igb: enable internal PPS for the i210
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 *
3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
22
23 #include "igb.h"
24
25 #define INCVALUE_MASK 0x7fffffff
26 #define ISGN 0x80000000
27
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29 * and this update value cannot be reprogrammed.
30 *
31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
32 * nanoseconds time values for very long. For the 82580, SYSTIM always
33 * counts nanoseconds, but the upper 24 bits are not availible. The
34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
35 * register, TIMINCA.
36 *
37 * For the 82576, the SYSTIM register time unit is affect by the
38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39 * field are needed to provide the nominal 16 nanosecond period,
40 * leaving 19 bits for fractional nanoseconds.
41 *
42 * We scale the NIC clock cycle by a large factor so that relatively
43 * small clock corrections can be added or subtracted at each clock
44 * tick. The drawbacks of a large factor are a) that the clock
45 * register overflows more quickly (not such a big deal) and b) that
46 * the increment per tick has to fit into 24 bits. As a result we
47 * need to use a shift of 19 so we can fit a value of 16 into the
48 * TIMINCA register.
49 *
50 *
51 * SYSTIMH SYSTIML
52 * +--------------+ +---+---+------+
53 * 82576 | 32 | | 8 | 5 | 19 |
54 * +--------------+ +---+---+------+
55 * \________ 45 bits _______/ fract
56 *
57 * +----------+---+ +--------------+
58 * 82580 | 24 | 8 | | 32 |
59 * +----------+---+ +--------------+
60 * reserved \______ 40 bits _____/
61 *
62 *
63 * The 45 bit 82576 SYSTIM overflows every
64 * 2^45 * 10^-9 / 3600 = 9.77 hours.
65 *
66 * The 40 bit 82580 SYSTIM overflows every
67 * 2^40 * 10^-9 / 60 = 18.3 minutes.
68 */
69
70 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
71 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
72 #define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
73 #define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74 #define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
75 #define IGB_NBITS_82580 40
76
77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78
79 /* SYSTIM read access for the 82576 */
80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 {
82 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83 struct e1000_hw *hw = &igb->hw;
84 u64 val;
85 u32 lo, hi;
86
87 lo = rd32(E1000_SYSTIML);
88 hi = rd32(E1000_SYSTIMH);
89
90 val = ((u64) hi) << 32;
91 val |= lo;
92
93 return val;
94 }
95
96 /* SYSTIM read access for the 82580 */
97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 {
99 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100 struct e1000_hw *hw = &igb->hw;
101 u32 lo, hi;
102 u64 val;
103
104 /* The timestamp latches on lowest register read. For the 82580
105 * the lowest register is SYSTIMR instead of SYSTIML. However we only
106 * need to provide nanosecond resolution, so we just ignore it.
107 */
108 rd32(E1000_SYSTIMR);
109 lo = rd32(E1000_SYSTIML);
110 hi = rd32(E1000_SYSTIMH);
111
112 val = ((u64) hi) << 32;
113 val |= lo;
114
115 return val;
116 }
117
118 /* SYSTIM read access for I210/I211 */
119 static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
120 {
121 struct e1000_hw *hw = &adapter->hw;
122 u32 sec, nsec;
123
124 /* The timestamp latches on lowest register read. For I210/I211, the
125 * lowest register is SYSTIMR. Since we only need to provide nanosecond
126 * resolution, we can ignore it.
127 */
128 rd32(E1000_SYSTIMR);
129 nsec = rd32(E1000_SYSTIML);
130 sec = rd32(E1000_SYSTIMH);
131
132 ts->tv_sec = sec;
133 ts->tv_nsec = nsec;
134 }
135
136 static void igb_ptp_write_i210(struct igb_adapter *adapter,
137 const struct timespec *ts)
138 {
139 struct e1000_hw *hw = &adapter->hw;
140
141 /* Writing the SYSTIMR register is not necessary as it only provides
142 * sub-nanosecond resolution.
