Merge branch 'for-davem' into for-next
[deliverable/linux.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
17
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <linux/slab.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if_vlan.h>
45 #include <linux/prefetch.h>
46
47 #include "igbvf.h"
48
49 #define DRV_VERSION "2.0.2-k"
50 char igbvf_driver_name[] = "igbvf";
51 const char igbvf_driver_version[] = DRV_VERSION;
52 static const char igbvf_driver_string[] =
53 "Intel(R) Gigabit Virtual Function Network Driver";
54 static const char igbvf_copyright[] =
55 "Copyright (c) 2009 - 2012 Intel Corporation.";
56
57 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
58 static int debug = -1;
59 module_param(debug, int, 0);
60 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
61
62 static int igbvf_poll(struct napi_struct *napi, int budget);
63 static void igbvf_reset(struct igbvf_adapter *);
64 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
65 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
66
67 static struct igbvf_info igbvf_vf_info = {
68 .mac = e1000_vfadapt,
69 .flags = 0,
70 .pba = 10,
71 .init_ops = e1000_init_function_pointers_vf,
72 };
73
74 static struct igbvf_info igbvf_i350_vf_info = {
75 .mac = e1000_vfadapt_i350,
76 .flags = 0,
77 .pba = 10,
78 .init_ops = e1000_init_function_pointers_vf,
79 };
80
81 static const struct igbvf_info *igbvf_info_tbl[] = {
82 [board_vf] = &igbvf_vf_info,
83 [board_i350_vf] = &igbvf_i350_vf_info,
84 };
85
86 /**
87 * igbvf_desc_unused - calculate if we have unused descriptors
88 * @rx_ring: address of receive ring structure
89 **/
90 static int igbvf_desc_unused(struct igbvf_ring *ring)
91 {
92 if (ring->next_to_clean > ring->next_to_use)
93 return ring->next_to_clean - ring->next_to_use - 1;
94
95 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96 }
97
98 /**
99 * igbvf_receive_skb - helper function to handle Rx indications
100 * @adapter: board private structure
101 * @status: descriptor status field as written by hardware
102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103 * @skb: pointer to sk_buff to be indicated to stack
104 **/
105 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106 struct net_device *netdev,
107 struct sk_buff *skb,
108 u32 status, u16 vlan)
109 {
110 u16 vid;
111
112 if (status & E1000_RXD_STAT_VP) {
113 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114 (status & E1000_RXDEXT_STATERR_LB))
115 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116 else
117 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118 if (test_bit(vid, adapter->active_vlans))
119 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
120 }
121
122 napi_gro_receive(&adapter->rx_ring->napi, skb);
123 }
124
125 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126 u32 status_err, struct sk_buff *skb)
127 {
128 skb_checksum_none_assert(skb);
129
130 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
131 if ((status_err & E1000_RXD_STAT_IXSM) ||
132 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133 return;
134
135 /* TCP/UDP checksum error bit is set */
136 if (status_err &
137 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138 /* let the stack verify checksum errors */
139 adapter->hw_csum_err++;
140 return;
141 }
142
143 /* It must be a TCP or UDP packet with a valid checksum */
144 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145 skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147 adapter->hw_csum_good++;
148 }
149
150 /**
151 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152 * @rx_ring: address of ring structure to repopulate
153 * @cleaned_count: number of buffers to repopulate
154 **/
155 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156 int cleaned_count)
157 {
158 struct igbvf_adapter *adapter = rx_ring->adapter;
159 struct net_device *netdev = adapter->netdev;
160 struct pci_dev *pdev = adapter->pdev;
161 union e1000_adv_rx_desc *rx_desc;
162 struct igbvf_buffer *buffer_info;
163 struct sk_buff *skb;
164 unsigned int i;
165 int bufsz;
166
167 i = rx_ring->next_to_use;
168 buffer_info = &rx_ring->buffer_info[i];
169
170 if (adapter->rx_ps_hdr_size)
171 bufsz = adapter->rx_ps_hdr_size;
172 else
173 bufsz = adapter->rx_buffer_len;
174
175 while (cleaned_count--) {
176 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179 if (!buffer_info->page) {
180 buffer_info->page = alloc_page(GFP_ATOMIC);
181 if (!buffer_info->page) {
182 adapter->alloc_rx_buff_failed++;
183 goto no_buffers;
184 }
185 buffer_info->page_offset = 0;
186 } else {
187 buffer_info->page_offset ^= PAGE_SIZE / 2;
188 }
189 buffer_info->page_dma =
190 dma_map_page(&pdev->dev, buffer_info->page,
191 buffer_info->page_offset,
192 PAGE_SIZE / 2,
193 DMA_FROM_DEVICE);
194 if (dma_mapping_error(&pdev->dev,
195 buffer_info->page_dma)) {
196 __free_page(buffer_info->page);
197 buffer_info->page = NULL;
198 dev_err(&pdev->dev, "RX DMA map failed\n");
199 break;
200 }
201 }
202
203 if (!buffer_info->skb) {
204 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205 if (!skb) {
206 adapter->alloc_rx_buff_failed++;
207 goto no_buffers;
208 }
209
210 buffer_info->skb = skb;
211 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212 bufsz,
213 DMA_FROM_DEVICE);
214 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215 dev_kfree_skb(buffer_info->skb);
216 buffer_info->skb = NULL;
217 dev_err(&pdev->dev, "RX DMA map failed\n");
218 goto no_buffers;
219 }
220 }
221 /* Refresh the desc even if buffer_addrs didn't change because
222 * each write-back erases this info.
223 */
224 if (adapter->rx_ps_hdr_size) {
225 rx_desc->read.pkt_addr =
226 cpu_to_le64(buffer_info->page_dma);
227 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
228 } else {
229 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
230 rx_desc->read.hdr_addr = 0;
231 }
232
233 i++;
234 if (i == rx_ring->count)
235 i = 0;
236 buffer_info = &rx_ring->buffer_info[i];
237 }
238
239 no_buffers:
240 if (rx_ring->next_to_use != i) {
241 rx_ring->next_to_use = i;
242 if (i == 0)
243 i = (rx_ring->count - 1);
244 else
245 i--;
246
247 /* Force memory writes to complete before letting h/w
248 * know there are new descriptors to fetch. (Only
249 * applicable for weak-ordered memory model archs,
250 * such as IA-64).
251 */
252 wmb();
253 writel(i, adapter->hw.hw_addr + rx_ring->tail);
254 }
255 }
256
257 /**
258 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
259 * @adapter: board private structure
260 *
261 * the return value indicates whether actual cleaning was done, there
262 * is no guarantee that everything was cleaned
263 **/
264 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
265 int *work_done, int work_to_do)
266 {
267 struct igbvf_ring *rx_ring = adapter->rx_ring;
268 struct net_device *netdev = adapter->netdev;
269 struct pci_dev *pdev = adapter->pdev;
270 union e1000_adv_rx_desc *rx_desc, *next_rxd;
271 struct igbvf_buffer *buffer_info, *next_buffer;
272 struct sk_buff *skb;
273 bool cleaned = false;
274 int cleaned_count = 0;
275 unsigned int total_bytes = 0, total_packets = 0;
276 unsigned int i;
277 u32 length, hlen, staterr;
278
279 i = rx_ring->next_to_clean;
280 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
281 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
282
283 while (staterr & E1000_RXD_STAT_DD) {
284 if (*work_done >= work_to_do)
285 break;
286 (*work_done)++;
287 rmb(); /* read descriptor and rx_buffer_info after status DD */
288
289 buffer_info = &rx_ring->buffer_info[i];
290
291 /* HW will not DMA in data larger than the given buffer, even
292 * if it parses the (NFS, of course) header to be larger. In
293 * that case, it fills the header buffer and spills the rest
294 * into the page.
295 */
296 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
297 & E1000_RXDADV_HDRBUFLEN_MASK) >>
298 E1000_RXDADV_HDRBUFLEN_SHIFT;
299 if (hlen > adapter->rx_ps_hdr_size)
300 hlen = adapter->rx_ps_hdr_size;
301
302 length = le16_to_cpu(rx_desc->wb.upper.length);
303 cleaned = true;
304 cleaned_count++;
305
306 skb = buffer_info->skb;
307 prefetch(skb->data - NET_IP_ALIGN);
308 buffer_info->skb = NULL;
309 if (!adapter->rx_ps_hdr_size) {
310 dma_unmap_single(&pdev->dev, buffer_info->dma,
311 adapter->rx_buffer_len,
312 DMA_FROM_DEVICE);
313 buffer_info->dma = 0;
314 skb_put(skb, length);
315 goto send_up;
316 }
317
318 if (!skb_shinfo(skb)->nr_frags) {
319 dma_unmap_single(&pdev->dev, buffer_info->dma,
320 adapter->rx_ps_hdr_size,
321 DMA_FROM_DEVICE);
322 skb_put(skb, hlen);
323 }
324
325 if (length) {
326 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
327 PAGE_SIZE / 2,
328 DMA_FROM_DEVICE);
329 buffer_info->page_dma = 0;
330
331 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
332 buffer_info->page,
333 buffer_info->page_offset,
334 length);
335
336 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
337 (page_count(buffer_info->page) != 1))
338 buffer_info->page = NULL;
339 else
340 get_page(buffer_info->page);
341
342 skb->len += length;
343 skb->data_len += length;
344 skb->truesize += PAGE_SIZE / 2;
345 }
346 send_up:
347 i++;
348 if (i == rx_ring->count)
349 i = 0;
350 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
351 prefetch(next_rxd);
352 next_buffer = &rx_ring->buffer_info[i];
353
354 if (!(staterr & E1000_RXD_STAT_EOP)) {
355 buffer_info->skb = next_buffer->skb;
356 buffer_info->dma = next_buffer->dma;
357 next_buffer->skb = skb;
358 next_buffer->dma = 0;
359 goto next_desc;
360 }
361
362 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
363 dev_kfree_skb_irq(skb);
364 goto next_desc;
365 }
366
367 total_bytes += skb->len;
368 total_packets++;
369
370 igbvf_rx_checksum_adv(adapter, staterr, skb);
371
372 skb->protocol = eth_type_trans(skb, netdev);
373
374 igbvf_receive_skb(adapter, netdev, skb, staterr,
375 rx_desc->wb.upper.vlan);
376
377 next_desc:
378 rx_desc->wb.upper.status_error = 0;
379
380 /* return some buffers to hardware, one at a time is too slow */
381 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
382 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
