igb: Cleanups to fix missing break in switch statements
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58
59 #define MAJ 5
60 #define MIN 0
61 #define BUILD 5
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69 "Copyright (c) 2007-2014 Intel Corporation.";
70
71 static const struct e1000_info *igb_info_tbl[] = {
72 [board_82575] = &e1000_82575_info,
73 };
74
75 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 /* required last entry */
112 {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117 void igb_reset(struct igb_adapter *);
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 static int igb_open(struct net_device *);
127 static int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141 struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *);
155 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 #endif
183
184 #ifdef CONFIG_PM
185 #ifdef CONFIG_PM_SLEEP
186 static int igb_suspend(struct device *);
187 #endif
188 static int igb_resume(struct device *);
189 #ifdef CONFIG_PM_RUNTIME
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 #endif
194 static const struct dev_pm_ops igb_pm_ops = {
195 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197 igb_runtime_idle)
198 };
199 #endif
200 static void igb_shutdown(struct pci_dev *);
201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202 #ifdef CONFIG_IGB_DCA
203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204 static struct notifier_block dca_notifier = {
205 .notifier_call = igb_notify_dca,
206 .next = NULL,
207 .priority = 0
208 };
209 #endif
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void igb_netpoll(struct net_device *);
213 #endif
214 #ifdef CONFIG_PCI_IOV
215 static unsigned int max_vfs = 0;
216 module_param(max_vfs, uint, 0);
217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218 #endif /* CONFIG_PCI_IOV */
219
220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221 pci_channel_state_t);
222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223 static void igb_io_resume(struct pci_dev *);
224
225 static const struct pci_error_handlers igb_err_handler = {
226 .error_detected = igb_io_error_detected,
227 .slot_reset = igb_io_slot_reset,
228 .resume = igb_io_resume,
229 };
230
231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232
233 static struct pci_driver igb_driver = {
234 .name = igb_driver_name,
235 .id_table = igb_pci_tbl,
236 .probe = igb_probe,
237 .remove = igb_remove,
238 #ifdef CONFIG_PM
239 .driver.pm = &igb_pm_ops,
240 #endif
241 .shutdown = igb_shutdown,
242 .sriov_configure = igb_pci_sriov_configure,
243 .err_handler = &igb_err_handler
244 };
245
246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
250
251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252 static int debug = -1;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 struct igb_reg_info {
257 u32 ofs;
258 char *name;
259 };
260
261 static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263 /* General Registers */
264 {E1000_CTRL, "CTRL"},
265 {E1000_STATUS, "STATUS"},
266 {E1000_CTRL_EXT, "CTRL_EXT"},
267
268 /* Interrupt Registers */
269 {E1000_ICR, "ICR"},
270
271 /* RX Registers */
272 {E1000_RCTL, "RCTL"},
273 {E1000_RDLEN(0), "RDLEN"},
274 {E1000_RDH(0), "RDH"},
275 {E1000_RDT(0), "RDT"},
276 {E1000_RXDCTL(0), "RXDCTL"},
277 {E1000_RDBAL(0), "RDBAL"},
278 {E1000_RDBAH(0), "RDBAH"},
279
280 /* TX Registers */
281 {E1000_TCTL, "TCTL"},
282 {E1000_TDBAL(0), "TDBAL"},
283 {E1000_TDBAH(0), "TDBAH"},
284 {E1000_TDLEN(0), "TDLEN"},
285 {E1000_TDH(0), "TDH"},
286 {E1000_TDT(0), "TDT"},
287 {E1000_TXDCTL(0), "TXDCTL"},
288 {E1000_TDFH, "TDFH"},
289 {E1000_TDFT, "TDFT"},
290 {E1000_TDFHS, "TDFHS"},
291 {E1000_TDFPC, "TDFPC"},
292
293 /* List Terminator */
294 {}
295 };
296
297 /* igb_regdump - register printout routine */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300 int n = 0;
301 char rname[16];
302 u32 regs[8];
303
304 switch (reginfo->ofs) {
305 case E1000_RDLEN(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDLEN(n));
308 break;
309 case E1000_RDH(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDH(n));
312 break;
313 case E1000_RDT(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDT(n));
316 break;
317 case E1000_RXDCTL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RXDCTL(n));
320 break;
321 case E1000_RDBAL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDBAL(n));
324 break;
325 case E1000_RDBAH(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAH(n));
328 break;
329 case E1000_TDBAL(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAL(n));
332 break;
333 case E1000_TDBAH(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDBAH(n));
336 break;
337 case E1000_TDLEN(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDLEN(n));
340 break;
341 case E1000_TDH(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDH(n));
344 break;
345 case E1000_TDT(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDT(n));
348 break;
349 case E1000_TXDCTL(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TXDCTL(n));
352 break;
353 default:
354 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 return;
356 }
357
358 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 regs[2], regs[3]);
361 }
362
363 /* igb_dump - Print registers, Tx-rings and Rx-rings */
364 static void igb_dump(struct igb_adapter *adapter)
365 {
366 struct net_device *netdev = adapter->netdev;
367 struct e1000_hw *hw = &adapter->hw;
368 struct igb_reg_info *reginfo;
369 struct igb_ring *tx_ring;
370 union e1000_adv_tx_desc *tx_desc;
371 struct my_u0 { u64 a; u64 b; } *u0;
372 struct igb_ring *rx_ring;
373 union e1000_adv_rx_desc *rx_desc;
374 u32 staterr;
375 u16 i, n;
376
377 if (!netif_msg_hw(adapter))
378 return;
379
380 /* Print netdevice Info */
381 if (netdev) {
382 dev_info(&adapter->pdev->dev, "Net device Info\n");
383 pr_info("Device Name state trans_start last_rx\n");
384 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385 netdev->state, netdev->trans_start, netdev->last_rx);
386 }
387
388 /* Print Registers */
389 dev_info(&adapter->pdev->dev, "Register Dump\n");
390 pr_info(" Register Name Value\n");
391 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392 reginfo->name; reginfo++) {
393 igb_regdump(hw, reginfo);
394 }
395
396 /* Print TX Ring Summary */
397 if (!netdev || !netif_running(netdev))
398 goto exit;
399
400 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
402 for (n = 0; n < adapter->num_tx_queues; n++) {
403 struct igb_tx_buffer *buffer_info;
404 tx_ring = adapter->tx_ring[n];
405 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407 n, tx_ring->next_to_use, tx_ring->next_to_clean,
408 (u64)dma_unmap_addr(buffer_info, dma),
409 dma_unmap_len(buffer_info, len),
410 buffer_info->next_to_watch,
411 (u64)buffer_info->time_stamp);
412 }
413
414 /* Print TX Rings */
415 if (!netif_msg_tx_done(adapter))
416 goto rx_ring_summary;
417
418 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420 /* Transmit Descriptor Formats
421 *
422 * Advanced Transmit Descriptor
423 * +--------------------------------------------------------------+
424 * 0 | Buffer Address [63:0] |
425 * +--------------------------------------------------------------+
426 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
427 * +--------------------------------------------------------------+
428 * 63 46 45 40 39 38 36 35 32 31 24 15 0
429 */
430
431 for (n = 0; n < adapter->num_tx_queues; n++) {
432 tx_ring = adapter->tx_ring[n];
433 pr_info("------------------------------------\n");
434 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435 pr_info("------------------------------------\n");
436 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
437
438 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439 const char *next_desc;
440 struct igb_tx_buffer *buffer_info;
441 tx_desc = IGB_TX_DESC(tx_ring, i);
442 buffer_info = &tx_ring->tx_buffer_info[i];
443 u0 = (struct my_u0 *)tx_desc;
444 if (i == tx_ring->next_to_use &&
445 i == tx_ring->next_to_clean)
446 next_desc = " NTC/U";
447 else if (i == tx_ring->next_to_use)
448 next_desc = " NTU";
449 else if (i == tx_ring->next_to_clean)
450 next_desc = " NTC";
451 else
452 next_desc = "";
453
454 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
455 i, le64_to_cpu(u0->a),
456 le64_to_cpu(u0->b),
457 (u64)dma_unmap_addr(buffer_info, dma),
458 dma_unmap_len(buffer_info, len),
459 buffer_info->next_to_watch,
460 (u64)buffer_info->time_stamp,
461 buffer_info->skb, next_desc);
462
463 if (netif_msg_pktdata(adapter) && buffer_info->skb)
464 print_hex_dump(KERN_INFO, "",
465 DUMP_PREFIX_ADDRESS,
466 16, 1, buffer_info->skb->data,
467 dma_unmap_len(buffer_info, len),
468 true);
469 }
470 }
471
472 /* Print RX Rings Summary */
473 rx_ring_summary:
474 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475 pr_info("Queue [NTU] [NTC]\n");
476 for (n = 0; n < adapter->num_rx_queues; n++) {
477 rx_ring = adapter->rx_ring[n];
478 pr_info(" %5d %5X %5X\n",
479 n, rx_ring->next_to_use, rx_ring->next_to_clean);
480 }
481
482 /* Print RX Rings */
483 if (!netif_msg_rx_status(adapter))
484 goto exit;
485
486 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488 /* Advanced Receive Descriptor (Read) Format
489 * 63 1 0
490 * +-----------------------------------------------------+
491 * 0 | Packet Buffer Address [63:1] |A0/NSE|
492 * +----------------------------------------------+------+
493 * 8 | Header Buffer Address [63:1] | DD |
494 * +-----------------------------------------------------+
495 *
496 *
497 * Advanced Receive Descriptor (Write-Back) Format
498 *
499 * 63 48 47 32 31 30 21 20 17 16 4 3 0
500 * +------------------------------------------------------+
501 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
502 * | Checksum Ident | | | | Type | Type |
503 * +------------------------------------------------------+
504 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505 * +------------------------------------------------------+
506 * 63 48 47 32 31 20 19 0
507 */
508
509 for (n = 0; n < adapter->num_rx_queues; n++) {
510 rx_ring = adapter->rx_ring[n];
511 pr_info("------------------------------------\n");
512 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513 pr_info("------------------------------------\n");
514 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
515 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516
517 for (i = 0; i < rx_ring->count; i++) {
518 const char *next_desc;
519 struct igb_rx_buffer *buffer_info;
520 buffer_info = &rx_ring->rx_buffer_info[i];
521 rx_desc = IGB_RX_DESC(rx_ring, i);
522 u0 = (struct my_u0 *)rx_desc;
523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524
525 if (i == rx_ring->next_to_use)
526 next_desc = " NTU";
527 else if (i == rx_ring->next_to_clean)
528 next_desc = " NTC";
529 else
530 next_desc = "";
531
532 if (staterr & E1000_RXD_STAT_DD) {
533 /* Descriptor Done */
534 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
535 "RWB", i,
536 le64_to_cpu(u0->a),
537 le64_to_cpu(u0->b),
538 next_desc);
539 } else {
540 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
541 "R ", i,
542 le64_to_cpu(u0->a),
543 le64_to_cpu(u0->b),
544 (u64)buffer_info->dma,
545 next_desc);
546
547 if (netif_msg_pktdata(adapter) &&
548 buffer_info->dma && buffer_info->page) {
549 print_hex_dump(KERN_INFO, "",
550 DUMP_PREFIX_ADDRESS,
551 16, 1,
552 page_address(buffer_info->page) +
553 buffer_info->page_offset,
554 IGB_RX_BUFSZ, true);
555 }
556 }
557 }
558 }
559
560 exit:
561 return;
562 }
563
564 /**
565 * igb_get_i2c_data - Reads the I2C SDA data bit
566 * @hw: pointer to hardware structure
567 * @i2cctl: Current value of I2CCTL register
568 *
569 * Returns the I2C data bit value
570 **/
571 static int igb_get_i2c_data(void *data)
572 {
573 struct igb_adapter *adapter = (struct igb_adapter *)data;
574 struct e1000_hw *hw = &adapter->hw;
575 s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
578 }
579
580 /**
581 * igb_set_i2c_data - Sets the I2C data bit
582 * @data: pointer to hardware structure
583 * @state: I2C data value (0 or 1) to set
584 *
585 * Sets the I2C data bit
586 **/
587 static void igb_set_i2c_data(void *data, int state)
588 {
589 struct igb_adapter *adapter = (struct igb_adapter *)data;
590 struct e1000_hw *hw = &adapter->hw;
591 s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593 if (state)
594 i2cctl |= E1000_I2C_DATA_OUT;
595 else
596 i2cctl &= ~E1000_I2C_DATA_OUT;
597
598 i2cctl &= ~E1000_I2C_DATA_OE_N;
599 i2cctl |= E1000_I2C_CLK_OE_N;
600 wr32(E1000_I2CPARAMS, i2cctl);
601 wrfl();
602
603 }
604
605 /**
606 * igb_set_i2c_clk - Sets the I2C SCL clock
607 * @data: pointer to hardware structure
608 * @state: state to set clock
609 *
610 * Sets the I2C clock line to state
611 **/
612 static void igb_set_i2c_clk(void *data, int state)
613 {
614 struct igb_adapter *adapter = (struct igb_adapter *)data;
615 struct e1000_hw *hw = &adapter->hw;
616 s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618 if (state) {
619 i2cctl |= E1000_I2C_CLK_OUT;
620 i2cctl &= ~E1000_I2C_CLK_OE_N;
621 } else {
622 i2cctl &= ~E1000_I2C_CLK_OUT;
623 i2cctl &= ~E1000_I2C_CLK_OE_N;
624 }
625 wr32(E1000_I2CPARAMS, i2cctl);
626 wrfl();
627 }
628
629 /**
630 * igb_get_i2c_clk - Gets the I2C SCL clock state
631 * @data: pointer to hardware structure
632 *
633 * Gets the I2C clock state
634 **/
635 static int igb_get_i2c_clk(void *data)
636 {
637 struct igb_adapter *adapter = (struct igb_adapter *)data;
638 struct e1000_hw *hw = &adapter->hw;
639 s32 i2cctl = rd32(E1000_I2CPARAMS);
640
641 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
642 }
643
644 static const struct i2c_algo_bit_data igb_i2c_algo = {
645 .setsda = igb_set_i2c_data,
646 .setscl = igb_set_i2c_clk,
647 .getsda = igb_get_i2c_data,
648 .getscl = igb_get_i2c_clk,
649 .udelay = 5,
650 .timeout = 20,
651 };
652
653 /**
654 * igb_get_hw_dev - return device
655 * @hw: pointer to hardware structure
656 *
657 * used by hardware layer to print debugging information
658 **/
659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660 {
661 struct igb_adapter *adapter = hw->back;
662 return adapter->netdev;
663 }
664
665 /**
666 * igb_init_module - Driver Registration Routine
667 *
668 * igb_init_module is the first routine called when the driver is
669 * loaded. All it does is register with the PCI subsystem.
670 **/
671 static int __init igb_init_module(void)
672 {
673 int ret;
674
675 pr_info("%s - version %s\n",
676 igb_driver_string, igb_driver_version);
677 pr_info("%s\n", igb_copyright);
678
679 #ifdef CONFIG_IGB_DCA
680 dca_register_notify(&dca_notifier);
681 #endif
682 ret = pci_register_driver(&igb_driver);
683 return ret;
684 }
685
686 module_init(igb_init_module);
687
688 /**
689 * igb_exit_module - Driver Exit Cleanup Routine
690 *
691 * igb_exit_module is called just before the driver is removed
692 * from memory.
693 **/
694 static void __exit igb_exit_module(void)
695 {
696 #ifdef CONFIG_IGB_DCA
697 dca_unregister_notify(&dca_notifier);
698 #endif
699 pci_unregister_driver(&igb_driver);
700 }
701
702 module_exit(igb_exit_module);
703
704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705 /**
706 * igb_cache_ring_register - Descriptor ring to register mapping
707 * @adapter: board private structure to initialize
708 *
709 * Once we know the feature-set enabled for the device, we'll cache
710 * the register offset the descriptor ring is assigned to.
711 **/
712 static void igb_cache_ring_register(struct igb_adapter *adapter)
713 {
714 int i = 0, j = 0;
715 u32 rbase_offset = adapter->vfs_allocated_count;
716
717 switch (adapter->hw.mac.type) {
718 case e1000_82576:
719 /* The queues are allocated for virtualization such that VF 0
720 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721 * In order to avoid collision we start at the first free queue
722 * and continue consuming queues in the same sequence
723 */
724 if (adapter->vfs_allocated_count) {
725 for (; i < adapter->rss_queues; i++)
726 adapter->rx_ring[i]->reg_idx = rbase_offset +
727 Q_IDX_82576(i);
728 }
729 /* Fall through */
730 case e1000_82575:
731 case e1000_82580:
732 case e1000_i350:
733 case e1000_i354:
734 case e1000_i210:
735 case e1000_i211:
736 /* Fall through */
737 default:
738 for (; i < adapter->num_rx_queues; i++)
739 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740 for (; j < adapter->num_tx_queues; j++)
741 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742 break;
743 }
744 }
745
746 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747 {
748 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750 u32 value = 0;
751
752 if (E1000_REMOVED(hw_addr))
753 return ~value;
754
755 value = readl(&hw_addr[reg]);
756
757 /* reads should not return all F's */
758 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759 struct net_device *netdev = igb->netdev;
760 hw->hw_addr = NULL;
761 netif_device_detach(netdev);
762 netdev_err(netdev, "PCIe link lost, device now detached\n");
763 }
764
765 return value;
766 }
767
768 /**
769 * igb_write_ivar - configure ivar for given MSI-X vector
770 * @hw: pointer to the HW structure
771 * @msix_vector: vector number we are allocating to a given ring
772 * @index: row index of IVAR register to write within IVAR table
773 * @offset: column offset of in IVAR, should be multiple of 8
774 *
775 * This function is intended to handle the writing of the IVAR register
776 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
777 * each containing an cause allocation for an Rx and Tx ring, and a
778 * variable number of rows depending on the number of queues supported.
779 **/
780 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781 int index, int offset)
782 {
783 u32 ivar = array_rd32(E1000_IVAR0, index);
784
785 /* clear any bits that are currently set */
786 ivar &= ~((u32)0xFF << offset);
787
788 /* write vector and valid bit */
789 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790
791 array_wr32(E1000_IVAR0, index, ivar);
792 }
793
794 #define IGB_N0_QUEUE -1
795 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796 {
797 struct igb_adapter *adapter = q_vector->adapter;
798 struct e1000_hw *hw = &adapter->hw;
799 int rx_queue = IGB_N0_QUEUE;
800 int tx_queue = IGB_N0_QUEUE;
801 u32 msixbm = 0;
802
803 if (q_vector->rx.ring)
804 rx_queue = q_vector->rx.ring->reg_idx;
805 if (q_vector->tx.ring)
806 tx_queue = q_vector->tx.ring->reg_idx;
807
808 switch (hw->mac.type) {
809 case e1000_82575:
810 /* The 82575 assigns vectors using a bitmask, which matches the
811 * bitmask for the EICR/EIMS/EIMC registers. To assign one
812 * or more queues to a vector, we write the appropriate bits
813 * into the MSIXBM register for that vector.
814 */
815 if (rx_queue > IGB_N0_QUEUE)
816 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817 if (tx_queue > IGB_N0_QUEUE)
818 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820 msixbm |= E1000_EIMS_OTHER;
821 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822 q_vector->eims_value = msixbm;
823 break;
824 case e1000_82576:
825 /* 82576 uses a table that essentially consists of 2 columns
826 * with 8 rows. The ordering is column-major so we use the
827 * lower 3 bits as the row index, and the 4th bit as the
828 * column offset.
829 */
830 if (rx_queue > IGB_N0_QUEUE)
831 igb_write_ivar(hw, msix_vector,
832 rx_queue & 0x7,
833 (rx_queue & 0x8) << 1);
834 if (tx_queue > IGB_N0_QUEUE)
835 igb_write_ivar(hw, msix_vector,
836 tx_queue & 0x7,
837 ((tx_queue & 0x8) << 1) + 8);
838 q_vector->eims_value = 1 << msix_vector;
839 break;
840 case e1000_82580:
841 case e1000_i350:
842 case e1000_i354:
843 case e1000_i210:
844 case e1000_i211:
845 /* On 82580 and newer adapters the scheme is similar to 82576
846 * however instead of ordering column-major we have things
847 * ordered row-major. So we traverse the table by using
848 * bit 0 as the column offset, and the remaining bits as the
849 * row index.
850 */
851 if (rx_queue > IGB_N0_QUEUE)
852 igb_write_ivar(hw, msix_vector,
853 rx_queue >> 1,
854 (rx_queue & 0x1) << 4);
855 if (tx_queue > IGB_N0_QUEUE)
856 igb_write_ivar(hw, msix_vector,
857 tx_queue >> 1,
858 ((tx_queue & 0x1) << 4) + 8);
859 q_vector->eims_value = 1 << msix_vector;
860 break;
861 default:
862 BUG();
863 break;
864 }
865
866 /* add q_vector eims value to global eims_enable_mask */
867 adapter->eims_enable_mask |= q_vector->eims_value;
868
869 /* configure q_vector to set itr on first interrupt */
870 q_vector->set_itr = 1;
871 }
872
873 /**
874 * igb_configure_msix - Configure MSI-X hardware
875 * @adapter: board private structure to initialize
876 *
877 * igb_configure_msix sets up the hardware to properly
878 * generate MSI-X interrupts.
879 **/
880 static void igb_configure_msix(struct igb_adapter *adapter)
881 {
882 u32 tmp;
883 int i, vector = 0;
884 struct e1000_hw *hw = &adapter->hw;
885
886 adapter->eims_enable_mask = 0;
887
888 /* set vector for other causes, i.e. link changes */
889 switch (hw->mac.type) {
890 case e1000_82575:
891 tmp = rd32(E1000_CTRL_EXT);
892 /* enable MSI-X PBA support*/
893 tmp |= E1000_CTRL_EXT_PBA_CLR;
894
895 /* Auto-Mask interrupts upon ICR read. */
896 tmp |= E1000_CTRL_EXT_EIAME;
897 tmp |= E1000_CTRL_EXT_IRCA;
898
899 wr32(E1000_CTRL_EXT, tmp);
900
901 /* enable msix_other interrupt */
902 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903 adapter->eims_other = E1000_EIMS_OTHER;
904
905 break;
906
907 case e1000_82576:
908 case e1000_82580:
909 case e1000_i350:
910 case e1000_i354:
911 case e1000_i210:
912 case e1000_i211:
913 /* Turn on MSI-X capability first, or our settings
914 * won't stick. And it will take days to debug.
915 */
916 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917 E1000_GPIE_PBA | E1000_GPIE_EIAME |
918 E1000_GPIE_NSICR);
919
920 /* enable msix_other interrupt */
921 adapter->eims_other = 1 << vector;
922 tmp = (vector++ | E1000_IVAR_VALID) << 8;
923
924 wr32(E1000_IVAR_MISC, tmp);
925 break;
926 default:
927 /* do nothing, since nothing else supports MSI-X */
928 break;
929 } /* switch (hw->mac.type) */
930
931 adapter->eims_enable_mask |= adapter->eims_other;
932
933 for (i = 0; i < adapter->num_q_vectors; i++)
934 igb_assign_vector(adapter->q_vector[i], vector++);
935
936 wrfl();
937 }
938
939 /**
940 * igb_request_msix - Initialize MSI-X interrupts
941 * @adapter: board private structure to initialize
942 *
943 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
944 * kernel.
945 **/
946 static int igb_request_msix(struct igb_adapter *adapter)
947 {
948 struct net_device *netdev = adapter->netdev;
949 struct e1000_hw *hw = &adapter->hw;
950 int i, err = 0, vector = 0, free_vector = 0;
951
952 err = request_irq(adapter->msix_entries[vector].vector,
953 igb_msix_other, 0, netdev->name, adapter);
954 if (err)
955 goto err_out;
956
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960 vector++;
961
962 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
963
964 if (q_vector->rx.ring && q_vector->tx.ring)
965 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966 q_vector->rx.ring->queue_index);
967 else if (q_vector->tx.ring)
968 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969 q_vector->tx.ring->queue_index);
970 else if (q_vector->rx.ring)
971 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972 q_vector->rx.ring->queue_index);
973 else
974 sprintf(q_vector->name, "%s-unused", netdev->name);
975
976 err = request_irq(adapter->msix_entries[vector].vector,
977 igb_msix_ring, 0, q_vector->name,
978 q_vector);
979 if (err)
980 goto err_free;
981 }
982
983 igb_configure_msix(adapter);
984 return 0;
985
986 err_free:
987 /* free already assigned IRQs */
988 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990 vector--;
991 for (i = 0; i < vector; i++) {
992 free_irq(adapter->msix_entries[free_vector++].vector,
993 adapter->q_vector[i]);
994 }
995 err_out:
996 return err;
997 }
998
999 /**
1000 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1001 * @adapter: board private structure to initialize
1002 * @v_idx: Index of vector to be freed
1003 *
1004 * This function frees the memory allocated to the q_vector.
1005 **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010 adapter->q_vector[v_idx] = NULL;
1011
1012 /* igb_get_stats64() might access the rings on this vector,
1013 * we must wait a grace period before freeing it.
1014 */
1015 kfree_rcu(q_vector, rcu);
1016 }
1017
1018 /**
1019 * igb_reset_q_vector - Reset config for interrupt vector
1020 * @adapter: board private structure to initialize
1021 * @v_idx: Index of vector to be reset
1022 *
1023 * If NAPI is enabled it will delete any references to the
1024 * NAPI struct. This is preparation for igb_free_q_vector.
1025 **/
1026 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1027 {
1028 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1029
1030 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1031 * allocated. So, q_vector is NULL so we should stop here.
1032 */
1033 if (!q_vector)
1034 return;
1035
1036 if (q_vector->tx.ring)
1037 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1038
1039 if (q_vector->rx.ring)
1040 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1041
1042 netif_napi_del(&q_vector->napi);
1043
1044 }
1045
1046 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1047 {
1048 int v_idx = adapter->num_q_vectors;
1049
1050 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1051 pci_disable_msix(adapter->pdev);
1052 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1053 pci_disable_msi(adapter->pdev);
1054
1055 while (v_idx--)
1056 igb_reset_q_vector(adapter, v_idx);
1057 }
1058
1059 /**
1060 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1061 * @adapter: board private structure to initialize
1062 *
1063 * This function frees the memory allocated to the q_vectors. In addition if
1064 * NAPI is enabled it will delete any references to the NAPI struct prior
1065 * to freeing the q_vector.
1066 **/
1067 static void igb_free_q_vectors(struct igb_adapter *adapter)
1068 {
1069 int v_idx = adapter->num_q_vectors;
1070
1071 adapter->num_tx_queues = 0;
1072 adapter->num_rx_queues = 0;
1073 adapter->num_q_vectors = 0;
1074
1075 while (v_idx--) {
1076 igb_reset_q_vector(adapter, v_idx);
1077 igb_free_q_vector(adapter, v_idx);
1078 }
1079 }
1080
1081 /**
1082 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1083 * @adapter: board private structure to initialize
1084 *
1085 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1086 * MSI-X interrupts allocated.
1087 */
1088 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1089 {
1090 igb_free_q_vectors(adapter);
1091 igb_reset_interrupt_capability(adapter);
1092 }
1093
1094 /**
1095 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1096 * @adapter: board private structure to initialize
1097 * @msix: boolean value of MSIX capability
1098 *
1099 * Attempt to configure interrupts using the best available
1100 * capabilities of the hardware and kernel.
1101 **/
1102 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1103 {
1104 int err;
1105 int numvecs, i;
1106
1107 if (!msix)
1108 goto msi_only;
1109 adapter->flags |= IGB_FLAG_HAS_MSIX;
1110
1111 /* Number of supported queues. */
1112 adapter->num_rx_queues = adapter->rss_queues;
1113 if (adapter->vfs_allocated_count)
1114 adapter->num_tx_queues = 1;
1115 else
1116 adapter->num_tx_queues = adapter->rss_queues;
1117
1118 /* start with one vector for every Rx queue */
1119 numvecs = adapter->num_rx_queues;
1120
1121 /* if Tx handler is separate add 1 for every Tx queue */
1122 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1123 numvecs += adapter->num_tx_queues;
1124
1125 /* store the number of vectors reserved for queues */
1126 adapter->num_q_vectors = numvecs;
1127
1128 /* add 1 vector for link status interrupts */
1129 numvecs++;
1130 for (i = 0; i < numvecs; i++)
1131 adapter->msix_entries[i].entry = i;
1132
1133 err = pci_enable_msix_range(adapter->pdev,
1134 adapter->msix_entries,
1135 numvecs,
1136 numvecs);
1137 if (err > 0)
1138 return;
1139
1140 igb_reset_interrupt_capability(adapter);
1141
1142 /* If we can't do MSI-X, try MSI */
1143 msi_only:
1144 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1145 #ifdef CONFIG_PCI_IOV
1146 /* disable SR-IOV for non MSI-X configurations */
1147 if (adapter->vf_data) {
1148 struct e1000_hw *hw = &adapter->hw;
1149 /* disable iov and allow time for transactions to clear */
1150 pci_disable_sriov(adapter->pdev);
1151 msleep(500);
1152
1153 kfree(adapter->vf_data);
1154 adapter->vf_data = NULL;
1155 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1156 wrfl();
1157 msleep(100);
1158 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159 }
1160 #endif
1161 adapter->vfs_allocated_count = 0;
1162 adapter->rss_queues = 1;
1163 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1164 adapter->num_rx_queues = 1;
1165 adapter->num_tx_queues = 1;
1166 adapter->num_q_vectors = 1;
1167 if (!pci_enable_msi(adapter->pdev))
1168 adapter->flags |= IGB_FLAG_HAS_MSI;
1169 }
1170
1171 static void igb_add_ring(struct igb_ring *ring,
1172 struct igb_ring_container *head)
1173 {
1174 head->ring = ring;
1175 head->count++;
1176 }
1177
1178 /**
1179 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1180 * @adapter: board private structure to initialize
1181 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1182 * @v_idx: index of vector in adapter struct
1183 * @txr_count: total number of Tx rings to allocate
1184 * @txr_idx: index of first Tx ring to allocate
1185 * @rxr_count: total number of Rx rings to allocate
1186 * @rxr_idx: index of first Rx ring to allocate
1187 *
1188 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1189 **/
1190 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1191 int v_count, int v_idx,
1192 int txr_count, int txr_idx,
1193 int rxr_count, int rxr_idx)
1194 {
1195 struct igb_q_vector *q_vector;
1196 struct igb_ring *ring;
1197 int ring_count, size;
1198
1199 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1200 if (txr_count > 1 || rxr_count > 1)
1201 return -ENOMEM;
1202
1203 ring_count = txr_count + rxr_count;
1204 size = sizeof(struct igb_q_vector) +
1205 (sizeof(struct igb_ring) * ring_count);
1206
1207 /* allocate q_vector and rings */
1208 q_vector = adapter->q_vector[v_idx];
1209 if (!q_vector)
1210 q_vector = kzalloc(size, GFP_KERNEL);
1211 if (!q_vector)
1212 return -ENOMEM;
1213
1214 /* initialize NAPI */
1215 netif_napi_add(adapter->netdev, &q_vector->napi,
1216 igb_poll, 64);
1217
1218 /* tie q_vector and adapter together */
1219 adapter->q_vector[v_idx] = q_vector;
1220 q_vector->adapter = adapter;
1221
1222 /* initialize work limits */
1223 q_vector->tx.work_limit = adapter->tx_work_limit;
1224
1225 /* initialize ITR configuration */
1226 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1227 q_vector->itr_val = IGB_START_ITR;
1228
1229 /* initialize pointer to rings */
1230 ring = q_vector->ring;
1231
1232 /* intialize ITR */
1233 if (rxr_count) {
1234 /* rx or rx/tx vector */
1235 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1236 q_vector->itr_val = adapter->rx_itr_setting;
1237 } else {
1238 /* tx only vector */
1239 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1240 q_vector->itr_val = adapter->tx_itr_setting;
1241 }
1242
1243 if (txr_count) {
1244 /* assign generic ring traits */
1245 ring->dev = &adapter->pdev->dev;
1246 ring->netdev = adapter->netdev;
1247
1248 /* configure backlink on ring */
1249 ring->q_vector = q_vector;
1250
1251 /* update q_vector Tx values */
1252 igb_add_ring(ring, &q_vector->tx);
1253
1254 /* For 82575, context index must be unique per ring. */
1255 if (adapter->hw.mac.type == e1000_82575)
1256 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1257
1258 /* apply Tx specific ring traits */
1259 ring->count = adapter->tx_ring_count;
1260 ring->queue_index = txr_idx;
1261
1262 u64_stats_init(&ring->tx_syncp);
1263 u64_stats_init(&ring->tx_syncp2);
1264
1265 /* assign ring to adapter */
1266 adapter->tx_ring[txr_idx] = ring;
1267
1268 /* push pointer to next ring */
1269 ring++;
1270 }
1271
1272 if (rxr_count) {
1273 /* assign generic ring traits */
1274 ring->dev = &adapter->pdev->dev;
1275 ring->netdev = adapter->netdev;
1276
1277 /* configure backlink on ring */
1278 ring->q_vector = q_vector;
1279
1280 /* update q_vector Rx values */
1281 igb_add_ring(ring, &q_vector->rx);
1282
1283 /* set flag indicating ring supports SCTP checksum offload */
1284 if (adapter->hw.mac.type >= e1000_82576)
1285 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1286
1287 /* On i350, i354, i210, and i211, loopback VLAN packets
1288 * have the tag byte-swapped.
