Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include "igb.h"
61
62 #define MAJ 4
63 #define MIN 0
64 #define BUILD 1
65 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66 __stringify(BUILD) "-k"
67 char igb_driver_name[] = "igb";
68 char igb_driver_version[] = DRV_VERSION;
69 static const char igb_driver_string[] =
70 "Intel(R) Gigabit Ethernet Network Driver";
71 static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
72
73 static const struct e1000_info *igb_info_tbl[] = {
74 [board_82575] = &e1000_82575_info,
75 };
76
77 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
108 /* required last entry */
109 {0, }
110 };
111
112 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
113
114 void igb_reset(struct igb_adapter *);
115 static int igb_setup_all_tx_resources(struct igb_adapter *);
116 static int igb_setup_all_rx_resources(struct igb_adapter *);
117 static void igb_free_all_tx_resources(struct igb_adapter *);
118 static void igb_free_all_rx_resources(struct igb_adapter *);
119 static void igb_setup_mrqc(struct igb_adapter *);
120 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
121 static void __devexit igb_remove(struct pci_dev *pdev);
122 static int igb_sw_init(struct igb_adapter *);
123 static int igb_open(struct net_device *);
124 static int igb_close(struct net_device *);
125 static void igb_configure_tx(struct igb_adapter *);
126 static void igb_configure_rx(struct igb_adapter *);
127 static void igb_clean_all_tx_rings(struct igb_adapter *);
128 static void igb_clean_all_rx_rings(struct igb_adapter *);
129 static void igb_clean_tx_ring(struct igb_ring *);
130 static void igb_clean_rx_ring(struct igb_ring *);
131 static void igb_set_rx_mode(struct net_device *);
132 static void igb_update_phy_info(unsigned long);
133 static void igb_watchdog(unsigned long);
134 static void igb_watchdog_task(struct work_struct *);
135 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
136 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
137 struct rtnl_link_stats64 *stats);
138 static int igb_change_mtu(struct net_device *, int);
139 static int igb_set_mac(struct net_device *, void *);
140 static void igb_set_uta(struct igb_adapter *adapter);
141 static irqreturn_t igb_intr(int irq, void *);
142 static irqreturn_t igb_intr_msi(int irq, void *);
143 static irqreturn_t igb_msix_other(int irq, void *);
144 static irqreturn_t igb_msix_ring(int irq, void *);
145 #ifdef CONFIG_IGB_DCA
146 static void igb_update_dca(struct igb_q_vector *);
147 static void igb_setup_dca(struct igb_adapter *);
148 #endif /* CONFIG_IGB_DCA */
149 static int igb_poll(struct napi_struct *, int);
150 static bool igb_clean_tx_irq(struct igb_q_vector *);
151 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
152 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
153 static void igb_tx_timeout(struct net_device *);
154 static void igb_reset_task(struct work_struct *);
155 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
156 static int igb_vlan_rx_add_vid(struct net_device *, u16);
157 static int igb_vlan_rx_kill_vid(struct net_device *, u16);
158 static void igb_restore_vlan(struct igb_adapter *);
159 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
160 static void igb_ping_all_vfs(struct igb_adapter *);
161 static void igb_msg_task(struct igb_adapter *);
162 static void igb_vmm_control(struct igb_adapter *);
163 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
164 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
165 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
166 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
167 int vf, u16 vlan, u8 qos);
168 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
169 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
170 struct ifla_vf_info *ivi);
171 static void igb_check_vf_rate_limit(struct igb_adapter *);
172
173 #ifdef CONFIG_PCI_IOV
174 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
175 static int igb_find_enabled_vfs(struct igb_adapter *adapter);
176 static int igb_check_vf_assignment(struct igb_adapter *adapter);
177 #endif
178
179 #ifdef CONFIG_PM
180 #ifdef CONFIG_PM_SLEEP
181 static int igb_suspend(struct device *);
182 #endif
183 static int igb_resume(struct device *);
184 #ifdef CONFIG_PM_RUNTIME
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 #endif
189 static const struct dev_pm_ops igb_pm_ops = {
190 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
191 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
192 igb_runtime_idle)
193 };
194 #endif
195 static void igb_shutdown(struct pci_dev *);
196 #ifdef CONFIG_IGB_DCA
197 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
198 static struct notifier_block dca_notifier = {
199 .notifier_call = igb_notify_dca,
200 .next = NULL,
201 .priority = 0
202 };
203 #endif
204 #ifdef CONFIG_NET_POLL_CONTROLLER
205 /* for netdump / net console */
206 static void igb_netpoll(struct net_device *);
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs = 0;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
212 "per physical function");
213 #endif /* CONFIG_PCI_IOV */
214
215 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
216 pci_channel_state_t);
217 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
218 static void igb_io_resume(struct pci_dev *);
219
220 static struct pci_error_handlers igb_err_handler = {
221 .error_detected = igb_io_error_detected,
222 .slot_reset = igb_io_slot_reset,
223 .resume = igb_io_resume,
224 };
225
226 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
227
228 static struct pci_driver igb_driver = {
229 .name = igb_driver_name,
230 .id_table = igb_pci_tbl,
231 .probe = igb_probe,
232 .remove = __devexit_p(igb_remove),
233 #ifdef CONFIG_PM
234 .driver.pm = &igb_pm_ops,
235 #endif
236 .shutdown = igb_shutdown,
237 .err_handler = &igb_err_handler
238 };
239
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL");
243 MODULE_VERSION(DRV_VERSION);
244
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249
250 struct igb_reg_info {
251 u32 ofs;
252 char *name;
253 };
254
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256
257 /* General Registers */
258 {E1000_CTRL, "CTRL"},
259 {E1000_STATUS, "STATUS"},
260 {E1000_CTRL_EXT, "CTRL_EXT"},
261
262 /* Interrupt Registers */
263 {E1000_ICR, "ICR"},
264
265 /* RX Registers */
266 {E1000_RCTL, "RCTL"},
267 {E1000_RDLEN(0), "RDLEN"},
268 {E1000_RDH(0), "RDH"},
269 {E1000_RDT(0), "RDT"},
270 {E1000_RXDCTL(0), "RXDCTL"},
271 {E1000_RDBAL(0), "RDBAL"},
272 {E1000_RDBAH(0), "RDBAH"},
273
274 /* TX Registers */
275 {E1000_TCTL, "TCTL"},
276 {E1000_TDBAL(0), "TDBAL"},
277 {E1000_TDBAH(0), "TDBAH"},
278 {E1000_TDLEN(0), "TDLEN"},
279 {E1000_TDH(0), "TDH"},
280 {E1000_TDT(0), "TDT"},
281 {E1000_TXDCTL(0), "TXDCTL"},
282 {E1000_TDFH, "TDFH"},
283 {E1000_TDFT, "TDFT"},
284 {E1000_TDFHS, "TDFHS"},
285 {E1000_TDFPC, "TDFPC"},
286
287 /* List Terminator */
288 {}
289 };
290
291 /*
292 * igb_regdump - register printout routine
293 */
294 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
295 {
296 int n = 0;
297 char rname[16];
298 u32 regs[8];
299
300 switch (reginfo->ofs) {
301 case E1000_RDLEN(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_RDLEN(n));
304 break;
305 case E1000_RDH(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDH(n));
308 break;
309 case E1000_RDT(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDT(n));
312 break;
313 case E1000_RXDCTL(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RXDCTL(n));
316 break;
317 case E1000_RDBAL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RDBAL(n));
320 break;
321 case E1000_RDBAH(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDBAH(n));
324 break;
325 case E1000_TDBAL(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAL(n));
328 break;
329 case E1000_TDBAH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_TDBAH(n));
332 break;
333 case E1000_TDLEN(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDLEN(n));
336 break;
337 case E1000_TDH(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDH(n));
340 break;
341 case E1000_TDT(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDT(n));
344 break;
345 case E1000_TXDCTL(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TXDCTL(n));
348 break;
349 default:
350 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
351 return;
352 }
353
354 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
355 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
356 regs[2], regs[3]);
357 }
358
359 /*
360 * igb_dump - Print registers, tx-rings and rx-rings
361 */
362 static void igb_dump(struct igb_adapter *adapter)
363 {
364 struct net_device *netdev = adapter->netdev;
365 struct e1000_hw *hw = &adapter->hw;
366 struct igb_reg_info *reginfo;
367 struct igb_ring *tx_ring;
368 union e1000_adv_tx_desc *tx_desc;
369 struct my_u0 { u64 a; u64 b; } *u0;
370 struct igb_ring *rx_ring;
371 union e1000_adv_rx_desc *rx_desc;
372 u32 staterr;
373 u16 i, n;
374
375 if (!netif_msg_hw(adapter))
376 return;
377
378 /* Print netdevice Info */
379 if (netdev) {
380 dev_info(&adapter->pdev->dev, "Net device Info\n");
381 pr_info("Device Name state trans_start "
382 "last_rx\n");
383 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
384 netdev->state, netdev->trans_start, netdev->last_rx);
385 }
386
387 /* Print Registers */
388 dev_info(&adapter->pdev->dev, "Register Dump\n");
389 pr_info(" Register Name Value\n");
390 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
391 reginfo->name; reginfo++) {
392 igb_regdump(hw, reginfo);
393 }
394
395 /* Print TX Ring Summary */
396 if (!netdev || !netif_running(netdev))
397 goto exit;
398
399 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
400 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
401 for (n = 0; n < adapter->num_tx_queues; n++) {
402 struct igb_tx_buffer *buffer_info;
403 tx_ring = adapter->tx_ring[n];
404 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
405 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
406 n, tx_ring->next_to_use, tx_ring->next_to_clean,
407 (u64)buffer_info->dma,
408 buffer_info->length,
409 buffer_info->next_to_watch,
410 (u64)buffer_info->time_stamp);
411 }
412
413 /* Print TX Rings */
414 if (!netif_msg_tx_done(adapter))
415 goto rx_ring_summary;
416
417 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
418
419 /* Transmit Descriptor Formats
420 *
421 * Advanced Transmit Descriptor
422 * +--------------------------------------------------------------+
423 * 0 | Buffer Address [63:0] |
424 * +--------------------------------------------------------------+
425 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
426 * +--------------------------------------------------------------+
427 * 63 46 45 40 39 38 36 35 32 31 24 15 0
428 */
429
430 for (n = 0; n < adapter->num_tx_queues; n++) {
431 tx_ring = adapter->tx_ring[n];
432 pr_info("------------------------------------\n");
433 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
434 pr_info("------------------------------------\n");
435 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
436 "[bi->dma ] leng ntw timestamp "
437 "bi->skb\n");
438
439 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
440 const char *next_desc;
441 struct igb_tx_buffer *buffer_info;
442 tx_desc = IGB_TX_DESC(tx_ring, i);
443 buffer_info = &tx_ring->tx_buffer_info[i];
444 u0 = (struct my_u0 *)tx_desc;
445 if (i == tx_ring->next_to_use &&
446 i == tx_ring->next_to_clean)
447 next_desc = " NTC/U";
448 else if (i == tx_ring->next_to_use)
449 next_desc = " NTU";
450 else if (i == tx_ring->next_to_clean)
451 next_desc = " NTC";
452 else
453 next_desc = "";
454
455 pr_info("T [0x%03X] %016llX %016llX %016llX"
456 " %04X %p %016llX %p%s\n", i,
457 le64_to_cpu(u0->a),
458 le64_to_cpu(u0->b),
459 (u64)buffer_info->dma,
460 buffer_info->length,
461 buffer_info->next_to_watch,
462 (u64)buffer_info->time_stamp,
463 buffer_info->skb, next_desc);
464
465 if (netif_msg_pktdata(adapter) && buffer_info->skb)
466 print_hex_dump(KERN_INFO, "",
467 DUMP_PREFIX_ADDRESS,
468 16, 1, buffer_info->skb->data,
469 buffer_info->length, true);
470 }
471 }
472
473 /* Print RX Rings Summary */
474 rx_ring_summary:
475 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476 pr_info("Queue [NTU] [NTC]\n");
477 for (n = 0; n < adapter->num_rx_queues; n++) {
478 rx_ring = adapter->rx_ring[n];
479 pr_info(" %5d %5X %5X\n",
480 n, rx_ring->next_to_use, rx_ring->next_to_clean);
481 }
482
483 /* Print RX Rings */
484 if (!netif_msg_rx_status(adapter))
485 goto exit;
486
487 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489 /* Advanced Receive Descriptor (Read) Format
490 * 63 1 0
491 * +-----------------------------------------------------+
492 * 0 | Packet Buffer Address [63:1] |A0/NSE|
493 * +----------------------------------------------+------+
494 * 8 | Header Buffer Address [63:1] | DD |
495 * +-----------------------------------------------------+
496 *
497 *
498 * Advanced Receive Descriptor (Write-Back) Format
499 *
500 * 63 48 47 32 31 30 21 20 17 16 4 3 0
501 * +------------------------------------------------------+
502 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
503 * | Checksum Ident | | | | Type | Type |
504 * +------------------------------------------------------+
505 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506 * +------------------------------------------------------+
507 * 63 48 47 32 31 20 19 0
508 */
509
510 for (n = 0; n < adapter->num_rx_queues; n++) {
511 rx_ring = adapter->rx_ring[n];
512 pr_info("------------------------------------\n");
513 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514 pr_info("------------------------------------\n");
515 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
516 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
517 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
518 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
519
520 for (i = 0; i < rx_ring->count; i++) {
521 const char *next_desc;
522 struct igb_rx_buffer *buffer_info;
523 buffer_info = &rx_ring->rx_buffer_info[i];
524 rx_desc = IGB_RX_DESC(rx_ring, i);
525 u0 = (struct my_u0 *)rx_desc;
526 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527
528 if (i == rx_ring->next_to_use)
529 next_desc = " NTU";
530 else if (i == rx_ring->next_to_clean)
531 next_desc = " NTC";
532 else
533 next_desc = "";
534
535 if (staterr & E1000_RXD_STAT_DD) {
536 /* Descriptor Done */
537 pr_info("%s[0x%03X] %016llX %016llX -------"
538 "--------- %p%s\n", "RWB", i,
539 le64_to_cpu(u0->a),
540 le64_to_cpu(u0->b),
541 buffer_info->skb, next_desc);
542 } else {
543 pr_info("%s[0x%03X] %016llX %016llX %016llX"
544 " %p%s\n", "R ", i,
545 le64_to_cpu(u0->a),
546 le64_to_cpu(u0->b),
547 (u64)buffer_info->dma,
548 buffer_info->skb, next_desc);
549
550 if (netif_msg_pktdata(adapter) &&
551 buffer_info->dma && buffer_info->skb) {
552 print_hex_dump(KERN_INFO, "",
553 DUMP_PREFIX_ADDRESS,
554 16, 1, buffer_info->skb->data,
555 IGB_RX_HDR_LEN, true);
556 print_hex_dump(KERN_INFO, "",
557 DUMP_PREFIX_ADDRESS,
558 16, 1,
559 page_address(buffer_info->page) +
560 buffer_info->page_offset,
561 PAGE_SIZE/2, true);
562 }
563 }
564 }
565 }
566
567 exit:
568 return;
569 }
570
571 /**
572 * igb_get_hw_dev - return device
573 * used by hardware layer to print debugging information
574 **/
575 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
576 {
577 struct igb_adapter *adapter = hw->back;
578 return adapter->netdev;
579 }
580
581 /**
582 * igb_init_module - Driver Registration Routine
583 *
584 * igb_init_module is the first routine called when the driver is
585 * loaded. All it does is register with the PCI subsystem.
586 **/
587 static int __init igb_init_module(void)
588 {
589 int ret;
590 pr_info("%s - version %s\n",
591 igb_driver_string, igb_driver_version);
592
593 pr_info("%s\n", igb_copyright);
594
595 #ifdef CONFIG_IGB_DCA
596 dca_register_notify(&dca_notifier);
597 #endif
598 ret = pci_register_driver(&igb_driver);
599 return ret;
600 }
601
602 module_init(igb_init_module);
603
604 /**
605 * igb_exit_module - Driver Exit Cleanup Routine
606 *
607 * igb_exit_module is called just before the driver is removed
608 * from memory.
609 **/
610 static void __exit igb_exit_module(void)
611 {
612 #ifdef CONFIG_IGB_DCA
613 dca_unregister_notify(&dca_notifier);
614 #endif
615 pci_unregister_driver(&igb_driver);
616 }
617
618 module_exit(igb_exit_module);
619
620 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
621 /**
622 * igb_cache_ring_register - Descriptor ring to register mapping
623 * @adapter: board private structure to initialize
624 *
625 * Once we know the feature-set enabled for the device, we'll cache
626 * the register offset the descriptor ring is assigned to.
627 **/
628 static void igb_cache_ring_register(struct igb_adapter *adapter)
629 {
630 int i = 0, j = 0;
631 u32 rbase_offset = adapter->vfs_allocated_count;
632
633 switch (adapter->hw.mac.type) {
634 case e1000_82576:
635 /* The queues are allocated for virtualization such that VF 0
636 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
637 * In order to avoid collision we start at the first free queue
638 * and continue consuming queues in the same sequence
639 */
640 if (adapter->vfs_allocated_count) {
641 for (; i < adapter->rss_queues; i++)
642 adapter->rx_ring[i]->reg_idx = rbase_offset +
643 Q_IDX_82576(i);
644 }
645 case e1000_82575:
646 case e1000_82580:
647 case e1000_i350:
648 case e1000_i210:
649 case e1000_i211:
650 default:
651 for (; i < adapter->num_rx_queues; i++)
652 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
653 for (; j < adapter->num_tx_queues; j++)
654 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
655 break;
656 }
657 }
658
659 static void igb_free_queues(struct igb_adapter *adapter)
660 {
661 int i;
662
663 for (i = 0; i < adapter->num_tx_queues; i++) {
664 kfree(adapter->tx_ring[i]);
665 adapter->tx_ring[i] = NULL;
666 }
667 for (i = 0; i < adapter->num_rx_queues; i++) {
668 kfree(adapter->rx_ring[i]);
669 adapter->rx_ring[i] = NULL;
670 }
671 adapter->num_rx_queues = 0;
672 adapter->num_tx_queues = 0;
673 }
674
675 /**
676 * igb_alloc_queues - Allocate memory for all rings
677 * @adapter: board private structure to initialize
678 *
679 * We allocate one ring per queue at run-time since we don't know the
680 * number of queues at compile-time.
681 **/
682 static int igb_alloc_queues(struct igb_adapter *adapter)
683 {
684 struct igb_ring *ring;
685 int i;
686 int orig_node = adapter->node;
687
688 for (i = 0; i < adapter->num_tx_queues; i++) {
689 if (orig_node == -1) {
690 int cur_node = next_online_node(adapter->node);
691 if (cur_node == MAX_NUMNODES)
692 cur_node = first_online_node;
693 adapter->node = cur_node;
694 }
695 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
696 adapter->node);
697 if (!ring)
698 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
699 if (!ring)
700 goto err;
701 ring->count = adapter->tx_ring_count;
702 ring->queue_index = i;
703 ring->dev = &adapter->pdev->dev;
704 ring->netdev = adapter->netdev;
705 ring->numa_node = adapter->node;
706 /* For 82575, context index must be unique per ring. */
707 if (adapter->hw.mac.type == e1000_82575)
708 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
709 adapter->tx_ring[i] = ring;
710 }
711 /* Restore the adapter's original node */
712 adapter->node = orig_node;
713
714 for (i = 0; i < adapter->num_rx_queues; i++) {
715 if (orig_node == -1) {
716 int cur_node = next_online_node(adapter->node);
717 if (cur_node == MAX_NUMNODES)
718 cur_node = first_online_node;
719 adapter->node = cur_node;
720 }
721 ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
722 adapter->node);
723 if (!ring)
724 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
725 if (!ring)
726 goto err;
727 ring->count = adapter->rx_ring_count;
728 ring->queue_index = i;
729 ring->dev = &adapter->pdev->dev;
730 ring->netdev = adapter->netdev;
731 ring->numa_node = adapter->node;
732 /* set flag indicating ring supports SCTP checksum offload */
733 if (adapter->hw.mac.type >= e1000_82576)
734 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
735
736 /*
737 * On i350, i210, and i211, loopback VLAN packets
738 * have the tag byte-swapped.
739 * */
740 if (adapter->hw.mac.type >= e1000_i350)
741 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
742
743 adapter->rx_ring[i] = ring;
744 }
745 /* Restore the adapter's original node */
746 adapter->node = orig_node;
747
748 igb_cache_ring_register(adapter);
749
750 return 0;
751
752 err:
753 /* Restore the adapter's original node */
754 adapter->node = orig_node;
755 igb_free_queues(adapter);
756
757 return -ENOMEM;
758 }
759
760 /**
761 * igb_write_ivar - configure ivar for given MSI-X vector
762 * @hw: pointer to the HW structure
763 * @msix_vector: vector number we are allocating to a given ring
764 * @index: row index of IVAR register to write within IVAR table
765 * @offset: column offset of in IVAR, should be multiple of 8
766 *
767 * This function is intended to handle the writing of the IVAR register
768 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
769 * each containing an cause allocation for an Rx and Tx ring, and a
770 * variable number of rows depending on the number of queues supported.
771 **/
772 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
773 int index, int offset)
774 {
775 u32 ivar = array_rd32(E1000_IVAR0, index);
776
777 /* clear any bits that are currently set */
778 ivar &= ~((u32)0xFF << offset);
779
780 /* write vector and valid bit */
781 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
782
783 array_wr32(E1000_IVAR0, index, ivar);
784 }
785
786 #define IGB_N0_QUEUE -1
787 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
788 {
789 struct igb_adapter *adapter = q_vector->adapter;
790 struct e1000_hw *hw = &adapter->hw;
791 int rx_queue = IGB_N0_QUEUE;
792 int tx_queue = IGB_N0_QUEUE;
793 u32 msixbm = 0;
794
795 if (q_vector->rx.ring)
796 rx_queue = q_vector->rx.ring->reg_idx;
797 if (q_vector->tx.ring)
798 tx_queue = q_vector->tx.ring->reg_idx;
799
800 switch (hw->mac.type) {
801 case e1000_82575:
802 /* The 82575 assigns vectors using a bitmask, which matches the
803 bitmask for the EICR/EIMS/EIMC registers. To assign one
804 or more queues to a vector, we write the appropriate bits
805 into the MSIXBM register for that vector. */
806 if (rx_queue > IGB_N0_QUEUE)
807 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
808 if (tx_queue > IGB_N0_QUEUE)
809 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
810 if (!adapter->msix_entries && msix_vector == 0)
811 msixbm |= E1000_EIMS_OTHER;
812 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
813 q_vector->eims_value = msixbm;
814 break;
815 case e1000_82576:
816 /*
817 * 82576 uses a table that essentially consists of 2 columns
818 * with 8 rows. The ordering is column-major so we use the
819 * lower 3 bits as the row index, and the 4th bit as the
820 * column offset.
821 */
822 if (rx_queue > IGB_N0_QUEUE)
823 igb_write_ivar(hw, msix_vector,
824 rx_queue & 0x7,
825 (rx_queue & 0x8) << 1);
826 if (tx_queue > IGB_N0_QUEUE)
827 igb_write_ivar(hw, msix_vector,
828 tx_queue & 0x7,
829 ((tx_queue & 0x8) << 1) + 8);
830 q_vector->eims_value = 1 << msix_vector;
831 break;
832 case e1000_82580:
833 case e1000_i350:
834 case e1000_i210:
835 case e1000_i211:
836 /*
837 * On 82580 and newer adapters the scheme is similar to 82576
838 * however instead of ordering column-major we have things
839 * ordered row-major. So we traverse the table by using
840 * bit 0 as the column offset, and the remaining bits as the
841 * row index.
842 */
843 if (rx_queue > IGB_N0_QUEUE)
844 igb_write_ivar(hw, msix_vector,
845 rx_queue >> 1,
846 (rx_queue & 0x1) << 4);
847 if (tx_queue > IGB_N0_QUEUE)
848 igb_write_ivar(hw, msix_vector,
849 tx_queue >> 1,
850 ((tx_queue & 0x1) << 4) + 8);
851 q_vector->eims_value = 1 << msix_vector;
852 break;
853 default:
854 BUG();
855 break;
856 }
857
858 /* add q_vector eims value to global eims_enable_mask */
859 adapter->eims_enable_mask |= q_vector->eims_value;
860
861 /* configure q_vector to set itr on first interrupt */
862 q_vector->set_itr = 1;
863 }
864
865 /**
866 * igb_configure_msix - Configure MSI-X hardware
867 *
868 * igb_configure_msix sets up the hardware to properly
869 * generate MSI-X interrupts.
870 **/
871 static void igb_configure_msix(struct igb_adapter *adapter)
872 {
873 u32 tmp;
874 int i, vector = 0;
875 struct e1000_hw *hw = &adapter->hw;
876
877 adapter->eims_enable_mask = 0;
878
879 /* set vector for other causes, i.e. link changes */
880 switch (hw->mac.type) {
881 case e1000_82575:
882 tmp = rd32(E1000_CTRL_EXT);
883 /* enable MSI-X PBA support*/
884 tmp |= E1000_CTRL_EXT_PBA_CLR;
885
886 /* Auto-Mask interrupts upon ICR read. */
887 tmp |= E1000_CTRL_EXT_EIAME;
888 tmp |= E1000_CTRL_EXT_IRCA;
889
890 wr32(E1000_CTRL_EXT, tmp);
891
892 /* enable msix_other interrupt */
893 array_wr32(E1000_MSIXBM(0), vector++,
894 E1000_EIMS_OTHER);
895 adapter->eims_other = E1000_EIMS_OTHER;
896
897 break;
898
899 case e1000_82576:
900 case e1000_82580:
901 case e1000_i350:
902 case e1000_i210:
903 case e1000_i211:
904 /* Turn on MSI-X capability first, or our settings
905 * won't stick. And it will take days to debug. */
906 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
907 E1000_GPIE_PBA | E1000_GPIE_EIAME |
908 E1000_GPIE_NSICR);
909
910 /* enable msix_other interrupt */
911 adapter->eims_other = 1 << vector;
912 tmp = (vector++ | E1000_IVAR_VALID) << 8;
913
914 wr32(E1000_IVAR_MISC, tmp);
915 break;
916 default:
917 /* do nothing, since nothing else supports MSI-X */
918 break;
919 } /* switch (hw->mac.type) */
920
921 adapter->eims_enable_mask |= adapter->eims_other;
922
923 for (i = 0; i < adapter->num_q_vectors; i++)
924 igb_assign_vector(adapter->q_vector[i], vector++);
925
926 wrfl();
927 }
928
929 /**
930 * igb_request_msix - Initialize MSI-X interrupts
931 *
932 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
933 * kernel.
934 **/
935 static int igb_request_msix(struct igb_adapter *adapter)
936 {
937 struct net_device *netdev = adapter->netdev;
938 struct e1000_hw *hw = &adapter->hw;
939 int i, err = 0, vector = 0;
940
941 err = request_irq(adapter->msix_entries[vector].vector,
942 igb_msix_other, 0, netdev->name, adapter);
943 if (err)
944 goto out;
945 vector++;
946
947 for (i = 0; i < adapter->num_q_vectors; i++) {
948 struct igb_q_vector *q_vector = adapter->q_vector[i];
949
950 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
951
952 if (q_vector->rx.ring && q_vector->tx.ring)
953 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
954 q_vector->rx.ring->queue_index);
955 else if (q_vector->tx.ring)
956 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
957 q_vector->tx.ring->queue_index);
958 else if (q_vector->rx.ring)
959 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
960 q_vector->rx.ring->queue_index);
961 else
962 sprintf(q_vector->name, "%s-unused", netdev->name);
963
964 err = request_irq(adapter->msix_entries[vector].vector,
965 igb_msix_ring, 0, q_vector->name,
966 q_vector);
967 if (err)
968 goto out;
969 vector++;
970 }
971
972 igb_configure_msix(adapter);
973 return 0;
974 out:
975 return err;
976 }
977
978 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
979 {
980 if (adapter->msix_entries) {
981 pci_disable_msix(adapter->pdev);
982 kfree(adapter->msix_entries);
983 adapter->msix_entries = NULL;
984 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
985 pci_disable_msi(adapter->pdev);
986 }
987 }
988
989 /**
990 * igb_free_q_vectors - Free memory allocated for interrupt vectors
991 * @adapter: board private structure to initialize
992 *
993 * This function frees the memory allocated to the q_vectors. In addition if
994 * NAPI is enabled it will delete any references to the NAPI struct prior
995 * to freeing the q_vector.
