Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 *
3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
22
23 #include "igb.h"
24
25 #define INCVALUE_MASK 0x7fffffff
26 #define ISGN 0x80000000
27
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29 * and this update value cannot be reprogrammed.
30 *
31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
32 * nanoseconds time values for very long. For the 82580, SYSTIM always
33 * counts nanoseconds, but the upper 24 bits are not availible. The
34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
35 * register, TIMINCA.
36 *
37 * For the 82576, the SYSTIM register time unit is affect by the
38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39 * field are needed to provide the nominal 16 nanosecond period,
40 * leaving 19 bits for fractional nanoseconds.
41 *
42 * We scale the NIC clock cycle by a large factor so that relatively
43 * small clock corrections can be added or subtracted at each clock
44 * tick. The drawbacks of a large factor are a) that the clock
45 * register overflows more quickly (not such a big deal) and b) that
46 * the increment per tick has to fit into 24 bits. As a result we
47 * need to use a shift of 19 so we can fit a value of 16 into the
48 * TIMINCA register.
49 *
50 *
51 * SYSTIMH SYSTIML
52 * +--------------+ +---+---+------+
53 * 82576 | 32 | | 8 | 5 | 19 |
54 * +--------------+ +---+---+------+
55 * \________ 45 bits _______/ fract
56 *
57 * +----------+---+ +--------------+
58 * 82580 | 24 | 8 | | 32 |
59 * +----------+---+ +--------------+
60 * reserved \______ 40 bits _____/
61 *
62 *
63 * The 45 bit 82576 SYSTIM overflows every
64 * 2^45 * 10^-9 / 3600 = 9.77 hours.
65 *
66 * The 40 bit 82580 SYSTIM overflows every
67 * 2^40 * 10^-9 / 60 = 18.3 minutes.
68 */
69
70 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
71 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
72 #define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
73 #define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74 #define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
75 #define IGB_NBITS_82580 40
76
77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78
79 /* SYSTIM read access for the 82576 */
80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 {
82 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83 struct e1000_hw *hw = &igb->hw;
84 u64 val;
85 u32 lo, hi;
86
87 lo = rd32(E1000_SYSTIML);
88 hi = rd32(E1000_SYSTIMH);
89
90 val = ((u64) hi) << 32;
91 val |= lo;
92
93 return val;
94 }
95
96 /* SYSTIM read access for the 82580 */
97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 {
99 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100 struct e1000_hw *hw = &igb->hw;
101 u32 lo, hi;
102 u64 val;
103
104 /* The timestamp latches on lowest register read. For the 82580
105 * the lowest register is SYSTIMR instead of SYSTIML. However we only
106 * need to provide nanosecond resolution, so we just ignore it.
107 */
108 rd32(E1000_SYSTIMR);
109 lo = rd32(E1000_SYSTIML);
110 hi = rd32(E1000_SYSTIMH);
111
112 val = ((u64) hi) << 32;
113 val |= lo;
114
115 return val;
116 }
117
118 /* SYSTIM read access for I210/I211 */
119 static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
120 {
121 struct e1000_hw *hw = &adapter->hw;
122 u32 sec, nsec;
123
124 /* The timestamp latches on lowest register read. For I210/I211, the
125 * lowest register is SYSTIMR. Since we only need to provide nanosecond
126 * resolution, we can ignore it.
127 */
128 rd32(E1000_SYSTIMR);
129 nsec = rd32(E1000_SYSTIML);
130 sec = rd32(E1000_SYSTIMH);
131
132 ts->tv_sec = sec;
133 ts->tv_nsec = nsec;
134 }
135
136 static void igb_ptp_write_i210(struct igb_adapter *adapter,
137 const struct timespec *ts)
138 {
139 struct e1000_hw *hw = &adapter->hw;
140
141 /* Writing the SYSTIMR register is not necessary as it only provides
142 * sub-nanosecond resolution.
143 */
144 wr32(E1000_SYSTIML, ts->tv_nsec);
145 wr32(E1000_SYSTIMH, ts->tv_sec);
146 }
147
148 /**
149 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
150 * @adapter: board private structure
151 * @hwtstamps: timestamp structure to update
152 * @systim: unsigned 64bit system time value.
153 *
154 * We need to convert the system time value stored in the RX/TXSTMP registers
155 * into a hwtstamp which can be used by the upper level timestamping functions.
156 *
157 * The 'tmreg_lock' spinlock is used to protect the consistency of the
158 * system time value. This is needed because reading the 64 bit time
159 * value involves reading two (or three) 32 bit registers. The first
160 * read latches the value. Ditto for writing.
