPUID_SHIFT;
4812 }
4813 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4814 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4815 }
4816 if (q_vector->rx_ring) {
4817 int q = q_vector->rx_ring->reg_idx;
4818 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4819 if (hw->mac.type == e1000_82575) {
4820 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4821 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4822 } else {
4823 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4824 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4825 E1000_DCA_RXCTRL_CPUID_SHIFT;
4826 }
4827 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4828 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4829 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4830 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4831 }
4832 q_vector->cpu = cpu;
4833 out_no_update:
4834 put_cpu();
4835 }
4836
4837 static void igb_setup_dca(struct igb_adapter *adapter)
4838 {
4839 struct e1000_hw *hw = &adapter->hw;
4840 int i;
4841
4842 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4843 return;
4844
4845 /* Always use CB2 mode, difference is masked in the CB driver. */
4846 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4847
4848 for (i = 0; i < adapter->num_q_vectors; i++) {
4849 adapter->q_vector[i]->cpu = -1;
4850 igb_update_dca(adapter->q_vector[i]);
4851 }
4852 }
4853
4854 static int __igb_notify_dca(struct device *dev, void *data)
4855 {
4856 struct net_device *netdev = dev_get_drvdata(dev);
4857 struct igb_adapter *adapter = netdev_priv(netdev);
4858 struct pci_dev *pdev = adapter->pdev;
4859 struct e1000_hw *hw = &adapter->hw;
4860 unsigned long event = *(unsigned long *)data;
4861
4862 switch (event) {
4863 case DCA_PROVIDER_ADD:
4864 /* if already enabled, don't do it again */
4865 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4866 break;
4867 if (dca_add_requester(dev) == 0) {
4868 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4869 dev_info(&pdev->dev, "DCA enabled\n");
4870 igb_setup_dca(adapter);
4871 break;
4872 }
4873 /* Fall Through since DCA is disabled. */
4874 case DCA_PROVIDER_REMOVE:
4875 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4876 /* without this a class_device is left
4877 * hanging around in the sysfs model */
4878 dca_remove_requester(dev);
4879 dev_info(&pdev->dev, "DCA disabled\n");
4880 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4881 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4882 }
4883 break;
4884 }
4885
4886 return 0;
4887 }
4888
4889 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4890 void *p)
4891 {
4892 int ret_val;
4893
4894 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4895 __igb_notify_dca);
4896
4897 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4898 }
4899 #endif /* CONFIG_IGB_DCA */
4900
4901 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4902 {
4903 struct e1000_hw *hw = &adapter->hw;
4904 u32 ping;
4905 int i;
4906
4907 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4908 ping = E1000_PF_CONTROL_MSG;
4909 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4910 ping |= E1000_VT_MSGTYPE_CTS;
4911 igb_write_mbx(hw, &ping, 1, i);
4912 }
4913 }
4914
4915 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4916 {
4917 struct e1000_hw *hw = &adapter->hw;
4918 u32 vmolr = rd32(E1000_VMOLR(vf));
4919 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4920
4921 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
4922 IGB_VF_FLAG_MULTI_PROMISC);
4923 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4924
4925 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4926 vmolr |= E1000_VMOLR_MPME;
4927 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
4928 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4929 } else {
4930 /*
4931 * if we have hashes and we are clearing a multicast promisc
4932 * flag we need to write the hashes to the MTA as this step
4933 * was previously skipped
4934 */
4935 if (vf_data->num_vf_mc_hashes > 30) {
4936 vmolr |= E1000_VMOLR_MPME;
4937 } else if (vf_data->num_vf_mc_hashes) {
4938 int j;
4939 vmolr |= E1000_VMOLR_ROMPE;
4940 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4941 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4942 }
4943 }
4944
4945 wr32(E1000_VMOLR(vf), vmolr);
4946
4947 /* there are flags left unprocessed, likely not supported */
4948 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4949 return -EINVAL;
4950
4951 return 0;
4952
4953 }
4954
4955 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4956 u32 *msgbuf, u32 vf)
4957 {
4958 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4959 u16 *hash_list = (u16 *)&msgbuf[1];
4960 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4961 int i;
4962
4963 /* salt away the number of multicast addresses assigned
4964 * to this VF for later use to restore when the PF multi cast
4965 * list changes
4966 */
4967 vf_data->num_vf_mc_hashes = n;
4968
4969 /* only up to 30 hash values supported */
4970 if (n > 30)
4971 n = 30;
4972
4973 /* store the hashes for later use */
4974 for (i = 0; i < n; i++)
4975 vf_data->vf_mc_hashes[i] = hash_list[i];
4976
4977 /* Flush and reset the mta with the new values */
4978 igb_set_rx_mode(adapter->netdev);
4979
4980 return 0;
4981 }
4982
4983 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4984 {
4985 struct e1000_hw *hw = &adapter->hw;
4986 struct vf_data_storage *vf_data;
4987 int i, j;
4988
4989 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4990 u32 vmolr = rd32(E1000_VMOLR(i));
4991 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4992
4993 vf_data = &adapter->vf_data[i];
4994
4995 if ((vf_data->num_vf_mc_hashes > 30) ||
4996 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4997 vmolr |= E1000_VMOLR_MPME;
4998 } else if (vf_data->num_vf_mc_hashes) {
4999 vmolr |= E1000_VMOLR_ROMPE;
5000 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5001 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5002 }
5003 wr32(E1000_VMOLR(i), vmolr);
5004 }
5005 }
5006
5007 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5008 {
5009 struct e1000_hw *hw = &adapter->hw;
5010 u32 pool_mask, reg, vid;
5011 int i;
5012
5013 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5014
5015 /* Find the vlan filter for this id */
5016 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5017 reg = rd32(E1000_VLVF(i));
5018
5019 /* remove the vf from the pool */
5020 reg &= ~pool_mask;
5021
5022 /* if pool is empty then remove entry from vfta */
5023 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5024 (reg & E1000_VLVF_VLANID_ENABLE)) {
5025 reg = 0;
5026 vid = reg & E1000_VLVF_VLANID_MASK;
5027 igb_vfta_set(hw, vid, false);
5028 }
5029
5030 wr32(E1000_VLVF(i), reg);
5031 }
5032
5033 adapter->vf_data[vf].vlans_enabled = 0;
5034 }
5035
5036 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5037 {
5038 struct e1000_hw *hw = &adapter->hw;
5039 u32 reg, i;
5040
5041 /* The vlvf table only exists on 82576 hardware and newer */
5042 if (hw->mac.type < e1000_82576)
5043 return -1;
5044
5045 /* we only need to do this if VMDq is enabled */
5046 if (!adapter->vfs_allocated_count)
5047 return -1;
5048
5049 /* Find the vlan filter for this id */
5050 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5051 reg = rd32(E1000_VLVF(i));
5052 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5053 vid == (reg & E1000_VLVF_VLANID_MASK))
5054 break;
5055 }
5056
5057 if (add) {
5058 if (i == E1000_VLVF_ARRAY_SIZE) {
5059 /* Did not find a matching VLAN ID entry that was
5060 * enabled. Search for a free filter entry, i.e.