1289 */
1290 if (adapter->hw.mac.type >= e1000_i350)
1291 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1292
1293 /* apply Rx specific ring traits */
1294 ring->count = adapter->rx_ring_count;
1295 ring->queue_index = rxr_idx;
1296
1297 u64_stats_init(&ring->rx_syncp);
1298
1299 /* assign ring to adapter */
1300 adapter->rx_ring[rxr_idx] = ring;
1301 }
1302
1303 return 0;
1304 }
1305
1306
1307 /**
1308 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1309 * @adapter: board private structure to initialize
1310 *
1311 * We allocate one q_vector per queue interrupt. If allocation fails we
1312 * return -ENOMEM.
1313 **/
1314 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1315 {
1316 int q_vectors = adapter->num_q_vectors;
1317 int rxr_remaining = adapter->num_rx_queues;
1318 int txr_remaining = adapter->num_tx_queues;
1319 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1320 int err;
1321
1322 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1323 for (; rxr_remaining; v_idx++) {
1324 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1325 0, 0, 1, rxr_idx);
1326
1327 if (err)
1328 goto err_out;
1329
1330 /* update counts and index */
1331 rxr_remaining--;
1332 rxr_idx++;
1333 }
1334 }
1335
1336 for (; v_idx < q_vectors; v_idx++) {
1337 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1338 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1339
1340 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1341 tqpv, txr_idx, rqpv, rxr_idx);
1342
1343 if (err)
1344 goto err_out;
1345
1346 /* update counts and index */
1347 rxr_remaining -= rqpv;
1348 txr_remaining -= tqpv;
1349 rxr_idx++;
1350 txr_idx++;
1351 }
1352
1353 return 0;
1354
1355 err_out:
1356 adapter->num_tx_queues = 0;
1357 adapter->num_rx_queues = 0;
1358 adapter->num_q_vectors = 0;
1359
1360 while (v_idx--)
1361 igb_free_q_vector(adapter, v_idx);
1362
1363 return -ENOMEM;
1364 }
1365
1366 /**
1367 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1368 * @adapter: board private structure to initialize
1369 * @msix: boolean value of MSIX capability
1370 *
1371 * This function initializes the interrupts and allocates all of the queues.
1372 **/
1373 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1374 {
1375 struct pci_dev *pdev = adapter->pdev;
1376 int err;
1377
1378 igb_set_interrupt_capability(adapter, msix);
1379
1380 err = igb_alloc_q_vectors(adapter);
1381 if (err) {
1382 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1383 goto err_alloc_q_vectors;
1384 }
1385
1386 igb_cache_ring_register(adapter);
1387
1388 return 0;
1389
1390 err_alloc_q_vectors:
1391 igb_reset_interrupt_capability(adapter);
1392 return err;
1393 }
1394
1395 /**
1396 * igb_request_irq - initialize interrupts
1397 * @adapter: board private structure to initialize
1398 *
1399 * Attempts to configure interrupts using the best available
1400 * capabilities of the hardware and kernel.
1401 **/
1402 static int igb_request_irq(struct igb_adapter *adapter)
1403 {
1404 struct net_device *netdev = adapter->netdev;
1405 struct pci_dev *pdev = adapter->pdev;
1406 int err = 0;
1407
1408 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1409 err = igb_request_msix(adapter);
1410 if (!err)
1411 goto request_done;
1412 /* fall back to MSI */
1413 igb_free_all_tx_resources(adapter);
1414 igb_free_all_rx_resources(adapter);
1415
1416 igb_clear_interrupt_scheme(adapter);
1417 err = igb_init_interrupt_scheme(adapter, false);
1418 if (err)
1419 goto request_done;
1420
1421 igb_setup_all_tx_resources(adapter);
1422 igb_setup_all_rx_resources(adapter);
1423 igb_configure(adapter);
1424 }
1425
1426 igb_assign_vector(adapter->q_vector[0], 0);
1427
1428 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1429 err = request_irq(pdev->irq, igb_intr_msi, 0,
1430 netdev->name, adapter);
1431 if (!err)
1432 goto request_done;
1433
1434 /* fall back to legacy interrupts */
1435 igb_reset_interrupt_capability(adapter);
1436 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1437 }
1438
1439 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1440 netdev->name, adapter);
1441
1442 if (err)
1443 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1444 err);
1445
1446 request_done:
1447 return err;
1448 }
1449
1450 static void igb_free_irq(struct igb_adapter *adapter)
1451 {
1452 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1453 int vector = 0, i;
1454
1455 free_irq(adapter->msix_entries[vector++].vector, adapter);
1456
1457 for (i = 0; i < adapter->num_q_vectors; i++)
1458 free_irq(adapter->msix_entries[vector++].vector,
1459 adapter->q_vector[i]);
1460 } else {
1461 free_irq(adapter->pdev->irq, adapter);
1462 }
1463 }
1464
1465 /**
1466 * igb_irq_disable - Mask off interrupt generation on the NIC
1467 * @adapter: board private structure
1468 **/
1469 static void igb_irq_disable(struct igb_adapter *adapter)
1470 {
1471 struct e1000_hw *hw = &adapter->hw;
1472
1473 /* we need to be careful when disabling interrupts. The VFs are also
1474 * mapped into these registers and so clearing the bits can cause
1475 * issues on the VF drivers so we only need to clear what we set
1476 */
1477 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1478 u32 regval = rd32(E1000_EIAM);
1479
1480 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481 wr32(E1000_EIMC, adapter->eims_enable_mask);
1482 regval = rd32(E1000_EIAC);
1483 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484 }
1485
1486 wr32(E1000_IAM, 0);
1487 wr32(E1000_IMC, ~0);
1488 wrfl();
1489 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490 int i;
1491
1492 for (i = 0; i < adapter->num_q_vectors; i++)
1493 synchronize_irq(adapter->msix_entries[i].vector);
1494 } else {
1495 synchronize_irq(adapter->pdev->irq);
1496 }
1497 }
1498
1499 /**
1500 * igb_irq_enable - Enable default interrupt generation settings
1501 * @adapter: board private structure
1502 **/
1503 static void igb_irq_enable(struct igb_adapter *adapter)
1504 {
1505 struct e1000_hw *hw = &adapter->hw;
1506
1507 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1509 u32 regval = rd32(E1000_EIAC);
1510
1511 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1512 regval = rd32(E1000_EIAM);
1513 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1514 wr32(E1000_EIMS, adapter->eims_enable_mask);
1515 if (adapter->vfs_allocated_count) {
1516 wr32(E1000_MBVFIMR, 0xFF);
1517 ims |= E1000_IMS_VMMB;
1518 }
1519 wr32(E1000_IMS, ims);
1520 } else {
1521 wr32(E1000_IMS, IMS_ENABLE_MASK |
1522 E1000_IMS_DRSTA);
1523 wr32(E1000_IAM, IMS_ENABLE_MASK |
1524 E1000_IMS_DRSTA);
1525 }
1526 }
1527
1528 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1529 {
1530 struct e1000_hw *hw = &adapter->hw;
1531 u16 vid = adapter->hw.mng_cookie.vlan_id;
1532 u16 old_vid = adapter->mng_vlan_id;
1533
1534 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1535 /* add VID to filter table */
1536 igb_vfta_set(hw, vid, true);
1537 adapter->mng_vlan_id = vid;
1538 } else {
1539 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1540 }
1541
1542 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1543 (vid != old_vid) &&
1544 !test_bit(old_vid, adapter->active_vlans)) {
1545 /* remove VID from filter table */
1546 igb_vfta_set(hw, old_vid, false);
1547 }
1548 }
1549
1550 /**
1551 * igb_release_hw_control - release control of the h/w to f/w
1552 * @adapter: address of board private structure
1553 *
1554 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1555 * For ASF and Pass Through versions of f/w this means that the
1556 * driver is no longer loaded.
1557 **/
1558 static void igb_release_hw_control(struct igb_adapter *adapter)
1559 {
1560 struct e1000_hw *hw = &adapter->hw;
1561 u32 ctrl_ext;
1562
1563 /* Let firmware take over control of h/w */
1564 ctrl_ext = rd32(E1000_CTRL_EXT);
1565 wr32(E1000_CTRL_EXT,
1566 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1567 }
1568
1569 /**
1570 * igb_get_hw_control - get control of the h/w from f/w
1571 * @adapter: address of board private structure
1572 *
1573 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1574 * For ASF and Pass Through versions of f/w this means that
1575 * the driver is loaded.
1576 **/
1577 static void igb_get_hw_control(struct igb_adapter *adapter)
1578 {
1579 struct e1000_hw *hw = &adapter->hw;
1580 u32 ctrl_ext;
1581
1582 /* Let firmware know the driver has taken over */
1583 ctrl_ext = rd32(E1000_CTRL_EXT);
1584 wr32(E1000_CTRL_EXT,
1585 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1586 }
1587
1588 /**
1589 * igb_configure - configure the hardware for RX and TX
1590 * @adapter: private board structure
1591 **/
1592 static void igb_configure(struct igb_adapter *adapter)
1593 {
1594 struct net_device *netdev = adapter->netdev;
1595 int i;
1596
1597 igb_get_hw_control(adapter);
1598 igb_set_rx_mode(netdev);
1599
1600 igb_restore_vlan(adapter);
1601
1602 igb_setup_tctl(adapter);
1603 igb_setup_mrqc(adapter);
1604 igb_setup_rctl(adapter);
1605
1606 igb_configure_tx(adapter);
1607 igb_configure_rx(adapter);
1608
1609 igb_rx_fifo_flush_82575(&adapter->hw);
1610
1611 /* call igb_desc_unused which always leaves
1612 * at least 1 descriptor unused to make sure
1613 * next_to_use != next_to_clean
1614 */
1615 for (i = 0; i < adapter->num_rx_queues; i++) {
1616 struct igb_ring *ring = adapter->rx_ring[i];
1617 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1618 }
1619 }
1620
1621 /**
1622 * igb_power_up_link - Power up the phy/serdes link
1623 * @adapter: address of board private structure
1624 **/
1625 void igb_power_up_link(struct igb_adapter *adapter)
1626 {
1627 igb_reset_phy(&adapter->hw);
1628
1629 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1630 igb_power_up_phy_copper(&adapter->hw);
1631 else
1632 igb_power_up_serdes_link_82575(&adapter->hw);
1633 }
1634
1635 /**
1636 * igb_power_down_link - Power down the phy/serdes link
1637 * @adapter: address of board private structure
1638 */
1639 static void igb_power_down_link(struct igb_adapter *adapter)
1640 {
1641 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1642 igb_power_down_phy_copper_82575(&adapter->hw);
1643 else
1644 igb_shutdown_serdes_link_82575(&adapter->hw);
1645 }
1646
1647 /**
1648 * Detect and switch function for Media Auto Sense
1649 * @adapter: address of the board private structure
1650 **/
1651 static void igb_check_swap_media(struct igb_adapter *adapter)
1652 {
1653 struct e1000_hw *hw = &adapter->hw;
1654 u32 ctrl_ext, connsw;
1655 bool swap_now = false;
1656
1657 ctrl_ext = rd32(E1000_CTRL_EXT);
1658 connsw = rd32(E1000_CONNSW);
1659
1660 /* need to live swap if current media is copper and we have fiber/serdes
1661 * to go to.
1662 */
1663
1664 if ((hw->phy.media_type == e1000_media_type_copper) &&
1665 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1666 swap_now = true;
1667 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1668 /* copper signal takes time to appear */
1669 if (adapter->copper_tries < 4) {
1670 adapter->copper_tries++;
1671 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1672 wr32(E1000_CONNSW, connsw);
1673 return;
1674 } else {
1675 adapter->copper_tries = 0;
1676 if ((connsw & E1000_CONNSW_PHYSD) &&
1677 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1678 swap_now = true;
1679 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1680 wr32(E1000_CONNSW, connsw);
1681 }
1682 }
1683 }
1684
1685 if (!swap_now)
1686 return;
1687
1688 switch (hw->phy.media_type) {
1689 case e1000_media_type_copper:
1690 netdev_info(adapter->netdev,
1691 "MAS: changing media to fiber/serdes\n");
1692 ctrl_ext |=
1693 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1694 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1695 adapter->copper_tries = 0;
1696 break;
1697 case e1000_media_type_internal_serdes:
1698 case e1000_media_type_fiber:
1699 netdev_info(adapter->netdev,
1700 "MAS: changing media to copper\n");
1701 ctrl_ext &=
1702 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1703 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1704 break;
1705 default:
1706 /* shouldn't get here during regular operation */
1707 netdev_err(adapter->netdev,
1708 "AMS: Invalid media type found, returning\n");
1709 break;
1710 }
1711 wr32(E1000_CTRL_EXT, ctrl_ext);
1712 }
1713
1714 /**
1715 * igb_up - Open the interface and prepare it to handle traffic
1716 * @adapter: board private structure
1717 **/
1718 int igb_up(struct igb_adapter *adapter)
1719 {
1720 struct e1000_hw *hw = &adapter->hw;
1721 int i;
1722
1723 /* hardware has been reset, we need to reload some things */
1724 igb_configure(adapter);
1725
1726 clear_bit(__IGB_DOWN, &adapter->state);
1727
1728 for (i = 0; i < adapter->num_q_vectors; i++)
1729 napi_enable(&(adapter->q_vector[i]->napi));
1730
1731 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1732 igb_configure_msix(adapter);
1733 else
1734 igb_assign_vector(adapter->q_vector[0], 0);
1735
1736 /* Clear any pending interrupts. */
1737 rd32(E1000_ICR);
1738 igb_irq_enable(adapter);
1739
1740 /* notify VFs that reset has been completed */
1741 if (adapter->vfs_allocated_count) {
1742 u32 reg_data = rd32(E1000_CTRL_EXT);
1743
1744 reg_data |= E1000_CTRL_EXT_PFRSTD;
1745 wr32(E1000_CTRL_EXT, reg_data);
1746 }
1747
1748 netif_tx_start_all_queues(adapter->netdev);
1749
1750 /* start the watchdog. */
1751 hw->mac.get_link_status = 1;
1752 schedule_work(&adapter->watchdog_task);
1753
1754 if ((adapter->flags & IGB_FLAG_EEE) &&
1755 (!hw->dev_spec._82575.eee_disable))
1756 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1757
1758 return 0;
1759 }
1760
1761 void igb_down(struct igb_adapter *adapter)
1762 {
1763 struct net_device *netdev = adapter->netdev;
1764 struct e1000_hw *hw = &adapter->hw;
1765 u32 tctl, rctl;
1766 int i;
1767
1768 /* signal that we're down so the interrupt handler does not
1769 * reschedule our watchdog timer
1770 */
1771 set_bit(__IGB_DOWN, &adapter->state);
1772
1773 /* disable receives in the hardware */
1774 rctl = rd32(E1000_RCTL);
1775 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1776 /* flush and sleep below */
1777
1778 netif_tx_stop_all_queues(netdev);
1779
1780 /* disable transmits in the hardware */
1781 tctl = rd32(E1000_TCTL);
1782 tctl &= ~E1000_TCTL_EN;
1783 wr32(E1000_TCTL, tctl);
1784 /* flush both disables and wait for them to finish */
1785 wrfl();
1786 msleep(10);
1787
1788 igb_irq_disable(adapter);
1789
1790 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1791
1792 for (i = 0; i < adapter->num_q_vectors; i++) {
1793 napi_synchronize(&(adapter->q_vector[i]->napi));
1794 napi_disable(&(adapter->q_vector[i]->napi));
1795 }
1796
1797
1798 del_timer_sync(&adapter->watchdog_timer);
1799 del_timer_sync(&adapter->phy_info_timer);
1800
1801 netif_carrier_off(netdev);
1802
1803 /* record the stats before reset*/
1804 spin_lock(&adapter->stats64_lock);
1805 igb_update_stats(adapter, &adapter->stats64);
1806 spin_unlock(&adapter->stats64_lock);
1807
1808 adapter->link_speed = 0;
1809 adapter->link_duplex = 0;
1810
1811 if (!pci_channel_offline(adapter->pdev))
1812 igb_reset(adapter);
1813 igb_clean_all_tx_rings(adapter);
1814 igb_clean_all_rx_rings(adapter);
1815 #ifdef CONFIG_IGB_DCA
1816
1817 /* since we reset the hardware DCA settings were cleared */
1818 igb_setup_dca(adapter);
1819 #endif
1820 }
1821
1822 void igb_reinit_locked(struct igb_adapter *adapter)
1823 {
1824 WARN_ON(in_interrupt());
1825 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1826 msleep(1);
1827 igb_down(adapter);
1828 igb_up(adapter);
1829 clear_bit(__IGB_RESETTING, &adapter->state);
1830 }
1831
1832 /** igb_enable_mas - Media Autosense re-enable after swap
1833 *
1834 * @adapter: adapter struct
1835 **/
1836 static s32 igb_enable_mas(struct igb_adapter *adapter)
1837 {
1838 struct e1000_hw *hw = &adapter->hw;
1839 u32 connsw;
1840 s32 ret_val = 0;
1841
1842 connsw = rd32(E1000_CONNSW);
1843 if (!(hw->phy.media_type == e1000_media_type_copper))
1844 return ret_val;
1845
1846 /* configure for SerDes media detect */
1847 if (!(connsw & E1000_CONNSW_SERDESD)) {
1848 connsw |= E1000_CONNSW_ENRGSRC;
1849 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1850 wr32(E1000_CONNSW, connsw);
1851 wrfl();
1852 } else if (connsw & E1000_CONNSW_SERDESD) {
1853 /* already SerDes, no need to enable anything */
1854 return ret_val;
1855 } else {
1856 netdev_info(adapter->netdev,
1857 "MAS: Unable to configure feature, disabling..\n");
1858 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1859 }
1860 return ret_val;
1861 }
1862
1863 void igb_reset(struct igb_adapter *adapter)
1864 {
1865 struct pci_dev *pdev = adapter->pdev;
1866 struct e1000_hw *hw = &adapter->hw;
1867 struct e1000_mac_info *mac = &hw->mac;
1868 struct e1000_fc_info *fc = &hw->fc;
1869 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1870
1871 /* Repartition Pba for greater than 9k mtu
1872 * To take effect CTRL.RST is required.
1873 */
1874 switch (mac->type) {
1875 case e1000_i350:
1876 case e1000_i354:
1877 case e1000_82580:
1878 pba = rd32(E1000_RXPBS);
1879 pba = igb_rxpbs_adjust_82580(pba);
1880 break;
1881 case e1000_82576:
1882 pba = rd32(E1000_RXPBS);
1883 pba &= E1000_RXPBS_SIZE_MASK_82576;
1884 break;
1885 case e1000_82575:
1886 case e1000_i210:
1887 case e1000_i211:
1888 default:
1889 pba = E1000_PBA_34K;
1890 break;
1891 }
1892
1893 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1894 (mac->type < e1000_82576)) {
1895 /* adjust PBA for jumbo frames */
1896 wr32(E1000_PBA, pba);
1897
1898 /* To maintain wire speed transmits, the Tx FIFO should be
1899 * large enough to accommodate two full transmit packets,
1900 * rounded up to the next 1KB and expressed in KB. Likewise,
1901 * the Rx FIFO should be large enough to accommodate at least
1902 * one full receive packet and is similarly rounded up and
1903 * expressed in KB.
1904 */
1905 pba = rd32(E1000_PBA);
1906 /* upper 16 bits has Tx packet buffer allocation size in KB */
1907 tx_space = pba >> 16;
1908 /* lower 16 bits has Rx packet buffer allocation size in KB */
1909 pba &= 0xffff;
1910 /* the Tx fifo also stores 16 bytes of information about the Tx
1911 * but don't include ethernet FCS because hardware appends it
1912 */
1913 min_tx_space = (adapter->max_frame_size +
1914 sizeof(union e1000_adv_tx_desc) -
1915 ETH_FCS_LEN) * 2;
1916 min_tx_space = ALIGN(min_tx_space, 1024);
1917 min_tx_space >>= 10;
1918 /* software strips receive CRC, so leave room for it */
1919 min_rx_space = adapter->max_frame_size;
1920 min_rx_space = ALIGN(min_rx_space, 1024);
1921 min_rx_space >>= 10;
1922
1923 /* If current Tx allocation is less than the min Tx FIFO size,
1924 * and the min Tx FIFO size is less than the current Rx FIFO
1925 * allocation, take space away from current Rx allocation
1926 */
1927 if (tx_space < min_tx_space &&
1928 ((min_tx_space - tx_space) < pba)) {
1929 pba = pba - (min_tx_space - tx_space);
1930
1931 /* if short on Rx space, Rx wins and must trump Tx
1932 * adjustment
1933 */
1934 if (pba < min_rx_space)
1935 pba = min_rx_space;
1936 }
1937 wr32(E1000_PBA, pba);
1938 }
1939
1940 /* flow control settings */
1941 /* The high water mark must be low enough to fit one full frame
1942 * (or the size used for early receive) above it in the Rx FIFO.
1943 * Set it to the lower of:
1944 * - 90% of the Rx FIFO size, or
1945 * - the full Rx FIFO size minus one full frame
1946 */
1947 hwm = min(((pba << 10) * 9 / 10),
1948 ((pba << 10) - 2 * adapter->max_frame_size));
1949
1950 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1951 fc->low_water = fc->high_water - 16;
1952 fc->pause_time = 0xFFFF;
1953 fc->send_xon = 1;
1954 fc->current_mode = fc->requested_mode;
1955
1956 /* disable receive for all VFs and wait one second */
1957 if (adapter->vfs_allocated_count) {
1958 int i;
1959
1960 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962
1963 /* ping all the active vfs to let them know we are going down */
1964 igb_ping_all_vfs(adapter);
1965
1966 /* disable transmits and receives */
1967 wr32(E1000_VFRE, 0);
1968 wr32(E1000_VFTE, 0);
1969 }
1970
1971 /* Allow time for pending master requests to run */
1972 hw->mac.ops.reset_hw(hw);
1973 wr32(E1000_WUC, 0);
1974
1975 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976 /* need to resetup here after media swap */
1977 adapter->ei.get_invariants(hw);
1978 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979 }
1980 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1981 if (igb_enable_mas(adapter))
1982 dev_err(&pdev->dev,
1983 "Error enabling Media Auto Sense\n");
1984 }
1985 if (hw->mac.ops.init_hw(hw))
1986 dev_err(&pdev->dev, "Hardware Error\n");
1987
1988 /* Flow control settings reset on hardware reset, so guarantee flow
1989 * control is off when forcing speed.
1990 */
1991 if (!hw->mac.autoneg)
1992 igb_force_mac_fc(hw);
1993
1994 igb_init_dmac(adapter, pba);
1995 #ifdef CONFIG_IGB_HWMON
1996 /* Re-initialize the thermal sensor on i350 devices. */
1997 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1998 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1999 /* If present, re-initialize the external thermal sensor
2000 * interface.
2001 */
2002 if (adapter->ets)
2003 mac->ops.init_thermal_sensor_thresh(hw);
2004 }
2005 }
2006 #endif
2007 /* Re-establish EEE setting */
2008 if (hw->phy.media_type == e1000_media_type_copper) {
2009 switch (mac->type) {
2010 case e1000_i350:
2011 case e1000_i210:
2012 case e1000_i211:
2013 igb_set_eee_i350(hw);
2014 break;
2015 case e1000_i354:
2016 igb_set_eee_i354(hw);
2017 break;
2018 default:
2019 break;
2020 }
2021 }
2022 if (!netif_running(adapter->netdev))
2023 igb_power_down_link(adapter);
2024
2025 igb_update_mng_vlan(adapter);
2026
2027 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2028 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2029
2030 /* Re-enable PTP, where applicable. */
2031 igb_ptp_reset(adapter);
2032
2033 igb_get_phy_info(hw);
2034 }
2035
2036 static netdev_features_t igb_fix_features(struct net_device *netdev,
2037 netdev_features_t features)
2038 {
2039 /* Since there is no support for separate Rx/Tx vlan accel
2040 * enable/disable make sure Tx flag is always in same state as Rx.
2041 */
2042 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2043 features |= NETIF_F_HW_VLAN_CTAG_TX;
2044 else
2045 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2046
2047 return features;
2048 }
2049
2050 static int igb_set_features(struct net_device *netdev,
2051 netdev_features_t features)
2052 {
2053 netdev_features_t changed = netdev->features ^ features;
2054 struct igb_adapter *adapter = netdev_priv(netdev);
2055
2056 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2057 igb_vlan_mode(netdev, features);
2058
2059 if (!(changed & NETIF_F_RXALL))
2060 return 0;
2061
2062 netdev->features = features;
2063
2064 if (netif_running(netdev))
2065 igb_reinit_locked(adapter);
2066 else
2067 igb_reset(adapter);
2068
2069 return 0;
2070 }
2071
2072 static const struct net_device_ops igb_netdev_ops = {
2073 .ndo_open = igb_open,
2074 .ndo_stop = igb_close,
2075 .ndo_start_xmit = igb_xmit_frame,
2076 .ndo_get_stats64 = igb_get_stats64,
2077 .ndo_set_rx_mode = igb_set_rx_mode,
2078 .ndo_set_mac_address = igb_set_mac,
2079 .ndo_change_mtu = igb_change_mtu,
2080 .ndo_do_ioctl = igb_ioctl,
2081 .ndo_tx_timeout = igb_tx_timeout,
2082 .ndo_validate_addr = eth_validate_addr,
2083 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2084 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2085 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2086 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2087 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
2088 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2089 .ndo_get_vf_config = igb_ndo_get_vf_config,
2090 #ifdef CONFIG_NET_POLL_CONTROLLER
2091 .ndo_poll_controller = igb_netpoll,
2092 #endif
2093 .ndo_fix_features = igb_fix_features,
2094 .ndo_set_features = igb_set_features,
2095 };
2096
2097 /**
2098 * igb_set_fw_version - Configure version string for ethtool
2099 * @adapter: adapter struct
2100 **/
2101 void igb_set_fw_version(struct igb_adapter *adapter)
2102 {
2103 struct e1000_hw *hw = &adapter->hw;
2104 struct e1000_fw_version fw;
2105
2106 igb_get_fw_version(hw, &fw);
2107
2108 switch (hw->mac.type) {
2109 case e1000_i210:
2110 case e1000_i211:
2111 if (!(igb_get_flash_presence_i210(hw))) {
2112 snprintf(adapter->fw_version,
2113 sizeof(adapter->fw_version),
2114 "%2d.%2d-%d",
2115 fw.invm_major, fw.invm_minor,
2116 fw.invm_img_type);
2117 break;
2118 }
2119 /* fall through */
2120 default:
2121 /* if option is rom valid, display its version too */
2122 if (fw.or_valid) {
2123 snprintf(adapter->fw_version,
2124 sizeof(adapter->fw_version),
2125 "%d.%d, 0x%08x, %d.%d.%d",
2126 fw.eep_major, fw.eep_minor, fw.etrack_id,
2127 fw.or_major, fw.or_build, fw.or_patch);
2128 /* no option rom */
2129 } else if (fw.etrack_id != 0X0000) {
2130 snprintf(adapter->fw_version,
2131 sizeof(adapter->fw_version),
2132 "%d.%d, 0x%08x",
2133 fw.eep_major, fw.eep_minor, fw.etrack_id);
2134 } else {
2135 snprintf(adapter->fw_version,
2136 sizeof(adapter->fw_version),
2137 "%d.%d.%d",
2138 fw.eep_major, fw.eep_minor, fw.eep_build);
2139 }
2140 break;
2141 }
2142 return;
2143 }
2144
2145 /**
2146 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2147 *
2148 * @adapter: adapter struct
2149 **/
2150 static void igb_init_mas(struct igb_adapter *adapter)
2151 {
2152 struct e1000_hw *hw = &adapter->hw;
2153 u16 eeprom_data;
2154
2155 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2156 switch (hw->bus.func) {
2157 case E1000_FUNC_0:
2158 if (eeprom_data & IGB_MAS_ENABLE_0) {
2159 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2160 netdev_info(adapter->netdev,
2161 "MAS: Enabling Media Autosense for port %d\n",
2162 hw->bus.func);
2163 }
2164 break;
2165 case E1000_FUNC_1:
2166 if (eeprom_data & IGB_MAS_ENABLE_1) {
2167 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2168 netdev_info(adapter->netdev,
2169 "MAS: Enabling Media Autosense for port %d\n",
2170 hw->bus.func);
2171 }
2172 break;
2173 case E1000_FUNC_2:
2174 if (eeprom_data & IGB_MAS_ENABLE_2) {
2175 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2176 netdev_info(adapter->netdev,
2177 "MAS: Enabling Media Autosense for port %d\n",
2178 hw->bus.func);
2179 }
2180 break;
2181 case E1000_FUNC_3:
2182 if (eeprom_data & IGB_MAS_ENABLE_3) {
2183 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2184 netdev_info(adapter->netdev,
2185 "MAS: Enabling Media Autosense for port %d\n",
2186 hw->bus.func);
2187 }
2188 break;
2189 default:
2190 /* Shouldn't get here */
2191 netdev_err(adapter->netdev,
2192 "MAS: Invalid port configuration, returning\n");
2193 break;
2194 }
2195 }
2196
2197 /**
2198 * igb_init_i2c - Init I2C interface
2199 * @adapter: pointer to adapter structure
2200 **/
2201 static s32 igb_init_i2c(struct igb_adapter *adapter)
2202 {
2203 s32 status = E1000_SUCCESS;
2204
2205 /* I2C interface supported on i350 devices */
2206 if (adapter->hw.mac.type != e1000_i350)
2207 return E1000_SUCCESS;
2208
2209 /* Initialize the i2c bus which is controlled by the registers.
