igb: Store the MAC address in the name in the PTP struct.
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 /*
2 * PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
3 *
4 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/pci.h>
23
24 #include "igb.h"
25
26 #define INCVALUE_MASK 0x7fffffff
27 #define ISGN 0x80000000
28
29 /*
30 * The 82580 timesync updates the system timer every 8ns by 8ns,
31 * and this update value cannot be reprogrammed.
32 *
33 * Neither the 82576 nor the 82580 offer registers wide enough to hold
34 * nanoseconds time values for very long. For the 82580, SYSTIM always
35 * counts nanoseconds, but the upper 24 bits are not availible. The
36 * frequency is adjusted by changing the 32 bit fractional nanoseconds
37 * register, TIMINCA.
38 *
39 * For the 82576, the SYSTIM register time unit is affect by the
40 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
41 * field are needed to provide the nominal 16 nanosecond period,
42 * leaving 19 bits for fractional nanoseconds.
43 *
44 * We scale the NIC clock cycle by a large factor so that relatively
45 * small clock corrections can be added or subtracted at each clock
46 * tick. The drawbacks of a large factor are a) that the clock
47 * register overflows more quickly (not such a big deal) and b) that
48 * the increment per tick has to fit into 24 bits. As a result we
49 * need to use a shift of 19 so we can fit a value of 16 into the
50 * TIMINCA register.
51 *
52 *
53 * SYSTIMH SYSTIML
54 * +--------------+ +---+---+------+
55 * 82576 | 32 | | 8 | 5 | 19 |
56 * +--------------+ +---+---+------+
57 * \________ 45 bits _______/ fract
58 *
59 * +----------+---+ +--------------+
60 * 82580 | 24 | 8 | | 32 |
61 * +----------+---+ +--------------+
62 * reserved \______ 40 bits _____/
63 *
64 *
65 * The 45 bit 82576 SYSTIM overflows every
66 * 2^45 * 10^-9 / 3600 = 9.77 hours.
67 *
68 * The 40 bit 82580 SYSTIM overflows every
69 * 2^40 * 10^-9 / 60 = 18.3 minutes.
70 */
71
72 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
73 #define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
74 #define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
75 #define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
76 #define IGB_NBITS_82580 40
77
78 /*
79 * SYSTIM read access for the 82576
80 */
81
82 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
83 {
84 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
85 struct e1000_hw *hw = &igb->hw;
86 u64 val;
87 u32 lo, hi;
88
89 lo = rd32(E1000_SYSTIML);
90 hi = rd32(E1000_SYSTIMH);
91
92 val = ((u64) hi) << 32;
93 val |= lo;
94
95 return val;
96 }
97
98 /*
99 * SYSTIM read access for the 82580
100 */
101
102 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
103 {
104 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
105 struct e1000_hw *hw = &igb->hw;
106 u64 val;
107 u32 lo, hi, jk;
108
109 /*
110 * The timestamp latches on lowest register read. For the 82580
111 * the lowest register is SYSTIMR instead of SYSTIML. However we only
112 * need to provide nanosecond resolution, so we just ignore it.
113 */
114 jk = rd32(E1000_SYSTIMR);
115 lo = rd32(E1000_SYSTIML);
116 hi = rd32(E1000_SYSTIMH);
117
118 val = ((u64) hi) << 32;
119 val |= lo;
120
121 return val;
122 }
123
124 /**
125 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
126 * @adapter: board private structure
127 * @hwtstamps: timestamp structure to update
128 * @systim: unsigned 64bit system time value.
129 *
130 * We need to convert the system time value stored in the RX/TXSTMP registers
131 * into a hwtstamp which can be used by the upper level timestamping functions.
132 *
133 * The 'tmreg_lock' spinlock is used to protect the consistency of the
134 * system time value. This is needed because reading the 64 bit time
135 * value involves reading two (or three) 32 bit registers. The first
136 * read latches the value. Ditto for writing.
137 *
138 * In addition, here have extended the system time with an overflow
139 * counter in software.