996 **/
997 static void igb_free_q_vectors(struct igb_adapter *adapter)
998 {
999 int v_idx;
1000
1001 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1002 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1003 adapter->q_vector[v_idx] = NULL;
1004 if (!q_vector)
1005 continue;
1006 netif_napi_del(&q_vector->napi);
1007 kfree(q_vector);
1008 }
1009 adapter->num_q_vectors = 0;
1010 }
1011
1012 /**
1013 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1014 *
1015 * This function resets the device so that it has 0 rx queues, tx queues, and
1016 * MSI-X interrupts allocated.
1017 */
1018 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1019 {
1020 igb_free_queues(adapter);
1021 igb_free_q_vectors(adapter);
1022 igb_reset_interrupt_capability(adapter);
1023 }
1024
1025 /**
1026 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1027 *
1028 * Attempt to configure interrupts using the best available
1029 * capabilities of the hardware and kernel.
1030 **/
1031 static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1032 {
1033 int err;
1034 int numvecs, i;
1035
1036 /* Number of supported queues. */
1037 adapter->num_rx_queues = adapter->rss_queues;
1038 if (adapter->vfs_allocated_count)
1039 adapter->num_tx_queues = 1;
1040 else
1041 adapter->num_tx_queues = adapter->rss_queues;
1042
1043 /* start with one vector for every rx queue */
1044 numvecs = adapter->num_rx_queues;
1045
1046 /* if tx handler is separate add 1 for every tx queue */
1047 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1048 numvecs += adapter->num_tx_queues;
1049
1050 /* store the number of vectors reserved for queues */
1051 adapter->num_q_vectors = numvecs;
1052
1053 /* add 1 vector for link status interrupts */
1054 numvecs++;
1055 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1056 GFP_KERNEL);
1057
1058 if (!adapter->msix_entries)
1059 goto msi_only;
1060
1061 for (i = 0; i < numvecs; i++)
1062 adapter->msix_entries[i].entry = i;
1063
1064 err = pci_enable_msix(adapter->pdev,
1065 adapter->msix_entries,
1066 numvecs);
1067 if (err == 0)
1068 goto out;
1069
1070 igb_reset_interrupt_capability(adapter);
1071
1072 /* If we can't do MSI-X, try MSI */
1073 msi_only:
1074 #ifdef CONFIG_PCI_IOV
1075 /* disable SR-IOV for non MSI-X configurations */
1076 if (adapter->vf_data) {
1077 struct e1000_hw *hw = &adapter->hw;
1078 /* disable iov and allow time for transactions to clear */
1079 pci_disable_sriov(adapter->pdev);
1080 msleep(500);
1081
1082 kfree(adapter->vf_data);
1083 adapter->vf_data = NULL;
1084 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1085 wrfl();
1086 msleep(100);
1087 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1088 }
1089 #endif
1090 adapter->vfs_allocated_count = 0;
1091 adapter->rss_queues = 1;
1092 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1093 adapter->num_rx_queues = 1;
1094 adapter->num_tx_queues = 1;
1095 adapter->num_q_vectors = 1;
1096 if (!pci_enable_msi(adapter->pdev))
1097 adapter->flags |= IGB_FLAG_HAS_MSI;
1098 out:
1099 /* Notify the stack of the (possibly) reduced queue counts. */
1100 rtnl_lock();
1101 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1102 err = netif_set_real_num_rx_queues(adapter->netdev,
1103 adapter->num_rx_queues);
1104 rtnl_unlock();
1105 return err;
1106 }
1107
1108 /**
1109 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1110 * @adapter: board private structure to initialize
1111 *
1112 * We allocate one q_vector per queue interrupt. If allocation fails we
1113 * return -ENOMEM.
1114 **/
1115 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1116 {
1117 struct igb_q_vector *q_vector;
1118 struct e1000_hw *hw = &adapter->hw;
1119 int v_idx;
1120 int orig_node = adapter->node;
1121
1122 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1123 if ((adapter->num_q_vectors == (adapter->num_rx_queues +
1124 adapter->num_tx_queues)) &&
1125 (adapter->num_rx_queues == v_idx))
1126 adapter->node = orig_node;
1127 if (orig_node == -1) {
1128 int cur_node = next_online_node(adapter->node);
1129 if (cur_node == MAX_NUMNODES)
1130 cur_node = first_online_node;
1131 adapter->node = cur_node;
1132 }
1133 q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL,
1134 adapter->node);
1135 if (!q_vector)
1136 q_vector = kzalloc(sizeof(struct igb_q_vector),
1137 GFP_KERNEL);
1138 if (!q_vector)
1139 goto err_out;
1140 q_vector->adapter = adapter;
1141 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1142 q_vector->itr_val = IGB_START_ITR;
1143 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1144 adapter->q_vector[v_idx] = q_vector;
1145 }
1146 /* Restore the adapter's original node */
1147 adapter->node = orig_node;
1148
1149 return 0;
1150
1151 err_out:
1152 /* Restore the adapter's original node */
1153 adapter->node = orig_node;
1154 igb_free_q_vectors(adapter);
1155 return -ENOMEM;
1156 }
1157
1158 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1159 int ring_idx, int v_idx)
1160 {
1161 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1162
1163 q_vector->rx.ring = adapter->rx_ring[ring_idx];
1164 q_vector->rx.ring->q_vector = q_vector;
1165 q_vector->rx.count++;
1166 q_vector->itr_val = adapter->rx_itr_setting;
1167 if (q_vector->itr_val && q_vector->itr_val <= 3)
1168 q_vector->itr_val = IGB_START_ITR;
1169 }
1170
1171 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1172 int ring_idx, int v_idx)
1173 {
1174 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1175
1176 q_vector->tx.ring = adapter->tx_ring[ring_idx];
1177 q_vector->tx.ring->q_vector = q_vector;
1178 q_vector->tx.count++;
1179 q_vector->itr_val = adapter->tx_itr_setting;
1180 q_vector->tx.work_limit = adapter->tx_work_limit;
1181 if (q_vector->itr_val && q_vector->itr_val <= 3)
1182 q_vector->itr_val = IGB_START_ITR;
1183 }
1184
1185 /**
1186 * igb_map_ring_to_vector - maps allocated queues to vectors
1187 *
1188 * This function maps the recently allocated queues to vectors.
1189 **/
1190 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1191 {
1192 int i;
1193 int v_idx = 0;
1194
1195 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1196 (adapter->num_q_vectors < adapter->num_tx_queues))
1197 return -ENOMEM;
1198
1199 if (adapter->num_q_vectors >=
1200 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1201 for (i = 0; i < adapter->num_rx_queues; i++)
1202 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1203 for (i = 0; i < adapter->num_tx_queues; i++)
1204 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1205 } else {
1206 for (i = 0; i < adapter->num_rx_queues; i++) {
1207 if (i < adapter->num_tx_queues)
1208 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1209 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1210 }
1211 for (; i < adapter->num_tx_queues; i++)
1212 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1213 }
1214 return 0;
1215 }
1216
1217 /**
1218 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1219 *
1220 * This function initializes the interrupts and allocates all of the queues.
1221 **/
1222 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1223 {
1224 struct pci_dev *pdev = adapter->pdev;
1225 int err;
1226
1227 err = igb_set_interrupt_capability(adapter);
1228 if (err)
1229 return err;
1230
1231 err = igb_alloc_q_vectors(adapter);
1232 if (err) {
1233 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1234 goto err_alloc_q_vectors;
1235 }
1236
1237 err = igb_alloc_queues(adapter);
1238 if (err) {
1239 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1240 goto err_alloc_queues;
1241 }
1242
1243 err = igb_map_ring_to_vector(adapter);
1244 if (err) {
1245 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1246 goto err_map_queues;
1247 }
1248
1249
1250 return 0;
1251 err_map_queues:
1252 igb_free_queues(adapter);
1253 err_alloc_queues:
1254 igb_free_q_vectors(adapter);
1255 err_alloc_q_vectors:
1256 igb_reset_interrupt_capability(adapter);
1257 return err;
1258 }
1259
1260 /**
1261 * igb_request_irq - initialize interrupts
1262 *
1263 * Attempts to configure interrupts using the best available
1264 * capabilities of the hardware and kernel.
1265 **/
1266 static int igb_request_irq(struct igb_adapter *adapter)
1267 {
1268 struct net_device *netdev = adapter->netdev;
1269 struct pci_dev *pdev = adapter->pdev;
1270 int err = 0;
1271
1272 if (adapter->msix_entries) {
1273 err = igb_request_msix(adapter);
1274 if (!err)
1275 goto request_done;
1276 /* fall back to MSI */
1277 igb_clear_interrupt_scheme(adapter);
1278 if (!pci_enable_msi(pdev))
1279 adapter->flags |= IGB_FLAG_HAS_MSI;
1280 igb_free_all_tx_resources(adapter);
1281 igb_free_all_rx_resources(adapter);
1282 adapter->num_tx_queues = 1;
1283 adapter->num_rx_queues = 1;
1284 adapter->num_q_vectors = 1;
1285 err = igb_alloc_q_vectors(adapter);
1286 if (err) {
1287 dev_err(&pdev->dev,
1288 "Unable to allocate memory for vectors\n");
1289 goto request_done;
1290 }
1291 err = igb_alloc_queues(adapter);
1292 if (err) {
1293 dev_err(&pdev->dev,
1294 "Unable to allocate memory for queues\n");
1295 igb_free_q_vectors(adapter);
1296 goto request_done;
1297 }
1298 igb_setup_all_tx_resources(adapter);
1299 igb_setup_all_rx_resources(adapter);
1300 }
1301
1302 igb_assign_vector(adapter->q_vector[0], 0);
1303
1304 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1305 err = request_irq(pdev->irq, igb_intr_msi, 0,
1306 netdev->name, adapter);
1307 if (!err)
1308 goto request_done;
1309
1310 /* fall back to legacy interrupts */
1311 igb_reset_interrupt_capability(adapter);
1312 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1313 }
1314
1315 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1316 netdev->name, adapter);
1317
1318 if (err)
1319 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1320 err);
1321
1322 request_done:
1323 return err;
1324 }
1325
1326 static void igb_free_irq(struct igb_adapter *adapter)
1327 {
1328 if (adapter->msix_entries) {
1329 int vector = 0, i;
1330
1331 free_irq(adapter->msix_entries[vector++].vector, adapter);
1332
1333 for (i = 0; i < adapter->num_q_vectors; i++)
1334 free_irq(adapter->msix_entries[vector++].vector,
1335 adapter->q_vector[i]);
1336 } else {
1337 free_irq(adapter->pdev->irq, adapter);
1338 }
1339 }
1340
1341 /**
1342 * igb_irq_disable - Mask off interrupt generation on the NIC
1343 * @adapter: board private structure
1344 **/
1345 static void igb_irq_disable(struct igb_adapter *adapter)
1346 {
1347 struct e1000_hw *hw = &adapter->hw;
1348
1349 /*
1350 * we need to be careful when disabling interrupts. The VFs are also
1351 * mapped into these registers and so clearing the bits can cause
1352 * issues on the VF drivers so we only need to clear what we set
1353 */
1354 if (adapter->msix_entries) {
1355 u32 regval = rd32(E1000_EIAM);
1356 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1357 wr32(E1000_EIMC, adapter->eims_enable_mask);
1358 regval = rd32(E1000_EIAC);
1359 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1360 }
1361
1362 wr32(E1000_IAM, 0);
1363 wr32(E1000_IMC, ~0);
1364 wrfl();
1365 if (adapter->msix_entries) {
1366 int i;
1367 for (i = 0; i < adapter->num_q_vectors; i++)
1368 synchronize_irq(adapter->msix_entries[i].vector);
1369 } else {
1370 synchronize_irq(adapter->pdev->irq);
1371 }
1372 }
1373
1374 /**
1375 * igb_irq_enable - Enable default interrupt generation settings
1376 * @adapter: board private structure
1377 **/
1378 static void igb_irq_enable(struct igb_adapter *adapter)
1379 {
1380 struct e1000_hw *hw = &adapter->hw;
1381
1382 if (adapter->msix_entries) {
1383 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1384 u32 regval = rd32(E1000_EIAC);
1385 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1386 regval = rd32(E1000_EIAM);
1387 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1388 wr32(E1000_EIMS, adapter->eims_enable_mask);
1389 if (adapter->vfs_allocated_count) {
1390 wr32(E1000_MBVFIMR, 0xFF);
1391 ims |= E1000_IMS_VMMB;
1392 }
1393 wr32(E1000_IMS, ims);
1394 } else {
1395 wr32(E1000_IMS, IMS_ENABLE_MASK |
1396 E1000_IMS_DRSTA);
1397 wr32(E1000_IAM, IMS_ENABLE_MASK |
1398 E1000_IMS_DRSTA);
1399 }
1400 }
1401
1402 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1403 {
1404 struct e1000_hw *hw = &adapter->hw;
1405 u16 vid = adapter->hw.mng_cookie.vlan_id;
1406 u16 old_vid = adapter->mng_vlan_id;
1407
1408 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1409 /* add VID to filter table */
1410 igb_vfta_set(hw, vid, true);
1411 adapter->mng_vlan_id = vid;
1412 } else {
1413 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1414 }
1415
1416 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1417 (vid != old_vid) &&
1418 !test_bit(old_vid, adapter->active_vlans)) {
1419 /* remove VID from filter table */
1420 igb_vfta_set(hw, old_vid, false);
1421 }
1422 }
1423
1424 /**
1425 * igb_release_hw_control - release control of the h/w to f/w
1426 * @adapter: address of board private structure
1427 *
1428 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1429 * For ASF and Pass Through versions of f/w this means that the
1430 * driver is no longer loaded.
1431 *
1432 **/
1433 static void igb_release_hw_control(struct igb_adapter *adapter)
1434 {
1435 struct e1000_hw *hw = &adapter->hw;
1436 u32 ctrl_ext;
1437
1438 /* Let firmware take over control of h/w */
1439 ctrl_ext = rd32(E1000_CTRL_EXT);
1440 wr32(E1000_CTRL_EXT,
1441 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1442 }
1443
1444 /**
1445 * igb_get_hw_control - get control of the h/w from f/w
1446 * @adapter: address of board private structure
1447 *
1448 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1449 * For ASF and Pass Through versions of f/w this means that
1450 * the driver is loaded.
1451 *
1452 **/
1453 static void igb_get_hw_control(struct igb_adapter *adapter)
1454 {
1455 struct e1000_hw *hw = &adapter->hw;
1456 u32 ctrl_ext;
1457
1458 /* Let firmware know the driver has taken over */
1459 ctrl_ext = rd32(E1000_CTRL_EXT);
1460 wr32(E1000_CTRL_EXT,
1461 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1462 }
1463
1464 /**
1465 * igb_configure - configure the hardware for RX and TX
1466 * @adapter: private board structure
1467 **/
1468 static void igb_configure(struct igb_adapter *adapter)
1469 {
1470 struct net_device *netdev = adapter->netdev;
1471 int i;
1472
1473 igb_get_hw_control(adapter);
1474 igb_set_rx_mode(netdev);
1475
1476 igb_restore_vlan(adapter);
1477
1478 igb_setup_tctl(adapter);
1479 igb_setup_mrqc(adapter);
1480 igb_setup_rctl(adapter);
1481
1482 igb_configure_tx(adapter);
1483 igb_configure_rx(adapter);
1484
1485 igb_rx_fifo_flush_82575(&adapter->hw);
1486
1487 /* call igb_desc_unused which always leaves
1488 * at least 1 descriptor unused to make sure
1489 * next_to_use != next_to_clean */
1490 for (i = 0; i < adapter->num_rx_queues; i++) {
1491 struct igb_ring *ring = adapter->rx_ring[i];
1492 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1493 }
1494 }
1495
1496 /**
1497 * igb_power_up_link - Power up the phy/serdes link
1498 * @adapter: address of board private structure
1499 **/
1500 void igb_power_up_link(struct igb_adapter *adapter)
1501 {
1502 igb_reset_phy(&adapter->hw);
1503
1504 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1505 igb_power_up_phy_copper(&adapter->hw);
1506 else
1507 igb_power_up_serdes_link_82575(&adapter->hw);
1508 }
1509
1510 /**
1511 * igb_power_down_link - Power down the phy/serdes link
1512 * @adapter: address of board private structure
1513 */
1514 static void igb_power_down_link(struct igb_adapter *adapter)
1515 {
1516 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1517 igb_power_down_phy_copper_82575(&adapter->hw);
1518 else
1519 igb_shutdown_serdes_link_82575(&adapter->hw);
1520 }
1521
1522 /**
1523 * igb_up - Open the interface and prepare it to handle traffic
1524 * @adapter: board private structure
1525 **/
1526 int igb_up(struct igb_adapter *adapter)
1527 {
1528 struct e1000_hw *hw = &adapter->hw;
1529 int i;
1530
1531 /* hardware has been reset, we need to reload some things */
1532 igb_configure(adapter);
1533
1534 clear_bit(__IGB_DOWN, &adapter->state);
1535
1536 for (i = 0; i < adapter->num_q_vectors; i++)
1537 napi_enable(&(adapter->q_vector[i]->napi));
1538
1539 if (adapter->msix_entries)
1540 igb_configure_msix(adapter);
1541 else
1542 igb_assign_vector(adapter->q_vector[0], 0);
1543
1544 /* Clear any pending interrupts. */
1545 rd32(E1000_ICR);
1546 igb_irq_enable(adapter);
1547
1548 /* notify VFs that reset has been completed */
1549 if (adapter->vfs_allocated_count) {
1550 u32 reg_data = rd32(E1000_CTRL_EXT);
1551 reg_data |= E1000_CTRL_EXT_PFRSTD;
1552 wr32(E1000_CTRL_EXT, reg_data);
1553 }
1554
1555 netif_tx_start_all_queues(adapter->netdev);
1556
1557 /* start the watchdog. */
1558 hw->mac.get_link_status = 1;
1559 schedule_work(&adapter->watchdog_task);
1560
1561 return 0;
1562 }
1563
1564 void igb_down(struct igb_adapter *adapter)
1565 {
1566 struct net_device *netdev = adapter->netdev;
1567 struct e1000_hw *hw = &adapter->hw;
1568 u32 tctl, rctl;
1569 int i;
1570
1571 /* signal that we're down so the interrupt handler does not
1572 * reschedule our watchdog timer */
1573 set_bit(__IGB_DOWN, &adapter->state);
1574
1575 /* disable receives in the hardware */
1576 rctl = rd32(E1000_RCTL);
1577 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1578 /* flush and sleep below */
1579
1580 netif_tx_stop_all_queues(netdev);
1581
1582 /* disable transmits in the hardware */
1583 tctl = rd32(E1000_TCTL);
1584 tctl &= ~E1000_TCTL_EN;
1585 wr32(E1000_TCTL, tctl);
1586 /* flush both disables and wait for them to finish */
1587 wrfl();
1588 msleep(10);
1589
1590 for (i = 0; i < adapter->num_q_vectors; i++)
1591 napi_disable(&(adapter->q_vector[i]->napi));
1592
1593 igb_irq_disable(adapter);
1594
1595 del_timer_sync(&adapter->watchdog_timer);
1596 del_timer_sync(&adapter->phy_info_timer);
1597
1598 netif_carrier_off(netdev);
1599
1600 /* record the stats before reset*/
1601 spin_lock(&adapter->stats64_lock);
1602 igb_update_stats(adapter, &adapter->stats64);
1603 spin_unlock(&adapter->stats64_lock);
1604
1605 adapter->link_speed = 0;
1606 adapter->link_duplex = 0;
1607
1608 if (!pci_channel_offline(adapter->pdev))
1609 igb_reset(adapter);
1610 igb_clean_all_tx_rings(adapter);
1611 igb_clean_all_rx_rings(adapter);
1612 #ifdef CONFIG_IGB_DCA
1613
1614 /* since we reset the hardware DCA settings were cleared */
1615 igb_setup_dca(adapter);
1616 #endif
1617 }
1618
1619 void igb_reinit_locked(struct igb_adapter *adapter)
1620 {
1621 WARN_ON(in_interrupt());
1622 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1623 msleep(1);
1624 igb_down(adapter);
1625 igb_up(adapter);
1626 clear_bit(__IGB_RESETTING, &adapter->state);
1627 }
1628
1629 void igb_reset(struct igb_adapter *adapter)
1630 {
1631 struct pci_dev *pdev = adapter->pdev;
1632 struct e1000_hw *hw = &adapter->hw;
1633 struct e1000_mac_info *mac = &hw->mac;
1634 struct e1000_fc_info *fc = &hw->fc;
1635 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1636 u16 hwm;
1637
1638 /* Repartition Pba for greater than 9k mtu
1639 * To take effect CTRL.RST is required.
1640 */
1641 switch (mac->type) {
1642 case e1000_i350:
1643 case e1000_82580:
1644 pba = rd32(E1000_RXPBS);
1645 pba = igb_rxpbs_adjust_82580(pba);
1646 break;
1647 case e1000_82576:
1648 pba = rd32(E1000_RXPBS);
1649 pba &= E1000_RXPBS_SIZE_MASK_82576;
1650 break;
1651 case e1000_82575:
1652 case e1000_i210:
1653 case e1000_i211:
1654 default:
1655 pba = E1000_PBA_34K;
1656 break;
1657 }
1658
1659 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1660 (mac->type < e1000_82576)) {
1661 /* adjust PBA for jumbo frames */
1662 wr32(E1000_PBA, pba);
1663
1664 /* To maintain wire speed transmits, the Tx FIFO should be
1665 * large enough to accommodate two full transmit packets,
1666 * rounded up to the next 1KB and expressed in KB. Likewise,
1667 * the Rx FIFO should be large enough to accommodate at least
1668 * one full receive packet and is similarly rounded up and
1669 * expressed in KB. */
1670 pba = rd32(E1000_PBA);
1671 /* upper 16 bits has Tx packet buffer allocation size in KB */
1672 tx_space = pba >> 16;
1673 /* lower 16 bits has Rx packet buffer allocation size in KB */
1674 pba &= 0xffff;
1675 /* the tx fifo also stores 16 bytes of information about the tx
1676 * but don't include ethernet FCS because hardware appends it */
1677 min_tx_space = (adapter->max_frame_size +
1678 sizeof(union e1000_adv_tx_desc) -
1679 ETH_FCS_LEN) * 2;
1680 min_tx_space = ALIGN(min_tx_space, 1024);
1681 min_tx_space >>= 10;
1682 /* software strips receive CRC, so leave room for it */
1683 min_rx_space = adapter->max_frame_size;
1684 min_rx_space = ALIGN(min_rx_space, 1024);
1685 min_rx_space >>= 10;
1686
1687 /* If current Tx allocation is less than the min Tx FIFO size,
1688 * and the min Tx FIFO size is less than the current Rx FIFO
1689 * allocation, take space away from current Rx allocation */
1690 if (tx_space < min_tx_space &&
1691 ((min_tx_space - tx_space) < pba)) {
1692 pba = pba - (min_tx_space - tx_space);
1693
1694 /* if short on rx space, rx wins and must trump tx
1695 * adjustment */
1696 if (pba < min_rx_space)
1697 pba = min_rx_space;
1698 }
1699 wr32(E1000_PBA, pba);
1700 }
1701
1702 /* flow control settings */
1703 /* The high water mark must be low enough to fit one full frame
1704 * (or the size used for early receive) above it in the Rx FIFO.
1705 * Set it to the lower of:
1706 * - 90% of the Rx FIFO size, or
1707 * - the full Rx FIFO size minus one full frame */
1708 hwm = min(((pba << 10) * 9 / 10),
1709 ((pba << 10) - 2 * adapter->max_frame_size));
1710
1711 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1712 fc->low_water = fc->high_water - 16;
1713 fc->pause_time = 0xFFFF;
1714 fc->send_xon = 1;
1715 fc->current_mode = fc->requested_mode;
1716
1717 /* disable receive for all VFs and wait one second */
1718 if (adapter->vfs_allocated_count) {
1719 int i;
1720 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1721 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1722
1723 /* ping all the active vfs to let them know we are going down */
1724 igb_ping_all_vfs(adapter);
1725
1726 /* disable transmits and receives */
1727 wr32(E1000_VFRE, 0);
1728 wr32(E1000_VFTE, 0);
1729 }
1730
1731 /* Allow time for pending master requests to run */
1732 hw->mac.ops.reset_hw(hw);
1733 wr32(E1000_WUC, 0);
1734
1735 if (hw->mac.ops.init_hw(hw))
1736 dev_err(&pdev->dev, "Hardware Error\n");
1737
1738 /*
1739 * Flow control settings reset on hardware reset, so guarantee flow
1740 * control is off when forcing speed.
1741 */
1742 if (!hw->mac.autoneg)
1743 igb_force_mac_fc(hw);
1744
1745 igb_init_dmac(adapter, pba);
1746 if (!netif_running(adapter->netdev))
1747 igb_power_down_link(adapter);
1748
1749 igb_update_mng_vlan(adapter);
1750
1751 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1752 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1753
1754 igb_get_phy_info(hw);
1755 }
1756
1757 static netdev_features_t igb_fix_features(struct net_device *netdev,
1758 netdev_features_t features)
1759 {
1760 /*
1761 * Since there is no support for separate rx/tx vlan accel
1762 * enable/disable make sure tx flag is always in same state as rx.
1763 */
1764 if (features & NETIF_F_HW_VLAN_RX)
1765 features |= NETIF_F_HW_VLAN_TX;
1766 else
1767 features &= ~NETIF_F_HW_VLAN_TX;
1768
1769 return features;
1770 }
1771
1772 static int igb_set_features(struct net_device *netdev,
1773 netdev_features_t features)
1774 {
1775 netdev_features_t changed = netdev->features ^ features;
1776 struct igb_adapter *adapter = netdev_priv(netdev);
1777
1778 if (changed & NETIF_F_HW_VLAN_RX)
1779 igb_vlan_mode(netdev, features);
1780
1781 if (!(changed & NETIF_F_RXALL))
1782 return 0;
1783
1784 netdev->features = features;
1785
1786 if (netif_running(netdev))
1787 igb_reinit_locked(adapter);
1788 else
1789 igb_reset(adapter);
1790
1791 return 0;
1792 }
1793
1794 static const struct net_device_ops igb_netdev_ops = {
1795 .ndo_open = igb_open,
1796 .ndo_stop = igb_close,
1797 .ndo_start_xmit = igb_xmit_frame,
1798 .ndo_get_stats64 = igb_get_stats64,
1799 .ndo_set_rx_mode = igb_set_rx_mode,
1800 .ndo_set_mac_address = igb_set_mac,
1801 .ndo_change_mtu = igb_change_mtu,
1802 .ndo_do_ioctl = igb_ioctl,
1803 .ndo_tx_timeout = igb_tx_timeout,
1804 .ndo_validate_addr = eth_validate_addr,
1805 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1806 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1807 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1808 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1809 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1810 .ndo_get_vf_config = igb_ndo_get_vf_config,
1811 #ifdef CONFIG_NET_POLL_CONTROLLER
1812 .ndo_poll_controller = igb_netpoll,
1813 #endif
1814 .ndo_fix_features = igb_fix_features,
1815 .ndo_set_features = igb_set_features,
1816 };
1817
1818 /**
1819 * igb_set_fw_version - Configure version string for ethtool
1820 * @adapter: adapter struct
1821 *
1822 **/
1823 void igb_set_fw_version(struct igb_adapter *adapter)
1824 {
1825 struct e1000_hw *hw = &adapter->hw;
1826 u16 eeprom_verh, eeprom_verl, comb_verh, comb_verl, comb_offset;
1827 u16 major, build, patch, fw_version;
1828 u32 etrack_id;
1829
1830 hw->nvm.ops.read(hw, 5, 1, &fw_version);
1831 if (adapter->hw.mac.type != e1000_i211) {
1832 hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh);
1833 hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl);
1834 etrack_id = (eeprom_verh << IGB_ETRACK_SHIFT) | eeprom_verl;
1835
1836 /* combo image version needs to be found */
1837 hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
1838 if ((comb_offset != 0x0) &&
1839 (comb_offset != IGB_NVM_VER_INVALID)) {
1840 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
1841 + 1), 1, &comb_verh);
1842 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
1843 1, &comb_verl);
1844
1845 /* Only display Option Rom if it exists and is valid */
1846 if ((comb_verh && comb_verl) &&
1847 ((comb_verh != IGB_NVM_VER_INVALID) &&
1848 (comb_verl != IGB_NVM_VER_INVALID))) {
1849 major = comb_verl >> IGB_COMB_VER_SHFT;
1850 build = (comb_verl << IGB_COMB_VER_SHFT) |
1851 (comb_verh >> IGB_COMB_VER_SHFT);
1852 patch = comb_verh & IGB_COMB_VER_MASK;
1853 snprintf(adapter->fw_version,
1854 sizeof(adapter->fw_version),
1855 "%d.%d%d, 0x%08x, %d.%d.%d",
1856 (fw_version & IGB_MAJOR_MASK) >>
1857 IGB_MAJOR_SHIFT,
1858 (fw_version & IGB_MINOR_MASK) >>
1859 IGB_MINOR_SHIFT,
1860 (fw_version & IGB_BUILD_MASK),
1861 etrack_id, major, build, patch);
1862 goto out;
1863 }
1864 }
1865 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1866 "%d.%d%d, 0x%08x",
1867 (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
1868 (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
1869 (fw_version & IGB_BUILD_MASK), etrack_id);
1870 } else {
1871 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1872 "%d.%d%d",
1873 (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
1874 (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
1875 (fw_version & IGB_BUILD_MASK));
1876 }
1877 out:
1878 return;
1879 }
1880
1881 /**
1882 * igb_probe - Device Initialization Routine
1883 * @pdev: PCI device information struct
1884 * @ent: entry in igb_pci_tbl
1885 *
1886 * Returns 0 on success, negative on failure
1887 *
1888 * igb_probe initializes an adapter identified by a pci_dev structure.