2210 * This bus will use the i2c_algo_bit structue that implements
2211 * the protocol through toggling of the 4 bits in the register.
2212 */
2213 adapter->i2c_adap.owner = THIS_MODULE;
2214 adapter->i2c_algo = igb_i2c_algo;
2215 adapter->i2c_algo.data = adapter;
2216 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2217 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2218 strlcpy(adapter->i2c_adap.name, "igb BB",
2219 sizeof(adapter->i2c_adap.name));
2220 status = i2c_bit_add_bus(&adapter->i2c_adap);
2221 return status;
2222 }
2223
2224 /**
2225 * igb_probe - Device Initialization Routine
2226 * @pdev: PCI device information struct
2227 * @ent: entry in igb_pci_tbl
2228 *
2229 * Returns 0 on success, negative on failure
2230 *
2231 * igb_probe initializes an adapter identified by a pci_dev structure.
2232 * The OS initialization, configuring of the adapter private structure,
2233 * and a hardware reset occur.
2234 **/
2235 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2236 {
2237 struct net_device *netdev;
2238 struct igb_adapter *adapter;
2239 struct e1000_hw *hw;
2240 u16 eeprom_data = 0;
2241 s32 ret_val;
2242 static int global_quad_port_a; /* global quad port a indication */
2243 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2244 int err, pci_using_dac;
2245 u8 part_str[E1000_PBANUM_LENGTH];
2246
2247 /* Catch broken hardware that put the wrong VF device ID in
2248 * the PCIe SR-IOV capability.
2249 */
2250 if (pdev->is_virtfn) {
2251 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2252 pci_name(pdev), pdev->vendor, pdev->device);
2253 return -EINVAL;
2254 }
2255
2256 err = pci_enable_device_mem(pdev);
2257 if (err)
2258 return err;
2259
2260 pci_using_dac = 0;
2261 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2262 if (!err) {
2263 pci_using_dac = 1;
2264 } else {
2265 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2266 if (err) {
2267 dev_err(&pdev->dev,
2268 "No usable DMA configuration, aborting\n");
2269 goto err_dma;
2270 }
2271 }
2272
2273 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2274 IORESOURCE_MEM),
2275 igb_driver_name);
2276 if (err)
2277 goto err_pci_reg;
2278
2279 pci_enable_pcie_error_reporting(pdev);
2280
2281 pci_set_master(pdev);
2282 pci_save_state(pdev);
2283
2284 err = -ENOMEM;
2285 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2286 IGB_MAX_TX_QUEUES);
2287 if (!netdev)
2288 goto err_alloc_etherdev;
2289
2290 SET_NETDEV_DEV(netdev, &pdev->dev);
2291
2292 pci_set_drvdata(pdev, netdev);
2293 adapter = netdev_priv(netdev);
2294 adapter->netdev = netdev;
2295 adapter->pdev = pdev;
2296 hw = &adapter->hw;
2297 hw->back = adapter;
2298 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2299
2300 err = -EIO;
2301 hw->hw_addr = pci_iomap(pdev, 0, 0);
2302 if (!hw->hw_addr)
2303 goto err_ioremap;
2304
2305 netdev->netdev_ops = &igb_netdev_ops;
2306 igb_set_ethtool_ops(netdev);
2307 netdev->watchdog_timeo = 5 * HZ;
2308
2309 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2310
2311 netdev->mem_start = pci_resource_start(pdev, 0);
2312 netdev->mem_end = pci_resource_end(pdev, 0);
2313
2314 /* PCI config space info */
2315 hw->vendor_id = pdev->vendor;
2316 hw->device_id = pdev->device;
2317 hw->revision_id = pdev->revision;
2318 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2319 hw->subsystem_device_id = pdev->subsystem_device;
2320
2321 /* Copy the default MAC, PHY and NVM function pointers */
2322 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2323 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2324 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2325 /* Initialize skew-specific constants */
2326 err = ei->get_invariants(hw);
2327 if (err)
2328 goto err_sw_init;
2329
2330 /* setup the private structure */
2331 err = igb_sw_init(adapter);
2332 if (err)
2333 goto err_sw_init;
2334
2335 igb_get_bus_info_pcie(hw);
2336
2337 hw->phy.autoneg_wait_to_complete = false;
2338
2339 /* Copper options */
2340 if (hw->phy.media_type == e1000_media_type_copper) {
2341 hw->phy.mdix = AUTO_ALL_MODES;
2342 hw->phy.disable_polarity_correction = false;
2343 hw->phy.ms_type = e1000_ms_hw_default;
2344 }
2345
2346 if (igb_check_reset_block(hw))
2347 dev_info(&pdev->dev,
2348 "PHY reset is blocked due to SOL/IDER session.\n");
2349
2350 /* features is initialized to 0 in allocation, it might have bits
2351 * set by igb_sw_init so we should use an or instead of an
2352 * assignment.
2353 */
2354 netdev->features |= NETIF_F_SG |
2355 NETIF_F_IP_CSUM |
2356 NETIF_F_IPV6_CSUM |
2357 NETIF_F_TSO |
2358 NETIF_F_TSO6 |
2359 NETIF_F_RXHASH |
2360 NETIF_F_RXCSUM |
2361 NETIF_F_HW_VLAN_CTAG_RX |
2362 NETIF_F_HW_VLAN_CTAG_TX;
2363
2364 /* copy netdev features into list of user selectable features */
2365 netdev->hw_features |= netdev->features;
2366 netdev->hw_features |= NETIF_F_RXALL;
2367
2368 /* set this bit last since it cannot be part of hw_features */
2369 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2370
2371 netdev->vlan_features |= NETIF_F_TSO |
2372 NETIF_F_TSO6 |
2373 NETIF_F_IP_CSUM |
2374 NETIF_F_IPV6_CSUM |
2375 NETIF_F_SG;
2376
2377 netdev->priv_flags |= IFF_SUPP_NOFCS;
2378
2379 if (pci_using_dac) {
2380 netdev->features |= NETIF_F_HIGHDMA;
2381 netdev->vlan_features |= NETIF_F_HIGHDMA;
2382 }
2383
2384 if (hw->mac.type >= e1000_82576) {
2385 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2386 netdev->features |= NETIF_F_SCTP_CSUM;
2387 }
2388
2389 netdev->priv_flags |= IFF_UNICAST_FLT;
2390
2391 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2392
2393 /* before reading the NVM, reset the controller to put the device in a
2394 * known good starting state
2395 */
2396 hw->mac.ops.reset_hw(hw);
2397
2398 /* make sure the NVM is good , i211/i210 parts can have special NVM
2399 * that doesn't contain a checksum
2400 */
2401 switch (hw->mac.type) {
2402 case e1000_i210:
2403 case e1000_i211:
2404 if (igb_get_flash_presence_i210(hw)) {
2405 if (hw->nvm.ops.validate(hw) < 0) {
2406 dev_err(&pdev->dev,
2407 "The NVM Checksum Is Not Valid\n");
2408 err = -EIO;
2409 goto err_eeprom;
2410 }
2411 }
2412 break;
2413 default:
2414 if (hw->nvm.ops.validate(hw) < 0) {
2415 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2416 err = -EIO;
2417 goto err_eeprom;
2418 }
2419 break;
2420 }
2421
2422 /* copy the MAC address out of the NVM */
2423 if (hw->mac.ops.read_mac_addr(hw))
2424 dev_err(&pdev->dev, "NVM Read Error\n");
2425
2426 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2427
2428 if (!is_valid_ether_addr(netdev->dev_addr)) {
2429 dev_err(&pdev->dev, "Invalid MAC Address\n");
2430 err = -EIO;
2431 goto err_eeprom;
2432 }
2433
2434 /* get firmware version for ethtool -i */
2435 igb_set_fw_version(adapter);
2436
2437 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2438 (unsigned long) adapter);
2439 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2440 (unsigned long) adapter);
2441
2442 INIT_WORK(&adapter->reset_task, igb_reset_task);
2443 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2444
2445 /* Initialize link properties that are user-changeable */
2446 adapter->fc_autoneg = true;
2447 hw->mac.autoneg = true;
2448 hw->phy.autoneg_advertised = 0x2f;
2449
2450 hw->fc.requested_mode = e1000_fc_default;
2451 hw->fc.current_mode = e1000_fc_default;
2452
2453 igb_validate_mdi_setting(hw);
2454
2455 /* By default, support wake on port A */
2456 if (hw->bus.func == 0)
2457 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2458
2459 /* Check the NVM for wake support on non-port A ports */
2460 if (hw->mac.type >= e1000_82580)
2461 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2462 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2463 &eeprom_data);
2464 else if (hw->bus.func == 1)
2465 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2466
2467 if (eeprom_data & IGB_EEPROM_APME)
2468 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2469
2470 /* now that we have the eeprom settings, apply the special cases where
2471 * the eeprom may be wrong or the board simply won't support wake on
2472 * lan on a particular port
2473 */
2474 switch (pdev->device) {
2475 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2476 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2477 break;
2478 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2479 case E1000_DEV_ID_82576_FIBER:
2480 case E1000_DEV_ID_82576_SERDES:
2481 /* Wake events only supported on port A for dual fiber
2482 * regardless of eeprom setting
2483 */
2484 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2485 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2486 break;
2487 case E1000_DEV_ID_82576_QUAD_COPPER:
2488 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2489 /* if quad port adapter, disable WoL on all but port A */
2490 if (global_quad_port_a != 0)
2491 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2492 else
2493 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2494 /* Reset for multiple quad port adapters */
2495 if (++global_quad_port_a == 4)
2496 global_quad_port_a = 0;
2497 break;
2498 default:
2499 /* If the device can't wake, don't set software support */
2500 if (!device_can_wakeup(&adapter->pdev->dev))
2501 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2502 }
2503
2504 /* initialize the wol settings based on the eeprom settings */
2505 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2506 adapter->wol |= E1000_WUFC_MAG;
2507
2508 /* Some vendors want WoL disabled by default, but still supported */
2509 if ((hw->mac.type == e1000_i350) &&
2510 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2511 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2512 adapter->wol = 0;
2513 }
2514
2515 device_set_wakeup_enable(&adapter->pdev->dev,
2516 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2517
2518 /* reset the hardware with the new settings */
2519 igb_reset(adapter);
2520
2521 /* Init the I2C interface */
2522 err = igb_init_i2c(adapter);
2523 if (err) {
2524 dev_err(&pdev->dev, "failed to init i2c interface\n");
2525 goto err_eeprom;
2526 }
2527
2528 /* let the f/w know that the h/w is now under the control of the
2529 * driver.
2530 */
2531 igb_get_hw_control(adapter);
2532
2533 strcpy(netdev->name, "eth%d");
2534 err = register_netdev(netdev);
2535 if (err)
2536 goto err_register;
2537
2538 /* carrier off reporting is important to ethtool even BEFORE open */
2539 netif_carrier_off(netdev);
2540
2541 #ifdef CONFIG_IGB_DCA
2542 if (dca_add_requester(&pdev->dev) == 0) {
2543 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2544 dev_info(&pdev->dev, "DCA enabled\n");
2545 igb_setup_dca(adapter);
2546 }
2547
2548 #endif
2549 #ifdef CONFIG_IGB_HWMON
2550 /* Initialize the thermal sensor on i350 devices. */
2551 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2552 u16 ets_word;
2553
2554 /* Read the NVM to determine if this i350 device supports an
2555 * external thermal sensor.
2556 */
2557 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2558 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2559 adapter->ets = true;
2560 else
2561 adapter->ets = false;
2562 if (igb_sysfs_init(adapter))
2563 dev_err(&pdev->dev,
2564 "failed to allocate sysfs resources\n");
2565 } else {
2566 adapter->ets = false;
2567 }
2568 #endif
2569 /* Check if Media Autosense is enabled */
2570 adapter->ei = *ei;
2571 if (hw->dev_spec._82575.mas_capable)
2572 igb_init_mas(adapter);
2573
2574 /* do hw tstamp init after resetting */
2575 igb_ptp_init(adapter);
2576
2577 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2578 /* print bus type/speed/width info, not applicable to i354 */
2579 if (hw->mac.type != e1000_i354) {
2580 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2581 netdev->name,
2582 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2583 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2584 "unknown"),
2585 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2586 "Width x4" :
2587 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2588 "Width x2" :
2589 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2590 "Width x1" : "unknown"), netdev->dev_addr);
2591 }
2592
2593 if ((hw->mac.type >= e1000_i210 ||
2594 igb_get_flash_presence_i210(hw))) {
2595 ret_val = igb_read_part_string(hw, part_str,
2596 E1000_PBANUM_LENGTH);
2597 } else {
2598 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2599 }
2600
2601 if (ret_val)
2602 strcpy(part_str, "Unknown");
2603 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2604 dev_info(&pdev->dev,
2605 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2606 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2607 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2608 adapter->num_rx_queues, adapter->num_tx_queues);
2609 if (hw->phy.media_type == e1000_media_type_copper) {
2610 switch (hw->mac.type) {
2611 case e1000_i350:
2612 case e1000_i210:
2613 case e1000_i211:
2614 /* Enable EEE for internal copper PHY devices */
2615 err = igb_set_eee_i350(hw);
2616 if ((!err) &&
2617 (!hw->dev_spec._82575.eee_disable)) {
2618 adapter->eee_advert =
2619 MDIO_EEE_100TX | MDIO_EEE_1000T;
2620 adapter->flags |= IGB_FLAG_EEE;
2621 }
2622 break;
2623 case e1000_i354:
2624 if ((rd32(E1000_CTRL_EXT) &
2625 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2626 err = igb_set_eee_i354(hw);
2627 if ((!err) &&
2628 (!hw->dev_spec._82575.eee_disable)) {
2629 adapter->eee_advert =
2630 MDIO_EEE_100TX | MDIO_EEE_1000T;
2631 adapter->flags |= IGB_FLAG_EEE;
2632 }
2633 }
2634 break;
2635 default:
2636 break;
2637 }
2638 }
2639 pm_runtime_put_noidle(&pdev->dev);
2640 return 0;
2641
2642 err_register:
2643 igb_release_hw_control(adapter);
2644 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2645 err_eeprom:
2646 if (!igb_check_reset_block(hw))
2647 igb_reset_phy(hw);
2648
2649 if (hw->flash_address)
2650 iounmap(hw->flash_address);
2651 err_sw_init:
2652 igb_clear_interrupt_scheme(adapter);
2653 pci_iounmap(pdev, hw->hw_addr);
2654 err_ioremap:
2655 free_netdev(netdev);
2656 err_alloc_etherdev:
2657 pci_release_selected_regions(pdev,
2658 pci_select_bars(pdev, IORESOURCE_MEM));
2659 err_pci_reg:
2660 err_dma:
2661 pci_disable_device(pdev);
2662 return err;
2663 }
2664
2665 #ifdef CONFIG_PCI_IOV
2666 static int igb_disable_sriov(struct pci_dev *pdev)
2667 {
2668 struct net_device *netdev = pci_get_drvdata(pdev);
2669 struct igb_adapter *adapter = netdev_priv(netdev);
2670 struct e1000_hw *hw = &adapter->hw;
2671
2672 /* reclaim resources allocated to VFs */
2673 if (adapter->vf_data) {
2674 /* disable iov and allow time for transactions to clear */
2675 if (pci_vfs_assigned(pdev)) {
2676 dev_warn(&pdev->dev,
2677 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2678 return -EPERM;
2679 } else {
2680 pci_disable_sriov(pdev);
2681 msleep(500);
2682 }
2683
2684 kfree(adapter->vf_data);
2685 adapter->vf_data = NULL;
2686 adapter->vfs_allocated_count = 0;
2687 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2688 wrfl();
2689 msleep(100);
2690 dev_info(&pdev->dev, "IOV Disabled\n");
2691
2692 /* Re-enable DMA Coalescing flag since IOV is turned off */
2693 adapter->flags |= IGB_FLAG_DMAC;
2694 }
2695
2696 return 0;
2697 }
2698
2699 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2700 {
2701 struct net_device *netdev = pci_get_drvdata(pdev);
2702 struct igb_adapter *adapter = netdev_priv(netdev);
2703 int old_vfs = pci_num_vf(pdev);
2704 int err = 0;
2705 int i;
2706
2707 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2708 err = -EPERM;
2709 goto out;
2710 }
2711 if (!num_vfs)
2712 goto out;
2713
2714 if (old_vfs) {
2715 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2716 old_vfs, max_vfs);
2717 adapter->vfs_allocated_count = old_vfs;
2718 } else
2719 adapter->vfs_allocated_count = num_vfs;
2720
2721 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2722 sizeof(struct vf_data_storage), GFP_KERNEL);
2723
2724 /* if allocation failed then we do not support SR-IOV */
2725 if (!adapter->vf_data) {
2726 adapter->vfs_allocated_count = 0;
2727 dev_err(&pdev->dev,
2728 "Unable to allocate memory for VF Data Storage\n");
2729 err = -ENOMEM;
2730 goto out;
2731 }
2732
2733 /* only call pci_enable_sriov() if no VFs are allocated already */
2734 if (!old_vfs) {
2735 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2736 if (err)
2737 goto err_out;
2738 }
2739 dev_info(&pdev->dev, "%d VFs allocated\n",
2740 adapter->vfs_allocated_count);
2741 for (i = 0; i < adapter->vfs_allocated_count; i++)
2742 igb_vf_configure(adapter, i);
2743
2744 /* DMA Coalescing is not supported in IOV mode. */
2745 adapter->flags &= ~IGB_FLAG_DMAC;
2746 goto out;
2747
2748 err_out:
2749 kfree(adapter->vf_data);
2750 adapter->vf_data = NULL;
2751 adapter->vfs_allocated_count = 0;
2752 out:
2753 return err;
2754 }
2755
2756 #endif
2757 /**
2758 * igb_remove_i2c - Cleanup I2C interface
2759 * @adapter: pointer to adapter structure
2760 **/
2761 static void igb_remove_i2c(struct igb_adapter *adapter)
2762 {
2763 /* free the adapter bus structure */
2764 i2c_del_adapter(&adapter->i2c_adap);
2765 }
2766
2767 /**
2768 * igb_remove - Device Removal Routine
2769 * @pdev: PCI device information struct
2770 *
2771 * igb_remove is called by the PCI subsystem to alert the driver
2772 * that it should release a PCI device. The could be caused by a
2773 * Hot-Plug event, or because the driver is going to be removed from
2774 * memory.
2775 **/
2776 static void igb_remove(struct pci_dev *pdev)
2777 {
2778 struct net_device *netdev = pci_get_drvdata(pdev);
2779 struct igb_adapter *adapter = netdev_priv(netdev);
2780 struct e1000_hw *hw = &adapter->hw;
2781
2782 pm_runtime_get_noresume(&pdev->dev);
2783 #ifdef CONFIG_IGB_HWMON
2784 igb_sysfs_exit(adapter);
2785 #endif
2786 igb_remove_i2c(adapter);
2787 igb_ptp_stop(adapter);
2788 /* The watchdog timer may be rescheduled, so explicitly
2789 * disable watchdog from being rescheduled.
2790 */
2791 set_bit(__IGB_DOWN, &adapter->state);
2792 del_timer_sync(&adapter->watchdog_timer);
2793 del_timer_sync(&adapter->phy_info_timer);
2794
2795 cancel_work_sync(&adapter->reset_task);
2796 cancel_work_sync(&adapter->watchdog_task);
2797
2798 #ifdef CONFIG_IGB_DCA
2799 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2800 dev_info(&pdev->dev, "DCA disabled\n");
2801 dca_remove_requester(&pdev->dev);
2802 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2803 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2804 }
2805 #endif
2806
2807 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2808 * would have already happened in close and is redundant.
2809 */
2810 igb_release_hw_control(adapter);
2811
2812 unregister_netdev(netdev);
2813
2814 igb_clear_interrupt_scheme(adapter);
2815
2816 #ifdef CONFIG_PCI_IOV
2817 igb_disable_sriov(pdev);
2818 #endif
2819
2820 pci_iounmap(pdev, hw->hw_addr);
2821 if (hw->flash_address)
2822 iounmap(hw->flash_address);
2823 pci_release_selected_regions(pdev,
2824 pci_select_bars(pdev, IORESOURCE_MEM));
2825
2826 kfree(adapter->shadow_vfta);
2827 free_netdev(netdev);
2828
2829 pci_disable_pcie_error_reporting(pdev);
2830
2831 pci_disable_device(pdev);
2832 }
2833
2834 /**
2835 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2836 * @adapter: board private structure to initialize
2837 *
2838 * This function initializes the vf specific data storage and then attempts to
2839 * allocate the VFs. The reason for ordering it this way is because it is much
2840 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2841 * the memory for the VFs.
2842 **/
2843 static void igb_probe_vfs(struct igb_adapter *adapter)
2844 {
2845 #ifdef CONFIG_PCI_IOV
2846 struct pci_dev *pdev = adapter->pdev;
2847 struct e1000_hw *hw = &adapter->hw;
2848
2849 /* Virtualization features not supported on i210 family. */
2850 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2851 return;
2852
2853 pci_sriov_set_totalvfs(pdev, 7);
2854 igb_pci_enable_sriov(pdev, max_vfs);
2855
2856 #endif /* CONFIG_PCI_IOV */
2857 }
2858
2859 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2860 {
2861 struct e1000_hw *hw = &adapter->hw;
2862 u32 max_rss_queues;
2863
2864 /* Determine the maximum number of RSS queues supported. */
2865 switch (hw->mac.type) {
2866 case e1000_i211:
2867 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2868 break;
2869 case e1000_82575:
2870 case e1000_i210:
2871 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2872 break;
2873 case e1000_i350:
2874 /* I350 cannot do RSS and SR-IOV at the same time */
2875 if (!!adapter->vfs_allocated_count) {
2876 max_rss_queues = 1;
2877 break;
2878 }
2879 /* fall through */
2880 case e1000_82576:
2881 if (!!adapter->vfs_allocated_count) {
2882 max_rss_queues = 2;
2883 break;
2884 }
2885 /* fall through */
2886 case e1000_82580:
2887 case e1000_i354:
2888 default:
2889 max_rss_queues = IGB_MAX_RX_QUEUES;
2890 break;
2891 }
2892
2893 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2894
2895 /* Determine if we need to pair queues. */
2896 switch (hw->mac.type) {
2897 case e1000_82575:
2898 case e1000_i211:
2899 /* Device supports enough interrupts without queue pairing. */
2900 break;
2901 case e1000_82576:
2902 /* If VFs are going to be allocated with RSS queues then we
2903 * should pair the queues in order to conserve interrupts due
2904 * to limited supply.
2905 */
2906 if ((adapter->rss_queues > 1) &&
2907 (adapter->vfs_allocated_count > 6))
2908 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2909 /* fall through */
2910 case e1000_82580:
2911 case e1000_i350:
2912 case e1000_i354:
2913 case e1000_i210:
2914 default:
2915 /* If rss_queues > half of max_rss_queues, pair the queues in
2916 * order to conserve interrupts due to limited supply.
2917 */
2918 if (adapter->rss_queues > (max_rss_queues / 2))
2919 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2920 break;
2921 }
2922 }
2923
2924 /**
2925 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2926 * @adapter: board private structure to initialize
2927 *
2928 * igb_sw_init initializes the Adapter private data structure.
2929 * Fields are initialized based on PCI device information and
2930 * OS network device settings (MTU size).
2931 **/
2932 static int igb_sw_init(struct igb_adapter *adapter)
2933 {
2934 struct e1000_hw *hw = &adapter->hw;
2935 struct net_device *netdev = adapter->netdev;
2936 struct pci_dev *pdev = adapter->pdev;
2937
2938 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2939
2940 /* set default ring sizes */
2941 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2942 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2943
2944 /* set default ITR values */
2945 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2946 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2947
2948 /* set default work limits */
2949 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2950
2951 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2952 VLAN_HLEN;
2953 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2954
2955 spin_lock_init(&adapter->stats64_lock);
2956 #ifdef CONFIG_PCI_IOV
2957 switch (hw->mac.type) {
2958 case e1000_82576:
2959 case e1000_i350:
2960 if (max_vfs > 7) {
2961 dev_warn(&pdev->dev,
2962 "Maximum of 7 VFs per PF, using max\n");
2963 max_vfs = adapter->vfs_allocated_count = 7;
2964 } else
2965 adapter->vfs_allocated_count = max_vfs;
2966 if (adapter->vfs_allocated_count)
2967 dev_warn(&pdev->dev,
2968 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2969 break;
2970 default:
2971 break;
2972 }
2973 #endif /* CONFIG_PCI_IOV */
2974
2975 igb_init_queue_configuration(adapter);
2976
2977 /* Setup and initialize a copy of the hw vlan table array */
2978 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2979 GFP_ATOMIC);
2980
2981 /* This call may decrease the number of queues */
2982 if (igb_init_interrupt_scheme(adapter, true)) {
2983 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2984 return -ENOMEM;
2985 }
2986
2987 igb_probe_vfs(adapter);
2988
2989 /* Explicitly disable IRQ since the NIC can be in any state. */
2990 igb_irq_disable(adapter);
2991
2992 if (hw->mac.type >= e1000_i350)
2993 adapter->flags &= ~IGB_FLAG_DMAC;
2994
2995 set_bit(__IGB_DOWN, &adapter->state);
2996 return 0;
2997 }
2998
2999 /**
3000 * igb_open - Called when a network interface is made active
3001 * @netdev: network interface device structure
3002 *
3003 * Returns 0 on success, negative value on failure
3004 *
3005 * The open entry point is called when a network interface is made
3006 * active by the system (IFF_UP). At this point all resources needed
3007 * for transmit and receive operations are allocated, the interrupt
3008 * handler is registered with the OS, the watchdog timer is started,
3009 * and the stack is notified that the interface is ready.
3010 **/
3011 static int __igb_open(struct net_device *netdev, bool resuming)
3012 {
3013 struct igb_adapter *adapter = netdev_priv(netdev);
3014 struct e1000_hw *hw = &adapter->hw;
3015 struct pci_dev *pdev = adapter->pdev;
3016 int err;
3017 int i;
3018
3019 /* disallow open during test */
3020 if (test_bit(__IGB_TESTING, &adapter->state)) {
3021 WARN_ON(resuming);
3022 return -EBUSY;
3023 }
3024
3025 if (!resuming)
3026 pm_runtime_get_sync(&pdev->dev);
3027
3028 netif_carrier_off(netdev);
3029
3030 /* allocate transmit descriptors */
3031 err = igb_setup_all_tx_resources(adapter);
3032 if (err)
3033 goto err_setup_tx;
3034
3035 /* allocate receive descriptors */
3036 err = igb_setup_all_rx_resources(adapter);
3037 if (err)
3038 goto err_setup_rx;
3039
3040 igb_power_up_link(adapter);
3041
3042 /* before we allocate an interrupt, we must be ready to handle it.
3043 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3044 * as soon as we call pci_request_irq, so we have to setup our
3045 * clean_rx handler before we do so.
3046 */
3047 igb_configure(adapter);
3048
3049 err = igb_request_irq(adapter);
3050 if (err)
3051 goto err_req_irq;
3052
3053 /* Notify the stack of the actual queue counts. */
3054 err = netif_set_real_num_tx_queues(adapter->netdev,
3055 adapter->num_tx_queues);
3056 if (err)
3057 goto err_set_queues;
3058
3059 err = netif_set_real_num_rx_queues(adapter->netdev,
3060 adapter->num_rx_queues);
3061 if (err)
3062 goto err_set_queues;
3063
3064 /* From here on the code is the same as igb_up() */
3065 clear_bit(__IGB_DOWN, &adapter->state);
3066
3067 for (i = 0; i < adapter->num_q_vectors; i++)
3068 napi_enable(&(adapter->q_vector[i]->napi));
3069
3070 /* Clear any pending interrupts. */
3071 rd32(E1000_ICR);
3072
3073 igb_irq_enable(adapter);
3074
3075 /* notify VFs that reset has been completed */
3076 if (adapter->vfs_allocated_count) {
3077 u32 reg_data = rd32(E1000_CTRL_EXT);
3078
3079 reg_data |= E1000_CTRL_EXT_PFRSTD;
3080 wr32(E1000_CTRL_EXT, reg_data);
3081 }
3082
3083 netif_tx_start_all_queues(netdev);
3084
3085 if (!resuming)
3086 pm_runtime_put(&pdev->dev);
3087
3088 /* start the watchdog. */
3089 hw->mac.get_link_status = 1;
3090 schedule_work(&adapter->watchdog_task);
3091
3092 return 0;
3093
3094 err_set_queues:
3095 igb_free_irq(adapter);
3096 err_req_irq:
3097 igb_release_hw_control(adapter);
3098 igb_power_down_link(adapter);
3099 igb_free_all_rx_resources(adapter);
3100 err_setup_rx:
3101 igb_free_all_tx_resources(adapter);
3102 err_setup_tx:
3103 igb_reset(adapter);
3104 if (!resuming)
3105 pm_runtime_put(&pdev->dev);
3106
3107 return err;
3108 }
3109
3110 static int igb_open(struct net_device *netdev)
3111 {
3112 return __igb_open(netdev, false);
3113 }
3114
3115 /**
3116 * igb_close - Disables a network interface
3117 * @netdev: network interface device structure
3118 *
3119 * Returns 0, this is not allowed to fail
3120 *
3121 * The close entry point is called when an interface is de-activated
3122 * by the OS. The hardware is still under the driver's control, but
3123 * needs to be disabled. A global MAC reset is issued to stop the
3124 * hardware, and all transmit and receive resources are freed.