143 */
144 wr32(E1000_SYSTIML, ts->tv_nsec);
145 wr32(E1000_SYSTIMH, ts->tv_sec);
146 }
147
148 /**
149 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
150 * @adapter: board private structure
151 * @hwtstamps: timestamp structure to update
152 * @systim: unsigned 64bit system time value.
153 *
154 * We need to convert the system time value stored in the RX/TXSTMP registers
155 * into a hwtstamp which can be used by the upper level timestamping functions.
156 *
157 * The 'tmreg_lock' spinlock is used to protect the consistency of the
158 * system time value. This is needed because reading the 64 bit time
159 * value involves reading two (or three) 32 bit registers. The first
160 * read latches the value. Ditto for writing.
161 *
162 * In addition, here have extended the system time with an overflow
163 * counter in software.
164 **/
165 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
166 struct skb_shared_hwtstamps *hwtstamps,
167 u64 systim)
168 {
169 unsigned long flags;
170 u64 ns;
171
172 switch (adapter->hw.mac.type) {
173 case e1000_82576:
174 case e1000_82580:
175 case e1000_i354:
176 case e1000_i350:
177 spin_lock_irqsave(&adapter->tmreg_lock, flags);
178
179 ns = timecounter_cyc2time(&adapter->tc, systim);
180
181 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
182
183 memset(hwtstamps, 0, sizeof(*hwtstamps));
184 hwtstamps->hwtstamp = ns_to_ktime(ns);
185 break;
186 case e1000_i210:
187 case e1000_i211:
188 memset(hwtstamps, 0, sizeof(*hwtstamps));
189 /* Upper 32 bits contain s, lower 32 bits contain ns. */
190 hwtstamps->hwtstamp = ktime_set(systim >> 32,
191 systim & 0xFFFFFFFF);
192 break;
193 default:
194 break;
195 }
196 }
197
198 /* PTP clock operations */
199 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
200 {
201 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
202 ptp_caps);
203 struct e1000_hw *hw = &igb->hw;
204 int neg_adj = 0;
205 u64 rate;
206 u32 incvalue;
207
208 if (ppb < 0) {
209 neg_adj = 1;
210 ppb = -ppb;
211 }
212 rate = ppb;
213 rate <<= 14;
214 rate = div_u64(rate, 1953125);
215
216 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
217
218 if (neg_adj)
219 incvalue -= rate;
220 else
221 incvalue += rate;
222
223 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
224
225 return 0;
226 }
227
228 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
229 {
230 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 ptp_caps);
232 struct e1000_hw *hw = &igb->hw;
233 int neg_adj = 0;
234 u64 rate;
235 u32 inca;
236
237 if (ppb < 0) {
238 neg_adj = 1;
239 ppb = -ppb;
240 }
241 rate = ppb;
242 rate <<= 26;
243 rate = div_u64(rate, 1953125);
244
245 inca = rate & INCVALUE_MASK;
246 if (neg_adj)
247 inca |= ISGN;
248
249 wr32(E1000_TIMINCA, inca);
250
251 return 0;
252 }
253
254 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
255 {
256 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257 ptp_caps);
258 unsigned long flags;
259
260 spin_lock_irqsave(&igb->tmreg_lock, flags);
261 timecounter_adjtime(&igb->tc, delta);
262 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
263
264 return 0;
265 }
266
267 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
268 {
269 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
270 ptp_caps);
271 unsigned long flags;
272 struct timespec now, then = ns_to_timespec(delta);
273
274 spin_lock_irqsave(&igb->tmreg_lock, flags);
275
276 igb_ptp_read_i210(igb, &now);
277 now = timespec_add(now, then);
278 igb_ptp_write_i210(igb, (const struct timespec *)&now);
279
280 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
281
282 return 0;
283 }
284
285 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
286 struct timespec *ts)
287 {
288 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
289 ptp_caps);
290 unsigned long flags;
291 u64 ns;
292 u32 remainder;
293
294 spin_lock_irqsave(&igb->tmreg_lock, flags);
295
296 ns = timecounter_read(&igb->tc);
297