5061 * one without the enable bit set
5062 */
5063 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5064 reg = rd32(E1000_VLVF(i));
5065 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5066 break;
5067 }
5068 }
5069 if (i < E1000_VLVF_ARRAY_SIZE) {
5070 /* Found an enabled/available entry */
5071 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5072
5073 /* if !enabled we need to set this up in vfta */
5074 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5075 /* add VID to filter table */
5076 igb_vfta_set(hw, vid, true);
5077 reg |= E1000_VLVF_VLANID_ENABLE;
5078 }
5079 reg &= ~E1000_VLVF_VLANID_MASK;
5080 reg |= vid;
5081 wr32(E1000_VLVF(i), reg);
5082
5083 /* do not modify RLPML for PF devices */
5084 if (vf >= adapter->vfs_allocated_count)
5085 return 0;
5086
5087 if (!adapter->vf_data[vf].vlans_enabled) {
5088 u32 size;
5089 reg = rd32(E1000_VMOLR(vf));
5090 size = reg & E1000_VMOLR_RLPML_MASK;
5091 size += 4;
5092 reg &= ~E1000_VMOLR_RLPML_MASK;
5093 reg |= size;
5094 wr32(E1000_VMOLR(vf), reg);
5095 }
5096
5097 adapter->vf_data[vf].vlans_enabled++;
5098 return 0;
5099 }
5100 } else {
5101 if (i < E1000_VLVF_ARRAY_SIZE) {
5102 /* remove vf from the pool */
5103 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5104 /* if pool is empty then remove entry from vfta */
5105 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5106 reg = 0;
5107 igb_vfta_set(hw, vid, false);
5108 }
5109 wr32(E1000_VLVF(i), reg);
5110
5111 /* do not modify RLPML for PF devices */
5112 if (vf >= adapter->vfs_allocated_count)
5113 return 0;
5114
5115 adapter->vf_data[vf].vlans_enabled--;
5116 if (!adapter->vf_data[vf].vlans_enabled) {
5117 u32 size;
5118 reg = rd32(E1000_VMOLR(vf));
5119 size = reg & E1000_VMOLR_RLPML_MASK;
5120 size -= 4;
5121 reg &= ~E1000_VMOLR_RLPML_MASK;
5122 reg |= size;
5123 wr32(E1000_VMOLR(vf), reg);
5124 }
5125 }
5126 }
5127 return 0;
5128 }
5129
5130 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5131 {
5132 struct e1000_hw *hw = &adapter->hw;
5133
5134 if (vid)
5135 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5136 else
5137 wr32(E1000_VMVIR(vf), 0);
5138 }
5139
5140 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5141 int vf, u16 vlan, u8 qos)
5142 {
5143 int err = 0;
5144 struct igb_adapter *adapter = netdev_priv(netdev);
5145
5146 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5147 return -EINVAL;
5148 if (vlan || qos) {
5149 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5150 if (err)
5151 goto out;
5152 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5153 igb_set_vmolr(adapter, vf, !vlan);
5154 adapter->vf_data[vf].pf_vlan = vlan;
5155 adapter->vf_data[vf].pf_qos = qos;
5156 dev_info(&adapter->pdev->dev,
5157 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5158 if (test_bit(__IGB_DOWN, &adapter->state)) {
5159 dev_warn(&adapter->pdev->dev,
5160 "The VF VLAN has been set,"
5161 " but the PF device is not up.\n");
5162 dev_warn(&adapter->pdev->dev,
5163 "Bring the PF device up before"
5164 " attempting to use the VF device.\n");
5165 }
5166 } else {
5167 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5168 false, vf);
5169 igb_set_vmvir(adapter, vlan, vf);
5170 igb_set_vmolr(adapter, vf, true);
5171 adapter->vf_data[vf].pf_vlan = 0;
5172 adapter->vf_data[vf].pf_qos = 0;
5173 }
5174 out:
5175 return err;
5176 }
5177
5178 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5179 {
5180 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5181 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5182
5183 return igb_vlvf_set(adapter, vid, add, vf);
5184 }
5185
5186 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5187 {
5188 /* clear flags - except flag that indicates PF has set the MAC */
5189 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5190 adapter->vf_data[vf].last_nack = jiffies;
5191
5192 /* reset offloads to defaults */
5193 igb_set_vmolr(adapter, vf, true);
5194
5195 /* reset vlans for device */
5196 igb_clear_vf_vfta(adapter, vf);
5197 if (adapter->vf_data[vf].pf_vlan)
5198 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5199 adapter->vf_data[vf].pf_vlan,
5200 adapter->vf_data[vf].pf_qos);
5201 else
5202 igb_clear_vf_vfta(adapter, vf);
5203
5204 /* reset multicast table array for vf */
5205 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5206
5207 /* Flush and reset the mta with the new values */
5208 igb_set_rx_mode(adapter->netdev);
5209 }
5210
5211 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5212 {
5213 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5214
5215 /* generate a new mac address as we were hotplug removed/added */
5216 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5217 random_ether_addr(vf_mac);
5218
5219 /* process remaining reset events */
5220 igb_vf_reset(adapter, vf);
5221 }
5222
5223 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5224 {
5225 struct e1000_hw *hw = &adapter->hw;
5226 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5227 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5228 u32 reg, msgbuf[3];
5229 u8 *addr = (u8 *)(&msgbuf[1]);
5230
5231 /* process all the same items cleared in a function level reset */
5232 igb_vf_reset(adapter, vf);
5233
5234 /* set vf mac address */
5235 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5236
5237 /* enable transmit and receive for vf */
5238 reg = rd32(E1000_VFTE);
5239 wr32(E1000_VFTE, reg | (1 << vf));
5240 reg = rd32(E1000_VFRE);
5241 wr32(E1000_VFRE, reg | (1 << vf));
5242
5243 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5244
5245 /* reply to reset with ack and vf mac address */
5246 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5247 memcpy(addr, vf_mac, 6);
5248 igb_write_mbx(hw, msgbuf, 3, vf);
5249 }
5250
5251 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5252 {
5253 /*
5254 * The VF MAC Address is stored in a packed array of bytes
5255 * starting at the second 32 bit word of the msg array
5256 */
5257 unsigned char *addr = (char *)&msg[1];
5258 int err = -1;
5259
5260 if (is_valid_ether_addr(addr))
5261 err = igb_set_vf_mac(adapter, vf, addr);
5262
5263 return err;
5264 }
5265
5266 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5267 {
5268 struct e1000_hw *hw = &adapter->hw;
5269 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5270 u32 msg = E1000_VT_MSGTYPE_NACK;
5271
5272 /* if device isn't clear to send it shouldn't be reading either */
5273 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5274 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5275 igb_write_mbx(hw, &msg, 1, vf);
5276 vf_data->last_nack = jiffies;
5277 }
5278 }
5279
5280 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5281 {
5282 struct pci_dev *pdev = adapter->pdev;
5283 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5284 struct e1000_hw *hw = &adapter->hw;
5285 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5286 s32 retval;
5287
5288 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5289
5290 if (retval) {
5291 /* if receive failed revoke VF CTS stats and restart init */
5292 dev_err(&pdev->dev, "Error receiving message from VF\n");
5293 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5294 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5295 return;
5296 goto out;
5297 }
5298
5299 /* this is a message we already processed, do nothing */
5300 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5301 return;
5302
5303 /*
5304 * until the vf completes a reset it should not be
5305 * allowed to start any configuration.
5306 */
5307
5308 if (msgbuf[0] == E1000_VF_RESET) {
5309 igb_vf_reset_msg(adapter, vf);
5310 return;
5311 }
5312
5313 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5314 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5315 return;
5316 retval = -1;
5317 goto out;
5318 }
5319
5320 switch ((msgbuf[0] & 0xFFFF)) {
5321 case E1000_VF_SET_MAC_ADDR:
5322 retval = -EINVAL;
5323 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5324 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5325 else
5326 dev_warn(&pdev->dev,
5327 "VF %d attempted to override administratively "
5328 "set MAC address\nReload the VF driver to "
5329 "resume operations\n", vf);
5330 break;
5331 case E1000_VF_SET_PROMISC:
5332 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5333 break;
5334 case E1000_VF_SET_MULTICAST:
5335 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5336 break;
5337 case E1000_VF_SET_LPE:
5338 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5339 break;
5340 case E1000_VF_SET_VLAN:
5341 retval = -1;
5342 if (vf_data->pf_vlan)
5343 dev_warn(&pdev->dev,
5344 "VF %d attempted to override administratively "
5345 "set VLAN tag\nReload the VF driver to "
5346 "resume operations\n", vf);
5347 else
5348 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5349 break;
5350 default:
5351 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5352 retval = -1;
5353 break;
5354 }
5355
5356 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5357 out:
5358 /* notify the VF of the results of what it sent us */
5359 if (retval)
5360 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5361 else
5362 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5363
5364 igb_write_mbx(hw, msgbuf, 1, vf);
5365 }
5366
5367 static void igb_msg_task(struct igb_adapter *adapter)
5368 {
5369 struct e1000_hw *hw = &adapter->hw;
5370 u32 vf;
5371
5372 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5373 /* process any reset requests */
5374 if (!igb_check_for_rst(hw, vf))
5375 igb_vf_reset_event(adapter, vf);
5376
5377 /* process any messages pending */
5378 if (!igb_check_for_msg(hw, vf))
5379 igb_rcv_msg_from_vf(adapter, vf);
5380
5381 /* process any acks */
5382 if (!igb_check_for_ack(hw, vf))
5383 igb_rcv_ack_from_vf(adapter, vf);
5384 }
5385 }
5386
5387 /**
5388 * igb_set_uta - Set unicast filter table address
5389 * @adapter: board private structure
5390 *
5391 * The unicast table address is a register array of 32-bit registers.
