ixgbevf: Correct parameter sent to LED function
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_common.c
1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2016 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 IXGBE_MVALS_INIT(8259X)
63 };
64
65 /**
66 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67 * control
68 * @hw: pointer to hardware structure
69 *
70 * There are several phys that do not support autoneg flow control. This
71 * function check the device id to see if the associated phy supports
72 * autoneg flow control.
73 **/
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75 {
76 bool supported = false;
77 ixgbe_link_speed speed;
78 bool link_up;
79
80 switch (hw->phy.media_type) {
81 case ixgbe_media_type_fiber:
82 hw->mac.ops.check_link(hw, &speed, &link_up, false);
83 /* if link is down, assume supported */
84 if (link_up)
85 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
86 true : false;
87 else
88 supported = true;
89 break;
90 case ixgbe_media_type_backplane:
91 supported = true;
92 break;
93 case ixgbe_media_type_copper:
94 /* only some copper devices support flow control autoneg */
95 switch (hw->device_id) {
96 case IXGBE_DEV_ID_82599_T3_LOM:
97 case IXGBE_DEV_ID_X540T:
98 case IXGBE_DEV_ID_X540T1:
99 case IXGBE_DEV_ID_X550T:
100 case IXGBE_DEV_ID_X550T1:
101 case IXGBE_DEV_ID_X550EM_X_10G_T:
102 supported = true;
103 break;
104 default:
105 break;
106 }
107 default:
108 break;
109 }
110
111 return supported;
112 }
113
114 /**
115 * ixgbe_setup_fc_generic - Set up flow control
116 * @hw: pointer to hardware structure
117 *
118 * Called at init time to set up flow control.
119 **/
120 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
121 {
122 s32 ret_val = 0;
123 u32 reg = 0, reg_bp = 0;
124 u16 reg_cu = 0;
125 bool locked = false;
126
127 /*
128 * Validate the requested mode. Strict IEEE mode does not allow
129 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
130 */
131 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
132 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
133 return IXGBE_ERR_INVALID_LINK_SETTINGS;
134 }
135
136 /*
137 * 10gig parts do not have a word in the EEPROM to determine the
138 * default flow control setting, so we explicitly set it to full.
139 */
140 if (hw->fc.requested_mode == ixgbe_fc_default)
141 hw->fc.requested_mode = ixgbe_fc_full;
142
143 /*
144 * Set up the 1G and 10G flow control advertisement registers so the
145 * HW will be able to do fc autoneg once the cable is plugged in. If
146 * we link at 10G, the 1G advertisement is harmless and vice versa.
147 */
148 switch (hw->phy.media_type) {
149 case ixgbe_media_type_backplane:
150 /* some MAC's need RMW protection on AUTOC */
151 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
152 if (ret_val)
153 return ret_val;
154
155 /* only backplane uses autoc so fall though */
156 case ixgbe_media_type_fiber:
157 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
158
159 break;
160 case ixgbe_media_type_copper:
161 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
162 MDIO_MMD_AN, &reg_cu);
163 break;
164 default:
165 break;
166 }
167
168 /*
169 * The possible values of fc.requested_mode are:
170 * 0: Flow control is completely disabled
171 * 1: Rx flow control is enabled (we can receive pause frames,
172 * but not send pause frames).
173 * 2: Tx flow control is enabled (we can send pause frames but
174 * we do not support receiving pause frames).
175 * 3: Both Rx and Tx flow control (symmetric) are enabled.
176 * other: Invalid.
177 */
178 switch (hw->fc.requested_mode) {
179 case ixgbe_fc_none:
180 /* Flow control completely disabled by software override. */
181 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
182 if (hw->phy.media_type == ixgbe_media_type_backplane)
183 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
184 IXGBE_AUTOC_ASM_PAUSE);
185 else if (hw->phy.media_type == ixgbe_media_type_copper)
186 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
187 break;
188 case ixgbe_fc_tx_pause:
189 /*
190 * Tx Flow control is enabled, and Rx Flow control is
191 * disabled by software override.
192 */
193 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
194 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
195 if (hw->phy.media_type == ixgbe_media_type_backplane) {
196 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
197 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
198 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
199 reg_cu |= IXGBE_TAF_ASM_PAUSE;
200 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
201 }
202 break;
203 case ixgbe_fc_rx_pause:
204 /*
205 * Rx Flow control is enabled and Tx Flow control is
206 * disabled by software override. Since there really
207 * isn't a way to advertise that we are capable of RX
208 * Pause ONLY, we will advertise that we support both
209 * symmetric and asymmetric Rx PAUSE, as such we fall
210 * through to the fc_full statement. Later, we will
211 * disable the adapter's ability to send PAUSE frames.
212 */
213 case ixgbe_fc_full:
214 /* Flow control (both Rx and Tx) is enabled by SW override. */
215 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
216 if (hw->phy.media_type == ixgbe_media_type_backplane)
217 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
218 IXGBE_AUTOC_ASM_PAUSE;
219 else if (hw->phy.media_type == ixgbe_media_type_copper)
220 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
221 break;
222 default:
223 hw_dbg(hw, "Flow control param set incorrectly\n");
224 return IXGBE_ERR_CONFIG;
225 }
226
227 if (hw->mac.type != ixgbe_mac_X540) {
228 /*
229 * Enable auto-negotiation between the MAC & PHY;
230 * the MAC will advertise clause 37 flow control.