383 cleaned_count = 0;
384 }
385
386 /* use prefetched values */
387 rx_desc = next_rxd;
388 buffer_info = next_buffer;
389
390 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
391 }
392
393 rx_ring->next_to_clean = i;
394 cleaned_count = igbvf_desc_unused(rx_ring);
395
396 if (cleaned_count)
397 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
398
399 adapter->total_rx_packets += total_packets;
400 adapter->total_rx_bytes += total_bytes;
401 adapter->net_stats.rx_bytes += total_bytes;
402 adapter->net_stats.rx_packets += total_packets;
403 return cleaned;
404 }
405
406 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
407 struct igbvf_buffer *buffer_info)
408 {
409 if (buffer_info->dma) {
410 if (buffer_info->mapped_as_page)
411 dma_unmap_page(&adapter->pdev->dev,
412 buffer_info->dma,
413 buffer_info->length,
414 DMA_TO_DEVICE);
415 else
416 dma_unmap_single(&adapter->pdev->dev,
417 buffer_info->dma,
418 buffer_info->length,
419 DMA_TO_DEVICE);
420 buffer_info->dma = 0;
421 }
422 if (buffer_info->skb) {
423 dev_kfree_skb_any(buffer_info->skb);
424 buffer_info->skb = NULL;
425 }
426 buffer_info->time_stamp = 0;
427 }
428
429 /**
430 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
431 * @adapter: board private structure
432 *
433 * Return 0 on success, negative on failure
434 **/
435 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
436 struct igbvf_ring *tx_ring)
437 {
438 struct pci_dev *pdev = adapter->pdev;
439 int size;
440
441 size = sizeof(struct igbvf_buffer) * tx_ring->count;
442 tx_ring->buffer_info = vzalloc(size);
443 if (!tx_ring->buffer_info)
444 goto err;
445
446 /* round up to nearest 4K */
447 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
448 tx_ring->size = ALIGN(tx_ring->size, 4096);
449
450 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
451 &tx_ring->dma, GFP_KERNEL);
452 if (!tx_ring->desc)
453 goto err;
454
455 tx_ring->adapter = adapter;
456 tx_ring->next_to_use = 0;
457 tx_ring->next_to_clean = 0;
458
459 return 0;
460 err:
461 vfree(tx_ring->buffer_info);
462 dev_err(&adapter->pdev->dev,
463 "Unable to allocate memory for the transmit descriptor ring\n");
464 return -ENOMEM;
465 }
466
467 /**
468 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
469 * @adapter: board private structure
470 *
471 * Returns 0 on success, negative on failure
472 **/
473 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
474 struct igbvf_ring *rx_ring)
475 {
476 struct pci_dev *pdev = adapter->pdev;
477 int size, desc_len;
478
479 size = sizeof(struct igbvf_buffer) * rx_ring->count;
480 rx_ring->buffer_info = vzalloc(size);
481 if (!rx_ring->buffer_info)
482 goto err;
483
484 desc_len = sizeof(union e1000_adv_rx_desc);
485
486 /* Round up to nearest 4K */
487 rx_ring->size = rx_ring->count * desc_len;
488 rx_ring->size = ALIGN(rx_ring->size, 4096);
489
490 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
491 &rx_ring->dma, GFP_KERNEL);
492 if (!rx_ring->desc)
493 goto err;
494
495 rx_ring->next_to_clean = 0;
496 rx_ring->next_to_use = 0;
497
498 rx_ring->adapter = adapter;
499
500 return 0;
501
502 err:
503 vfree(rx_ring->buffer_info);
504 rx_ring->buffer_info = NULL;
505 dev_err(&adapter->pdev->dev,
506 "Unable to allocate memory for the receive descriptor ring\n");
507 return -ENOMEM;
508 }
509
510 /**
511 * igbvf_clean_tx_ring - Free Tx Buffers
512 * @tx_ring: ring to be cleaned
513 **/
514 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
515 {
516 struct igbvf_adapter *adapter = tx_ring->adapter;
517 struct igbvf_buffer *buffer_info;
518 unsigned long size;
519 unsigned int i;
520
521 if (!tx_ring->buffer_info)
522 return;
523
524 /* Free all the Tx ring sk_buffs */
525 for (i = 0; i < tx_ring->count; i++) {
526 buffer_info = &tx_ring->buffer_info[i];
527 igbvf_put_txbuf(adapter, buffer_info);
528 }
529
530 size = sizeof(struct igbvf_buffer) * tx_ring->count;
531 memset(tx_ring->buffer_info, 0, size);
532
533 /* Zero out the descriptor ring */
534 memset(tx_ring->desc, 0, tx_ring->size);
535
536 tx_ring->next_to_use = 0;
537 tx_ring->next_to_clean = 0;
538
539 writel(0, adapter->hw.hw_addr + tx_ring->head);
540 writel(0, adapter->hw.hw_addr + tx_ring->tail);
541 }
542
543 /**
544 * igbvf_free_tx_resources - Free Tx Resources per Queue
545 * @tx_ring: ring to free resources from
546 *
547 * Free all transmit software resources
548 **/
549 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
550 {
551 struct pci_dev *pdev = tx_ring->adapter->pdev;
552
553 igbvf_clean_tx_ring(tx_ring);
554
555 vfree(tx_ring->buffer_info);
556 tx_ring->buffer_info = NULL;
557
558 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
559 tx_ring->dma);
560
561 tx_ring->desc = NULL;
562 }
563
564 /**
565 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
566 * @adapter: board private structure
567 **/
568 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
569 {
570 struct igbvf_adapter *adapter = rx_ring->adapter;
571 struct igbvf_buffer *buffer_info;
572 struct pci_dev *pdev = adapter->pdev;
573 unsigned long size;
574 unsigned int i;
575
576 if (!rx_ring->buffer_info)
577 return;
578
579 /* Free all the Rx ring sk_buffs */
580 for (i = 0; i < rx_ring->count; i++) {
581 buffer_info = &rx_ring->buffer_info[i];
582 if (buffer_info->dma) {
583 if (adapter->rx_ps_hdr_size) {
584 dma_unmap_single(&pdev->dev, buffer_info->dma,
585 adapter->rx_ps_hdr_size,
586 DMA_FROM_DEVICE);
587 } else {
588 dma_unmap_single(&pdev->dev, buffer_info->dma,
589 adapter->rx_buffer_len,
590 DMA_FROM_DEVICE);
591 }
592 buffer_info->dma = 0;
593 }
594
595 if (buffer_info->skb) {
596 dev_kfree_skb(buffer_info->skb);
597 buffer_info->skb = NULL;
598 }
599
600 if (buffer_info->page) {
601 if (buffer_info->page_dma)
602 dma_unmap_page(&pdev->dev,
603 buffer_info->page_dma,
604 PAGE_SIZE / 2,
605 DMA_FROM_DEVICE);
606 put_page(buffer_info->page);
607 buffer_info->page = NULL;
608 buffer_info->page_dma = 0;
609 buffer_info->page_offset = 0;
610 }
611 }
612
613 size = sizeof(struct igbvf_buffer) * rx_ring->count;
614 memset(rx_ring->buffer_info, 0, size);
615
616 /* Zero out the descriptor ring */
617 memset(rx_ring->desc, 0, rx_ring->size);
618
619 rx_ring->next_to_clean = 0;
620 rx_ring->next_to_use = 0;
621
622 writel(0, adapter->hw.hw_addr + rx_ring->head);
623 writel(0, adapter->hw.hw_addr + rx_ring->tail);
624 }
625
626 /**
627 * igbvf_free_rx_resources - Free Rx Resources
628 * @rx_ring: ring to clean the resources from
629 *
630 * Free all receive software resources
631 **/
632
633 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
634 {
635 struct pci_dev *pdev = rx_ring->adapter->pdev;
636
637 igbvf_clean_rx_ring(rx_ring);
638
639 vfree(rx_ring->buffer_info);
640 rx_ring->buffer_info = NULL;
641
642 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
643 rx_ring->dma);
644 rx_ring->desc = NULL;
645 }
646
647 /**
648 * igbvf_update_itr - update the dynamic ITR value based on statistics
649 * @adapter: pointer to adapter
650 * @itr_setting: current adapter->itr
651 * @packets: the number of packets during this measurement interval
652 * @bytes: the number of bytes during this measurement interval
653 *
654 * Stores a new ITR value based on packets and byte counts during the last
655 * interrupt. The advantage of per interrupt computation is faster updates
656 * and more accurate ITR for the current traffic pattern. Constants in this
657 * function were computed based on theoretical maximum wire speed and thresholds
658 * were set based on testing data as well as attempting to minimize response
659 * time while increasing bulk throughput.
660 **/
661 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
662 enum latency_range itr_setting,
663 int packets, int bytes)
664 {
665 enum latency_range retval = itr_setting;
666
667 if (packets == 0)
668 goto update_itr_done;
669
670 switch (itr_setting) {
671 case lowest_latency:
672 /* handle TSO and jumbo frames */
673 if (bytes/packets > 8000)
674 retval = bulk_latency;
675 else if ((packets < 5) && (bytes > 512))
676 retval = low_latency;
677 break;
678 case low_latency: /* 50 usec aka 20000 ints/s */
679 if (bytes > 10000) {
680 /* this if handles the TSO accounting */
681 if (bytes/packets > 8000)
682 retval = bulk_latency;
683 else if ((packets < 10) || ((bytes/packets) > 1200))
684 retval = bulk_latency;
685 else if ((packets > 35))
686 retval = lowest_latency;
687 } else if (bytes/packets > 2000) {
688 retval = bulk_latency;
689 } else if (packets <= 2 && bytes < 512) {
690 retval = lowest_latency;
691 }
692 break;
693 case bulk_latency: /* 250 usec aka 4000 ints/s */
694 if (bytes > 25000) {
695 if (packets > 35)
696 retval = low_latency;
697 } else if (bytes < 6000) {
698 retval = low_latency;
699 }
700 break;
701 default:
702 break;
703 }
704
705 update_itr_done:
706 return retval;
707 }
708
709 static int igbvf_range_to_itr(enum latency_range current_range)
710 {
711 int new_itr;
712
713 switch (current_range) {
714 /* counts and packets in update_itr are dependent on these numbers */
715 case lowest_latency:
716 new_itr = IGBVF_70K_ITR;
717 break;
718 case low_latency:
719 new_itr = IGBVF_20K_ITR;
720 break;
721 case bulk_latency:
722 new_itr = IGBVF_4K_ITR;
723 break;
724 default:
725 new_itr = IGBVF_START_ITR;
726 break;
727 }
728 return new_itr;
729 }
730
731 static void igbvf_set_itr(struct igbvf_adapter *adapter)
732 {
733 u32 new_itr;
734
735 adapter->tx_ring->itr_range =
736 igbvf_update_itr(adapter,
737 adapter->tx_ring->itr_val,
738 adapter->total_tx_packets,
739 adapter->total_tx_bytes);
740
741 /* conservative mode (itr 3) eliminates the lowest_latency setting */
742 if (adapter->requested_itr == 3 &&
743 adapter->tx_ring->itr_range == lowest_latency)
744 adapter->tx_ring->itr_range = low_latency;
745
746 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
747
748 if (new_itr != adapter->tx_ring->itr_val) {
749 u32 current_itr = adapter->tx_ring->itr_val;
750 /* this attempts to bias the interrupt rate towards Bulk
751 * by adding intermediate steps when interrupt rate is
752 * increasing
753 */
754 new_itr = new_itr > current_itr ?