5392 * The table is meant to be used in a way similar to how the MTA is used
5393 * however due to certain limitations in the hardware it is necessary to
5394 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5395 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
5396 **/
5397 static void igb_set_uta(struct igb_adapter *adapter)
5398 {
5399 struct e1000_hw *hw = &adapter->hw;
5400 int i;
5401
5402 /* The UTA table only exists on 82576 hardware and newer */
5403 if (hw->mac.type < e1000_82576)
5404 return;
5405
5406 /* we only need to do this if VMDq is enabled */
5407 if (!adapter->vfs_allocated_count)
5408 return;
5409
5410 for (i = 0; i < hw->mac.uta_reg_count; i++)
5411 array_wr32(E1000_UTA, i, ~0);
5412 }
5413
5414 /**
5415 * igb_intr_msi - Interrupt Handler
5416 * @irq: interrupt number
5417 * @data: pointer to a network interface device structure
5418 **/
5419 static irqreturn_t igb_intr_msi(int irq, void *data)
5420 {
5421 struct igb_adapter *adapter = data;
5422 struct igb_q_vector *q_vector = adapter->q_vector[0];
5423 struct e1000_hw *hw = &adapter->hw;
5424 /* read ICR disables interrupts using IAM */
5425 u32 icr = rd32(E1000_ICR);
5426
5427 igb_write_itr(q_vector);
5428
5429 if (icr & E1000_ICR_DRSTA)
5430 schedule_work(&adapter->reset_task);
5431
5432 if (icr & E1000_ICR_DOUTSYNC) {
5433 /* HW is reporting DMA is out of sync */
5434 adapter->stats.doosync++;
5435 }
5436
5437 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5438 hw->mac.get_link_status = 1;
5439 if (!test_bit(__IGB_DOWN, &adapter->state))
5440 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5441 }
5442
5443 napi_schedule(&q_vector->napi);
5444
5445 return IRQ_HANDLED;
5446 }
5447
5448 /**
5449 * igb_intr - Legacy Interrupt Handler
5450 * @irq: interrupt number
5451 * @data: pointer to a network interface device structure
5452 **/
5453 static irqreturn_t igb_intr(int irq, void *data)
5454 {
5455 struct igb_adapter *adapter = data;
5456 struct igb_q_vector *q_vector = adapter->q_vector[0];
5457 struct e1000_hw *hw = &adapter->hw;
5458 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5459 * need for the IMC write */
5460 u32 icr = rd32(E1000_ICR);
5461 if (!icr)
5462 return IRQ_NONE; /* Not our interrupt */
5463
5464 igb_write_itr(q_vector);
5465
5466 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5467 * not set, then the adapter didn't send an interrupt */
5468 if (!(icr & E1000_ICR_INT_ASSERTED))
5469 return IRQ_NONE;
5470
5471 if (icr & E1000_ICR_DRSTA)
5472 schedule_work(&adapter->reset_task);
5473
5474 if (icr & E1000_ICR_DOUTSYNC) {
5475 /* HW is reporting DMA is out of sync */
5476 adapter->stats.doosync++;
5477 }
5478
5479 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5480 hw->mac.get_link_status = 1;
5481 /* guard against interrupt when we're going down */
5482 if (!test_bit(__IGB_DOWN, &adapter->state))
5483 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5484 }
5485
5486 napi_schedule(&q_vector->napi);
5487
5488 return IRQ_HANDLED;
5489 }
5490
5491 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5492 {
5493 struct igb_adapter *adapter = q_vector->adapter;
5494 struct e1000_hw *hw = &adapter->hw;
5495
5496 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5497 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
5498 if (!adapter->msix_entries)
5499 igb_set_itr(adapter);
5500 else
5501 igb_update_ring_itr(q_vector);
5502 }
5503
5504 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5505 if (adapter->msix_entries)
5506 wr32(E1000_EIMS, q_vector->eims_value);
5507 else
5508 igb_irq_enable(adapter);
5509 }
5510 }
5511
5512 /**
5513 * igb_poll - NAPI Rx polling callback
5514 * @napi: napi polling structure
5515 * @budget: count of how many packets we should handle
5516 **/
5517 static int igb_poll(struct napi_struct *napi, int budget)
5518 {
5519 struct igb_q_vector *q_vector = container_of(napi,
5520 struct igb_q_vector,
5521 napi);
5522 int tx_clean_complete = 1, work_done = 0;
5523
5524 #ifdef CONFIG_IGB_DCA
5525 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5526 igb_update_dca(q_vector);
5527 #endif
5528 if (q_vector->tx_ring)
5529 tx_clean_complete = igb_clean_tx_irq(q_vector);
5530
5531 if (q_vector->rx_ring)
5532 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5533
5534 if (!tx_clean_complete)
5535 work_done = budget;
5536
5537 /* If not enough Rx work done, exit the polling mode */
5538 if (work_done < budget) {
5539 napi_complete(napi);
5540 igb_ring_irq_enable(q_vector);
5541 }
5542
5543 return work_done;
5544 }
5545
5546 /**
5547 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5548 * @adapter: board private structure
5549 * @shhwtstamps: timestamp structure to update
5550 * @regval: unsigned 64bit system time value.
5551 *
5552 * We need to convert the system time value stored in the RX/TXSTMP registers
5553 * into a hwtstamp which can be used by the upper level timestamping functions
5554 */
5555 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5556 struct skb_shared_hwtstamps *shhwtstamps,
5557 u64 regval)
5558 {
5559 u64 ns;
5560
5561 /*
5562 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5563 * 24 to match clock shift we setup earlier.
5564 */
5565 if (adapter->hw.mac.type == e1000_82580)
5566 regval <<= IGB_82580_TSYNC_SHIFT;
5567
5568 ns = timecounter_cyc2time(&adapter->clock, regval);
5569 timecompare_update(&adapter->compare, ns);
5570 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5571 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5572 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5573 }
5574
5575 /**
5576 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5577 * @q_vector: pointer to q_vector containing needed info
5578 * @buffer: pointer to igb_buffer structure
5579 *
5580 * If we were asked to do hardware stamping and such a time stamp is
5581 * available, then it must have been for this skb here because we only
5582 * allow only one such packet into the queue.
5583 */
5584 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
5585 {
5586 struct igb_adapter *adapter = q_vector->adapter;
5587 struct e1000_hw *hw = &adapter->hw;
5588 struct skb_shared_hwtstamps shhwtstamps;
5589 u64 regval;
5590
5591 /* if skb does not support hw timestamp or TX stamp not valid exit */
5592 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
5593 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5594 return;
5595
5596 regval = rd32(E1000_TXSTMPL);
5597 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5598
5599 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5600 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5601 }
5602
5603 /**
5604 * igb_clean_tx_irq - Reclaim resources after transmit completes
5605 * @q_vector: pointer to q_vector containing needed info
5606 * returns true if ring is completely cleaned
5607 **/
5608 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5609 {
5610 struct igb_adapter *adapter = q_vector->adapter;
5611 struct igb_ring *tx_ring = q_vector->tx_ring;
5612 struct net_device *netdev = tx_ring->netdev;
5613 struct e1000_hw *hw = &adapter->hw;
5614 struct igb_buffer *buffer_info;
5615 union e1000_adv_tx_desc *tx_desc, *eop_desc;
5616 unsigned int total_bytes = 0, total_packets = 0;
5617 unsigned int i, eop, count = 0;
5618 bool cleaned = false;
5619
5620 i = tx_ring->next_to_clean;
5621 eop = tx_ring->buffer_info[i].next_to_watch;
5622 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5623
5624 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5625 (count < tx_ring->count)) {
5626 rmb(); /* read buffer_info after eop_desc status */
5627 for (cleaned = false; !cleaned; count++) {
5628 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
5629 buffer_info = &tx_ring->buffer_info[i];
5630 cleaned = (i == eop);
5631
5632 if (buffer_info->skb) {
5633 total_bytes += buffer_info->bytecount;
5634 /* gso_segs is currently only valid for tcp */
5635 total_packets += buffer_info->gso_segs;
5636 igb_tx_hwtstamp(q_vector, buffer_info);
5637 }
5638
5639 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
5640 tx_desc->wb.status = 0;
5641
5642 i++;
5643 if (i == tx_ring->count)
5644 i = 0;
5645 }
5646 eop = tx_ring->buffer_info[i].next_to_watch;
5647 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5648 }
5649
5650 tx_ring->next_to_clean = i;
5651
5652 if (unlikely(count &&
5653 netif_carrier_ok(netdev) &&
5654 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5655 /* Make sure that anybody stopping the queue after this
5656 * sees the new next_to_clean.