140 **/
141 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
142 struct skb_shared_hwtstamps *hwtstamps,
143 u64 systim)
144 {
145 unsigned long flags;
146 u64 ns;
147
148 switch (adapter->hw.mac.type) {
149 case e1000_i210:
150 case e1000_i211:
151 case e1000_i350:
152 case e1000_82580:
153 case e1000_82576:
154 break;
155 default:
156 return;
157 }
158
159 spin_lock_irqsave(&adapter->tmreg_lock, flags);
160
161 ns = timecounter_cyc2time(&adapter->tc, systim);
162
163 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
164
165 memset(hwtstamps, 0, sizeof(*hwtstamps));
166 hwtstamps->hwtstamp = ns_to_ktime(ns);
167 }
168
169 /*
170 * PTP clock operations
171 */
172
173 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
174 {
175 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
176 ptp_caps);
177 struct e1000_hw *hw = &igb->hw;
178 int neg_adj = 0;
179 u64 rate;
180 u32 incvalue;
181
182 if (ppb < 0) {
183 neg_adj = 1;
184 ppb = -ppb;
185 }
186 rate = ppb;
187 rate <<= 14;
188 rate = div_u64(rate, 1953125);
189
190 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
191
192 if (neg_adj)
193 incvalue -= rate;
194 else
195 incvalue += rate;
196
197 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
198
199 return 0;
200 }
201
202 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
203 {
204 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
205 ptp_caps);
206 struct e1000_hw *hw = &igb->hw;
207 int neg_adj = 0;
208 u64 rate;
209 u32 inca;
210
211 if (ppb < 0) {
212 neg_adj = 1;
213 ppb = -ppb;
214 }
215 rate = ppb;
216 rate <<= 26;
217 rate = div_u64(rate, 1953125);
218
219 inca = rate & INCVALUE_MASK;
220 if (neg_adj)
221 inca |= ISGN;
222
223 wr32(E1000_TIMINCA, inca);
224
225 return 0;
226 }
227
228 static int igb_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
229 {
230 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 ptp_caps);
232 unsigned long flags;
233 s64 now;
234
235 spin_lock_irqsave(&igb->tmreg_lock, flags);
236
237 now = timecounter_read(&igb->tc);
238 now += delta;
239 timecounter_init(&igb->tc, &igb->cc, now);
240
241 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
242
243 return 0;
244 }
245
246 static int igb_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
247 {
248 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
249 ptp_caps);
250 unsigned long flags;
251 u64 ns;
252 u32 remainder;
253
254 spin_lock_irqsave(&igb->tmreg_lock, flags);
255
256 ns = timecounter_read(&igb->tc);
257
258 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
259
260 ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
261 ts->tv_nsec = remainder;
262
263 return 0;
264 }
265
266 static int igb_ptp_settime(struct ptp_clock_info *ptp,
267 const struct timespec *ts)
268 {
269 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
270 ptp_caps);
271 unsigned long flags;
272 u64 ns;
273
274 ns = ts->tv_sec * 1000000000ULL;
275 ns += ts->tv_nsec;
276
277 spin_lock_irqsave(&igb->tmreg_lock, flags);
278
279 timecounter_init(&igb->tc, &igb->cc, ns);
280
281 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
282
283 return 0;
284 }
285
286 static int igb_ptp_enable(struct ptp_clock_info *ptp,
287 struct ptp_clock_request *rq, int on)
288 {
289 return -EOPNOTSUPP;
290 }
291
292 static void igb_ptp_overflow_check(struct work_struct *work)
293 {
294 struct igb_adapter *igb =
295 container_of(work, struct igb_adapter, ptp_overflow_work.work);
296 struct timespec ts;
297
298 igb_ptp_gettime(&igb->ptp_caps, &ts);
299
300 pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
301
302 schedule_delayed_work(&igb->ptp_overflow_work,
303 IGB_SYSTIM_OVERFLOW_PERIOD);
304 }
305
306 /**
307 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
308 * @q_vector: pointer to q_vector containing needed info
309 * @buffer: pointer to igb_tx_buffer structure
310 *
311 * If we were asked to do hardware stamping and such a time stamp is
312 * available, then it must have been for this skb here because we only
313 * allow only one such packet into the queue.
314 */
315 void igb_ptp_tx_hwtstamp(struct igb_q_vector *q_vector,
316 struct igb_tx_buffer *buffer_info)
317 {
318 struct igb_adapter *adapter = q_vector->adapter;
319 struct e1000_hw *hw = &adapter->hw;
320 struct skb_shared_hwtstamps shhwtstamps;
321 u64 regval;
322
323 /* if skb does not support hw timestamp or TX stamp not valid exit */
324 if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
325 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
326 return;
327
328 regval = rd32(E1000_TXSTMPL);
329 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
330
331 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
332 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
333 }
334
335 void igb_ptp_rx_hwtstamp(struct igb_q_vector *q_vector,
336 union e1000_adv_rx_desc *rx_desc,
337 struct sk_buff *skb)
338 {
339 struct igb_adapter *adapter = q_vector->adapter;
340 struct e1000_hw *hw = &adapter->hw;
341 u64 regval;
342
343 if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
344 E1000_RXDADV_STAT_TS))
345 return;
346
347 /*
348 * If this bit is set, then the RX registers contain the time stamp. No
349 * other packet will be time stamped until we read these registers, so
350 * read the registers to make them available again. Because only one
351 * packet can be time stamped at a time, we know that the register
352 * values must belong to this one here and therefore we don't need to
353 * compare any of the additional attributes stored for it.