231 */
232 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
233 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
234
235 /* Disable AN timeout */
236 if (hw->fc.strict_ieee)
237 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
238
239 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
240 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
241 }
242
243 /*
244 * AUTOC restart handles negotiation of 1G and 10G on backplane
245 * and copper. There is no need to set the PCS1GCTL register.
246 *
247 */
248 if (hw->phy.media_type == ixgbe_media_type_backplane) {
249 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
250 * LESM is on, likewise reset_pipeline requries the lock as
251 * it also writes AUTOC.
252 */
253 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
254 if (ret_val)
255 return ret_val;
256
257 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
258 ixgbe_device_supports_autoneg_fc(hw)) {
259 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
260 MDIO_MMD_AN, reg_cu);
261 }
262
263 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
264 return ret_val;
265 }
266
267 /**
268 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
269 * @hw: pointer to hardware structure
270 *
271 * Starts the hardware by filling the bus info structure and media type, clears
272 * all on chip counters, initializes receive address registers, multicast
273 * table, VLAN filter table, calls routine to set up link and flow control
274 * settings, and leaves transmit and receive units disabled and uninitialized
275 **/
276 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
277 {
278 s32 ret_val;
279 u32 ctrl_ext;
280
281 /* Set the media type */
282 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
283
284 /* Identify the PHY */
285 hw->phy.ops.identify(hw);
286
287 /* Clear the VLAN filter table */
288 hw->mac.ops.clear_vfta(hw);
289
290 /* Clear statistics registers */
291 hw->mac.ops.clear_hw_cntrs(hw);
292
293 /* Set No Snoop Disable */
294 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
295 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
296 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
297 IXGBE_WRITE_FLUSH(hw);
298
299 /* Setup flow control */
300 ret_val = hw->mac.ops.setup_fc(hw);
301 if (ret_val)
302 return ret_val;
303
304 /* Clear adapter stopped flag */
305 hw->adapter_stopped = false;
306
307 return 0;
308 }
309
310 /**
311 * ixgbe_start_hw_gen2 - Init sequence for common device family
312 * @hw: pointer to hw structure
313 *
314 * Performs the init sequence common to the second generation
315 * of 10 GbE devices.
316 * Devices in the second generation:
317 * 82599
318 * X540
319 **/
320 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
321 {
322 u32 i;
323
324 /* Clear the rate limiters */
325 for (i = 0; i < hw->mac.max_tx_queues; i++) {
326 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
327 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
328 }
329 IXGBE_WRITE_FLUSH(hw);
330
331 #ifndef CONFIG_SPARC
332 /* Disable relaxed ordering */
333 for (i = 0; i < hw->mac.max_tx_queues; i++) {
334 u32 regval;
335
336 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
337 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
338 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
339 }
340
341 for (i = 0; i < hw->mac.max_rx_queues; i++) {
342 u32 regval;
343
344 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
345 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
346 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
347 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
348 }
349 #endif
350 return 0;
351 }
352
353 /**
354 * ixgbe_init_hw_generic - Generic hardware initialization
355 * @hw: pointer to hardware structure
356 *
357 * Initialize the hardware by resetting the hardware, filling the bus info
358 * structure and media type, clears all on chip counters, initializes receive
359 * address registers, multicast table, VLAN filter table, calls routine to set
360 * up link and flow control settings, and leaves transmit and receive units
361 * disabled and uninitialized
362 **/
363 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
364 {
365 s32 status;
366
367 /* Reset the hardware */
368 status = hw->mac.ops.reset_hw(hw);
369
370 if (status == 0) {
371 /* Start the HW */
372 status = hw->mac.ops.start_hw(hw);
373 }
374
375 return status;
376 }
377
378 /**
379 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
380 * @hw: pointer to hardware structure
381 *
382 * Clears all hardware statistics counters by reading them from the hardware
383 * Statistics counters are clear on read.