5657 */
5658 smp_mb();
5659 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5660 !(test_bit(__IGB_DOWN, &adapter->state))) {
5661 netif_wake_subqueue(netdev, tx_ring->queue_index);
5662
5663 u64_stats_update_begin(&tx_ring->tx_syncp);
5664 tx_ring->tx_stats.restart_queue++;
5665 u64_stats_update_end(&tx_ring->tx_syncp);
5666 }
5667 }
5668
5669 if (tx_ring->detect_tx_hung) {
5670 /* Detect a transmit hang in hardware, this serializes the
5671 * check with the clearing of time_stamp and movement of i */
5672 tx_ring->detect_tx_hung = false;
5673 if (tx_ring->buffer_info[i].time_stamp &&
5674 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
5675 (adapter->tx_timeout_factor * HZ)) &&
5676 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5677
5678 /* detected Tx unit hang */
5679 dev_err(tx_ring->dev,
5680 "Detected Tx Unit Hang\n"
5681 " Tx Queue <%d>\n"
5682 " TDH <%x>\n"
5683 " TDT <%x>\n"
5684 " next_to_use <%x>\n"
5685 " next_to_clean <%x>\n"
5686 "buffer_info[next_to_clean]\n"
5687 " time_stamp <%lx>\n"
5688 " next_to_watch <%x>\n"
5689 " jiffies <%lx>\n"
5690 " desc.status <%x>\n",
5691 tx_ring->queue_index,
5692 readl(tx_ring->head),
5693 readl(tx_ring->tail),
5694 tx_ring->next_to_use,
5695 tx_ring->next_to_clean,
5696 tx_ring->buffer_info[eop].time_stamp,
5697 eop,
5698 jiffies,
5699 eop_desc->wb.status);
5700 netif_stop_subqueue(netdev, tx_ring->queue_index);
5701 }
5702 }
5703 tx_ring->total_bytes += total_bytes;
5704 tx_ring->total_packets += total_packets;
5705 u64_stats_update_begin(&tx_ring->tx_syncp);
5706 tx_ring->tx_stats.bytes += total_bytes;
5707 tx_ring->tx_stats.packets += total_packets;
5708 u64_stats_update_end(&tx_ring->tx_syncp);
5709 return count < tx_ring->count;
5710 }
5711
5712 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5713 u32 status_err, struct sk_buff *skb)
5714 {
5715 skb_checksum_none_assert(skb);
5716
5717 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5718 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5719 (status_err & E1000_RXD_STAT_IXSM))
5720 return;
5721
5722 /* TCP/UDP checksum error bit is set */
5723 if (status_err &
5724 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5725 /*
5726 * work around errata with sctp packets where the TCPE aka
5727 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5728 * packets, (aka let the stack check the crc32c)
5729 */
5730 if ((skb->len == 60) &&
5731 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
5732 u64_stats_update_begin(&ring->rx_syncp);
5733 ring->rx_stats.csum_err++;
5734 u64_stats_update_end(&ring->rx_syncp);
5735 }
5736 /* let the stack verify checksum errors */
5737 return;
5738 }
5739 /* It must be a TCP or UDP packet with a valid checksum */
5740 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5741 skb->ip_summed = CHECKSUM_UNNECESSARY;
5742
5743 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
5744 }
5745
5746 static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5747 struct sk_buff *skb)
5748 {
5749 struct igb_adapter *adapter = q_vector->adapter;
5750 struct e1000_hw *hw = &adapter->hw;
5751 u64 regval;
5752
5753 /*
5754 * If this bit is set, then the RX registers contain the time stamp. No
5755 * other packet will be time stamped until we read these registers, so
5756 * read the registers to make them available again. Because only one
5757 * packet can be time stamped at a time, we know that the register
5758 * values must belong to this one here and therefore we don't need to
5759 * compare any of the additional attributes stored for it.
5760 *
5761 * If nothing went wrong, then it should have a shared tx_flags that we
5762 * can turn into a skb_shared_hwtstamps.
5763 */
5764 if (staterr & E1000_RXDADV_STAT_TSIP) {
5765 u32 *stamp = (u32 *)skb->data;
5766 regval = le32_to_cpu(*(stamp + 2));
5767 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5768 skb_pull(skb, IGB_TS_HDR_LEN);
5769 } else {
5770 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5771 return;
5772
5773 regval = rd32(E1000_RXSTMPL);
5774 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5775 }
5776
5777 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5778 }
5779 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5780 union e1000_adv_rx_desc *rx_desc)
5781 {
5782 /* HW will not DMA in data larger than the given buffer, even if it
5783 * parses the (NFS, of course) header to be larger. In that case, it
5784 * fills the header buffer and spills the rest into the page.
5785 */
5786 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5787 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5788 if (hlen > rx_ring->rx_buffer_len)
5789 hlen = rx_ring->rx_buffer_len;
5790 return hlen;
5791 }
5792
5793 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5794 int *work_done, int budget)
5795 {
5796 struct igb_ring *rx_ring = q_vector->rx_ring;
5797 struct net_device *netdev = rx_ring->netdev;
5798 struct device *dev = rx_ring->dev;
5799 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5800 struct igb_buffer *buffer_info , *next_buffer;
5801 struct sk_buff *skb;
5802 bool cleaned = false;
5803 int cleaned_count = 0;
5804 int current_node = numa_node_id();
5805 unsigned int total_bytes = 0, total_packets = 0;
5806 unsigned int i;
5807 u32 staterr;
5808 u16 length;
5809
5810 i = rx_ring->next_to_clean;
5811 buffer_info = &rx_ring->buffer_info[i];
5812 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5813 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5814
5815 while (staterr & E1000_RXD_STAT_DD) {
5816 if (*work_done >= budget)
5817 break;
5818 (*work_done)++;
5819 rmb(); /* read descriptor and rx_buffer_info after status DD */
5820
5821 skb = buffer_info->skb;
5822 prefetch(skb->data - NET_IP_ALIGN);
5823 buffer_info->skb = NULL;
5824
5825 i++;
5826 if (i == rx_ring->count)
5827 i = 0;
5828
5829 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5830 prefetch(next_rxd);
5831 next_buffer = &rx_ring->buffer_info[i];
5832
5833 length = le16_to_cpu(rx_desc->wb.upper.length);
5834 cleaned = true;
5835 cleaned_count++;
5836
5837 if (buffer_info->dma) {
5838 dma_unmap_single(dev, buffer_info->dma,
5839 rx_ring->rx_buffer_len,
5840 DMA_FROM_DEVICE);
5841 buffer_info->dma = 0;
5842 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
5843 skb_put(skb, length);
5844 goto send_up;
5845 }
5846 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5847 }
5848
5849 if (length) {
5850 dma_unmap_page(dev, buffer_info->page_dma,
5851 PAGE_SIZE / 2, DMA_FROM_DEVICE);
5852 buffer_info->page_dma = 0;
5853
5854 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5855 buffer_info->page,
5856 buffer_info->page_offset,
5857 length);