3125 **/
3126 static int __igb_close(struct net_device *netdev, bool suspending)
3127 {
3128 struct igb_adapter *adapter = netdev_priv(netdev);
3129 struct pci_dev *pdev = adapter->pdev;
3130
3131 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3132
3133 if (!suspending)
3134 pm_runtime_get_sync(&pdev->dev);
3135
3136 igb_down(adapter);
3137 igb_free_irq(adapter);
3138
3139 igb_free_all_tx_resources(adapter);
3140 igb_free_all_rx_resources(adapter);
3141
3142 if (!suspending)
3143 pm_runtime_put_sync(&pdev->dev);
3144 return 0;
3145 }
3146
3147 static int igb_close(struct net_device *netdev)
3148 {
3149 return __igb_close(netdev, false);
3150 }
3151
3152 /**
3153 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3154 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3155 *
3156 * Return 0 on success, negative on failure
3157 **/
3158 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3159 {
3160 struct device *dev = tx_ring->dev;
3161 int size;
3162
3163 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3164
3165 tx_ring->tx_buffer_info = vzalloc(size);
3166 if (!tx_ring->tx_buffer_info)
3167 goto err;
3168
3169 /* round up to nearest 4K */
3170 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3171 tx_ring->size = ALIGN(tx_ring->size, 4096);
3172
3173 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3174 &tx_ring->dma, GFP_KERNEL);
3175 if (!tx_ring->desc)
3176 goto err;
3177
3178 tx_ring->next_to_use = 0;
3179 tx_ring->next_to_clean = 0;
3180
3181 return 0;
3182
3183 err:
3184 vfree(tx_ring->tx_buffer_info);
3185 tx_ring->tx_buffer_info = NULL;
3186 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3187 return -ENOMEM;
3188 }
3189
3190 /**
3191 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3192 * (Descriptors) for all queues
3193 * @adapter: board private structure
3194 *
3195 * Return 0 on success, negative on failure
3196 **/
3197 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3198 {
3199 struct pci_dev *pdev = adapter->pdev;
3200 int i, err = 0;
3201
3202 for (i = 0; i < adapter->num_tx_queues; i++) {
3203 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3204 if (err) {
3205 dev_err(&pdev->dev,
3206 "Allocation for Tx Queue %u failed\n", i);
3207 for (i--; i >= 0; i--)
3208 igb_free_tx_resources(adapter->tx_ring[i]);
3209 break;
3210 }
3211 }
3212
3213 return err;
3214 }
3215
3216 /**
3217 * igb_setup_tctl - configure the transmit control registers
3218 * @adapter: Board private structure
3219 **/
3220 void igb_setup_tctl(struct igb_adapter *adapter)
3221 {
3222 struct e1000_hw *hw = &adapter->hw;
3223 u32 tctl;
3224
3225 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3226 wr32(E1000_TXDCTL(0), 0);
3227
3228 /* Program the Transmit Control Register */
3229 tctl = rd32(E1000_TCTL);
3230 tctl &= ~E1000_TCTL_CT;
3231 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3232 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3233
3234 igb_config_collision_dist(hw);
3235
3236 /* Enable transmits */
3237 tctl |= E1000_TCTL_EN;
3238
3239 wr32(E1000_TCTL, tctl);
3240 }
3241
3242 /**
3243 * igb_configure_tx_ring - Configure transmit ring after Reset
3244 * @adapter: board private structure
3245 * @ring: tx ring to configure
3246 *
3247 * Configure a transmit ring after a reset.
3248 **/
3249 void igb_configure_tx_ring(struct igb_adapter *adapter,
3250 struct igb_ring *ring)
3251 {
3252 struct e1000_hw *hw = &adapter->hw;
3253 u32 txdctl = 0;
3254 u64 tdba = ring->dma;
3255 int reg_idx = ring->reg_idx;
3256
3257 /* disable the queue */
3258 wr32(E1000_TXDCTL(reg_idx), 0);
3259 wrfl();
3260 mdelay(10);
3261
3262 wr32(E1000_TDLEN(reg_idx),
3263 ring->count * sizeof(union e1000_adv_tx_desc));
3264 wr32(E1000_TDBAL(reg_idx),
3265 tdba & 0x00000000ffffffffULL);
3266 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3267
3268 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3269 wr32(E1000_TDH(reg_idx), 0);
3270 writel(0, ring->tail);
3271
3272 txdctl |= IGB_TX_PTHRESH;
3273 txdctl |= IGB_TX_HTHRESH << 8;
3274 txdctl |= IGB_TX_WTHRESH << 16;
3275
3276 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3277 wr32(E1000_TXDCTL(reg_idx), txdctl);
3278 }
3279
3280 /**
3281 * igb_configure_tx - Configure transmit Unit after Reset
3282 * @adapter: board private structure
3283 *
3284 * Configure the Tx unit of the MAC after a reset.
3285 **/
3286 static void igb_configure_tx(struct igb_adapter *adapter)
3287 {
3288 int i;
3289
3290 for (i = 0; i < adapter->num_tx_queues; i++)
3291 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3292 }
3293
3294 /**
3295 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3296 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3297 *
3298 * Returns 0 on success, negative on failure
3299 **/
3300 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3301 {
3302 struct device *dev = rx_ring->dev;
3303 int size;
3304
3305 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3306
3307 rx_ring->rx_buffer_info = vzalloc(size);
3308 if (!rx_ring->rx_buffer_info)
3309 goto err;
3310
3311 /* Round up to nearest 4K */
3312 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3313 rx_ring->size = ALIGN(rx_ring->size, 4096);
3314
3315 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3316 &rx_ring->dma, GFP_KERNEL);
3317 if (!rx_ring->desc)
3318 goto err;
3319
3320 rx_ring->next_to_alloc = 0;
3321 rx_ring->next_to_clean = 0;
3322 rx_ring->next_to_use = 0;
3323
3324 return 0;
3325
3326 err:
3327 vfree(rx_ring->rx_buffer_info);
3328 rx_ring->rx_buffer_info = NULL;
3329 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3330 return -ENOMEM;
3331 }
3332
3333 /**
3334 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3335 * (Descriptors) for all queues
3336 * @adapter: board private structure
3337 *
3338 * Return 0 on success, negative on failure
3339 **/
3340 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3341 {
3342 struct pci_dev *pdev = adapter->pdev;
3343 int i, err = 0;
3344
3345 for (i = 0; i < adapter->num_rx_queues; i++) {
3346 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3347 if (err) {
3348 dev_err(&pdev->dev,
3349 "Allocation for Rx Queue %u failed\n", i);
3350 for (i--; i >= 0; i--)
3351 igb_free_rx_resources(adapter->rx_ring[i]);
3352 break;
3353 }
3354 }
3355
3356 return err;
3357 }
3358
3359 /**
3360 * igb_setup_mrqc - configure the multiple receive queue control registers
3361 * @adapter: Board private structure
3362 **/
3363 static void igb_setup_mrqc(struct igb_adapter *adapter)
3364 {
3365 struct e1000_hw *hw = &adapter->hw;
3366 u32 mrqc, rxcsum;
3367 u32 j, num_rx_queues;
3368 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3369 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3370 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3371 0xFA01ACBE };
3372
3373 /* Fill out hash function seeds */
3374 for (j = 0; j < 10; j++)
3375 wr32(E1000_RSSRK(j), rsskey[j]);
3376
3377 num_rx_queues = adapter->rss_queues;
3378
3379 switch (hw->mac.type) {
3380 case e1000_82576:
3381 /* 82576 supports 2 RSS queues for SR-IOV */
3382 if (adapter->vfs_allocated_count)
3383 num_rx_queues = 2;
3384 break;
3385 default:
3386 break;
3387 }
3388
3389 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3390 for (j = 0; j < IGB_RETA_SIZE; j++)
3391 adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3392 adapter->rss_indir_tbl_init = num_rx_queues;
3393 }
3394 igb_write_rss_indir_tbl(adapter);
3395
3396 /* Disable raw packet checksumming so that RSS hash is placed in
3397 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3398 * offloads as they are enabled by default
3399 */
3400 rxcsum = rd32(E1000_RXCSUM);
3401 rxcsum |= E1000_RXCSUM_PCSD;
3402
3403 if (adapter->hw.mac.type >= e1000_82576)
3404 /* Enable Receive Checksum Offload for SCTP */
3405 rxcsum |= E1000_RXCSUM_CRCOFL;
3406
3407 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3408 wr32(E1000_RXCSUM, rxcsum);
3409
3410 /* Generate RSS hash based on packet types, TCP/UDP
3411 * port numbers and/or IPv4/v6 src and dst addresses
3412 */
3413 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3414 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3415 E1000_MRQC_RSS_FIELD_IPV6 |
3416 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3417 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3418
3419 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3420 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3421 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3422 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3423
3424 /* If VMDq is enabled then we set the appropriate mode for that, else
3425 * we default to RSS so that an RSS hash is calculated per packet even
3426 * if we are only using one queue
3427 */
3428 if (adapter->vfs_allocated_count) {
3429 if (hw->mac.type > e1000_82575) {
3430 /* Set the default pool for the PF's first queue */
3431 u32 vtctl = rd32(E1000_VT_CTL);
3432
3433 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3434 E1000_VT_CTL_DISABLE_DEF_POOL);
3435 vtctl |= adapter->vfs_allocated_count <<
3436 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3437 wr32(E1000_VT_CTL, vtctl);
3438 }
3439 if (adapter->rss_queues > 1)
3440 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3441 else
3442 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3443 } else {
3444 if (hw->mac.type != e1000_i211)
3445 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3446 }
3447 igb_vmm_control(adapter);
3448
3449 wr32(E1000_MRQC, mrqc);
3450 }
3451
3452 /**
3453 * igb_setup_rctl - configure the receive control registers
3454 * @adapter: Board private structure
3455 **/
3456 void igb_setup_rctl(struct igb_adapter *adapter)
3457 {
3458 struct e1000_hw *hw = &adapter->hw;
3459 u32 rctl;
3460
3461 rctl = rd32(E1000_RCTL);
3462
3463 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3464 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3465
3466 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3467 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3468
3469 /* enable stripping of CRC. It's unlikely this will break BMC
3470 * redirection as it did with e1000. Newer features require
3471 * that the HW strips the CRC.
3472 */
3473 rctl |= E1000_RCTL_SECRC;
3474
3475 /* disable store bad packets and clear size bits. */
3476 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3477
3478 /* enable LPE to prevent packets larger than max_frame_size */
3479 rctl |= E1000_RCTL_LPE;
3480
3481 /* disable queue 0 to prevent tail write w/o re-config */
3482 wr32(E1000_RXDCTL(0), 0);
3483
3484 /* Attention!!! For SR-IOV PF driver operations you must enable
3485 * queue drop for all VF and PF queues to prevent head of line blocking
3486 * if an un-trusted VF does not provide descriptors to hardware.
3487 */
3488 if (adapter->vfs_allocated_count) {
3489 /* set all queue drop enable bits */
3490 wr32(E1000_QDE, ALL_QUEUES);
3491 }
3492
3493 /* This is useful for sniffing bad packets. */
3494 if (adapter->netdev->features & NETIF_F_RXALL) {
3495 /* UPE and MPE will be handled by normal PROMISC logic
3496 * in e1000e_set_rx_mode
3497 */
3498 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3499 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3500 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3501
3502 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3503 E1000_RCTL_DPF | /* Allow filtered pause */
3504 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3505 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3506 * and that breaks VLANs.
3507 */
3508 }
3509
3510 wr32(E1000_RCTL, rctl);
3511 }
3512
3513 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3514 int vfn)
3515 {
3516 struct e1000_hw *hw = &adapter->hw;
3517 u32 vmolr;
3518
3519 /* if it isn't the PF check to see if VFs are enabled and
3520 * increase the size to support vlan tags
3521 */
3522 if (vfn < adapter->vfs_allocated_count &&
3523 adapter->vf_data[vfn].vlans_enabled)
3524 size += VLAN_TAG_SIZE;
3525
3526 vmolr = rd32(E1000_VMOLR(vfn));
3527 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3528 vmolr |= size | E1000_VMOLR_LPE;
3529 wr32(E1000_VMOLR(vfn), vmolr);
3530
3531 return 0;
3532 }
3533
3534 /**
3535 * igb_rlpml_set - set maximum receive packet size
3536 * @adapter: board private structure
3537 *
3538 * Configure maximum receivable packet size.
3539 **/
3540 static void igb_rlpml_set(struct igb_adapter *adapter)
3541 {
3542 u32 max_frame_size = adapter->max_frame_size;
3543 struct e1000_hw *hw = &adapter->hw;
3544 u16 pf_id = adapter->vfs_allocated_count;
3545
3546 if (pf_id) {
3547 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3548 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3549 * to our max jumbo frame size, in case we need to enable
3550 * jumbo frames on one of the rings later.
3551 * This will not pass over-length frames into the default
3552 * queue because it's gated by the VMOLR.RLPML.
3553 */
3554 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3555 }
3556
3557 wr32(E1000_RLPML, max_frame_size);
3558 }
3559
3560 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3561 int vfn, bool aupe)
3562 {
3563 struct e1000_hw *hw = &adapter->hw;
3564 u32 vmolr;
3565
3566 /* This register exists only on 82576 and newer so if we are older then
3567 * we should exit and do nothing
3568 */
3569 if (hw->mac.type < e1000_82576)
3570 return;
3571
3572 vmolr = rd32(E1000_VMOLR(vfn));
3573 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3574 if (hw->mac.type == e1000_i350) {
3575 u32 dvmolr;
3576
3577 dvmolr = rd32(E1000_DVMOLR(vfn));
3578 dvmolr |= E1000_DVMOLR_STRVLAN;
3579 wr32(E1000_DVMOLR(vfn), dvmolr);
3580 }
3581 if (aupe)
3582 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3583 else
3584 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3585
3586 /* clear all bits that might not be set */
3587 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3588
3589 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3590 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3591 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3592 * multicast packets
3593 */
3594 if (vfn <= adapter->vfs_allocated_count)
3595 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3596
3597 wr32(E1000_VMOLR(vfn), vmolr);
3598 }
3599
3600 /**
3601 * igb_configure_rx_ring - Configure a receive ring after Reset
3602 * @adapter: board private structure
3603 * @ring: receive ring to be configured
3604 *
3605 * Configure the Rx unit of the MAC after a reset.
3606 **/
3607 void igb_configure_rx_ring(struct igb_adapter *adapter,
3608 struct igb_ring *ring)
3609 {
3610 struct e1000_hw *hw = &adapter->hw;
3611 u64 rdba = ring->dma;
3612 int reg_idx = ring->reg_idx;
3613 u32 srrctl = 0, rxdctl = 0;
3614
3615 /* disable the queue */
3616 wr32(E1000_RXDCTL(reg_idx), 0);
3617
3618 /* Set DMA base address registers */
3619 wr32(E1000_RDBAL(reg_idx),
3620 rdba & 0x00000000ffffffffULL);
3621 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3622 wr32(E1000_RDLEN(reg_idx),
3623 ring->count * sizeof(union e1000_adv_rx_desc));
3624
3625 /* initialize head and tail */
3626 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3627 wr32(E1000_RDH(reg_idx), 0);
3628 writel(0, ring->tail);
3629
3630 /* set descriptor configuration */
3631 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3632 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3633 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3634 if (hw->mac.type >= e1000_82580)
3635 srrctl |= E1000_SRRCTL_TIMESTAMP;
3636 /* Only set Drop Enable if we are supporting multiple queues */
3637 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3638 srrctl |= E1000_SRRCTL_DROP_EN;
3639
3640 wr32(E1000_SRRCTL(reg_idx), srrctl);
3641
3642 /* set filtering for VMDQ pools */
3643 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3644
3645 rxdctl |= IGB_RX_PTHRESH;
3646 rxdctl |= IGB_RX_HTHRESH << 8;
3647 rxdctl |= IGB_RX_WTHRESH << 16;
3648
3649 /* enable receive descriptor fetching */
3650 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3651 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3652 }
3653
3654 /**
3655 * igb_configure_rx - Configure receive Unit after Reset
3656 * @adapter: board private structure
3657 *
3658 * Configure the Rx unit of the MAC after a reset.
3659 **/
3660 static void igb_configure_rx(struct igb_adapter *adapter)
3661 {
3662 int i;
3663
3664 /* set UTA to appropriate mode */
3665 igb_set_uta(adapter);
3666
3667 /* set the correct pool for the PF default MAC address in entry 0 */
3668 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3669 adapter->vfs_allocated_count);
3670
3671 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3672 * the Base and Length of the Rx Descriptor Ring
3673 */
3674 for (i = 0; i < adapter->num_rx_queues; i++)
3675 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3676 }
3677
3678 /**
3679 * igb_free_tx_resources - Free Tx Resources per Queue
3680 * @tx_ring: Tx descriptor ring for a specific queue
3681 *
3682 * Free all transmit software resources
3683 **/
3684 void igb_free_tx_resources(struct igb_ring *tx_ring)
3685 {
3686 igb_clean_tx_ring(tx_ring);
3687
3688 vfree(tx_ring->tx_buffer_info);
3689 tx_ring->tx_buffer_info = NULL;
3690
3691 /* if not set, then don't free */
3692 if (!tx_ring->desc)
3693 return;
3694
3695 dma_free_coherent(tx_ring->dev, tx_ring->size,
3696 tx_ring->desc, tx_ring->dma);
3697
3698 tx_ring->desc = NULL;
3699 }
3700
3701 /**
3702 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3703 * @adapter: board private structure
3704 *
3705 * Free all transmit software resources
3706 **/
3707 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3708 {
3709 int i;
3710
3711 for (i = 0; i < adapter->num_tx_queues; i++)
3712 igb_free_tx_resources(adapter->tx_ring[i]);
3713 }
3714
3715 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3716 struct igb_tx_buffer *tx_buffer)
3717 {
3718 if (tx_buffer->skb) {
3719 dev_kfree_skb_any(tx_buffer->skb);
3720 if (dma_unmap_len(tx_buffer, len))
3721 dma_unmap_single(ring->dev,
3722 dma_unmap_addr(tx_buffer, dma),
3723 dma_unmap_len(tx_buffer, len),
3724 DMA_TO_DEVICE);
3725 } else if (dma_unmap_len(tx_buffer, len)) {
3726 dma_unmap_page(ring->dev,
3727 dma_unmap_addr(tx_buffer, dma),
3728 dma_unmap_len(tx_buffer, len),
3729 DMA_TO_DEVICE);
3730 }
3731 tx_buffer->next_to_watch = NULL;
3732 tx_buffer->skb = NULL;
3733 dma_unmap_len_set(tx_buffer, len, 0);
3734 /* buffer_info must be completely set up in the transmit path */
3735 }
3736
3737 /**
3738 * igb_clean_tx_ring - Free Tx Buffers
3739 * @tx_ring: ring to be cleaned
3740 **/
3741 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3742 {
3743 struct igb_tx_buffer *buffer_info;
3744 unsigned long size;
3745 u16 i;
3746
3747 if (!tx_ring->tx_buffer_info)
3748 return;
3749 /* Free all the Tx ring sk_buffs */
3750
3751 for (i = 0; i < tx_ring->count; i++) {
3752 buffer_info = &tx_ring->tx_buffer_info[i];
3753 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3754 }
3755
3756 netdev_tx_reset_queue(txring_txq(tx_ring));
3757
3758 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3759 memset(tx_ring->tx_buffer_info, 0, size);
3760
3761 /* Zero out the descriptor ring */
3762 memset(tx_ring->desc, 0, tx_ring->size);
3763
3764 tx_ring->next_to_use = 0;
3765 tx_ring->next_to_clean = 0;
3766 }
3767
3768 /**
3769 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3770 * @adapter: board private structure
3771 **/
3772 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3773 {
3774 int i;
3775
3776 for (i = 0; i < adapter->num_tx_queues; i++)
3777 igb_clean_tx_ring(adapter->tx_ring[i]);
3778 }
3779
3780 /**
3781 * igb_free_rx_resources - Free Rx Resources
3782 * @rx_ring: ring to clean the resources from
3783 *
3784 * Free all receive software resources
3785 **/
3786 void igb_free_rx_resources(struct igb_ring *rx_ring)
3787 {
3788 igb_clean_rx_ring(rx_ring);
3789
3790 vfree(rx_ring->rx_buffer_info);
3791 rx_ring->rx_buffer_info = NULL;
3792
3793 /* if not set, then don't free */
3794 if (!rx_ring->desc)
3795 return;
3796
3797 dma_free_coherent(rx_ring->dev, rx_ring->size,
3798 rx_ring->desc, rx_ring->dma);
3799
3800 rx_ring->desc = NULL;
3801 }
3802
3803 /**
3804 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3805 * @adapter: board private structure
3806 *
3807 * Free all receive software resources
3808 **/
3809 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3810 {
3811 int i;
3812
3813 for (i = 0; i < adapter->num_rx_queues; i++)
3814 igb_free_rx_resources(adapter->rx_ring[i]);
3815 }
3816
3817 /**
3818 * igb_clean_rx_ring - Free Rx Buffers per Queue
3819 * @rx_ring: ring to free buffers from
3820 **/
3821 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3822 {
3823 unsigned long size;
3824 u16 i;
3825
3826 if (rx_ring->skb)
3827 dev_kfree_skb(rx_ring->skb);
3828 rx_ring->skb = NULL;
3829
3830 if (!rx_ring->rx_buffer_info)
3831 return;
3832
3833 /* Free all the Rx ring sk_buffs */
3834 for (i = 0; i < rx_ring->count; i++) {
3835 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3836
3837 if (!buffer_info->page)
3838 continue;
3839
3840 dma_unmap_page(rx_ring->dev,
3841 buffer_info->dma,
3842 PAGE_SIZE,
3843 DMA_FROM_DEVICE);
3844 __free_page(buffer_info->page);
3845
3846 buffer_info->page = NULL;
3847 }
3848
3849 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3850 memset(rx_ring->rx_buffer_info, 0, size);
3851
3852 /* Zero out the descriptor ring */
3853 memset(rx_ring->desc, 0, rx_ring->size);
3854
3855 rx_ring->next_to_alloc = 0;
3856 rx_ring->next_to_clean = 0;
3857 rx_ring->next_to_use = 0;
3858 }
3859
3860 /**
3861 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3862 * @adapter: board private structure
3863 **/
3864 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3865 {
3866 int i;
3867
3868 for (i = 0; i < adapter->num_rx_queues; i++)
3869 igb_clean_rx_ring(adapter->rx_ring[i]);
3870 }
3871
3872 /**
3873 * igb_set_mac - Change the Ethernet Address of the NIC
3874 * @netdev: network interface device structure
3875 * @p: pointer to an address structure
3876 *
3877 * Returns 0 on success, negative on failure
3878 **/
3879 static int igb_set_mac(struct net_device *netdev, void *p)
3880 {
3881 struct igb_adapter *adapter = netdev_priv(netdev);
3882 struct e1000_hw *hw = &adapter->hw;
3883 struct sockaddr *addr = p;
3884
3885 if (!is_valid_ether_addr(addr->sa_data))
3886 return -EADDRNOTAVAIL;
3887
3888 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3889 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3890
3891 /* set the correct pool for the new PF MAC address in entry 0 */
3892 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3893 adapter->vfs_allocated_count);
3894
3895 return 0;
3896 }
3897
3898 /**
3899 * igb_write_mc_addr_list - write multicast addresses to MTA
3900 * @netdev: network interface device structure
3901 *
3902 * Writes multicast address list to the MTA hash table.
3903 * Returns: -ENOMEM on failure
3904 * 0 on no addresses written
3905 * X on writing X addresses to MTA
3906 **/
3907 static int igb_write_mc_addr_list(struct net_device *netdev)
3908 {
3909 struct igb_adapter *adapter = netdev_priv(netdev);
3910 struct e1000_hw *hw = &adapter->hw;
3911 struct netdev_hw_addr *ha;
3912 u8 *mta_list;
3913 int i;
3914
3915 if (netdev_mc_empty(netdev)) {
3916 /* nothing to program, so clear mc list */
3917 igb_update_mc_addr_list(hw, NULL, 0);
3918 igb_restore_vf_multicasts(adapter);
3919 return 0;
3920 }
3921
3922 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3923 if (!mta_list)
3924 return -ENOMEM;
3925
3926 /* The shared function expects a packed array of only addresses. */
3927 i = 0;
3928 netdev_for_each_mc_addr(ha, netdev)
3929 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3930
3931 igb_update_mc_addr_list(hw, mta_list, i);
3932 kfree(mta_list);
3933
3934 return netdev_mc_count(netdev);
3935 }
3936
3937 /**
3938 * igb_write_uc_addr_list - write unicast addresses to RAR table
3939 * @netdev: network interface device structure
3940 *
3941 * Writes unicast address list to the RAR table.
3942 * Returns: -ENOMEM on failure/insufficient address space
3943 * 0 on no addresses written
3944 * X on writing X addresses to the RAR table
3945 **/
3946 static int igb_write_uc_addr_list(struct net_device *netdev)
3947 {
3948 struct igb_adapter *adapter = netdev_priv(netdev);
3949 struct e1000_hw *hw = &adapter->hw;
3950 unsigned int vfn = adapter->vfs_allocated_count;
3951 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3952 int count = 0;
3953
3954 /* return ENOMEM indicating insufficient memory for addresses */
3955 if (netdev_uc_count(netdev) > rar_entries)
3956 return -ENOMEM;
3957
3958 if (!netdev_uc_empty(netdev) && rar_entries) {
3959 struct netdev_hw_addr *ha;
3960
3961 netdev_for_each_uc_addr(ha, netdev) {
3962 if (!rar_entries)
3963 break;
3964 igb_rar_set_qsel(adapter, ha->addr,
3965 rar_entries--,
3966 vfn);
3967 count++;
3968 }
3969 }
3970 /* write the addresses in reverse order to avoid write combining */
3971 for (; rar_entries > 0 ; rar_entries--) {
3972 wr32(E1000_RAH(rar_entries), 0);
3973 wr32(E1000_RAL(rar_entries), 0);
3974 }
3975 wrfl();
3976
3977 return count;
3978 }
3979
3980 /**
3981 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3982 * @netdev: network interface device structure
3983 *
3984 * The set_rx_mode entry point is called whenever the unicast or multicast
3985 * address lists or the network interface flags are updated. This routine is
3986 * responsible for configuring the hardware for proper unicast, multicast,
3987 * promiscuous mode, and all-multi behavior.
3988 **/
3989 static void igb_set_rx_mode(struct net_device *netdev)
3990 {
3991 struct igb_adapter *adapter = netdev_priv(netdev);
3992 struct e1000_hw *hw = &adapter->hw;
3993 unsigned int vfn = adapter->vfs_allocated_count;
3994 u32 rctl, vmolr = 0;
3995 int count;
3996
3997 /* Check for Promiscuous and All Multicast modes */
3998 rctl = rd32(E1000_RCTL);
3999
4000 /* clear the effected bits */
4001 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4002
4003 if (netdev->flags & IFF_PROMISC) {
4004 /* retain VLAN HW filtering if in VT mode */
4005 if (adapter->vfs_allocated_count)
4006 rctl |= E1000_RCTL_VFE;
4007 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4008 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4009 } else {
4010 if (netdev->flags & IFF_ALLMULTI) {
4011 rctl |= E1000_RCTL_MPE;
4012 vmolr |= E1000_VMOLR_MPME;
4013 } else {
4014 /* Write addresses to the MTA, if the attempt fails
4015 * then we should just turn on promiscuous mode so
4016 * that we can at least receive multicast traffic
4017 */
4018 count = igb_write_mc_addr_list(netdev);
4019 if (count < 0) {
4020 rctl |= E1000_RCTL_MPE;
4021 vmolr |= E1000_VMOLR_MPME;
4022 } else if (count) {
4023 vmolr |= E1000_VMOLR_ROMPE;
4024 }
4025 }
4026 /* Write addresses to available RAR registers, if there is not
4027 * sufficient space to store all the addresses then enable
4028 * unicast promiscuous mode
4029 */
4030 count = igb_write_uc_addr_list(netdev);
4031 if (count < 0) {
4032 rctl |= E1000_RCTL_UPE;
4033 vmolr |= E1000_VMOLR_ROPE;
4034 }
4035 rctl |= E1000_RCTL_VFE;
4036 }
4037 wr32(E1000_RCTL, rctl);
4038
4039 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4040 * the VMOLR to enable the appropriate modes. Without this workaround
4041 * we will have issues with VLAN tag stripping not being done for frames
4042 * that are only arriving because we are the default pool
4043 */
4044 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4045 return;
4046
4047 vmolr |= rd32(E1000_VMOLR(vfn)) &
4048 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4049 wr32(E1000_VMOLR(vfn), vmolr);
4050 igb_restore_vf_multicasts(adapter);
4051 }
4052
4053 static void igb_check_wvbr(struct igb_adapter *adapter)
4054 {
4055 struct e1000_hw *hw = &adapter->hw;
4056 u32 wvbr = 0;
4057
4058 switch (hw->mac.type) {
4059 case e1000_82576:
4060 case e1000_i350:
4061 wvbr = rd32(E1000_WVBR);
4062 if (!wvbr)
4063 return;
4064 break;
4065 default:
4066 break;
4067 }
4068
4069 adapter->wvbr |= wvbr;
4070 }
4071
4072 #define IGB_STAGGERED_QUEUE_OFFSET 8
4073
4074 static void igb_spoof_check(struct igb_adapter *adapter)
4075 {
4076 int j;
4077
4078 if (!adapter->wvbr)
4079 return;
4080
4081 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4082 if (adapter->wvbr & (1 << j) ||
4083 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4084 dev_warn(&adapter->pdev->dev,
4085 "Spoof event(s) detected on VF %d\n", j);
4086 adapter->wvbr &=
4087 ~((1 << j) |
4088 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4089 }
4090 }
4091 }
4092
4093 /* Need to wait a few seconds after link up to get diagnostic information from
4094 * the phy
4095 */
4096 static void igb_update_phy_info(unsigned long data)
4097 {
4098 struct igb_adapter *adapter = (struct igb_adapter *) data;
4099 igb_get_phy_info(&adapter->hw);
4100 }
4101
4102 /**
4103 * igb_has_link - check shared code for link and determine up/down
4104 * @adapter: pointer to driver private info
4105 **/
4106 bool igb_has_link(struct igb_adapter *adapter)
4107 {
4108 struct e1000_hw *hw = &adapter->hw;
4109 bool link_active = false;
4110
4111 /* get_link_status is set on LSC (link status) interrupt or
4112 * rx sequence error interrupt. get_link_status will stay
4113 * false until the e1000_check_for_link establishes link
4114 * for copper adapters ONLY
4115 */
4116 switch (hw->phy.media_type) {
4117 case e1000_media_type_copper:
4118 if (!hw->mac.get_link_status)
4119 return true;
4120 case e1000_media_type_internal_serdes:
4121 hw->mac.ops.check_for_link(hw);
4122 link_active = !hw->mac.get_link_status;
4123 break;
4124 default:
4125 case e1000_media_type_unknown:
4126 break;
4127 }
4128
4129 if (((hw->mac.type == e1000_i210) ||
4130 (hw->mac.type == e1000_i211)) &&
4131 (hw->phy.id == I210_I_PHY_ID)) {
4132 if (!netif_carrier_ok(adapter->netdev)) {
4133 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4134 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4135 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4136 adapter->link_check_timeout = jiffies;
4137 }
4138 }
4139
4140 return link_active;
4141 }
4142
4143 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4144 {
4145 bool ret = false;
4146 u32 ctrl_ext, thstat;
4147
4148 /* check for thermal sensor event on i350 copper only */
4149 if (hw->mac.type == e1000_i350) {
4150 thstat = rd32(E1000_THSTAT);
4151 ctrl_ext = rd32(E1000_CTRL_EXT);
4152
4153 if ((hw->phy.media_type == e1000_media_type_copper) &&
4154 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4155 ret = !!(thstat & event);
4156 }
4157
4158 return ret;
4159 }
4160
4161 /**
4162 * igb_watchdog - Timer Call-back
4163 * @data: pointer to adapter cast into an unsigned long
4164 **/
4165 static void igb_watchdog(unsigned long data)
4166 {
4167 struct igb_adapter *adapter = (struct igb_adapter *)data;
4168 /* Do the rest outside of interrupt context */
4169 schedule_work(&adapter->watchdog_task);
4170 }
4171
4172 static void igb_watchdog_task(struct work_struct *work)
4173 {
4174 struct igb_adapter *adapter = container_of(work,
4175 struct igb_adapter,
4176 watchdog_task);
4177 struct e1000_hw *hw = &adapter->hw;
4178 struct e1000_phy_info *phy = &hw->phy;
4179 struct net_device *netdev = adapter->netdev;
4180 u32 link;
4181 int i;
4182 u32 connsw;
4183
4184 link = igb_has_link(adapter);
4185
4186 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4187 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4188 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4189 else
4190 link = false;
4191 }
4192
4193 /* Force link down if we have fiber to swap to */
4194 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4195 if (hw->phy.media_type == e1000_media_type_copper) {
4196 connsw = rd32(E1000_CONNSW);
4197 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4198 link = 0;
4199 }
4200 }
4201 if (link) {
4202 /* Perform a reset if the media type changed. */
4203 if (hw->dev_spec._82575.media_changed) {
4204 hw->dev_spec._82575.media_changed = false;
4205 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4206 igb_reset(adapter);
4207 }
4208 /* Cancel scheduled suspend requests. */
4209 pm_runtime_resume(netdev->dev.parent);
4210
4211 if (!netif_carrier_ok(netdev)) {
4212 u32 ctrl;
4213
4214 hw->mac.ops.get_speed_and_duplex(hw,
4215 &adapter->link_speed,
4216 &adapter->link_duplex);
4217
4218 ctrl = rd32(E1000_CTRL);
4219 /* Links status message must follow this format */
4220 netdev_info(netdev,
4221 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4222 netdev->name,
4223 adapter->link_speed,
4224 adapter->link_duplex == FULL_DUPLEX ?