298 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299
300 ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
301 ts->tv_nsec = remainder;
302
303 return 0;
304 }
305
306 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
307 struct timespec *ts)
308 {
309 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
310 ptp_caps);
311 unsigned long flags;
312
313 spin_lock_irqsave(&igb->tmreg_lock, flags);
314
315 igb_ptp_read_i210(igb, ts);
316
317 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
318
319 return 0;
320 }
321
322 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
323 const struct timespec *ts)
324 {
325 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
326 ptp_caps);
327 unsigned long flags;
328 u64 ns;
329
330 ns = ts->tv_sec * 1000000000ULL;
331 ns += ts->tv_nsec;
332
333 spin_lock_irqsave(&igb->tmreg_lock, flags);
334
335 timecounter_init(&igb->tc, &igb->cc, ns);
336
337 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
338
339 return 0;
340 }
341
342 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
343 const struct timespec *ts)
344 {
345 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
346 ptp_caps);
347 unsigned long flags;
348
349 spin_lock_irqsave(&igb->tmreg_lock, flags);
350
351 igb_ptp_write_i210(igb, ts);
352
353 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
354
355 return 0;
356 }
357
358 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
359 struct ptp_clock_request *rq, int on)
360 {
361 struct igb_adapter *igb =
362 container_of(ptp, struct igb_adapter, ptp_caps);
363 struct e1000_hw *hw = &igb->hw;
364 unsigned long flags;
365 u32 tsim;
366
367 switch (rq->type) {
368 case PTP_CLK_REQ_PPS:
369 spin_lock_irqsave(&igb->tmreg_lock, flags);
370 tsim = rd32(E1000_TSIM);
371 if (on)
372 tsim |= TSINTR_SYS_WRAP;
373 else
374 tsim &= ~TSINTR_SYS_WRAP;
375 wr32(E1000_TSIM, tsim);
376 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
377 return 0;
378
379 default:
380 break;
381 }
382
383 return -EOPNOTSUPP;
384 }
385
386 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
387 struct ptp_clock_request *rq, int on)
388 {
389 return -EOPNOTSUPP;
390 }
391
392 /**
393 * igb_ptp_tx_work
394 * @work: pointer to work struct
395 *
396 * This work function polls the TSYNCTXCTL valid bit to determine when a
397 * timestamp has been taken for the current stored skb.
398 **/
399 static void igb_ptp_tx_work(struct work_struct *work)
400 {
401 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
402 ptp_tx_work);
403 struct e1000_hw *hw = &adapter->hw;
404 u32 tsynctxctl;
405
406 if (!adapter->ptp_tx_skb)
407 return;
408
409 if (time_is_before_jiffies(adapter->ptp_tx_start +
410 IGB_PTP_TX_TIMEOUT)) {
411 dev_kfree_skb_any(adapter->ptp_tx_skb);
412 adapter->ptp_tx_skb = NULL;
413 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
414 adapter->tx_hwtstamp_timeouts++;
415 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
416 return;
417 }
418
419 tsynctxctl = rd32(E1000_TSYNCTXCTL);
420 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
421 igb_ptp_tx_hwtstamp(adapter);
422 else
423 /* reschedule to check later */
424 schedule_work(&adapter->ptp_tx_work);
425 }
426
427 static void igb_ptp_overflow_check(struct work_struct *work)
428 {
429 struct igb_adapter *igb =
430 container_of(work, struct igb_adapter, ptp_overflow_work.work);
431 struct timespec ts;
432
433 igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
434
435 pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
436
437 schedule_delayed_work(&igb->ptp_overflow_work,
438 IGB_SYSTIM_OVERFLOW_PERIOD);
439 }
440
441 /**
442 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
443 * @adapter: private network adapter structure
444 *
445 * This watchdog task is scheduled to detect error case where hardware has
446 * dropped an Rx packet that was timestamped when the ring is full. The
447 * particular error is rare but leaves the device in a state unable to timestamp
448 * any future packets.