161 *
162 * In addition, here have extended the system time with an overflow
163 * counter in software.
164 **/
165 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
166 struct skb_shared_hwtstamps *hwtstamps,
167 u64 systim)
168 {
169 unsigned long flags;
170 u64 ns;
171
172 switch (adapter->hw.mac.type) {
173 case e1000_82576:
174 case e1000_82580:
175 case e1000_i354:
176 case e1000_i350:
177 spin_lock_irqsave(&adapter->tmreg_lock, flags);
178
179 ns = timecounter_cyc2time(&adapter->tc, systim);
180
181 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
182
183 memset(hwtstamps, 0, sizeof(*hwtstamps));
184 hwtstamps->hwtstamp = ns_to_ktime(ns);
185 break;
186 case e1000_i210:
187 case e1000_i211:
188 memset(hwtstamps, 0, sizeof(*hwtstamps));
189 /* Upper 32 bits contain s, lower 32 bits contain ns. */
190 hwtstamps->hwtstamp = ktime_set(systim >> 32,
191 systim & 0xFFFFFFFF);
192 break;
193 default:
194 break;
195 }
196 }
197
198 /* PTP clock operations */
199 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
200 {
201 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
202 ptp_caps);
203 struct e1000_hw *hw = &igb->hw;
204 int neg_adj = 0;
205 u64 rate;
206 u32 incvalue;
207
208 if (ppb < 0) {
209 neg_adj = 1;
210 ppb = -ppb;
211 }
212 rate = ppb;
213 rate <<= 14;
214 rate = div_u64(rate, 1953125);
215
216 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
217
218 if (neg_adj)
219 incvalue -= rate;
220 else
221 incvalue += rate;
222
223 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
224
225 return 0;
226 }
227
228 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
229 {
230 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 ptp_caps);
232 struct e1000_hw *hw = &igb->hw;
233 int neg_adj = 0;
234 u64 rate;
235 u32 inca;
236
237 if (ppb < 0) {
238 neg_adj = 1;
239 ppb = -ppb;
240 }
241 rate = ppb;
242 rate <<= 26;
243 rate = div_u64(rate, 1953125);
244
245 inca = rate & INCVALUE_MASK;
246 if (neg_adj)
247 inca |= ISGN;
248
249 wr32(E1000_TIMINCA, inca);
250
251 return 0;
252 }
253
254 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
255 {
256 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257 ptp_caps);
258 unsigned long flags;
259 s64 now;
260
261 spin_lock_irqsave(&igb->tmreg_lock, flags);
262
263 now = timecounter_read(&igb->tc);
264 now += delta;
265 timecounter_init(&igb->tc, &igb->cc, now);
266
267 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
268
269 return 0;
270 }
271
272 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
273 {
274 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
275 ptp_caps);
276 unsigned long flags;
277 struct timespec now, then = ns_to_timespec(delta);
278
279 spin_lock_irqsave(&igb->tmreg_lock, flags);
280
281 igb_ptp_read_i210(igb, &now);
282 now = timespec_add(now, then);
283 igb_ptp_write_i210(igb, (const struct timespec *)&now);
284
285 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
286
287 return 0;
288 }
289
290 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
291 struct timespec *ts)
292 {
293 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
294 ptp_caps);
295 unsigned long flags;
296 u64 ns;
297 u32 remainder;
298
299 spin_lock_irqsave(&igb->tmreg_lock, flags);
300
301 ns = timecounter_read(&igb->tc);
302
303 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
304
305 ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
306 ts->tv_nsec = remainder;
307
308 return 0;
309 }
310
311 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
312 struct timespec *ts)
313 {
314 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
315 ptp_caps);
316 unsigned long flags;
317
318 spin_lock_irqsave(&igb->tmreg_lock, flags);
319
320 igb_ptp_read_i210(igb, ts);
321
322 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
323
324 return 0;
325 }
326
327 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
328 const struct timespec *ts)
329 {
330 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
331 ptp_caps);
332 unsigned long flags;
333 u64 ns;
334
335 ns = ts->tv_sec * 1000000000ULL;
336 ns += ts->tv_nsec;
337
338 spin_lock_irqsave(&igb->tmreg_lock, flags);
339
340 timecounter_init(&igb->tc, &igb->cc, ns);
341
342 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
343
344 return 0;
345 }
346
347 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
348 const struct timespec *ts)
349 {
350 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
351 ptp_caps);
352 unsigned long flags;
353
354 spin_lock_irqsave(&igb->tmreg_lock, flags);
355
356 igb_ptp_write_i210(igb, ts);
357
358 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
359
360 return 0;
361 }
362
363 static int igb_ptp_enable(struct ptp_clock_info *ptp,
364 struct ptp_clock_request *rq, int on)
365 {
366 return -EOPNOTSUPP;
367 }
368
369 /**
370 * igb_ptp_tx_work
371 * @work: pointer to work struct
372 *
373 * This work function polls the TSYNCTXCTL valid bit to determine when a
374 * timestamp has been taken for the current stored skb.