755 min(current_itr + (new_itr >> 2), new_itr) :
756 new_itr;
757 adapter->tx_ring->itr_val = new_itr;
758
759 adapter->tx_ring->set_itr = 1;
760 }
761
762 adapter->rx_ring->itr_range =
763 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
764 adapter->total_rx_packets,
765 adapter->total_rx_bytes);
766 if (adapter->requested_itr == 3 &&
767 adapter->rx_ring->itr_range == lowest_latency)
768 adapter->rx_ring->itr_range = low_latency;
769
770 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
771
772 if (new_itr != adapter->rx_ring->itr_val) {
773 u32 current_itr = adapter->rx_ring->itr_val;
774
775 new_itr = new_itr > current_itr ?
776 min(current_itr + (new_itr >> 2), new_itr) :
777 new_itr;
778 adapter->rx_ring->itr_val = new_itr;
779
780 adapter->rx_ring->set_itr = 1;
781 }
782 }
783
784 /**
785 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
786 * @adapter: board private structure
787 *
788 * returns true if ring is completely cleaned
789 **/
790 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
791 {
792 struct igbvf_adapter *adapter = tx_ring->adapter;
793 struct net_device *netdev = adapter->netdev;
794 struct igbvf_buffer *buffer_info;
795 struct sk_buff *skb;
796 union e1000_adv_tx_desc *tx_desc, *eop_desc;
797 unsigned int total_bytes = 0, total_packets = 0;
798 unsigned int i, count = 0;
799 bool cleaned = false;
800
801 i = tx_ring->next_to_clean;
802 buffer_info = &tx_ring->buffer_info[i];
803 eop_desc = buffer_info->next_to_watch;
804
805 do {
806 /* if next_to_watch is not set then there is no work pending */
807 if (!eop_desc)
808 break;
809
810 /* prevent any other reads prior to eop_desc */
811 read_barrier_depends();
812
813 /* if DD is not set pending work has not been completed */
814 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
815 break;
816
817 /* clear next_to_watch to prevent false hangs */
818 buffer_info->next_to_watch = NULL;
819
820 for (cleaned = false; !cleaned; count++) {
821 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
822 cleaned = (tx_desc == eop_desc);
823 skb = buffer_info->skb;
824
825 if (skb) {
826 unsigned int segs, bytecount;
827
828 /* gso_segs is currently only valid for tcp */
829 segs = skb_shinfo(skb)->gso_segs ?: 1;
830 /* multiply data chunks by size of headers */
831 bytecount = ((segs - 1) * skb_headlen(skb)) +
832 skb->len;
833 total_packets += segs;
834 total_bytes += bytecount;
835 }
836
837 igbvf_put_txbuf(adapter, buffer_info);
838 tx_desc->wb.status = 0;
839
840 i++;
841 if (i == tx_ring->count)
842 i = 0;
843
844 buffer_info = &tx_ring->buffer_info[i];
845 }
846
847 eop_desc = buffer_info->next_to_watch;
848 } while (count < tx_ring->count);
849
850 tx_ring->next_to_clean = i;
851
852 if (unlikely(count && netif_carrier_ok(netdev) &&
853 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
854 /* Make sure that anybody stopping the queue after this
855 * sees the new next_to_clean.
856 */
857 smp_mb();
858 if (netif_queue_stopped(netdev) &&
859 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
860 netif_wake_queue(netdev);
861 ++adapter->restart_queue;
862 }
863 }
864
865 adapter->net_stats.tx_bytes += total_bytes;
866 adapter->net_stats.tx_packets += total_packets;
867 return count < tx_ring->count;
868 }
869
870 static irqreturn_t igbvf_msix_other(int irq, void *data)
871 {
872 struct net_device *netdev = data;
873 struct igbvf_adapter *adapter = netdev_priv(netdev);
874 struct e1000_hw *hw = &adapter->hw;
875
876 adapter->int_counter1++;
877
878 netif_carrier_off(netdev);
879 hw->mac.get_link_status = 1;
880 if (!test_bit(__IGBVF_DOWN, &adapter->state))
881 mod_timer(&adapter->watchdog_timer, jiffies + 1);
882
883 ew32(EIMS, adapter->eims_other);
884
885 return IRQ_HANDLED;
886 }
887
888 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
889 {
890 struct net_device *netdev = data;
891 struct igbvf_adapter *adapter = netdev_priv(netdev);
892 struct e1000_hw *hw = &adapter->hw;
893 struct igbvf_ring *tx_ring = adapter->tx_ring;
894
895 if (tx_ring->set_itr) {
896 writel(tx_ring->itr_val,
897 adapter->hw.hw_addr + tx_ring->itr_register);
898 adapter->tx_ring->set_itr = 0;
899 }
900
901 adapter->total_tx_bytes = 0;
902 adapter->total_tx_packets = 0;
903
904 /* auto mask will automatically re-enable the interrupt when we write
905 * EICS
906 */
907 if (!igbvf_clean_tx_irq(tx_ring))
908 /* Ring was not completely cleaned, so fire another interrupt */
909 ew32(EICS, tx_ring->eims_value);
910 else
911 ew32(EIMS, tx_ring->eims_value);
912
913 return IRQ_HANDLED;
914 }
915
916 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
917 {
918 struct net_device *netdev = data;
919 struct igbvf_adapter *adapter = netdev_priv(netdev);
920
921 adapter->int_counter0++;
922
923 /* Write the ITR value calculated at the end of the
924 * previous interrupt.
925 */
926 if (adapter->rx_ring->set_itr) {
927 writel(adapter->rx_ring->itr_val,
928 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
929 adapter->rx_ring->set_itr = 0;
930 }
931
932 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
933 adapter->total_rx_bytes = 0;
934 adapter->total_rx_packets = 0;
935 __napi_schedule(&adapter->rx_ring->napi);
936 }
937
938 return IRQ_HANDLED;
939 }
940
941 #define IGBVF_NO_QUEUE -1
942
943 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
944 int tx_queue, int msix_vector)
945 {
946 struct e1000_hw *hw = &adapter->hw;
947 u32 ivar, index;
948
949 /* 82576 uses a table-based method for assigning vectors.
950 * Each queue has a single entry in the table to which we write
951 * a vector number along with a "valid" bit. Sadly, the layout
952 * of the table is somewhat counterintuitive.
953 */
954 if (rx_queue > IGBVF_NO_QUEUE) {
955 index = (rx_queue >> 1);
956 ivar = array_er32(IVAR0, index);
957 if (rx_queue & 0x1) {
958 /* vector goes into third byte of register */
959 ivar = ivar & 0xFF00FFFF;
960 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
961 } else {
962 /* vector goes into low byte of register */
963 ivar = ivar & 0xFFFFFF00;
964 ivar |= msix_vector | E1000_IVAR_VALID;
965 }
966 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
967 array_ew32(IVAR0, index, ivar);
968 }
969 if (tx_queue > IGBVF_NO_QUEUE) {
970 index = (tx_queue >> 1);
971 ivar = array_er32(IVAR0, index);
972 if (tx_queue & 0x1) {
973 /* vector goes into high byte of register */
974 ivar = ivar & 0x00FFFFFF;
975 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
976 } else {
977 /* vector goes into second byte of register */
978 ivar = ivar & 0xFFFF00FF;
979 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
980 }
981 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
982 array_ew32(IVAR0, index, ivar);
983 }
984 }
985
986 /**
987 * igbvf_configure_msix - Configure MSI-X hardware
988 * @adapter: board private structure
989 *
990 * igbvf_configure_msix sets up the hardware to properly
991 * generate MSI-X interrupts.
992 **/
993 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
994 {
995 u32 tmp;
996 struct e1000_hw *hw = &adapter->hw;
997 struct igbvf_ring *tx_ring = adapter->tx_ring;
998 struct igbvf_ring *rx_ring = adapter->rx_ring;
999 int vector = 0;
1000
1001 adapter->eims_enable_mask = 0;
1002
1003 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1004 adapter->eims_enable_mask |= tx_ring->eims_value;
1005 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1006 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1007 adapter->eims_enable_mask |= rx_ring->eims_value;
1008 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1009
1010 /* set vector for other causes, i.e. link changes */
1011
1012 tmp = (vector++ | E1000_IVAR_VALID);
1013
1014 ew32(IVAR_MISC, tmp);
1015
1016 adapter->eims_enable_mask = (1 << (vector)) - 1;
1017 adapter->eims_other = 1 << (vector - 1);
1018 e1e_flush();
1019 }
1020
1021 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1022 {
1023 if (adapter->msix_entries) {
1024 pci_disable_msix(adapter->pdev);
1025 kfree(adapter->msix_entries);
1026 adapter->msix_entries = NULL;
1027 }
1028 }
1029
1030 /**
1031 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1032 * @adapter: board private structure
1033 *
1034 * Attempt to configure interrupts using the best available
1035 * capabilities of the hardware and kernel.
1036 **/
1037 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1038 {
1039 int err = -ENOMEM;
1040 int i;
1041
1042 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1043 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1044 GFP_KERNEL);
1045 if (adapter->msix_entries) {
1046 for (i = 0; i < 3; i++)
1047 adapter->msix_entries[i].entry = i;
1048
1049 err = pci_enable_msix_range(adapter->pdev,
1050 adapter->msix_entries, 3, 3);
1051 }
1052
1053 if (err < 0) {
1054 /* MSI-X failed */
1055 dev_err(&adapter->pdev->dev,
1056 "Failed to initialize MSI-X interrupts.\n");
1057 igbvf_reset_interrupt_capability(adapter);
1058 }
1059 }
1060
1061 /**
1062 * igbvf_request_msix - Initialize MSI-X interrupts
1063 * @adapter: board private structure
1064 *
1065 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1066 * kernel.
1067 **/
1068 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1069 {
1070 struct net_device *netdev = adapter->netdev;
1071 int err = 0, vector = 0;
1072
1073 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1074 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1075 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1076 } else {
1077 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1078 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1079 }
1080
1081 err = request_irq(adapter->msix_entries[vector].vector,
1082 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1083 netdev);
1084 if (err)
1085 goto out;
1086
1087 adapter->tx_ring->itr_register = E1000_EITR(vector);
1088 adapter->tx_ring->itr_val = adapter->current_itr;
1089 vector++;
1090
1091 err = request_irq(adapter->msix_entries[vector].vector,
1092 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1093 netdev);
1094 if (err)
1095 goto out;
1096
1097 adapter->rx_ring->itr_register = E1000_EITR(vector);
1098 adapter->rx_ring->itr_val = adapter->current_itr;
1099 vector++;
1100
1101 err = request_irq(adapter->msix_entries[vector].vector,
1102 igbvf_msix_other, 0, netdev->name, netdev);
1103 if (err)
1104 goto out;
1105
1106 igbvf_configure_msix(adapter);
1107 return 0;
1108 out:
1109 return err;
1110 }
1111
1112 /**
1113 * igbvf_alloc_queues - Allocate memory for all rings
1114 * @adapter: board private structure to initialize
1115 **/
1116 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1117 {
1118 struct net_device *netdev = adapter->netdev;
1119
1120 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1121 if (!adapter->tx_ring)
1122 return -ENOMEM;
1123
1124 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1125 if (!adapter->rx_ring) {
1126 kfree(adapter->tx_ring);
1127 return -ENOMEM;
1128 }
1129
1130 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1131
1132 return 0;
1133 }
1134
1135 /**
1136 * igbvf_request_irq - initialize interrupts
1137 * @adapter: board private structure
1138 *
1139 * Attempts to configure interrupts using the best available
1140 * capabilities of the hardware and kernel.