384 **/
385 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
386 {
387 u16 i = 0;
388
389 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
390 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
391 IXGBE_READ_REG(hw, IXGBE_ERRBC);
392 IXGBE_READ_REG(hw, IXGBE_MSPDC);
393 for (i = 0; i < 8; i++)
394 IXGBE_READ_REG(hw, IXGBE_MPC(i));
395
396 IXGBE_READ_REG(hw, IXGBE_MLFC);
397 IXGBE_READ_REG(hw, IXGBE_MRFC);
398 IXGBE_READ_REG(hw, IXGBE_RLEC);
399 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
400 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
401 if (hw->mac.type >= ixgbe_mac_82599EB) {
402 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
403 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
404 } else {
405 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
406 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
407 }
408
409 for (i = 0; i < 8; i++) {
410 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
411 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
412 if (hw->mac.type >= ixgbe_mac_82599EB) {
413 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
414 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
415 } else {
416 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
417 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
418 }
419 }
420 if (hw->mac.type >= ixgbe_mac_82599EB)
421 for (i = 0; i < 8; i++)
422 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
423 IXGBE_READ_REG(hw, IXGBE_PRC64);
424 IXGBE_READ_REG(hw, IXGBE_PRC127);
425 IXGBE_READ_REG(hw, IXGBE_PRC255);
426 IXGBE_READ_REG(hw, IXGBE_PRC511);
427 IXGBE_READ_REG(hw, IXGBE_PRC1023);
428 IXGBE_READ_REG(hw, IXGBE_PRC1522);
429 IXGBE_READ_REG(hw, IXGBE_GPRC);
430 IXGBE_READ_REG(hw, IXGBE_BPRC);
431 IXGBE_READ_REG(hw, IXGBE_MPRC);
432 IXGBE_READ_REG(hw, IXGBE_GPTC);
433 IXGBE_READ_REG(hw, IXGBE_GORCL);
434 IXGBE_READ_REG(hw, IXGBE_GORCH);
435 IXGBE_READ_REG(hw, IXGBE_GOTCL);
436 IXGBE_READ_REG(hw, IXGBE_GOTCH);
437 if (hw->mac.type == ixgbe_mac_82598EB)
438 for (i = 0; i < 8; i++)
439 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
440 IXGBE_READ_REG(hw, IXGBE_RUC);
441 IXGBE_READ_REG(hw, IXGBE_RFC);
442 IXGBE_READ_REG(hw, IXGBE_ROC);
443 IXGBE_READ_REG(hw, IXGBE_RJC);
444 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
445 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
446 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
447 IXGBE_READ_REG(hw, IXGBE_TORL);
448 IXGBE_READ_REG(hw, IXGBE_TORH);
449 IXGBE_READ_REG(hw, IXGBE_TPR);
450 IXGBE_READ_REG(hw, IXGBE_TPT);
451 IXGBE_READ_REG(hw, IXGBE_PTC64);
452 IXGBE_READ_REG(hw, IXGBE_PTC127);
453 IXGBE_READ_REG(hw, IXGBE_PTC255);
454 IXGBE_READ_REG(hw, IXGBE_PTC511);
455 IXGBE_READ_REG(hw, IXGBE_PTC1023);
456 IXGBE_READ_REG(hw, IXGBE_PTC1522);
457 IXGBE_READ_REG(hw, IXGBE_MPTC);
458 IXGBE_READ_REG(hw, IXGBE_BPTC);
459 for (i = 0; i < 16; i++) {
460 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
461 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
462 if (hw->mac.type >= ixgbe_mac_82599EB) {
463 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
464 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
465 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
466 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
467 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
468 } else {
469 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
470 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
471 }
472 }
473
474 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
475 if (hw->phy.id == 0)
476 hw->phy.ops.identify(hw);
477 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
478 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
479 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
480 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
481 }
482
483 return 0;
484 }
485
486 /**
487 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
488 * @hw: pointer to hardware structure
489 * @pba_num: stores the part number string from the EEPROM
490 * @pba_num_size: part number string buffer length
491 *
492 * Reads the part number string from the EEPROM.
493 **/
494 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
495 u32 pba_num_size)
496 {
497 s32 ret_val;
498 u16 data;
499 u16 pba_ptr;
500 u16 offset;
501 u16 length;
502
503 if (pba_num == NULL) {
504 hw_dbg(hw, "PBA string buffer was null\n");
505 return IXGBE_ERR_INVALID_ARGUMENT;
506 }
507
508 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
509 if (ret_val) {
510 hw_dbg(hw, "NVM Read Error\n");
511 return ret_val;
512 }
513
514 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
515 if (ret_val) {
516 hw_dbg(hw, "NVM Read Error\n");
517 return ret_val;
518 }
519
520 /*
521 * if data is not ptr guard the PBA must be in legacy format which
522 * means pba_ptr is actually our second data word for the PBA number
523 * and we can decode it into an ascii string
524 */
525 if (data != IXGBE_PBANUM_PTR_GUARD) {
526 hw_dbg(hw, "NVM PBA number is not stored as string\n");
527
528 /* we will need 11 characters to store the PBA */
529 if (pba_num_size < 11) {
530 hw_dbg(hw, "PBA string buffer too small\n");
531 return IXGBE_ERR_NO_SPACE;
532 }
533