1889 * The OS initialization, configuring of the adapter private structure,
1890 * and a hardware reset occur.
1891 **/
1892 static int __devinit igb_probe(struct pci_dev *pdev,
1893 const struct pci_device_id *ent)
1894 {
1895 struct net_device *netdev;
1896 struct igb_adapter *adapter;
1897 struct e1000_hw *hw;
1898 u16 eeprom_data = 0;
1899 s32 ret_val;
1900 static int global_quad_port_a; /* global quad port a indication */
1901 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1902 unsigned long mmio_start, mmio_len;
1903 int err, pci_using_dac;
1904 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1905 u8 part_str[E1000_PBANUM_LENGTH];
1906
1907 /* Catch broken hardware that put the wrong VF device ID in
1908 * the PCIe SR-IOV capability.
1909 */
1910 if (pdev->is_virtfn) {
1911 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1912 pci_name(pdev), pdev->vendor, pdev->device);
1913 return -EINVAL;
1914 }
1915
1916 err = pci_enable_device_mem(pdev);
1917 if (err)
1918 return err;
1919
1920 pci_using_dac = 0;
1921 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1922 if (!err) {
1923 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1924 if (!err)
1925 pci_using_dac = 1;
1926 } else {
1927 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1928 if (err) {
1929 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1930 if (err) {
1931 dev_err(&pdev->dev, "No usable DMA "
1932 "configuration, aborting\n");
1933 goto err_dma;
1934 }
1935 }
1936 }
1937
1938 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1939 IORESOURCE_MEM),
1940 igb_driver_name);
1941 if (err)
1942 goto err_pci_reg;
1943
1944 pci_enable_pcie_error_reporting(pdev);
1945
1946 pci_set_master(pdev);
1947 pci_save_state(pdev);
1948
1949 err = -ENOMEM;
1950 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1951 IGB_MAX_TX_QUEUES);
1952 if (!netdev)
1953 goto err_alloc_etherdev;
1954
1955 SET_NETDEV_DEV(netdev, &pdev->dev);
1956
1957 pci_set_drvdata(pdev, netdev);
1958 adapter = netdev_priv(netdev);
1959 adapter->netdev = netdev;
1960 adapter->pdev = pdev;
1961 hw = &adapter->hw;
1962 hw->back = adapter;
1963 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
1964
1965 mmio_start = pci_resource_start(pdev, 0);
1966 mmio_len = pci_resource_len(pdev, 0);
1967
1968 err = -EIO;
1969 hw->hw_addr = ioremap(mmio_start, mmio_len);
1970 if (!hw->hw_addr)
1971 goto err_ioremap;
1972
1973 netdev->netdev_ops = &igb_netdev_ops;
1974 igb_set_ethtool_ops(netdev);
1975 netdev->watchdog_timeo = 5 * HZ;
1976
1977 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1978
1979 netdev->mem_start = mmio_start;
1980 netdev->mem_end = mmio_start + mmio_len;
1981
1982 /* PCI config space info */
1983 hw->vendor_id = pdev->vendor;
1984 hw->device_id = pdev->device;
1985 hw->revision_id = pdev->revision;
1986 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1987 hw->subsystem_device_id = pdev->subsystem_device;
1988
1989 /* Copy the default MAC, PHY and NVM function pointers */
1990 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1991 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1992 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1993 /* Initialize skew-specific constants */
1994 err = ei->get_invariants(hw);
1995 if (err)
1996 goto err_sw_init;
1997
1998 /* setup the private structure */
1999 err = igb_sw_init(adapter);
2000 if (err)
2001 goto err_sw_init;
2002
2003 igb_get_bus_info_pcie(hw);
2004
2005 hw->phy.autoneg_wait_to_complete = false;
2006
2007 /* Copper options */
2008 if (hw->phy.media_type == e1000_media_type_copper) {
2009 hw->phy.mdix = AUTO_ALL_MODES;
2010 hw->phy.disable_polarity_correction = false;
2011 hw->phy.ms_type = e1000_ms_hw_default;
2012 }
2013
2014 if (igb_check_reset_block(hw))
2015 dev_info(&pdev->dev,
2016 "PHY reset is blocked due to SOL/IDER session.\n");
2017
2018 /*
2019 * features is initialized to 0 in allocation, it might have bits
2020 * set by igb_sw_init so we should use an or instead of an
2021 * assignment.
2022 */
2023 netdev->features |= NETIF_F_SG |
2024 NETIF_F_IP_CSUM |
2025 NETIF_F_IPV6_CSUM |
2026 NETIF_F_TSO |
2027 NETIF_F_TSO6 |
2028 NETIF_F_RXHASH |
2029 NETIF_F_RXCSUM |
2030 NETIF_F_HW_VLAN_RX |
2031 NETIF_F_HW_VLAN_TX;
2032
2033 /* copy netdev features into list of user selectable features */
2034 netdev->hw_features |= netdev->features;
2035 netdev->hw_features |= NETIF_F_RXALL;
2036
2037 /* set this bit last since it cannot be part of hw_features */
2038 netdev->features |= NETIF_F_HW_VLAN_FILTER;
2039
2040 netdev->vlan_features |= NETIF_F_TSO |
2041 NETIF_F_TSO6 |
2042 NETIF_F_IP_CSUM |
2043 NETIF_F_IPV6_CSUM |
2044 NETIF_F_SG;
2045
2046 netdev->priv_flags |= IFF_SUPP_NOFCS;
2047
2048 if (pci_using_dac) {
2049 netdev->features |= NETIF_F_HIGHDMA;
2050 netdev->vlan_features |= NETIF_F_HIGHDMA;
2051 }
2052
2053 if (hw->mac.type >= e1000_82576) {
2054 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2055 netdev->features |= NETIF_F_SCTP_CSUM;
2056 }
2057
2058 netdev->priv_flags |= IFF_UNICAST_FLT;
2059
2060 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2061
2062 /* before reading the NVM, reset the controller to put the device in a
2063 * known good starting state */
2064 hw->mac.ops.reset_hw(hw);
2065
2066 /*
2067 * make sure the NVM is good , i211 parts have special NVM that
2068 * doesn't contain a checksum
2069 */
2070 if (hw->mac.type != e1000_i211) {
2071 if (hw->nvm.ops.validate(hw) < 0) {
2072 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2073 err = -EIO;
2074 goto err_eeprom;
2075 }
2076 }
2077
2078 /* copy the MAC address out of the NVM */
2079 if (hw->mac.ops.read_mac_addr(hw))
2080 dev_err(&pdev->dev, "NVM Read Error\n");
2081
2082 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2083 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2084
2085 if (!is_valid_ether_addr(netdev->perm_addr)) {
2086 dev_err(&pdev->dev, "Invalid MAC Address\n");
2087 err = -EIO;
2088 goto err_eeprom;
2089 }
2090
2091 /* get firmware version for ethtool -i */
2092 igb_set_fw_version(adapter);
2093
2094 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2095 (unsigned long) adapter);
2096 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2097 (unsigned long) adapter);
2098
2099 INIT_WORK(&adapter->reset_task, igb_reset_task);
2100 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2101
2102 /* Initialize link properties that are user-changeable */
2103 adapter->fc_autoneg = true;
2104 hw->mac.autoneg = true;
2105 hw->phy.autoneg_advertised = 0x2f;
2106
2107 hw->fc.requested_mode = e1000_fc_default;
2108 hw->fc.current_mode = e1000_fc_default;
2109
2110 igb_validate_mdi_setting(hw);
2111
2112 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2113 * enable the ACPI Magic Packet filter
2114 */
2115
2116 if (hw->bus.func == 0)
2117 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2118 else if (hw->mac.type >= e1000_82580)
2119 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2120 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2121 &eeprom_data);
2122 else if (hw->bus.func == 1)
2123 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2124
2125 if (eeprom_data & eeprom_apme_mask)
2126 adapter->eeprom_wol |= E1000_WUFC_MAG;
2127
2128 /* now that we have the eeprom settings, apply the special cases where
2129 * the eeprom may be wrong or the board simply won't support wake on
2130 * lan on a particular port */
2131 switch (pdev->device) {
2132 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2133 adapter->eeprom_wol = 0;
2134 break;
2135 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2136 case E1000_DEV_ID_82576_FIBER:
2137 case E1000_DEV_ID_82576_SERDES:
2138 /* Wake events only supported on port A for dual fiber
2139 * regardless of eeprom setting */
2140 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2141 adapter->eeprom_wol = 0;
2142 break;
2143 case E1000_DEV_ID_82576_QUAD_COPPER:
2144 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2145 /* if quad port adapter, disable WoL on all but port A */
2146 if (global_quad_port_a != 0)
2147 adapter->eeprom_wol = 0;
2148 else
2149 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2150 /* Reset for multiple quad port adapters */
2151 if (++global_quad_port_a == 4)
2152 global_quad_port_a = 0;
2153 break;
2154 }
2155
2156 /* initialize the wol settings based on the eeprom settings */
2157 adapter->wol = adapter->eeprom_wol;
2158 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2159
2160 /* reset the hardware with the new settings */
2161 igb_reset(adapter);
2162
2163 /* let the f/w know that the h/w is now under the control of the
2164 * driver. */
2165 igb_get_hw_control(adapter);
2166
2167 strcpy(netdev->name, "eth%d");
2168 err = register_netdev(netdev);
2169 if (err)
2170 goto err_register;
2171
2172 /* carrier off reporting is important to ethtool even BEFORE open */
2173 netif_carrier_off(netdev);
2174
2175 #ifdef CONFIG_IGB_DCA
2176 if (dca_add_requester(&pdev->dev) == 0) {
2177 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2178 dev_info(&pdev->dev, "DCA enabled\n");
2179 igb_setup_dca(adapter);
2180 }
2181
2182 #endif
2183 #ifdef CONFIG_IGB_PTP
2184 /* do hw tstamp init after resetting */
2185 igb_ptp_init(adapter);
2186
2187 #endif
2188 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2189 /* print bus type/speed/width info */
2190 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2191 netdev->name,
2192 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2193 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2194 "unknown"),
2195 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2196 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2197 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2198 "unknown"),
2199 netdev->dev_addr);
2200
2201 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2202 if (ret_val)
2203 strcpy(part_str, "Unknown");
2204 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2205 dev_info(&pdev->dev,
2206 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2207 adapter->msix_entries ? "MSI-X" :
2208 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2209 adapter->num_rx_queues, adapter->num_tx_queues);
2210 switch (hw->mac.type) {
2211 case e1000_i350:
2212 case e1000_i210:
2213 case e1000_i211:
2214 igb_set_eee_i350(hw);
2215 break;
2216 default:
2217 break;
2218 }
2219
2220 pm_runtime_put_noidle(&pdev->dev);
2221 return 0;
2222
2223 err_register:
2224 igb_release_hw_control(adapter);
2225 err_eeprom:
2226 if (!igb_check_reset_block(hw))
2227 igb_reset_phy(hw);
2228
2229 if (hw->flash_address)
2230 iounmap(hw->flash_address);
2231 err_sw_init:
2232 igb_clear_interrupt_scheme(adapter);
2233 iounmap(hw->hw_addr);
2234 err_ioremap:
2235 free_netdev(netdev);
2236 err_alloc_etherdev:
2237 pci_release_selected_regions(pdev,
2238 pci_select_bars(pdev, IORESOURCE_MEM));
2239 err_pci_reg:
2240 err_dma:
2241 pci_disable_device(pdev);
2242 return err;
2243 }
2244
2245 /**
2246 * igb_remove - Device Removal Routine
2247 * @pdev: PCI device information struct
2248 *
2249 * igb_remove is called by the PCI subsystem to alert the driver
2250 * that it should release a PCI device. The could be caused by a
2251 * Hot-Plug event, or because the driver is going to be removed from
2252 * memory.
2253 **/
2254 static void __devexit igb_remove(struct pci_dev *pdev)
2255 {
2256 struct net_device *netdev = pci_get_drvdata(pdev);
2257 struct igb_adapter *adapter = netdev_priv(netdev);
2258 struct e1000_hw *hw = &adapter->hw;
2259
2260 pm_runtime_get_noresume(&pdev->dev);
2261 #ifdef CONFIG_IGB_PTP
2262 igb_ptp_remove(adapter);
2263
2264 #endif
2265 /*
2266 * The watchdog timer may be rescheduled, so explicitly
2267 * disable watchdog from being rescheduled.
2268 */
2269 set_bit(__IGB_DOWN, &adapter->state);
2270 del_timer_sync(&adapter->watchdog_timer);
2271 del_timer_sync(&adapter->phy_info_timer);
2272
2273 cancel_work_sync(&adapter->reset_task);
2274 cancel_work_sync(&adapter->watchdog_task);
2275
2276 #ifdef CONFIG_IGB_DCA
2277 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2278 dev_info(&pdev->dev, "DCA disabled\n");
2279 dca_remove_requester(&pdev->dev);
2280 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2281 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2282 }
2283 #endif
2284
2285 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2286 * would have already happened in close and is redundant. */
2287 igb_release_hw_control(adapter);
2288
2289 unregister_netdev(netdev);
2290
2291 igb_clear_interrupt_scheme(adapter);
2292
2293 #ifdef CONFIG_PCI_IOV
2294 /* reclaim resources allocated to VFs */
2295 if (adapter->vf_data) {
2296 /* disable iov and allow time for transactions to clear */
2297 if (!igb_check_vf_assignment(adapter)) {
2298 pci_disable_sriov(pdev);
2299 msleep(500);
2300 } else {
2301 dev_info(&pdev->dev, "VF(s) assigned to guests!\n");
2302 }
2303
2304 kfree(adapter->vf_data);
2305 adapter->vf_data = NULL;
2306 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2307 wrfl();
2308 msleep(100);
2309 dev_info(&pdev->dev, "IOV Disabled\n");
2310 }
2311 #endif
2312
2313 iounmap(hw->hw_addr);
2314 if (hw->flash_address)
2315 iounmap(hw->flash_address);
2316 pci_release_selected_regions(pdev,
2317 pci_select_bars(pdev, IORESOURCE_MEM));
2318
2319 kfree(adapter->shadow_vfta);
2320 free_netdev(netdev);
2321
2322 pci_disable_pcie_error_reporting(pdev);
2323
2324 pci_disable_device(pdev);
2325 }
2326
2327 /**
2328 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2329 * @adapter: board private structure to initialize
2330 *
2331 * This function initializes the vf specific data storage and then attempts to
2332 * allocate the VFs. The reason for ordering it this way is because it is much
2333 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2334 * the memory for the VFs.
2335 **/
2336 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2337 {
2338 #ifdef CONFIG_PCI_IOV
2339 struct pci_dev *pdev = adapter->pdev;
2340 struct e1000_hw *hw = &adapter->hw;
2341 int old_vfs = igb_find_enabled_vfs(adapter);
2342 int i;
2343
2344 /* Virtualization features not supported on i210 family. */
2345 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2346 return;
2347
2348 if (old_vfs) {
2349 dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
2350 "max_vfs setting of %d\n", old_vfs, max_vfs);
2351 adapter->vfs_allocated_count = old_vfs;
2352 }
2353
2354 if (!adapter->vfs_allocated_count)
2355 return;
2356
2357 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2358 sizeof(struct vf_data_storage), GFP_KERNEL);
2359
2360 /* if allocation failed then we do not support SR-IOV */
2361 if (!adapter->vf_data) {
2362 adapter->vfs_allocated_count = 0;
2363 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2364 "Data Storage\n");
2365 goto out;
2366 }
2367
2368 if (!old_vfs) {
2369 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
2370 goto err_out;
2371 }
2372 dev_info(&pdev->dev, "%d VFs allocated\n",
2373 adapter->vfs_allocated_count);
2374 for (i = 0; i < adapter->vfs_allocated_count; i++)
2375 igb_vf_configure(adapter, i);
2376
2377 /* DMA Coalescing is not supported in IOV mode. */
2378 adapter->flags &= ~IGB_FLAG_DMAC;
2379 goto out;
2380 err_out:
2381 kfree(adapter->vf_data);
2382 adapter->vf_data = NULL;
2383 adapter->vfs_allocated_count = 0;
2384 out:
2385 return;
2386 #endif /* CONFIG_PCI_IOV */
2387 }
2388
2389 /**
2390 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2391 * @adapter: board private structure to initialize
2392 *
2393 * igb_sw_init initializes the Adapter private data structure.
2394 * Fields are initialized based on PCI device information and
2395 * OS network device settings (MTU size).
2396 **/
2397 static int __devinit igb_sw_init(struct igb_adapter *adapter)
2398 {
2399 struct e1000_hw *hw = &adapter->hw;
2400 struct net_device *netdev = adapter->netdev;
2401 struct pci_dev *pdev = adapter->pdev;
2402 u32 max_rss_queues;
2403
2404 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2405
2406 /* set default ring sizes */
2407 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2408 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2409
2410 /* set default ITR values */
2411 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2412 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2413
2414 /* set default work limits */
2415 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2416
2417 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2418 VLAN_HLEN;
2419 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2420
2421 adapter->node = -1;
2422
2423 spin_lock_init(&adapter->stats64_lock);
2424 #ifdef CONFIG_PCI_IOV
2425 switch (hw->mac.type) {
2426 case e1000_82576:
2427 case e1000_i350:
2428 if (max_vfs > 7) {
2429 dev_warn(&pdev->dev,
2430 "Maximum of 7 VFs per PF, using max\n");
2431 adapter->vfs_allocated_count = 7;
2432 } else
2433 adapter->vfs_allocated_count = max_vfs;
2434 break;
2435 default:
2436 break;
2437 }
2438 #endif /* CONFIG_PCI_IOV */
2439
2440 /* Determine the maximum number of RSS queues supported. */
2441 switch (hw->mac.type) {
2442 case e1000_i211:
2443 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2444 break;
2445 case e1000_82575:
2446 case e1000_i210:
2447 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2448 break;
2449 case e1000_i350:
2450 /* I350 cannot do RSS and SR-IOV at the same time */
2451 if (!!adapter->vfs_allocated_count) {
2452 max_rss_queues = 1;
2453 break;
2454 }
2455 /* fall through */
2456 case e1000_82576:
2457 if (!!adapter->vfs_allocated_count) {
2458 max_rss_queues = 2;
2459 break;
2460 }
2461 /* fall through */
2462 case e1000_82580:
2463 default:
2464 max_rss_queues = IGB_MAX_RX_QUEUES;
2465 break;
2466 }
2467
2468 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2469
2470 /* Determine if we need to pair queues. */
2471 switch (hw->mac.type) {
2472 case e1000_82575:
2473 case e1000_i211:
2474 /* Device supports enough interrupts without queue pairing. */
2475 break;
2476 case e1000_82576:
2477 /*
2478 * If VFs are going to be allocated with RSS queues then we
2479 * should pair the queues in order to conserve interrupts due
2480 * to limited supply.
2481 */
2482 if ((adapter->rss_queues > 1) &&
2483 (adapter->vfs_allocated_count > 6))
2484 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2485 /* fall through */
2486 case e1000_82580:
2487 case e1000_i350:
2488 case e1000_i210:
2489 default:
2490 /*
2491 * If rss_queues > half of max_rss_queues, pair the queues in
2492 * order to conserve interrupts due to limited supply.
2493 */
2494 if (adapter->rss_queues > (max_rss_queues / 2))
2495 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2496 break;
2497 }
2498
2499 /* Setup and initialize a copy of the hw vlan table array */
2500 adapter->shadow_vfta = kzalloc(sizeof(u32) *
2501 E1000_VLAN_FILTER_TBL_SIZE,
2502 GFP_ATOMIC);
2503
2504 /* This call may decrease the number of queues */
2505 if (igb_init_interrupt_scheme(adapter)) {
2506 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2507 return -ENOMEM;
2508 }
2509
2510 igb_probe_vfs(adapter);
2511
2512 /* Explicitly disable IRQ since the NIC can be in any state. */
2513 igb_irq_disable(adapter);
2514
2515 if (hw->mac.type >= e1000_i350)
2516 adapter->flags &= ~IGB_FLAG_DMAC;
2517
2518 set_bit(__IGB_DOWN, &adapter->state);
2519 return 0;
2520 }
2521
2522 /**
2523 * igb_open - Called when a network interface is made active
2524 * @netdev: network interface device structure
2525 *
2526 * Returns 0 on success, negative value on failure
2527 *
2528 * The open entry point is called when a network interface is made
2529 * active by the system (IFF_UP). At this point all resources needed
2530 * for transmit and receive operations are allocated, the interrupt
2531 * handler is registered with the OS, the watchdog timer is started,
2532 * and the stack is notified that the interface is ready.
2533 **/
2534 static int __igb_open(struct net_device *netdev, bool resuming)
2535 {
2536 struct igb_adapter *adapter = netdev_priv(netdev);
2537 struct e1000_hw *hw = &adapter->hw;
2538 struct pci_dev *pdev = adapter->pdev;
2539 int err;
2540 int i;
2541
2542 /* disallow open during test */
2543 if (test_bit(__IGB_TESTING, &adapter->state)) {
2544 WARN_ON(resuming);
2545 return -EBUSY;
2546 }
2547
2548 if (!resuming)
2549 pm_runtime_get_sync(&pdev->dev);
2550
2551 netif_carrier_off(netdev);
2552
2553 /* allocate transmit descriptors */
2554 err = igb_setup_all_tx_resources(adapter);
2555 if (err)
2556 goto err_setup_tx;
2557
2558 /* allocate receive descriptors */
2559 err = igb_setup_all_rx_resources(adapter);
2560 if (err)
2561 goto err_setup_rx;
2562
2563 igb_power_up_link(adapter);
2564
2565 /* before we allocate an interrupt, we must be ready to handle it.
2566 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2567 * as soon as we call pci_request_irq, so we have to setup our
2568 * clean_rx handler before we do so. */
2569 igb_configure(adapter);
2570
2571 err = igb_request_irq(adapter);
2572 if (err)
2573 goto err_req_irq;
2574
2575 /* From here on the code is the same as igb_up() */
2576 clear_bit(__IGB_DOWN, &adapter->state);
2577
2578 for (i = 0; i < adapter->num_q_vectors; i++)
2579 napi_enable(&(adapter->q_vector[i]->napi));
2580
2581 /* Clear any pending interrupts. */
2582 rd32(E1000_ICR);
2583
2584 igb_irq_enable(adapter);
2585
2586 /* notify VFs that reset has been completed */
2587 if (adapter->vfs_allocated_count) {
2588 u32 reg_data = rd32(E1000_CTRL_EXT);
2589 reg_data |= E1000_CTRL_EXT_PFRSTD;
2590 wr32(E1000_CTRL_EXT, reg_data);
2591 }
2592
2593 netif_tx_start_all_queues(netdev);
2594
2595 if (!resuming)
2596 pm_runtime_put(&pdev->dev);
2597
2598 /* start the watchdog. */
2599 hw->mac.get_link_status = 1;
2600 schedule_work(&adapter->watchdog_task);
2601
2602 return 0;
2603
2604 err_req_irq:
2605 igb_release_hw_control(adapter);
2606 igb_power_down_link(adapter);
2607 igb_free_all_rx_resources(adapter);
2608 err_setup_rx:
2609 igb_free_all_tx_resources(adapter);
2610 err_setup_tx:
2611 igb_reset(adapter);
2612 if (!resuming)
2613 pm_runtime_put(&pdev->dev);
2614
2615 return err;
2616 }
2617
2618 static int igb_open(struct net_device *netdev)
2619 {
2620 return __igb_open(netdev, false);
2621 }
2622
2623 /**
2624 * igb_close - Disables a network interface
2625 * @netdev: network interface device structure
2626 *
2627 * Returns 0, this is not allowed to fail
2628 *
2629 * The close entry point is called when an interface is de-activated
2630 * by the OS. The hardware is still under the driver's control, but
2631 * needs to be disabled. A global MAC reset is issued to stop the
2632 * hardware, and all transmit and receive resources are freed.
2633 **/
2634 static int __igb_close(struct net_device *netdev, bool suspending)
2635 {
2636 struct igb_adapter *adapter = netdev_priv(netdev);
2637 struct pci_dev *pdev = adapter->pdev;
2638
2639 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2640
2641 if (!suspending)
2642 pm_runtime_get_sync(&pdev->dev);
2643
2644 igb_down(adapter);
2645 igb_free_irq(adapter);
2646
2647 igb_free_all_tx_resources(adapter);
2648 igb_free_all_rx_resources(adapter);
2649
2650 if (!suspending)
2651 pm_runtime_put_sync(&pdev->dev);
2652 return 0;
2653 }
2654
2655 static int igb_close(struct net_device *netdev)
2656 {
2657 return __igb_close(netdev, false);
2658 }
2659
2660 /**
2661 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2662 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2663 *
2664 * Return 0 on success, negative on failure
2665 **/
2666 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2667 {
2668 struct device *dev = tx_ring->dev;
2669 int orig_node = dev_to_node(dev);
2670 int size;
2671
2672 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2673 tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node);
2674 if (!tx_ring->tx_buffer_info)
2675 tx_ring->tx_buffer_info = vzalloc(size);
2676 if (!tx_ring->tx_buffer_info)
2677 goto err;
2678
2679 /* round up to nearest 4K */
2680 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2681 tx_ring->size = ALIGN(tx_ring->size, 4096);
2682
2683 set_dev_node(dev, tx_ring->numa_node);
2684 tx_ring->desc = dma_alloc_coherent(dev,
2685 tx_ring->size,
2686 &tx_ring->dma,
2687 GFP_KERNEL);
2688 set_dev_node(dev, orig_node);
2689 if (!tx_ring->desc)
2690 tx_ring->desc = dma_alloc_coherent(dev,
2691 tx_ring->size,
2692 &tx_ring->dma,
2693 GFP_KERNEL);
2694
2695 if (!tx_ring->desc)
2696 goto err;
2697
2698 tx_ring->next_to_use = 0;
2699 tx_ring->next_to_clean = 0;
2700
2701 return 0;
2702
2703 err:
2704 vfree(tx_ring->tx_buffer_info);
2705 dev_err(dev,
2706 "Unable to allocate memory for the transmit descriptor ring\n");
2707 return -ENOMEM;
2708 }
2709
2710 /**
2711 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2712 * (Descriptors) for all queues
2713 * @adapter: board private structure
2714 *
2715 * Return 0 on success, negative on failure
2716 **/
2717 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2718 {
2719 struct pci_dev *pdev = adapter->pdev;
2720 int i, err = 0;
2721
2722 for (i = 0; i < adapter->num_tx_queues; i++) {
2723 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2724 if (err) {
2725 dev_err(&pdev->dev,
2726 "Allocation for Tx Queue %u failed\n", i);
2727 for (i--; i >= 0; i--)
2728 igb_free_tx_resources(adapter->tx_ring[i]);
2729 break;
2730 }
2731 }
2732
2733 return err;
2734 }
2735
2736 /**
2737 * igb_setup_tctl - configure the transmit control registers
2738 * @adapter: Board private structure
2739 **/
2740 void igb_setup_tctl(struct igb_adapter *adapter)
2741 {
2742 struct e1000_hw *hw = &adapter->hw;
2743 u32 tctl;
2744
2745 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2746 wr32(E1000_TXDCTL(0), 0);
2747
2748 /* Program the Transmit Control Register */
2749 tctl = rd32(E1000_TCTL);
2750 tctl &= ~E1000_TCTL_CT;
2751 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2752 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2753
2754 igb_config_collision_dist(hw);
2755
2756 /* Enable transmits */
2757 tctl |= E1000_TCTL_EN;
2758
2759 wr32(E1000_TCTL, tctl);
2760 }
2761
2762 /**
2763 * igb_configure_tx_ring - Configure transmit ring after Reset
2764 * @adapter: board private structure
2765 * @ring: tx ring to configure
2766 *
2767 * Configure a transmit ring after a reset.