1141 **/
1142 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1143 {
1144 int err = -1;
1145
1146 /* igbvf supports msi-x only */
1147 if (adapter->msix_entries)
1148 err = igbvf_request_msix(adapter);
1149
1150 if (!err)
1151 return err;
1152
1153 dev_err(&adapter->pdev->dev,
1154 "Unable to allocate interrupt, Error: %d\n", err);
1155
1156 return err;
1157 }
1158
1159 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1160 {
1161 struct net_device *netdev = adapter->netdev;
1162 int vector;
1163
1164 if (adapter->msix_entries) {
1165 for (vector = 0; vector < 3; vector++)
1166 free_irq(adapter->msix_entries[vector].vector, netdev);
1167 }
1168 }
1169
1170 /**
1171 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1172 * @adapter: board private structure
1173 **/
1174 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1175 {
1176 struct e1000_hw *hw = &adapter->hw;
1177
1178 ew32(EIMC, ~0);
1179
1180 if (adapter->msix_entries)
1181 ew32(EIAC, 0);
1182 }
1183
1184 /**
1185 * igbvf_irq_enable - Enable default interrupt generation settings
1186 * @adapter: board private structure
1187 **/
1188 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1189 {
1190 struct e1000_hw *hw = &adapter->hw;
1191
1192 ew32(EIAC, adapter->eims_enable_mask);
1193 ew32(EIAM, adapter->eims_enable_mask);
1194 ew32(EIMS, adapter->eims_enable_mask);
1195 }
1196
1197 /**
1198 * igbvf_poll - NAPI Rx polling callback
1199 * @napi: struct associated with this polling callback
1200 * @budget: amount of packets driver is allowed to process this poll
1201 **/
1202 static int igbvf_poll(struct napi_struct *napi, int budget)
1203 {
1204 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1205 struct igbvf_adapter *adapter = rx_ring->adapter;
1206 struct e1000_hw *hw = &adapter->hw;
1207 int work_done = 0;
1208
1209 igbvf_clean_rx_irq(adapter, &work_done, budget);
1210
1211 /* If not enough Rx work done, exit the polling mode */
1212 if (work_done < budget) {
1213 napi_complete(napi);
1214
1215 if (adapter->requested_itr & 3)
1216 igbvf_set_itr(adapter);
1217
1218 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1219 ew32(EIMS, adapter->rx_ring->eims_value);
1220 }
1221
1222 return work_done;
1223 }
1224
1225 /**
1226 * igbvf_set_rlpml - set receive large packet maximum length
1227 * @adapter: board private structure
1228 *
1229 * Configure the maximum size of packets that will be received
1230 */
1231 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1232 {
1233 int max_frame_size;
1234 struct e1000_hw *hw = &adapter->hw;
1235
1236 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1237 e1000_rlpml_set_vf(hw, max_frame_size);
1238 }
1239
1240 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1241 __be16 proto, u16 vid)
1242 {
1243 struct igbvf_adapter *adapter = netdev_priv(netdev);
1244 struct e1000_hw *hw = &adapter->hw;
1245
1246 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1247 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1248 return -EINVAL;
1249 }
1250 set_bit(vid, adapter->active_vlans);
1251 return 0;
1252 }
1253
1254 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1255 __be16 proto, u16 vid)
1256 {
1257 struct igbvf_adapter *adapter = netdev_priv(netdev);
1258 struct e1000_hw *hw = &adapter->hw;
1259
1260 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1261 dev_err(&adapter->pdev->dev,
1262 "Failed to remove vlan id %d\n", vid);
1263 return -EINVAL;
1264 }
1265 clear_bit(vid, adapter->active_vlans);
1266 return 0;
1267 }
1268
1269 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1270 {
1271 u16 vid;
1272
1273 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1274 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1275 }
1276
1277 /**
1278 * igbvf_configure_tx - Configure Transmit Unit after Reset
1279 * @adapter: board private structure
1280 *
1281 * Configure the Tx unit of the MAC after a reset.
1282 **/
1283 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1284 {
1285 struct e1000_hw *hw = &adapter->hw;
1286 struct igbvf_ring *tx_ring = adapter->tx_ring;
1287 u64 tdba;
1288 u32 txdctl, dca_txctrl;
1289
1290 /* disable transmits */
1291 txdctl = er32(TXDCTL(0));
1292 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1293 e1e_flush();
1294 msleep(10);
1295
1296 /* Setup the HW Tx Head and Tail descriptor pointers */
1297 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1298 tdba = tx_ring->dma;
1299 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1300 ew32(TDBAH(0), (tdba >> 32));
1301 ew32(TDH(0), 0);
1302 ew32(TDT(0), 0);
1303 tx_ring->head = E1000_TDH(0);
1304 tx_ring->tail = E1000_TDT(0);
1305
1306 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1307 * MUST be delivered in order or it will completely screw up
1308 * our bookkeeping.
1309 */
1310 dca_txctrl = er32(DCA_TXCTRL(0));
1311 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1312 ew32(DCA_TXCTRL(0), dca_txctrl);
1313
1314 /* enable transmits */
1315 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1316 ew32(TXDCTL(0), txdctl);
1317
1318 /* Setup Transmit Descriptor Settings for eop descriptor */
1319 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1320
1321 /* enable Report Status bit */
1322 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1323 }
1324
1325 /**
1326 * igbvf_setup_srrctl - configure the receive control registers
1327 * @adapter: Board private structure
1328 **/
1329 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1330 {
1331 struct e1000_hw *hw = &adapter->hw;
1332 u32 srrctl = 0;
1333
1334 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1335 E1000_SRRCTL_BSIZEHDR_MASK |
1336 E1000_SRRCTL_BSIZEPKT_MASK);
1337
1338 /* Enable queue drop to avoid head of line blocking */
1339 srrctl |= E1000_SRRCTL_DROP_EN;
1340
1341 /* Setup buffer sizes */
1342 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1343 E1000_SRRCTL_BSIZEPKT_SHIFT;
1344
1345 if (adapter->rx_buffer_len < 2048) {
1346 adapter->rx_ps_hdr_size = 0;
1347 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1348 } else {
1349 adapter->rx_ps_hdr_size = 128;
1350 srrctl |= adapter->rx_ps_hdr_size <<
1351 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1352 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1353 }
1354
1355 ew32(SRRCTL(0), srrctl);
1356 }
1357
1358 /**
1359 * igbvf_configure_rx - Configure Receive Unit after Reset
1360 * @adapter: board private structure
1361 *
1362 * Configure the Rx unit of the MAC after a reset.
1363 **/
1364 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1365 {
1366 struct e1000_hw *hw = &adapter->hw;
1367 struct igbvf_ring *rx_ring = adapter->rx_ring;
1368 u64 rdba;
1369 u32 rdlen, rxdctl;
1370
1371 /* disable receives */
1372 rxdctl = er32(RXDCTL(0));
1373 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1374 e1e_flush();
1375 msleep(10);
1376
1377 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1378
1379 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1380 * the Base and Length of the Rx Descriptor Ring
1381 */
1382 rdba = rx_ring->dma;
1383 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1384 ew32(RDBAH(0), (rdba >> 32));
1385 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1386 rx_ring->head = E1000_RDH(0);
1387 rx_ring->tail = E1000_RDT(0);
1388 ew32(RDH(0), 0);
1389 ew32(RDT(0), 0);
1390
1391 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1392 rxdctl &= 0xFFF00000;
1393 rxdctl |= IGBVF_RX_PTHRESH;
1394 rxdctl |= IGBVF_RX_HTHRESH << 8;
1395 rxdctl |= IGBVF_RX_WTHRESH << 16;
1396
1397 igbvf_set_rlpml(adapter);
1398
1399 /* enable receives */
1400 ew32(RXDCTL(0), rxdctl);
1401 }
1402
1403 /**
1404 * igbvf_set_multi - Multicast and Promiscuous mode set
1405 * @netdev: network interface device structure
1406 *
1407 * The set_multi entry point is called whenever the multicast address
1408 * list or the network interface flags are updated. This routine is
1409 * responsible for configuring the hardware for proper multicast,
1410 * promiscuous mode, and all-multi behavior.
1411 **/
1412 static void igbvf_set_multi(struct net_device *netdev)
1413 {
1414 struct igbvf_adapter *adapter = netdev_priv(netdev);
1415 struct e1000_hw *hw = &adapter->hw;
1416 struct netdev_hw_addr *ha;
1417 u8 *mta_list = NULL;
1418 int i;
1419
1420 if (!netdev_mc_empty(netdev)) {
1421 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1422 GFP_ATOMIC);
1423 if (!mta_list)
1424 return;
1425 }
1426
1427 /* prepare a packed array of only addresses. */
1428 i = 0;
1429 netdev_for_each_mc_addr(ha, netdev)
1430 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1431
1432 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1433 kfree(mta_list);
1434 }
1435
1436 /**
1437 * igbvf_configure - configure the hardware for Rx and Tx
1438 * @adapter: private board structure
1439 **/
1440 static void igbvf_configure(struct igbvf_adapter *adapter)
1441 {
1442 igbvf_set_multi(adapter->netdev);
1443
1444 igbvf_restore_vlan(adapter);
1445
1446 igbvf_configure_tx(adapter);
1447 igbvf_setup_srrctl(adapter);
1448 igbvf_configure_rx(adapter);
1449 igbvf_alloc_rx_buffers(adapter->rx_ring,
1450 igbvf_desc_unused(adapter->rx_ring));
1451 }
1452
1453 /* igbvf_reset - bring the hardware into a known good state
1454 * @adapter: private board structure
1455 *
1456 * This function boots the hardware and enables some settings that
1457 * require a configuration cycle of the hardware - those cannot be
1458 * set/changed during runtime. After reset the device needs to be
1459 * properly configured for Rx, Tx etc.