534 /* extract hex string from data and pba_ptr */
535 pba_num[0] = (data >> 12) & 0xF;
536 pba_num[1] = (data >> 8) & 0xF;
537 pba_num[2] = (data >> 4) & 0xF;
538 pba_num[3] = data & 0xF;
539 pba_num[4] = (pba_ptr >> 12) & 0xF;
540 pba_num[5] = (pba_ptr >> 8) & 0xF;
541 pba_num[6] = '-';
542 pba_num[7] = 0;
543 pba_num[8] = (pba_ptr >> 4) & 0xF;
544 pba_num[9] = pba_ptr & 0xF;
545
546 /* put a null character on the end of our string */
547 pba_num[10] = '\0';
548
549 /* switch all the data but the '-' to hex char */
550 for (offset = 0; offset < 10; offset++) {
551 if (pba_num[offset] < 0xA)
552 pba_num[offset] += '0';
553 else if (pba_num[offset] < 0x10)
554 pba_num[offset] += 'A' - 0xA;
555 }
556
557 return 0;
558 }
559
560 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
561 if (ret_val) {
562 hw_dbg(hw, "NVM Read Error\n");
563 return ret_val;
564 }
565
566 if (length == 0xFFFF || length == 0) {
567 hw_dbg(hw, "NVM PBA number section invalid length\n");
568 return IXGBE_ERR_PBA_SECTION;
569 }
570
571 /* check if pba_num buffer is big enough */
572 if (pba_num_size < (((u32)length * 2) - 1)) {
573 hw_dbg(hw, "PBA string buffer too small\n");
574 return IXGBE_ERR_NO_SPACE;
575 }
576
577 /* trim pba length from start of string */
578 pba_ptr++;
579 length--;
580
581 for (offset = 0; offset < length; offset++) {
582 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
583 if (ret_val) {
584 hw_dbg(hw, "NVM Read Error\n");
585 return ret_val;
586 }
587 pba_num[offset * 2] = (u8)(data >> 8);
588 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
589 }
590 pba_num[offset * 2] = '\0';
591
592 return 0;
593 }
594
595 /**
596 * ixgbe_get_mac_addr_generic - Generic get MAC address
597 * @hw: pointer to hardware structure
598 * @mac_addr: Adapter MAC address
599 *
600 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
601 * A reset of the adapter must be performed prior to calling this function
602 * in order for the MAC address to have been loaded from the EEPROM into RAR0
603 **/
604 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
605 {
606 u32 rar_high;
607 u32 rar_low;
608 u16 i;
609
610 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
611 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
612
613 for (i = 0; i < 4; i++)
614 mac_addr[i] = (u8)(rar_low >> (i*8));
615
616 for (i = 0; i < 2; i++)
617 mac_addr[i+4] = (u8)(rar_high >> (i*8));
618
619 return 0;
620 }
621
622 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
623 {
624 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
625 case IXGBE_PCI_LINK_WIDTH_1:
626 return ixgbe_bus_width_pcie_x1;
627 case IXGBE_PCI_LINK_WIDTH_2:
628 return ixgbe_bus_width_pcie_x2;
629 case IXGBE_PCI_LINK_WIDTH_4:
630 return ixgbe_bus_width_pcie_x4;
631 case IXGBE_PCI_LINK_WIDTH_8:
632 return ixgbe_bus_width_pcie_x8;
633 default:
634 return ixgbe_bus_width_unknown;
635 }
636 }
637
638 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
639 {
640 switch (link_status & IXGBE_PCI_LINK_SPEED) {
641 case IXGBE_PCI_LINK_SPEED_2500:
642 return ixgbe_bus_speed_2500;
643 case IXGBE_PCI_LINK_SPEED_5000:
644 return ixgbe_bus_speed_5000;
645 case IXGBE_PCI_LINK_SPEED_8000:
646 return ixgbe_bus_speed_8000;
647 default:
648 return ixgbe_bus_speed_unknown;
649 }
650 }
651
652 /**
653 * ixgbe_get_bus_info_generic - Generic set PCI bus info
654 * @hw: pointer to hardware structure
655 *
656 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
657 **/
658 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
659 {
660 u16 link_status;
661
662 hw->bus.type = ixgbe_bus_type_pci_express;
663
664 /* Get the negotiated link width and speed from PCI config space */
665 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
666
667 hw->bus.width = ixgbe_convert_bus_width(link_status);
668 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
669
670 hw->mac.ops.set_lan_id(hw);
671
672 return 0;
673 }
674
675 /**
676 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
677 * @hw: pointer to the HW structure
678 *
679 * Determines the LAN function id by reading memory-mapped registers
680 * and swaps the port value if requested.
681 **/
682 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
683 {
684 struct ixgbe_bus_info *bus = &hw->bus;
685 u16 ee_ctrl_4;
686 u32 reg;
687
688 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
689 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
690 bus->lan_id = bus->func;
691
692 /* check for a port swap */
693 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
694 if (reg & IXGBE_FACTPS_LFS)
695 bus->func ^= 0x1;
696
697 /* Get MAC instance from EEPROM for configuring CS4227 */
698 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
699 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
700 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
701 IXGBE_EE_CTRL_4_INST_ID_SHIFT;
702 }
703 }
704
705 /**
706 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
707 * @hw: pointer to hardware structure
708 *
709 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
710 * disables transmit and receive units. The adapter_stopped flag is used by
711 * the shared code and drivers to determine if the adapter is in a stopped
712 * state and should not touch the hardware.