2768 **/
2769 void igb_configure_tx_ring(struct igb_adapter *adapter,
2770 struct igb_ring *ring)
2771 {
2772 struct e1000_hw *hw = &adapter->hw;
2773 u32 txdctl = 0;
2774 u64 tdba = ring->dma;
2775 int reg_idx = ring->reg_idx;
2776
2777 /* disable the queue */
2778 wr32(E1000_TXDCTL(reg_idx), 0);
2779 wrfl();
2780 mdelay(10);
2781
2782 wr32(E1000_TDLEN(reg_idx),
2783 ring->count * sizeof(union e1000_adv_tx_desc));
2784 wr32(E1000_TDBAL(reg_idx),
2785 tdba & 0x00000000ffffffffULL);
2786 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2787
2788 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2789 wr32(E1000_TDH(reg_idx), 0);
2790 writel(0, ring->tail);
2791
2792 txdctl |= IGB_TX_PTHRESH;
2793 txdctl |= IGB_TX_HTHRESH << 8;
2794 txdctl |= IGB_TX_WTHRESH << 16;
2795
2796 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2797 wr32(E1000_TXDCTL(reg_idx), txdctl);
2798 }
2799
2800 /**
2801 * igb_configure_tx - Configure transmit Unit after Reset
2802 * @adapter: board private structure
2803 *
2804 * Configure the Tx unit of the MAC after a reset.
2805 **/
2806 static void igb_configure_tx(struct igb_adapter *adapter)
2807 {
2808 int i;
2809
2810 for (i = 0; i < adapter->num_tx_queues; i++)
2811 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2812 }
2813
2814 /**
2815 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2816 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2817 *
2818 * Returns 0 on success, negative on failure
2819 **/
2820 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2821 {
2822 struct device *dev = rx_ring->dev;
2823 int orig_node = dev_to_node(dev);
2824 int size, desc_len;
2825
2826 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2827 rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node);
2828 if (!rx_ring->rx_buffer_info)
2829 rx_ring->rx_buffer_info = vzalloc(size);
2830 if (!rx_ring->rx_buffer_info)
2831 goto err;
2832
2833 desc_len = sizeof(union e1000_adv_rx_desc);
2834
2835 /* Round up to nearest 4K */
2836 rx_ring->size = rx_ring->count * desc_len;
2837 rx_ring->size = ALIGN(rx_ring->size, 4096);
2838
2839 set_dev_node(dev, rx_ring->numa_node);
2840 rx_ring->desc = dma_alloc_coherent(dev,
2841 rx_ring->size,
2842 &rx_ring->dma,
2843 GFP_KERNEL);
2844 set_dev_node(dev, orig_node);
2845 if (!rx_ring->desc)
2846 rx_ring->desc = dma_alloc_coherent(dev,
2847 rx_ring->size,
2848 &rx_ring->dma,
2849 GFP_KERNEL);
2850
2851 if (!rx_ring->desc)
2852 goto err;
2853
2854 rx_ring->next_to_clean = 0;
2855 rx_ring->next_to_use = 0;
2856
2857 return 0;
2858
2859 err:
2860 vfree(rx_ring->rx_buffer_info);
2861 rx_ring->rx_buffer_info = NULL;
2862 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2863 " ring\n");
2864 return -ENOMEM;
2865 }
2866
2867 /**
2868 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2869 * (Descriptors) for all queues
2870 * @adapter: board private structure
2871 *
2872 * Return 0 on success, negative on failure
2873 **/
2874 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2875 {
2876 struct pci_dev *pdev = adapter->pdev;
2877 int i, err = 0;
2878
2879 for (i = 0; i < adapter->num_rx_queues; i++) {
2880 err = igb_setup_rx_resources(adapter->rx_ring[i]);
2881 if (err) {
2882 dev_err(&pdev->dev,
2883 "Allocation for Rx Queue %u failed\n", i);
2884 for (i--; i >= 0; i--)
2885 igb_free_rx_resources(adapter->rx_ring[i]);
2886 break;
2887 }
2888 }
2889
2890 return err;
2891 }
2892
2893 /**
2894 * igb_setup_mrqc - configure the multiple receive queue control registers
2895 * @adapter: Board private structure
2896 **/
2897 static void igb_setup_mrqc(struct igb_adapter *adapter)
2898 {
2899 struct e1000_hw *hw = &adapter->hw;
2900 u32 mrqc, rxcsum;
2901 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2902 union e1000_reta {
2903 u32 dword;
2904 u8 bytes[4];
2905 } reta;
2906 static const u8 rsshash[40] = {
2907 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2908 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2909 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2910 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2911
2912 /* Fill out hash function seeds */
2913 for (j = 0; j < 10; j++) {
2914 u32 rsskey = rsshash[(j * 4)];
2915 rsskey |= rsshash[(j * 4) + 1] << 8;
2916 rsskey |= rsshash[(j * 4) + 2] << 16;
2917 rsskey |= rsshash[(j * 4) + 3] << 24;
2918 array_wr32(E1000_RSSRK(0), j, rsskey);
2919 }
2920
2921 num_rx_queues = adapter->rss_queues;
2922
2923 if (adapter->vfs_allocated_count) {
2924 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2925 switch (hw->mac.type) {
2926 case e1000_i350:
2927 case e1000_82580:
2928 num_rx_queues = 1;
2929 shift = 0;
2930 break;
2931 case e1000_82576:
2932 shift = 3;
2933 num_rx_queues = 2;
2934 break;
2935 case e1000_82575:
2936 shift = 2;
2937 shift2 = 6;
2938 default:
2939 break;
2940 }
2941 } else {
2942 if (hw->mac.type == e1000_82575)
2943 shift = 6;
2944 }
2945
2946 for (j = 0; j < (32 * 4); j++) {
2947 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2948 if (shift2)
2949 reta.bytes[j & 3] |= num_rx_queues << shift2;
2950 if ((j & 3) == 3)
2951 wr32(E1000_RETA(j >> 2), reta.dword);
2952 }
2953
2954 /*
2955 * Disable raw packet checksumming so that RSS hash is placed in
2956 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2957 * offloads as they are enabled by default
2958 */
2959 rxcsum = rd32(E1000_RXCSUM);
2960 rxcsum |= E1000_RXCSUM_PCSD;
2961
2962 if (adapter->hw.mac.type >= e1000_82576)
2963 /* Enable Receive Checksum Offload for SCTP */
2964 rxcsum |= E1000_RXCSUM_CRCOFL;
2965
2966 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2967 wr32(E1000_RXCSUM, rxcsum);
2968 /*
2969 * Generate RSS hash based on TCP port numbers and/or
2970 * IPv4/v6 src and dst addresses since UDP cannot be
2971 * hashed reliably due to IP fragmentation
2972 */
2973
2974 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
2975 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2976 E1000_MRQC_RSS_FIELD_IPV6 |
2977 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2978 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2979
2980 /* If VMDq is enabled then we set the appropriate mode for that, else
2981 * we default to RSS so that an RSS hash is calculated per packet even
2982 * if we are only using one queue */
2983 if (adapter->vfs_allocated_count) {
2984 if (hw->mac.type > e1000_82575) {
2985 /* Set the default pool for the PF's first queue */
2986 u32 vtctl = rd32(E1000_VT_CTL);
2987 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2988 E1000_VT_CTL_DISABLE_DEF_POOL);
2989 vtctl |= adapter->vfs_allocated_count <<
2990 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2991 wr32(E1000_VT_CTL, vtctl);
2992 }
2993 if (adapter->rss_queues > 1)
2994 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2995 else
2996 mrqc |= E1000_MRQC_ENABLE_VMDQ;
2997 } else {
2998 if (hw->mac.type != e1000_i211)
2999 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3000 }
3001 igb_vmm_control(adapter);
3002
3003 wr32(E1000_MRQC, mrqc);
3004 }
3005
3006 /**
3007 * igb_setup_rctl - configure the receive control registers
3008 * @adapter: Board private structure
3009 **/
3010 void igb_setup_rctl(struct igb_adapter *adapter)
3011 {
3012 struct e1000_hw *hw = &adapter->hw;
3013 u32 rctl;
3014
3015 rctl = rd32(E1000_RCTL);
3016
3017 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3018 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3019
3020 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3021 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3022
3023 /*
3024 * enable stripping of CRC. It's unlikely this will break BMC
3025 * redirection as it did with e1000. Newer features require
3026 * that the HW strips the CRC.
3027 */
3028 rctl |= E1000_RCTL_SECRC;
3029
3030 /* disable store bad packets and clear size bits. */
3031 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3032
3033 /* enable LPE to prevent packets larger than max_frame_size */
3034 rctl |= E1000_RCTL_LPE;
3035
3036 /* disable queue 0 to prevent tail write w/o re-config */
3037 wr32(E1000_RXDCTL(0), 0);
3038
3039 /* Attention!!! For SR-IOV PF driver operations you must enable
3040 * queue drop for all VF and PF queues to prevent head of line blocking
3041 * if an un-trusted VF does not provide descriptors to hardware.
3042 */
3043 if (adapter->vfs_allocated_count) {
3044 /* set all queue drop enable bits */
3045 wr32(E1000_QDE, ALL_QUEUES);
3046 }
3047
3048 /* This is useful for sniffing bad packets. */
3049 if (adapter->netdev->features & NETIF_F_RXALL) {
3050 /* UPE and MPE will be handled by normal PROMISC logic
3051 * in e1000e_set_rx_mode */
3052 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3053 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3054 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3055
3056 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3057 E1000_RCTL_DPF | /* Allow filtered pause */
3058 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3059 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3060 * and that breaks VLANs.
3061 */
3062 }
3063
3064 wr32(E1000_RCTL, rctl);
3065 }
3066
3067 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3068 int vfn)
3069 {
3070 struct e1000_hw *hw = &adapter->hw;
3071 u32 vmolr;
3072
3073 /* if it isn't the PF check to see if VFs are enabled and
3074 * increase the size to support vlan tags */
3075 if (vfn < adapter->vfs_allocated_count &&
3076 adapter->vf_data[vfn].vlans_enabled)
3077 size += VLAN_TAG_SIZE;
3078
3079 vmolr = rd32(E1000_VMOLR(vfn));
3080 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3081 vmolr |= size | E1000_VMOLR_LPE;
3082 wr32(E1000_VMOLR(vfn), vmolr);
3083
3084 return 0;
3085 }
3086
3087 /**
3088 * igb_rlpml_set - set maximum receive packet size
3089 * @adapter: board private structure
3090 *
3091 * Configure maximum receivable packet size.
3092 **/
3093 static void igb_rlpml_set(struct igb_adapter *adapter)
3094 {
3095 u32 max_frame_size = adapter->max_frame_size;
3096 struct e1000_hw *hw = &adapter->hw;
3097 u16 pf_id = adapter->vfs_allocated_count;
3098
3099 if (pf_id) {
3100 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3101 /*
3102 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3103 * to our max jumbo frame size, in case we need to enable
3104 * jumbo frames on one of the rings later.
3105 * This will not pass over-length frames into the default
3106 * queue because it's gated by the VMOLR.RLPML.
3107 */
3108 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3109 }
3110
3111 wr32(E1000_RLPML, max_frame_size);
3112 }
3113
3114 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3115 int vfn, bool aupe)
3116 {
3117 struct e1000_hw *hw = &adapter->hw;
3118 u32 vmolr;
3119
3120 /*
3121 * This register exists only on 82576 and newer so if we are older then
3122 * we should exit and do nothing
3123 */
3124 if (hw->mac.type < e1000_82576)
3125 return;
3126
3127 vmolr = rd32(E1000_VMOLR(vfn));
3128 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3129 if (aupe)
3130 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3131 else
3132 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3133
3134 /* clear all bits that might not be set */
3135 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3136
3137 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3138 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3139 /*
3140 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3141 * multicast packets
3142 */
3143 if (vfn <= adapter->vfs_allocated_count)
3144 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3145
3146 wr32(E1000_VMOLR(vfn), vmolr);
3147 }
3148
3149 /**
3150 * igb_configure_rx_ring - Configure a receive ring after Reset
3151 * @adapter: board private structure
3152 * @ring: receive ring to be configured
3153 *
3154 * Configure the Rx unit of the MAC after a reset.
3155 **/
3156 void igb_configure_rx_ring(struct igb_adapter *adapter,
3157 struct igb_ring *ring)
3158 {
3159 struct e1000_hw *hw = &adapter->hw;
3160 u64 rdba = ring->dma;
3161 int reg_idx = ring->reg_idx;
3162 u32 srrctl = 0, rxdctl = 0;
3163
3164 /* disable the queue */
3165 wr32(E1000_RXDCTL(reg_idx), 0);
3166
3167 /* Set DMA base address registers */
3168 wr32(E1000_RDBAL(reg_idx),
3169 rdba & 0x00000000ffffffffULL);
3170 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3171 wr32(E1000_RDLEN(reg_idx),
3172 ring->count * sizeof(union e1000_adv_rx_desc));
3173
3174 /* initialize head and tail */
3175 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3176 wr32(E1000_RDH(reg_idx), 0);
3177 writel(0, ring->tail);
3178
3179 /* set descriptor configuration */
3180 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3181 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3182 srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3183 #else
3184 srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3185 #endif
3186 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3187 if (hw->mac.type >= e1000_82580)
3188 srrctl |= E1000_SRRCTL_TIMESTAMP;
3189 /* Only set Drop Enable if we are supporting multiple queues */
3190 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3191 srrctl |= E1000_SRRCTL_DROP_EN;
3192
3193 wr32(E1000_SRRCTL(reg_idx), srrctl);
3194
3195 /* set filtering for VMDQ pools */
3196 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3197
3198 rxdctl |= IGB_RX_PTHRESH;
3199 rxdctl |= IGB_RX_HTHRESH << 8;
3200 rxdctl |= IGB_RX_WTHRESH << 16;
3201
3202 /* enable receive descriptor fetching */
3203 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3204 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3205 }
3206
3207 /**
3208 * igb_configure_rx - Configure receive Unit after Reset
3209 * @adapter: board private structure
3210 *
3211 * Configure the Rx unit of the MAC after a reset.
3212 **/
3213 static void igb_configure_rx(struct igb_adapter *adapter)
3214 {
3215 int i;
3216
3217 /* set UTA to appropriate mode */
3218 igb_set_uta(adapter);
3219
3220 /* set the correct pool for the PF default MAC address in entry 0 */
3221 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3222 adapter->vfs_allocated_count);
3223
3224 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3225 * the Base and Length of the Rx Descriptor Ring */
3226 for (i = 0; i < adapter->num_rx_queues; i++)
3227 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3228 }
3229
3230 /**
3231 * igb_free_tx_resources - Free Tx Resources per Queue
3232 * @tx_ring: Tx descriptor ring for a specific queue
3233 *
3234 * Free all transmit software resources
3235 **/
3236 void igb_free_tx_resources(struct igb_ring *tx_ring)
3237 {
3238 igb_clean_tx_ring(tx_ring);
3239
3240 vfree(tx_ring->tx_buffer_info);
3241 tx_ring->tx_buffer_info = NULL;
3242
3243 /* if not set, then don't free */
3244 if (!tx_ring->desc)
3245 return;
3246
3247 dma_free_coherent(tx_ring->dev, tx_ring->size,
3248 tx_ring->desc, tx_ring->dma);
3249
3250 tx_ring->desc = NULL;
3251 }
3252
3253 /**
3254 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3255 * @adapter: board private structure
3256 *
3257 * Free all transmit software resources
3258 **/
3259 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3260 {
3261 int i;
3262
3263 for (i = 0; i < adapter->num_tx_queues; i++)
3264 igb_free_tx_resources(adapter->tx_ring[i]);
3265 }
3266
3267 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3268 struct igb_tx_buffer *tx_buffer)
3269 {
3270 if (tx_buffer->skb) {
3271 dev_kfree_skb_any(tx_buffer->skb);
3272 if (tx_buffer->dma)
3273 dma_unmap_single(ring->dev,
3274 tx_buffer->dma,
3275 tx_buffer->length,
3276 DMA_TO_DEVICE);
3277 } else if (tx_buffer->dma) {
3278 dma_unmap_page(ring->dev,
3279 tx_buffer->dma,
3280 tx_buffer->length,
3281 DMA_TO_DEVICE);
3282 }
3283 tx_buffer->next_to_watch = NULL;
3284 tx_buffer->skb = NULL;
3285 tx_buffer->dma = 0;
3286 /* buffer_info must be completely set up in the transmit path */
3287 }
3288
3289 /**
3290 * igb_clean_tx_ring - Free Tx Buffers
3291 * @tx_ring: ring to be cleaned
3292 **/
3293 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3294 {
3295 struct igb_tx_buffer *buffer_info;
3296 unsigned long size;
3297 u16 i;
3298
3299 if (!tx_ring->tx_buffer_info)
3300 return;
3301 /* Free all the Tx ring sk_buffs */
3302
3303 for (i = 0; i < tx_ring->count; i++) {
3304 buffer_info = &tx_ring->tx_buffer_info[i];
3305 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3306 }
3307
3308 netdev_tx_reset_queue(txring_txq(tx_ring));
3309
3310 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3311 memset(tx_ring->tx_buffer_info, 0, size);
3312
3313 /* Zero out the descriptor ring */
3314 memset(tx_ring->desc, 0, tx_ring->size);
3315
3316 tx_ring->next_to_use = 0;
3317 tx_ring->next_to_clean = 0;
3318 }
3319
3320 /**
3321 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3322 * @adapter: board private structure
3323 **/
3324 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3325 {
3326 int i;
3327
3328 for (i = 0; i < adapter->num_tx_queues; i++)
3329 igb_clean_tx_ring(adapter->tx_ring[i]);
3330 }
3331
3332 /**
3333 * igb_free_rx_resources - Free Rx Resources
3334 * @rx_ring: ring to clean the resources from
3335 *
3336 * Free all receive software resources
3337 **/
3338 void igb_free_rx_resources(struct igb_ring *rx_ring)
3339 {
3340 igb_clean_rx_ring(rx_ring);
3341
3342 vfree(rx_ring->rx_buffer_info);
3343 rx_ring->rx_buffer_info = NULL;
3344
3345 /* if not set, then don't free */
3346 if (!rx_ring->desc)
3347 return;
3348
3349 dma_free_coherent(rx_ring->dev, rx_ring->size,
3350 rx_ring->desc, rx_ring->dma);
3351
3352 rx_ring->desc = NULL;
3353 }
3354
3355 /**
3356 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3357 * @adapter: board private structure
3358 *
3359 * Free all receive software resources
3360 **/
3361 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3362 {
3363 int i;
3364
3365 for (i = 0; i < adapter->num_rx_queues; i++)
3366 igb_free_rx_resources(adapter->rx_ring[i]);
3367 }
3368
3369 /**
3370 * igb_clean_rx_ring - Free Rx Buffers per Queue
3371 * @rx_ring: ring to free buffers from
3372 **/
3373 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3374 {
3375 unsigned long size;
3376 u16 i;
3377
3378 if (!rx_ring->rx_buffer_info)
3379 return;
3380
3381 /* Free all the Rx ring sk_buffs */
3382 for (i = 0; i < rx_ring->count; i++) {
3383 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3384 if (buffer_info->dma) {
3385 dma_unmap_single(rx_ring->dev,
3386 buffer_info->dma,
3387 IGB_RX_HDR_LEN,
3388 DMA_FROM_DEVICE);
3389 buffer_info->dma = 0;
3390 }
3391
3392 if (buffer_info->skb) {
3393 dev_kfree_skb(buffer_info->skb);
3394 buffer_info->skb = NULL;
3395 }
3396 if (buffer_info->page_dma) {
3397 dma_unmap_page(rx_ring->dev,
3398 buffer_info->page_dma,
3399 PAGE_SIZE / 2,
3400 DMA_FROM_DEVICE);
3401 buffer_info->page_dma = 0;
3402 }
3403 if (buffer_info->page) {
3404 put_page(buffer_info->page);
3405 buffer_info->page = NULL;
3406 buffer_info->page_offset = 0;
3407 }
3408 }
3409
3410 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3411 memset(rx_ring->rx_buffer_info, 0, size);
3412
3413 /* Zero out the descriptor ring */
3414 memset(rx_ring->desc, 0, rx_ring->size);
3415
3416 rx_ring->next_to_clean = 0;
3417 rx_ring->next_to_use = 0;
3418 }
3419
3420 /**
3421 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3422 * @adapter: board private structure
3423 **/
3424 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3425 {
3426 int i;
3427
3428 for (i = 0; i < adapter->num_rx_queues; i++)
3429 igb_clean_rx_ring(adapter->rx_ring[i]);
3430 }
3431
3432 /**
3433 * igb_set_mac - Change the Ethernet Address of the NIC
3434 * @netdev: network interface device structure
3435 * @p: pointer to an address structure
3436 *
3437 * Returns 0 on success, negative on failure
3438 **/
3439 static int igb_set_mac(struct net_device *netdev, void *p)
3440 {
3441 struct igb_adapter *adapter = netdev_priv(netdev);
3442 struct e1000_hw *hw = &adapter->hw;
3443 struct sockaddr *addr = p;
3444
3445 if (!is_valid_ether_addr(addr->sa_data))
3446 return -EADDRNOTAVAIL;
3447
3448 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3449 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3450
3451 /* set the correct pool for the new PF MAC address in entry 0 */
3452 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3453 adapter->vfs_allocated_count);
3454
3455 return 0;
3456 }
3457
3458 /**
3459 * igb_write_mc_addr_list - write multicast addresses to MTA
3460 * @netdev: network interface device structure
3461 *
3462 * Writes multicast address list to the MTA hash table.
3463 * Returns: -ENOMEM on failure
3464 * 0 on no addresses written
3465 * X on writing X addresses to MTA
3466 **/
3467 static int igb_write_mc_addr_list(struct net_device *netdev)
3468 {
3469 struct igb_adapter *adapter = netdev_priv(netdev);
3470 struct e1000_hw *hw = &adapter->hw;
3471 struct netdev_hw_addr *ha;
3472 u8 *mta_list;
3473 int i;
3474
3475 if (netdev_mc_empty(netdev)) {
3476 /* nothing to program, so clear mc list */
3477 igb_update_mc_addr_list(hw, NULL, 0);
3478 igb_restore_vf_multicasts(adapter);
3479 return 0;
3480 }
3481
3482 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3483 if (!mta_list)
3484 return -ENOMEM;
3485
3486 /* The shared function expects a packed array of only addresses. */
3487 i = 0;
3488 netdev_for_each_mc_addr(ha, netdev)
3489 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3490
3491 igb_update_mc_addr_list(hw, mta_list, i);
3492 kfree(mta_list);
3493
3494 return netdev_mc_count(netdev);
3495 }
3496
3497 /**
3498 * igb_write_uc_addr_list - write unicast addresses to RAR table
3499 * @netdev: network interface device structure
3500 *
3501 * Writes unicast address list to the RAR table.
3502 * Returns: -ENOMEM on failure/insufficient address space
3503 * 0 on no addresses written
3504 * X on writing X addresses to the RAR table
3505 **/
3506 static int igb_write_uc_addr_list(struct net_device *netdev)
3507 {
3508 struct igb_adapter *adapter = netdev_priv(netdev);
3509 struct e1000_hw *hw = &adapter->hw;
3510 unsigned int vfn = adapter->vfs_allocated_count;
3511 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3512 int count = 0;
3513
3514 /* return ENOMEM indicating insufficient memory for addresses */
3515 if (netdev_uc_count(netdev) > rar_entries)
3516 return -ENOMEM;
3517
3518 if (!netdev_uc_empty(netdev) && rar_entries) {
3519 struct netdev_hw_addr *ha;
3520
3521 netdev_for_each_uc_addr(ha, netdev) {
3522 if (!rar_entries)
3523 break;
3524 igb_rar_set_qsel(adapter, ha->addr,
3525 rar_entries--,
3526 vfn);
3527 count++;
3528 }
3529 }
3530 /* write the addresses in reverse order to avoid write combining */
3531 for (; rar_entries > 0 ; rar_entries--) {
3532 wr32(E1000_RAH(rar_entries), 0);
3533 wr32(E1000_RAL(rar_entries), 0);
3534 }
3535 wrfl();
3536
3537 return count;
3538 }
3539
3540 /**
3541 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3542 * @netdev: network interface device structure
3543 *
3544 * The set_rx_mode entry point is called whenever the unicast or multicast
3545 * address lists or the network interface flags are updated. This routine is
3546 * responsible for configuring the hardware for proper unicast, multicast,
3547 * promiscuous mode, and all-multi behavior.
3548 **/
3549 static void igb_set_rx_mode(struct net_device *netdev)
3550 {
3551 struct igb_adapter *adapter = netdev_priv(netdev);
3552 struct e1000_hw *hw = &adapter->hw;
3553 unsigned int vfn = adapter->vfs_allocated_count;
3554 u32 rctl, vmolr = 0;
3555 int count;
3556
3557 /* Check for Promiscuous and All Multicast modes */
3558 rctl = rd32(E1000_RCTL);
3559
3560 /* clear the effected bits */
3561 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3562
3563 if (netdev->flags & IFF_PROMISC) {
3564 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3565 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3566 } else {
3567 if (netdev->flags & IFF_ALLMULTI) {
3568 rctl |= E1000_RCTL_MPE;
3569 vmolr |= E1000_VMOLR_MPME;
3570 } else {
3571 /*
3572 * Write addresses to the MTA, if the attempt fails
3573 * then we should just turn on promiscuous mode so
3574 * that we can at least receive multicast traffic
3575 */
3576 count = igb_write_mc_addr_list(netdev);
3577 if (count < 0) {
3578 rctl |= E1000_RCTL_MPE;
3579 vmolr |= E1000_VMOLR_MPME;
3580 } else if (count) {
3581 vmolr |= E1000_VMOLR_ROMPE;
3582 }
3583 }
3584 /*
3585 * Write addresses to available RAR registers, if there is not
3586 * sufficient space to store all the addresses then enable
3587 * unicast promiscuous mode
3588 */
3589 count = igb_write_uc_addr_list(netdev);
3590 if (count < 0) {
3591 rctl |= E1000_RCTL_UPE;
3592 vmolr |= E1000_VMOLR_ROPE;
3593 }
3594 rctl |= E1000_RCTL_VFE;
3595 }
3596 wr32(E1000_RCTL, rctl);
3597
3598 /*
3599 * In order to support SR-IOV and eventually VMDq it is necessary to set
3600 * the VMOLR to enable the appropriate modes. Without this workaround
3601 * we will have issues with VLAN tag stripping not being done for frames
3602 * that are only arriving because we are the default pool
3603 */
3604 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3605 return;
3606
3607 vmolr |= rd32(E1000_VMOLR(vfn)) &
3608 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3609 wr32(E1000_VMOLR(vfn), vmolr);
3610 igb_restore_vf_multicasts(adapter);
3611 }
3612
3613 static void igb_check_wvbr(struct igb_adapter *adapter)
3614 {
3615 struct e1000_hw *hw = &adapter->hw;
3616 u32 wvbr = 0;
3617
3618 switch (hw->mac.type) {
3619 case e1000_82576:
3620 case e1000_i350:
3621 if (!(wvbr = rd32(E1000_WVBR)))
3622 return;
3623 break;
3624 default:
3625 break;
3626 }
3627
3628 adapter->wvbr |= wvbr;
3629 }
3630
3631 #define IGB_STAGGERED_QUEUE_OFFSET 8
3632
3633 static void igb_spoof_check(struct igb_adapter *adapter)
3634 {
3635 int j;
3636
3637 if (!adapter->wvbr)
3638 return;
3639
3640 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3641 if (adapter->wvbr & (1 << j) ||
3642 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3643 dev_warn(&adapter->pdev->dev,
3644 "Spoof event(s) detected on VF %d\n", j);
3645 adapter->wvbr &=
3646 ~((1 << j) |
3647 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3648 }
3649 }
3650 }
3651
3652 /* Need to wait a few seconds after link up to get diagnostic information from
3653 * the phy */
3654 static void igb_update_phy_info(unsigned long data)
3655 {
3656 struct igb_adapter *adapter = (struct igb_adapter *) data;
3657 igb_get_phy_info(&adapter->hw);
3658 }
3659
3660 /**
3661 * igb_has_link - check shared code for link and determine up/down
3662 * @adapter: pointer to driver private info
3663 **/
3664 bool igb_has_link(struct igb_adapter *adapter)
3665 {
3666 struct e1000_hw *hw = &adapter->hw;
3667 bool link_active = false;
3668 s32 ret_val = 0;
3669
3670 /* get_link_status is set on LSC (link status) interrupt or
3671 * rx sequence error interrupt. get_link_status will stay
3672 * false until the e1000_check_for_link establishes link
3673 * for copper adapters ONLY
3674 */
3675 switch (hw->phy.media_type) {
3676 case e1000_media_type_copper:
3677 if (hw->mac.get_link_status) {
3678 ret_val = hw->mac.ops.check_for_link(hw);
3679 link_active = !hw->mac.get_link_status;
3680 } else {
3681 link_active = true;
3682 }
3683 break;
3684 case e1000_media_type_internal_serdes:
3685 ret_val = hw->mac.ops.check_for_link(hw);
3686 link_active = hw->mac.serdes_has_link;
3687 break;
3688 default:
3689 case e1000_media_type_unknown:
3690 break;
3691 }
3692
3693 return link_active;
3694 }
3695
3696 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3697 {
3698 bool ret = false;
3699 u32 ctrl_ext, thstat;
3700
3701 /* check for thermal sensor event on i350 copper only */
3702 if (hw->mac.type == e1000_i350) {
3703 thstat = rd32(E1000_THSTAT);
3704 ctrl_ext = rd32(E1000_CTRL_EXT);
3705
3706 if ((hw->phy.media_type == e1000_media_type_copper) &&
3707 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3708 ret = !!(thstat & event);
3709 }
3710 }
3711
3712 return ret;
3713 }
3714
3715 /**
3716 * igb_watchdog - Timer Call-back
3717 * @data: pointer to adapter cast into an unsigned long
3718 **/
3719 static void igb_watchdog(unsigned long data)
3720 {
3721 struct igb_adapter *adapter = (struct igb_adapter *)data;
3722 /* Do the rest outside of interrupt context */
3723 schedule_work(&adapter->watchdog_task);
3724 }
3725
3726 static void igb_watchdog_task(struct work_struct *work)
3727 {
3728 struct igb_adapter *adapter = container_of(work,
3729 struct igb_adapter,
3730 watchdog_task);
3731 struct e1000_hw *hw = &adapter->hw;
3732 struct net_device *netdev = adapter->netdev;
3733 u32 link;
3734 int i;
3735
3736 link = igb_has_link(adapter);
3737 if (link) {
3738 /* Cancel scheduled suspend requests. */
3739 pm_runtime_resume(netdev->dev.parent);
3740
3741 if (!netif_carrier_ok(netdev)) {
3742 u32 ctrl;
3743 hw->mac.ops.get_speed_and_duplex(hw,
3744 &adapter->link_speed,
3745 &adapter->link_duplex);
3746
3747 ctrl = rd32(E1000_CTRL);
3748 /* Links status message must follow this format */
3749 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3750 "Duplex, Flow Control: %s\n",
3751 netdev->name,
3752 adapter->link_speed,
3753 adapter->link_duplex == FULL_DUPLEX ?