1460 */
1461 static void igbvf_reset(struct igbvf_adapter *adapter)
1462 {
1463 struct e1000_mac_info *mac = &adapter->hw.mac;
1464 struct net_device *netdev = adapter->netdev;
1465 struct e1000_hw *hw = &adapter->hw;
1466
1467 /* Allow time for pending master requests to run */
1468 if (mac->ops.reset_hw(hw))
1469 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1470
1471 mac->ops.init_hw(hw);
1472
1473 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1474 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1475 netdev->addr_len);
1476 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1477 netdev->addr_len);
1478 }
1479
1480 adapter->last_reset = jiffies;
1481 }
1482
1483 int igbvf_up(struct igbvf_adapter *adapter)
1484 {
1485 struct e1000_hw *hw = &adapter->hw;
1486
1487 /* hardware has been reset, we need to reload some things */
1488 igbvf_configure(adapter);
1489
1490 clear_bit(__IGBVF_DOWN, &adapter->state);
1491
1492 napi_enable(&adapter->rx_ring->napi);
1493 if (adapter->msix_entries)
1494 igbvf_configure_msix(adapter);
1495
1496 /* Clear any pending interrupts. */
1497 er32(EICR);
1498 igbvf_irq_enable(adapter);
1499
1500 /* start the watchdog */
1501 hw->mac.get_link_status = 1;
1502 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1503
1504 return 0;
1505 }
1506
1507 void igbvf_down(struct igbvf_adapter *adapter)
1508 {
1509 struct net_device *netdev = adapter->netdev;
1510 struct e1000_hw *hw = &adapter->hw;
1511 u32 rxdctl, txdctl;
1512
1513 /* signal that we're down so the interrupt handler does not
1514 * reschedule our watchdog timer
1515 */
1516 set_bit(__IGBVF_DOWN, &adapter->state);
1517
1518 /* disable receives in the hardware */
1519 rxdctl = er32(RXDCTL(0));
1520 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1521
1522 netif_carrier_off(netdev);
1523 netif_stop_queue(netdev);
1524
1525 /* disable transmits in the hardware */
1526 txdctl = er32(TXDCTL(0));
1527 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1528
1529 /* flush both disables and wait for them to finish */
1530 e1e_flush();
1531 msleep(10);
1532
1533 napi_disable(&adapter->rx_ring->napi);
1534
1535 igbvf_irq_disable(adapter);
1536
1537 del_timer_sync(&adapter->watchdog_timer);
1538
1539 /* record the stats before reset*/
1540 igbvf_update_stats(adapter);
1541
1542 adapter->link_speed = 0;
1543 adapter->link_duplex = 0;
1544
1545 igbvf_reset(adapter);
1546 igbvf_clean_tx_ring(adapter->tx_ring);
1547 igbvf_clean_rx_ring(adapter->rx_ring);
1548 }
1549
1550 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1551 {
1552 might_sleep();
1553 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1554 usleep_range(1000, 2000);
1555 igbvf_down(adapter);
1556 igbvf_up(adapter);
1557 clear_bit(__IGBVF_RESETTING, &adapter->state);
1558 }
1559
1560 /**
1561 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1562 * @adapter: board private structure to initialize
1563 *
1564 * igbvf_sw_init initializes the Adapter private data structure.
1565 * Fields are initialized based on PCI device information and
1566 * OS network device settings (MTU size).
1567 **/
1568 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1569 {
1570 struct net_device *netdev = adapter->netdev;
1571 s32 rc;
1572
1573 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1574 adapter->rx_ps_hdr_size = 0;
1575 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1576 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1577
1578 adapter->tx_int_delay = 8;
1579 adapter->tx_abs_int_delay = 32;
1580 adapter->rx_int_delay = 0;
1581 adapter->rx_abs_int_delay = 8;
1582 adapter->requested_itr = 3;
1583 adapter->current_itr = IGBVF_START_ITR;
1584
1585 /* Set various function pointers */
1586 adapter->ei->init_ops(&adapter->hw);
1587
1588 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1589 if (rc)
1590 return rc;
1591
1592 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1593 if (rc)
1594 return rc;
1595
1596 igbvf_set_interrupt_capability(adapter);
1597
1598 if (igbvf_alloc_queues(adapter))
1599 return -ENOMEM;
1600
1601 spin_lock_init(&adapter->tx_queue_lock);
1602
1603 /* Explicitly disable IRQ since the NIC can be in any state. */
1604 igbvf_irq_disable(adapter);
1605
1606 spin_lock_init(&adapter->stats_lock);
1607
1608 set_bit(__IGBVF_DOWN, &adapter->state);
1609 return 0;
1610 }
1611
1612 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1613 {
1614 struct e1000_hw *hw = &adapter->hw;
1615
1616 adapter->stats.last_gprc = er32(VFGPRC);
1617 adapter->stats.last_gorc = er32(VFGORC);
1618 adapter->stats.last_gptc = er32(VFGPTC);
1619 adapter->stats.last_gotc = er32(VFGOTC);
1620 adapter->stats.last_mprc = er32(VFMPRC);
1621 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1622 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1623 adapter->stats.last_gorlbc = er32(VFGORLBC);
1624 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1625
1626 adapter->stats.base_gprc = er32(VFGPRC);
1627 adapter->stats.base_gorc = er32(VFGORC);
1628 adapter->stats.base_gptc = er32(VFGPTC);
1629 adapter->stats.base_gotc = er32(VFGOTC);
1630 adapter->stats.base_mprc = er32(VFMPRC);
1631 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1632 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1633 adapter->stats.base_gorlbc = er32(VFGORLBC);
1634 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1635 }
1636
1637 /**
1638 * igbvf_open - Called when a network interface is made active
1639 * @netdev: network interface device structure
1640 *
1641 * Returns 0 on success, negative value on failure
1642 *
1643 * The open entry point is called when a network interface is made
1644 * active by the system (IFF_UP). At this point all resources needed
1645 * for transmit and receive operations are allocated, the interrupt
1646 * handler is registered with the OS, the watchdog timer is started,
1647 * and the stack is notified that the interface is ready.
1648 **/
1649 static int igbvf_open(struct net_device *netdev)
1650 {
1651 struct igbvf_adapter *adapter = netdev_priv(netdev);
1652 struct e1000_hw *hw = &adapter->hw;
1653 int err;
1654
1655 /* disallow open during test */
1656 if (test_bit(__IGBVF_TESTING, &adapter->state))
1657 return -EBUSY;
1658
1659 /* allocate transmit descriptors */
1660 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1661 if (err)
1662 goto err_setup_tx;
1663
1664 /* allocate receive descriptors */
1665 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1666 if (err)
1667 goto err_setup_rx;
1668
1669 /* before we allocate an interrupt, we must be ready to handle it.
1670 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1671 * as soon as we call pci_request_irq, so we have to setup our
1672 * clean_rx handler before we do so.
1673 */
1674 igbvf_configure(adapter);
1675
1676 err = igbvf_request_irq(adapter);
1677 if (err)
1678 goto err_req_irq;
1679
1680 /* From here on the code is the same as igbvf_up() */
1681 clear_bit(__IGBVF_DOWN, &adapter->state);
1682
1683 napi_enable(&adapter->rx_ring->napi);
1684
1685 /* clear any pending interrupts */
1686 er32(EICR);
1687
1688 igbvf_irq_enable(adapter);
1689
1690 /* start the watchdog */
1691 hw->mac.get_link_status = 1;
1692 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1693
1694 return 0;
1695
1696 err_req_irq:
1697 igbvf_free_rx_resources(adapter->rx_ring);
1698 err_setup_rx:
1699 igbvf_free_tx_resources(adapter->tx_ring);
1700 err_setup_tx:
1701 igbvf_reset(adapter);
1702
1703 return err;
1704 }
1705
1706 /**
1707 * igbvf_close - Disables a network interface
1708 * @netdev: network interface device structure
1709 *
1710 * Returns 0, this is not allowed to fail
1711 *
1712 * The close entry point is called when an interface is de-activated
1713 * by the OS. The hardware is still under the drivers control, but
1714 * needs to be disabled. A global MAC reset is issued to stop the
1715 * hardware, and all transmit and receive resources are freed.
1716 **/
1717 static int igbvf_close(struct net_device *netdev)
1718 {
1719 struct igbvf_adapter *adapter = netdev_priv(netdev);
1720
1721 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1722 igbvf_down(adapter);
1723
1724 igbvf_free_irq(adapter);
1725
1726 igbvf_free_tx_resources(adapter->tx_ring);
1727 igbvf_free_rx_resources(adapter->rx_ring);
1728
1729 return 0;
1730 }
1731
1732 /**
1733 * igbvf_set_mac - Change the Ethernet Address of the NIC
1734 * @netdev: network interface device structure
1735 * @p: pointer to an address structure
1736 *
1737 * Returns 0 on success, negative on failure
1738 **/
1739 static int igbvf_set_mac(struct net_device *netdev, void *p)
1740 {
1741 struct igbvf_adapter *adapter = netdev_priv(netdev);
1742 struct e1000_hw *hw = &adapter->hw;
1743 struct sockaddr *addr = p;
1744
1745 if (!is_valid_ether_addr(addr->sa_data))
1746 return -EADDRNOTAVAIL;
1747
1748 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1749
1750 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1751
1752 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1753 return -EADDRNOTAVAIL;
1754
1755 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1756
1757 return 0;
1758 }
1759
1760 #define UPDATE_VF_COUNTER(reg, name) \
1761 { \
1762 u32 current_counter = er32(reg); \
1763 if (current_counter < adapter->stats.last_##name) \
1764 adapter->stats.name += 0x100000000LL; \
1765 adapter->stats.last_##name = current_counter; \
1766 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1767 adapter->stats.name |= current_counter; \
1768 }
1769
1770 /**
1771 * igbvf_update_stats - Update the board statistics counters
1772 * @adapter: board private structure
1773 **/
1774 void igbvf_update_stats(struct igbvf_adapter *adapter)
1775 {
1776 struct e1000_hw *hw = &adapter->hw;
1777 struct pci_dev *pdev = adapter->pdev;
1778
1779 /* Prevent stats update while adapter is being reset, link is down
1780 * or if the pci connection is down.