713 **/
714 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
715 {
716 u32 reg_val;
717 u16 i;
718
719 /*
720 * Set the adapter_stopped flag so other driver functions stop touching
721 * the hardware
722 */
723 hw->adapter_stopped = true;
724
725 /* Disable the receive unit */
726 hw->mac.ops.disable_rx(hw);
727
728 /* Clear interrupt mask to stop interrupts from being generated */
729 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
730
731 /* Clear any pending interrupts, flush previous writes */
732 IXGBE_READ_REG(hw, IXGBE_EICR);
733
734 /* Disable the transmit unit. Each queue must be disabled. */
735 for (i = 0; i < hw->mac.max_tx_queues; i++)
736 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
737
738 /* Disable the receive unit by stopping each queue */
739 for (i = 0; i < hw->mac.max_rx_queues; i++) {
740 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
741 reg_val &= ~IXGBE_RXDCTL_ENABLE;
742 reg_val |= IXGBE_RXDCTL_SWFLSH;
743 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
744 }
745
746 /* flush all queues disables */
747 IXGBE_WRITE_FLUSH(hw);
748 usleep_range(1000, 2000);
749
750 /*
751 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
752 * access and verify no pending requests
753 */
754 return ixgbe_disable_pcie_master(hw);
755 }
756
757 /**
758 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
759 * @hw: pointer to hardware structure
760 * @index: led number to turn on
761 **/
762 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
763 {
764 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
765
766 if (index > 3)
767 return IXGBE_ERR_PARAM;
768
769 /* To turn on the LED, set mode to ON. */
770 led_reg &= ~IXGBE_LED_MODE_MASK(index);
771 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
772 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
773 IXGBE_WRITE_FLUSH(hw);
774
775 return 0;
776 }
777
778 /**
779 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
780 * @hw: pointer to hardware structure
781 * @index: led number to turn off
782 **/
783 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
784 {
785 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
786
787 if (index > 3)
788 return IXGBE_ERR_PARAM;
789
790 /* To turn off the LED, set mode to OFF. */
791 led_reg &= ~IXGBE_LED_MODE_MASK(index);
792 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
793 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
794 IXGBE_WRITE_FLUSH(hw);
795
796 return 0;
797 }
798
799 /**
800 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
801 * @hw: pointer to hardware structure
802 *
803 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
804 * ixgbe_hw struct in order to set up EEPROM access.
805 **/
806 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
807 {
808 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
809 u32 eec;
810 u16 eeprom_size;
811
812 if (eeprom->type == ixgbe_eeprom_uninitialized) {
813 eeprom->type = ixgbe_eeprom_none;
814 /* Set default semaphore delay to 10ms which is a well
815 * tested value */
816 eeprom->semaphore_delay = 10;
817 /* Clear EEPROM page size, it will be initialized as needed */
818 eeprom->word_page_size = 0;
819
820 /*
821 * Check for EEPROM present first.
822 * If not present leave as none
823 */
824 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
825 if (eec & IXGBE_EEC_PRES) {
826 eeprom->type = ixgbe_eeprom_spi;
827
828 /*
829 * SPI EEPROM is assumed here. This code would need to
830 * change if a future EEPROM is not SPI.
831 */
832 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
833 IXGBE_EEC_SIZE_SHIFT);
834 eeprom->word_size = BIT(eeprom_size +
835 IXGBE_EEPROM_WORD_SIZE_SHIFT);
836 }
837
838 if (eec & IXGBE_EEC_ADDR_SIZE)
839 eeprom->address_bits = 16;
840 else
841 eeprom->address_bits = 8;
842 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
843 eeprom->type, eeprom->word_size, eeprom->address_bits);
844 }
845
846 return 0;
847 }
848
849 /**
850 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
851 * @hw: pointer to hardware structure
852 * @offset: offset within the EEPROM to write
853 * @words: number of words
854 * @data: 16 bit word(s) to write to EEPROM
855 *
856 * Reads 16 bit word(s) from EEPROM through bit-bang method
857 **/
858 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
859 u16 words, u16 *data)
860 {
861 s32 status;
862 u16 i, count;
863
864 hw->eeprom.ops.init_params(hw);
865
866 if (words == 0)
867 return IXGBE_ERR_INVALID_ARGUMENT;
868
869 if (offset + words > hw->eeprom.word_size)
870 return IXGBE_ERR_EEPROM;
871
872 /*
873 * The EEPROM page size cannot be queried from the chip. We do lazy
874 * initialization. It is worth to do that when we write large buffer.
875 */
876 if ((hw->eeprom.word_page_size == 0) &&
877 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
878 ixgbe_detect_eeprom_page_size_generic(hw, offset);
879
880 /*
881 * We cannot hold synchronization semaphores for too long
882 * to avoid other entity starvation. However it is more efficient
883 * to read in bursts than synchronizing access for each word.
884 */
885 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
886 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
887 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
888 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
889 count, &data[i]);
890
891 if (status != 0)
892 break;
893 }
894
895 return status;
896 }
897
898 /**
899 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
900 * @hw: pointer to hardware structure
901 * @offset: offset within the EEPROM to be written to
902 * @words: number of word(s)
903 * @data: 16 bit word(s) to be written to the EEPROM
904 *
905 * If ixgbe_eeprom_update_checksum is not called after this function, the
906 * EEPROM will most likely contain an invalid checksum.