4225 "Full" : "Half",
4226 (ctrl & E1000_CTRL_TFCE) &&
4227 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4228 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4229 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4230
4231 /* disable EEE if enabled */
4232 if ((adapter->flags & IGB_FLAG_EEE) &&
4233 (adapter->link_duplex == HALF_DUPLEX)) {
4234 dev_info(&adapter->pdev->dev,
4235 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4236 adapter->hw.dev_spec._82575.eee_disable = true;
4237 adapter->flags &= ~IGB_FLAG_EEE;
4238 }
4239
4240 /* check if SmartSpeed worked */
4241 igb_check_downshift(hw);
4242 if (phy->speed_downgraded)
4243 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4244
4245 /* check for thermal sensor event */
4246 if (igb_thermal_sensor_event(hw,
4247 E1000_THSTAT_LINK_THROTTLE))
4248 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4249
4250 /* adjust timeout factor according to speed/duplex */
4251 adapter->tx_timeout_factor = 1;
4252 switch (adapter->link_speed) {
4253 case SPEED_10:
4254 adapter->tx_timeout_factor = 14;
4255 break;
4256 case SPEED_100:
4257 /* maybe add some timeout factor ? */
4258 break;
4259 }
4260
4261 netif_carrier_on(netdev);
4262
4263 igb_ping_all_vfs(adapter);
4264 igb_check_vf_rate_limit(adapter);
4265
4266 /* link state has changed, schedule phy info update */
4267 if (!test_bit(__IGB_DOWN, &adapter->state))
4268 mod_timer(&adapter->phy_info_timer,
4269 round_jiffies(jiffies + 2 * HZ));
4270 }
4271 } else {
4272 if (netif_carrier_ok(netdev)) {
4273 adapter->link_speed = 0;
4274 adapter->link_duplex = 0;
4275
4276 /* check for thermal sensor event */
4277 if (igb_thermal_sensor_event(hw,
4278 E1000_THSTAT_PWR_DOWN)) {
4279 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4280 }
4281
4282 /* Links status message must follow this format */
4283 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4284 netdev->name);
4285 netif_carrier_off(netdev);
4286
4287 igb_ping_all_vfs(adapter);
4288
4289 /* link state has changed, schedule phy info update */
4290 if (!test_bit(__IGB_DOWN, &adapter->state))
4291 mod_timer(&adapter->phy_info_timer,
4292 round_jiffies(jiffies + 2 * HZ));
4293
4294 /* link is down, time to check for alternate media */
4295 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4296 igb_check_swap_media(adapter);
4297 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4298 schedule_work(&adapter->reset_task);
4299 /* return immediately */
4300 return;
4301 }
4302 }
4303 pm_schedule_suspend(netdev->dev.parent,
4304 MSEC_PER_SEC * 5);
4305
4306 /* also check for alternate media here */
4307 } else if (!netif_carrier_ok(netdev) &&
4308 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4309 igb_check_swap_media(adapter);
4310 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4311 schedule_work(&adapter->reset_task);
4312 /* return immediately */
4313 return;
4314 }
4315 }
4316 }
4317
4318 spin_lock(&adapter->stats64_lock);
4319 igb_update_stats(adapter, &adapter->stats64);
4320 spin_unlock(&adapter->stats64_lock);
4321
4322 for (i = 0; i < adapter->num_tx_queues; i++) {
4323 struct igb_ring *tx_ring = adapter->tx_ring[i];
4324 if (!netif_carrier_ok(netdev)) {
4325 /* We've lost link, so the controller stops DMA,
4326 * but we've got queued Tx work that's never going
4327 * to get done, so reset controller to flush Tx.
4328 * (Do the reset outside of interrupt context).
4329 */
4330 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4331 adapter->tx_timeout_count++;
4332 schedule_work(&adapter->reset_task);
4333 /* return immediately since reset is imminent */
4334 return;
4335 }
4336 }
4337
4338 /* Force detection of hung controller every watchdog period */
4339 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4340 }
4341
4342 /* Cause software interrupt to ensure Rx ring is cleaned */
4343 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4344 u32 eics = 0;
4345
4346 for (i = 0; i < adapter->num_q_vectors; i++)
4347 eics |= adapter->q_vector[i]->eims_value;
4348 wr32(E1000_EICS, eics);
4349 } else {
4350 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4351 }
4352
4353 igb_spoof_check(adapter);
4354 igb_ptp_rx_hang(adapter);
4355
4356 /* Reset the timer */
4357 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4358 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4359 mod_timer(&adapter->watchdog_timer,
4360 round_jiffies(jiffies + HZ));
4361 else
4362 mod_timer(&adapter->watchdog_timer,
4363 round_jiffies(jiffies + 2 * HZ));
4364 }
4365 }
4366
4367 enum latency_range {
4368 lowest_latency = 0,
4369 low_latency = 1,
4370 bulk_latency = 2,
4371 latency_invalid = 255
4372 };
4373
4374 /**
4375 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4376 * @q_vector: pointer to q_vector
4377 *
4378 * Stores a new ITR value based on strictly on packet size. This
4379 * algorithm is less sophisticated than that used in igb_update_itr,
4380 * due to the difficulty of synchronizing statistics across multiple
4381 * receive rings. The divisors and thresholds used by this function
4382 * were determined based on theoretical maximum wire speed and testing
4383 * data, in order to minimize response time while increasing bulk
4384 * throughput.
4385 * This functionality is controlled by ethtool's coalescing settings.
4386 * NOTE: This function is called only when operating in a multiqueue
4387 * receive environment.
4388 **/
4389 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4390 {
4391 int new_val = q_vector->itr_val;
4392 int avg_wire_size = 0;
4393 struct igb_adapter *adapter = q_vector->adapter;
4394 unsigned int packets;
4395
4396 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4397 * ints/sec - ITR timer value of 120 ticks.
4398 */
4399 if (adapter->link_speed != SPEED_1000) {
4400 new_val = IGB_4K_ITR;
4401 goto set_itr_val;
4402 }
4403
4404 packets = q_vector->rx.total_packets;
4405 if (packets)
4406 avg_wire_size = q_vector->rx.total_bytes / packets;
4407
4408 packets = q_vector->tx.total_packets;
4409 if (packets)
4410 avg_wire_size = max_t(u32, avg_wire_size,
4411 q_vector->tx.total_bytes / packets);
4412
4413 /* if avg_wire_size isn't set no work was done */
4414 if (!avg_wire_size)
4415 goto clear_counts;
4416
4417 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4418 avg_wire_size += 24;
4419
4420 /* Don't starve jumbo frames */
4421 avg_wire_size = min(avg_wire_size, 3000);
4422
4423 /* Give a little boost to mid-size frames */
4424 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4425 new_val = avg_wire_size / 3;
4426 else
4427 new_val = avg_wire_size / 2;
4428
4429 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4430 if (new_val < IGB_20K_ITR &&
4431 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4432 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4433 new_val = IGB_20K_ITR;
4434
4435 set_itr_val:
4436 if (new_val != q_vector->itr_val) {
4437 q_vector->itr_val = new_val;
4438 q_vector->set_itr = 1;
4439 }
4440 clear_counts:
4441 q_vector->rx.total_bytes = 0;
4442 q_vector->rx.total_packets = 0;
4443 q_vector->tx.total_bytes = 0;
4444 q_vector->tx.total_packets = 0;
4445 }
4446
4447 /**
4448 * igb_update_itr - update the dynamic ITR value based on statistics
4449 * @q_vector: pointer to q_vector
4450 * @ring_container: ring info to update the itr for
4451 *
4452 * Stores a new ITR value based on packets and byte
4453 * counts during the last interrupt. The advantage of per interrupt
4454 * computation is faster updates and more accurate ITR for the current
4455 * traffic pattern. Constants in this function were computed
4456 * based on theoretical maximum wire speed and thresholds were set based
4457 * on testing data as well as attempting to minimize response time
4458 * while increasing bulk throughput.
4459 * This functionality is controlled by ethtool's coalescing settings.
4460 * NOTE: These calculations are only valid when operating in a single-
4461 * queue environment.
4462 **/
4463 static void igb_update_itr(struct igb_q_vector *q_vector,
4464 struct igb_ring_container *ring_container)
4465 {
4466 unsigned int packets = ring_container->total_packets;
4467 unsigned int bytes = ring_container->total_bytes;
4468 u8 itrval = ring_container->itr;
4469
4470 /* no packets, exit with status unchanged */
4471 if (packets == 0)
4472 return;
4473
4474 switch (itrval) {
4475 case lowest_latency:
4476 /* handle TSO and jumbo frames */
4477 if (bytes/packets > 8000)
4478 itrval = bulk_latency;
4479 else if ((packets < 5) && (bytes > 512))
4480 itrval = low_latency;
4481 break;
4482 case low_latency: /* 50 usec aka 20000 ints/s */
4483 if (bytes > 10000) {
4484 /* this if handles the TSO accounting */
4485 if (bytes/packets > 8000)
4486 itrval = bulk_latency;
4487 else if ((packets < 10) || ((bytes/packets) > 1200))
4488 itrval = bulk_latency;
4489 else if ((packets > 35))
4490 itrval = lowest_latency;
4491 } else if (bytes/packets > 2000) {
4492 itrval = bulk_latency;
4493 } else if (packets <= 2 && bytes < 512) {
4494 itrval = lowest_latency;
4495 }
4496 break;
4497 case bulk_latency: /* 250 usec aka 4000 ints/s */
4498 if (bytes > 25000) {
4499 if (packets > 35)
4500 itrval = low_latency;
4501 } else if (bytes < 1500) {
4502 itrval = low_latency;
4503 }
4504 break;
4505 }
4506
4507 /* clear work counters since we have the values we need */
4508 ring_container->total_bytes = 0;
4509 ring_container->total_packets = 0;
4510
4511 /* write updated itr to ring container */
4512 ring_container->itr = itrval;
4513 }
4514
4515 static void igb_set_itr(struct igb_q_vector *q_vector)
4516 {
4517 struct igb_adapter *adapter = q_vector->adapter;
4518 u32 new_itr = q_vector->itr_val;
4519 u8 current_itr = 0;
4520
4521 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4522 if (adapter->link_speed != SPEED_1000) {
4523 current_itr = 0;
4524 new_itr = IGB_4K_ITR;
4525 goto set_itr_now;
4526 }
4527
4528 igb_update_itr(q_vector, &q_vector->tx);
4529 igb_update_itr(q_vector, &q_vector->rx);
4530
4531 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4532
4533 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4534 if (current_itr == lowest_latency &&
4535 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4536 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4537 current_itr = low_latency;
4538
4539 switch (current_itr) {
4540 /* counts and packets in update_itr are dependent on these numbers */
4541 case lowest_latency:
4542 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4543 break;
4544 case low_latency:
4545 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4546 break;
4547 case bulk_latency:
4548 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4549 break;
4550 default:
4551 break;
4552 }
4553
4554 set_itr_now:
4555 if (new_itr != q_vector->itr_val) {
4556 /* this attempts to bias the interrupt rate towards Bulk
4557 * by adding intermediate steps when interrupt rate is
4558 * increasing
4559 */
4560 new_itr = new_itr > q_vector->itr_val ?
4561 max((new_itr * q_vector->itr_val) /
4562 (new_itr + (q_vector->itr_val >> 2)),
4563 new_itr) : new_itr;
4564 /* Don't write the value here; it resets the adapter's
4565 * internal timer, and causes us to delay far longer than
4566 * we should between interrupts. Instead, we write the ITR
4567 * value at the beginning of the next interrupt so the timing
4568 * ends up being correct.
4569 */
4570 q_vector->itr_val = new_itr;
4571 q_vector->set_itr = 1;
4572 }
4573 }
4574
4575 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4576 u32 type_tucmd, u32 mss_l4len_idx)
4577 {
4578 struct e1000_adv_tx_context_desc *context_desc;
4579 u16 i = tx_ring->next_to_use;
4580
4581 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4582
4583 i++;
4584 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4585
4586 /* set bits to identify this as an advanced context descriptor */
4587 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4588
4589 /* For 82575, context index must be unique per ring. */
4590 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4591 mss_l4len_idx |= tx_ring->reg_idx << 4;
4592
4593 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4594 context_desc->seqnum_seed = 0;
4595 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4596 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4597 }
4598
4599 static int igb_tso(struct igb_ring *tx_ring,
4600 struct igb_tx_buffer *first,
4601 u8 *hdr_len)
4602 {
4603 struct sk_buff *skb = first->skb;
4604 u32 vlan_macip_lens, type_tucmd;
4605 u32 mss_l4len_idx, l4len;
4606 int err;
4607
4608 if (skb->ip_summed != CHECKSUM_PARTIAL)
4609 return 0;
4610
4611 if (!skb_is_gso(skb))
4612 return 0;
4613
4614 err = skb_cow_head(skb, 0);
4615 if (err < 0)
4616 return err;
4617
4618 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4619 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4620
4621 if (first->protocol == htons(ETH_P_IP)) {
4622 struct iphdr *iph = ip_hdr(skb);
4623 iph->tot_len = 0;
4624 iph->check = 0;
4625 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4626 iph->daddr, 0,
4627 IPPROTO_TCP,
4628 0);
4629 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4630 first->tx_flags |= IGB_TX_FLAGS_TSO |
4631 IGB_TX_FLAGS_CSUM |
4632 IGB_TX_FLAGS_IPV4;
4633 } else if (skb_is_gso_v6(skb)) {
4634 ipv6_hdr(skb)->payload_len = 0;
4635 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4636 &ipv6_hdr(skb)->daddr,
4637 0, IPPROTO_TCP, 0);
4638 first->tx_flags |= IGB_TX_FLAGS_TSO |
4639 IGB_TX_FLAGS_CSUM;
4640 }
4641
4642 /* compute header lengths */
4643 l4len = tcp_hdrlen(skb);
4644 *hdr_len = skb_transport_offset(skb) + l4len;
4645
4646 /* update gso size and bytecount with header size */
4647 first->gso_segs = skb_shinfo(skb)->gso_segs;
4648 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4649
4650 /* MSS L4LEN IDX */
4651 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4652 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4653
4654 /* VLAN MACLEN IPLEN */
4655 vlan_macip_lens = skb_network_header_len(skb);
4656 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4657 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4658
4659 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4660
4661 return 1;
4662 }
4663
4664 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4665 {
4666 struct sk_buff *skb = first->skb;
4667 u32 vlan_macip_lens = 0;
4668 u32 mss_l4len_idx = 0;
4669 u32 type_tucmd = 0;
4670
4671 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4672 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4673 return;
4674 } else {
4675 u8 l4_hdr = 0;
4676
4677 switch (first->protocol) {
4678 case htons(ETH_P_IP):
4679 vlan_macip_lens |= skb_network_header_len(skb);
4680 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4681 l4_hdr = ip_hdr(skb)->protocol;
4682 break;
4683 case htons(ETH_P_IPV6):
4684 vlan_macip_lens |= skb_network_header_len(skb);
4685 l4_hdr = ipv6_hdr(skb)->nexthdr;
4686 break;
4687 default:
4688 if (unlikely(net_ratelimit())) {
4689 dev_warn(tx_ring->dev,
4690 "partial checksum but proto=%x!\n",
4691 first->protocol);
4692 }
4693 break;
4694 }
4695
4696 switch (l4_hdr) {
4697 case IPPROTO_TCP:
4698 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4699 mss_l4len_idx = tcp_hdrlen(skb) <<
4700 E1000_ADVTXD_L4LEN_SHIFT;
4701 break;
4702 case IPPROTO_SCTP:
4703 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4704 mss_l4len_idx = sizeof(struct sctphdr) <<
4705 E1000_ADVTXD_L4LEN_SHIFT;
4706 break;
4707 case IPPROTO_UDP:
4708 mss_l4len_idx = sizeof(struct udphdr) <<
4709 E1000_ADVTXD_L4LEN_SHIFT;
4710 break;
4711 default:
4712 if (unlikely(net_ratelimit())) {
4713 dev_warn(tx_ring->dev,
4714 "partial checksum but l4 proto=%x!\n",
4715 l4_hdr);
4716 }
4717 break;
4718 }
4719
4720 /* update TX checksum flag */
4721 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4722 }
4723
4724 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4725 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4726
4727 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4728 }
4729
4730 #define IGB_SET_FLAG(_input, _flag, _result) \
4731 ((_flag <= _result) ? \
4732 ((u32)(_input & _flag) * (_result / _flag)) : \
4733 ((u32)(_input & _flag) / (_flag / _result)))
4734
4735 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4736 {
4737 /* set type for advanced descriptor with frame checksum insertion */
4738 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4739 E1000_ADVTXD_DCMD_DEXT |
4740 E1000_ADVTXD_DCMD_IFCS;
4741
4742 /* set HW vlan bit if vlan is present */
4743 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4744 (E1000_ADVTXD_DCMD_VLE));
4745
4746 /* set segmentation bits for TSO */
4747 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4748 (E1000_ADVTXD_DCMD_TSE));
4749
4750 /* set timestamp bit if present */
4751 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4752 (E1000_ADVTXD_MAC_TSTAMP));
4753
4754 /* insert frame checksum */
4755 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4756
4757 return cmd_type;
4758 }
4759
4760 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4761 union e1000_adv_tx_desc *tx_desc,
4762 u32 tx_flags, unsigned int paylen)
4763 {
4764 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4765
4766 /* 82575 requires a unique index per ring */
4767 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4768 olinfo_status |= tx_ring->reg_idx << 4;
4769
4770 /* insert L4 checksum */
4771 olinfo_status |= IGB_SET_FLAG(tx_flags,
4772 IGB_TX_FLAGS_CSUM,
4773 (E1000_TXD_POPTS_TXSM << 8));
4774
4775 /* insert IPv4 checksum */
4776 olinfo_status |= IGB_SET_FLAG(tx_flags,
4777 IGB_TX_FLAGS_IPV4,
4778 (E1000_TXD_POPTS_IXSM << 8));
4779
4780 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4781 }
4782
4783 static void igb_tx_map(struct igb_ring *tx_ring,
4784 struct igb_tx_buffer *first,
4785 const u8 hdr_len)
4786 {
4787 struct sk_buff *skb = first->skb;
4788 struct igb_tx_buffer *tx_buffer;
4789 union e1000_adv_tx_desc *tx_desc;
4790 struct skb_frag_struct *frag;
4791 dma_addr_t dma;
4792 unsigned int data_len, size;
4793 u32 tx_flags = first->tx_flags;
4794 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4795 u16 i = tx_ring->next_to_use;
4796
4797 tx_desc = IGB_TX_DESC(tx_ring, i);
4798
4799 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4800
4801 size = skb_headlen(skb);
4802 data_len = skb->data_len;
4803
4804 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4805
4806 tx_buffer = first;
4807
4808 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4809 if (dma_mapping_error(tx_ring->dev, dma))
4810 goto dma_error;
4811
4812 /* record length, and DMA address */
4813 dma_unmap_len_set(tx_buffer, len, size);
4814 dma_unmap_addr_set(tx_buffer, dma, dma);
4815
4816 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4817
4818 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4819 tx_desc->read.cmd_type_len =
4820 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4821
4822 i++;
4823 tx_desc++;
4824 if (i == tx_ring->count) {
4825 tx_desc = IGB_TX_DESC(tx_ring, 0);
4826 i = 0;
4827 }
4828 tx_desc->read.olinfo_status = 0;
4829
4830 dma += IGB_MAX_DATA_PER_TXD;
4831 size -= IGB_MAX_DATA_PER_TXD;
4832
4833 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4834 }
4835
4836 if (likely(!data_len))
4837 break;
4838
4839 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4840
4841 i++;
4842 tx_desc++;
4843 if (i == tx_ring->count) {
4844 tx_desc = IGB_TX_DESC(tx_ring, 0);
4845 i = 0;
4846 }
4847 tx_desc->read.olinfo_status = 0;
4848
4849 size = skb_frag_size(frag);
4850 data_len -= size;
4851
4852 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4853 size, DMA_TO_DEVICE);
4854
4855 tx_buffer = &tx_ring->tx_buffer_info[i];
4856 }
4857
4858 /* write last descriptor with RS and EOP bits */
4859 cmd_type |= size | IGB_TXD_DCMD;
4860 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4861
4862 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4863
4864 /* set the timestamp */
4865 first->time_stamp = jiffies;
4866
4867 /* Force memory writes to complete before letting h/w know there
4868 * are new descriptors to fetch. (Only applicable for weak-ordered
4869 * memory model archs, such as IA-64).
4870 *
4871 * We also need this memory barrier to make certain all of the
4872 * status bits have been updated before next_to_watch is written.
4873 */
4874 wmb();
4875
4876 /* set next_to_watch value indicating a packet is present */
4877 first->next_to_watch = tx_desc;
4878
4879 i++;
4880 if (i == tx_ring->count)
4881 i = 0;
4882
4883 tx_ring->next_to_use = i;
4884
4885 writel(i, tx_ring->tail);
4886
4887 /* we need this if more than one processor can write to our tail
4888 * at a time, it synchronizes IO on IA64/Altix systems
4889 */
4890 mmiowb();
4891
4892 return;
4893
4894 dma_error:
4895 dev_err(tx_ring->dev, "TX DMA map failed\n");
4896
4897 /* clear dma mappings for failed tx_buffer_info map */
4898 for (;;) {
4899 tx_buffer = &tx_ring->tx_buffer_info[i];
4900 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4901 if (tx_buffer == first)
4902 break;
4903 if (i == 0)
4904 i = tx_ring->count;
4905 i--;
4906 }
4907
4908 tx_ring->next_to_use = i;
4909 }
4910
4911 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4912 {
4913 struct net_device *netdev = tx_ring->netdev;
4914
4915 netif_stop_subqueue(netdev, tx_ring->queue_index);
4916
4917 /* Herbert's original patch had:
4918 * smp_mb__after_netif_stop_queue();
4919 * but since that doesn't exist yet, just open code it.
4920 */
4921 smp_mb();
4922
4923 /* We need to check again in a case another CPU has just
4924 * made room available.
4925 */
4926 if (igb_desc_unused(tx_ring) < size)
4927 return -EBUSY;
4928
4929 /* A reprieve! */
4930 netif_wake_subqueue(netdev, tx_ring->queue_index);
4931
4932 u64_stats_update_begin(&tx_ring->tx_syncp2);
4933 tx_ring->tx_stats.restart_queue2++;
4934 u64_stats_update_end(&tx_ring->tx_syncp2);
4935
4936 return 0;
4937 }
4938
4939 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4940 {
4941 if (igb_desc_unused(tx_ring) >= size)
4942 return 0;
4943 return __igb_maybe_stop_tx(tx_ring, size);
4944 }
4945
4946 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4947 struct igb_ring *tx_ring)
4948 {
4949 struct igb_tx_buffer *first;
4950 int tso;
4951 u32 tx_flags = 0;
4952 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4953 __be16 protocol = vlan_get_protocol(skb);
4954 u8 hdr_len = 0;
4955
4956 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4957 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4958 * + 2 desc gap to keep tail from touching head,
4959 * + 1 desc for context descriptor,
4960 * otherwise try next time
4961 */
4962 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4963 unsigned short f;
4964
4965 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4966 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4967 } else {
4968 count += skb_shinfo(skb)->nr_frags;
4969 }
4970
4971 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4972 /* this is a hard error */
4973 return NETDEV_TX_BUSY;
4974 }
4975
4976 /* record the location of the first descriptor for this packet */
4977 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4978 first->skb = skb;
4979 first->bytecount = skb->len;
4980 first->gso_segs = 1;
4981
4982 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4983 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4984
4985 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4986 &adapter->state)) {
4987 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4988 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4989
4990 adapter->ptp_tx_skb = skb_get(skb);
4991 adapter->ptp_tx_start = jiffies;
4992 if (adapter->hw.mac.type == e1000_82576)
4993 schedule_work(&adapter->ptp_tx_work);
4994 }
4995 }
4996
4997 skb_tx_timestamp(skb);
4998
4999 if (vlan_tx_tag_present(skb)) {
5000 tx_flags |= IGB_TX_FLAGS_VLAN;
5001 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5002 }
5003
5004 /* record initial flags and protocol */
5005 first->tx_flags = tx_flags;
5006 first->protocol = protocol;
5007
5008 tso = igb_tso(tx_ring, first, &hdr_len);
5009 if (tso < 0)
5010 goto out_drop;
5011 else if (!tso)
5012 igb_tx_csum(tx_ring, first);
5013
5014 igb_tx_map(tx_ring, first, hdr_len);
5015
5016 /* Make sure there is space in the ring for the next send. */
5017 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5018
5019 return NETDEV_TX_OK;
5020
5021 out_drop:
5022 igb_unmap_and_free_tx_resource(tx_ring, first);
5023
5024 return NETDEV_TX_OK;
5025 }
5026
5027 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5028 struct sk_buff *skb)
5029 {
5030 unsigned int r_idx = skb->queue_mapping;
5031
5032 if (r_idx >= adapter->num_tx_queues)
5033 r_idx = r_idx % adapter->num_tx_queues;
5034
5035 return adapter->tx_ring[r_idx];
5036 }
5037
5038 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5039 struct net_device *netdev)
5040 {
5041 struct igb_adapter *adapter = netdev_priv(netdev);
5042
5043 if (test_bit(__IGB_DOWN, &adapter->state)) {
5044 dev_kfree_skb_any(skb);
5045 return NETDEV_TX_OK;
5046 }
5047
5048 if (skb->len <= 0) {
5049 dev_kfree_skb_any(skb);
5050 return NETDEV_TX_OK;
5051 }
5052
5053 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5054 * in order to meet this minimum size requirement.
5055 */
5056 if (unlikely(skb->len < 17)) {
5057 if (skb_pad(skb, 17 - skb->len))
5058 return NETDEV_TX_OK;
5059 skb->len = 17;
5060 skb_set_tail_pointer(skb, 17);
5061 }
5062
5063 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5064 }
5065
5066 /**
5067 * igb_tx_timeout - Respond to a Tx Hang
5068 * @netdev: network interface device structure
5069 **/
5070 static void igb_tx_timeout(struct net_device *netdev)
5071 {
5072 struct igb_adapter *adapter = netdev_priv(netdev);
5073 struct e1000_hw *hw = &adapter->hw;
5074
5075 /* Do the reset outside of interrupt context */
5076 adapter->tx_timeout_count++;
5077
5078 if (hw->mac.type >= e1000_82580)
5079 hw->dev_spec._82575.global_device_reset = true;
5080
5081 schedule_work(&adapter->reset_task);
5082 wr32(E1000_EICS,
5083 (adapter->eims_enable_mask & ~adapter->eims_other));
5084 }
5085
5086 static void igb_reset_task(struct work_struct *work)
5087 {
5088 struct igb_adapter *adapter;
5089 adapter = container_of(work, struct igb_adapter, reset_task);
5090
5091 igb_dump(adapter);
5092 netdev_err(adapter->netdev, "Reset adapter\n");
5093 igb_reinit_locked(adapter);
5094 }
5095
5096 /**
5097 * igb_get_stats64 - Get System Network Statistics
5098 * @netdev: network interface device structure
5099 * @stats: rtnl_link_stats64 pointer
5100 **/
5101 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5102 struct rtnl_link_stats64 *stats)
5103 {
5104 struct igb_adapter *adapter = netdev_priv(netdev);
5105
5106 spin_lock(&adapter->stats64_lock);
5107 igb_update_stats(adapter, &adapter->stats64);
5108 memcpy(stats, &adapter->stats64, sizeof(*stats));
5109 spin_unlock(&adapter->stats64_lock);
5110
5111 return stats;
5112 }
5113
5114 /**
5115 * igb_change_mtu - Change the Maximum Transfer Unit
5116 * @netdev: network interface device structure
5117 * @new_mtu: new value for maximum frame size
5118 *
5119 * Returns 0 on success, negative on failure
5120 **/
5121 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5122 {
5123 struct igb_adapter *adapter = netdev_priv(netdev);
5124 struct pci_dev *pdev = adapter->pdev;
5125 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5126
5127 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5128 dev_err(&pdev->dev, "Invalid MTU setting\n");
5129 return -EINVAL;
5130 }
5131
5132 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5133 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5134 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5135 return -EINVAL;
5136 }
5137
5138 /* adjust max frame to be at least the size of a standard frame */
5139 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5140 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5141
5142 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5143 msleep(1);
5144
5145 /* igb_down has a dependency on max_frame_size */
5146 adapter->max_frame_size = max_frame;
5147
5148 if (netif_running(netdev))
5149 igb_down(adapter);
5150
5151 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5152 netdev->mtu, new_mtu);
5153 netdev->mtu = new_mtu;
5154
5155 if (netif_running(netdev))
5156 igb_up(adapter);
5157 else
5158 igb_reset(adapter);
5159
5160 clear_bit(__IGB_RESETTING, &adapter->state);
5161
5162 return 0;
5163 }
5164
5165 /**
5166 * igb_update_stats - Update the board statistics counters
5167 * @adapter: board private structure
5168 **/
5169 void igb_update_stats(struct igb_adapter *adapter,
5170 struct rtnl_link_stats64 *net_stats)
5171 {
5172 struct e1000_hw *hw = &adapter->hw;
5173 struct pci_dev *pdev = adapter->pdev;
5174 u32 reg, mpc;
5175 u16 phy_tmp;
5176 int i;
5177 u64 bytes, packets;
5178 unsigned int start;
5179 u64 _bytes, _packets;
5180
5181 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5182
5183 /* Prevent stats update while adapter is being reset, or if the pci
5184 * connection is down.