375 **/
376 static void igb_ptp_tx_work(struct work_struct *work)
377 {
378 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
379 ptp_tx_work);
380 struct e1000_hw *hw = &adapter->hw;
381 u32 tsynctxctl;
382
383 if (!adapter->ptp_tx_skb)
384 return;
385
386 if (time_is_before_jiffies(adapter->ptp_tx_start +
387 IGB_PTP_TX_TIMEOUT)) {
388 dev_kfree_skb_any(adapter->ptp_tx_skb);
389 adapter->ptp_tx_skb = NULL;
390 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
391 adapter->tx_hwtstamp_timeouts++;
392 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang");
393 return;
394 }
395
396 tsynctxctl = rd32(E1000_TSYNCTXCTL);
397 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
398 igb_ptp_tx_hwtstamp(adapter);
399 else
400 /* reschedule to check later */
401 schedule_work(&adapter->ptp_tx_work);
402 }
403
404 static void igb_ptp_overflow_check(struct work_struct *work)
405 {
406 struct igb_adapter *igb =
407 container_of(work, struct igb_adapter, ptp_overflow_work.work);
408 struct timespec ts;
409
410 igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
411
412 pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
413
414 schedule_delayed_work(&igb->ptp_overflow_work,
415 IGB_SYSTIM_OVERFLOW_PERIOD);
416 }
417
418 /**
419 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
420 * @adapter: private network adapter structure
421 *
422 * This watchdog task is scheduled to detect error case where hardware has
423 * dropped an Rx packet that was timestamped when the ring is full. The
424 * particular error is rare but leaves the device in a state unable to timestamp
425 * any future packets.
426 **/
427 void igb_ptp_rx_hang(struct igb_adapter *adapter)
428 {
429 struct e1000_hw *hw = &adapter->hw;
430 struct igb_ring *rx_ring;
431 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
432 unsigned long rx_event;
433 int n;
434
435 if (hw->mac.type != e1000_82576)
436 return;
437
438 /* If we don't have a valid timestamp in the registers, just update the
439 * timeout counter and exit
440 */
441 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
442 adapter->last_rx_ptp_check = jiffies;
443 return;
444 }
445
446 /* Determine the most recent watchdog or rx_timestamp event */
447 rx_event = adapter->last_rx_ptp_check;
448 for (n = 0; n < adapter->num_rx_queues; n++) {
449 rx_ring = adapter->rx_ring[n];
450 if (time_after(rx_ring->last_rx_timestamp, rx_event))
451 rx_event = rx_ring->last_rx_timestamp;
452 }
453
454 /* Only need to read the high RXSTMP register to clear the lock */
455 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
456 rd32(E1000_RXSTMPH);
457 adapter->last_rx_ptp_check = jiffies;
458 adapter->rx_hwtstamp_cleared++;
459 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang");
460 }
461 }
462
463 /**
464 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
465 * @adapter: Board private structure.
466 *
467 * If we were asked to do hardware stamping and such a time stamp is
468 * available, then it must have been for this skb here because we only
469 * allow only one such packet into the queue.
470 **/
471 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
472 {
473 struct e1000_hw *hw = &adapter->hw;
474 struct skb_shared_hwtstamps shhwtstamps;
475 u64 regval;
476
477 regval = rd32(E1000_TXSTMPL);
478 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
479
480 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
481 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
482 dev_kfree_skb_any(adapter->ptp_tx_skb);
483 adapter->ptp_tx_skb = NULL;
484 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
485 }
486
487 /**
488 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
489 * @q_vector: Pointer to interrupt specific structure
490 * @va: Pointer to address containing Rx buffer
491 * @skb: Buffer containing timestamp and packet
492 *
493 * This function is meant to retrieve a timestamp from the first buffer of an
494 * incoming frame. The value is stored in little endian format starting on
495 * byte 8.