5858
5859 if ((page_count(buffer_info->page) != 1) ||
5860 (page_to_nid(buffer_info->page) != current_node))
5861 buffer_info->page = NULL;
5862 else
5863 get_page(buffer_info->page);
5864
5865 skb->len += length;
5866 skb->data_len += length;
5867 skb->truesize += length;
5868 }
5869
5870 if (!(staterr & E1000_RXD_STAT_EOP)) {
5871 buffer_info->skb = next_buffer->skb;
5872 buffer_info->dma = next_buffer->dma;
5873 next_buffer->skb = skb;
5874 next_buffer->dma = 0;
5875 goto next_desc;
5876 }
5877 send_up:
5878 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5879 dev_kfree_skb_irq(skb);
5880 goto next_desc;
5881 }
5882
5883 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5884 igb_rx_hwtstamp(q_vector, staterr, skb);
5885 total_bytes += skb->len;
5886 total_packets++;
5887
5888 igb_rx_checksum_adv(rx_ring, staterr, skb);
5889
5890 skb->protocol = eth_type_trans(skb, netdev);
5891 skb_record_rx_queue(skb, rx_ring->queue_index);
5892
5893 if (staterr & E1000_RXD_STAT_VP) {
5894 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
5895
5896 __vlan_hwaccel_put_tag(skb, vid);
5897 }
5898 napi_gro_receive(&q_vector->napi, skb);
5899
5900 next_desc:
5901 rx_desc->wb.upper.status_error = 0;
5902
5903 /* return some buffers to hardware, one at a time is too slow */
5904 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5905 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5906 cleaned_count = 0;
5907 }
5908
5909 /* use prefetched values */
5910 rx_desc = next_rxd;
5911 buffer_info = next_buffer;
5912 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5913 }
5914
5915 rx_ring->next_to_clean = i;
5916 cleaned_count = igb_desc_unused(rx_ring);
5917
5918 if (cleaned_count)
5919 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5920
5921 rx_ring->total_packets += total_packets;
5922 rx_ring->total_bytes += total_bytes;
5923 u64_stats_update_begin(&rx_ring->rx_syncp);
5924 rx_ring->rx_stats.packets += total_packets;
5925 rx_ring->rx_stats.bytes += total_bytes;
5926 u64_stats_update_end(&rx_ring->rx_syncp);
5927 return cleaned;
5928 }
5929
5930 /**
5931 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5932 * @adapter: address of board private structure
5933 **/
5934 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5935 {
5936 struct net_device *netdev = rx_ring->netdev;
5937 union e1000_adv_rx_desc *rx_desc;
5938 struct igb_buffer *buffer_info;
5939 struct sk_buff *skb;
5940 unsigned int i;
5941 int bufsz;
5942
5943 i = rx_ring->next_to_use;
5944 buffer_info = &rx_ring->buffer_info[i];
5945
5946 bufsz = rx_ring->rx_buffer_len;
5947
5948 while (cleaned_count--) {
5949 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5950
5951 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5952 if (!buffer_info->page) {
5953 buffer_info->page = netdev_alloc_page(netdev);
5954 if (unlikely(!buffer_info->page)) {
5955 u64_stats_update_begin(&rx_ring->rx_syncp);
5956 rx_ring->rx_stats.alloc_failed++;
5957 u64_stats_update_end(&rx_ring->rx_syncp);
5958 goto no_buffers;
5959 }
5960 buffer_info->page_offset = 0;
5961 } else {
5962 buffer_info->page_offset ^= PAGE_SIZE / 2;
5963 }
5964 buffer_info->page_dma =
5965 dma_map_page(rx_ring->dev, buffer_info->page,
5966 buffer_info->page_offset,
5967 PAGE_SIZE / 2,
5968 DMA_FROM_DEVICE);
5969 if (dma_mapping_error(rx_ring->dev,
5970 buffer_info->page_dma)) {
5971 buffer_info->page_dma = 0;
5972 u64_stats_update_begin(&rx_ring->rx_syncp);
5973 rx_ring->rx_stats.alloc_failed++;
5974 u64_stats_update_end(&rx_ring->rx_syncp);
5975 goto no_buffers;
5976 }
5977 }
5978
5979 skb = buffer_info->skb;
5980 if (!skb) {
5981 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5982 if (unlikely(!skb)) {
5983 u64_stats_update_begin(&rx_ring->rx_syncp);
5984 rx_ring->rx_stats.alloc_failed++;
5985 u64_stats_update_end(&rx_ring->rx_syncp);
5986 goto no_buffers;
5987 }
5988
5989 buffer_info->skb = skb;
5990 }
5991 if (!buffer_info->dma) {
5992 buffer_info->dma = dma_map_single(rx_ring->dev,
5993 skb->data,
5994 bufsz,
5995 DMA_FROM_DEVICE);
5996 if (dma_mapping_error(rx_ring->dev,
5997 buffer_info->dma)) {
5998 buffer_info->dma = 0;
5999 u64_stats_update_begin(&rx_ring->rx_syncp);
6000 rx_ring->rx_stats.alloc_failed++;
6001 u64_stats_update_end(&rx_ring->rx_syncp);
6002 goto no_buffers;
6003 }
6004 }
6005 /* Refresh the desc even if buffer_addrs didn't change because
6006 * each write-back erases this info. */
6007 if (bufsz < IGB_RXBUFFER_1024) {
6008 rx_desc->read.pkt_addr =
6009 cpu_to_le64(buffer_info->page_dma);
6010 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
6011 } else {
6012 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
6013 rx_desc->read.hdr_addr = 0;
6014 }
6015
6016 i++;
6017 if (i == rx_ring->count)
6018 i = 0;
6019 buffer_info = &rx_ring->buffer_info[i];
6020 }
6021
6022 no_buffers:
6023 if (rx_ring->next_to_use != i) {
6024 rx_ring->next_to_use = i;
6025 if (i == 0)
6026 i = (rx_ring->count - 1);
6027 else
6028 i--;
6029
6030 /* Force memory writes to complete before letting h/w
6031 * know there are new descriptors to fetch. (Only
6032 * applicable for weak-ordered memory model archs,
6033 * such as IA-64). */
6034 wmb();
6035 writel(i, rx_ring->tail);
6036 }
6037 }
6038
6039 /**
6040 * igb_mii_ioctl -
6041 * @netdev:
6042 * @ifreq:
6043 * @cmd:
6044 **/
6045 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6046 {
6047 struct igb_adapter *adapter = netdev_priv(netdev);
6048 struct mii_ioctl_data *data = if_mii(ifr);
6049
6050 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6051 return -EOPNOTSUPP;
6052
6053 switch (cmd) {
6054 case SIOCGMIIPHY:
6055 data->phy_id = adapter->hw.phy.addr;
6056 break;
6057 case SIOCGMIIREG:
6058 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6059 &data->val_out))
6060 return -EIO;
6061 break;
6062 case SIOCSMIIREG:
6063 default:
6064 return -EOPNOTSUPP;
6065 }
6066 return 0;
6067 }
6068
6069 /**
6070 * igb_hwtstamp_ioctl - control hardware time stamping
6071 * @netdev:
6072 * @ifreq:
6073 * @cmd:
6074 *
6075 * Outgoing time stamping can be enabled and disabled. Play nice and
6076 * disable it when requested, although it shouldn't case any overhead
6077 * when no packet needs it. At most one packet in the queue may be
6078 * marked for time stamping, otherwise it would be impossible to tell
6079 * for sure to which packet the hardware time stamp belongs.
6080 *
6081 * Incoming time stamping has to be configured via the hardware
6082 * filters. Not all combinations are supported, in particular event
6083 * type has to be specified. Matching the kind of event packet is
6084 * not supported, with the exception of "all V2 events regardless of
6085 * level 2 or 4".