354 *
355 * If nothing went wrong, then it should have a shared tx_flags that we
356 * can turn into a skb_shared_hwtstamps.
357 */
358 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
359 u32 *stamp = (u32 *)skb->data;
360 regval = le32_to_cpu(*(stamp + 2));
361 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
362 skb_pull(skb, IGB_TS_HDR_LEN);
363 } else {
364 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
365 return;
366
367 regval = rd32(E1000_RXSTMPL);
368 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
369 }
370
371 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
372 }
373
374 /**
375 * igb_ptp_hwtstamp_ioctl - control hardware time stamping
376 * @netdev:
377 * @ifreq:
378 * @cmd:
379 *
380 * Outgoing time stamping can be enabled and disabled. Play nice and
381 * disable it when requested, although it shouldn't case any overhead
382 * when no packet needs it. At most one packet in the queue may be
383 * marked for time stamping, otherwise it would be impossible to tell
384 * for sure to which packet the hardware time stamp belongs.
385 *
386 * Incoming time stamping has to be configured via the hardware
387 * filters. Not all combinations are supported, in particular event
388 * type has to be specified. Matching the kind of event packet is
389 * not supported, with the exception of "all V2 events regardless of
390 * level 2 or 4".
391 *
392 **/
393 int igb_ptp_hwtstamp_ioctl(struct net_device *netdev,
394 struct ifreq *ifr, int cmd)
395 {
396 struct igb_adapter *adapter = netdev_priv(netdev);
397 struct e1000_hw *hw = &adapter->hw;
398 struct hwtstamp_config config;
399 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
400 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
401 u32 tsync_rx_cfg = 0;
402 bool is_l4 = false;
403 bool is_l2 = false;
404 u32 regval;
405
406 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
407 return -EFAULT;
408
409 /* reserved for future extensions */
410 if (config.flags)
411 return -EINVAL;
412
413 switch (config.tx_type) {
414 case HWTSTAMP_TX_OFF:
415 tsync_tx_ctl = 0;
416 case HWTSTAMP_TX_ON:
417 break;
418 default:
419 return -ERANGE;
420 }
421
422 switch (config.rx_filter) {
423 case HWTSTAMP_FILTER_NONE:
424 tsync_rx_ctl = 0;
425 break;
426 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
427 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
428 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
429 case HWTSTAMP_FILTER_ALL:
430 /*
431 * register TSYNCRXCFG must be set, therefore it is not
432 * possible to time stamp both Sync and Delay_Req messages
433 * => fall back to time stamping all packets
434 */
435 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
436 config.rx_filter = HWTSTAMP_FILTER_ALL;
437 break;
438 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
439 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
440 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
441 is_l4 = true;
442 break;
443 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
444 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
445 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
446 is_l4 = true;
447 break;
448 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
449 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
450 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
451 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
452 is_l2 = true;
453 is_l4 = true;
454 config.rx_filter = HWTSTAMP_FILTER_SOME;
455 break;
456 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
457 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
458 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
459 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
460 is_l2 = true;
461 is_l4 = true;
462 config.rx_filter = HWTSTAMP_FILTER_SOME;
463 break;
464 case HWTSTAMP_FILTER_PTP_V2_EVENT:
465 case HWTSTAMP_FILTER_PTP_V2_SYNC:
466 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
467 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
468 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
469 is_l2 = true;
470 is_l4 = true;
471 break;
472 default:
473 return -ERANGE;
474 }
475
476 if (hw->mac.type == e1000_82575) {
477 if (tsync_rx_ctl | tsync_tx_ctl)
478 return -EINVAL;
479 return 0;
480 }
481
482 /*
483 * Per-packet timestamping only works if all packets are
484 * timestamped, so enable timestamping in all packets as
485 * long as one rx filter was configured.