907 **/
908 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
909 u16 words, u16 *data)
910 {
911 s32 status;
912 u16 word;
913 u16 page_size;
914 u16 i;
915 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
916
917 /* Prepare the EEPROM for writing */
918 status = ixgbe_acquire_eeprom(hw);
919 if (status)
920 return status;
921
922 if (ixgbe_ready_eeprom(hw) != 0) {
923 ixgbe_release_eeprom(hw);
924 return IXGBE_ERR_EEPROM;
925 }
926
927 for (i = 0; i < words; i++) {
928 ixgbe_standby_eeprom(hw);
929
930 /* Send the WRITE ENABLE command (8 bit opcode) */
931 ixgbe_shift_out_eeprom_bits(hw,
932 IXGBE_EEPROM_WREN_OPCODE_SPI,
933 IXGBE_EEPROM_OPCODE_BITS);
934
935 ixgbe_standby_eeprom(hw);
936
937 /* Some SPI eeproms use the 8th address bit embedded
938 * in the opcode
939 */
940 if ((hw->eeprom.address_bits == 8) &&
941 ((offset + i) >= 128))
942 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
943
944 /* Send the Write command (8-bit opcode + addr) */
945 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
946 IXGBE_EEPROM_OPCODE_BITS);
947 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
948 hw->eeprom.address_bits);
949
950 page_size = hw->eeprom.word_page_size;
951
952 /* Send the data in burst via SPI */
953 do {
954 word = data[i];
955 word = (word >> 8) | (word << 8);
956 ixgbe_shift_out_eeprom_bits(hw, word, 16);
957
958 if (page_size == 0)
959 break;
960
961 /* do not wrap around page */
962 if (((offset + i) & (page_size - 1)) ==
963 (page_size - 1))
964 break;
965 } while (++i < words);
966
967 ixgbe_standby_eeprom(hw);
968 usleep_range(10000, 20000);
969 }
970 /* Done with writing - release the EEPROM */
971 ixgbe_release_eeprom(hw);
972
973 return 0;
974 }
975
976 /**
977 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
978 * @hw: pointer to hardware structure
979 * @offset: offset within the EEPROM to be written to
980 * @data: 16 bit word to be written to the EEPROM
981 *
982 * If ixgbe_eeprom_update_checksum is not called after this function, the
983 * EEPROM will most likely contain an invalid checksum.
984 **/
985 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
986 {
987 hw->eeprom.ops.init_params(hw);
988
989 if (offset >= hw->eeprom.word_size)
990 return IXGBE_ERR_EEPROM;
991
992 return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
993 }
994
995 /**
996 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
997 * @hw: pointer to hardware structure
998 * @offset: offset within the EEPROM to be read
999 * @words: number of word(s)
1000 * @data: read 16 bit words(s) from EEPROM
1001 *
1002 * Reads 16 bit word(s) from EEPROM through bit-bang method
1003 **/
1004 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1005 u16 words, u16 *data)
1006 {
1007 s32 status;
1008 u16 i, count;
1009
1010 hw->eeprom.ops.init_params(hw);
1011
1012 if (words == 0)
1013 return IXGBE_ERR_INVALID_ARGUMENT;
1014
1015 if (offset + words > hw->eeprom.word_size)
1016 return IXGBE_ERR_EEPROM;
1017
1018 /*
1019 * We cannot hold synchronization semaphores for too long
1020 * to avoid other entity starvation. However it is more efficient
1021 * to read in bursts than synchronizing access for each word.
1022 */
1023 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1024 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1025 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1026
1027 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1028 count, &data[i]);
1029
1030 if (status)
1031 return status;
1032 }
1033
1034 return 0;
1035 }
1036
1037 /**
1038 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1039 * @hw: pointer to hardware structure
1040 * @offset: offset within the EEPROM to be read
1041 * @words: number of word(s)
1042 * @data: read 16 bit word(s) from EEPROM
1043 *
1044 * Reads 16 bit word(s) from EEPROM through bit-bang method
1045 **/
1046 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1047 u16 words, u16 *data)
1048 {
1049 s32 status;
1050 u16 word_in;
1051 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1052 u16 i;
1053
1054 /* Prepare the EEPROM for reading */
1055 status = ixgbe_acquire_eeprom(hw);
1056 if (status)
1057 return status;
1058
1059 if (ixgbe_ready_eeprom(hw) != 0) {
1060 ixgbe_release_eeprom(hw);
1061 return IXGBE_ERR_EEPROM;
1062 }
1063
1064 for (i = 0; i < words; i++) {
1065 ixgbe_standby_eeprom(hw);
1066 /* Some SPI eeproms use the 8th address bit embedded
1067 * in the opcode
1068 */
1069 if ((hw->eeprom.address_bits == 8) &&
1070 ((offset + i) >= 128))
1071 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1072
1073 /* Send the READ command (opcode + addr) */
1074 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1075 IXGBE_EEPROM_OPCODE_BITS);
1076 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1077 hw->eeprom.address_bits);
1078
1079 /* Read the data. */
1080 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1081 data[i] = (word_in >> 8) | (word_in << 8);
1082 }
1083
1084 /* End this read operation */
1085 ixgbe_release_eeprom(hw);
1086
1087 return 0;
1088 }
1089
1090 /**
1091 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1092 * @hw: pointer to hardware structure
1093 * @offset: offset within the EEPROM to be read
1094 * @data: read 16 bit value from EEPROM
1095 *
1096 * Reads 16 bit value from EEPROM through bit-bang method
1097 **/
1098 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1099 u16 *data)
1100 {
1101 hw->eeprom.ops.init_params(hw);
1102
1103 if (offset >= hw->eeprom.word_size)
1104 return IXGBE_ERR_EEPROM;
1105