449 **/
450 void igb_ptp_rx_hang(struct igb_adapter *adapter)
451 {
452 struct e1000_hw *hw = &adapter->hw;
453 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
454 unsigned long rx_event;
455
456 if (hw->mac.type != e1000_82576)
457 return;
458
459 /* If we don't have a valid timestamp in the registers, just update the
460 * timeout counter and exit
461 */
462 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
463 adapter->last_rx_ptp_check = jiffies;
464 return;
465 }
466
467 /* Determine the most recent watchdog or rx_timestamp event */
468 rx_event = adapter->last_rx_ptp_check;
469 if (time_after(adapter->last_rx_timestamp, rx_event))
470 rx_event = adapter->last_rx_timestamp;
471
472 /* Only need to read the high RXSTMP register to clear the lock */
473 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
474 rd32(E1000_RXSTMPH);
475 adapter->last_rx_ptp_check = jiffies;
476 adapter->rx_hwtstamp_cleared++;
477 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
478 }
479 }
480
481 /**
482 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
483 * @adapter: Board private structure.
484 *
485 * If we were asked to do hardware stamping and such a time stamp is
486 * available, then it must have been for this skb here because we only
487 * allow only one such packet into the queue.
488 **/
489 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
490 {
491 struct e1000_hw *hw = &adapter->hw;
492 struct skb_shared_hwtstamps shhwtstamps;
493 u64 regval;
494
495 regval = rd32(E1000_TXSTMPL);
496 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
497
498 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
499 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
500 dev_kfree_skb_any(adapter->ptp_tx_skb);
501 adapter->ptp_tx_skb = NULL;
502 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
503 }
504
505 /**
506 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
507 * @q_vector: Pointer to interrupt specific structure
508 * @va: Pointer to address containing Rx buffer
509 * @skb: Buffer containing timestamp and packet
510 *
511 * This function is meant to retrieve a timestamp from the first buffer of an
512 * incoming frame. The value is stored in little endian format starting on
513 * byte 8.
514 **/
515 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
516 unsigned char *va,
517 struct sk_buff *skb)
518 {
519 __le64 *regval = (__le64 *)va;
520
521 /* The timestamp is recorded in little endian format.
522 * DWORD: 0 1 2 3
523 * Field: Reserved Reserved SYSTIML SYSTIMH
524 */
525 igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
526 le64_to_cpu(regval[1]));
527 }
528
529 /**
530 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
531 * @q_vector: Pointer to interrupt specific structure
532 * @skb: Buffer containing timestamp and packet
533 *
534 * This function is meant to retrieve a timestamp from the internal registers
535 * of the adapter and store it in the skb.
536 **/
537 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
538 struct sk_buff *skb)
539 {
540 struct igb_adapter *adapter = q_vector->adapter;
541 struct e1000_hw *hw = &adapter->hw;
542 u64 regval;
543
544 /* If this bit is set, then the RX registers contain the time stamp. No
545 * other packet will be time stamped until we read these registers, so
546 * read the registers to make them available again. Because only one
547 * packet can be time stamped at a time, we know that the register
548 * values must belong to this one here and therefore we don't need to
549 * compare any of the additional attributes stored for it.
550 *
551 * If nothing went wrong, then it should have a shared tx_flags that we
552 * can turn into a skb_shared_hwtstamps.
553 */
554 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
555 return;
556
557 regval = rd32(E1000_RXSTMPL);
558 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
559
560 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
561
562 /* Update the last_rx_timestamp timer in order to enable watchdog check
563 * for error case of latched timestamp on a dropped packet.
564 */
565 adapter->last_rx_timestamp = jiffies;
566 }
567
568 /**
569 * igb_ptp_get_ts_config - get hardware time stamping config
570 * @netdev:
571 * @ifreq:
572 *
573 * Get the hwtstamp_config settings to return to the user. Rather than attempt
574 * to deconstruct the settings from the registers, just return a shadow copy
575 * of the last known settings.