3754 "Full" : "Half",
3755 (ctrl & E1000_CTRL_TFCE) &&
3756 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3757 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3758 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
3759
3760 /* check for thermal sensor event */
3761 if (igb_thermal_sensor_event(hw,
3762 E1000_THSTAT_LINK_THROTTLE)) {
3763 netdev_info(netdev, "The network adapter link "
3764 "speed was downshifted because it "
3765 "overheated\n");
3766 }
3767
3768 /* adjust timeout factor according to speed/duplex */
3769 adapter->tx_timeout_factor = 1;
3770 switch (adapter->link_speed) {
3771 case SPEED_10:
3772 adapter->tx_timeout_factor = 14;
3773 break;
3774 case SPEED_100:
3775 /* maybe add some timeout factor ? */
3776 break;
3777 }
3778
3779 netif_carrier_on(netdev);
3780
3781 igb_ping_all_vfs(adapter);
3782 igb_check_vf_rate_limit(adapter);
3783
3784 /* link state has changed, schedule phy info update */
3785 if (!test_bit(__IGB_DOWN, &adapter->state))
3786 mod_timer(&adapter->phy_info_timer,
3787 round_jiffies(jiffies + 2 * HZ));
3788 }
3789 } else {
3790 if (netif_carrier_ok(netdev)) {
3791 adapter->link_speed = 0;
3792 adapter->link_duplex = 0;
3793
3794 /* check for thermal sensor event */
3795 if (igb_thermal_sensor_event(hw,
3796 E1000_THSTAT_PWR_DOWN)) {
3797 netdev_err(netdev, "The network adapter was "
3798 "stopped because it overheated\n");
3799 }
3800
3801 /* Links status message must follow this format */
3802 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3803 netdev->name);
3804 netif_carrier_off(netdev);
3805
3806 igb_ping_all_vfs(adapter);
3807
3808 /* link state has changed, schedule phy info update */
3809 if (!test_bit(__IGB_DOWN, &adapter->state))
3810 mod_timer(&adapter->phy_info_timer,
3811 round_jiffies(jiffies + 2 * HZ));
3812
3813 pm_schedule_suspend(netdev->dev.parent,
3814 MSEC_PER_SEC * 5);
3815 }
3816 }
3817
3818 spin_lock(&adapter->stats64_lock);
3819 igb_update_stats(adapter, &adapter->stats64);
3820 spin_unlock(&adapter->stats64_lock);
3821
3822 for (i = 0; i < adapter->num_tx_queues; i++) {
3823 struct igb_ring *tx_ring = adapter->tx_ring[i];
3824 if (!netif_carrier_ok(netdev)) {
3825 /* We've lost link, so the controller stops DMA,
3826 * but we've got queued Tx work that's never going
3827 * to get done, so reset controller to flush Tx.
3828 * (Do the reset outside of interrupt context). */
3829 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3830 adapter->tx_timeout_count++;
3831 schedule_work(&adapter->reset_task);
3832 /* return immediately since reset is imminent */
3833 return;
3834 }
3835 }
3836
3837 /* Force detection of hung controller every watchdog period */
3838 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3839 }
3840
3841 /* Cause software interrupt to ensure rx ring is cleaned */
3842 if (adapter->msix_entries) {
3843 u32 eics = 0;
3844 for (i = 0; i < adapter->num_q_vectors; i++)
3845 eics |= adapter->q_vector[i]->eims_value;
3846 wr32(E1000_EICS, eics);
3847 } else {
3848 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3849 }
3850
3851 igb_spoof_check(adapter);
3852
3853 /* Reset the timer */
3854 if (!test_bit(__IGB_DOWN, &adapter->state))
3855 mod_timer(&adapter->watchdog_timer,
3856 round_jiffies(jiffies + 2 * HZ));
3857 }
3858
3859 enum latency_range {
3860 lowest_latency = 0,
3861 low_latency = 1,
3862 bulk_latency = 2,
3863 latency_invalid = 255
3864 };
3865
3866 /**
3867 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3868 *
3869 * Stores a new ITR value based on strictly on packet size. This
3870 * algorithm is less sophisticated than that used in igb_update_itr,
3871 * due to the difficulty of synchronizing statistics across multiple
3872 * receive rings. The divisors and thresholds used by this function
3873 * were determined based on theoretical maximum wire speed and testing
3874 * data, in order to minimize response time while increasing bulk
3875 * throughput.
3876 * This functionality is controlled by the InterruptThrottleRate module
3877 * parameter (see igb_param.c)
3878 * NOTE: This function is called only when operating in a multiqueue
3879 * receive environment.
3880 * @q_vector: pointer to q_vector
3881 **/
3882 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3883 {
3884 int new_val = q_vector->itr_val;
3885 int avg_wire_size = 0;
3886 struct igb_adapter *adapter = q_vector->adapter;
3887 unsigned int packets;
3888
3889 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3890 * ints/sec - ITR timer value of 120 ticks.
3891 */
3892 if (adapter->link_speed != SPEED_1000) {
3893 new_val = IGB_4K_ITR;
3894 goto set_itr_val;
3895 }
3896
3897 packets = q_vector->rx.total_packets;
3898 if (packets)
3899 avg_wire_size = q_vector->rx.total_bytes / packets;
3900
3901 packets = q_vector->tx.total_packets;
3902 if (packets)
3903 avg_wire_size = max_t(u32, avg_wire_size,
3904 q_vector->tx.total_bytes / packets);
3905
3906 /* if avg_wire_size isn't set no work was done */
3907 if (!avg_wire_size)
3908 goto clear_counts;
3909
3910 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3911 avg_wire_size += 24;
3912
3913 /* Don't starve jumbo frames */
3914 avg_wire_size = min(avg_wire_size, 3000);
3915
3916 /* Give a little boost to mid-size frames */
3917 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3918 new_val = avg_wire_size / 3;
3919 else
3920 new_val = avg_wire_size / 2;
3921
3922 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3923 if (new_val < IGB_20K_ITR &&
3924 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3925 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3926 new_val = IGB_20K_ITR;
3927
3928 set_itr_val:
3929 if (new_val != q_vector->itr_val) {
3930 q_vector->itr_val = new_val;
3931 q_vector->set_itr = 1;
3932 }
3933 clear_counts:
3934 q_vector->rx.total_bytes = 0;
3935 q_vector->rx.total_packets = 0;
3936 q_vector->tx.total_bytes = 0;
3937 q_vector->tx.total_packets = 0;
3938 }
3939
3940 /**
3941 * igb_update_itr - update the dynamic ITR value based on statistics
3942 * Stores a new ITR value based on packets and byte
3943 * counts during the last interrupt. The advantage of per interrupt
3944 * computation is faster updates and more accurate ITR for the current
3945 * traffic pattern. Constants in this function were computed
3946 * based on theoretical maximum wire speed and thresholds were set based
3947 * on testing data as well as attempting to minimize response time
3948 * while increasing bulk throughput.
3949 * this functionality is controlled by the InterruptThrottleRate module
3950 * parameter (see igb_param.c)
3951 * NOTE: These calculations are only valid when operating in a single-
3952 * queue environment.
3953 * @q_vector: pointer to q_vector
3954 * @ring_container: ring info to update the itr for
3955 **/
3956 static void igb_update_itr(struct igb_q_vector *q_vector,
3957 struct igb_ring_container *ring_container)
3958 {
3959 unsigned int packets = ring_container->total_packets;
3960 unsigned int bytes = ring_container->total_bytes;
3961 u8 itrval = ring_container->itr;
3962
3963 /* no packets, exit with status unchanged */
3964 if (packets == 0)
3965 return;
3966
3967 switch (itrval) {
3968 case lowest_latency:
3969 /* handle TSO and jumbo frames */
3970 if (bytes/packets > 8000)
3971 itrval = bulk_latency;
3972 else if ((packets < 5) && (bytes > 512))
3973 itrval = low_latency;
3974 break;
3975 case low_latency: /* 50 usec aka 20000 ints/s */
3976 if (bytes > 10000) {
3977 /* this if handles the TSO accounting */
3978 if (bytes/packets > 8000) {
3979 itrval = bulk_latency;
3980 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3981 itrval = bulk_latency;
3982 } else if ((packets > 35)) {
3983 itrval = lowest_latency;
3984 }
3985 } else if (bytes/packets > 2000) {
3986 itrval = bulk_latency;
3987 } else if (packets <= 2 && bytes < 512) {
3988 itrval = lowest_latency;
3989 }
3990 break;
3991 case bulk_latency: /* 250 usec aka 4000 ints/s */
3992 if (bytes > 25000) {
3993 if (packets > 35)
3994 itrval = low_latency;
3995 } else if (bytes < 1500) {
3996 itrval = low_latency;
3997 }
3998 break;
3999 }
4000
4001 /* clear work counters since we have the values we need */
4002 ring_container->total_bytes = 0;
4003 ring_container->total_packets = 0;
4004
4005 /* write updated itr to ring container */
4006 ring_container->itr = itrval;
4007 }
4008
4009 static void igb_set_itr(struct igb_q_vector *q_vector)
4010 {
4011 struct igb_adapter *adapter = q_vector->adapter;
4012 u32 new_itr = q_vector->itr_val;
4013 u8 current_itr = 0;
4014
4015 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4016 if (adapter->link_speed != SPEED_1000) {
4017 current_itr = 0;
4018 new_itr = IGB_4K_ITR;
4019 goto set_itr_now;
4020 }
4021
4022 igb_update_itr(q_vector, &q_vector->tx);
4023 igb_update_itr(q_vector, &q_vector->rx);
4024
4025 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4026
4027 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4028 if (current_itr == lowest_latency &&
4029 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4030 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4031 current_itr = low_latency;
4032
4033 switch (current_itr) {
4034 /* counts and packets in update_itr are dependent on these numbers */
4035 case lowest_latency:
4036 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4037 break;
4038 case low_latency:
4039 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4040 break;
4041 case bulk_latency:
4042 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4043 break;
4044 default:
4045 break;
4046 }
4047
4048 set_itr_now:
4049 if (new_itr != q_vector->itr_val) {
4050 /* this attempts to bias the interrupt rate towards Bulk
4051 * by adding intermediate steps when interrupt rate is
4052 * increasing */
4053 new_itr = new_itr > q_vector->itr_val ?
4054 max((new_itr * q_vector->itr_val) /
4055 (new_itr + (q_vector->itr_val >> 2)),
4056 new_itr) :
4057 new_itr;
4058 /* Don't write the value here; it resets the adapter's
4059 * internal timer, and causes us to delay far longer than
4060 * we should between interrupts. Instead, we write the ITR
4061 * value at the beginning of the next interrupt so the timing
4062 * ends up being correct.
4063 */
4064 q_vector->itr_val = new_itr;
4065 q_vector->set_itr = 1;
4066 }
4067 }
4068
4069 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4070 u32 type_tucmd, u32 mss_l4len_idx)
4071 {
4072 struct e1000_adv_tx_context_desc *context_desc;
4073 u16 i = tx_ring->next_to_use;
4074
4075 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4076
4077 i++;
4078 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4079
4080 /* set bits to identify this as an advanced context descriptor */
4081 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4082
4083 /* For 82575, context index must be unique per ring. */
4084 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4085 mss_l4len_idx |= tx_ring->reg_idx << 4;
4086
4087 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4088 context_desc->seqnum_seed = 0;
4089 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4090 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4091 }
4092
4093 static int igb_tso(struct igb_ring *tx_ring,
4094 struct igb_tx_buffer *first,
4095 u8 *hdr_len)
4096 {
4097 struct sk_buff *skb = first->skb;
4098 u32 vlan_macip_lens, type_tucmd;
4099 u32 mss_l4len_idx, l4len;
4100
4101 if (!skb_is_gso(skb))
4102 return 0;
4103
4104 if (skb_header_cloned(skb)) {
4105 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4106 if (err)
4107 return err;
4108 }
4109
4110 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4111 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4112
4113 if (first->protocol == __constant_htons(ETH_P_IP)) {
4114 struct iphdr *iph = ip_hdr(skb);
4115 iph->tot_len = 0;
4116 iph->check = 0;
4117 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4118 iph->daddr, 0,
4119 IPPROTO_TCP,
4120 0);
4121 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4122 first->tx_flags |= IGB_TX_FLAGS_TSO |
4123 IGB_TX_FLAGS_CSUM |
4124 IGB_TX_FLAGS_IPV4;
4125 } else if (skb_is_gso_v6(skb)) {
4126 ipv6_hdr(skb)->payload_len = 0;
4127 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4128 &ipv6_hdr(skb)->daddr,
4129 0, IPPROTO_TCP, 0);
4130 first->tx_flags |= IGB_TX_FLAGS_TSO |
4131 IGB_TX_FLAGS_CSUM;
4132 }
4133
4134 /* compute header lengths */
4135 l4len = tcp_hdrlen(skb);
4136 *hdr_len = skb_transport_offset(skb) + l4len;
4137
4138 /* update gso size and bytecount with header size */
4139 first->gso_segs = skb_shinfo(skb)->gso_segs;
4140 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4141
4142 /* MSS L4LEN IDX */
4143 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4144 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4145
4146 /* VLAN MACLEN IPLEN */
4147 vlan_macip_lens = skb_network_header_len(skb);
4148 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4149 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4150
4151 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4152
4153 return 1;
4154 }
4155
4156 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4157 {
4158 struct sk_buff *skb = first->skb;
4159 u32 vlan_macip_lens = 0;
4160 u32 mss_l4len_idx = 0;
4161 u32 type_tucmd = 0;
4162
4163 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4164 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4165 return;
4166 } else {
4167 u8 l4_hdr = 0;
4168 switch (first->protocol) {
4169 case __constant_htons(ETH_P_IP):
4170 vlan_macip_lens |= skb_network_header_len(skb);
4171 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4172 l4_hdr = ip_hdr(skb)->protocol;
4173 break;
4174 case __constant_htons(ETH_P_IPV6):
4175 vlan_macip_lens |= skb_network_header_len(skb);
4176 l4_hdr = ipv6_hdr(skb)->nexthdr;
4177 break;
4178 default:
4179 if (unlikely(net_ratelimit())) {
4180 dev_warn(tx_ring->dev,
4181 "partial checksum but proto=%x!\n",
4182 first->protocol);
4183 }
4184 break;
4185 }
4186
4187 switch (l4_hdr) {
4188 case IPPROTO_TCP:
4189 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4190 mss_l4len_idx = tcp_hdrlen(skb) <<
4191 E1000_ADVTXD_L4LEN_SHIFT;
4192 break;
4193 case IPPROTO_SCTP:
4194 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4195 mss_l4len_idx = sizeof(struct sctphdr) <<
4196 E1000_ADVTXD_L4LEN_SHIFT;
4197 break;
4198 case IPPROTO_UDP:
4199 mss_l4len_idx = sizeof(struct udphdr) <<
4200 E1000_ADVTXD_L4LEN_SHIFT;
4201 break;
4202 default:
4203 if (unlikely(net_ratelimit())) {
4204 dev_warn(tx_ring->dev,
4205 "partial checksum but l4 proto=%x!\n",
4206 l4_hdr);
4207 }
4208 break;
4209 }
4210
4211 /* update TX checksum flag */
4212 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4213 }
4214
4215 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4216 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4217
4218 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4219 }
4220
4221 static __le32 igb_tx_cmd_type(u32 tx_flags)
4222 {
4223 /* set type for advanced descriptor with frame checksum insertion */
4224 __le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4225 E1000_ADVTXD_DCMD_IFCS |
4226 E1000_ADVTXD_DCMD_DEXT);
4227
4228 /* set HW vlan bit if vlan is present */
4229 if (tx_flags & IGB_TX_FLAGS_VLAN)
4230 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4231
4232 /* set timestamp bit if present */
4233 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4234 cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4235
4236 /* set segmentation bits for TSO */
4237 if (tx_flags & IGB_TX_FLAGS_TSO)
4238 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4239
4240 return cmd_type;
4241 }
4242
4243 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4244 union e1000_adv_tx_desc *tx_desc,
4245 u32 tx_flags, unsigned int paylen)
4246 {
4247 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4248
4249 /* 82575 requires a unique index per ring if any offload is enabled */
4250 if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4251 test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4252 olinfo_status |= tx_ring->reg_idx << 4;
4253
4254 /* insert L4 checksum */
4255 if (tx_flags & IGB_TX_FLAGS_CSUM) {
4256 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4257
4258 /* insert IPv4 checksum */
4259 if (tx_flags & IGB_TX_FLAGS_IPV4)
4260 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4261 }
4262
4263 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4264 }
4265
4266 /*
4267 * The largest size we can write to the descriptor is 65535. In order to
4268 * maintain a power of two alignment we have to limit ourselves to 32K.
4269 */
4270 #define IGB_MAX_TXD_PWR 15
4271 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
4272
4273 static void igb_tx_map(struct igb_ring *tx_ring,
4274 struct igb_tx_buffer *first,
4275 const u8 hdr_len)
4276 {
4277 struct sk_buff *skb = first->skb;
4278 struct igb_tx_buffer *tx_buffer_info;
4279 union e1000_adv_tx_desc *tx_desc;
4280 dma_addr_t dma;
4281 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4282 unsigned int data_len = skb->data_len;
4283 unsigned int size = skb_headlen(skb);
4284 unsigned int paylen = skb->len - hdr_len;
4285 __le32 cmd_type;
4286 u32 tx_flags = first->tx_flags;
4287 u16 i = tx_ring->next_to_use;
4288
4289 tx_desc = IGB_TX_DESC(tx_ring, i);
4290
4291 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4292 cmd_type = igb_tx_cmd_type(tx_flags);
4293
4294 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4295 if (dma_mapping_error(tx_ring->dev, dma))
4296 goto dma_error;
4297
4298 /* record length, and DMA address */
4299 first->length = size;
4300 first->dma = dma;
4301 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4302
4303 for (;;) {
4304 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4305 tx_desc->read.cmd_type_len =
4306 cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4307
4308 i++;
4309 tx_desc++;
4310 if (i == tx_ring->count) {
4311 tx_desc = IGB_TX_DESC(tx_ring, 0);
4312 i = 0;
4313 }
4314
4315 dma += IGB_MAX_DATA_PER_TXD;
4316 size -= IGB_MAX_DATA_PER_TXD;
4317
4318 tx_desc->read.olinfo_status = 0;
4319 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4320 }
4321
4322 if (likely(!data_len))
4323 break;
4324
4325 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4326
4327 i++;
4328 tx_desc++;
4329 if (i == tx_ring->count) {
4330 tx_desc = IGB_TX_DESC(tx_ring, 0);
4331 i = 0;
4332 }
4333
4334 size = skb_frag_size(frag);
4335 data_len -= size;
4336
4337 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4338 size, DMA_TO_DEVICE);
4339 if (dma_mapping_error(tx_ring->dev, dma))
4340 goto dma_error;
4341
4342 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4343 tx_buffer_info->length = size;
4344 tx_buffer_info->dma = dma;
4345
4346 tx_desc->read.olinfo_status = 0;
4347 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4348
4349 frag++;
4350 }
4351
4352 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4353
4354 /* write last descriptor with RS and EOP bits */
4355 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4356 if (unlikely(skb->no_fcs))
4357 cmd_type &= ~(cpu_to_le32(E1000_ADVTXD_DCMD_IFCS));
4358 tx_desc->read.cmd_type_len = cmd_type;
4359
4360 /* set the timestamp */
4361 first->time_stamp = jiffies;
4362
4363 /*
4364 * Force memory writes to complete before letting h/w know there
4365 * are new descriptors to fetch. (Only applicable for weak-ordered
4366 * memory model archs, such as IA-64).
4367 *
4368 * We also need this memory barrier to make certain all of the
4369 * status bits have been updated before next_to_watch is written.
4370 */
4371 wmb();
4372
4373 /* set next_to_watch value indicating a packet is present */
4374 first->next_to_watch = tx_desc;
4375
4376 i++;
4377 if (i == tx_ring->count)
4378 i = 0;
4379
4380 tx_ring->next_to_use = i;
4381
4382 writel(i, tx_ring->tail);
4383
4384 /* we need this if more than one processor can write to our tail
4385 * at a time, it syncronizes IO on IA64/Altix systems */
4386 mmiowb();
4387
4388 return;
4389
4390 dma_error:
4391 dev_err(tx_ring->dev, "TX DMA map failed\n");
4392
4393 /* clear dma mappings for failed tx_buffer_info map */
4394 for (;;) {
4395 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4396 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
4397 if (tx_buffer_info == first)
4398 break;
4399 if (i == 0)
4400 i = tx_ring->count;
4401 i--;
4402 }
4403
4404 tx_ring->next_to_use = i;
4405 }
4406
4407 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4408 {
4409 struct net_device *netdev = tx_ring->netdev;
4410
4411 netif_stop_subqueue(netdev, tx_ring->queue_index);
4412
4413 /* Herbert's original patch had:
4414 * smp_mb__after_netif_stop_queue();
4415 * but since that doesn't exist yet, just open code it. */
4416 smp_mb();
4417
4418 /* We need to check again in a case another CPU has just
4419 * made room available. */
4420 if (igb_desc_unused(tx_ring) < size)
4421 return -EBUSY;
4422
4423 /* A reprieve! */
4424 netif_wake_subqueue(netdev, tx_ring->queue_index);
4425
4426 u64_stats_update_begin(&tx_ring->tx_syncp2);
4427 tx_ring->tx_stats.restart_queue2++;
4428 u64_stats_update_end(&tx_ring->tx_syncp2);
4429
4430 return 0;
4431 }
4432
4433 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4434 {
4435 if (igb_desc_unused(tx_ring) >= size)
4436 return 0;
4437 return __igb_maybe_stop_tx(tx_ring, size);
4438 }
4439
4440 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4441 struct igb_ring *tx_ring)
4442 {
4443 struct igb_tx_buffer *first;
4444 int tso;
4445 u32 tx_flags = 0;
4446 __be16 protocol = vlan_get_protocol(skb);
4447 u8 hdr_len = 0;
4448
4449 /* need: 1 descriptor per page,
4450 * + 2 desc gap to keep tail from touching head,
4451 * + 1 desc for skb->data,
4452 * + 1 desc for context descriptor,
4453 * otherwise try next time */
4454 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4455 /* this is a hard error */
4456 return NETDEV_TX_BUSY;
4457 }
4458
4459 /* record the location of the first descriptor for this packet */
4460 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4461 first->skb = skb;
4462 first->bytecount = skb->len;
4463 first->gso_segs = 1;
4464
4465 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4466 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4467 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4468 }
4469
4470 if (vlan_tx_tag_present(skb)) {
4471 tx_flags |= IGB_TX_FLAGS_VLAN;
4472 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4473 }
4474
4475 /* record initial flags and protocol */
4476 first->tx_flags = tx_flags;
4477 first->protocol = protocol;
4478
4479 tso = igb_tso(tx_ring, first, &hdr_len);
4480 if (tso < 0)
4481 goto out_drop;
4482 else if (!tso)
4483 igb_tx_csum(tx_ring, first);
4484
4485 igb_tx_map(tx_ring, first, hdr_len);
4486
4487 /* Make sure there is space in the ring for the next send. */
4488 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4489
4490 return NETDEV_TX_OK;
4491
4492 out_drop:
4493 igb_unmap_and_free_tx_resource(tx_ring, first);
4494
4495 return NETDEV_TX_OK;
4496 }
4497
4498 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4499 struct sk_buff *skb)
4500 {
4501 unsigned int r_idx = skb->queue_mapping;
4502
4503 if (r_idx >= adapter->num_tx_queues)
4504 r_idx = r_idx % adapter->num_tx_queues;
4505
4506 return adapter->tx_ring[r_idx];
4507 }
4508
4509 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4510 struct net_device *netdev)
4511 {
4512 struct igb_adapter *adapter = netdev_priv(netdev);
4513
4514 if (test_bit(__IGB_DOWN, &adapter->state)) {
4515 dev_kfree_skb_any(skb);
4516 return NETDEV_TX_OK;
4517 }
4518
4519 if (skb->len <= 0) {
4520 dev_kfree_skb_any(skb);
4521 return NETDEV_TX_OK;
4522 }
4523
4524 /*
4525 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4526 * in order to meet this minimum size requirement.