1106 return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1107 }
1108
1109 /**
1110 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1111 * @hw: pointer to hardware structure
1112 * @offset: offset of word in the EEPROM to read
1113 * @words: number of word(s)
1114 * @data: 16 bit word(s) from the EEPROM
1115 *
1116 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1117 **/
1118 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1119 u16 words, u16 *data)
1120 {
1121 u32 eerd;
1122 s32 status;
1123 u32 i;
1124
1125 hw->eeprom.ops.init_params(hw);
1126
1127 if (words == 0)
1128 return IXGBE_ERR_INVALID_ARGUMENT;
1129
1130 if (offset >= hw->eeprom.word_size)
1131 return IXGBE_ERR_EEPROM;
1132
1133 for (i = 0; i < words; i++) {
1134 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1135 IXGBE_EEPROM_RW_REG_START;
1136
1137 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1138 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1139
1140 if (status == 0) {
1141 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1142 IXGBE_EEPROM_RW_REG_DATA);
1143 } else {
1144 hw_dbg(hw, "Eeprom read timed out\n");
1145 return status;
1146 }
1147 }
1148
1149 return 0;
1150 }
1151
1152 /**
1153 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1154 * @hw: pointer to hardware structure
1155 * @offset: offset within the EEPROM to be used as a scratch pad
1156 *
1157 * Discover EEPROM page size by writing marching data at given offset.
1158 * This function is called only when we are writing a new large buffer
1159 * at given offset so the data would be overwritten anyway.
1160 **/
1161 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1162 u16 offset)
1163 {
1164 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1165 s32 status;
1166 u16 i;
1167
1168 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1169 data[i] = i;
1170
1171 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1172 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1173 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1174 hw->eeprom.word_page_size = 0;
1175 if (status)
1176 return status;
1177
1178 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1179 if (status)
1180 return status;
1181
1182 /*
1183 * When writing in burst more than the actual page size
1184 * EEPROM address wraps around current page.
1185 */
1186 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1187
1188 hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1189 hw->eeprom.word_page_size);
1190 return 0;
1191 }
1192
1193 /**
1194 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1195 * @hw: pointer to hardware structure
1196 * @offset: offset of word in the EEPROM to read
1197 * @data: word read from the EEPROM
1198 *
1199 * Reads a 16 bit word from the EEPROM using the EERD register.
1200 **/
1201 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1202 {
1203 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1204 }
1205
1206 /**
1207 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1208 * @hw: pointer to hardware structure
1209 * @offset: offset of word in the EEPROM to write
1210 * @words: number of words
1211 * @data: word(s) write to the EEPROM
1212 *
1213 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1214 **/
1215 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1216 u16 words, u16 *data)
1217 {
1218 u32 eewr;
1219 s32 status;
1220 u16 i;
1221
1222 hw->eeprom.ops.init_params(hw);
1223
1224 if (words == 0)
1225 return IXGBE_ERR_INVALID_ARGUMENT;
1226
1227 if (offset >= hw->eeprom.word_size)
1228 return IXGBE_ERR_EEPROM;
1229
1230 for (i = 0; i < words; i++) {
1231 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1232 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1233 IXGBE_EEPROM_RW_REG_START;
1234
1235 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1236 if (status) {
1237 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1238 return status;
1239 }
1240
1241 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1242
1243 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1244 if (status) {
1245 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1246 return status;
1247 }
1248 }
1249
1250 return 0;
1251 }
1252
1253 /**
1254 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1255 * @hw: pointer to hardware structure
1256 * @offset: offset of word in the EEPROM to write
1257 * @data: word write to the EEPROM
1258 *
1259 * Write a 16 bit word to the EEPROM using the EEWR register.
1260 **/
1261 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1262 {
1263 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1264 }
1265
1266 /**
1267 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1268 * @hw: pointer to hardware structure
1269 * @ee_reg: EEPROM flag for polling
1270 *
1271 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1272 * read or write is done respectively.
1273 **/
1274 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1275 {
1276 u32 i;
1277 u32 reg;
1278
1279 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1280 if (ee_reg == IXGBE_NVM_POLL_READ)
1281 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1282 else
1283 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1284
1285 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1286 return 0;
1287 }
1288 udelay(5);
1289 }
1290 return IXGBE_ERR_EEPROM;
1291 }
1292
1293 /**
1294 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1295 * @hw: pointer to hardware structure
1296 *
1297 * Prepares EEPROM for access using bit-bang method. This function should
1298 * be called before issuing a command to the EEPROM.