5185 */
5186 if (adapter->link_speed == 0)
5187 return;
5188 if (pci_channel_offline(pdev))
5189 return;
5190
5191 bytes = 0;
5192 packets = 0;
5193
5194 rcu_read_lock();
5195 for (i = 0; i < adapter->num_rx_queues; i++) {
5196 struct igb_ring *ring = adapter->rx_ring[i];
5197 u32 rqdpc = rd32(E1000_RQDPC(i));
5198 if (hw->mac.type >= e1000_i210)
5199 wr32(E1000_RQDPC(i), 0);
5200
5201 if (rqdpc) {
5202 ring->rx_stats.drops += rqdpc;
5203 net_stats->rx_fifo_errors += rqdpc;
5204 }
5205
5206 do {
5207 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5208 _bytes = ring->rx_stats.bytes;
5209 _packets = ring->rx_stats.packets;
5210 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5211 bytes += _bytes;
5212 packets += _packets;
5213 }
5214
5215 net_stats->rx_bytes = bytes;
5216 net_stats->rx_packets = packets;
5217
5218 bytes = 0;
5219 packets = 0;
5220 for (i = 0; i < adapter->num_tx_queues; i++) {
5221 struct igb_ring *ring = adapter->tx_ring[i];
5222 do {
5223 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5224 _bytes = ring->tx_stats.bytes;
5225 _packets = ring->tx_stats.packets;
5226 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5227 bytes += _bytes;
5228 packets += _packets;
5229 }
5230 net_stats->tx_bytes = bytes;
5231 net_stats->tx_packets = packets;
5232 rcu_read_unlock();
5233
5234 /* read stats registers */
5235 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5236 adapter->stats.gprc += rd32(E1000_GPRC);
5237 adapter->stats.gorc += rd32(E1000_GORCL);
5238 rd32(E1000_GORCH); /* clear GORCL */
5239 adapter->stats.bprc += rd32(E1000_BPRC);
5240 adapter->stats.mprc += rd32(E1000_MPRC);
5241 adapter->stats.roc += rd32(E1000_ROC);
5242
5243 adapter->stats.prc64 += rd32(E1000_PRC64);
5244 adapter->stats.prc127 += rd32(E1000_PRC127);
5245 adapter->stats.prc255 += rd32(E1000_PRC255);
5246 adapter->stats.prc511 += rd32(E1000_PRC511);
5247 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5248 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5249 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5250 adapter->stats.sec += rd32(E1000_SEC);
5251
5252 mpc = rd32(E1000_MPC);
5253 adapter->stats.mpc += mpc;
5254 net_stats->rx_fifo_errors += mpc;
5255 adapter->stats.scc += rd32(E1000_SCC);
5256 adapter->stats.ecol += rd32(E1000_ECOL);
5257 adapter->stats.mcc += rd32(E1000_MCC);
5258 adapter->stats.latecol += rd32(E1000_LATECOL);
5259 adapter->stats.dc += rd32(E1000_DC);
5260 adapter->stats.rlec += rd32(E1000_RLEC);
5261 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5262 adapter->stats.xontxc += rd32(E1000_XONTXC);
5263 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5264 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5265 adapter->stats.fcruc += rd32(E1000_FCRUC);
5266 adapter->stats.gptc += rd32(E1000_GPTC);
5267 adapter->stats.gotc += rd32(E1000_GOTCL);
5268 rd32(E1000_GOTCH); /* clear GOTCL */
5269 adapter->stats.rnbc += rd32(E1000_RNBC);
5270 adapter->stats.ruc += rd32(E1000_RUC);
5271 adapter->stats.rfc += rd32(E1000_RFC);
5272 adapter->stats.rjc += rd32(E1000_RJC);
5273 adapter->stats.tor += rd32(E1000_TORH);
5274 adapter->stats.tot += rd32(E1000_TOTH);
5275 adapter->stats.tpr += rd32(E1000_TPR);
5276
5277 adapter->stats.ptc64 += rd32(E1000_PTC64);
5278 adapter->stats.ptc127 += rd32(E1000_PTC127);
5279 adapter->stats.ptc255 += rd32(E1000_PTC255);
5280 adapter->stats.ptc511 += rd32(E1000_PTC511);
5281 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5282 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5283
5284 adapter->stats.mptc += rd32(E1000_MPTC);
5285 adapter->stats.bptc += rd32(E1000_BPTC);
5286
5287 adapter->stats.tpt += rd32(E1000_TPT);
5288 adapter->stats.colc += rd32(E1000_COLC);
5289
5290 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5291 /* read internal phy specific stats */
5292 reg = rd32(E1000_CTRL_EXT);
5293 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5294 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5295
5296 /* this stat has invalid values on i210/i211 */
5297 if ((hw->mac.type != e1000_i210) &&
5298 (hw->mac.type != e1000_i211))
5299 adapter->stats.tncrs += rd32(E1000_TNCRS);
5300 }
5301
5302 adapter->stats.tsctc += rd32(E1000_TSCTC);
5303 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5304
5305 adapter->stats.iac += rd32(E1000_IAC);
5306 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5307 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5308 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5309 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5310 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5311 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5312 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5313 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5314
5315 /* Fill out the OS statistics structure */
5316 net_stats->multicast = adapter->stats.mprc;
5317 net_stats->collisions = adapter->stats.colc;
5318
5319 /* Rx Errors */
5320
5321 /* RLEC on some newer hardware can be incorrect so build
5322 * our own version based on RUC and ROC
5323 */
5324 net_stats->rx_errors = adapter->stats.rxerrc +
5325 adapter->stats.crcerrs + adapter->stats.algnerrc +
5326 adapter->stats.ruc + adapter->stats.roc +
5327 adapter->stats.cexterr;
5328 net_stats->rx_length_errors = adapter->stats.ruc +
5329 adapter->stats.roc;
5330 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5331 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5332 net_stats->rx_missed_errors = adapter->stats.mpc;
5333
5334 /* Tx Errors */
5335 net_stats->tx_errors = adapter->stats.ecol +
5336 adapter->stats.latecol;
5337 net_stats->tx_aborted_errors = adapter->stats.ecol;
5338 net_stats->tx_window_errors = adapter->stats.latecol;
5339 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5340
5341 /* Tx Dropped needs to be maintained elsewhere */
5342
5343 /* Phy Stats */
5344 if (hw->phy.media_type == e1000_media_type_copper) {
5345 if ((adapter->link_speed == SPEED_1000) &&
5346 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5347 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5348 adapter->phy_stats.idle_errors += phy_tmp;
5349 }
5350 }
5351
5352 /* Management Stats */
5353 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5354 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5355 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5356
5357 /* OS2BMC Stats */
5358 reg = rd32(E1000_MANC);
5359 if (reg & E1000_MANC_EN_BMC2OS) {
5360 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5361 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5362 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5363 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5364 }
5365 }
5366
5367 static irqreturn_t igb_msix_other(int irq, void *data)
5368 {
5369 struct igb_adapter *adapter = data;
5370 struct e1000_hw *hw = &adapter->hw;
5371 u32 icr = rd32(E1000_ICR);
5372 /* reading ICR causes bit 31 of EICR to be cleared */
5373
5374 if (icr & E1000_ICR_DRSTA)
5375 schedule_work(&adapter->reset_task);
5376
5377 if (icr & E1000_ICR_DOUTSYNC) {
5378 /* HW is reporting DMA is out of sync */
5379 adapter->stats.doosync++;
5380 /* The DMA Out of Sync is also indication of a spoof event
5381 * in IOV mode. Check the Wrong VM Behavior register to
5382 * see if it is really a spoof event.
5383 */
5384 igb_check_wvbr(adapter);
5385 }
5386
5387 /* Check for a mailbox event */
5388 if (icr & E1000_ICR_VMMB)
5389 igb_msg_task(adapter);
5390
5391 if (icr & E1000_ICR_LSC) {
5392 hw->mac.get_link_status = 1;
5393 /* guard against interrupt when we're going down */
5394 if (!test_bit(__IGB_DOWN, &adapter->state))
5395 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5396 }
5397
5398 if (icr & E1000_ICR_TS) {
5399 u32 tsicr = rd32(E1000_TSICR);
5400
5401 if (tsicr & E1000_TSICR_TXTS) {
5402 /* acknowledge the interrupt */
5403 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5404 /* retrieve hardware timestamp */
5405 schedule_work(&adapter->ptp_tx_work);
5406 }
5407 }
5408
5409 wr32(E1000_EIMS, adapter->eims_other);
5410
5411 return IRQ_HANDLED;
5412 }
5413
5414 static void igb_write_itr(struct igb_q_vector *q_vector)
5415 {
5416 struct igb_adapter *adapter = q_vector->adapter;
5417 u32 itr_val = q_vector->itr_val & 0x7FFC;
5418
5419 if (!q_vector->set_itr)
5420 return;
5421
5422 if (!itr_val)
5423 itr_val = 0x4;
5424
5425 if (adapter->hw.mac.type == e1000_82575)
5426 itr_val |= itr_val << 16;
5427 else
5428 itr_val |= E1000_EITR_CNT_IGNR;
5429
5430 writel(itr_val, q_vector->itr_register);
5431 q_vector->set_itr = 0;
5432 }
5433
5434 static irqreturn_t igb_msix_ring(int irq, void *data)
5435 {
5436 struct igb_q_vector *q_vector = data;
5437
5438 /* Write the ITR value calculated from the previous interrupt. */
5439 igb_write_itr(q_vector);
5440
5441 napi_schedule(&q_vector->napi);
5442
5443 return IRQ_HANDLED;
5444 }
5445
5446 #ifdef CONFIG_IGB_DCA
5447 static void igb_update_tx_dca(struct igb_adapter *adapter,
5448 struct igb_ring *tx_ring,
5449 int cpu)
5450 {
5451 struct e1000_hw *hw = &adapter->hw;
5452 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5453
5454 if (hw->mac.type != e1000_82575)
5455 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5456
5457 /* We can enable relaxed ordering for reads, but not writes when
5458 * DCA is enabled. This is due to a known issue in some chipsets
5459 * which will cause the DCA tag to be cleared.
5460 */
5461 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5462 E1000_DCA_TXCTRL_DATA_RRO_EN |
5463 E1000_DCA_TXCTRL_DESC_DCA_EN;
5464
5465 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5466 }
5467
5468 static void igb_update_rx_dca(struct igb_adapter *adapter,
5469 struct igb_ring *rx_ring,
5470 int cpu)
5471 {
5472 struct e1000_hw *hw = &adapter->hw;
5473 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5474
5475 if (hw->mac.type != e1000_82575)
5476 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5477
5478 /* We can enable relaxed ordering for reads, but not writes when
5479 * DCA is enabled. This is due to a known issue in some chipsets
5480 * which will cause the DCA tag to be cleared.
5481 */
5482 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5483 E1000_DCA_RXCTRL_DESC_DCA_EN;
5484
5485 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5486 }
5487
5488 static void igb_update_dca(struct igb_q_vector *q_vector)
5489 {
5490 struct igb_adapter *adapter = q_vector->adapter;
5491 int cpu = get_cpu();
5492
5493 if (q_vector->cpu == cpu)
5494 goto out_no_update;
5495
5496 if (q_vector->tx.ring)
5497 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5498
5499 if (q_vector->rx.ring)
5500 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5501
5502 q_vector->cpu = cpu;
5503 out_no_update:
5504 put_cpu();
5505 }
5506
5507 static void igb_setup_dca(struct igb_adapter *adapter)
5508 {
5509 struct e1000_hw *hw = &adapter->hw;
5510 int i;
5511
5512 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5513 return;
5514
5515 /* Always use CB2 mode, difference is masked in the CB driver. */
5516 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5517
5518 for (i = 0; i < adapter->num_q_vectors; i++) {
5519 adapter->q_vector[i]->cpu = -1;
5520 igb_update_dca(adapter->q_vector[i]);
5521 }
5522 }
5523
5524 static int __igb_notify_dca(struct device *dev, void *data)
5525 {
5526 struct net_device *netdev = dev_get_drvdata(dev);
5527 struct igb_adapter *adapter = netdev_priv(netdev);
5528 struct pci_dev *pdev = adapter->pdev;
5529 struct e1000_hw *hw = &adapter->hw;
5530 unsigned long event = *(unsigned long *)data;
5531
5532 switch (event) {
5533 case DCA_PROVIDER_ADD:
5534 /* if already enabled, don't do it again */
5535 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5536 break;
5537 if (dca_add_requester(dev) == 0) {
5538 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5539 dev_info(&pdev->dev, "DCA enabled\n");
5540 igb_setup_dca(adapter);
5541 break;
5542 }
5543 /* Fall Through since DCA is disabled. */
5544 case DCA_PROVIDER_REMOVE:
5545 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5546 /* without this a class_device is left
5547 * hanging around in the sysfs model
5548 */
5549 dca_remove_requester(dev);
5550 dev_info(&pdev->dev, "DCA disabled\n");
5551 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5552 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5553 }
5554 break;
5555 }
5556
5557 return 0;
5558 }
5559
5560 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5561 void *p)
5562 {
5563 int ret_val;
5564
5565 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5566 __igb_notify_dca);
5567
5568 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5569 }
5570 #endif /* CONFIG_IGB_DCA */
5571
5572 #ifdef CONFIG_PCI_IOV
5573 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5574 {
5575 unsigned char mac_addr[ETH_ALEN];
5576
5577 eth_zero_addr(mac_addr);
5578 igb_set_vf_mac(adapter, vf, mac_addr);
5579
5580 /* By default spoof check is enabled for all VFs */
5581 adapter->vf_data[vf].spoofchk_enabled = true;
5582
5583 return 0;
5584 }
5585
5586 #endif
5587 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5588 {
5589 struct e1000_hw *hw = &adapter->hw;
5590 u32 ping;
5591 int i;
5592
5593 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5594 ping = E1000_PF_CONTROL_MSG;
5595 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5596 ping |= E1000_VT_MSGTYPE_CTS;
5597 igb_write_mbx(hw, &ping, 1, i);
5598 }
5599 }
5600
5601 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5602 {
5603 struct e1000_hw *hw = &adapter->hw;
5604 u32 vmolr = rd32(E1000_VMOLR(vf));
5605 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5606
5607 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5608 IGB_VF_FLAG_MULTI_PROMISC);
5609 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5610
5611 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5612 vmolr |= E1000_VMOLR_MPME;
5613 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5614 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5615 } else {
5616 /* if we have hashes and we are clearing a multicast promisc
5617 * flag we need to write the hashes to the MTA as this step
5618 * was previously skipped
5619 */
5620 if (vf_data->num_vf_mc_hashes > 30) {
5621 vmolr |= E1000_VMOLR_MPME;
5622 } else if (vf_data->num_vf_mc_hashes) {
5623 int j;
5624
5625 vmolr |= E1000_VMOLR_ROMPE;
5626 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5627 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5628 }
5629 }
5630
5631 wr32(E1000_VMOLR(vf), vmolr);
5632
5633 /* there are flags left unprocessed, likely not supported */
5634 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5635 return -EINVAL;
5636
5637 return 0;
5638 }
5639
5640 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5641 u32 *msgbuf, u32 vf)
5642 {
5643 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5644 u16 *hash_list = (u16 *)&msgbuf[1];
5645 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5646 int i;
5647
5648 /* salt away the number of multicast addresses assigned
5649 * to this VF for later use to restore when the PF multi cast
5650 * list changes
5651 */
5652 vf_data->num_vf_mc_hashes = n;
5653
5654 /* only up to 30 hash values supported */
5655 if (n > 30)
5656 n = 30;
5657
5658 /* store the hashes for later use */
5659 for (i = 0; i < n; i++)
5660 vf_data->vf_mc_hashes[i] = hash_list[i];
5661
5662 /* Flush and reset the mta with the new values */
5663 igb_set_rx_mode(adapter->netdev);
5664
5665 return 0;
5666 }
5667
5668 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5669 {
5670 struct e1000_hw *hw = &adapter->hw;
5671 struct vf_data_storage *vf_data;
5672 int i, j;
5673
5674 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5675 u32 vmolr = rd32(E1000_VMOLR(i));
5676
5677 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5678
5679 vf_data = &adapter->vf_data[i];
5680
5681 if ((vf_data->num_vf_mc_hashes > 30) ||
5682 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5683 vmolr |= E1000_VMOLR_MPME;
5684 } else if (vf_data->num_vf_mc_hashes) {
5685 vmolr |= E1000_VMOLR_ROMPE;
5686 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5687 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5688 }
5689 wr32(E1000_VMOLR(i), vmolr);
5690 }
5691 }
5692
5693 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5694 {
5695 struct e1000_hw *hw = &adapter->hw;
5696 u32 pool_mask, reg, vid;
5697 int i;
5698
5699 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5700
5701 /* Find the vlan filter for this id */
5702 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5703 reg = rd32(E1000_VLVF(i));
5704
5705 /* remove the vf from the pool */
5706 reg &= ~pool_mask;
5707
5708 /* if pool is empty then remove entry from vfta */
5709 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5710 (reg & E1000_VLVF_VLANID_ENABLE)) {
5711 reg = 0;
5712 vid = reg & E1000_VLVF_VLANID_MASK;
5713 igb_vfta_set(hw, vid, false);
5714 }
5715
5716 wr32(E1000_VLVF(i), reg);
5717 }
5718
5719 adapter->vf_data[vf].vlans_enabled = 0;
5720 }
5721
5722 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5723 {
5724 struct e1000_hw *hw = &adapter->hw;
5725 u32 reg, i;
5726
5727 /* The vlvf table only exists on 82576 hardware and newer */
5728 if (hw->mac.type < e1000_82576)
5729 return -1;
5730
5731 /* we only need to do this if VMDq is enabled */
5732 if (!adapter->vfs_allocated_count)
5733 return -1;
5734
5735 /* Find the vlan filter for this id */
5736 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5737 reg = rd32(E1000_VLVF(i));
5738 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5739 vid == (reg & E1000_VLVF_VLANID_MASK))
5740 break;
5741 }
5742
5743 if (add) {
5744 if (i == E1000_VLVF_ARRAY_SIZE) {
5745 /* Did not find a matching VLAN ID entry that was
5746 * enabled. Search for a free filter entry, i.e.
5747 * one without the enable bit set
5748 */
5749 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5750 reg = rd32(E1000_VLVF(i));
5751 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5752 break;
5753 }
5754 }
5755 if (i < E1000_VLVF_ARRAY_SIZE) {
5756 /* Found an enabled/available entry */
5757 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5758
5759 /* if !enabled we need to set this up in vfta */
5760 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5761 /* add VID to filter table */
5762 igb_vfta_set(hw, vid, true);
5763 reg |= E1000_VLVF_VLANID_ENABLE;
5764 }
5765 reg &= ~E1000_VLVF_VLANID_MASK;
5766 reg |= vid;
5767 wr32(E1000_VLVF(i), reg);
5768
5769 /* do not modify RLPML for PF devices */
5770 if (vf >= adapter->vfs_allocated_count)
5771 return 0;
5772
5773 if (!adapter->vf_data[vf].vlans_enabled) {
5774 u32 size;
5775
5776 reg = rd32(E1000_VMOLR(vf));
5777 size = reg & E1000_VMOLR_RLPML_MASK;
5778 size += 4;
5779 reg &= ~E1000_VMOLR_RLPML_MASK;
5780 reg |= size;
5781 wr32(E1000_VMOLR(vf), reg);
5782 }
5783
5784 adapter->vf_data[vf].vlans_enabled++;
5785 }
5786 } else {
5787 if (i < E1000_VLVF_ARRAY_SIZE) {
5788 /* remove vf from the pool */
5789 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5790 /* if pool is empty then remove entry from vfta */
5791 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5792 reg = 0;
5793 igb_vfta_set(hw, vid, false);
5794 }
5795 wr32(E1000_VLVF(i), reg);
5796
5797 /* do not modify RLPML for PF devices */
5798 if (vf >= adapter->vfs_allocated_count)
5799 return 0;
5800
5801 adapter->vf_data[vf].vlans_enabled--;
5802 if (!adapter->vf_data[vf].vlans_enabled) {
5803 u32 size;
5804
5805 reg = rd32(E1000_VMOLR(vf));
5806 size = reg & E1000_VMOLR_RLPML_MASK;
5807 size -= 4;
5808 reg &= ~E1000_VMOLR_RLPML_MASK;
5809 reg |= size;
5810 wr32(E1000_VMOLR(vf), reg);
5811 }
5812 }
5813 }
5814 return 0;
5815 }
5816
5817 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5818 {
5819 struct e1000_hw *hw = &adapter->hw;
5820
5821 if (vid)
5822 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5823 else
5824 wr32(E1000_VMVIR(vf), 0);
5825 }
5826
5827 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5828 int vf, u16 vlan, u8 qos)
5829 {
5830 int err = 0;
5831 struct igb_adapter *adapter = netdev_priv(netdev);
5832
5833 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5834 return -EINVAL;
5835 if (vlan || qos) {
5836 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5837 if (err)
5838 goto out;
5839 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5840 igb_set_vmolr(adapter, vf, !vlan);
5841 adapter->vf_data[vf].pf_vlan = vlan;
5842 adapter->vf_data[vf].pf_qos = qos;
5843 dev_info(&adapter->pdev->dev,
5844 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5845 if (test_bit(__IGB_DOWN, &adapter->state)) {
5846 dev_warn(&adapter->pdev->dev,
5847 "The VF VLAN has been set, but the PF device is not up.\n");
5848 dev_warn(&adapter->pdev->dev,
5849 "Bring the PF device up before attempting to use the VF device.\n");
5850 }
5851 } else {
5852 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5853 false, vf);
5854 igb_set_vmvir(adapter, vlan, vf);
5855 igb_set_vmolr(adapter, vf, true);
5856 adapter->vf_data[vf].pf_vlan = 0;
5857 adapter->vf_data[vf].pf_qos = 0;
5858 }
5859 out:
5860 return err;
5861 }
5862
5863 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5864 {
5865 struct e1000_hw *hw = &adapter->hw;
5866 int i;
5867 u32 reg;
5868
5869 /* Find the vlan filter for this id */
5870 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5871 reg = rd32(E1000_VLVF(i));
5872 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5873 vid == (reg & E1000_VLVF_VLANID_MASK))
5874 break;
5875 }
5876
5877 if (i >= E1000_VLVF_ARRAY_SIZE)
5878 i = -1;
5879
5880 return i;
5881 }
5882
5883 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5884 {
5885 struct e1000_hw *hw = &adapter->hw;
5886 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5887 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5888 int err = 0;
5889
5890 /* If in promiscuous mode we need to make sure the PF also has
5891 * the VLAN filter set.
5892 */
5893 if (add && (adapter->netdev->flags & IFF_PROMISC))
5894 err = igb_vlvf_set(adapter, vid, add,
5895 adapter->vfs_allocated_count);
5896 if (err)
5897 goto out;
5898
5899 err = igb_vlvf_set(adapter, vid, add, vf);
5900
5901 if (err)
5902 goto out;
5903
5904 /* Go through all the checks to see if the VLAN filter should
5905 * be wiped completely.
5906 */
5907 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5908 u32 vlvf, bits;
5909 int regndx = igb_find_vlvf_entry(adapter, vid);
5910
5911 if (regndx < 0)
5912 goto out;
5913 /* See if any other pools are set for this VLAN filter
5914 * entry other than the PF.
5915 */
5916 vlvf = bits = rd32(E1000_VLVF(regndx));
5917 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5918 adapter->vfs_allocated_count);
5919 /* If the filter was removed then ensure PF pool bit
5920 * is cleared if the PF only added itself to the pool
5921 * because the PF is in promiscuous mode.
5922 */
5923 if ((vlvf & VLAN_VID_MASK) == vid &&
5924 !test_bit(vid, adapter->active_vlans) &&
5925 !bits)
5926 igb_vlvf_set(adapter, vid, add,
5927 adapter->vfs_allocated_count);
5928 }
5929
5930 out:
5931 return err;
5932 }
5933
5934 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5935 {
5936 /* clear flags - except flag that indicates PF has set the MAC */
5937 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5938 adapter->vf_data[vf].last_nack = jiffies;
5939
5940 /* reset offloads to defaults */
5941 igb_set_vmolr(adapter, vf, true);
5942
5943 /* reset vlans for device */
5944 igb_clear_vf_vfta(adapter, vf);
5945 if (adapter->vf_data[vf].pf_vlan)
5946 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5947 adapter->vf_data[vf].pf_vlan,
5948 adapter->vf_data[vf].pf_qos);
5949 else
5950 igb_clear_vf_vfta(adapter, vf);
5951
5952 /* reset multicast table array for vf */
5953 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5954
5955 /* Flush and reset the mta with the new values */
5956 igb_set_rx_mode(adapter->netdev);
5957 }
5958
5959 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5960 {
5961 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5962
5963 /* clear mac address as we were hotplug removed/added */
5964 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5965 eth_zero_addr(vf_mac);
5966
5967 /* process remaining reset events */
5968 igb_vf_reset(adapter, vf);
5969 }
5970
5971 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5972 {
5973 struct e1000_hw *hw = &adapter->hw;
5974 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5975 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5976 u32 reg, msgbuf[3];
5977 u8 *addr = (u8 *)(&msgbuf[1]);
5978
5979 /* process all the same items cleared in a function level reset */
5980 igb_vf_reset(adapter, vf);
5981
5982 /* set vf mac address */
5983 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5984
5985 /* enable transmit and receive for vf */
5986 reg = rd32(E1000_VFTE);
5987 wr32(E1000_VFTE, reg | (1 << vf));
5988 reg = rd32(E1000_VFRE);
5989 wr32(E1000_VFRE, reg | (1 << vf));
5990
5991 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5992
5993 /* reply to reset with ack and vf mac address */
5994 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5995 memcpy(addr, vf_mac, ETH_ALEN);
5996 igb_write_mbx(hw, msgbuf, 3, vf);
5997 }
5998
5999 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6000 {
6001 /* The VF MAC Address is stored in a packed array of bytes
6002 * starting at the second 32 bit word of the msg array
6003 */
6004 unsigned char *addr = (char *)&msg[1];
6005 int err = -1;
6006
6007 if (is_valid_ether_addr(addr))
6008 err = igb_set_vf_mac(adapter, vf, addr);
6009
6010 return err;
6011 }
6012
6013 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6014 {
6015 struct e1000_hw *hw = &adapter->hw;
6016 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6017 u32 msg = E1000_VT_MSGTYPE_NACK;
6018
6019 /* if device isn't clear to send it shouldn't be reading either */
6020 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6021 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6022 igb_write_mbx(hw, &msg, 1, vf);
6023 vf_data->last_nack = jiffies;
6024 }
6025 }
6026
6027 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6028 {
6029 struct pci_dev *pdev = adapter->pdev;
6030 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6031 struct e1000_hw *hw = &adapter->hw;
6032 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6033 s32 retval;
6034
6035 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6036
6037 if (retval) {
6038 /* if receive failed revoke VF CTS stats and restart init */
6039 dev_err(&pdev->dev, "Error receiving message from VF\n");
6040 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6041 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6042 return;
6043 goto out;
6044 }
6045
6046 /* this is a message we already processed, do nothing */
6047 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6048 return;
6049
6050 /* until the vf completes a reset it should not be
6051 * allowed to start any configuration.
6052 */
6053 if (msgbuf[0] == E1000_VF_RESET) {
6054 igb_vf_reset_msg(adapter, vf);
6055 return;
6056 }
6057
6058 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6059 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6060 return;
6061 retval = -1;
6062 goto out;
6063 }
6064
6065 switch ((msgbuf[0] & 0xFFFF)) {
6066 case E1000_VF_SET_MAC_ADDR:
6067 retval = -EINVAL;
6068 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6069 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6070 else
6071 dev_warn(&pdev->dev,
6072 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6073 vf);
6074 break;
6075 case E1000_VF_SET_PROMISC:
6076 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6077 break;
6078 case E1000_VF_SET_MULTICAST:
6079 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6080 break;
6081 case E1000_VF_SET_LPE:
6082 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6083 break;
6084 case E1000_VF_SET_VLAN:
6085 retval = -1;
6086 if (vf_data->pf_vlan)
6087 dev_warn(&pdev->dev,
6088 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6089 vf);
6090 else
6091 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6092 break;
6093 default:
6094 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6095 retval = -1;
6096 break;
6097 }
6098
6099 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6100 out:
6101 /* notify the VF of the results of what it sent us */
6102 if (retval)
6103 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6104 else
6105 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6106
6107 igb_write_mbx(hw, msgbuf, 1, vf);
6108 }
6109
6110 static void igb_msg_task(struct igb_adapter *adapter)
6111 {
6112 struct e1000_hw *hw = &adapter->hw;
6113 u32 vf;
6114
6115 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6116 /* process any reset requests */
6117 if (!igb_check_for_rst(hw, vf))
6118 igb_vf_reset_event(adapter, vf);
6119
6120 /* process any messages pending */
6121 if (!igb_check_for_msg(hw, vf))
6122 igb_rcv_msg_from_vf(adapter, vf);
6123
6124 /* process any acks */
6125 if (!igb_check_for_ack(hw, vf))
6126 igb_rcv_ack_from_vf(adapter, vf);
6127 }
6128 }
6129
6130 /**
6131 * igb_set_uta - Set unicast filter table address
6132 * @adapter: board private structure
6133 *
6134 * The unicast table address is a register array of 32-bit registers.