576 **/
577 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
578 {
579 struct igb_adapter *adapter = netdev_priv(netdev);
580 struct hwtstamp_config *config = &adapter->tstamp_config;
581
582 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
583 -EFAULT : 0;
584 }
585
586 /**
587 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
588 * @adapter: networking device structure
589 * @config: hwtstamp configuration
590 *
591 * Outgoing time stamping can be enabled and disabled. Play nice and
592 * disable it when requested, although it shouldn't case any overhead
593 * when no packet needs it. At most one packet in the queue may be
594 * marked for time stamping, otherwise it would be impossible to tell
595 * for sure to which packet the hardware time stamp belongs.
596 *
597 * Incoming time stamping has to be configured via the hardware
598 * filters. Not all combinations are supported, in particular event
599 * type has to be specified. Matching the kind of event packet is
600 * not supported, with the exception of "all V2 events regardless of
601 * level 2 or 4".
602 */
603 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
604 struct hwtstamp_config *config)
605 {
606 struct e1000_hw *hw = &adapter->hw;
607 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
608 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
609 u32 tsync_rx_cfg = 0;
610 bool is_l4 = false;
611 bool is_l2 = false;
612 u32 regval;
613
614 /* reserved for future extensions */
615 if (config->flags)
616 return -EINVAL;
617
618 switch (config->tx_type) {
619 case HWTSTAMP_TX_OFF:
620 tsync_tx_ctl = 0;
621 case HWTSTAMP_TX_ON:
622 break;
623 default:
624 return -ERANGE;
625 }
626
627 switch (config->rx_filter) {
628 case HWTSTAMP_FILTER_NONE:
629 tsync_rx_ctl = 0;
630 break;
631 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
632 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
633 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
634 is_l4 = true;
635 break;
636 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
637 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
638 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
639 is_l4 = true;
640 break;
641 case HWTSTAMP_FILTER_PTP_V2_EVENT:
642 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
643 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
644 case HWTSTAMP_FILTER_PTP_V2_SYNC:
645 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
646 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
647 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
648 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
649 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
650 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
651 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
652 is_l2 = true;
653 is_l4 = true;
654 break;
655 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
656 case HWTSTAMP_FILTER_ALL:
657 /* 82576 cannot timestamp all packets, which it needs to do to
658 * support both V1 Sync and Delay_Req messages
659 */
660 if (hw->mac.type != e1000_82576) {
661 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
662 config->rx_filter = HWTSTAMP_FILTER_ALL;
663 break;
664 }
665 /* fall through */
666 default:
667 config->rx_filter = HWTSTAMP_FILTER_NONE;
668 return -ERANGE;
669 }
670
671 if (hw->mac.type == e1000_82575) {
672 if (tsync_rx_ctl | tsync_tx_ctl)
673 return -EINVAL;
674 return 0;
675 }
676
677 /* Per-packet timestamping only works if all packets are
678 * timestamped, so enable timestamping in all packets as
679 * long as one Rx filter was configured.