496 **/
497 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
498 unsigned char *va,
499 struct sk_buff *skb)
500 {
501 __le64 *regval = (__le64 *)va;
502
503 /* The timestamp is recorded in little endian format.
504 * DWORD: 0 1 2 3
505 * Field: Reserved Reserved SYSTIML SYSTIMH
506 */
507 igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
508 le64_to_cpu(regval[1]));
509 }
510
511 /**
512 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
513 * @q_vector: Pointer to interrupt specific structure
514 * @skb: Buffer containing timestamp and packet
515 *
516 * This function is meant to retrieve a timestamp from the internal registers
517 * of the adapter and store it in the skb.
518 **/
519 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
520 struct sk_buff *skb)
521 {
522 struct igb_adapter *adapter = q_vector->adapter;
523 struct e1000_hw *hw = &adapter->hw;
524 u64 regval;
525
526 /* If this bit is set, then the RX registers contain the time stamp. No
527 * other packet will be time stamped until we read these registers, so
528 * read the registers to make them available again. Because only one
529 * packet can be time stamped at a time, we know that the register
530 * values must belong to this one here and therefore we don't need to
531 * compare any of the additional attributes stored for it.
532 *
533 * If nothing went wrong, then it should have a shared tx_flags that we
534 * can turn into a skb_shared_hwtstamps.
535 */
536 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
537 return;
538
539 regval = rd32(E1000_RXSTMPL);
540 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
541
542 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
543 }
544
545 /**
546 * igb_ptp_get_ts_config - get hardware time stamping config
547 * @netdev:
548 * @ifreq:
549 *
550 * Get the hwtstamp_config settings to return to the user. Rather than attempt
551 * to deconstruct the settings from the registers, just return a shadow copy
552 * of the last known settings.
553 **/
554 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
555 {
556 struct igb_adapter *adapter = netdev_priv(netdev);
557 struct hwtstamp_config *config = &adapter->tstamp_config;
558
559 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
560 -EFAULT : 0;
561 }
562 /**
563 * igb_ptp_set_ts_config - control hardware time stamping
564 * @netdev:
565 * @ifreq:
566 *
567 * Outgoing time stamping can be enabled and disabled. Play nice and
568 * disable it when requested, although it shouldn't case any overhead
569 * when no packet needs it. At most one packet in the queue may be
570 * marked for time stamping, otherwise it would be impossible to tell
571 * for sure to which packet the hardware time stamp belongs.
572 *
573 * Incoming time stamping has to be configured via the hardware
574 * filters. Not all combinations are supported, in particular event
575 * type has to be specified. Matching the kind of event packet is
576 * not supported, with the exception of "all V2 events regardless of
577 * level 2 or 4".
578 **/
579 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
580 {
581 struct igb_adapter *adapter = netdev_priv(netdev);
582 struct e1000_hw *hw = &adapter->hw;
583 struct hwtstamp_config *config = &adapter->tstamp_config;
584 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
585 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
586 u32 tsync_rx_cfg = 0;
587 bool is_l4 = false;
588 bool is_l2 = false;
589 u32 regval;
590
591 if (copy_from_user(config, ifr->ifr_data, sizeof(*config)))
592 return -EFAULT;
593
594 /* reserved for future extensions */
595 if (config->flags)
596 return -EINVAL;
597
598 switch (config->tx_type) {
599 case HWTSTAMP_TX_OFF:
600 tsync_tx_ctl = 0;
601 case HWTSTAMP_TX_ON:
602 break;
603 default:
604 return -ERANGE;
605 }
606
607 switch (config->rx_filter) {
608 case HWTSTAMP_FILTER_NONE:
609 tsync_rx_ctl = 0;
610 break;
611 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
612 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
613 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
614 is_l4 = true;
615 break;
616 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
617 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
618 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
619 is_l4 = true;
620 break;
621 case HWTSTAMP_FILTER_PTP_V2_EVENT:
622 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
623 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
624 case HWTSTAMP_FILTER_PTP_V2_SYNC:
625 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
626 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
627 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
628 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
629 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
630 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
631 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
632 is_l2 = true;
633 is_l4 = true;
634 break;
635 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
636 case HWTSTAMP_FILTER_ALL:
637 /* 82576 cannot timestamp all packets, which it needs to do to
638 * support both V1 Sync and Delay_Req messages
639 */
640 if (hw->mac.type != e1000_82576) {
641 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
642 config->rx_filter = HWTSTAMP_FILTER_ALL;
643 break;
644 }
645 /* fall through */
646 default:
647 config->rx_filter = HWTSTAMP_FILTER_NONE;
648 return -ERANGE;
649 }
650
651 if (hw->mac.type == e1000_82575) {
652 if (tsync_rx_ctl | tsync_tx_ctl)
653 return -EINVAL;
654 return 0;
655 }
656
657 /* Per-packet timestamping only works if all packets are
658 * timestamped, so enable timestamping in all packets as
659 * long as one Rx filter was configured.