4527 */
4528 if (skb->len < 17) {
4529 if (skb_padto(skb, 17))
4530 return NETDEV_TX_OK;
4531 skb->len = 17;
4532 }
4533
4534 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4535 }
4536
4537 /**
4538 * igb_tx_timeout - Respond to a Tx Hang
4539 * @netdev: network interface device structure
4540 **/
4541 static void igb_tx_timeout(struct net_device *netdev)
4542 {
4543 struct igb_adapter *adapter = netdev_priv(netdev);
4544 struct e1000_hw *hw = &adapter->hw;
4545
4546 /* Do the reset outside of interrupt context */
4547 adapter->tx_timeout_count++;
4548
4549 if (hw->mac.type >= e1000_82580)
4550 hw->dev_spec._82575.global_device_reset = true;
4551
4552 schedule_work(&adapter->reset_task);
4553 wr32(E1000_EICS,
4554 (adapter->eims_enable_mask & ~adapter->eims_other));
4555 }
4556
4557 static void igb_reset_task(struct work_struct *work)
4558 {
4559 struct igb_adapter *adapter;
4560 adapter = container_of(work, struct igb_adapter, reset_task);
4561
4562 igb_dump(adapter);
4563 netdev_err(adapter->netdev, "Reset adapter\n");
4564 igb_reinit_locked(adapter);
4565 }
4566
4567 /**
4568 * igb_get_stats64 - Get System Network Statistics
4569 * @netdev: network interface device structure
4570 * @stats: rtnl_link_stats64 pointer
4571 *
4572 **/
4573 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4574 struct rtnl_link_stats64 *stats)
4575 {
4576 struct igb_adapter *adapter = netdev_priv(netdev);
4577
4578 spin_lock(&adapter->stats64_lock);
4579 igb_update_stats(adapter, &adapter->stats64);
4580 memcpy(stats, &adapter->stats64, sizeof(*stats));
4581 spin_unlock(&adapter->stats64_lock);
4582
4583 return stats;
4584 }
4585
4586 /**
4587 * igb_change_mtu - Change the Maximum Transfer Unit
4588 * @netdev: network interface device structure
4589 * @new_mtu: new value for maximum frame size
4590 *
4591 * Returns 0 on success, negative on failure
4592 **/
4593 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4594 {
4595 struct igb_adapter *adapter = netdev_priv(netdev);
4596 struct pci_dev *pdev = adapter->pdev;
4597 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4598
4599 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4600 dev_err(&pdev->dev, "Invalid MTU setting\n");
4601 return -EINVAL;
4602 }
4603
4604 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4605 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4606 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4607 return -EINVAL;
4608 }
4609
4610 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4611 msleep(1);
4612
4613 /* igb_down has a dependency on max_frame_size */
4614 adapter->max_frame_size = max_frame;
4615
4616 if (netif_running(netdev))
4617 igb_down(adapter);
4618
4619 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4620 netdev->mtu, new_mtu);
4621 netdev->mtu = new_mtu;
4622
4623 if (netif_running(netdev))
4624 igb_up(adapter);
4625 else
4626 igb_reset(adapter);
4627
4628 clear_bit(__IGB_RESETTING, &adapter->state);
4629
4630 return 0;
4631 }
4632
4633 /**
4634 * igb_update_stats - Update the board statistics counters
4635 * @adapter: board private structure
4636 **/
4637
4638 void igb_update_stats(struct igb_adapter *adapter,
4639 struct rtnl_link_stats64 *net_stats)
4640 {
4641 struct e1000_hw *hw = &adapter->hw;
4642 struct pci_dev *pdev = adapter->pdev;
4643 u32 reg, mpc;
4644 u16 phy_tmp;
4645 int i;
4646 u64 bytes, packets;
4647 unsigned int start;
4648 u64 _bytes, _packets;
4649
4650 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4651
4652 /*
4653 * Prevent stats update while adapter is being reset, or if the pci
4654 * connection is down.
4655 */
4656 if (adapter->link_speed == 0)
4657 return;
4658 if (pci_channel_offline(pdev))
4659 return;
4660
4661 bytes = 0;
4662 packets = 0;
4663 for (i = 0; i < adapter->num_rx_queues; i++) {
4664 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4665 struct igb_ring *ring = adapter->rx_ring[i];
4666
4667 ring->rx_stats.drops += rqdpc_tmp;
4668 net_stats->rx_fifo_errors += rqdpc_tmp;
4669
4670 do {
4671 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4672 _bytes = ring->rx_stats.bytes;
4673 _packets = ring->rx_stats.packets;
4674 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4675 bytes += _bytes;
4676 packets += _packets;
4677 }
4678
4679 net_stats->rx_bytes = bytes;
4680 net_stats->rx_packets = packets;
4681
4682 bytes = 0;
4683 packets = 0;
4684 for (i = 0; i < adapter->num_tx_queues; i++) {
4685 struct igb_ring *ring = adapter->tx_ring[i];
4686 do {
4687 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4688 _bytes = ring->tx_stats.bytes;
4689 _packets = ring->tx_stats.packets;
4690 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4691 bytes += _bytes;
4692 packets += _packets;
4693 }
4694 net_stats->tx_bytes = bytes;
4695 net_stats->tx_packets = packets;
4696
4697 /* read stats registers */
4698 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4699 adapter->stats.gprc += rd32(E1000_GPRC);
4700 adapter->stats.gorc += rd32(E1000_GORCL);
4701 rd32(E1000_GORCH); /* clear GORCL */
4702 adapter->stats.bprc += rd32(E1000_BPRC);
4703 adapter->stats.mprc += rd32(E1000_MPRC);
4704 adapter->stats.roc += rd32(E1000_ROC);
4705
4706 adapter->stats.prc64 += rd32(E1000_PRC64);
4707 adapter->stats.prc127 += rd32(E1000_PRC127);
4708 adapter->stats.prc255 += rd32(E1000_PRC255);
4709 adapter->stats.prc511 += rd32(E1000_PRC511);
4710 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4711 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4712 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4713 adapter->stats.sec += rd32(E1000_SEC);
4714
4715 mpc = rd32(E1000_MPC);
4716 adapter->stats.mpc += mpc;
4717 net_stats->rx_fifo_errors += mpc;
4718 adapter->stats.scc += rd32(E1000_SCC);
4719 adapter->stats.ecol += rd32(E1000_ECOL);
4720 adapter->stats.mcc += rd32(E1000_MCC);
4721 adapter->stats.latecol += rd32(E1000_LATECOL);
4722 adapter->stats.dc += rd32(E1000_DC);
4723 adapter->stats.rlec += rd32(E1000_RLEC);
4724 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4725 adapter->stats.xontxc += rd32(E1000_XONTXC);
4726 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4727 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4728 adapter->stats.fcruc += rd32(E1000_FCRUC);
4729 adapter->stats.gptc += rd32(E1000_GPTC);
4730 adapter->stats.gotc += rd32(E1000_GOTCL);
4731 rd32(E1000_GOTCH); /* clear GOTCL */
4732 adapter->stats.rnbc += rd32(E1000_RNBC);
4733 adapter->stats.ruc += rd32(E1000_RUC);
4734 adapter->stats.rfc += rd32(E1000_RFC);
4735 adapter->stats.rjc += rd32(E1000_RJC);
4736 adapter->stats.tor += rd32(E1000_TORH);
4737 adapter->stats.tot += rd32(E1000_TOTH);
4738 adapter->stats.tpr += rd32(E1000_TPR);
4739
4740 adapter->stats.ptc64 += rd32(E1000_PTC64);
4741 adapter->stats.ptc127 += rd32(E1000_PTC127);
4742 adapter->stats.ptc255 += rd32(E1000_PTC255);
4743 adapter->stats.ptc511 += rd32(E1000_PTC511);
4744 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4745 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4746
4747 adapter->stats.mptc += rd32(E1000_MPTC);
4748 adapter->stats.bptc += rd32(E1000_BPTC);
4749
4750 adapter->stats.tpt += rd32(E1000_TPT);
4751 adapter->stats.colc += rd32(E1000_COLC);
4752
4753 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4754 /* read internal phy specific stats */
4755 reg = rd32(E1000_CTRL_EXT);
4756 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4757 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4758 adapter->stats.tncrs += rd32(E1000_TNCRS);
4759 }
4760
4761 adapter->stats.tsctc += rd32(E1000_TSCTC);
4762 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4763
4764 adapter->stats.iac += rd32(E1000_IAC);
4765 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4766 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4767 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4768 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4769 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4770 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4771 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4772 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4773
4774 /* Fill out the OS statistics structure */
4775 net_stats->multicast = adapter->stats.mprc;
4776 net_stats->collisions = adapter->stats.colc;
4777
4778 /* Rx Errors */
4779
4780 /* RLEC on some newer hardware can be incorrect so build
4781 * our own version based on RUC and ROC */
4782 net_stats->rx_errors = adapter->stats.rxerrc +
4783 adapter->stats.crcerrs + adapter->stats.algnerrc +
4784 adapter->stats.ruc + adapter->stats.roc +
4785 adapter->stats.cexterr;
4786 net_stats->rx_length_errors = adapter->stats.ruc +
4787 adapter->stats.roc;
4788 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4789 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4790 net_stats->rx_missed_errors = adapter->stats.mpc;
4791
4792 /* Tx Errors */
4793 net_stats->tx_errors = adapter->stats.ecol +
4794 adapter->stats.latecol;
4795 net_stats->tx_aborted_errors = adapter->stats.ecol;
4796 net_stats->tx_window_errors = adapter->stats.latecol;
4797 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4798
4799 /* Tx Dropped needs to be maintained elsewhere */
4800
4801 /* Phy Stats */
4802 if (hw->phy.media_type == e1000_media_type_copper) {
4803 if ((adapter->link_speed == SPEED_1000) &&
4804 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4805 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4806 adapter->phy_stats.idle_errors += phy_tmp;
4807 }
4808 }
4809
4810 /* Management Stats */
4811 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4812 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4813 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4814
4815 /* OS2BMC Stats */
4816 reg = rd32(E1000_MANC);
4817 if (reg & E1000_MANC_EN_BMC2OS) {
4818 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4819 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4820 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4821 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4822 }
4823 }
4824
4825 static irqreturn_t igb_msix_other(int irq, void *data)
4826 {
4827 struct igb_adapter *adapter = data;
4828 struct e1000_hw *hw = &adapter->hw;
4829 u32 icr = rd32(E1000_ICR);
4830 /* reading ICR causes bit 31 of EICR to be cleared */
4831
4832 if (icr & E1000_ICR_DRSTA)
4833 schedule_work(&adapter->reset_task);
4834
4835 if (icr & E1000_ICR_DOUTSYNC) {
4836 /* HW is reporting DMA is out of sync */
4837 adapter->stats.doosync++;
4838 /* The DMA Out of Sync is also indication of a spoof event
4839 * in IOV mode. Check the Wrong VM Behavior register to
4840 * see if it is really a spoof event. */
4841 igb_check_wvbr(adapter);
4842 }
4843
4844 /* Check for a mailbox event */
4845 if (icr & E1000_ICR_VMMB)
4846 igb_msg_task(adapter);
4847
4848 if (icr & E1000_ICR_LSC) {
4849 hw->mac.get_link_status = 1;
4850 /* guard against interrupt when we're going down */
4851 if (!test_bit(__IGB_DOWN, &adapter->state))
4852 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4853 }
4854
4855 wr32(E1000_EIMS, adapter->eims_other);
4856
4857 return IRQ_HANDLED;
4858 }
4859
4860 static void igb_write_itr(struct igb_q_vector *q_vector)
4861 {
4862 struct igb_adapter *adapter = q_vector->adapter;
4863 u32 itr_val = q_vector->itr_val & 0x7FFC;
4864
4865 if (!q_vector->set_itr)
4866 return;
4867
4868 if (!itr_val)
4869 itr_val = 0x4;
4870
4871 if (adapter->hw.mac.type == e1000_82575)
4872 itr_val |= itr_val << 16;
4873 else
4874 itr_val |= E1000_EITR_CNT_IGNR;
4875
4876 writel(itr_val, q_vector->itr_register);
4877 q_vector->set_itr = 0;
4878 }
4879
4880 static irqreturn_t igb_msix_ring(int irq, void *data)
4881 {
4882 struct igb_q_vector *q_vector = data;
4883
4884 /* Write the ITR value calculated from the previous interrupt. */
4885 igb_write_itr(q_vector);
4886
4887 napi_schedule(&q_vector->napi);
4888
4889 return IRQ_HANDLED;
4890 }
4891
4892 #ifdef CONFIG_IGB_DCA
4893 static void igb_update_dca(struct igb_q_vector *q_vector)
4894 {
4895 struct igb_adapter *adapter = q_vector->adapter;
4896 struct e1000_hw *hw = &adapter->hw;
4897 int cpu = get_cpu();
4898
4899 if (q_vector->cpu == cpu)
4900 goto out_no_update;
4901
4902 if (q_vector->tx.ring) {
4903 int q = q_vector->tx.ring->reg_idx;
4904 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4905 if (hw->mac.type == e1000_82575) {
4906 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4907 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4908 } else {
4909 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4910 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4911 E1000_DCA_TXCTRL_CPUID_SHIFT;
4912 }
4913 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4914 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4915 }
4916 if (q_vector->rx.ring) {
4917 int q = q_vector->rx.ring->reg_idx;
4918 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4919 if (hw->mac.type == e1000_82575) {
4920 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4921 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4922 } else {
4923 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4924 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4925 E1000_DCA_RXCTRL_CPUID_SHIFT;
4926 }
4927 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4928 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4929 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4930 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4931 }
4932 q_vector->cpu = cpu;
4933 out_no_update:
4934 put_cpu();
4935 }
4936
4937 static void igb_setup_dca(struct igb_adapter *adapter)
4938 {
4939 struct e1000_hw *hw = &adapter->hw;
4940 int i;
4941
4942 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4943 return;
4944
4945 /* Always use CB2 mode, difference is masked in the CB driver. */
4946 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4947
4948 for (i = 0; i < adapter->num_q_vectors; i++) {
4949 adapter->q_vector[i]->cpu = -1;
4950 igb_update_dca(adapter->q_vector[i]);
4951 }
4952 }
4953
4954 static int __igb_notify_dca(struct device *dev, void *data)
4955 {
4956 struct net_device *netdev = dev_get_drvdata(dev);
4957 struct igb_adapter *adapter = netdev_priv(netdev);
4958 struct pci_dev *pdev = adapter->pdev;
4959 struct e1000_hw *hw = &adapter->hw;
4960 unsigned long event = *(unsigned long *)data;
4961
4962 switch (event) {
4963 case DCA_PROVIDER_ADD:
4964 /* if already enabled, don't do it again */
4965 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4966 break;
4967 if (dca_add_requester(dev) == 0) {
4968 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4969 dev_info(&pdev->dev, "DCA enabled\n");
4970 igb_setup_dca(adapter);
4971 break;
4972 }
4973 /* Fall Through since DCA is disabled. */
4974 case DCA_PROVIDER_REMOVE:
4975 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4976 /* without this a class_device is left
4977 * hanging around in the sysfs model */
4978 dca_remove_requester(dev);
4979 dev_info(&pdev->dev, "DCA disabled\n");
4980 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4981 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4982 }
4983 break;
4984 }
4985
4986 return 0;
4987 }
4988
4989 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4990 void *p)
4991 {
4992 int ret_val;
4993
4994 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4995 __igb_notify_dca);
4996
4997 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4998 }
4999 #endif /* CONFIG_IGB_DCA */
5000
5001 #ifdef CONFIG_PCI_IOV
5002 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5003 {
5004 unsigned char mac_addr[ETH_ALEN];
5005 struct pci_dev *pdev = adapter->pdev;
5006 struct e1000_hw *hw = &adapter->hw;
5007 struct pci_dev *pvfdev;
5008 unsigned int device_id;
5009 u16 thisvf_devfn;
5010
5011 eth_random_addr(mac_addr);
5012 igb_set_vf_mac(adapter, vf, mac_addr);
5013
5014 switch (adapter->hw.mac.type) {
5015 case e1000_82576:
5016 device_id = IGB_82576_VF_DEV_ID;
5017 /* VF Stride for 82576 is 2 */
5018 thisvf_devfn = (pdev->devfn + 0x80 + (vf << 1)) |
5019 (pdev->devfn & 1);
5020 break;
5021 case e1000_i350:
5022 device_id = IGB_I350_VF_DEV_ID;
5023 /* VF Stride for I350 is 4 */
5024 thisvf_devfn = (pdev->devfn + 0x80 + (vf << 2)) |
5025 (pdev->devfn & 3);
5026 break;
5027 default:
5028 device_id = 0;
5029 thisvf_devfn = 0;
5030 break;
5031 }
5032
5033 pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
5034 while (pvfdev) {
5035 if (pvfdev->devfn == thisvf_devfn)
5036 break;
5037 pvfdev = pci_get_device(hw->vendor_id,
5038 device_id, pvfdev);
5039 }
5040
5041 if (pvfdev)
5042 adapter->vf_data[vf].vfdev = pvfdev;
5043 else
5044 dev_err(&pdev->dev,
5045 "Couldn't find pci dev ptr for VF %4.4x\n",
5046 thisvf_devfn);
5047 return pvfdev != NULL;
5048 }
5049
5050 static int igb_find_enabled_vfs(struct igb_adapter *adapter)
5051 {
5052 struct e1000_hw *hw = &adapter->hw;
5053 struct pci_dev *pdev = adapter->pdev;
5054 struct pci_dev *pvfdev;
5055 u16 vf_devfn = 0;
5056 u16 vf_stride;
5057 unsigned int device_id;
5058 int vfs_found = 0;
5059
5060 switch (adapter->hw.mac.type) {
5061 case e1000_82576:
5062 device_id = IGB_82576_VF_DEV_ID;
5063 /* VF Stride for 82576 is 2 */
5064 vf_stride = 2;
5065 break;
5066 case e1000_i350:
5067 device_id = IGB_I350_VF_DEV_ID;
5068 /* VF Stride for I350 is 4 */
5069 vf_stride = 4;
5070 break;
5071 default:
5072 device_id = 0;
5073 vf_stride = 0;
5074 break;
5075 }
5076
5077 vf_devfn = pdev->devfn + 0x80;
5078 pvfdev = pci_get_device(hw->vendor_id, device_id, NULL);
5079 while (pvfdev) {
5080 if (pvfdev->devfn == vf_devfn &&
5081 (pvfdev->bus->number >= pdev->bus->number))
5082 vfs_found++;
5083 vf_devfn += vf_stride;
5084 pvfdev = pci_get_device(hw->vendor_id,
5085 device_id, pvfdev);
5086 }
5087
5088 return vfs_found;
5089 }
5090
5091 static int igb_check_vf_assignment(struct igb_adapter *adapter)
5092 {
5093 int i;
5094 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5095 if (adapter->vf_data[i].vfdev) {
5096 if (adapter->vf_data[i].vfdev->dev_flags &
5097 PCI_DEV_FLAGS_ASSIGNED)
5098 return true;
5099 }
5100 }
5101 return false;
5102 }
5103
5104 #endif
5105 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5106 {
5107 struct e1000_hw *hw = &adapter->hw;
5108 u32 ping;
5109 int i;
5110
5111 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5112 ping = E1000_PF_CONTROL_MSG;
5113 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5114 ping |= E1000_VT_MSGTYPE_CTS;
5115 igb_write_mbx(hw, &ping, 1, i);
5116 }
5117 }
5118
5119 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5120 {
5121 struct e1000_hw *hw = &adapter->hw;
5122 u32 vmolr = rd32(E1000_VMOLR(vf));
5123 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5124
5125 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5126 IGB_VF_FLAG_MULTI_PROMISC);
5127 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5128
5129 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5130 vmolr |= E1000_VMOLR_MPME;
5131 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5132 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5133 } else {
5134 /*
5135 * if we have hashes and we are clearing a multicast promisc
5136 * flag we need to write the hashes to the MTA as this step
5137 * was previously skipped
5138 */
5139 if (vf_data->num_vf_mc_hashes > 30) {
5140 vmolr |= E1000_VMOLR_MPME;
5141 } else if (vf_data->num_vf_mc_hashes) {
5142 int j;
5143 vmolr |= E1000_VMOLR_ROMPE;
5144 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5145 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5146 }
5147 }
5148
5149 wr32(E1000_VMOLR(vf), vmolr);
5150
5151 /* there are flags left unprocessed, likely not supported */
5152 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5153 return -EINVAL;
5154
5155 return 0;
5156
5157 }
5158
5159 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5160 u32 *msgbuf, u32 vf)
5161 {
5162 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5163 u16 *hash_list = (u16 *)&msgbuf[1];
5164 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5165 int i;
5166
5167 /* salt away the number of multicast addresses assigned
5168 * to this VF for later use to restore when the PF multi cast
5169 * list changes
5170 */
5171 vf_data->num_vf_mc_hashes = n;
5172
5173 /* only up to 30 hash values supported */
5174 if (n > 30)
5175 n = 30;
5176
5177 /* store the hashes for later use */
5178 for (i = 0; i < n; i++)
5179 vf_data->vf_mc_hashes[i] = hash_list[i];
5180
5181 /* Flush and reset the mta with the new values */
5182 igb_set_rx_mode(adapter->netdev);
5183
5184 return 0;
5185 }
5186
5187 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5188 {
5189 struct e1000_hw *hw = &adapter->hw;
5190 struct vf_data_storage *vf_data;
5191 int i, j;
5192
5193 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5194 u32 vmolr = rd32(E1000_VMOLR(i));
5195 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5196
5197 vf_data = &adapter->vf_data[i];
5198
5199 if ((vf_data->num_vf_mc_hashes > 30) ||
5200 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5201 vmolr |= E1000_VMOLR_MPME;
5202 } else if (vf_data->num_vf_mc_hashes) {
5203 vmolr |= E1000_VMOLR_ROMPE;
5204 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5205 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5206 }
5207 wr32(E1000_VMOLR(i), vmolr);
5208 }
5209 }
5210
5211 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5212 {
5213 struct e1000_hw *hw = &adapter->hw;
5214 u32 pool_mask, reg, vid;
5215 int i;
5216
5217 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5218
5219 /* Find the vlan filter for this id */
5220 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5221 reg = rd32(E1000_VLVF(i));
5222
5223 /* remove the vf from the pool */
5224 reg &= ~pool_mask;
5225
5226 /* if pool is empty then remove entry from vfta */
5227 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5228 (reg & E1000_VLVF_VLANID_ENABLE)) {
5229 reg = 0;
5230 vid = reg & E1000_VLVF_VLANID_MASK;
5231 igb_vfta_set(hw, vid, false);
5232 }
5233
5234 wr32(E1000_VLVF(i), reg);
5235 }
5236
5237 adapter->vf_data[vf].vlans_enabled = 0;
5238 }
5239
5240 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5241 {
5242 struct e1000_hw *hw = &adapter->hw;
5243 u32 reg, i;
5244
5245 /* The vlvf table only exists on 82576 hardware and newer */
5246 if (hw->mac.type < e1000_82576)
5247 return -1;
5248
5249 /* we only need to do this if VMDq is enabled */
5250 if (!adapter->vfs_allocated_count)
5251 return -1;
5252
5253 /* Find the vlan filter for this id */
5254 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5255 reg = rd32(E1000_VLVF(i));
5256 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5257 vid == (reg & E1000_VLVF_VLANID_MASK))
5258 break;
5259 }
5260
5261 if (add) {
5262 if (i == E1000_VLVF_ARRAY_SIZE) {
5263 /* Did not find a matching VLAN ID entry that was
5264 * enabled. Search for a free filter entry, i.e.
5265 * one without the enable bit set
5266 */
5267 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5268 reg = rd32(E1000_VLVF(i));
5269 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5270 break;
5271 }
5272 }
5273 if (i < E1000_VLVF_ARRAY_SIZE) {
5274 /* Found an enabled/available entry */
5275 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5276
5277 /* if !enabled we need to set this up in vfta */
5278 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5279 /* add VID to filter table */
5280 igb_vfta_set(hw, vid, true);
5281 reg |= E1000_VLVF_VLANID_ENABLE;
5282 }
5283 reg &= ~E1000_VLVF_VLANID_MASK;
5284 reg |= vid;
5285 wr32(E1000_VLVF(i), reg);
5286
5287 /* do not modify RLPML for PF devices */
5288 if (vf >= adapter->vfs_allocated_count)
5289 return 0;
5290
5291 if (!adapter->vf_data[vf].vlans_enabled) {
5292 u32 size;
5293 reg = rd32(E1000_VMOLR(vf));
5294 size = reg & E1000_VMOLR_RLPML_MASK;
5295 size += 4;
5296 reg &= ~E1000_VMOLR_RLPML_MASK;
5297 reg |= size;
5298 wr32(E1000_VMOLR(vf), reg);
5299 }
5300
5301 adapter->vf_data[vf].vlans_enabled++;
5302 }
5303 } else {
5304 if (i < E1000_VLVF_ARRAY_SIZE) {
5305 /* remove vf from the pool */
5306 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5307 /* if pool is empty then remove entry from vfta */
5308 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5309 reg = 0;
5310 igb_vfta_set(hw, vid, false);
5311 }
5312 wr32(E1000_VLVF(i), reg);
5313
5314 /* do not modify RLPML for PF devices */
5315 if (vf >= adapter->vfs_allocated_count)
5316 return 0;
5317
5318 adapter->vf_data[vf].vlans_enabled--;
5319 if (!adapter->vf_data[vf].vlans_enabled) {
5320 u32 size;
5321 reg = rd32(E1000_VMOLR(vf));
5322 size = reg & E1000_VMOLR_RLPML_MASK;
5323 size -= 4;
5324 reg &= ~E1000_VMOLR_RLPML_MASK;
5325 reg |= size;
5326 wr32(E1000_VMOLR(vf), reg);
5327 }
5328 }
5329 }
5330 return 0;
5331 }
5332
5333 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5334 {
5335 struct e1000_hw *hw = &adapter->hw;
5336
5337 if (vid)
5338 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5339 else
5340 wr32(E1000_VMVIR(vf), 0);
5341 }
5342
5343 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5344 int vf, u16 vlan, u8 qos)
5345 {
5346 int err = 0;
5347 struct igb_adapter *adapter = netdev_priv(netdev);
5348
5349 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5350 return -EINVAL;
5351 if (vlan || qos) {
5352 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5353 if (err)
5354 goto out;
5355 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5356 igb_set_vmolr(adapter, vf, !vlan);
5357 adapter->vf_data[vf].pf_vlan = vlan;
5358 adapter->vf_data[vf].pf_qos = qos;
5359 dev_info(&adapter->pdev->dev,
5360 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5361 if (test_bit(__IGB_DOWN, &adapter->state)) {
5362 dev_warn(&adapter->pdev->dev,
5363 "The VF VLAN has been set,"
5364 " but the PF device is not up.\n");
5365 dev_warn(&adapter->pdev->dev,
5366 "Bring the PF device up before"
5367 " attempting to use the VF device.\n");
5368 }
5369 } else {
5370 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5371 false, vf);
5372 igb_set_vmvir(adapter, vlan, vf);
5373 igb_set_vmolr(adapter, vf, true);
5374 adapter->vf_data[vf].pf_vlan = 0;
5375 adapter->vf_data[vf].pf_qos = 0;
5376 }
5377 out:
5378 return err;
5379 }
5380
5381 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5382 {
5383 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5384 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5385
5386 return igb_vlvf_set(adapter, vid, add, vf);
5387 }
5388
5389 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5390 {
5391 /* clear flags - except flag that indicates PF has set the MAC */
5392 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5393 adapter->vf_data[vf].last_nack = jiffies;
5394
5395 /* reset offloads to defaults */
5396 igb_set_vmolr(adapter, vf, true);
5397
5398 /* reset vlans for device */
5399 igb_clear_vf_vfta(adapter, vf);
5400 if (adapter->vf_data[vf].pf_vlan)
5401 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5402 adapter->vf_data[vf].pf_vlan,
5403 adapter->vf_data[vf].pf_qos);
5404 else
5405 igb_clear_vf_vfta(adapter, vf);
5406
5407 /* reset multicast table array for vf */
5408 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5409
5410 /* Flush and reset the mta with the new values */
5411 igb_set_rx_mode(adapter->netdev);
5412 }
5413
5414 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5415 {
5416 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5417
5418 /* generate a new mac address as we were hotplug removed/added */
5419 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5420 eth_random_addr(vf_mac);
5421
5422 /* process remaining reset events */
5423 igb_vf_reset(adapter, vf);
5424 }
5425
5426 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5427 {
5428 struct e1000_hw *hw = &adapter->hw;
5429 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5430 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5431 u32 reg, msgbuf[3];
5432 u8 *addr = (u8 *)(&msgbuf[1]);
5433
5434 /* process all the same items cleared in a function level reset */
5435 igb_vf_reset(adapter, vf);
5436
5437 /* set vf mac address */
5438 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5439
5440 /* enable transmit and receive for vf */
5441 reg = rd32(E1000_VFTE);
5442 wr32(E1000_VFTE, reg | (1 << vf));
5443 reg = rd32(E1000_VFRE);
5444 wr32(E1000_VFRE, reg | (1 << vf));
5445
5446 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5447
5448 /* reply to reset with ack and vf mac address */
5449 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5450 memcpy(addr, vf_mac, 6);
5451 igb_write_mbx(hw, msgbuf, 3, vf);
5452 }
5453
5454 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5455 {
5456 /*
5457 * The VF MAC Address is stored in a packed array of bytes
5458 * starting at the second 32 bit word of the msg array
5459 */
5460 unsigned char *addr = (char *)&msg[1];
5461 int err = -1;
5462
5463 if (is_valid_ether_addr(addr))
5464 err = igb_set_vf_mac(adapter, vf, addr);
5465
5466 return err;
5467 }
5468
5469 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5470 {
5471 struct e1000_hw *hw = &adapter->hw;
5472 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5473 u32 msg = E1000_VT_MSGTYPE_NACK;
5474
5475 /* if device isn't clear to send it shouldn't be reading either */
5476 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5477 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5478 igb_write_mbx(hw, &msg, 1, vf);
5479 vf_data->last_nack = jiffies;
5480 }
5481 }
5482
5483 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5484 {
5485 struct pci_dev *pdev = adapter->pdev;
5486 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5487 struct e1000_hw *hw = &adapter->hw;
5488 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5489 s32 retval;
5490
5491 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5492
5493 if (retval) {
5494 /* if receive failed revoke VF CTS stats and restart init */
5495 dev_err(&pdev->dev, "Error receiving message from VF\n");
5496 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5497 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5498 return;
5499 goto out;
5500 }
5501
5502 /* this is a message we already processed, do nothing */
5503 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5504 return;
5505
5506 /*
5507 * until the vf completes a reset it should not be
5508 * allowed to start any configuration.