1781 */
1782 if (adapter->link_speed == 0)
1783 return;
1784
1785 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1786 return;
1787
1788 if (pci_channel_offline(pdev))
1789 return;
1790
1791 UPDATE_VF_COUNTER(VFGPRC, gprc);
1792 UPDATE_VF_COUNTER(VFGORC, gorc);
1793 UPDATE_VF_COUNTER(VFGPTC, gptc);
1794 UPDATE_VF_COUNTER(VFGOTC, gotc);
1795 UPDATE_VF_COUNTER(VFMPRC, mprc);
1796 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1797 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1798 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1799 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1800
1801 /* Fill out the OS statistics structure */
1802 adapter->net_stats.multicast = adapter->stats.mprc;
1803 }
1804
1805 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1806 {
1807 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1808 adapter->link_speed,
1809 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1810 }
1811
1812 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1813 {
1814 struct e1000_hw *hw = &adapter->hw;
1815 s32 ret_val = E1000_SUCCESS;
1816 bool link_active;
1817
1818 /* If interface is down, stay link down */
1819 if (test_bit(__IGBVF_DOWN, &adapter->state))
1820 return false;
1821
1822 ret_val = hw->mac.ops.check_for_link(hw);
1823 link_active = !hw->mac.get_link_status;
1824
1825 /* if check for link returns error we will need to reset */
1826 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1827 schedule_work(&adapter->reset_task);
1828
1829 return link_active;
1830 }
1831
1832 /**
1833 * igbvf_watchdog - Timer Call-back
1834 * @data: pointer to adapter cast into an unsigned long
1835 **/
1836 static void igbvf_watchdog(unsigned long data)
1837 {
1838 struct igbvf_adapter *adapter = (struct igbvf_adapter *)data;
1839
1840 /* Do the rest outside of interrupt context */
1841 schedule_work(&adapter->watchdog_task);
1842 }
1843
1844 static void igbvf_watchdog_task(struct work_struct *work)
1845 {
1846 struct igbvf_adapter *adapter = container_of(work,
1847 struct igbvf_adapter,
1848 watchdog_task);
1849 struct net_device *netdev = adapter->netdev;
1850 struct e1000_mac_info *mac = &adapter->hw.mac;
1851 struct igbvf_ring *tx_ring = adapter->tx_ring;
1852 struct e1000_hw *hw = &adapter->hw;
1853 u32 link;
1854 int tx_pending = 0;
1855
1856 link = igbvf_has_link(adapter);
1857
1858 if (link) {
1859 if (!netif_carrier_ok(netdev)) {
1860 mac->ops.get_link_up_info(&adapter->hw,
1861 &adapter->link_speed,
1862 &adapter->link_duplex);
1863 igbvf_print_link_info(adapter);
1864
1865 netif_carrier_on(netdev);
1866 netif_wake_queue(netdev);
1867 }
1868 } else {
1869 if (netif_carrier_ok(netdev)) {
1870 adapter->link_speed = 0;
1871 adapter->link_duplex = 0;
1872 dev_info(&adapter->pdev->dev, "Link is Down\n");
1873 netif_carrier_off(netdev);
1874 netif_stop_queue(netdev);
1875 }
1876 }
1877
1878 if (netif_carrier_ok(netdev)) {
1879 igbvf_update_stats(adapter);
1880 } else {
1881 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1882 tx_ring->count);
1883 if (tx_pending) {
1884 /* We've lost link, so the controller stops DMA,
1885 * but we've got queued Tx work that's never going
1886 * to get done, so reset controller to flush Tx.
1887 * (Do the reset outside of interrupt context).
1888 */
1889 adapter->tx_timeout_count++;
1890 schedule_work(&adapter->reset_task);
1891 }
1892 }
1893
1894 /* Cause software interrupt to ensure Rx ring is cleaned */
1895 ew32(EICS, adapter->rx_ring->eims_value);
1896
1897 /* Reset the timer */
1898 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1899 mod_timer(&adapter->watchdog_timer,
1900 round_jiffies(jiffies + (2 * HZ)));
1901 }
1902
1903 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1904 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1905 #define IGBVF_TX_FLAGS_TSO 0x00000004
1906 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1907 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1908 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1909
1910 static int igbvf_tso(struct igbvf_adapter *adapter,
1911 struct igbvf_ring *tx_ring,
1912 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len,
1913 __be16 protocol)
1914 {
1915 struct e1000_adv_tx_context_desc *context_desc;
1916 struct igbvf_buffer *buffer_info;
1917 u32 info = 0, tu_cmd = 0;
1918 u32 mss_l4len_idx, l4len;
1919 unsigned int i;
1920 int err;
1921
1922 *hdr_len = 0;
1923
1924 err = skb_cow_head(skb, 0);
1925 if (err < 0) {
1926 dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1927 return err;
1928 }
1929
1930 l4len = tcp_hdrlen(skb);
1931 *hdr_len += l4len;
1932
1933 if (protocol == htons(ETH_P_IP)) {
1934 struct iphdr *iph = ip_hdr(skb);
1935
1936 iph->tot_len = 0;
1937 iph->check = 0;
1938 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1939 iph->daddr, 0,
1940 IPPROTO_TCP,
1941 0);
1942 } else if (skb_is_gso_v6(skb)) {
1943 ipv6_hdr(skb)->payload_len = 0;
1944 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1945 &ipv6_hdr(skb)->daddr,
1946 0, IPPROTO_TCP, 0);
1947 }
1948
1949 i = tx_ring->next_to_use;
1950
1951 buffer_info = &tx_ring->buffer_info[i];
1952 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1953 /* VLAN MACLEN IPLEN */
1954 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1955 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1956 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1957 *hdr_len += skb_network_offset(skb);
1958 info |= (skb_transport_header(skb) - skb_network_header(skb));
1959 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1960 context_desc->vlan_macip_lens = cpu_to_le32(info);
1961
1962 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1963 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1964
1965 if (protocol == htons(ETH_P_IP))
1966 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1967 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1968
1969 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1970
1971 /* MSS L4LEN IDX */
1972 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1973 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1974
1975 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1976 context_desc->seqnum_seed = 0;
1977
1978 buffer_info->time_stamp = jiffies;
1979 buffer_info->dma = 0;
1980 i++;
1981 if (i == tx_ring->count)
1982 i = 0;
1983
1984 tx_ring->next_to_use = i;
1985
1986 return true;
1987 }
1988
1989 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1990 struct igbvf_ring *tx_ring,
1991 struct sk_buff *skb, u32 tx_flags,
1992 __be16 protocol)
1993 {
1994 struct e1000_adv_tx_context_desc *context_desc;
1995 unsigned int i;
1996 struct igbvf_buffer *buffer_info;
1997 u32 info = 0, tu_cmd = 0;
1998
1999 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2000 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2001 i = tx_ring->next_to_use;
2002 buffer_info = &tx_ring->buffer_info[i];
2003 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2004
2005 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2006 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2007
2008 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2009 if (skb->ip_summed == CHECKSUM_PARTIAL)
2010 info |= (skb_transport_header(skb) -
2011 skb_network_header(skb));
2012
2013 context_desc->vlan_macip_lens = cpu_to_le32(info);
2014
2015 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2016
2017 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2018 switch (protocol) {
2019 case htons(ETH_P_IP):
2020 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2021 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2022 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2023 break;
2024 case htons(ETH_P_IPV6):
2025 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2026 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2027 break;
2028 default:
2029 break;
2030 }
2031 }
2032
2033 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2034 context_desc->seqnum_seed = 0;
2035 context_desc->mss_l4len_idx = 0;
2036
2037 buffer_info->time_stamp = jiffies;
2038 buffer_info->dma = 0;
2039 i++;
2040 if (i == tx_ring->count)
2041 i = 0;
2042 tx_ring->next_to_use = i;
2043
2044 return true;
2045 }
2046
2047 return false;
2048 }
2049
2050 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2051 {
2052 struct igbvf_adapter *adapter = netdev_priv(netdev);
2053
2054 /* there is enough descriptors then we don't need to worry */
2055 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2056 return 0;
2057
2058 netif_stop_queue(netdev);
2059
2060 /* Herbert's original patch had:
2061 * smp_mb__after_netif_stop_queue();
2062 * but since that doesn't exist yet, just open code it.
2063 */
2064 smp_mb();
2065
2066 /* We need to check again just in case room has been made available */
2067 if (igbvf_desc_unused(adapter->tx_ring) < size)
2068 return -EBUSY;
2069
2070 netif_wake_queue(netdev);
2071
2072 ++adapter->restart_queue;
2073 return 0;
2074 }
2075
2076 #define IGBVF_MAX_TXD_PWR 16
2077 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2078
2079 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2080 struct igbvf_ring *tx_ring,
2081 struct sk_buff *skb)
2082 {
2083 struct igbvf_buffer *buffer_info;
2084 struct pci_dev *pdev = adapter->pdev;
2085 unsigned int len = skb_headlen(skb);
2086 unsigned int count = 0, i;
2087 unsigned int f;
2088
2089 i = tx_ring->next_to_use;
2090
2091 buffer_info = &tx_ring->buffer_info[i];
2092 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2093 buffer_info->length = len;
2094 /* set time_stamp *before* dma to help avoid a possible race */
2095 buffer_info->time_stamp = jiffies;
2096 buffer_info->mapped_as_page = false;
2097 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2098 DMA_TO_DEVICE);
2099 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2100 goto dma_error;
2101
2102 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2103 const struct skb_frag_struct *frag;
2104
2105 count++;
2106 i++;
2107 if (i == tx_ring->count)
2108 i = 0;
2109
2110 frag = &skb_shinfo(skb)->frags[f];
2111 len = skb_frag_size(frag);
2112
2113 buffer_info = &tx_ring->buffer_info[i];
2114 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2115 buffer_info->length = len;
2116 buffer_info->time_stamp = jiffies;
2117 buffer_info->mapped_as_page = true;
2118 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2119 DMA_TO_DEVICE);
2120 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2121 goto dma_error;
2122 }
2123
2124 tx_ring->buffer_info[i].skb = skb;
2125
2126 return ++count;
2127
2128 dma_error:
2129 dev_err(&pdev->dev, "TX DMA map failed\n");
2130
2131 /* clear timestamp and dma mappings for failed buffer_info mapping */
2132 buffer_info->dma = 0;
2133 buffer_info->time_stamp = 0;
2134 buffer_info->length = 0;
2135 buffer_info->mapped_as_page = false;
2136 if (count)
2137 count--;
2138
2139 /* clear timestamp and dma mappings for remaining portion of packet */
2140 while (count--) {
2141 if (i == 0)
2142 i += tx_ring->count;
2143 i--;
2144 buffer_info = &tx_ring->buffer_info[i];
2145 igbvf_put_txbuf(adapter, buffer_info);
2146 }
2147
2148 return 0;
2149 }
2150
2151 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2152 struct igbvf_ring *tx_ring,
2153 int tx_flags, int count,
2154 unsigned int first, u32 paylen,
2155 u8 hdr_len)
2156 {
2157 union e1000_adv_tx_desc *tx_desc = NULL;
2158 struct igbvf_buffer *buffer_info;
2159 u32 olinfo_status = 0, cmd_type_len;
2160 unsigned int i;
2161
2162 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2163 E1000_ADVTXD_DCMD_DEXT);
2164
2165 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2166 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2167
2168 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2169 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2170
2171 /* insert tcp checksum */
2172 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2173
2174 /* insert ip checksum */
2175 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2176 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2177
2178 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2179 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2180 }
2181
2182 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2183
2184 i = tx_ring->next_to_use;
2185 while (count--) {
2186 buffer_info = &tx_ring->buffer_info[i];
2187 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2188 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2189 tx_desc->read.cmd_type_len =
2190 cpu_to_le32(cmd_type_len | buffer_info->length);
2191 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2192 i++;
2193 if (i == tx_ring->count)
2194 i = 0;
2195 }
2196
2197 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2198 /* Force memory writes to complete before letting h/w
2199 * know there are new descriptors to fetch. (Only
2200 * applicable for weak-ordered memory model archs,
2201 * such as IA-64).