6086 *
6087 **/
6088 static int igb_hwtstamp_ioctl(struct net_device *netdev,
6089 struct ifreq *ifr, int cmd)
6090 {
6091 struct igb_adapter *adapter = netdev_priv(netdev);
6092 struct e1000_hw *hw = &adapter->hw;
6093 struct hwtstamp_config config;
6094 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6095 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6096 u32 tsync_rx_cfg = 0;
6097 bool is_l4 = false;
6098 bool is_l2 = false;
6099 u32 regval;
6100
6101 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6102 return -EFAULT;
6103
6104 /* reserved for future extensions */
6105 if (config.flags)
6106 return -EINVAL;
6107
6108 switch (config.tx_type) {
6109 case HWTSTAMP_TX_OFF:
6110 tsync_tx_ctl = 0;
6111 case HWTSTAMP_TX_ON:
6112 break;
6113 default:
6114 return -ERANGE;
6115 }
6116
6117 switch (config.rx_filter) {
6118 case HWTSTAMP_FILTER_NONE:
6119 tsync_rx_ctl = 0;
6120 break;
6121 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6122 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6123 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6124 case HWTSTAMP_FILTER_ALL:
6125 /*
6126 * register TSYNCRXCFG must be set, therefore it is not
6127 * possible to time stamp both Sync and Delay_Req messages
6128 * => fall back to time stamping all packets
6129 */
6130 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6131 config.rx_filter = HWTSTAMP_FILTER_ALL;
6132 break;
6133 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6134 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6135 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
6136 is_l4 = true;
6137 break;
6138 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6139 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6140 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
6141 is_l4 = true;
6142 break;
6143 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6144 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6145 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6146 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
6147 is_l2 = true;
6148 is_l4 = true;
6149 config.rx_filter = HWTSTAMP_FILTER_SOME;
6150 break;
6151 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6152 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6153 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6154 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
6155 is_l2 = true;
6156 is_l4 = true;
6157 config.rx_filter = HWTSTAMP_FILTER_SOME;
6158 break;
6159 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6160 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6161 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6162 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6163 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
6164 is_l2 = true;
6165 break;
6166 default:
6167 return -ERANGE;
6168 }
6169
6170 if (hw->mac.type == e1000_82575) {
6171 if (tsync_rx_ctl | tsync_tx_ctl)
6172 return -EINVAL;
6173 return 0;
6174 }
6175
6176 /*
6177 * Per-packet timestamping only works if all packets are
6178 * timestamped, so enable timestamping in all packets as
6179 * long as one rx filter was configured.
6180 */
6181 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6182 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6183 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6184 }
6185
6186 /* enable/disable TX */
6187 regval = rd32(E1000_TSYNCTXCTL);
6188 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6189 regval |= tsync_tx_ctl;
6190 wr32(E1000_TSYNCTXCTL, regval);
6191
6192 /* enable/disable RX */
6193 regval = rd32(E1000_TSYNCRXCTL);
6194 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6195 regval |= tsync_rx_ctl;
6196 wr32(E1000_TSYNCRXCTL, regval);
6197
6198 /* define which PTP packets are time stamped */
6199 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
6200
6201 /* define ethertype filter for timestamped packets */
6202 if (is_l2)
6203 wr32(E1000_ETQF(3),
6204 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6205 E1000_ETQF_1588 | /* enable timestamping */
6206 ETH_P_1588)); /* 1588 eth protocol type */
6207 else
6208 wr32(E1000_ETQF(3), 0);
6209
6210 #define PTP_PORT 319
6211 /* L4 Queue Filter[3]: filter by destination port and protocol */
6212 if (is_l4) {
6213 u32 ftqf = (IPPROTO_UDP /* UDP */
6214 | E1000_FTQF_VF_BP /* VF not compared */
6215 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6216 | E1000_FTQF_MASK); /* mask all inputs */
6217 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6218
6219 wr32(E1000_IMIR(3), htons(PTP_PORT));
6220 wr32(E1000_IMIREXT(3),
6221 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6222 if (hw->mac.type == e1000_82576) {
6223 /* enable source port check */
6224 wr32(E1000_SPQF(3), htons(PTP_PORT));
6225 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6226 }
6227 wr32(E1000_FTQF(3), ftqf);
6228 } else {
6229 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6230 }
6231 wrfl();
6232
6233 adapter->hwtstamp_config = config;
6234
6235 /* clear TX/RX time stamp registers, just to be sure */
6236 regval = rd32(E1000_TXSTMPH);
6237 regval = rd32(E1000_RXSTMPH);
6238
6239 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6240 -EFAULT : 0;
6241 }
6242
6243 /**
6244 * igb_ioctl -
6245 * @netdev:
6246 * @ifreq:
6247 * @cmd:
6248 **/
6249 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6250 {
6251 switch (cmd) {
6252 case SIOCGMIIPHY:
6253 case SIOCGMIIREG:
6254 case SIOCSMIIREG:
6255 return igb_mii_ioctl(netdev, ifr, cmd);
6256 case SIOCSHWTSTAMP:
6257 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6258 default:
6259 return -EOPNOTSUPP;
6260 }
6261 }
6262
6263 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6264 {
6265 struct igb_adapter *adapter = hw->back;
6266 u16 cap_offset;
6267
6268 cap_offset = adapter->pdev->pcie_cap;
6269 if (!cap_offset)
6270 return -E1000_ERR_CONFIG;
6271
6272 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6273
6274 return 0;
6275 }
6276
6277 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6278 {
6279 struct igb_adapter *adapter = hw->back;
6280 u16 cap_offset;
6281
6282 cap_offset = adapter->pdev->pcie_cap;
6283 if (!cap_offset)
6284 return -E1000_ERR_CONFIG;
6285
6286 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6287
6288 return 0;
6289 }
6290
6291 static void igb_vlan_mode(struct net_device *netdev, u32 features)
6292 {
6293 struct igb_adapter *adapter = netdev_priv(netdev);
6294 struct e1000_hw *hw = &adapter->hw;
6295 u32 ctrl, rctl;
6296
6297 igb_irq_disable(adapter);
6298
6299 if (features & NETIF_F_HW_VLAN_RX) {
6300 /* enable VLAN tag insert/strip */
6301 ctrl = rd32(E1000_CTRL);
6302 ctrl |= E1000_CTRL_VME;
6303 wr32(E1000_CTRL, ctrl);
6304
6305 /* Disable CFI check */
6306 rctl = rd32(E1000_RCTL);
6307 rctl &= ~E1000_RCTL_CFIEN;
6308 wr32(E1000_RCTL, rctl);
6309 } else {
6310 /* disable VLAN tag insert/strip */
6311 ctrl = rd32(E1000_CTRL);
6312 ctrl &= ~E1000_CTRL_VME;
6313 wr32(E1000_CTRL, ctrl);
6314 }
6315
6316 igb_rlpml_set(adapter);
6317
6318 if (!test_bit(__IGB_DOWN, &adapter->state))
6319 igb_irq_enable(adapter);
6320 }
6321
6322 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6323 {
6324 struct igb_adapter *adapter = netdev_priv(netdev);
6325 struct e1000_hw *hw = &adapter->hw;
6326 int pf_id = adapter->vfs_allocated_count;
6327
6328 /* attempt to add filter to vlvf array */
6329 igb_vlvf_set(adapter, vid, true, pf_id);
6330
6331 /* add the filter since PF can receive vlans w/o entry in vlvf */
6332 igb_vfta_set(hw, vid, true);
6333
6334 set_bit(vid, adapter->active_vlans);
6335 }
6336
6337 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6338 {