5509 */
5510
5511 if (msgbuf[0] == E1000_VF_RESET) {
5512 igb_vf_reset_msg(adapter, vf);
5513 return;
5514 }
5515
5516 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5517 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5518 return;
5519 retval = -1;
5520 goto out;
5521 }
5522
5523 switch ((msgbuf[0] & 0xFFFF)) {
5524 case E1000_VF_SET_MAC_ADDR:
5525 retval = -EINVAL;
5526 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5527 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5528 else
5529 dev_warn(&pdev->dev,
5530 "VF %d attempted to override administratively "
5531 "set MAC address\nReload the VF driver to "
5532 "resume operations\n", vf);
5533 break;
5534 case E1000_VF_SET_PROMISC:
5535 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5536 break;
5537 case E1000_VF_SET_MULTICAST:
5538 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5539 break;
5540 case E1000_VF_SET_LPE:
5541 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5542 break;
5543 case E1000_VF_SET_VLAN:
5544 retval = -1;
5545 if (vf_data->pf_vlan)
5546 dev_warn(&pdev->dev,
5547 "VF %d attempted to override administratively "
5548 "set VLAN tag\nReload the VF driver to "
5549 "resume operations\n", vf);
5550 else
5551 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5552 break;
5553 default:
5554 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5555 retval = -1;
5556 break;
5557 }
5558
5559 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5560 out:
5561 /* notify the VF of the results of what it sent us */
5562 if (retval)
5563 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5564 else
5565 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5566
5567 igb_write_mbx(hw, msgbuf, 1, vf);
5568 }
5569
5570 static void igb_msg_task(struct igb_adapter *adapter)
5571 {
5572 struct e1000_hw *hw = &adapter->hw;
5573 u32 vf;
5574
5575 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5576 /* process any reset requests */
5577 if (!igb_check_for_rst(hw, vf))
5578 igb_vf_reset_event(adapter, vf);
5579
5580 /* process any messages pending */
5581 if (!igb_check_for_msg(hw, vf))
5582 igb_rcv_msg_from_vf(adapter, vf);
5583
5584 /* process any acks */
5585 if (!igb_check_for_ack(hw, vf))
5586 igb_rcv_ack_from_vf(adapter, vf);
5587 }
5588 }
5589
5590 /**
5591 * igb_set_uta - Set unicast filter table address
5592 * @adapter: board private structure
5593 *
5594 * The unicast table address is a register array of 32-bit registers.
5595 * The table is meant to be used in a way similar to how the MTA is used
5596 * however due to certain limitations in the hardware it is necessary to
5597 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5598 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
5599 **/
5600 static void igb_set_uta(struct igb_adapter *adapter)
5601 {
5602 struct e1000_hw *hw = &adapter->hw;
5603 int i;
5604
5605 /* The UTA table only exists on 82576 hardware and newer */
5606 if (hw->mac.type < e1000_82576)
5607 return;
5608
5609 /* we only need to do this if VMDq is enabled */
5610 if (!adapter->vfs_allocated_count)
5611 return;
5612
5613 for (i = 0; i < hw->mac.uta_reg_count; i++)
5614 array_wr32(E1000_UTA, i, ~0);
5615 }
5616
5617 /**
5618 * igb_intr_msi - Interrupt Handler
5619 * @irq: interrupt number
5620 * @data: pointer to a network interface device structure
5621 **/
5622 static irqreturn_t igb_intr_msi(int irq, void *data)
5623 {
5624 struct igb_adapter *adapter = data;
5625 struct igb_q_vector *q_vector = adapter->q_vector[0];
5626 struct e1000_hw *hw = &adapter->hw;
5627 /* read ICR disables interrupts using IAM */
5628 u32 icr = rd32(E1000_ICR);
5629
5630 igb_write_itr(q_vector);
5631
5632 if (icr & E1000_ICR_DRSTA)
5633 schedule_work(&adapter->reset_task);
5634
5635 if (icr & E1000_ICR_DOUTSYNC) {
5636 /* HW is reporting DMA is out of sync */
5637 adapter->stats.doosync++;
5638 }
5639
5640 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5641 hw->mac.get_link_status = 1;
5642 if (!test_bit(__IGB_DOWN, &adapter->state))
5643 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5644 }
5645
5646 napi_schedule(&q_vector->napi);
5647
5648 return IRQ_HANDLED;
5649 }
5650
5651 /**
5652 * igb_intr - Legacy Interrupt Handler
5653 * @irq: interrupt number
5654 * @data: pointer to a network interface device structure
5655 **/
5656 static irqreturn_t igb_intr(int irq, void *data)
5657 {
5658 struct igb_adapter *adapter = data;
5659 struct igb_q_vector *q_vector = adapter->q_vector[0];
5660 struct e1000_hw *hw = &adapter->hw;
5661 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5662 * need for the IMC write */
5663 u32 icr = rd32(E1000_ICR);
5664
5665 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5666 * not set, then the adapter didn't send an interrupt */
5667 if (!(icr & E1000_ICR_INT_ASSERTED))
5668 return IRQ_NONE;
5669
5670 igb_write_itr(q_vector);
5671
5672 if (icr & E1000_ICR_DRSTA)
5673 schedule_work(&adapter->reset_task);
5674
5675 if (icr & E1000_ICR_DOUTSYNC) {
5676 /* HW is reporting DMA is out of sync */
5677 adapter->stats.doosync++;
5678 }
5679
5680 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5681 hw->mac.get_link_status = 1;
5682 /* guard against interrupt when we're going down */
5683 if (!test_bit(__IGB_DOWN, &adapter->state))
5684 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5685 }
5686
5687 napi_schedule(&q_vector->napi);
5688
5689 return IRQ_HANDLED;
5690 }
5691
5692 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5693 {
5694 struct igb_adapter *adapter = q_vector->adapter;
5695 struct e1000_hw *hw = &adapter->hw;
5696
5697 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5698 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5699 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5700 igb_set_itr(q_vector);
5701 else
5702 igb_update_ring_itr(q_vector);
5703 }
5704
5705 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5706 if (adapter->msix_entries)
5707 wr32(E1000_EIMS, q_vector->eims_value);
5708 else
5709 igb_irq_enable(adapter);
5710 }
5711 }
5712
5713 /**
5714 * igb_poll - NAPI Rx polling callback
5715 * @napi: napi polling structure
5716 * @budget: count of how many packets we should handle
5717 **/
5718 static int igb_poll(struct napi_struct *napi, int budget)
5719 {
5720 struct igb_q_vector *q_vector = container_of(napi,
5721 struct igb_q_vector,
5722 napi);
5723 bool clean_complete = true;
5724
5725 #ifdef CONFIG_IGB_DCA
5726 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5727 igb_update_dca(q_vector);
5728 #endif
5729 if (q_vector->tx.ring)
5730 clean_complete = igb_clean_tx_irq(q_vector);
5731
5732 if (q_vector->rx.ring)
5733 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5734
5735 /* If all work not completed, return budget and keep polling */
5736 if (!clean_complete)
5737 return budget;
5738
5739 /* If not enough Rx work done, exit the polling mode */
5740 napi_complete(napi);
5741 igb_ring_irq_enable(q_vector);
5742
5743 return 0;
5744 }
5745
5746 #ifdef CONFIG_IGB_PTP
5747 /**
5748 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5749 * @q_vector: pointer to q_vector containing needed info
5750 * @buffer: pointer to igb_tx_buffer structure
5751 *
5752 * If we were asked to do hardware stamping and such a time stamp is
5753 * available, then it must have been for this skb here because we only
5754 * allow only one such packet into the queue.
5755 */
5756 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
5757 struct igb_tx_buffer *buffer_info)
5758 {
5759 struct igb_adapter *adapter = q_vector->adapter;
5760 struct e1000_hw *hw = &adapter->hw;
5761 struct skb_shared_hwtstamps shhwtstamps;
5762 u64 regval;
5763
5764 /* if skb does not support hw timestamp or TX stamp not valid exit */
5765 if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
5766 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5767 return;
5768
5769 regval = rd32(E1000_TXSTMPL);
5770 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5771
5772 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5773 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5774 }
5775
5776 #endif
5777 /**
5778 * igb_clean_tx_irq - Reclaim resources after transmit completes
5779 * @q_vector: pointer to q_vector containing needed info
5780 *
5781 * returns true if ring is completely cleaned
5782 **/
5783 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5784 {
5785 struct igb_adapter *adapter = q_vector->adapter;
5786 struct igb_ring *tx_ring = q_vector->tx.ring;
5787 struct igb_tx_buffer *tx_buffer;
5788 union e1000_adv_tx_desc *tx_desc, *eop_desc;
5789 unsigned int total_bytes = 0, total_packets = 0;
5790 unsigned int budget = q_vector->tx.work_limit;
5791 unsigned int i = tx_ring->next_to_clean;
5792
5793 if (test_bit(__IGB_DOWN, &adapter->state))
5794 return true;
5795
5796 tx_buffer = &tx_ring->tx_buffer_info[i];
5797 tx_desc = IGB_TX_DESC(tx_ring, i);
5798 i -= tx_ring->count;
5799
5800 for (; budget; budget--) {
5801 eop_desc = tx_buffer->next_to_watch;
5802
5803 /* prevent any other reads prior to eop_desc */
5804 rmb();
5805
5806 /* if next_to_watch is not set then there is no work pending */
5807 if (!eop_desc)
5808 break;
5809
5810 /* if DD is not set pending work has not been completed */
5811 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5812 break;
5813
5814 /* clear next_to_watch to prevent false hangs */
5815 tx_buffer->next_to_watch = NULL;
5816
5817 /* update the statistics for this packet */
5818 total_bytes += tx_buffer->bytecount;
5819 total_packets += tx_buffer->gso_segs;
5820
5821 #ifdef CONFIG_IGB_PTP
5822 /* retrieve hardware timestamp */
5823 igb_tx_hwtstamp(q_vector, tx_buffer);
5824
5825 #endif
5826 /* free the skb */
5827 dev_kfree_skb_any(tx_buffer->skb);
5828 tx_buffer->skb = NULL;
5829
5830 /* unmap skb header data */
5831 dma_unmap_single(tx_ring->dev,
5832 tx_buffer->dma,
5833 tx_buffer->length,
5834 DMA_TO_DEVICE);
5835
5836 /* clear last DMA location and unmap remaining buffers */
5837 while (tx_desc != eop_desc) {
5838 tx_buffer->dma = 0;
5839
5840 tx_buffer++;
5841 tx_desc++;
5842 i++;
5843 if (unlikely(!i)) {
5844 i -= tx_ring->count;
5845 tx_buffer = tx_ring->tx_buffer_info;
5846 tx_desc = IGB_TX_DESC(tx_ring, 0);
5847 }
5848
5849 /* unmap any remaining paged data */
5850 if (tx_buffer->dma) {
5851 dma_unmap_page(tx_ring->dev,
5852 tx_buffer->dma,
5853 tx_buffer->length,
5854 DMA_TO_DEVICE);
5855 }
5856 }
5857
5858 /* clear last DMA location */
5859 tx_buffer->dma = 0;
5860
5861 /* move us one more past the eop_desc for start of next pkt */
5862 tx_buffer++;
5863 tx_desc++;
5864 i++;
5865 if (unlikely(!i)) {
5866 i -= tx_ring->count;
5867 tx_buffer = tx_ring->tx_buffer_info;
5868 tx_desc = IGB_TX_DESC(tx_ring, 0);
5869 }
5870 }
5871
5872 netdev_tx_completed_queue(txring_txq(tx_ring),
5873 total_packets, total_bytes);
5874 i += tx_ring->count;
5875 tx_ring->next_to_clean = i;
5876 u64_stats_update_begin(&tx_ring->tx_syncp);
5877 tx_ring->tx_stats.bytes += total_bytes;
5878 tx_ring->tx_stats.packets += total_packets;
5879 u64_stats_update_end(&tx_ring->tx_syncp);
5880 q_vector->tx.total_bytes += total_bytes;
5881 q_vector->tx.total_packets += total_packets;
5882
5883 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5884 struct e1000_hw *hw = &adapter->hw;
5885
5886 eop_desc = tx_buffer->next_to_watch;
5887
5888 /* Detect a transmit hang in hardware, this serializes the
5889 * check with the clearing of time_stamp and movement of i */
5890 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5891 if (eop_desc &&
5892 time_after(jiffies, tx_buffer->time_stamp +
5893 (adapter->tx_timeout_factor * HZ)) &&
5894 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5895
5896 /* detected Tx unit hang */
5897 dev_err(tx_ring->dev,
5898 "Detected Tx Unit Hang\n"
5899 " Tx Queue <%d>\n"
5900 " TDH <%x>\n"
5901 " TDT <%x>\n"
5902 " next_to_use <%x>\n"
5903 " next_to_clean <%x>\n"
5904 "buffer_info[next_to_clean]\n"
5905 " time_stamp <%lx>\n"
5906 " next_to_watch <%p>\n"
5907 " jiffies <%lx>\n"
5908 " desc.status <%x>\n",
5909 tx_ring->queue_index,
5910 rd32(E1000_TDH(tx_ring->reg_idx)),
5911 readl(tx_ring->tail),
5912 tx_ring->next_to_use,
5913 tx_ring->next_to_clean,
5914 tx_buffer->time_stamp,
5915 eop_desc,
5916 jiffies,
5917 eop_desc->wb.status);
5918 netif_stop_subqueue(tx_ring->netdev,
5919 tx_ring->queue_index);
5920
5921 /* we are about to reset, no point in enabling stuff */
5922 return true;
5923 }
5924 }
5925
5926 if (unlikely(total_packets &&
5927 netif_carrier_ok(tx_ring->netdev) &&
5928 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5929 /* Make sure that anybody stopping the queue after this
5930 * sees the new next_to_clean.
5931 */
5932 smp_mb();
5933 if (__netif_subqueue_stopped(tx_ring->netdev,
5934 tx_ring->queue_index) &&
5935 !(test_bit(__IGB_DOWN, &adapter->state))) {
5936 netif_wake_subqueue(tx_ring->netdev,
5937 tx_ring->queue_index);
5938
5939 u64_stats_update_begin(&tx_ring->tx_syncp);
5940 tx_ring->tx_stats.restart_queue++;
5941 u64_stats_update_end(&tx_ring->tx_syncp);
5942 }
5943 }
5944
5945 return !!budget;
5946 }
5947
5948 static inline void igb_rx_checksum(struct igb_ring *ring,
5949 union e1000_adv_rx_desc *rx_desc,
5950 struct sk_buff *skb)
5951 {
5952 skb_checksum_none_assert(skb);
5953
5954 /* Ignore Checksum bit is set */
5955 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
5956 return;
5957
5958 /* Rx checksum disabled via ethtool */
5959 if (!(ring->netdev->features & NETIF_F_RXCSUM))
5960 return;
5961
5962 /* TCP/UDP checksum error bit is set */
5963 if (igb_test_staterr(rx_desc,
5964 E1000_RXDEXT_STATERR_TCPE |
5965 E1000_RXDEXT_STATERR_IPE)) {
5966 /*
5967 * work around errata with sctp packets where the TCPE aka
5968 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5969 * packets, (aka let the stack check the crc32c)
5970 */
5971 if (!((skb->len == 60) &&
5972 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
5973 u64_stats_update_begin(&ring->rx_syncp);
5974 ring->rx_stats.csum_err++;
5975 u64_stats_update_end(&ring->rx_syncp);
5976 }
5977 /* let the stack verify checksum errors */
5978 return;
5979 }
5980 /* It must be a TCP or UDP packet with a valid checksum */
5981 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
5982 E1000_RXD_STAT_UDPCS))
5983 skb->ip_summed = CHECKSUM_UNNECESSARY;
5984
5985 dev_dbg(ring->dev, "cksum success: bits %08X\n",
5986 le32_to_cpu(rx_desc->wb.upper.status_error));
5987 }
5988
5989 static inline void igb_rx_hash(struct igb_ring *ring,
5990 union e1000_adv_rx_desc *rx_desc,
5991 struct sk_buff *skb)
5992 {
5993 if (ring->netdev->features & NETIF_F_RXHASH)
5994 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
5995 }
5996
5997 #ifdef CONFIG_IGB_PTP
5998 static void igb_rx_hwtstamp(struct igb_q_vector *q_vector,
5999 union e1000_adv_rx_desc *rx_desc,
6000 struct sk_buff *skb)
6001 {
6002 struct igb_adapter *adapter = q_vector->adapter;
6003 struct e1000_hw *hw = &adapter->hw;
6004 u64 regval;
6005
6006 if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
6007 E1000_RXDADV_STAT_TS))
6008 return;
6009
6010 /*
6011 * If this bit is set, then the RX registers contain the time stamp. No
6012 * other packet will be time stamped until we read these registers, so
6013 * read the registers to make them available again. Because only one
6014 * packet can be time stamped at a time, we know that the register
6015 * values must belong to this one here and therefore we don't need to
6016 * compare any of the additional attributes stored for it.
6017 *
6018 * If nothing went wrong, then it should have a shared tx_flags that we
6019 * can turn into a skb_shared_hwtstamps.
6020 */
6021 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6022 u32 *stamp = (u32 *)skb->data;
6023 regval = le32_to_cpu(*(stamp + 2));
6024 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
6025 skb_pull(skb, IGB_TS_HDR_LEN);
6026 } else {
6027 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
6028 return;
6029
6030 regval = rd32(E1000_RXSTMPL);
6031 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
6032 }
6033
6034 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
6035 }
6036
6037 #endif
6038 static void igb_rx_vlan(struct igb_ring *ring,
6039 union e1000_adv_rx_desc *rx_desc,
6040 struct sk_buff *skb)
6041 {
6042 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6043 u16 vid;
6044 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6045 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags))
6046 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6047 else
6048 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6049
6050 __vlan_hwaccel_put_tag(skb, vid);
6051 }
6052 }
6053
6054 static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
6055 {
6056 /* HW will not DMA in data larger than the given buffer, even if it
6057 * parses the (NFS, of course) header to be larger. In that case, it
6058 * fills the header buffer and spills the rest into the page.
6059 */
6060 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
6061 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
6062 if (hlen > IGB_RX_HDR_LEN)
6063 hlen = IGB_RX_HDR_LEN;
6064 return hlen;
6065 }
6066
6067 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
6068 {
6069 struct igb_ring *rx_ring = q_vector->rx.ring;
6070 union e1000_adv_rx_desc *rx_desc;
6071 const int current_node = numa_node_id();
6072 unsigned int total_bytes = 0, total_packets = 0;
6073 u16 cleaned_count = igb_desc_unused(rx_ring);
6074 u16 i = rx_ring->next_to_clean;
6075
6076 rx_desc = IGB_RX_DESC(rx_ring, i);
6077
6078 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
6079 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
6080 struct sk_buff *skb = buffer_info->skb;
6081 union e1000_adv_rx_desc *next_rxd;
6082
6083 buffer_info->skb = NULL;
6084 prefetch(skb->data);
6085
6086 i++;
6087 if (i == rx_ring->count)
6088 i = 0;
6089
6090 next_rxd = IGB_RX_DESC(rx_ring, i);
6091 prefetch(next_rxd);
6092
6093 /*
6094 * This memory barrier is needed to keep us from reading
6095 * any other fields out of the rx_desc until we know the
6096 * RXD_STAT_DD bit is set
6097 */
6098 rmb();
6099
6100 if (!skb_is_nonlinear(skb)) {
6101 __skb_put(skb, igb_get_hlen(rx_desc));
6102 dma_unmap_single(rx_ring->dev, buffer_info->dma,
6103 IGB_RX_HDR_LEN,
6104 DMA_FROM_DEVICE);
6105 buffer_info->dma = 0;
6106 }
6107
6108 if (rx_desc->wb.upper.length) {
6109 u16 length = le16_to_cpu(rx_desc->wb.upper.length);
6110
6111 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
6112 buffer_info->page,
6113 buffer_info->page_offset,
6114 length);
6115
6116 skb->len += length;
6117 skb->data_len += length;
6118 skb->truesize += PAGE_SIZE / 2;
6119
6120 if ((page_count(buffer_info->page) != 1) ||
6121 (page_to_nid(buffer_info->page) != current_node))
6122 buffer_info->page = NULL;
6123 else
6124 get_page(buffer_info->page);
6125
6126 dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
6127 PAGE_SIZE / 2, DMA_FROM_DEVICE);
6128 buffer_info->page_dma = 0;
6129 }
6130
6131 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
6132 struct igb_rx_buffer *next_buffer;
6133 next_buffer = &rx_ring->rx_buffer_info[i];
6134 buffer_info->skb = next_buffer->skb;
6135 buffer_info->dma = next_buffer->dma;
6136 next_buffer->skb = skb;
6137 next_buffer->dma = 0;
6138 goto next_desc;
6139 }
6140
6141 if (unlikely((igb_test_staterr(rx_desc,
6142 E1000_RXDEXT_ERR_FRAME_ERR_MASK))
6143 && !(rx_ring->netdev->features & NETIF_F_RXALL))) {
6144 dev_kfree_skb_any(skb);
6145 goto next_desc;
6146 }
6147
6148 #ifdef CONFIG_IGB_PTP
6149 igb_rx_hwtstamp(q_vector, rx_desc, skb);
6150 #endif
6151 igb_rx_hash(rx_ring, rx_desc, skb);
6152 igb_rx_checksum(rx_ring, rx_desc, skb);
6153 igb_rx_vlan(rx_ring, rx_desc, skb);
6154
6155 total_bytes += skb->len;
6156 total_packets++;
6157
6158 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6159
6160 napi_gro_receive(&q_vector->napi, skb);
6161
6162 budget--;
6163 next_desc:
6164 if (!budget)
6165 break;
6166
6167 cleaned_count++;
6168 /* return some buffers to hardware, one at a time is too slow */
6169 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6170 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6171 cleaned_count = 0;
6172 }
6173
6174 /* use prefetched values */
6175 rx_desc = next_rxd;
6176 }
6177
6178 rx_ring->next_to_clean = i;
6179 u64_stats_update_begin(&rx_ring->rx_syncp);
6180 rx_ring->rx_stats.packets += total_packets;
6181 rx_ring->rx_stats.bytes += total_bytes;
6182 u64_stats_update_end(&rx_ring->rx_syncp);
6183 q_vector->rx.total_packets += total_packets;
6184 q_vector->rx.total_bytes += total_bytes;
6185
6186 if (cleaned_count)
6187 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6188
6189 return !!budget;
6190 }
6191
6192 static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
6193 struct igb_rx_buffer *bi)
6194 {
6195 struct sk_buff *skb = bi->skb;
6196 dma_addr_t dma = bi->dma;
6197
6198 if (dma)
6199 return true;
6200
6201 if (likely(!skb)) {
6202 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6203 IGB_RX_HDR_LEN);
6204 bi->skb = skb;
6205 if (!skb) {
6206 rx_ring->rx_stats.alloc_failed++;
6207 return false;
6208 }
6209
6210 /* initialize skb for ring */
6211 skb_record_rx_queue(skb, rx_ring->queue_index);
6212 }
6213
6214 dma = dma_map_single(rx_ring->dev, skb->data,
6215 IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
6216
6217 if (dma_mapping_error(rx_ring->dev, dma)) {
6218 rx_ring->rx_stats.alloc_failed++;
6219 return false;
6220 }
6221
6222 bi->dma = dma;
6223 return true;
6224 }
6225
6226 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6227 struct igb_rx_buffer *bi)
6228 {
6229 struct page *page = bi->page;
6230 dma_addr_t page_dma = bi->page_dma;
6231 unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
6232
6233 if (page_dma)
6234 return true;
6235
6236 if (!page) {
6237 page = __skb_alloc_page(GFP_ATOMIC, bi->skb);
6238 bi->page = page;
6239 if (unlikely(!page)) {
6240 rx_ring->rx_stats.alloc_failed++;
6241 return false;
6242 }
6243 }
6244
6245 page_dma = dma_map_page(rx_ring->dev, page,
6246 page_offset, PAGE_SIZE / 2,
6247 DMA_FROM_DEVICE);
6248
6249 if (dma_mapping_error(rx_ring->dev, page_dma)) {
6250 rx_ring->rx_stats.alloc_failed++;
6251 return false;
6252 }
6253
6254 bi->page_dma = page_dma;
6255 bi->page_offset = page_offset;
6256 return true;
6257 }
6258
6259 /**
6260 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6261 * @adapter: address of board private structure
6262 **/
6263 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6264 {
6265 union e1000_adv_rx_desc *rx_desc;
6266 struct igb_rx_buffer *bi;
6267 u16 i = rx_ring->next_to_use;
6268
6269 rx_desc = IGB_RX_DESC(rx_ring, i);
6270 bi = &rx_ring->rx_buffer_info[i];
6271 i -= rx_ring->count;
6272
6273 while (cleaned_count--) {
6274 if (!igb_alloc_mapped_skb(rx_ring, bi))
6275 break;
6276
6277 /* Refresh the desc even if buffer_addrs didn't change
6278 * because each write-back erases this info. */
6279 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
6280
6281 if (!igb_alloc_mapped_page(rx_ring, bi))
6282 break;
6283
6284 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
6285
6286 rx_desc++;
6287 bi++;
6288 i++;
6289 if (unlikely(!i)) {
6290 rx_desc = IGB_RX_DESC(rx_ring, 0);
6291 bi = rx_ring->rx_buffer_info;
6292 i -= rx_ring->count;
6293 }
6294
6295 /* clear the hdr_addr for the next_to_use descriptor */
6296 rx_desc->read.hdr_addr = 0;
6297 }
6298
6299 i += rx_ring->count;
6300
6301 if (rx_ring->next_to_use != i) {
6302 rx_ring->next_to_use = i;
6303
6304 /* Force memory writes to complete before letting h/w
6305 * know there are new descriptors to fetch. (Only
6306 * applicable for weak-ordered memory model archs,
6307 * such as IA-64). */
6308 wmb();
6309 writel(i, rx_ring->tail);
6310 }
6311 }
6312
6313 /**
6314 * igb_mii_ioctl -
6315 * @netdev:
6316 * @ifreq:
6317 * @cmd:
6318 **/
6319 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6320 {
6321 struct igb_adapter *adapter = netdev_priv(netdev);
6322 struct mii_ioctl_data *data = if_mii(ifr);
6323
6324 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6325 return -EOPNOTSUPP;
6326
6327 switch (cmd) {
6328 case SIOCGMIIPHY:
6329 data->phy_id = adapter->hw.phy.addr;
6330 break;
6331 case SIOCGMIIREG:
6332 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6333 &data->val_out))
6334 return -EIO;
6335 break;
6336 case SIOCSMIIREG:
6337 default:
6338 return -EOPNOTSUPP;
6339 }
6340 return 0;
6341 }
6342
6343 /**
6344 * igb_hwtstamp_ioctl - control hardware time stamping
6345 * @netdev:
6346 * @ifreq:
6347 * @cmd:
6348 *
6349 * Outgoing time stamping can be enabled and disabled. Play nice and
6350 * disable it when requested, although it shouldn't case any overhead
6351 * when no packet needs it. At most one packet in the queue may be
6352 * marked for time stamping, otherwise it would be impossible to tell
6353 * for sure to which packet the hardware time stamp belongs.
6354 *
6355 * Incoming time stamping has to be configured via the hardware
6356 * filters. Not all combinations are supported, in particular event
6357 * type has to be specified. Matching the kind of event packet is
6358 * not supported, with the exception of "all V2 events regardless of
6359 * level 2 or 4".