6135 * The table is meant to be used in a way similar to how the MTA is used
6136 * however due to certain limitations in the hardware it is necessary to
6137 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6138 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6139 **/
6140 static void igb_set_uta(struct igb_adapter *adapter)
6141 {
6142 struct e1000_hw *hw = &adapter->hw;
6143 int i;
6144
6145 /* The UTA table only exists on 82576 hardware and newer */
6146 if (hw->mac.type < e1000_82576)
6147 return;
6148
6149 /* we only need to do this if VMDq is enabled */
6150 if (!adapter->vfs_allocated_count)
6151 return;
6152
6153 for (i = 0; i < hw->mac.uta_reg_count; i++)
6154 array_wr32(E1000_UTA, i, ~0);
6155 }
6156
6157 /**
6158 * igb_intr_msi - Interrupt Handler
6159 * @irq: interrupt number
6160 * @data: pointer to a network interface device structure
6161 **/
6162 static irqreturn_t igb_intr_msi(int irq, void *data)
6163 {
6164 struct igb_adapter *adapter = data;
6165 struct igb_q_vector *q_vector = adapter->q_vector[0];
6166 struct e1000_hw *hw = &adapter->hw;
6167 /* read ICR disables interrupts using IAM */
6168 u32 icr = rd32(E1000_ICR);
6169
6170 igb_write_itr(q_vector);
6171
6172 if (icr & E1000_ICR_DRSTA)
6173 schedule_work(&adapter->reset_task);
6174
6175 if (icr & E1000_ICR_DOUTSYNC) {
6176 /* HW is reporting DMA is out of sync */
6177 adapter->stats.doosync++;
6178 }
6179
6180 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6181 hw->mac.get_link_status = 1;
6182 if (!test_bit(__IGB_DOWN, &adapter->state))
6183 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6184 }
6185
6186 if (icr & E1000_ICR_TS) {
6187 u32 tsicr = rd32(E1000_TSICR);
6188
6189 if (tsicr & E1000_TSICR_TXTS) {
6190 /* acknowledge the interrupt */
6191 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6192 /* retrieve hardware timestamp */
6193 schedule_work(&adapter->ptp_tx_work);
6194 }
6195 }
6196
6197 napi_schedule(&q_vector->napi);
6198
6199 return IRQ_HANDLED;
6200 }
6201
6202 /**
6203 * igb_intr - Legacy Interrupt Handler
6204 * @irq: interrupt number
6205 * @data: pointer to a network interface device structure
6206 **/
6207 static irqreturn_t igb_intr(int irq, void *data)
6208 {
6209 struct igb_adapter *adapter = data;
6210 struct igb_q_vector *q_vector = adapter->q_vector[0];
6211 struct e1000_hw *hw = &adapter->hw;
6212 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6213 * need for the IMC write
6214 */
6215 u32 icr = rd32(E1000_ICR);
6216
6217 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6218 * not set, then the adapter didn't send an interrupt
6219 */
6220 if (!(icr & E1000_ICR_INT_ASSERTED))
6221 return IRQ_NONE;
6222
6223 igb_write_itr(q_vector);
6224
6225 if (icr & E1000_ICR_DRSTA)
6226 schedule_work(&adapter->reset_task);
6227
6228 if (icr & E1000_ICR_DOUTSYNC) {
6229 /* HW is reporting DMA is out of sync */
6230 adapter->stats.doosync++;
6231 }
6232
6233 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6234 hw->mac.get_link_status = 1;
6235 /* guard against interrupt when we're going down */
6236 if (!test_bit(__IGB_DOWN, &adapter->state))
6237 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6238 }
6239
6240 if (icr & E1000_ICR_TS) {
6241 u32 tsicr = rd32(E1000_TSICR);
6242
6243 if (tsicr & E1000_TSICR_TXTS) {
6244 /* acknowledge the interrupt */
6245 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6246 /* retrieve hardware timestamp */
6247 schedule_work(&adapter->ptp_tx_work);
6248 }
6249 }
6250
6251 napi_schedule(&q_vector->napi);
6252
6253 return IRQ_HANDLED;
6254 }
6255
6256 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6257 {
6258 struct igb_adapter *adapter = q_vector->adapter;
6259 struct e1000_hw *hw = &adapter->hw;
6260
6261 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6262 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6263 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6264 igb_set_itr(q_vector);
6265 else
6266 igb_update_ring_itr(q_vector);
6267 }
6268
6269 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6270 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6271 wr32(E1000_EIMS, q_vector->eims_value);
6272 else
6273 igb_irq_enable(adapter);
6274 }
6275 }
6276
6277 /**
6278 * igb_poll - NAPI Rx polling callback
6279 * @napi: napi polling structure
6280 * @budget: count of how many packets we should handle
6281 **/
6282 static int igb_poll(struct napi_struct *napi, int budget)
6283 {
6284 struct igb_q_vector *q_vector = container_of(napi,
6285 struct igb_q_vector,
6286 napi);
6287 bool clean_complete = true;
6288
6289 #ifdef CONFIG_IGB_DCA
6290 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6291 igb_update_dca(q_vector);
6292 #endif
6293 if (q_vector->tx.ring)
6294 clean_complete = igb_clean_tx_irq(q_vector);
6295
6296 if (q_vector->rx.ring)
6297 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6298
6299 /* If all work not completed, return budget and keep polling */
6300 if (!clean_complete)
6301 return budget;
6302
6303 /* If not enough Rx work done, exit the polling mode */
6304 napi_complete(napi);
6305 igb_ring_irq_enable(q_vector);
6306
6307 return 0;
6308 }
6309
6310 /**
6311 * igb_clean_tx_irq - Reclaim resources after transmit completes
6312 * @q_vector: pointer to q_vector containing needed info
6313 *
6314 * returns true if ring is completely cleaned
6315 **/
6316 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6317 {
6318 struct igb_adapter *adapter = q_vector->adapter;
6319 struct igb_ring *tx_ring = q_vector->tx.ring;
6320 struct igb_tx_buffer *tx_buffer;
6321 union e1000_adv_tx_desc *tx_desc;
6322 unsigned int total_bytes = 0, total_packets = 0;
6323 unsigned int budget = q_vector->tx.work_limit;
6324 unsigned int i = tx_ring->next_to_clean;
6325
6326 if (test_bit(__IGB_DOWN, &adapter->state))
6327 return true;
6328
6329 tx_buffer = &tx_ring->tx_buffer_info[i];
6330 tx_desc = IGB_TX_DESC(tx_ring, i);
6331 i -= tx_ring->count;
6332
6333 do {
6334 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6335
6336 /* if next_to_watch is not set then there is no work pending */
6337 if (!eop_desc)
6338 break;
6339
6340 /* prevent any other reads prior to eop_desc */
6341 read_barrier_depends();
6342
6343 /* if DD is not set pending work has not been completed */
6344 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6345 break;
6346
6347 /* clear next_to_watch to prevent false hangs */
6348 tx_buffer->next_to_watch = NULL;
6349
6350 /* update the statistics for this packet */
6351 total_bytes += tx_buffer->bytecount;
6352 total_packets += tx_buffer->gso_segs;
6353
6354 /* free the skb */
6355 dev_kfree_skb_any(tx_buffer->skb);
6356
6357 /* unmap skb header data */
6358 dma_unmap_single(tx_ring->dev,
6359 dma_unmap_addr(tx_buffer, dma),
6360 dma_unmap_len(tx_buffer, len),
6361 DMA_TO_DEVICE);
6362
6363 /* clear tx_buffer data */
6364 tx_buffer->skb = NULL;
6365 dma_unmap_len_set(tx_buffer, len, 0);
6366
6367 /* clear last DMA location and unmap remaining buffers */
6368 while (tx_desc != eop_desc) {
6369 tx_buffer++;
6370 tx_desc++;
6371 i++;
6372 if (unlikely(!i)) {
6373 i -= tx_ring->count;
6374 tx_buffer = tx_ring->tx_buffer_info;
6375 tx_desc = IGB_TX_DESC(tx_ring, 0);
6376 }
6377
6378 /* unmap any remaining paged data */
6379 if (dma_unmap_len(tx_buffer, len)) {
6380 dma_unmap_page(tx_ring->dev,
6381 dma_unmap_addr(tx_buffer, dma),
6382 dma_unmap_len(tx_buffer, len),
6383 DMA_TO_DEVICE);
6384 dma_unmap_len_set(tx_buffer, len, 0);
6385 }
6386 }
6387
6388 /* move us one more past the eop_desc for start of next pkt */
6389 tx_buffer++;
6390 tx_desc++;
6391 i++;
6392 if (unlikely(!i)) {
6393 i -= tx_ring->count;
6394 tx_buffer = tx_ring->tx_buffer_info;
6395 tx_desc = IGB_TX_DESC(tx_ring, 0);
6396 }
6397
6398 /* issue prefetch for next Tx descriptor */
6399 prefetch(tx_desc);
6400
6401 /* update budget accounting */
6402 budget--;
6403 } while (likely(budget));
6404
6405 netdev_tx_completed_queue(txring_txq(tx_ring),
6406 total_packets, total_bytes);
6407 i += tx_ring->count;
6408 tx_ring->next_to_clean = i;
6409 u64_stats_update_begin(&tx_ring->tx_syncp);
6410 tx_ring->tx_stats.bytes += total_bytes;
6411 tx_ring->tx_stats.packets += total_packets;
6412 u64_stats_update_end(&tx_ring->tx_syncp);
6413 q_vector->tx.total_bytes += total_bytes;
6414 q_vector->tx.total_packets += total_packets;
6415
6416 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6417 struct e1000_hw *hw = &adapter->hw;
6418
6419 /* Detect a transmit hang in hardware, this serializes the
6420 * check with the clearing of time_stamp and movement of i
6421 */
6422 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6423 if (tx_buffer->next_to_watch &&
6424 time_after(jiffies, tx_buffer->time_stamp +
6425 (adapter->tx_timeout_factor * HZ)) &&
6426 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6427
6428 /* detected Tx unit hang */
6429 dev_err(tx_ring->dev,
6430 "Detected Tx Unit Hang\n"
6431 " Tx Queue <%d>\n"
6432 " TDH <%x>\n"
6433 " TDT <%x>\n"
6434 " next_to_use <%x>\n"
6435 " next_to_clean <%x>\n"
6436 "buffer_info[next_to_clean]\n"
6437 " time_stamp <%lx>\n"
6438 " next_to_watch <%p>\n"
6439 " jiffies <%lx>\n"
6440 " desc.status <%x>\n",
6441 tx_ring->queue_index,
6442 rd32(E1000_TDH(tx_ring->reg_idx)),
6443 readl(tx_ring->tail),
6444 tx_ring->next_to_use,
6445 tx_ring->next_to_clean,
6446 tx_buffer->time_stamp,
6447 tx_buffer->next_to_watch,
6448 jiffies,
6449 tx_buffer->next_to_watch->wb.status);
6450 netif_stop_subqueue(tx_ring->netdev,
6451 tx_ring->queue_index);
6452
6453 /* we are about to reset, no point in enabling stuff */
6454 return true;
6455 }
6456 }
6457
6458 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6459 if (unlikely(total_packets &&
6460 netif_carrier_ok(tx_ring->netdev) &&
6461 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6462 /* Make sure that anybody stopping the queue after this
6463 * sees the new next_to_clean.
6464 */
6465 smp_mb();
6466 if (__netif_subqueue_stopped(tx_ring->netdev,
6467 tx_ring->queue_index) &&
6468 !(test_bit(__IGB_DOWN, &adapter->state))) {
6469 netif_wake_subqueue(tx_ring->netdev,
6470 tx_ring->queue_index);
6471
6472 u64_stats_update_begin(&tx_ring->tx_syncp);
6473 tx_ring->tx_stats.restart_queue++;
6474 u64_stats_update_end(&tx_ring->tx_syncp);
6475 }
6476 }
6477
6478 return !!budget;
6479 }
6480
6481 /**
6482 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6483 * @rx_ring: rx descriptor ring to store buffers on
6484 * @old_buff: donor buffer to have page reused
6485 *
6486 * Synchronizes page for reuse by the adapter
6487 **/
6488 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6489 struct igb_rx_buffer *old_buff)
6490 {
6491 struct igb_rx_buffer *new_buff;
6492 u16 nta = rx_ring->next_to_alloc;
6493
6494 new_buff = &rx_ring->rx_buffer_info[nta];
6495
6496 /* update, and store next to alloc */
6497 nta++;
6498 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6499
6500 /* transfer page from old buffer to new buffer */
6501 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6502
6503 /* sync the buffer for use by the device */
6504 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6505 old_buff->page_offset,
6506 IGB_RX_BUFSZ,
6507 DMA_FROM_DEVICE);
6508 }
6509
6510 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6511 struct page *page,
6512 unsigned int truesize)
6513 {
6514 /* avoid re-using remote pages */
6515 if (unlikely(page_to_nid(page) != numa_node_id()))
6516 return false;
6517
6518 #if (PAGE_SIZE < 8192)
6519 /* if we are only owner of page we can reuse it */
6520 if (unlikely(page_count(page) != 1))
6521 return false;
6522
6523 /* flip page offset to other buffer */
6524 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6525
6526 /* since we are the only owner of the page and we need to
6527 * increment it, just set the value to 2 in order to avoid
6528 * an unnecessary locked operation
6529 */
6530 atomic_set(&page->_count, 2);
6531 #else
6532 /* move offset up to the next cache line */
6533 rx_buffer->page_offset += truesize;
6534
6535 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6536 return false;
6537
6538 /* bump ref count on page before it is given to the stack */
6539 get_page(page);
6540 #endif
6541
6542 return true;
6543 }
6544
6545 /**
6546 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6547 * @rx_ring: rx descriptor ring to transact packets on
6548 * @rx_buffer: buffer containing page to add
6549 * @rx_desc: descriptor containing length of buffer written by hardware
6550 * @skb: sk_buff to place the data into
6551 *
6552 * This function will add the data contained in rx_buffer->page to the skb.
6553 * This is done either through a direct copy if the data in the buffer is
6554 * less than the skb header size, otherwise it will just attach the page as
6555 * a frag to the skb.
6556 *
6557 * The function will then update the page offset if necessary and return
6558 * true if the buffer can be reused by the adapter.
6559 **/
6560 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6561 struct igb_rx_buffer *rx_buffer,
6562 union e1000_adv_rx_desc *rx_desc,
6563 struct sk_buff *skb)
6564 {
6565 struct page *page = rx_buffer->page;
6566 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6567 #if (PAGE_SIZE < 8192)
6568 unsigned int truesize = IGB_RX_BUFSZ;
6569 #else
6570 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6571 #endif
6572
6573 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6574 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6575
6576 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6577 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6578 va += IGB_TS_HDR_LEN;
6579 size -= IGB_TS_HDR_LEN;
6580 }
6581
6582 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6583
6584 /* we can reuse buffer as-is, just make sure it is local */
6585 if (likely(page_to_nid(page) == numa_node_id()))
6586 return true;
6587
6588 /* this page cannot be reused so discard it */
6589 put_page(page);
6590 return false;
6591 }
6592
6593 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6594 rx_buffer->page_offset, size, truesize);
6595
6596 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6597 }
6598
6599 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6600 union e1000_adv_rx_desc *rx_desc,
6601 struct sk_buff *skb)
6602 {
6603 struct igb_rx_buffer *rx_buffer;
6604 struct page *page;
6605
6606 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6607
6608 page = rx_buffer->page;
6609 prefetchw(page);
6610
6611 if (likely(!skb)) {
6612 void *page_addr = page_address(page) +
6613 rx_buffer->page_offset;
6614
6615 /* prefetch first cache line of first page */
6616 prefetch(page_addr);
6617 #if L1_CACHE_BYTES < 128
6618 prefetch(page_addr + L1_CACHE_BYTES);
6619 #endif
6620
6621 /* allocate a skb to store the frags */
6622 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6623 IGB_RX_HDR_LEN);
6624 if (unlikely(!skb)) {
6625 rx_ring->rx_stats.alloc_failed++;
6626 return NULL;
6627 }
6628
6629 /* we will be copying header into skb->data in
6630 * pskb_may_pull so it is in our interest to prefetch
6631 * it now to avoid a possible cache miss
6632 */
6633 prefetchw(skb->data);
6634 }
6635
6636 /* we are reusing so sync this buffer for CPU use */
6637 dma_sync_single_range_for_cpu(rx_ring->dev,
6638 rx_buffer->dma,
6639 rx_buffer->page_offset,
6640 IGB_RX_BUFSZ,
6641 DMA_FROM_DEVICE);
6642
6643 /* pull page into skb */
6644 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6645 /* hand second half of page back to the ring */
6646 igb_reuse_rx_page(rx_ring, rx_buffer);
6647 } else {
6648 /* we are not reusing the buffer so unmap it */
6649 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6650 PAGE_SIZE, DMA_FROM_DEVICE);
6651 }
6652
6653 /* clear contents of rx_buffer */
6654 rx_buffer->page = NULL;
6655
6656 return skb;
6657 }
6658
6659 static inline void igb_rx_checksum(struct igb_ring *ring,
6660 union e1000_adv_rx_desc *rx_desc,
6661 struct sk_buff *skb)
6662 {
6663 skb_checksum_none_assert(skb);
6664
6665 /* Ignore Checksum bit is set */
6666 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6667 return;
6668
6669 /* Rx checksum disabled via ethtool */
6670 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6671 return;
6672
6673 /* TCP/UDP checksum error bit is set */
6674 if (igb_test_staterr(rx_desc,
6675 E1000_RXDEXT_STATERR_TCPE |
6676 E1000_RXDEXT_STATERR_IPE)) {
6677 /* work around errata with sctp packets where the TCPE aka
6678 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6679 * packets, (aka let the stack check the crc32c)
6680 */
6681 if (!((skb->len == 60) &&
6682 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6683 u64_stats_update_begin(&ring->rx_syncp);
6684 ring->rx_stats.csum_err++;
6685 u64_stats_update_end(&ring->rx_syncp);
6686 }
6687 /* let the stack verify checksum errors */
6688 return;
6689 }
6690 /* It must be a TCP or UDP packet with a valid checksum */
6691 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6692 E1000_RXD_STAT_UDPCS))
6693 skb->ip_summed = CHECKSUM_UNNECESSARY;
6694
6695 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6696 le32_to_cpu(rx_desc->wb.upper.status_error));
6697 }
6698
6699 static inline void igb_rx_hash(struct igb_ring *ring,
6700 union e1000_adv_rx_desc *rx_desc,
6701 struct sk_buff *skb)
6702 {
6703 if (ring->netdev->features & NETIF_F_RXHASH)
6704 skb_set_hash(skb,
6705 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6706 PKT_HASH_TYPE_L3);
6707 }
6708
6709 /**
6710 * igb_is_non_eop - process handling of non-EOP buffers
6711 * @rx_ring: Rx ring being processed
6712 * @rx_desc: Rx descriptor for current buffer
6713 * @skb: current socket buffer containing buffer in progress
6714 *
6715 * This function updates next to clean. If the buffer is an EOP buffer
6716 * this function exits returning false, otherwise it will place the
6717 * sk_buff in the next buffer to be chained and return true indicating
6718 * that this is in fact a non-EOP buffer.
6719 **/
6720 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6721 union e1000_adv_rx_desc *rx_desc)
6722 {
6723 u32 ntc = rx_ring->next_to_clean + 1;
6724
6725 /* fetch, update, and store next to clean */
6726 ntc = (ntc < rx_ring->count) ? ntc : 0;
6727 rx_ring->next_to_clean = ntc;
6728
6729 prefetch(IGB_RX_DESC(rx_ring, ntc));
6730
6731 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6732 return false;
6733
6734 return true;
6735 }
6736
6737 /**
6738 * igb_get_headlen - determine size of header for LRO/GRO
6739 * @data: pointer to the start of the headers
6740 * @max_len: total length of section to find headers in
6741 *
6742 * This function is meant to determine the length of headers that will
6743 * be recognized by hardware for LRO, and GRO offloads. The main
6744 * motivation of doing this is to only perform one pull for IPv4 TCP
6745 * packets so that we can do basic things like calculating the gso_size
6746 * based on the average data per packet.
6747 **/
6748 static unsigned int igb_get_headlen(unsigned char *data,
6749 unsigned int max_len)
6750 {
6751 union {
6752 unsigned char *network;
6753 /* l2 headers */
6754 struct ethhdr *eth;
6755 struct vlan_hdr *vlan;
6756 /* l3 headers */
6757 struct iphdr *ipv4;
6758 struct ipv6hdr *ipv6;
6759 } hdr;
6760 __be16 protocol;
6761 u8 nexthdr = 0; /* default to not TCP */
6762 u8 hlen;
6763
6764 /* this should never happen, but better safe than sorry */
6765 if (max_len < ETH_HLEN)
6766 return max_len;
6767
6768 /* initialize network frame pointer */
6769 hdr.network = data;
6770
6771 /* set first protocol and move network header forward */
6772 protocol = hdr.eth->h_proto;
6773 hdr.network += ETH_HLEN;
6774
6775 /* handle any vlan tag if present */
6776 if (protocol == htons(ETH_P_8021Q)) {
6777 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6778 return max_len;
6779
6780 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6781 hdr.network += VLAN_HLEN;
6782 }
6783
6784 /* handle L3 protocols */
6785 if (protocol == htons(ETH_P_IP)) {
6786 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6787 return max_len;
6788
6789 /* access ihl as a u8 to avoid unaligned access on ia64 */
6790 hlen = (hdr.network[0] & 0x0F) << 2;
6791
6792 /* verify hlen meets minimum size requirements */
6793 if (hlen < sizeof(struct iphdr))
6794 return hdr.network - data;
6795
6796 /* record next protocol if header is present */
6797 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6798 nexthdr = hdr.ipv4->protocol;
6799 } else if (protocol == htons(ETH_P_IPV6)) {
6800 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6801 return max_len;
6802
6803 /* record next protocol */
6804 nexthdr = hdr.ipv6->nexthdr;
6805 hlen = sizeof(struct ipv6hdr);
6806 } else {
6807 return hdr.network - data;
6808 }
6809
6810 /* relocate pointer to start of L4 header */
6811 hdr.network += hlen;
6812
6813 /* finally sort out TCP */
6814 if (nexthdr == IPPROTO_TCP) {
6815 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6816 return max_len;
6817
6818 /* access doff as a u8 to avoid unaligned access on ia64 */
6819 hlen = (hdr.network[12] & 0xF0) >> 2;
6820
6821 /* verify hlen meets minimum size requirements */
6822 if (hlen < sizeof(struct tcphdr))
6823 return hdr.network - data;
6824
6825 hdr.network += hlen;
6826 } else if (nexthdr == IPPROTO_UDP) {
6827 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6828 return max_len;
6829
6830 hdr.network += sizeof(struct udphdr);
6831 }
6832
6833 /* If everything has gone correctly hdr.network should be the
6834 * data section of the packet and will be the end of the header.
6835 * If not then it probably represents the end of the last recognized
6836 * header.
6837 */
6838 if ((hdr.network - data) < max_len)
6839 return hdr.network - data;
6840 else
6841 return max_len;
6842 }
6843
6844 /**
6845 * igb_pull_tail - igb specific version of skb_pull_tail
6846 * @rx_ring: rx descriptor ring packet is being transacted on
6847 * @rx_desc: pointer to the EOP Rx descriptor
6848 * @skb: pointer to current skb being adjusted
6849 *
6850 * This function is an igb specific version of __pskb_pull_tail. The
6851 * main difference between this version and the original function is that
6852 * this function can make several assumptions about the state of things
6853 * that allow for significant optimizations versus the standard function.
6854 * As a result we can do things like drop a frag and maintain an accurate
6855 * truesize for the skb.
6856 */
6857 static void igb_pull_tail(struct igb_ring *rx_ring,
6858 union e1000_adv_rx_desc *rx_desc,
6859 struct sk_buff *skb)
6860 {
6861 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6862 unsigned char *va;
6863 unsigned int pull_len;
6864
6865 /* it is valid to use page_address instead of kmap since we are
6866 * working with pages allocated out of the lomem pool per
6867 * alloc_page(GFP_ATOMIC)
6868 */
6869 va = skb_frag_address(frag);
6870
6871 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6872 /* retrieve timestamp from buffer */
6873 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6874
6875 /* update pointers to remove timestamp header */
6876 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6877 frag->page_offset += IGB_TS_HDR_LEN;
6878 skb->data_len -= IGB_TS_HDR_LEN;
6879 skb->len -= IGB_TS_HDR_LEN;
6880
6881 /* move va to start of packet data */
6882 va += IGB_TS_HDR_LEN;
6883 }
6884
6885 /* we need the header to contain the greater of either ETH_HLEN or
6886 * 60 bytes if the skb->len is less than 60 for skb_pad.
6887 */
6888 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6889
6890 /* align pull length to size of long to optimize memcpy performance */
6891 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6892
6893 /* update all of the pointers */
6894 skb_frag_size_sub(frag, pull_len);
6895 frag->page_offset += pull_len;
6896 skb->data_len -= pull_len;
6897 skb->tail += pull_len;
6898 }
6899
6900 /**
6901 * igb_cleanup_headers - Correct corrupted or empty headers
6902 * @rx_ring: rx descriptor ring packet is being transacted on
6903 * @rx_desc: pointer to the EOP Rx descriptor
6904 * @skb: pointer to current skb being fixed
6905 *
6906 * Address the case where we are pulling data in on pages only
6907 * and as such no data is present in the skb header.
6908 *
6909 * In addition if skb is not at least 60 bytes we need to pad it so that
6910 * it is large enough to qualify as a valid Ethernet frame.
6911 *
6912 * Returns true if an error was encountered and skb was freed.
6913 **/
6914 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6915 union e1000_adv_rx_desc *rx_desc,
6916 struct sk_buff *skb)
6917 {
6918 if (unlikely((igb_test_staterr(rx_desc,
6919 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6920 struct net_device *netdev = rx_ring->netdev;
6921 if (!(netdev->features & NETIF_F_RXALL)) {
6922 dev_kfree_skb_any(skb);
6923 return true;
6924 }
6925 }
6926
6927 /* place header in linear portion of buffer */
6928 if (skb_is_nonlinear(skb))
6929 igb_pull_tail(rx_ring, rx_desc, skb);
6930
6931 /* if skb_pad returns an error the skb was freed */
6932 if (unlikely(skb->len < 60)) {
6933 int pad_len = 60 - skb->len;
6934
6935 if (skb_pad(skb, pad_len))
6936 return true;
6937 __skb_put(skb, pad_len);
6938 }
6939
6940 return false;
6941 }
6942
6943 /**
6944 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6945 * @rx_ring: rx descriptor ring packet is being transacted on
6946 * @rx_desc: pointer to the EOP Rx descriptor
6947 * @skb: pointer to current skb being populated
6948 *
6949 * This function checks the ring, descriptor, and packet information in
6950 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6951 * other fields within the skb.
6952 **/
6953 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6954 union e1000_adv_rx_desc *rx_desc,
6955 struct sk_buff *skb)
6956 {
6957 struct net_device *dev = rx_ring->netdev;
6958
6959 igb_rx_hash(rx_ring, rx_desc, skb);
6960
6961 igb_rx_checksum(rx_ring, rx_desc, skb);
6962
6963 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6964 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6965 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6966
6967 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6968 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6969 u16 vid;
6970
6971 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6972 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6973 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6974 else
6975 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6976
6977 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6978 }
6979
6980 skb_record_rx_queue(skb, rx_ring->queue_index);
6981
6982 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6983 }
6984
6985 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6986 {
6987 struct igb_ring *rx_ring = q_vector->rx.ring;
6988 struct sk_buff *skb = rx_ring->skb;
6989 unsigned int total_bytes = 0, total_packets = 0;
6990 u16 cleaned_count = igb_desc_unused(rx_ring);
6991
6992 while (likely(total_packets < budget)) {
6993 union e1000_adv_rx_desc *rx_desc;
6994
6995 /* return some buffers to hardware, one at a time is too slow */
6996 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6997 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6998 cleaned_count = 0;
6999 }
7000
7001 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7002
7003 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
7004 break;
7005
7006 /* This memory barrier is needed to keep us from reading
7007 * any other fields out of the rx_desc until we know the
7008 * RXD_STAT_DD bit is set
7009 */
7010 rmb();
7011
7012 /* retrieve a buffer from the ring */
7013 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7014
7015 /* exit if we failed to retrieve a buffer */
7016 if (!skb)
7017 break;
7018
7019 cleaned_count++;
7020
7021 /* fetch next buffer in frame if non-eop */
7022 if (igb_is_non_eop(rx_ring, rx_desc))
7023 continue;
7024
7025 /* verify the packet layout is correct */
7026 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7027 skb = NULL;
7028 continue;
7029 }
7030
7031 /* probably a little skewed due to removing CRC */
7032 total_bytes += skb->len;
7033
7034 /* populate checksum, timestamp, VLAN, and protocol */
7035 igb_process_skb_fields(rx_ring, rx_desc, skb);
7036
7037 napi_gro_receive(&q_vector->napi, skb);
7038
7039 /* reset skb pointer */
7040 skb = NULL;
7041
7042 /* update budget accounting */
7043 total_packets++;
7044 }
7045
7046 /* place incomplete frames back on ring for completion */
7047 rx_ring->skb = skb;
7048
7049 u64_stats_update_begin(&rx_ring->rx_syncp);
7050 rx_ring->rx_stats.packets += total_packets;
7051 rx_ring->rx_stats.bytes += total_bytes;
7052 u64_stats_update_end(&rx_ring->rx_syncp);
7053 q_vector->rx.total_packets += total_packets;
7054 q_vector->rx.total_bytes += total_bytes;
7055
7056 if (cleaned_count)
7057 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7058
7059 return (total_packets < budget);
7060 }
7061
7062 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7063 struct igb_rx_buffer *bi)
7064 {
7065 struct page *page = bi->page;
7066 dma_addr_t dma;
7067
7068 /* since we are recycling buffers we should seldom need to alloc */
7069 if (likely(page))
7070 return true;
7071
7072 /* alloc new page for storage */
7073 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7074 if (unlikely(!page)) {
7075 rx_ring->rx_stats.alloc_failed++;
7076 return false;
7077 }
7078
7079 /* map page for use */
7080 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7081
7082 /* if mapping failed free memory back to system since
7083 * there isn't much point in holding memory we can't use
7084 */
7085 if (dma_mapping_error(rx_ring->dev, dma)) {
7086 __free_page(page);
7087
7088 rx_ring->rx_stats.alloc_failed++;
7089 return false;
7090 }
7091
7092 bi->dma = dma;
7093 bi->page = page;
7094 bi->page_offset = 0;
7095
7096 return true;
7097 }
7098
7099 /**
7100 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7101 * @adapter: address of board private structure
7102 **/
7103 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7104 {
7105 union e1000_adv_rx_desc *rx_desc;
7106 struct igb_rx_buffer *bi;
7107 u16 i = rx_ring->next_to_use;
7108
7109 /* nothing to do */
7110 if (!cleaned_count)
7111 return;
7112
7113 rx_desc = IGB_RX_DESC(rx_ring, i);
7114 bi = &rx_ring->rx_buffer_info[i];
7115 i -= rx_ring->count;
7116
7117 do {
7118 if (!igb_alloc_mapped_page(rx_ring, bi))
7119 break;
7120
7121 /* Refresh the desc even if buffer_addrs didn't change
7122 * because each write-back erases this info.