6339 struct igb_adapter *adapter = netdev_priv(netdev);
6340 struct e1000_hw *hw = &adapter->hw;
6341 int pf_id = adapter->vfs_allocated_count;
6342 s32 err;
6343
6344 igb_irq_disable(adapter);
6345
6346 if (!test_bit(__IGB_DOWN, &adapter->state))
6347 igb_irq_enable(adapter);
6348
6349 /* remove vlan from VLVF table array */
6350 err = igb_vlvf_set(adapter, vid, false, pf_id);
6351
6352 /* if vid was not present in VLVF just remove it from table */
6353 if (err)
6354 igb_vfta_set(hw, vid, false);
6355
6356 clear_bit(vid, adapter->active_vlans);
6357 }
6358
6359 static void igb_restore_vlan(struct igb_adapter *adapter)
6360 {
6361 u16 vid;
6362
6363 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6364 igb_vlan_rx_add_vid(adapter->netdev, vid);
6365 }
6366
6367 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6368 {
6369 struct pci_dev *pdev = adapter->pdev;
6370 struct e1000_mac_info *mac = &adapter->hw.mac;
6371
6372 mac->autoneg = 0;
6373
6374 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6375 * for the switch() below to work */
6376 if ((spd & 1) || (dplx & ~1))
6377 goto err_inval;
6378
6379 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6380 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6381 spd != SPEED_1000 &&
6382 dplx != DUPLEX_FULL)
6383 goto err_inval;
6384
6385 switch (spd + dplx) {
6386 case SPEED_10 + DUPLEX_HALF:
6387 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6388 break;
6389 case SPEED_10 + DUPLEX_FULL:
6390 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6391 break;
6392 case SPEED_100 + DUPLEX_HALF:
6393 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6394 break;
6395 case SPEED_100 + DUPLEX_FULL:
6396 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6397 break;
6398 case SPEED_1000 + DUPLEX_FULL:
6399 mac->autoneg = 1;
6400 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6401 break;
6402 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6403 default:
6404 goto err_inval;
6405 }
6406 return 0;
6407
6408 err_inval:
6409 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6410 return -EINVAL;
6411 }
6412
6413 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6414 {
6415 struct net_device *netdev = pci_get_drvdata(pdev);
6416 struct igb_adapter *adapter = netdev_priv(netdev);
6417 struct e1000_hw *hw = &adapter->hw;
6418 u32 ctrl, rctl, status;
6419 u32 wufc = adapter->wol;
6420 #ifdef CONFIG_PM
6421 int retval = 0;
6422 #endif
6423
6424 netif_device_detach(netdev);
6425
6426 if (netif_running(netdev))
6427 igb_close(netdev);
6428
6429 igb_clear_interrupt_scheme(adapter);
6430
6431 #ifdef CONFIG_PM
6432 retval = pci_save_state(pdev);
6433 if (retval)
6434 return retval;
6435 #endif
6436
6437 status = rd32(E1000_STATUS);
6438 if (status & E1000_STATUS_LU)
6439 wufc &= ~E1000_WUFC_LNKC;
6440
6441 if (wufc) {
6442 igb_setup_rctl(adapter);
6443 igb_set_rx_mode(netdev);
6444
6445 /* turn on all-multi mode if wake on multicast is enabled */
6446 if (wufc & E1000_WUFC_MC) {
6447 rctl = rd32(E1000_RCTL);
6448 rctl |= E1000_RCTL_MPE;
6449 wr32(E1000_RCTL, rctl);
6450 }
6451
6452 ctrl = rd32(E1000_CTRL);
6453 /* advertise wake from D3Cold */
6454 #define E1000_CTRL_ADVD3WUC 0x00100000
6455 /* phy power management enable */
6456 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6457 ctrl |= E1000_CTRL_ADVD3WUC;
6458 wr32(E1000_CTRL, ctrl);
6459
6460 /* Allow time for pending master requests to run */
6461 igb_disable_pcie_master(hw);
6462
6463 wr32(E1000_WUC, E1000_WUC_PME_EN);
6464 wr32(E1000_WUFC, wufc);
6465 } else {
6466 wr32(E1000_WUC, 0);
6467 wr32(E1000_WUFC, 0);
6468 }
6469
6470 *enable_wake = wufc || adapter->en_mng_pt;
6471 if (!*enable_wake)
6472 igb_power_down_link(adapter);
6473 else
6474 igb_power_up_link(adapter);
6475
6476 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6477 * would have already happened in close and is redundant. */
6478 igb_release_hw_control(adapter);
6479
6480 pci_disable_device(pdev);
6481
6482 return 0;
6483 }
6484
6485 #ifdef CONFIG_PM
6486 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6487 {
6488 int retval;
6489 bool wake;
6490
6491 retval = __igb_shutdown(pdev, &wake);
6492 if (retval)
6493 return retval;
6494
6495 if (wake) {
6496 pci_prepare_to_sleep(pdev);
6497 } else {
6498 pci_wake_from_d3(pdev, false);
6499 pci_set_power_state(pdev, PCI_D3hot);
6500 }
6501
6502 return 0;
6503 }
6504
6505 static int igb_resume(struct pci_dev *pdev)
6506 {
6507 struct net_device *netdev = pci_get_drvdata(pdev);
6508 struct igb_adapter *adapter = netdev_priv(netdev);
6509 struct e1000_hw *hw = &adapter->hw;
6510 u32 err;
6511
6512 pci_set_power_state(pdev, PCI_D0);
6513 pci_restore_state(pdev);
6514 pci_save_state(pdev);
6515
6516 err = pci_enable_device_mem(pdev);
6517 if (err) {
6518 dev_err(&pdev->dev,
6519 "igb: Cannot enable PCI device from suspend\n");
6520 return err;
6521 }
6522 pci_set_master(pdev);
6523
6524 pci_enable_wake(pdev, PCI_D3hot, 0);
6525 pci_enable_wake(pdev, PCI_D3cold, 0);
6526
6527 if (igb_init_interrupt_scheme(adapter)) {
6528 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6529 return -ENOMEM;
6530 }
6531
6532 igb_reset(adapter);
6533
6534 /* let the f/w know that the h/w is now under the control of the
6535 * driver. */
6536 igb_get_hw_control(adapter);
6537
6538 wr32(E1000_WUS, ~0);
6539
6540 if (netif_running(netdev)) {
6541 err = igb_open(netdev);
6542 if (err)
6543 return err;
6544 }
6545
6546 netif_device_attach(netdev);
6547
6548 return 0;
6549 }
6550 #endif
6551
6552 static void igb_shutdown(struct pci_dev *pdev)
6553 {
6554 bool wake;
6555
6556 __igb_shutdown(pdev, &wake);
6557
6558 if (system_state == SYSTEM_POWER_OFF) {
6559 pci_wake_from_d3(pdev, wake);
6560 pci_set_power_state(pdev, PCI_D3hot);
6561 }
6562 }
6563
6564 #ifdef CONFIG_NET_POLL_CONTROLLER
6565 /*
6566 * Polling 'interrupt' - used by things like netconsole to send skbs
6567 * without having to re-enable interrupts. It's not called while
6568 * the interrupt routine is executing.
6569 */
6570 static void igb_netpoll(struct net_device *netdev)
6571 {
6572 struct igb_adapter *adapter = netdev_priv(netdev);
6573 struct e1000_hw *hw = &adapter->hw;
6574 int i;
6575
6576 if (!adapter->msix_entries) {
6577 struct igb_q_vector *q_vector = adapter->q_vector[0];
6578 igb_irq_disable(adapter);
6579 napi_schedule(&q_vector->napi);
6580 return;
6581 }
6582
6583 for (i = 0; i < adapter->num_q_vectors; i++) {
6584 struct igb_q_vector *q_vector = adapter->q_vector[i];
6585 wr32(E1000_EIMC, q_vector->eims_value);
6586 napi_schedule(&q_vector->napi);
6587 }
6588 }
6589 #endif /* CONFIG_NET_POLL_CONTROLLER */
6590
6591 /**
6592 * igb_io_error_detected - called when PCI error is detected
6593 * @pdev: Pointer to PCI device
6594 * @state: The current pci connection state
6595 *
6596 * This function is called after a PCI bus error affecting
6597 * this device has been detected.
6598 */
6599 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6600 pci_channel_state_t state)
6601 {
6602 struct net_device *netdev = pci_get_drvdata(pdev);
6603 struct igb_adapter *adapter = netdev_priv(netdev);
6604
6605 netif_device_detach(netdev);
6606
6607 if (state == pci_channel_io_perm_failure)
6608 return PCI_ERS_RESULT_DISCONNECT;
6609
6610 if (netif_running(netdev))
6611 igb_down(adapter);
6612 pci_disable_device(pdev);
6613
6614 /* Request a slot slot reset. */
6615 return PCI_ERS_RESULT_NEED_RESET;
6616 }
6617
6618 /**
6619 * igb_io_slot_reset - called after the pci bus has been reset.
6620 * @pdev: Pointer to PCI device
6621 *
6622 * Restart the card from scratch, as if from a cold-boot. Implementation
6623 * resembles the first-half of the igb_resume routine.