680 */
681 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
682 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
683 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
684 config->rx_filter = HWTSTAMP_FILTER_ALL;
685 is_l2 = true;
686 is_l4 = true;
687
688 if ((hw->mac.type == e1000_i210) ||
689 (hw->mac.type == e1000_i211)) {
690 regval = rd32(E1000_RXPBS);
691 regval |= E1000_RXPBS_CFG_TS_EN;
692 wr32(E1000_RXPBS, regval);
693 }
694 }
695
696 /* enable/disable TX */
697 regval = rd32(E1000_TSYNCTXCTL);
698 regval &= ~E1000_TSYNCTXCTL_ENABLED;
699 regval |= tsync_tx_ctl;
700 wr32(E1000_TSYNCTXCTL, regval);
701
702 /* enable/disable RX */
703 regval = rd32(E1000_TSYNCRXCTL);
704 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
705 regval |= tsync_rx_ctl;
706 wr32(E1000_TSYNCRXCTL, regval);
707
708 /* define which PTP packets are time stamped */
709 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
710
711 /* define ethertype filter for timestamped packets */
712 if (is_l2)
713 wr32(E1000_ETQF(3),
714 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
715 E1000_ETQF_1588 | /* enable timestamping */
716 ETH_P_1588)); /* 1588 eth protocol type */
717 else
718 wr32(E1000_ETQF(3), 0);
719
720 /* L4 Queue Filter[3]: filter by destination port and protocol */
721 if (is_l4) {
722 u32 ftqf = (IPPROTO_UDP /* UDP */
723 | E1000_FTQF_VF_BP /* VF not compared */
724 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
725 | E1000_FTQF_MASK); /* mask all inputs */
726 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
727
728 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
729 wr32(E1000_IMIREXT(3),
730 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
731 if (hw->mac.type == e1000_82576) {
732 /* enable source port check */
733 wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
734 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
735 }
736 wr32(E1000_FTQF(3), ftqf);
737 } else {
738 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
739 }
740 wrfl();
741
742 /* clear TX/RX time stamp registers, just to be sure */
743 regval = rd32(E1000_TXSTMPL);
744 regval = rd32(E1000_TXSTMPH);
745 regval = rd32(E1000_RXSTMPL);
746 regval = rd32(E1000_RXSTMPH);
747
748 return 0;
749 }
750
751 /**
752 * igb_ptp_set_ts_config - set hardware time stamping config
753 * @netdev:
754 * @ifreq:
755 *
756 **/
757 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
758 {
759 struct igb_adapter *adapter = netdev_priv(netdev);
760 struct hwtstamp_config config;
761 int err;
762
763 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
764 return -EFAULT;
765
766 err = igb_ptp_set_timestamp_mode(adapter, &config);
767 if (err)
768 return err;
769
770 /* save these settings for future reference */
771 memcpy(&adapter->tstamp_config, &config,
772 sizeof(adapter->tstamp_config));
773
774 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
775 -EFAULT : 0;
776 }
777
778 void igb_ptp_init(struct igb_adapter *adapter)
779 {
780 struct e1000_hw *hw = &adapter->hw;
781 struct net_device *netdev = adapter->netdev;
782
783 switch (hw->mac.type) {
784 case e1000_82576:
785 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
786 adapter->ptp_caps.owner = THIS_MODULE;
787 adapter->ptp_caps.max_adj = 999999881;
788 adapter->ptp_caps.n_ext_ts = 0;
789 adapter->ptp_caps.pps = 0;
790 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
791 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
792 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
793 adapter->ptp_caps.settime = igb_ptp_settime_82576;
794 adapter->ptp_caps.enable = igb_ptp_feature_enable;
795 adapter->cc.read = igb_ptp_read_82576;
796 adapter->cc.mask = CYCLECOUNTER_MASK(64);
797 adapter->cc.mult = 1;
798 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
799 /* Dial the nominal frequency. */
800 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
801 break;
802 case e1000_82580:
803 case e1000_i354:
804 case e1000_i350:
805 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
806 adapter->ptp_caps.owner = THIS_MODULE;
807 adapter->ptp_caps.max_adj = 62499999;
808 adapter->ptp_caps.n_ext_ts = 0;
809 adapter->ptp_caps.pps = 0;
810 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
811 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
812 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
813 adapter->ptp_caps.settime = igb_ptp_settime_82576;
814 adapter->ptp_caps.enable = igb_ptp_feature_enable;
815 adapter->cc.read = igb_ptp_read_82580;
816 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
817 adapter->cc.mult = 1;
818 adapter->cc.shift = 0;