7123 */
7124 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7125
7126 rx_desc++;
7127 bi++;
7128 i++;
7129 if (unlikely(!i)) {
7130 rx_desc = IGB_RX_DESC(rx_ring, 0);
7131 bi = rx_ring->rx_buffer_info;
7132 i -= rx_ring->count;
7133 }
7134
7135 /* clear the hdr_addr for the next_to_use descriptor */
7136 rx_desc->read.hdr_addr = 0;
7137
7138 cleaned_count--;
7139 } while (cleaned_count);
7140
7141 i += rx_ring->count;
7142
7143 if (rx_ring->next_to_use != i) {
7144 /* record the next descriptor to use */
7145 rx_ring->next_to_use = i;
7146
7147 /* update next to alloc since we have filled the ring */
7148 rx_ring->next_to_alloc = i;
7149
7150 /* Force memory writes to complete before letting h/w
7151 * know there are new descriptors to fetch. (Only
7152 * applicable for weak-ordered memory model archs,
7153 * such as IA-64).
7154 */
7155 wmb();
7156 writel(i, rx_ring->tail);
7157 }
7158 }
7159
7160 /**
7161 * igb_mii_ioctl -
7162 * @netdev:
7163 * @ifreq:
7164 * @cmd:
7165 **/
7166 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7167 {
7168 struct igb_adapter *adapter = netdev_priv(netdev);
7169 struct mii_ioctl_data *data = if_mii(ifr);
7170
7171 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7172 return -EOPNOTSUPP;
7173
7174 switch (cmd) {
7175 case SIOCGMIIPHY:
7176 data->phy_id = adapter->hw.phy.addr;
7177 break;
7178 case SIOCGMIIREG:
7179 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7180 &data->val_out))
7181 return -EIO;
7182 break;
7183 case SIOCSMIIREG:
7184 default:
7185 return -EOPNOTSUPP;
7186 }
7187 return 0;
7188 }
7189
7190 /**
7191 * igb_ioctl -
7192 * @netdev:
7193 * @ifreq:
7194 * @cmd:
7195 **/
7196 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7197 {
7198 switch (cmd) {
7199 case SIOCGMIIPHY:
7200 case SIOCGMIIREG:
7201 case SIOCSMIIREG:
7202 return igb_mii_ioctl(netdev, ifr, cmd);
7203 case SIOCGHWTSTAMP:
7204 return igb_ptp_get_ts_config(netdev, ifr);
7205 case SIOCSHWTSTAMP:
7206 return igb_ptp_set_ts_config(netdev, ifr);
7207 default:
7208 return -EOPNOTSUPP;
7209 }
7210 }
7211
7212 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7213 {
7214 struct igb_adapter *adapter = hw->back;
7215
7216 if (pcie_capability_read_word(adapter->pdev, reg, value))
7217 return -E1000_ERR_CONFIG;
7218
7219 return 0;
7220 }
7221
7222 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7223 {
7224 struct igb_adapter *adapter = hw->back;
7225
7226 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7227 return -E1000_ERR_CONFIG;
7228
7229 return 0;
7230 }
7231
7232 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7233 {
7234 struct igb_adapter *adapter = netdev_priv(netdev);
7235 struct e1000_hw *hw = &adapter->hw;
7236 u32 ctrl, rctl;
7237 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7238
7239 if (enable) {
7240 /* enable VLAN tag insert/strip */
7241 ctrl = rd32(E1000_CTRL);
7242 ctrl |= E1000_CTRL_VME;
7243 wr32(E1000_CTRL, ctrl);
7244
7245 /* Disable CFI check */
7246 rctl = rd32(E1000_RCTL);
7247 rctl &= ~E1000_RCTL_CFIEN;
7248 wr32(E1000_RCTL, rctl);
7249 } else {
7250 /* disable VLAN tag insert/strip */
7251 ctrl = rd32(E1000_CTRL);
7252 ctrl &= ~E1000_CTRL_VME;
7253 wr32(E1000_CTRL, ctrl);
7254 }
7255
7256 igb_rlpml_set(adapter);
7257 }
7258
7259 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7260 __be16 proto, u16 vid)
7261 {
7262 struct igb_adapter *adapter = netdev_priv(netdev);
7263 struct e1000_hw *hw = &adapter->hw;
7264 int pf_id = adapter->vfs_allocated_count;
7265
7266 /* attempt to add filter to vlvf array */
7267 igb_vlvf_set(adapter, vid, true, pf_id);
7268
7269 /* add the filter since PF can receive vlans w/o entry in vlvf */
7270 igb_vfta_set(hw, vid, true);
7271
7272 set_bit(vid, adapter->active_vlans);
7273
7274 return 0;
7275 }
7276
7277 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7278 __be16 proto, u16 vid)
7279 {
7280 struct igb_adapter *adapter = netdev_priv(netdev);
7281 struct e1000_hw *hw = &adapter->hw;
7282 int pf_id = adapter->vfs_allocated_count;
7283 s32 err;
7284
7285 /* remove vlan from VLVF table array */
7286 err = igb_vlvf_set(adapter, vid, false, pf_id);
7287
7288 /* if vid was not present in VLVF just remove it from table */
7289 if (err)
7290 igb_vfta_set(hw, vid, false);
7291
7292 clear_bit(vid, adapter->active_vlans);
7293
7294 return 0;
7295 }
7296
7297 static void igb_restore_vlan(struct igb_adapter *adapter)
7298 {
7299 u16 vid;
7300
7301 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7302
7303 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7304 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7305 }
7306
7307 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7308 {
7309 struct pci_dev *pdev = adapter->pdev;
7310 struct e1000_mac_info *mac = &adapter->hw.mac;
7311
7312 mac->autoneg = 0;
7313
7314 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7315 * for the switch() below to work
7316 */
7317 if ((spd & 1) || (dplx & ~1))
7318 goto err_inval;
7319
7320 /* Fiber NIC's only allow 1000 gbps Full duplex
7321 * and 100Mbps Full duplex for 100baseFx sfp
7322 */
7323 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7324 switch (spd + dplx) {
7325 case SPEED_10 + DUPLEX_HALF:
7326 case SPEED_10 + DUPLEX_FULL:
7327 case SPEED_100 + DUPLEX_HALF:
7328 goto err_inval;
7329 default:
7330 break;
7331 }
7332 }
7333
7334 switch (spd + dplx) {
7335 case SPEED_10 + DUPLEX_HALF:
7336 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7337 break;
7338 case SPEED_10 + DUPLEX_FULL:
7339 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7340 break;
7341 case SPEED_100 + DUPLEX_HALF:
7342 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7343 break;
7344 case SPEED_100 + DUPLEX_FULL:
7345 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7346 break;
7347 case SPEED_1000 + DUPLEX_FULL:
7348 mac->autoneg = 1;
7349 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7350 break;
7351 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7352 default:
7353 goto err_inval;
7354 }
7355
7356 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7357 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7358
7359 return 0;
7360
7361 err_inval:
7362 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7363 return -EINVAL;
7364 }
7365
7366 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7367 bool runtime)
7368 {
7369 struct net_device *netdev = pci_get_drvdata(pdev);
7370 struct igb_adapter *adapter = netdev_priv(netdev);
7371 struct e1000_hw *hw = &adapter->hw;
7372 u32 ctrl, rctl, status;
7373 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7374 #ifdef CONFIG_PM
7375 int retval = 0;
7376 #endif
7377
7378 netif_device_detach(netdev);
7379
7380 if (netif_running(netdev))
7381 __igb_close(netdev, true);
7382
7383 igb_clear_interrupt_scheme(adapter);
7384
7385 #ifdef CONFIG_PM
7386 retval = pci_save_state(pdev);
7387 if (retval)
7388 return retval;
7389 #endif
7390
7391 status = rd32(E1000_STATUS);
7392 if (status & E1000_STATUS_LU)
7393 wufc &= ~E1000_WUFC_LNKC;
7394
7395 if (wufc) {
7396 igb_setup_rctl(adapter);
7397 igb_set_rx_mode(netdev);
7398
7399 /* turn on all-multi mode if wake on multicast is enabled */
7400 if (wufc & E1000_WUFC_MC) {
7401 rctl = rd32(E1000_RCTL);
7402 rctl |= E1000_RCTL_MPE;
7403 wr32(E1000_RCTL, rctl);
7404 }
7405
7406 ctrl = rd32(E1000_CTRL);
7407 /* advertise wake from D3Cold */
7408 #define E1000_CTRL_ADVD3WUC 0x00100000
7409 /* phy power management enable */
7410 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7411 ctrl |= E1000_CTRL_ADVD3WUC;
7412 wr32(E1000_CTRL, ctrl);
7413
7414 /* Allow time for pending master requests to run */
7415 igb_disable_pcie_master(hw);
7416
7417 wr32(E1000_WUC, E1000_WUC_PME_EN);
7418 wr32(E1000_WUFC, wufc);
7419 } else {
7420 wr32(E1000_WUC, 0);
7421 wr32(E1000_WUFC, 0);
7422 }
7423
7424 *enable_wake = wufc || adapter->en_mng_pt;
7425 if (!*enable_wake)
7426 igb_power_down_link(adapter);
7427 else
7428 igb_power_up_link(adapter);
7429
7430 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7431 * would have already happened in close and is redundant.
7432 */
7433 igb_release_hw_control(adapter);
7434
7435 pci_disable_device(pdev);
7436
7437 return 0;
7438 }
7439
7440 #ifdef CONFIG_PM
7441 #ifdef CONFIG_PM_SLEEP
7442 static int igb_suspend(struct device *dev)
7443 {
7444 int retval;
7445 bool wake;
7446 struct pci_dev *pdev = to_pci_dev(dev);
7447
7448 retval = __igb_shutdown(pdev, &wake, 0);
7449 if (retval)
7450 return retval;
7451
7452 if (wake) {
7453 pci_prepare_to_sleep(pdev);
7454 } else {
7455 pci_wake_from_d3(pdev, false);
7456 pci_set_power_state(pdev, PCI_D3hot);
7457 }
7458
7459 return 0;
7460 }
7461 #endif /* CONFIG_PM_SLEEP */
7462
7463 static int igb_resume(struct device *dev)
7464 {
7465 struct pci_dev *pdev = to_pci_dev(dev);
7466 struct net_device *netdev = pci_get_drvdata(pdev);
7467 struct igb_adapter *adapter = netdev_priv(netdev);
7468 struct e1000_hw *hw = &adapter->hw;
7469 u32 err;
7470
7471 pci_set_power_state(pdev, PCI_D0);
7472 pci_restore_state(pdev);
7473 pci_save_state(pdev);
7474
7475 err = pci_enable_device_mem(pdev);
7476 if (err) {
7477 dev_err(&pdev->dev,
7478 "igb: Cannot enable PCI device from suspend\n");
7479 return err;
7480 }
7481 pci_set_master(pdev);
7482
7483 pci_enable_wake(pdev, PCI_D3hot, 0);
7484 pci_enable_wake(pdev, PCI_D3cold, 0);
7485
7486 if (igb_init_interrupt_scheme(adapter, true)) {
7487 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7488 return -ENOMEM;
7489 }
7490
7491 igb_reset(adapter);
7492
7493 /* let the f/w know that the h/w is now under the control of the
7494 * driver.
7495 */
7496 igb_get_hw_control(adapter);
7497
7498 wr32(E1000_WUS, ~0);
7499
7500 if (netdev->flags & IFF_UP) {
7501 rtnl_lock();
7502 err = __igb_open(netdev, true);
7503 rtnl_unlock();
7504 if (err)
7505 return err;
7506 }
7507
7508 netif_device_attach(netdev);
7509 return 0;
7510 }
7511
7512 #ifdef CONFIG_PM_RUNTIME
7513 static int igb_runtime_idle(struct device *dev)
7514 {
7515 struct pci_dev *pdev = to_pci_dev(dev);
7516 struct net_device *netdev = pci_get_drvdata(pdev);
7517 struct igb_adapter *adapter = netdev_priv(netdev);
7518
7519 if (!igb_has_link(adapter))
7520 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7521
7522 return -EBUSY;
7523 }
7524
7525 static int igb_runtime_suspend(struct device *dev)
7526 {
7527 struct pci_dev *pdev = to_pci_dev(dev);
7528 int retval;
7529 bool wake;
7530
7531 retval = __igb_shutdown(pdev, &wake, 1);
7532 if (retval)
7533 return retval;
7534
7535 if (wake) {
7536 pci_prepare_to_sleep(pdev);
7537 } else {
7538 pci_wake_from_d3(pdev, false);
7539 pci_set_power_state(pdev, PCI_D3hot);
7540 }
7541
7542 return 0;
7543 }
7544
7545 static int igb_runtime_resume(struct device *dev)
7546 {
7547 return igb_resume(dev);
7548 }
7549 #endif /* CONFIG_PM_RUNTIME */
7550 #endif
7551
7552 static void igb_shutdown(struct pci_dev *pdev)
7553 {
7554 bool wake;
7555
7556 __igb_shutdown(pdev, &wake, 0);
7557
7558 if (system_state == SYSTEM_POWER_OFF) {
7559 pci_wake_from_d3(pdev, wake);
7560 pci_set_power_state(pdev, PCI_D3hot);
7561 }
7562 }
7563
7564 #ifdef CONFIG_PCI_IOV
7565 static int igb_sriov_reinit(struct pci_dev *dev)
7566 {
7567 struct net_device *netdev = pci_get_drvdata(dev);
7568 struct igb_adapter *adapter = netdev_priv(netdev);
7569 struct pci_dev *pdev = adapter->pdev;
7570
7571 rtnl_lock();
7572
7573 if (netif_running(netdev))
7574 igb_close(netdev);
7575
7576 igb_clear_interrupt_scheme(adapter);
7577
7578 igb_init_queue_configuration(adapter);
7579
7580 if (igb_init_interrupt_scheme(adapter, true)) {
7581 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7582 return -ENOMEM;
7583 }
7584
7585 if (netif_running(netdev))
7586 igb_open(netdev);
7587
7588 rtnl_unlock();
7589
7590 return 0;
7591 }
7592
7593 static int igb_pci_disable_sriov(struct pci_dev *dev)
7594 {
7595 int err = igb_disable_sriov(dev);
7596
7597 if (!err)
7598 err = igb_sriov_reinit(dev);
7599
7600 return err;
7601 }
7602
7603 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7604 {
7605 int err = igb_enable_sriov(dev, num_vfs);
7606
7607 if (err)
7608 goto out;
7609
7610 err = igb_sriov_reinit(dev);
7611 if (!err)
7612 return num_vfs;
7613
7614 out:
7615 return err;
7616 }
7617
7618 #endif
7619 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7620 {
7621 #ifdef CONFIG_PCI_IOV
7622 if (num_vfs == 0)
7623 return igb_pci_disable_sriov(dev);
7624 else
7625 return igb_pci_enable_sriov(dev, num_vfs);
7626 #endif
7627 return 0;
7628 }
7629
7630 #ifdef CONFIG_NET_POLL_CONTROLLER
7631 /* Polling 'interrupt' - used by things like netconsole to send skbs
7632 * without having to re-enable interrupts. It's not called while
7633 * the interrupt routine is executing.
7634 */
7635 static void igb_netpoll(struct net_device *netdev)
7636 {
7637 struct igb_adapter *adapter = netdev_priv(netdev);
7638 struct e1000_hw *hw = &adapter->hw;
7639 struct igb_q_vector *q_vector;
7640 int i;
7641
7642 for (i = 0; i < adapter->num_q_vectors; i++) {
7643 q_vector = adapter->q_vector[i];
7644 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7645 wr32(E1000_EIMC, q_vector->eims_value);
7646 else
7647 igb_irq_disable(adapter);
7648 napi_schedule(&q_vector->napi);
7649 }
7650 }
7651 #endif /* CONFIG_NET_POLL_CONTROLLER */
7652
7653 /**
7654 * igb_io_error_detected - called when PCI error is detected
7655 * @pdev: Pointer to PCI device
7656 * @state: The current pci connection state
7657 *
7658 * This function is called after a PCI bus error affecting
7659 * this device has been detected.
7660 **/
7661 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7662 pci_channel_state_t state)
7663 {
7664 struct net_device *netdev = pci_get_drvdata(pdev);
7665 struct igb_adapter *adapter = netdev_priv(netdev);
7666
7667 netif_device_detach(netdev);
7668
7669 if (state == pci_channel_io_perm_failure)
7670 return PCI_ERS_RESULT_DISCONNECT;
7671
7672 if (netif_running(netdev))
7673 igb_down(adapter);
7674 pci_disable_device(pdev);
7675
7676 /* Request a slot slot reset. */
7677 return PCI_ERS_RESULT_NEED_RESET;
7678 }
7679
7680 /**
7681 * igb_io_slot_reset - called after the pci bus has been reset.
7682 * @pdev: Pointer to PCI device
7683 *
7684 * Restart the card from scratch, as if from a cold-boot. Implementation
7685 * resembles the first-half of the igb_resume routine.
7686 **/
7687 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7688 {
7689 struct net_device *netdev = pci_get_drvdata(pdev);
7690 struct igb_adapter *adapter = netdev_priv(netdev);
7691 struct e1000_hw *hw = &adapter->hw;
7692 pci_ers_result_t result;
7693 int err;
7694
7695 if (pci_enable_device_mem(pdev)) {
7696 dev_err(&pdev->dev,
7697 "Cannot re-enable PCI device after reset.\n");
7698 result = PCI_ERS_RESULT_DISCONNECT;
7699 } else {
7700 pci_set_master(pdev);
7701 pci_restore_state(pdev);
7702 pci_save_state(pdev);
7703
7704 pci_enable_wake(pdev, PCI_D3hot, 0);
7705 pci_enable_wake(pdev, PCI_D3cold, 0);
7706
7707 igb_reset(adapter);
7708 wr32(E1000_WUS, ~0);
7709 result = PCI_ERS_RESULT_RECOVERED;
7710 }
7711
7712 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7713 if (err) {
7714 dev_err(&pdev->dev,
7715 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7716 err);
7717 /* non-fatal, continue */
7718 }
7719
7720 return result;
7721 }
7722
7723 /**
7724 * igb_io_resume - called when traffic can start flowing again.
7725 * @pdev: Pointer to PCI device
7726 *
7727 * This callback is called when the error recovery driver tells us that
7728 * its OK to resume normal operation. Implementation resembles the
7729 * second-half of the igb_resume routine.
7730 */
7731 static void igb_io_resume(struct pci_dev *pdev)
7732 {
7733 struct net_device *netdev = pci_get_drvdata(pdev);
7734 struct igb_adapter *adapter = netdev_priv(netdev);
7735
7736 if (netif_running(netdev)) {
7737 if (igb_up(adapter)) {
7738 dev_err(&pdev->dev, "igb_up failed after reset\n");
7739 return;
7740 }
7741 }
7742
7743 netif_device_attach(netdev);
7744
7745 /* let the f/w know that the h/w is now under the control of the
7746 * driver.
7747 */
7748 igb_get_hw_control(adapter);
7749 }
7750
7751 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7752 u8 qsel)
7753 {
7754 u32 rar_low, rar_high;
7755 struct e1000_hw *hw = &adapter->hw;
7756
7757 /* HW expects these in little endian so we reverse the byte order
7758 * from network order (big endian) to little endian
7759 */
7760 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7761 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7762 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7763
7764 /* Indicate to hardware the Address is Valid. */
7765 rar_high |= E1000_RAH_AV;
7766
7767 if (hw->mac.type == e1000_82575)
7768 rar_high |= E1000_RAH_POOL_1 * qsel;
7769 else
7770 rar_high |= E1000_RAH_POOL_1 << qsel;
7771
7772 wr32(E1000_RAL(index), rar_low);
7773 wrfl();
7774 wr32(E1000_RAH(index), rar_high);
7775 wrfl();
7776 }
7777
7778 static int igb_set_vf_mac(struct igb_adapter *adapter,
7779 int vf, unsigned char *mac_addr)
7780 {
7781 struct e1000_hw *hw = &adapter->hw;
7782 /* VF MAC addresses start at end of receive addresses and moves
7783 * towards the first, as a result a collision should not be possible
7784 */
7785 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7786
7787 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7788
7789 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7790
7791 return 0;
7792 }
7793
7794 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7795 {
7796 struct igb_adapter *adapter = netdev_priv(netdev);
7797 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7798 return -EINVAL;
7799 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7800 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7801 dev_info(&adapter->pdev->dev,
7802 "Reload the VF driver to make this change effective.");
7803 if (test_bit(__IGB_DOWN, &adapter->state)) {
7804 dev_warn(&adapter->pdev->dev,
7805 "The VF MAC address has been set, but the PF device is not up.\n");
7806 dev_warn(&adapter->pdev->dev,
7807 "Bring the PF device up before attempting to use the VF device.\n");
7808 }
7809 return igb_set_vf_mac(adapter, vf, mac);
7810 }
7811
7812 static int igb_link_mbps(int internal_link_speed)
7813 {
7814 switch (internal_link_speed) {
7815 case SPEED_100:
7816 return 100;
7817 case SPEED_1000:
7818 return 1000;
7819 default:
7820 return 0;
7821 }
7822 }
7823
7824 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7825 int link_speed)
7826 {
7827 int rf_dec, rf_int;
7828 u32 bcnrc_val;
7829
7830 if (tx_rate != 0) {
7831 /* Calculate the rate factor values to set */
7832 rf_int = link_speed / tx_rate;
7833 rf_dec = (link_speed - (rf_int * tx_rate));
7834 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7835 tx_rate;
7836
7837 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7838 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7839 E1000_RTTBCNRC_RF_INT_MASK);
7840 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7841 } else {
7842 bcnrc_val = 0;
7843 }
7844
7845 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7846 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7847 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7848 */
7849 wr32(E1000_RTTBCNRM, 0x14);
7850 wr32(E1000_RTTBCNRC, bcnrc_val);
7851 }
7852
7853 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7854 {
7855 int actual_link_speed, i;
7856 bool reset_rate = false;
7857
7858 /* VF TX rate limit was not set or not supported */
7859 if ((adapter->vf_rate_link_speed == 0) ||
7860 (adapter->hw.mac.type != e1000_82576))
7861 return;
7862
7863 actual_link_speed = igb_link_mbps(adapter->link_speed);
7864 if (actual_link_speed != adapter->vf_rate_link_speed) {
7865 reset_rate = true;
7866 adapter->vf_rate_link_speed = 0;
7867 dev_info(&adapter->pdev->dev,
7868 "Link speed has been changed. VF Transmit rate is disabled\n");
7869 }
7870
7871 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7872 if (reset_rate)
7873 adapter->vf_data[i].tx_rate = 0;
7874
7875 igb_set_vf_rate_limit(&adapter->hw, i,
7876 adapter->vf_data[i].tx_rate,
7877 actual_link_speed);
7878 }
7879 }
7880
7881 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7882 {
7883 struct igb_adapter *adapter = netdev_priv(netdev);
7884 struct e1000_hw *hw = &adapter->hw;
7885 int actual_link_speed;
7886
7887 if (hw->mac.type != e1000_82576)
7888 return -EOPNOTSUPP;
7889
7890 actual_link_speed = igb_link_mbps(adapter->link_speed);
7891 if ((vf >= adapter->vfs_allocated_count) ||
7892 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7893 (tx_rate < 0) || (tx_rate > actual_link_speed))
7894 return -EINVAL;
7895
7896 adapter->vf_rate_link_speed = actual_link_speed;
7897 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7898 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7899
7900 return 0;
7901 }
7902
7903 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7904 bool setting)
7905 {
7906 struct igb_adapter *adapter = netdev_priv(netdev);
7907 struct e1000_hw *hw = &adapter->hw;
7908 u32 reg_val, reg_offset;
7909
7910 if (!adapter->vfs_allocated_count)
7911 return -EOPNOTSUPP;
7912
7913 if (vf >= adapter->vfs_allocated_count)
7914 return -EINVAL;
7915
7916 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7917 reg_val = rd32(reg_offset);
7918 if (setting)
7919 reg_val |= ((1 << vf) |
7920 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7921 else
7922 reg_val &= ~((1 << vf) |
7923 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7924 wr32(reg_offset, reg_val);
7925
7926 adapter->vf_data[vf].spoofchk_enabled = setting;
7927 return E1000_SUCCESS;
7928 }
7929
7930 static int igb_ndo_get_vf_config(struct net_device *netdev,
7931 int vf, struct ifla_vf_info *ivi)
7932 {
7933 struct igb_adapter *adapter = netdev_priv(netdev);
7934 if (vf >= adapter->vfs_allocated_count)
7935 return -EINVAL;
7936 ivi->vf = vf;
7937 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7938 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7939 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7940 ivi->qos = adapter->vf_data[vf].pf_qos;
7941 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7942 return 0;
7943 }
7944
7945 static void igb_vmm_control(struct igb_adapter *adapter)
7946 {
7947 struct e1000_hw *hw = &adapter->hw;
7948 u32 reg;
7949
7950 switch (hw->mac.type) {
7951 case e1000_82575:
7952 case e1000_i210:
7953 case e1000_i211:
7954 case e1000_i354:
7955 default:
7956 /* replication is not supported for 82575 */
7957 return;
7958 case e1000_82576:
7959 /* notify HW that the MAC is adding vlan tags */
7960 reg = rd32(E1000_DTXCTL);
7961 reg |= E1000_DTXCTL_VLAN_ADDED;
7962 wr32(E1000_DTXCTL, reg);
7963 /* Fall through */
7964 case e1000_82580:
7965 /* enable replication vlan tag stripping */
7966 reg = rd32(E1000_RPLOLR);
7967 reg |= E1000_RPLOLR_STRVLAN;
7968 wr32(E1000_RPLOLR, reg);
7969 /* Fall through */
7970 case e1000_i350:
7971 /* none of the above registers are supported by i350 */
7972 break;
7973 }
7974
7975 if (adapter->vfs_allocated_count) {
7976 igb_vmdq_set_loopback_pf(hw, true);
7977 igb_vmdq_set_replication_pf(hw, true);
7978 igb_vmdq_set_anti_spoofing_pf(hw, true,
7979 adapter->vfs_allocated_count);
7980 } else {
7981 igb_vmdq_set_loopback_pf(hw, false);
7982 igb_vmdq_set_replication_pf(hw, false);
7983 }
7984 }
7985
7986 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7987 {
7988 struct e1000_hw *hw = &adapter->hw;
7989 u32 dmac_thr;
7990 u16 hwm;
7991
7992 if (hw->mac.type > e1000_82580) {
7993 if (adapter->flags & IGB_FLAG_DMAC) {
7994 u32 reg;
7995
7996 /* force threshold to 0. */
7997 wr32(E1000_DMCTXTH, 0);
7998
7999 /* DMA Coalescing high water mark needs to be greater
8000 * than the Rx threshold. Set hwm to PBA - max frame
8001 * size in 16B units, capping it at PBA - 6KB.
8002 */
8003 hwm = 64 * pba - adapter->max_frame_size / 16;
8004 if (hwm < 64 * (pba - 6))
8005 hwm = 64 * (pba - 6);
8006 reg = rd32(E1000_FCRTC);
8007 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8008 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8009 & E1000_FCRTC_RTH_COAL_MASK);
8010 wr32(E1000_FCRTC, reg);
8011
8012 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8013 * frame size, capping it at PBA - 10KB.
8014 */
8015 dmac_thr = pba - adapter->max_frame_size / 512;
8016 if (dmac_thr < pba - 10)
8017 dmac_thr = pba - 10;
8018 reg = rd32(E1000_DMACR);
8019 reg &= ~E1000_DMACR_DMACTHR_MASK;
8020 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8021 & E1000_DMACR_DMACTHR_MASK);
8022
8023 /* transition to L0x or L1 if available..*/
8024 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8025
8026 /* watchdog timer= +-1000 usec in 32usec intervals */
8027 reg |= (1000 >> 5);
8028
8029 /* Disable BMC-to-OS Watchdog Enable */
8030 if (hw->mac.type != e1000_i354)
8031 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8032
8033 wr32(E1000_DMACR, reg);
8034
8035 /* no lower threshold to disable
8036 * coalescing(smart fifb)-UTRESH=0
8037 */
8038 wr32(E1000_DMCRTRH, 0);
8039
8040 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8041
8042 wr32(E1000_DMCTLX, reg);
8043
8044 /* free space in tx packet buffer to wake from
8045 * DMA coal
8046 */
8047 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8048 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8049
8050 /* make low power state decision controlled
8051 * by DMA coal
8052 */
8053 reg = rd32(E1000_PCIEMISC);
8054 reg &= ~E1000_PCIEMISC_LX_DECISION;
8055 wr32(E1000_PCIEMISC, reg);
8056 } /* endif adapter->dmac is not disabled */
8057 } else if (hw->mac.type == e1000_82580) {
8058 u32 reg = rd32(E1000_PCIEMISC);
8059
8060 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8061 wr32(E1000_DMACR, 0);
8062 }
8063 }
8064
8065 /**
8066 * igb_read_i2c_byte - Reads 8 bit word over I2C
8067 * @hw: pointer to hardware structure
8068 * @byte_offset: byte offset to read
8069 * @dev_addr: device address
8070 * @data: value read
8071 *
8072 * Performs byte read operation over I2C interface at
8073 * a specified device address.
8074 **/
8075 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8076 u8 dev_addr, u8 *data)
8077 {
8078 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8079 struct i2c_client *this_client = adapter->i2c_client;
8080 s32 status;
8081 u16 swfw_mask = 0;
8082
8083 if (!this_client)
8084 return E1000_ERR_I2C;
8085
8086 swfw_mask = E1000_SWFW_PHY0_SM;
8087
8088 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8089 != E1000_SUCCESS)
8090 return E1000_ERR_SWFW_SYNC;
8091
8092 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8093 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8094
8095 if (status < 0)
8096 return E1000_ERR_I2C;
8097 else {
8098 *data = status;
8099 return E1000_SUCCESS;
8100 }
8101 }
8102
8103 /**
8104 * igb_write_i2c_byte - Writes 8 bit word over I2C
8105 * @hw: pointer to hardware structure
8106 * @byte_offset: byte offset to write
8107 * @dev_addr: device address
8108 * @data: value to write
8109 *
8110 * Performs byte write operation over I2C interface at
8111 * a specified device address.
8112 **/
8113 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8114 u8 dev_addr, u8 data)
8115 {
8116 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8117 struct i2c_client *this_client = adapter->i2c_client;
8118 s32 status;
8119 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8120
8121 if (!this_client)
8122 return E1000_ERR_I2C;
8123
8124 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8125 return E1000_ERR_SWFW_SYNC;
8126 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8127 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8128
8129 if (status)
8130 return E1000_ERR_I2C;
8131 else
8132 return E1000_SUCCESS;
8133
8134 }
8135
8136 int igb_reinit_queues(struct igb_adapter *adapter)
8137 {
8138 struct net_device *netdev = adapter->netdev;
8139 struct pci_dev *pdev = adapter->pdev;
8140 int err = 0;
8141
8142 if (netif_running(netdev))
8143 igb_close(netdev);
8144
8145 igb_reset_interrupt_capability(adapter);
8146
8147 if (igb_init_interrupt_scheme(adapter, true)) {
8148 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8149 return -ENOMEM;
8150 }
8151
8152 if (netif_running(netdev))
8153 err = igb_open(netdev);
8154
8155 return err;
8156 }
8157 /* igb_main.c */
This page took 0.219785 seconds and 6 git commands to generate.