6624 */
6625 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6626 {
6627 struct net_device *netdev = pci_get_drvdata(pdev);
6628 struct igb_adapter *adapter = netdev_priv(netdev);
6629 struct e1000_hw *hw = &adapter->hw;
6630 pci_ers_result_t result;
6631 int err;
6632
6633 if (pci_enable_device_mem(pdev)) {
6634 dev_err(&pdev->dev,
6635 "Cannot re-enable PCI device after reset.\n");
6636 result = PCI_ERS_RESULT_DISCONNECT;
6637 } else {
6638 pci_set_master(pdev);
6639 pci_restore_state(pdev);
6640 pci_save_state(pdev);
6641
6642 pci_enable_wake(pdev, PCI_D3hot, 0);
6643 pci_enable_wake(pdev, PCI_D3cold, 0);
6644
6645 igb_reset(adapter);
6646 wr32(E1000_WUS, ~0);
6647 result = PCI_ERS_RESULT_RECOVERED;
6648 }
6649
6650 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6651 if (err) {
6652 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6653 "failed 0x%0x\n", err);
6654 /* non-fatal, continue */
6655 }
6656
6657 return result;
6658 }
6659
6660 /**
6661 * igb_io_resume - called when traffic can start flowing again.
6662 * @pdev: Pointer to PCI device
6663 *
6664 * This callback is called when the error recovery driver tells us that
6665 * its OK to resume normal operation. Implementation resembles the
6666 * second-half of the igb_resume routine.
6667 */
6668 static void igb_io_resume(struct pci_dev *pdev)
6669 {
6670 struct net_device *netdev = pci_get_drvdata(pdev);
6671 struct igb_adapter *adapter = netdev_priv(netdev);
6672
6673 if (netif_running(netdev)) {
6674 if (igb_up(adapter)) {
6675 dev_err(&pdev->dev, "igb_up failed after reset\n");
6676 return;
6677 }
6678 }
6679
6680 netif_device_attach(netdev);
6681
6682 /* let the f/w know that the h/w is now under the control of the
6683 * driver. */
6684 igb_get_hw_control(adapter);
6685 }
6686
6687 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6688 u8 qsel)
6689 {
6690 u32 rar_low, rar_high;
6691 struct e1000_hw *hw = &adapter->hw;
6692
6693 /* HW expects these in little endian so we reverse the byte order
6694 * from network order (big endian) to little endian
6695 */
6696 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6697 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6698 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6699
6700 /* Indicate to hardware the Address is Valid. */
6701 rar_high |= E1000_RAH_AV;
6702
6703 if (hw->mac.type == e1000_82575)
6704 rar_high |= E1000_RAH_POOL_1 * qsel;
6705 else
6706 rar_high |= E1000_RAH_POOL_1 << qsel;
6707
6708 wr32(E1000_RAL(index), rar_low);
6709 wrfl();
6710 wr32(E1000_RAH(index), rar_high);
6711 wrfl();
6712 }
6713
6714 static int igb_set_vf_mac(struct igb_adapter *adapter,
6715 int vf, unsigned char *mac_addr)
6716 {
6717 struct e1000_hw *hw = &adapter->hw;
6718 /* VF MAC addresses start at end of receive addresses and moves
6719 * torwards the first, as a result a collision should not be possible */
6720 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6721
6722 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6723
6724 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6725
6726 return 0;
6727 }
6728
6729 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6730 {
6731 struct igb_adapter *adapter = netdev_priv(netdev);
6732 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6733 return -EINVAL;
6734 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6735 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6736 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6737 " change effective.");
6738 if (test_bit(__IGB_DOWN, &adapter->state)) {
6739 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6740 " but the PF device is not up.\n");
6741 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6742 " attempting to use the VF device.\n");
6743 }
6744 return igb_set_vf_mac(adapter, vf, mac);
6745 }
6746
6747 static int igb_link_mbps(int internal_link_speed)
6748 {
6749 switch (internal_link_speed) {
6750 case SPEED_100:
6751 return 100;
6752 case SPEED_1000:
6753 return 1000;
6754 default:
6755 return 0;
6756 }
6757 }
6758
6759 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6760 int link_speed)
6761 {
6762 int rf_dec, rf_int;
6763 u32 bcnrc_val;
6764
6765 if (tx_rate != 0) {
6766 /* Calculate the rate factor values to set */
6767 rf_int = link_speed / tx_rate;
6768 rf_dec = (link_speed - (rf_int * tx_rate));
6769 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6770
6771 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6772 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6773 E1000_RTTBCNRC_RF_INT_MASK);
6774 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6775 } else {
6776 bcnrc_val = 0;
6777 }
6778
6779 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6780 wr32(E1000_RTTBCNRC, bcnrc_val);
6781 }
6782
6783 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6784 {
6785 int actual_link_speed, i;
6786 bool reset_rate = false;
6787
6788 /* VF TX rate limit was not set or not supported */
6789 if ((adapter->vf_rate_link_speed == 0) ||
6790 (adapter->hw.mac.type != e1000_82576))
6791 return;
6792
6793 actual_link_speed = igb_link_mbps(adapter->link_speed);
6794 if (actual_link_speed != adapter->vf_rate_link_speed) {
6795 reset_rate = true;
6796 adapter->vf_rate_link_speed = 0;
6797 dev_info(&adapter->pdev->dev,
6798 "Link speed has been changed. VF Transmit "
6799 "rate is disabled\n");
6800 }
6801
6802 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6803 if (reset_rate)
6804 adapter->vf_data[i].tx_rate = 0;
6805
6806 igb_set_vf_rate_limit(&adapter->hw, i,
6807 adapter->vf_data[i].tx_rate,
6808 actual_link_speed);
6809 }
6810 }
6811
6812 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6813 {
6814 struct igb_adapter *adapter = netdev_priv(netdev);
6815 struct e1000_hw *hw = &adapter->hw;
6816 int actual_link_speed;
6817
6818 if (hw->mac.type != e1000_82576)
6819 return -EOPNOTSUPP;
6820
6821 actual_link_speed = igb_link_mbps(adapter->link_speed);
6822 if ((vf >= adapter->vfs_allocated_count) ||
6823 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6824 (tx_rate < 0) || (tx_rate > actual_link_speed))
6825 return -EINVAL;
6826
6827 adapter->vf_rate_link_speed = actual_link_speed;
6828 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6829 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6830
6831 return 0;
6832 }
6833
6834 static int igb_ndo_get_vf_config(struct net_device *netdev,
6835 int vf, struct ifla_vf_info *ivi)
6836 {
6837 struct igb_adapter *adapter = netdev_priv(netdev);
6838 if (vf >= adapter->vfs_allocated_count)
6839 return -EINVAL;
6840 ivi->vf = vf;
6841 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6842 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
6843 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6844 ivi->qos = adapter->vf_data[vf].pf_qos;
6845 return 0;
6846 }
6847
6848 static void igb_vmm_control(struct igb_adapter *adapter)
6849 {
6850 struct e1000_hw *hw = &adapter->hw;
6851 u32 reg;
6852
6853 switch (hw->mac.type) {
6854 case e1000_82575:
6855 default:
6856 /* replication is not supported for 82575 */
6857 return;
6858 case e1000_82576:
6859 /* notify HW that the MAC is adding vlan tags */
6860 reg = rd32(E1000_DTXCTL);
6861 reg |= E1000_DTXCTL_VLAN_ADDED;
6862 wr32(E1000_DTXCTL, reg);
6863 case e1000_82580:
6864 /* enable replication vlan tag stripping */
6865 reg = rd32(E1000_RPLOLR);
6866 reg |= E1000_RPLOLR_STRVLAN;
6867 wr32(E1000_RPLOLR, reg);
6868 case e1000_i350:
6869 /* none of the above registers are supported by i350 */
6870 break;
6871 }
6872
6873 if (adapter->vfs_allocated_count) {
6874 igb_vmdq_set_loopback_pf(hw, true);
6875 igb_vmdq_set_replication_pf(hw, true);
6876 igb_vmdq_set_anti_spoofing_pf(hw, true,
6877 adapter->vfs_allocated_count);
6878 } else {
6879 igb_vmdq_set_loopback_pf(hw, false);
6880 igb_vmdq_set_replication_pf(hw, false);
6881 }
6882 }
6883
6884 /* igb_main.c */
This page took 0.17585 seconds and 6 git commands to generate.