660 */
661 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
662 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
663 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
664 config->rx_filter = HWTSTAMP_FILTER_ALL;
665 is_l2 = true;
666 is_l4 = true;
667
668 if ((hw->mac.type == e1000_i210) ||
669 (hw->mac.type == e1000_i211)) {
670 regval = rd32(E1000_RXPBS);
671 regval |= E1000_RXPBS_CFG_TS_EN;
672 wr32(E1000_RXPBS, regval);
673 }
674 }
675
676 /* enable/disable TX */
677 regval = rd32(E1000_TSYNCTXCTL);
678 regval &= ~E1000_TSYNCTXCTL_ENABLED;
679 regval |= tsync_tx_ctl;
680 wr32(E1000_TSYNCTXCTL, regval);
681
682 /* enable/disable RX */
683 regval = rd32(E1000_TSYNCRXCTL);
684 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
685 regval |= tsync_rx_ctl;
686 wr32(E1000_TSYNCRXCTL, regval);
687
688 /* define which PTP packets are time stamped */
689 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
690
691 /* define ethertype filter for timestamped packets */
692 if (is_l2)
693 wr32(E1000_ETQF(3),
694 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
695 E1000_ETQF_1588 | /* enable timestamping */
696 ETH_P_1588)); /* 1588 eth protocol type */
697 else
698 wr32(E1000_ETQF(3), 0);
699
700 /* L4 Queue Filter[3]: filter by destination port and protocol */
701 if (is_l4) {
702 u32 ftqf = (IPPROTO_UDP /* UDP */
703 | E1000_FTQF_VF_BP /* VF not compared */
704 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
705 | E1000_FTQF_MASK); /* mask all inputs */
706 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
707
708 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
709 wr32(E1000_IMIREXT(3),
710 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
711 if (hw->mac.type == e1000_82576) {
712 /* enable source port check */
713 wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
714 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
715 }
716 wr32(E1000_FTQF(3), ftqf);
717 } else {
718 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
719 }
720 wrfl();
721
722 /* clear TX/RX time stamp registers, just to be sure */
723 regval = rd32(E1000_TXSTMPL);
724 regval = rd32(E1000_TXSTMPH);
725 regval = rd32(E1000_RXSTMPL);
726 regval = rd32(E1000_RXSTMPH);
727
728 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
729 -EFAULT : 0;
730 }
731
732 void igb_ptp_init(struct igb_adapter *adapter)
733 {
734 struct e1000_hw *hw = &adapter->hw;
735 struct net_device *netdev = adapter->netdev;
736
737 switch (hw->mac.type) {
738 case e1000_82576:
739 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
740 adapter->ptp_caps.owner = THIS_MODULE;
741 adapter->ptp_caps.max_adj = 999999881;
742 adapter->ptp_caps.n_ext_ts = 0;
743 adapter->ptp_caps.pps = 0;
744 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
745 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
746 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
747 adapter->ptp_caps.settime = igb_ptp_settime_82576;
748 adapter->ptp_caps.enable = igb_ptp_enable;
749 adapter->cc.read = igb_ptp_read_82576;
750 adapter->cc.mask = CLOCKSOURCE_MASK(64);
751 adapter->cc.mult = 1;
752 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
753 /* Dial the nominal frequency. */
754 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
755 break;
756 case e1000_82580:
757 case e1000_i354:
758 case e1000_i350:
759 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
760 adapter->ptp_caps.owner = THIS_MODULE;
761 adapter->ptp_caps.max_adj = 62499999;
762 adapter->ptp_caps.n_ext_ts = 0;
763 adapter->ptp_caps.pps = 0;
764 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
765 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
766 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
767 adapter->ptp_caps.settime = igb_ptp_settime_82576;
768 adapter->ptp_caps.enable = igb_ptp_enable;
769 adapter->cc.read = igb_ptp_read_82580;
770 adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
771 adapter->cc.mult = 1;
772 adapter->cc.shift = 0;
773 /* Enable the timer functions by clearing bit 31. */
774 wr32(E1000_TSAUXC, 0x0);
775 break;
776 case e1000_i210:
777 case e1000_i211:
778 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
779 adapter->ptp_caps.owner = THIS_MODULE;