2202 */
2203 wmb();
2204
2205 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2206 tx_ring->next_to_use = i;
2207 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2208 /* we need this if more than one processor can write to our tail
2209 * at a time, it synchronizes IO on IA64/Altix systems
2210 */
2211 mmiowb();
2212 }
2213
2214 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2215 struct net_device *netdev,
2216 struct igbvf_ring *tx_ring)
2217 {
2218 struct igbvf_adapter *adapter = netdev_priv(netdev);
2219 unsigned int first, tx_flags = 0;
2220 u8 hdr_len = 0;
2221 int count = 0;
2222 int tso = 0;
2223 __be16 protocol = vlan_get_protocol(skb);
2224
2225 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2226 dev_kfree_skb_any(skb);
2227 return NETDEV_TX_OK;
2228 }
2229
2230 if (skb->len <= 0) {
2231 dev_kfree_skb_any(skb);
2232 return NETDEV_TX_OK;
2233 }
2234
2235 /* need: count + 4 desc gap to keep tail from touching
2236 * + 2 desc gap to keep tail from touching head,
2237 * + 1 desc for skb->data,
2238 * + 1 desc for context descriptor,
2239 * head, otherwise try next time
2240 */
2241 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2242 /* this is a hard error */
2243 return NETDEV_TX_BUSY;
2244 }
2245
2246 if (skb_vlan_tag_present(skb)) {
2247 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2248 tx_flags |= (skb_vlan_tag_get(skb) <<
2249 IGBVF_TX_FLAGS_VLAN_SHIFT);
2250 }
2251
2252 if (protocol == htons(ETH_P_IP))
2253 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2254
2255 first = tx_ring->next_to_use;
2256
2257 tso = skb_is_gso(skb) ?
2258 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len, protocol) : 0;
2259 if (unlikely(tso < 0)) {
2260 dev_kfree_skb_any(skb);
2261 return NETDEV_TX_OK;
2262 }
2263
2264 if (tso)
2265 tx_flags |= IGBVF_TX_FLAGS_TSO;
2266 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags, protocol) &&
2267 (skb->ip_summed == CHECKSUM_PARTIAL))
2268 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2269
2270 /* count reflects descriptors mapped, if 0 then mapping error
2271 * has occurred and we need to rewind the descriptor queue
2272 */
2273 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2274
2275 if (count) {
2276 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2277 first, skb->len, hdr_len);
2278 /* Make sure there is space in the ring for the next send. */
2279 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2280 } else {
2281 dev_kfree_skb_any(skb);
2282 tx_ring->buffer_info[first].time_stamp = 0;
2283 tx_ring->next_to_use = first;
2284 }
2285
2286 return NETDEV_TX_OK;
2287 }
2288
2289 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2290 struct net_device *netdev)
2291 {
2292 struct igbvf_adapter *adapter = netdev_priv(netdev);
2293 struct igbvf_ring *tx_ring;
2294
2295 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2296 dev_kfree_skb_any(skb);
2297 return NETDEV_TX_OK;
2298 }
2299
2300 tx_ring = &adapter->tx_ring[0];
2301
2302 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2303 }
2304
2305 /**
2306 * igbvf_tx_timeout - Respond to a Tx Hang
2307 * @netdev: network interface device structure
2308 **/
2309 static void igbvf_tx_timeout(struct net_device *netdev)
2310 {
2311 struct igbvf_adapter *adapter = netdev_priv(netdev);
2312
2313 /* Do the reset outside of interrupt context */
2314 adapter->tx_timeout_count++;
2315 schedule_work(&adapter->reset_task);
2316 }
2317
2318 static void igbvf_reset_task(struct work_struct *work)
2319 {
2320 struct igbvf_adapter *adapter;
2321
2322 adapter = container_of(work, struct igbvf_adapter, reset_task);
2323
2324 igbvf_reinit_locked(adapter);
2325 }
2326
2327 /**
2328 * igbvf_get_stats - Get System Network Statistics
2329 * @netdev: network interface device structure
2330 *
2331 * Returns the address of the device statistics structure.
2332 * The statistics are actually updated from the timer callback.
2333 **/
2334 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2335 {
2336 struct igbvf_adapter *adapter = netdev_priv(netdev);
2337
2338 /* only return the current stats */
2339 return &adapter->net_stats;
2340 }
2341
2342 /**
2343 * igbvf_change_mtu - Change the Maximum Transfer Unit
2344 * @netdev: network interface device structure
2345 * @new_mtu: new value for maximum frame size
2346 *
2347 * Returns 0 on success, negative on failure
2348 **/
2349 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2350 {
2351 struct igbvf_adapter *adapter = netdev_priv(netdev);
2352 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2353
2354 if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2355 max_frame > MAX_JUMBO_FRAME_SIZE)
2356 return -EINVAL;
2357
2358 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2359 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2360 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2361 return -EINVAL;
2362 }
2363
2364 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2365 usleep_range(1000, 2000);
2366 /* igbvf_down has a dependency on max_frame_size */
2367 adapter->max_frame_size = max_frame;
2368 if (netif_running(netdev))
2369 igbvf_down(adapter);
2370
2371 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2372 * means we reserve 2 more, this pushes us to allocate from the next
2373 * larger slab size.
2374 * i.e. RXBUFFER_2048 --> size-4096 slab
2375 * However with the new *_jumbo_rx* routines, jumbo receives will use
2376 * fragmented skbs
2377 */
2378
2379 if (max_frame <= 1024)
2380 adapter->rx_buffer_len = 1024;
2381 else if (max_frame <= 2048)
2382 adapter->rx_buffer_len = 2048;
2383 else
2384 #if (PAGE_SIZE / 2) > 16384
2385 adapter->rx_buffer_len = 16384;
2386 #else
2387 adapter->rx_buffer_len = PAGE_SIZE / 2;
2388 #endif
2389
2390 /* adjust allocation if LPE protects us, and we aren't using SBP */
2391 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2392 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2393 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2394 ETH_FCS_LEN;
2395
2396 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2397 netdev->mtu, new_mtu);
2398 netdev->mtu = new_mtu;
2399
2400 if (netif_running(netdev))
2401 igbvf_up(adapter);
2402 else
2403 igbvf_reset(adapter);
2404
2405 clear_bit(__IGBVF_RESETTING, &adapter->state);
2406
2407 return 0;
2408 }
2409
2410 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2411 {
2412 switch (cmd) {
2413 default:
2414 return -EOPNOTSUPP;
2415 }
2416 }
2417
2418 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2419 {
2420 struct net_device *netdev = pci_get_drvdata(pdev);
2421 struct igbvf_adapter *adapter = netdev_priv(netdev);
2422 #ifdef CONFIG_PM
2423 int retval = 0;
2424 #endif
2425
2426 netif_device_detach(netdev);
2427
2428 if (netif_running(netdev)) {
2429 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2430 igbvf_down(adapter);
2431 igbvf_free_irq(adapter);
2432 }
2433
2434 #ifdef CONFIG_PM
2435 retval = pci_save_state(pdev);
2436 if (retval)
2437 return retval;
2438 #endif
2439
2440 pci_disable_device(pdev);
2441
2442 return 0;
2443 }
2444
2445 #ifdef CONFIG_PM
2446 static int igbvf_resume(struct pci_dev *pdev)
2447 {
2448 struct net_device *netdev = pci_get_drvdata(pdev);
2449 struct igbvf_adapter *adapter = netdev_priv(netdev);
2450 u32 err;
2451
2452 pci_restore_state(pdev);
2453 err = pci_enable_device_mem(pdev);
2454 if (err) {
2455 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2456 return err;
2457 }
2458
2459 pci_set_master(pdev);
2460
2461 if (netif_running(netdev)) {
2462 err = igbvf_request_irq(adapter);
2463 if (err)
2464 return err;
2465 }
2466
2467 igbvf_reset(adapter);
2468
2469 if (netif_running(netdev))
2470 igbvf_up(adapter);
2471
2472 netif_device_attach(netdev);
2473
2474 return 0;
2475 }
2476 #endif
2477
2478 static void igbvf_shutdown(struct pci_dev *pdev)
2479 {
2480 igbvf_suspend(pdev, PMSG_SUSPEND);
2481 }
2482
2483 #ifdef CONFIG_NET_POLL_CONTROLLER
2484 /* Polling 'interrupt' - used by things like netconsole to send skbs
2485 * without having to re-enable interrupts. It's not called while
2486 * the interrupt routine is executing.
2487 */
2488 static void igbvf_netpoll(struct net_device *netdev)
2489 {
2490 struct igbvf_adapter *adapter = netdev_priv(netdev);
2491
2492 disable_irq(adapter->pdev->irq);
2493
2494 igbvf_clean_tx_irq(adapter->tx_ring);
2495
2496 enable_irq(adapter->pdev->irq);
2497 }
2498 #endif
2499
2500 /**
2501 * igbvf_io_error_detected - called when PCI error is detected
2502 * @pdev: Pointer to PCI device
2503 * @state: The current pci connection state
2504 *
2505 * This function is called after a PCI bus error affecting
2506 * this device has been detected.
2507 */
2508 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2509 pci_channel_state_t state)
2510 {
2511 struct net_device *netdev = pci_get_drvdata(pdev);
2512 struct igbvf_adapter *adapter = netdev_priv(netdev);
2513
2514 netif_device_detach(netdev);
2515
2516 if (state == pci_channel_io_perm_failure)
2517 return PCI_ERS_RESULT_DISCONNECT;
2518
2519 if (netif_running(netdev))
2520 igbvf_down(adapter);
2521 pci_disable_device(pdev);
2522
2523 /* Request a slot slot reset. */
2524 return PCI_ERS_RESULT_NEED_RESET;
2525 }
2526
2527 /**
2528 * igbvf_io_slot_reset - called after the pci bus has been reset.
2529 * @pdev: Pointer to PCI device
2530 *
2531 * Restart the card from scratch, as if from a cold-boot. Implementation
2532 * resembles the first-half of the igbvf_resume routine.
2533 */
2534 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2535 {
2536 struct net_device *netdev = pci_get_drvdata(pdev);
2537 struct igbvf_adapter *adapter = netdev_priv(netdev);
2538
2539 if (pci_enable_device_mem(pdev)) {
2540 dev_err(&pdev->dev,
2541 "Cannot re-enable PCI device after reset.\n");
2542 return PCI_ERS_RESULT_DISCONNECT;
2543 }
2544 pci_set_master(pdev);
2545
2546 igbvf_reset(adapter);
2547
2548 return PCI_ERS_RESULT_RECOVERED;
2549 }
2550
2551 /**
2552 * igbvf_io_resume - called when traffic can start flowing again.
2553 * @pdev: Pointer to PCI device
2554 *
2555 * This callback is called when the error recovery driver tells us that
2556 * its OK to resume normal operation. Implementation resembles the
2557 * second-half of the igbvf_resume routine.