819 /* Enable the timer functions by clearing bit 31. */
820 wr32(E1000_TSAUXC, 0x0);
821 break;
822 case e1000_i210:
823 case e1000_i211:
824 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
825 adapter->ptp_caps.owner = THIS_MODULE;
826 adapter->ptp_caps.max_adj = 62499999;
827 adapter->ptp_caps.n_ext_ts = 0;
828 adapter->ptp_caps.pps = 1;
829 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
830 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
831 adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
832 adapter->ptp_caps.settime = igb_ptp_settime_i210;
833 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
834 /* Enable the timer functions by clearing bit 31. */
835 wr32(E1000_TSAUXC, 0x0);
836 break;
837 default:
838 adapter->ptp_clock = NULL;
839 return;
840 }
841
842 wrfl();
843
844 spin_lock_init(&adapter->tmreg_lock);
845 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
846
847 /* Initialize the clock and overflow work for devices that need it. */
848 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
849 struct timespec ts = ktime_to_timespec(ktime_get_real());
850
851 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
852 } else {
853 timecounter_init(&adapter->tc, &adapter->cc,
854 ktime_to_ns(ktime_get_real()));
855
856 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
857 igb_ptp_overflow_check);
858
859 schedule_delayed_work(&adapter->ptp_overflow_work,
860 IGB_SYSTIM_OVERFLOW_PERIOD);
861 }
862
863 /* Initialize the time sync interrupts for devices that support it. */
864 if (hw->mac.type >= e1000_82580) {
865 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
866 wr32(E1000_IMS, E1000_IMS_TS);
867 }
868
869 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
870 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
871
872 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
873 &adapter->pdev->dev);
874 if (IS_ERR(adapter->ptp_clock)) {
875 adapter->ptp_clock = NULL;
876 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
877 } else {
878 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
879 adapter->netdev->name);
880 adapter->flags |= IGB_FLAG_PTP;
881 }
882 }
883
884 /**
885 * igb_ptp_stop - Disable PTP device and stop the overflow check.
886 * @adapter: Board private structure.
887 *
888 * This function stops the PTP support and cancels the delayed work.
889 **/
890 void igb_ptp_stop(struct igb_adapter *adapter)
891 {
892 switch (adapter->hw.mac.type) {
893 case e1000_82576:
894 case e1000_82580:
895 case e1000_i354:
896 case e1000_i350:
897 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
898 break;
899 case e1000_i210:
900 case e1000_i211:
901 /* No delayed work to cancel. */
902 break;
903 default:
904 return;
905 }
906
907 cancel_work_sync(&adapter->ptp_tx_work);
908 if (adapter->ptp_tx_skb) {
909 dev_kfree_skb_any(adapter->ptp_tx_skb);
910 adapter->ptp_tx_skb = NULL;
911 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
912 }
913
914 if (adapter->ptp_clock) {
915 ptp_clock_unregister(adapter->ptp_clock);
916 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
917 adapter->netdev->name);
918 adapter->flags &= ~IGB_FLAG_PTP;
919 }
920 }
921
922 /**
923 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
924 * @adapter: Board private structure.
925 *
926 * This function handles the reset work required to re-enable the PTP device.
927 **/
928 void igb_ptp_reset(struct igb_adapter *adapter)
929 {
930 struct e1000_hw *hw = &adapter->hw;
931 unsigned long flags;
932
933 if (!(adapter->flags & IGB_FLAG_PTP))
934 return;
935
936 /* reset the tstamp_config */
937 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
938
939 spin_lock_irqsave(&adapter->tmreg_lock, flags);
940
941 switch (adapter->hw.mac.type) {
942 case e1000_82576:
943 /* Dial the nominal frequency. */
944 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
945 break;
946 case e1000_82580:
947 case e1000_i354:
948 case e1000_i350:
949 case e1000_i210:
950 case e1000_i211:
951 wr32(E1000_TSAUXC, 0x0);
952 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
953 wr32(E1000_IMS, E1000_IMS_TS);
954 break;
955 default:
956 /* No work to do. */
957 goto out;
958 }
959
960 /* Re-initialize the timer. */
961 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
962 struct timespec ts = ktime_to_timespec(ktime_get_real());
963
964 igb_ptp_write_i210(adapter, &ts);
965 } else {
966 timecounter_init(&adapter->tc, &adapter->cc,
967 ktime_to_ns(ktime_get_real()));
968 }
969 out:
970 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
971 }
This page took 0.052199 seconds and 5 git commands to generate.