486 */
487 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
488 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
489 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
490 }
491
492 /* enable/disable TX */
493 regval = rd32(E1000_TSYNCTXCTL);
494 regval &= ~E1000_TSYNCTXCTL_ENABLED;
495 regval |= tsync_tx_ctl;
496 wr32(E1000_TSYNCTXCTL, regval);
497
498 /* enable/disable RX */
499 regval = rd32(E1000_TSYNCRXCTL);
500 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
501 regval |= tsync_rx_ctl;
502 wr32(E1000_TSYNCRXCTL, regval);
503
504 /* define which PTP packets are time stamped */
505 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
506
507 /* define ethertype filter for timestamped packets */
508 if (is_l2)
509 wr32(E1000_ETQF(3),
510 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
511 E1000_ETQF_1588 | /* enable timestamping */
512 ETH_P_1588)); /* 1588 eth protocol type */
513 else
514 wr32(E1000_ETQF(3), 0);
515
516 #define PTP_PORT 319
517 /* L4 Queue Filter[3]: filter by destination port and protocol */
518 if (is_l4) {
519 u32 ftqf = (IPPROTO_UDP /* UDP */
520 | E1000_FTQF_VF_BP /* VF not compared */
521 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
522 | E1000_FTQF_MASK); /* mask all inputs */
523 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
524
525 wr32(E1000_IMIR(3), htons(PTP_PORT));
526 wr32(E1000_IMIREXT(3),
527 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
528 if (hw->mac.type == e1000_82576) {
529 /* enable source port check */
530 wr32(E1000_SPQF(3), htons(PTP_PORT));
531 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
532 }
533 wr32(E1000_FTQF(3), ftqf);
534 } else {
535 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
536 }
537 wrfl();
538
539 /* clear TX/RX time stamp registers, just to be sure */
540 regval = rd32(E1000_TXSTMPH);
541 regval = rd32(E1000_RXSTMPH);
542
543 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
544 -EFAULT : 0;
545 }
546
547 void igb_ptp_init(struct igb_adapter *adapter)
548 {
549 struct e1000_hw *hw = &adapter->hw;
550 struct net_device *netdev = adapter->netdev;
551
552 switch (hw->mac.type) {
553 case e1000_i210:
554 case e1000_i211:
555 case e1000_i350:
556 case e1000_82580:
557 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
558 adapter->ptp_caps.owner = THIS_MODULE;
559 adapter->ptp_caps.max_adj = 62499999;
560 adapter->ptp_caps.n_ext_ts = 0;
561 adapter->ptp_caps.pps = 0;
562 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
563 adapter->ptp_caps.adjtime = igb_ptp_adjtime;
564 adapter->ptp_caps.gettime = igb_ptp_gettime;
565 adapter->ptp_caps.settime = igb_ptp_settime;
566 adapter->ptp_caps.enable = igb_ptp_enable;
567 adapter->cc.read = igb_ptp_read_82580;
568 adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
569 adapter->cc.mult = 1;
570 adapter->cc.shift = 0;
571 /* Enable the timer functions by clearing bit 31. */
572 wr32(E1000_TSAUXC, 0x0);
573 break;
574 case e1000_82576:
575 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
576 adapter->ptp_caps.owner = THIS_MODULE;
577 adapter->ptp_caps.max_adj = 1000000000;
578 adapter->ptp_caps.n_ext_ts = 0;
579 adapter->ptp_caps.pps = 0;
580 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
581 adapter->ptp_caps.adjtime = igb_ptp_adjtime;
582 adapter->ptp_caps.gettime = igb_ptp_gettime;
583 adapter->ptp_caps.settime = igb_ptp_settime;
584 adapter->ptp_caps.enable = igb_ptp_enable;
585 adapter->cc.read = igb_ptp_read_82576;
586 adapter->cc.mask = CLOCKSOURCE_MASK(64);
587 adapter->cc.mult = 1;
588 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
589 /* Dial the nominal frequency. */
590 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
591 break;
592 default:
593 adapter->ptp_clock = NULL;
594 return;
595 }
596
597 wrfl();
598
599 timecounter_init(&adapter->tc, &adapter->cc,
600 ktime_to_ns(ktime_get_real()));
601
602 INIT_DELAYED_WORK(&adapter->ptp_overflow_work, igb_ptp_overflow_check);
603
604 spin_lock_init(&adapter->tmreg_lock);
605
606 schedule_delayed_work(&adapter->ptp_overflow_work,
607 IGB_SYSTIM_OVERFLOW_PERIOD);
608
609 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps);
610 if (IS_ERR(adapter->ptp_clock)) {
611 adapter->ptp_clock = NULL;
612 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
613 } else
614 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
615 adapter->netdev->name);
616 }
617
618 /**
619 * igb_ptp_stop - Disable PTP device and stop the overflow check.
620 * @adapter: Board private structure.
621 *
622 * This function stops the PTP support and cancels the delayed work.
623 **/
624 void igb_ptp_stop(struct igb_adapter *adapter)
625 {
626 switch (adapter->hw.mac.type) {
627 case e1000_i211:
628 case e1000_i210:
629 case e1000_i350:
630 case e1000_82580:
631 case e1000_82576:
632 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
633 break;
634 default:
635 return;
636 }
637
638 if (adapter->ptp_clock) {
639 ptp_clock_unregister(adapter->ptp_clock);
640 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
641 adapter->netdev->name);
642 }
643 }
This page took 0.046033 seconds and 5 git commands to generate.