2558 */
2559 static void igbvf_io_resume(struct pci_dev *pdev)
2560 {
2561 struct net_device *netdev = pci_get_drvdata(pdev);
2562 struct igbvf_adapter *adapter = netdev_priv(netdev);
2563
2564 if (netif_running(netdev)) {
2565 if (igbvf_up(adapter)) {
2566 dev_err(&pdev->dev,
2567 "can't bring device back up after reset\n");
2568 return;
2569 }
2570 }
2571
2572 netif_device_attach(netdev);
2573 }
2574
2575 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2576 {
2577 struct e1000_hw *hw = &adapter->hw;
2578 struct net_device *netdev = adapter->netdev;
2579 struct pci_dev *pdev = adapter->pdev;
2580
2581 if (hw->mac.type == e1000_vfadapt_i350)
2582 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2583 else
2584 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2585 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2586 }
2587
2588 static int igbvf_set_features(struct net_device *netdev,
2589 netdev_features_t features)
2590 {
2591 struct igbvf_adapter *adapter = netdev_priv(netdev);
2592
2593 if (features & NETIF_F_RXCSUM)
2594 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2595 else
2596 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2597
2598 return 0;
2599 }
2600
2601 static const struct net_device_ops igbvf_netdev_ops = {
2602 .ndo_open = igbvf_open,
2603 .ndo_stop = igbvf_close,
2604 .ndo_start_xmit = igbvf_xmit_frame,
2605 .ndo_get_stats = igbvf_get_stats,
2606 .ndo_set_rx_mode = igbvf_set_multi,
2607 .ndo_set_mac_address = igbvf_set_mac,
2608 .ndo_change_mtu = igbvf_change_mtu,
2609 .ndo_do_ioctl = igbvf_ioctl,
2610 .ndo_tx_timeout = igbvf_tx_timeout,
2611 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2612 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2613 #ifdef CONFIG_NET_POLL_CONTROLLER
2614 .ndo_poll_controller = igbvf_netpoll,
2615 #endif
2616 .ndo_set_features = igbvf_set_features,
2617 };
2618
2619 /**
2620 * igbvf_probe - Device Initialization Routine
2621 * @pdev: PCI device information struct
2622 * @ent: entry in igbvf_pci_tbl
2623 *
2624 * Returns 0 on success, negative on failure
2625 *
2626 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2627 * The OS initialization, configuring of the adapter private structure,
2628 * and a hardware reset occur.
2629 **/
2630 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2631 {
2632 struct net_device *netdev;
2633 struct igbvf_adapter *adapter;
2634 struct e1000_hw *hw;
2635 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2636
2637 static int cards_found;
2638 int err, pci_using_dac;
2639
2640 err = pci_enable_device_mem(pdev);
2641 if (err)
2642 return err;
2643
2644 pci_using_dac = 0;
2645 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2646 if (!err) {
2647 pci_using_dac = 1;
2648 } else {
2649 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2650 if (err) {
2651 dev_err(&pdev->dev,
2652 "No usable DMA configuration, aborting\n");
2653 goto err_dma;
2654 }
2655 }
2656
2657 err = pci_request_regions(pdev, igbvf_driver_name);
2658 if (err)
2659 goto err_pci_reg;
2660
2661 pci_set_master(pdev);
2662
2663 err = -ENOMEM;
2664 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2665 if (!netdev)
2666 goto err_alloc_etherdev;
2667
2668 SET_NETDEV_DEV(netdev, &pdev->dev);
2669
2670 pci_set_drvdata(pdev, netdev);
2671 adapter = netdev_priv(netdev);
2672 hw = &adapter->hw;
2673 adapter->netdev = netdev;
2674 adapter->pdev = pdev;
2675 adapter->ei = ei;
2676 adapter->pba = ei->pba;
2677 adapter->flags = ei->flags;
2678 adapter->hw.back = adapter;
2679 adapter->hw.mac.type = ei->mac;
2680 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2681
2682 /* PCI config space info */
2683
2684 hw->vendor_id = pdev->vendor;
2685 hw->device_id = pdev->device;
2686 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2687 hw->subsystem_device_id = pdev->subsystem_device;
2688 hw->revision_id = pdev->revision;
2689
2690 err = -EIO;
2691 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2692 pci_resource_len(pdev, 0));
2693
2694 if (!adapter->hw.hw_addr)
2695 goto err_ioremap;
2696
2697 if (ei->get_variants) {
2698 err = ei->get_variants(adapter);
2699 if (err)
2700 goto err_get_variants;
2701 }
2702
2703 /* setup adapter struct */
2704 err = igbvf_sw_init(adapter);
2705 if (err)
2706 goto err_sw_init;
2707
2708 /* construct the net_device struct */
2709 netdev->netdev_ops = &igbvf_netdev_ops;
2710
2711 igbvf_set_ethtool_ops(netdev);
2712 netdev->watchdog_timeo = 5 * HZ;
2713 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2714
2715 adapter->bd_number = cards_found++;
2716
2717 netdev->hw_features = NETIF_F_SG |
2718 NETIF_F_IP_CSUM |
2719 NETIF_F_IPV6_CSUM |
2720 NETIF_F_TSO |
2721 NETIF_F_TSO6 |
2722 NETIF_F_RXCSUM;
2723
2724 netdev->features = netdev->hw_features |
2725 NETIF_F_HW_VLAN_CTAG_TX |
2726 NETIF_F_HW_VLAN_CTAG_RX |
2727 NETIF_F_HW_VLAN_CTAG_FILTER;
2728
2729 if (pci_using_dac)
2730 netdev->features |= NETIF_F_HIGHDMA;
2731
2732 netdev->vlan_features |= NETIF_F_TSO;
2733 netdev->vlan_features |= NETIF_F_TSO6;
2734 netdev->vlan_features |= NETIF_F_IP_CSUM;
2735 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2736 netdev->vlan_features |= NETIF_F_SG;
2737
2738 /*reset the controller to put the device in a known good state */
2739 err = hw->mac.ops.reset_hw(hw);
2740 if (err) {
2741 dev_info(&pdev->dev,
2742 "PF still in reset state. Is the PF interface up?\n");
2743 } else {
2744 err = hw->mac.ops.read_mac_addr(hw);
2745 if (err)
2746 dev_info(&pdev->dev, "Error reading MAC address.\n");
2747 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2748 dev_info(&pdev->dev,
2749 "MAC address not assigned by administrator.\n");
2750 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2751 netdev->addr_len);
2752 }
2753
2754 if (!is_valid_ether_addr(netdev->dev_addr)) {
2755 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2756 eth_hw_addr_random(netdev);
2757 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2758 netdev->addr_len);
2759 }
2760
2761 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2762 (unsigned long)adapter);
2763
2764 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2765 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2766
2767 /* ring size defaults */
2768 adapter->rx_ring->count = 1024;
2769 adapter->tx_ring->count = 1024;
2770
2771 /* reset the hardware with the new settings */
2772 igbvf_reset(adapter);
2773
2774 /* set hardware-specific flags */
2775 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2776 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2777
2778 strcpy(netdev->name, "eth%d");
2779 err = register_netdev(netdev);
2780 if (err)
2781 goto err_hw_init;
2782
2783 /* tell the stack to leave us alone until igbvf_open() is called */
2784 netif_carrier_off(netdev);
2785 netif_stop_queue(netdev);
2786
2787 igbvf_print_device_info(adapter);
2788
2789 igbvf_initialize_last_counter_stats(adapter);
2790
2791 return 0;
2792
2793 err_hw_init:
2794 kfree(adapter->tx_ring);
2795 kfree(adapter->rx_ring);
2796 err_sw_init:
2797 igbvf_reset_interrupt_capability(adapter);
2798 err_get_variants:
2799 iounmap(adapter->hw.hw_addr);
2800 err_ioremap:
2801 free_netdev(netdev);
2802 err_alloc_etherdev:
2803 pci_release_regions(pdev);
2804 err_pci_reg:
2805 err_dma:
2806 pci_disable_device(pdev);
2807 return err;
2808 }
2809
2810 /**
2811 * igbvf_remove - Device Removal Routine
2812 * @pdev: PCI device information struct
2813 *
2814 * igbvf_remove is called by the PCI subsystem to alert the driver
2815 * that it should release a PCI device. The could be caused by a
2816 * Hot-Plug event, or because the driver is going to be removed from
2817 * memory.
2818 **/
2819 static void igbvf_remove(struct pci_dev *pdev)
2820 {
2821 struct net_device *netdev = pci_get_drvdata(pdev);
2822 struct igbvf_adapter *adapter = netdev_priv(netdev);
2823 struct e1000_hw *hw = &adapter->hw;
2824
2825 /* The watchdog timer may be rescheduled, so explicitly
2826 * disable it from being rescheduled.
2827 */
2828 set_bit(__IGBVF_DOWN, &adapter->state);
2829 del_timer_sync(&adapter->watchdog_timer);
2830
2831 cancel_work_sync(&adapter->reset_task);
2832 cancel_work_sync(&adapter->watchdog_task);
2833
2834 unregister_netdev(netdev);
2835
2836 igbvf_reset_interrupt_capability(adapter);
2837
2838 /* it is important to delete the NAPI struct prior to freeing the
2839 * Rx ring so that you do not end up with null pointer refs
2840 */
2841 netif_napi_del(&adapter->rx_ring->napi);
2842 kfree(adapter->tx_ring);
2843 kfree(adapter->rx_ring);
2844
2845 iounmap(hw->hw_addr);
2846 if (hw->flash_address)
2847 iounmap(hw->flash_address);
2848 pci_release_regions(pdev);
2849
2850 free_netdev(netdev);
2851
2852 pci_disable_device(pdev);
2853 }
2854
2855 /* PCI Error Recovery (ERS) */
2856 static const struct pci_error_handlers igbvf_err_handler = {
2857 .error_detected = igbvf_io_error_detected,
2858 .slot_reset = igbvf_io_slot_reset,
2859 .resume = igbvf_io_resume,
2860 };
2861
2862 static const struct pci_device_id igbvf_pci_tbl[] = {
2863 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2864 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2865 { } /* terminate list */
2866 };
2867 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2868
2869 /* PCI Device API Driver */
2870 static struct pci_driver igbvf_driver = {
2871 .name = igbvf_driver_name,
2872 .id_table = igbvf_pci_tbl,
2873 .probe = igbvf_probe,
2874 .remove = igbvf_remove,
2875 #ifdef CONFIG_PM
2876 /* Power Management Hooks */
2877 .suspend = igbvf_suspend,
2878 .resume = igbvf_resume,
2879 #endif
2880 .shutdown = igbvf_shutdown,
2881 .err_handler = &igbvf_err_handler
2882 };
2883
2884 /**
2885 * igbvf_init_module - Driver Registration Routine
2886 *
2887 * igbvf_init_module is the first routine called when the driver is
2888 * loaded. All it does is register with the PCI subsystem.
2889 **/
2890 static int __init igbvf_init_module(void)
2891 {
2892 int ret;
2893
2894 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2895 pr_info("%s\n", igbvf_copyright);
2896
2897 ret = pci_register_driver(&igbvf_driver);
2898
2899 return ret;
2900 }
2901 module_init(igbvf_init_module);
2902
2903 /**
2904 * igbvf_exit_module - Driver Exit Cleanup Routine
2905 *
2906 * igbvf_exit_module is called just before the driver is removed
2907 * from memory.
2908 **/
2909 static void __exit igbvf_exit_module(void)
2910 {
2911 pci_unregister_driver(&igbvf_driver);
2912 }
2913 module_exit(igbvf_exit_module);
2914
2915 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2916 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2917 MODULE_LICENSE("GPL");
2918 MODULE_VERSION(DRV_VERSION);
2919
2920 /* netdev.c */
This page took 0.094607 seconds and 5 git commands to generate.