6360 *
6361 **/
6362 static int igb_hwtstamp_ioctl(struct net_device *netdev,
6363 struct ifreq *ifr, int cmd)
6364 {
6365 struct igb_adapter *adapter = netdev_priv(netdev);
6366 struct e1000_hw *hw = &adapter->hw;
6367 struct hwtstamp_config config;
6368 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6369 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6370 u32 tsync_rx_cfg = 0;
6371 bool is_l4 = false;
6372 bool is_l2 = false;
6373 u32 regval;
6374
6375 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6376 return -EFAULT;
6377
6378 /* reserved for future extensions */
6379 if (config.flags)
6380 return -EINVAL;
6381
6382 switch (config.tx_type) {
6383 case HWTSTAMP_TX_OFF:
6384 tsync_tx_ctl = 0;
6385 case HWTSTAMP_TX_ON:
6386 break;
6387 default:
6388 return -ERANGE;
6389 }
6390
6391 switch (config.rx_filter) {
6392 case HWTSTAMP_FILTER_NONE:
6393 tsync_rx_ctl = 0;
6394 break;
6395 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6396 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6397 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6398 case HWTSTAMP_FILTER_ALL:
6399 /*
6400 * register TSYNCRXCFG must be set, therefore it is not
6401 * possible to time stamp both Sync and Delay_Req messages
6402 * => fall back to time stamping all packets
6403 */
6404 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6405 config.rx_filter = HWTSTAMP_FILTER_ALL;
6406 break;
6407 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6408 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6409 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
6410 is_l4 = true;
6411 break;
6412 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6413 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6414 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
6415 is_l4 = true;
6416 break;
6417 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6418 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6419 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6420 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
6421 is_l2 = true;
6422 is_l4 = true;
6423 config.rx_filter = HWTSTAMP_FILTER_SOME;
6424 break;
6425 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6426 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6427 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6428 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
6429 is_l2 = true;
6430 is_l4 = true;
6431 config.rx_filter = HWTSTAMP_FILTER_SOME;
6432 break;
6433 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6434 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6435 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6436 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6437 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
6438 is_l2 = true;
6439 is_l4 = true;
6440 break;
6441 default:
6442 return -ERANGE;
6443 }
6444
6445 if (hw->mac.type == e1000_82575) {
6446 if (tsync_rx_ctl | tsync_tx_ctl)
6447 return -EINVAL;
6448 return 0;
6449 }
6450
6451 /*
6452 * Per-packet timestamping only works if all packets are
6453 * timestamped, so enable timestamping in all packets as
6454 * long as one rx filter was configured.
6455 */
6456 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
6457 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6458 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6459 }
6460
6461 /* enable/disable TX */
6462 regval = rd32(E1000_TSYNCTXCTL);
6463 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6464 regval |= tsync_tx_ctl;
6465 wr32(E1000_TSYNCTXCTL, regval);
6466
6467 /* enable/disable RX */
6468 regval = rd32(E1000_TSYNCRXCTL);
6469 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6470 regval |= tsync_rx_ctl;
6471 wr32(E1000_TSYNCRXCTL, regval);
6472
6473 /* define which PTP packets are time stamped */
6474 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
6475
6476 /* define ethertype filter for timestamped packets */
6477 if (is_l2)
6478 wr32(E1000_ETQF(3),
6479 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6480 E1000_ETQF_1588 | /* enable timestamping */
6481 ETH_P_1588)); /* 1588 eth protocol type */
6482 else
6483 wr32(E1000_ETQF(3), 0);
6484
6485 #define PTP_PORT 319
6486 /* L4 Queue Filter[3]: filter by destination port and protocol */
6487 if (is_l4) {
6488 u32 ftqf = (IPPROTO_UDP /* UDP */
6489 | E1000_FTQF_VF_BP /* VF not compared */
6490 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6491 | E1000_FTQF_MASK); /* mask all inputs */
6492 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6493
6494 wr32(E1000_IMIR(3), htons(PTP_PORT));
6495 wr32(E1000_IMIREXT(3),
6496 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6497 if (hw->mac.type == e1000_82576) {
6498 /* enable source port check */
6499 wr32(E1000_SPQF(3), htons(PTP_PORT));
6500 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6501 }
6502 wr32(E1000_FTQF(3), ftqf);
6503 } else {
6504 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6505 }
6506 wrfl();
6507
6508 adapter->hwtstamp_config = config;
6509
6510 /* clear TX/RX time stamp registers, just to be sure */
6511 regval = rd32(E1000_TXSTMPH);
6512 regval = rd32(E1000_RXSTMPH);
6513
6514 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6515 -EFAULT : 0;
6516 }
6517
6518 /**
6519 * igb_ioctl -
6520 * @netdev:
6521 * @ifreq:
6522 * @cmd:
6523 **/
6524 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6525 {
6526 switch (cmd) {
6527 case SIOCGMIIPHY:
6528 case SIOCGMIIREG:
6529 case SIOCSMIIREG:
6530 return igb_mii_ioctl(netdev, ifr, cmd);
6531 case SIOCSHWTSTAMP:
6532 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6533 default:
6534 return -EOPNOTSUPP;
6535 }
6536 }
6537
6538 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6539 {
6540 struct igb_adapter *adapter = hw->back;
6541 u16 cap_offset;
6542
6543 cap_offset = adapter->pdev->pcie_cap;
6544 if (!cap_offset)
6545 return -E1000_ERR_CONFIG;
6546
6547 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6548
6549 return 0;
6550 }
6551
6552 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6553 {
6554 struct igb_adapter *adapter = hw->back;
6555 u16 cap_offset;
6556
6557 cap_offset = adapter->pdev->pcie_cap;
6558 if (!cap_offset)
6559 return -E1000_ERR_CONFIG;
6560
6561 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6562
6563 return 0;
6564 }
6565
6566 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6567 {
6568 struct igb_adapter *adapter = netdev_priv(netdev);
6569 struct e1000_hw *hw = &adapter->hw;
6570 u32 ctrl, rctl;
6571 bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6572
6573 if (enable) {
6574 /* enable VLAN tag insert/strip */
6575 ctrl = rd32(E1000_CTRL);
6576 ctrl |= E1000_CTRL_VME;
6577 wr32(E1000_CTRL, ctrl);
6578
6579 /* Disable CFI check */
6580 rctl = rd32(E1000_RCTL);
6581 rctl &= ~E1000_RCTL_CFIEN;
6582 wr32(E1000_RCTL, rctl);
6583 } else {
6584 /* disable VLAN tag insert/strip */
6585 ctrl = rd32(E1000_CTRL);
6586 ctrl &= ~E1000_CTRL_VME;
6587 wr32(E1000_CTRL, ctrl);
6588 }
6589
6590 igb_rlpml_set(adapter);
6591 }
6592
6593 static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6594 {
6595 struct igb_adapter *adapter = netdev_priv(netdev);
6596 struct e1000_hw *hw = &adapter->hw;
6597 int pf_id = adapter->vfs_allocated_count;
6598
6599 /* attempt to add filter to vlvf array */
6600 igb_vlvf_set(adapter, vid, true, pf_id);
6601
6602 /* add the filter since PF can receive vlans w/o entry in vlvf */
6603 igb_vfta_set(hw, vid, true);
6604
6605 set_bit(vid, adapter->active_vlans);
6606
6607 return 0;
6608 }
6609
6610 static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6611 {
6612 struct igb_adapter *adapter = netdev_priv(netdev);
6613 struct e1000_hw *hw = &adapter->hw;
6614 int pf_id = adapter->vfs_allocated_count;
6615 s32 err;
6616
6617 /* remove vlan from VLVF table array */
6618 err = igb_vlvf_set(adapter, vid, false, pf_id);
6619
6620 /* if vid was not present in VLVF just remove it from table */
6621 if (err)
6622 igb_vfta_set(hw, vid, false);
6623
6624 clear_bit(vid, adapter->active_vlans);
6625
6626 return 0;
6627 }
6628
6629 static void igb_restore_vlan(struct igb_adapter *adapter)
6630 {
6631 u16 vid;
6632
6633 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6634
6635 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6636 igb_vlan_rx_add_vid(adapter->netdev, vid);
6637 }
6638
6639 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6640 {
6641 struct pci_dev *pdev = adapter->pdev;
6642 struct e1000_mac_info *mac = &adapter->hw.mac;
6643
6644 mac->autoneg = 0;
6645
6646 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6647 * for the switch() below to work */
6648 if ((spd & 1) || (dplx & ~1))
6649 goto err_inval;
6650
6651 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6652 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6653 spd != SPEED_1000 &&
6654 dplx != DUPLEX_FULL)
6655 goto err_inval;
6656
6657 switch (spd + dplx) {
6658 case SPEED_10 + DUPLEX_HALF:
6659 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6660 break;
6661 case SPEED_10 + DUPLEX_FULL:
6662 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6663 break;
6664 case SPEED_100 + DUPLEX_HALF:
6665 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6666 break;
6667 case SPEED_100 + DUPLEX_FULL:
6668 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6669 break;
6670 case SPEED_1000 + DUPLEX_FULL:
6671 mac->autoneg = 1;
6672 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6673 break;
6674 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6675 default:
6676 goto err_inval;
6677 }
6678 return 0;
6679
6680 err_inval:
6681 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6682 return -EINVAL;
6683 }
6684
6685 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6686 bool runtime)
6687 {
6688 struct net_device *netdev = pci_get_drvdata(pdev);
6689 struct igb_adapter *adapter = netdev_priv(netdev);
6690 struct e1000_hw *hw = &adapter->hw;
6691 u32 ctrl, rctl, status;
6692 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6693 #ifdef CONFIG_PM
6694 int retval = 0;
6695 #endif
6696
6697 netif_device_detach(netdev);
6698
6699 if (netif_running(netdev))
6700 __igb_close(netdev, true);
6701
6702 igb_clear_interrupt_scheme(adapter);
6703
6704 #ifdef CONFIG_PM
6705 retval = pci_save_state(pdev);
6706 if (retval)
6707 return retval;
6708 #endif
6709
6710 status = rd32(E1000_STATUS);
6711 if (status & E1000_STATUS_LU)
6712 wufc &= ~E1000_WUFC_LNKC;
6713
6714 if (wufc) {
6715 igb_setup_rctl(adapter);
6716 igb_set_rx_mode(netdev);
6717
6718 /* turn on all-multi mode if wake on multicast is enabled */
6719 if (wufc & E1000_WUFC_MC) {
6720 rctl = rd32(E1000_RCTL);
6721 rctl |= E1000_RCTL_MPE;
6722 wr32(E1000_RCTL, rctl);
6723 }
6724
6725 ctrl = rd32(E1000_CTRL);
6726 /* advertise wake from D3Cold */
6727 #define E1000_CTRL_ADVD3WUC 0x00100000
6728 /* phy power management enable */
6729 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6730 ctrl |= E1000_CTRL_ADVD3WUC;
6731 wr32(E1000_CTRL, ctrl);
6732
6733 /* Allow time for pending master requests to run */
6734 igb_disable_pcie_master(hw);
6735
6736 wr32(E1000_WUC, E1000_WUC_PME_EN);
6737 wr32(E1000_WUFC, wufc);
6738 } else {
6739 wr32(E1000_WUC, 0);
6740 wr32(E1000_WUFC, 0);
6741 }
6742
6743 *enable_wake = wufc || adapter->en_mng_pt;
6744 if (!*enable_wake)
6745 igb_power_down_link(adapter);
6746 else
6747 igb_power_up_link(adapter);
6748
6749 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6750 * would have already happened in close and is redundant. */
6751 igb_release_hw_control(adapter);
6752
6753 pci_disable_device(pdev);
6754
6755 return 0;
6756 }
6757
6758 #ifdef CONFIG_PM
6759 #ifdef CONFIG_PM_SLEEP
6760 static int igb_suspend(struct device *dev)
6761 {
6762 int retval;
6763 bool wake;
6764 struct pci_dev *pdev = to_pci_dev(dev);
6765
6766 retval = __igb_shutdown(pdev, &wake, 0);
6767 if (retval)
6768 return retval;
6769
6770 if (wake) {
6771 pci_prepare_to_sleep(pdev);
6772 } else {
6773 pci_wake_from_d3(pdev, false);
6774 pci_set_power_state(pdev, PCI_D3hot);
6775 }
6776
6777 return 0;
6778 }
6779 #endif /* CONFIG_PM_SLEEP */
6780
6781 static int igb_resume(struct device *dev)
6782 {
6783 struct pci_dev *pdev = to_pci_dev(dev);
6784 struct net_device *netdev = pci_get_drvdata(pdev);
6785 struct igb_adapter *adapter = netdev_priv(netdev);
6786 struct e1000_hw *hw = &adapter->hw;
6787 u32 err;
6788
6789 pci_set_power_state(pdev, PCI_D0);
6790 pci_restore_state(pdev);
6791 pci_save_state(pdev);
6792
6793 err = pci_enable_device_mem(pdev);
6794 if (err) {
6795 dev_err(&pdev->dev,
6796 "igb: Cannot enable PCI device from suspend\n");
6797 return err;
6798 }
6799 pci_set_master(pdev);
6800
6801 pci_enable_wake(pdev, PCI_D3hot, 0);
6802 pci_enable_wake(pdev, PCI_D3cold, 0);
6803
6804 if (igb_init_interrupt_scheme(adapter)) {
6805 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6806 return -ENOMEM;
6807 }
6808
6809 igb_reset(adapter);
6810
6811 /* let the f/w know that the h/w is now under the control of the
6812 * driver. */
6813 igb_get_hw_control(adapter);
6814
6815 wr32(E1000_WUS, ~0);
6816
6817 if (netdev->flags & IFF_UP) {
6818 err = __igb_open(netdev, true);
6819 if (err)
6820 return err;
6821 }
6822
6823 netif_device_attach(netdev);
6824 return 0;
6825 }
6826
6827 #ifdef CONFIG_PM_RUNTIME
6828 static int igb_runtime_idle(struct device *dev)
6829 {
6830 struct pci_dev *pdev = to_pci_dev(dev);
6831 struct net_device *netdev = pci_get_drvdata(pdev);
6832 struct igb_adapter *adapter = netdev_priv(netdev);
6833
6834 if (!igb_has_link(adapter))
6835 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6836
6837 return -EBUSY;
6838 }
6839
6840 static int igb_runtime_suspend(struct device *dev)
6841 {
6842 struct pci_dev *pdev = to_pci_dev(dev);
6843 int retval;
6844 bool wake;
6845
6846 retval = __igb_shutdown(pdev, &wake, 1);
6847 if (retval)
6848 return retval;
6849
6850 if (wake) {
6851 pci_prepare_to_sleep(pdev);
6852 } else {
6853 pci_wake_from_d3(pdev, false);
6854 pci_set_power_state(pdev, PCI_D3hot);
6855 }
6856
6857 return 0;
6858 }
6859
6860 static int igb_runtime_resume(struct device *dev)
6861 {
6862 return igb_resume(dev);
6863 }
6864 #endif /* CONFIG_PM_RUNTIME */
6865 #endif
6866
6867 static void igb_shutdown(struct pci_dev *pdev)
6868 {
6869 bool wake;
6870
6871 __igb_shutdown(pdev, &wake, 0);
6872
6873 if (system_state == SYSTEM_POWER_OFF) {
6874 pci_wake_from_d3(pdev, wake);
6875 pci_set_power_state(pdev, PCI_D3hot);
6876 }
6877 }
6878
6879 #ifdef CONFIG_NET_POLL_CONTROLLER
6880 /*
6881 * Polling 'interrupt' - used by things like netconsole to send skbs
6882 * without having to re-enable interrupts. It's not called while
6883 * the interrupt routine is executing.
6884 */
6885 static void igb_netpoll(struct net_device *netdev)
6886 {
6887 struct igb_adapter *adapter = netdev_priv(netdev);
6888 struct e1000_hw *hw = &adapter->hw;
6889 struct igb_q_vector *q_vector;
6890 int i;
6891
6892 for (i = 0; i < adapter->num_q_vectors; i++) {
6893 q_vector = adapter->q_vector[i];
6894 if (adapter->msix_entries)
6895 wr32(E1000_EIMC, q_vector->eims_value);
6896 else
6897 igb_irq_disable(adapter);
6898 napi_schedule(&q_vector->napi);
6899 }
6900 }
6901 #endif /* CONFIG_NET_POLL_CONTROLLER */
6902
6903 /**
6904 * igb_io_error_detected - called when PCI error is detected
6905 * @pdev: Pointer to PCI device
6906 * @state: The current pci connection state
6907 *
6908 * This function is called after a PCI bus error affecting
6909 * this device has been detected.
6910 */
6911 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6912 pci_channel_state_t state)
6913 {
6914 struct net_device *netdev = pci_get_drvdata(pdev);
6915 struct igb_adapter *adapter = netdev_priv(netdev);
6916
6917 netif_device_detach(netdev);
6918
6919 if (state == pci_channel_io_perm_failure)
6920 return PCI_ERS_RESULT_DISCONNECT;
6921
6922 if (netif_running(netdev))
6923 igb_down(adapter);
6924 pci_disable_device(pdev);
6925
6926 /* Request a slot slot reset. */
6927 return PCI_ERS_RESULT_NEED_RESET;
6928 }
6929
6930 /**
6931 * igb_io_slot_reset - called after the pci bus has been reset.
6932 * @pdev: Pointer to PCI device
6933 *
6934 * Restart the card from scratch, as if from a cold-boot. Implementation
6935 * resembles the first-half of the igb_resume routine.
6936 */
6937 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6938 {
6939 struct net_device *netdev = pci_get_drvdata(pdev);
6940 struct igb_adapter *adapter = netdev_priv(netdev);
6941 struct e1000_hw *hw = &adapter->hw;
6942 pci_ers_result_t result;
6943 int err;
6944
6945 if (pci_enable_device_mem(pdev)) {
6946 dev_err(&pdev->dev,
6947 "Cannot re-enable PCI device after reset.\n");
6948 result = PCI_ERS_RESULT_DISCONNECT;
6949 } else {
6950 pci_set_master(pdev);
6951 pci_restore_state(pdev);
6952 pci_save_state(pdev);
6953
6954 pci_enable_wake(pdev, PCI_D3hot, 0);
6955 pci_enable_wake(pdev, PCI_D3cold, 0);
6956
6957 igb_reset(adapter);
6958 wr32(E1000_WUS, ~0);
6959 result = PCI_ERS_RESULT_RECOVERED;
6960 }
6961
6962 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6963 if (err) {
6964 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6965 "failed 0x%0x\n", err);
6966 /* non-fatal, continue */
6967 }
6968
6969 return result;
6970 }
6971
6972 /**
6973 * igb_io_resume - called when traffic can start flowing again.
6974 * @pdev: Pointer to PCI device
6975 *
6976 * This callback is called when the error recovery driver tells us that
6977 * its OK to resume normal operation. Implementation resembles the
6978 * second-half of the igb_resume routine.
6979 */
6980 static void igb_io_resume(struct pci_dev *pdev)
6981 {
6982 struct net_device *netdev = pci_get_drvdata(pdev);
6983 struct igb_adapter *adapter = netdev_priv(netdev);
6984
6985 if (netif_running(netdev)) {
6986 if (igb_up(adapter)) {
6987 dev_err(&pdev->dev, "igb_up failed after reset\n");
6988 return;
6989 }
6990 }
6991
6992 netif_device_attach(netdev);
6993
6994 /* let the f/w know that the h/w is now under the control of the
6995 * driver. */
6996 igb_get_hw_control(adapter);
6997 }
6998
6999 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7000 u8 qsel)
7001 {
7002 u32 rar_low, rar_high;
7003 struct e1000_hw *hw = &adapter->hw;
7004
7005 /* HW expects these in little endian so we reverse the byte order
7006 * from network order (big endian) to little endian
7007 */
7008 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7009 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7010 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7011
7012 /* Indicate to hardware the Address is Valid. */
7013 rar_high |= E1000_RAH_AV;
7014
7015 if (hw->mac.type == e1000_82575)
7016 rar_high |= E1000_RAH_POOL_1 * qsel;
7017 else
7018 rar_high |= E1000_RAH_POOL_1 << qsel;
7019
7020 wr32(E1000_RAL(index), rar_low);
7021 wrfl();
7022 wr32(E1000_RAH(index), rar_high);
7023 wrfl();
7024 }
7025
7026 static int igb_set_vf_mac(struct igb_adapter *adapter,
7027 int vf, unsigned char *mac_addr)
7028 {
7029 struct e1000_hw *hw = &adapter->hw;
7030 /* VF MAC addresses start at end of receive addresses and moves
7031 * torwards the first, as a result a collision should not be possible */
7032 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7033
7034 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7035
7036 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7037
7038 return 0;
7039 }
7040
7041 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7042 {
7043 struct igb_adapter *adapter = netdev_priv(netdev);
7044 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7045 return -EINVAL;
7046 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7047 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7048 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7049 " change effective.");
7050 if (test_bit(__IGB_DOWN, &adapter->state)) {
7051 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7052 " but the PF device is not up.\n");
7053 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7054 " attempting to use the VF device.\n");
7055 }
7056 return igb_set_vf_mac(adapter, vf, mac);
7057 }
7058
7059 static int igb_link_mbps(int internal_link_speed)
7060 {
7061 switch (internal_link_speed) {
7062 case SPEED_100:
7063 return 100;
7064 case SPEED_1000:
7065 return 1000;
7066 default:
7067 return 0;
7068 }
7069 }
7070
7071 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7072 int link_speed)
7073 {
7074 int rf_dec, rf_int;
7075 u32 bcnrc_val;
7076
7077 if (tx_rate != 0) {
7078 /* Calculate the rate factor values to set */
7079 rf_int = link_speed / tx_rate;
7080 rf_dec = (link_speed - (rf_int * tx_rate));
7081 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7082
7083 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7084 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7085 E1000_RTTBCNRC_RF_INT_MASK);
7086 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7087 } else {
7088 bcnrc_val = 0;
7089 }
7090
7091 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7092 /*
7093 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7094 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7095 */
7096 wr32(E1000_RTTBCNRM, 0x14);
7097 wr32(E1000_RTTBCNRC, bcnrc_val);
7098 }
7099
7100 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7101 {
7102 int actual_link_speed, i;
7103 bool reset_rate = false;
7104
7105 /* VF TX rate limit was not set or not supported */
7106 if ((adapter->vf_rate_link_speed == 0) ||
7107 (adapter->hw.mac.type != e1000_82576))
7108 return;
7109
7110 actual_link_speed = igb_link_mbps(adapter->link_speed);
7111 if (actual_link_speed != adapter->vf_rate_link_speed) {
7112 reset_rate = true;
7113 adapter->vf_rate_link_speed = 0;
7114 dev_info(&adapter->pdev->dev,
7115 "Link speed has been changed. VF Transmit "
7116 "rate is disabled\n");
7117 }
7118
7119 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7120 if (reset_rate)
7121 adapter->vf_data[i].tx_rate = 0;
7122
7123 igb_set_vf_rate_limit(&adapter->hw, i,
7124 adapter->vf_data[i].tx_rate,
7125 actual_link_speed);
7126 }
7127 }
7128
7129 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7130 {
7131 struct igb_adapter *adapter = netdev_priv(netdev);
7132 struct e1000_hw *hw = &adapter->hw;
7133 int actual_link_speed;
7134
7135 if (hw->mac.type != e1000_82576)
7136 return -EOPNOTSUPP;
7137
7138 actual_link_speed = igb_link_mbps(adapter->link_speed);
7139 if ((vf >= adapter->vfs_allocated_count) ||
7140 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7141 (tx_rate < 0) || (tx_rate > actual_link_speed))
7142 return -EINVAL;
7143
7144 adapter->vf_rate_link_speed = actual_link_speed;
7145 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7146 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7147
7148 return 0;
7149 }
7150
7151 static int igb_ndo_get_vf_config(struct net_device *netdev,
7152 int vf, struct ifla_vf_info *ivi)
7153 {
7154 struct igb_adapter *adapter = netdev_priv(netdev);
7155 if (vf >= adapter->vfs_allocated_count)
7156 return -EINVAL;
7157 ivi->vf = vf;
7158 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7159 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7160 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7161 ivi->qos = adapter->vf_data[vf].pf_qos;
7162 return 0;
7163 }
7164
7165 static void igb_vmm_control(struct igb_adapter *adapter)
7166 {
7167 struct e1000_hw *hw = &adapter->hw;
7168 u32 reg;
7169
7170 switch (hw->mac.type) {
7171 case e1000_82575:
7172 case e1000_i210:
7173 case e1000_i211:
7174 default:
7175 /* replication is not supported for 82575 */
7176 return;
7177 case e1000_82576:
7178 /* notify HW that the MAC is adding vlan tags */
7179 reg = rd32(E1000_DTXCTL);
7180 reg |= E1000_DTXCTL_VLAN_ADDED;
7181 wr32(E1000_DTXCTL, reg);
7182 case e1000_82580:
7183 /* enable replication vlan tag stripping */
7184 reg = rd32(E1000_RPLOLR);
7185 reg |= E1000_RPLOLR_STRVLAN;
7186 wr32(E1000_RPLOLR, reg);
7187 case e1000_i350:
7188 /* none of the above registers are supported by i350 */
7189 break;
7190 }
7191
7192 if (adapter->vfs_allocated_count) {
7193 igb_vmdq_set_loopback_pf(hw, true);
7194 igb_vmdq_set_replication_pf(hw, true);
7195 igb_vmdq_set_anti_spoofing_pf(hw, true,
7196 adapter->vfs_allocated_count);
7197 } else {
7198 igb_vmdq_set_loopback_pf(hw, false);
7199 igb_vmdq_set_replication_pf(hw, false);
7200 }
7201 }
7202
7203 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7204 {
7205 struct e1000_hw *hw = &adapter->hw;
7206 u32 dmac_thr;
7207 u16 hwm;
7208
7209 if (hw->mac.type > e1000_82580) {
7210 if (adapter->flags & IGB_FLAG_DMAC) {
7211 u32 reg;
7212
7213 /* force threshold to 0. */
7214 wr32(E1000_DMCTXTH, 0);
7215
7216 /*
7217 * DMA Coalescing high water mark needs to be greater
7218 * than the Rx threshold. Set hwm to PBA - max frame
7219 * size in 16B units, capping it at PBA - 6KB.
7220 */
7221 hwm = 64 * pba - adapter->max_frame_size / 16;
7222 if (hwm < 64 * (pba - 6))
7223 hwm = 64 * (pba - 6);
7224 reg = rd32(E1000_FCRTC);
7225 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7226 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7227 & E1000_FCRTC_RTH_COAL_MASK);
7228 wr32(E1000_FCRTC, reg);
7229
7230 /*
7231 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7232 * frame size, capping it at PBA - 10KB.
7233 */
7234 dmac_thr = pba - adapter->max_frame_size / 512;
7235 if (dmac_thr < pba - 10)
7236 dmac_thr = pba - 10;
7237 reg = rd32(E1000_DMACR);
7238 reg &= ~E1000_DMACR_DMACTHR_MASK;
7239 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7240 & E1000_DMACR_DMACTHR_MASK);
7241
7242 /* transition to L0x or L1 if available..*/
7243 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7244
7245 /* watchdog timer= +-1000 usec in 32usec intervals */
7246 reg |= (1000 >> 5);
7247
7248 /* Disable BMC-to-OS Watchdog Enable */
7249 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7250 wr32(E1000_DMACR, reg);
7251
7252 /*
7253 * no lower threshold to disable
7254 * coalescing(smart fifb)-UTRESH=0
7255 */
7256 wr32(E1000_DMCRTRH, 0);
7257
7258 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7259
7260 wr32(E1000_DMCTLX, reg);
7261
7262 /*
7263 * free space in tx packet buffer to wake from
7264 * DMA coal
7265 */
7266 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7267 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7268
7269 /*
7270 * make low power state decision controlled
7271 * by DMA coal
7272 */
7273 reg = rd32(E1000_PCIEMISC);
7274 reg &= ~E1000_PCIEMISC_LX_DECISION;
7275 wr32(E1000_PCIEMISC, reg);
7276 } /* endif adapter->dmac is not disabled */
7277 } else if (hw->mac.type == e1000_82580) {
7278 u32 reg = rd32(E1000_PCIEMISC);
7279 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7280 wr32(E1000_DMACR, 0);
7281 }
7282 }
7283
7284 /* igb_main.c */
This page took 0.180664 seconds and 6 git commands to generate.