780 adapter->ptp_caps.max_adj = 62499999;
781 adapter->ptp_caps.n_ext_ts = 0;
782 adapter->ptp_caps.pps = 0;
783 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
784 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
785 adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
786 adapter->ptp_caps.settime = igb_ptp_settime_i210;
787 adapter->ptp_caps.enable = igb_ptp_enable;
788 /* Enable the timer functions by clearing bit 31. */
789 wr32(E1000_TSAUXC, 0x0);
790 break;
791 default:
792 adapter->ptp_clock = NULL;
793 return;
794 }
795
796 wrfl();
797
798 spin_lock_init(&adapter->tmreg_lock);
799 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
800
801 /* Initialize the clock and overflow work for devices that need it. */
802 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
803 struct timespec ts = ktime_to_timespec(ktime_get_real());
804
805 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
806 } else {
807 timecounter_init(&adapter->tc, &adapter->cc,
808 ktime_to_ns(ktime_get_real()));
809
810 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
811 igb_ptp_overflow_check);
812
813 schedule_delayed_work(&adapter->ptp_overflow_work,
814 IGB_SYSTIM_OVERFLOW_PERIOD);
815 }
816
817 /* Initialize the time sync interrupts for devices that support it. */
818 if (hw->mac.type >= e1000_82580) {
819 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
820 wr32(E1000_IMS, E1000_IMS_TS);
821 }
822
823 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
824 &adapter->pdev->dev);
825 if (IS_ERR(adapter->ptp_clock)) {
826 adapter->ptp_clock = NULL;
827 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
828 } else {
829 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
830 adapter->netdev->name);
831 adapter->flags |= IGB_FLAG_PTP;
832 }
833 }
834
835 /**
836 * igb_ptp_stop - Disable PTP device and stop the overflow check.
837 * @adapter: Board private structure.
838 *
839 * This function stops the PTP support and cancels the delayed work.
840 **/
841 void igb_ptp_stop(struct igb_adapter *adapter)
842 {
843 switch (adapter->hw.mac.type) {
844 case e1000_82576:
845 case e1000_82580:
846 case e1000_i354:
847 case e1000_i350:
848 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
849 break;
850 case e1000_i210:
851 case e1000_i211:
852 /* No delayed work to cancel. */
853 break;
854 default:
855 return;
856 }
857
858 cancel_work_sync(&adapter->ptp_tx_work);
859 if (adapter->ptp_tx_skb) {
860 dev_kfree_skb_any(adapter->ptp_tx_skb);
861 adapter->ptp_tx_skb = NULL;
862 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
863 }
864
865 if (adapter->ptp_clock) {
866 ptp_clock_unregister(adapter->ptp_clock);
867 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
868 adapter->netdev->name);
869 adapter->flags &= ~IGB_FLAG_PTP;
870 }
871 }
872
873 /**
874 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
875 * @adapter: Board private structure.
876 *
877 * This function handles the reset work required to re-enable the PTP device.
878 **/
879 void igb_ptp_reset(struct igb_adapter *adapter)
880 {
881 struct e1000_hw *hw = &adapter->hw;
882
883 if (!(adapter->flags & IGB_FLAG_PTP))
884 return;
885
886 /* reset the tstamp_config */
887 memset(&adapter->tstamp_config, 0, sizeof(adapter->tstamp_config));
888
889 switch (adapter->hw.mac.type) {
890 case e1000_82576:
891 /* Dial the nominal frequency. */
892 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
893 break;
894 case e1000_82580:
895 case e1000_i354:
896 case e1000_i350:
897 case e1000_i210:
898 case e1000_i211:
899 /* Enable the timer functions and interrupts. */
900 wr32(E1000_TSAUXC, 0x0);
901 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
902 wr32(E1000_IMS, E1000_IMS_TS);
903 break;
904 default:
905 /* No work to do. */
906 return;
907 }
908
909 /* Re-initialize the timer. */
910 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
911 struct timespec ts = ktime_to_timespec(ktime_get_real());
912
913 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
914 } else {
915 timecounter_init(&adapter->tc, &adapter->cc,
916 ktime_to_ns(ktime_get_real()));
917 }
918 }
This page took 0.053305 seconds and 5 git commands to generate.