1299 **/
1300 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1301 {
1302 u32 eec;
1303 u32 i;
1304
1305 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1306 return IXGBE_ERR_SWFW_SYNC;
1307
1308 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1309
1310 /* Request EEPROM Access */
1311 eec |= IXGBE_EEC_REQ;
1312 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1313
1314 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1315 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1316 if (eec & IXGBE_EEC_GNT)
1317 break;
1318 udelay(5);
1319 }
1320
1321 /* Release if grant not acquired */
1322 if (!(eec & IXGBE_EEC_GNT)) {
1323 eec &= ~IXGBE_EEC_REQ;
1324 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1325 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1326
1327 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1328 return IXGBE_ERR_EEPROM;
1329 }
1330
1331 /* Setup EEPROM for Read/Write */
1332 /* Clear CS and SK */
1333 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1334 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1335 IXGBE_WRITE_FLUSH(hw);
1336 udelay(1);
1337 return 0;
1338 }
1339
1340 /**
1341 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1342 * @hw: pointer to hardware structure
1343 *
1344 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1345 **/
1346 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1347 {
1348 u32 timeout = 2000;
1349 u32 i;
1350 u32 swsm;
1351
1352 /* Get SMBI software semaphore between device drivers first */
1353 for (i = 0; i < timeout; i++) {
1354 /*
1355 * If the SMBI bit is 0 when we read it, then the bit will be
1356 * set and we have the semaphore
1357 */
1358 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1359 if (!(swsm & IXGBE_SWSM_SMBI))
1360 break;
1361 usleep_range(50, 100);
1362 }
1363
1364 if (i == timeout) {
1365 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1366 /* this release is particularly important because our attempts
1367 * above to get the semaphore may have succeeded, and if there
1368 * was a timeout, we should unconditionally clear the semaphore
1369 * bits to free the driver to make progress
1370 */
1371 ixgbe_release_eeprom_semaphore(hw);
1372
1373 usleep_range(50, 100);
1374 /* one last try
1375 * If the SMBI bit is 0 when we read it, then the bit will be
1376 * set and we have the semaphore
1377 */
1378 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1379 if (swsm & IXGBE_SWSM_SMBI) {
1380 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1381 return IXGBE_ERR_EEPROM;
1382 }
1383 }
1384
1385 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1386 for (i = 0; i < timeout; i++) {
1387 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1388
1389 /* Set the SW EEPROM semaphore bit to request access */
1390 swsm |= IXGBE_SWSM_SWESMBI;
1391 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1392
1393 /* If we set the bit successfully then we got the
1394 * semaphore.
1395 */
1396 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1397 if (swsm & IXGBE_SWSM_SWESMBI)
1398 break;
1399
1400 usleep_range(50, 100);
1401 }
1402
1403 /* Release semaphores and return error if SW EEPROM semaphore
1404 * was not granted because we don't have access to the EEPROM
1405 */
1406 if (i >= timeout) {
1407 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1408 ixgbe_release_eeprom_semaphore(hw);
1409 return IXGBE_ERR_EEPROM;
1410 }
1411
1412 return 0;
1413 }
1414
1415 /**
1416 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1417 * @hw: pointer to hardware structure
1418 *
1419 * This function clears hardware semaphore bits.
1420 **/
1421 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1422 {
1423 u32 swsm;
1424
1425 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1426
1427 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1428 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1429 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1430 IXGBE_WRITE_FLUSH(hw);
1431 }
1432
1433 /**
1434 * ixgbe_ready_eeprom - Polls for EEPROM ready
1435 * @hw: pointer to hardware structure
1436 **/
1437 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1438 {
1439 u16 i;
1440 u8 spi_stat_reg;
1441
1442 /*
1443 * Read "Status Register" repeatedly until the LSB is cleared. The
1444 * EEPROM will signal that the command has been completed by clearing
1445 * bit 0 of the internal status register. If it's not cleared within
1446 * 5 milliseconds, then error out.
1447 */
1448 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1449 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1450 IXGBE_EEPROM_OPCODE_BITS);
1451 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1452 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1453 break;
1454
1455 udelay(5);
1456 ixgbe_standby_eeprom(hw);
1457 }
1458
1459 /*
1460 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1461 * devices (and only 0-5mSec on 5V devices)
1462 */
1463 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1464 hw_dbg(hw, "SPI EEPROM Status error\n");
1465 return IXGBE_ERR_EEPROM;
1466 }
1467
1468 return 0;
1469 }
1470
1471 /**
1472 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1473 * @hw: pointer to hardware structure
1474 **/
1475 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1476 {
1477 u32 eec;
1478
1479 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1480
1481 /* Toggle CS to flush commands */
1482 eec |= IXGBE_EEC_CS;
1483 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1484 IXGBE_WRITE_FLUSH(hw);
1485 udelay(1);
1486 eec &= ~IXGBE_EEC_CS;
1487 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1488 IXGBE_WRITE_FLUSH(hw);
1489 udelay(1);
1490 }
1491
1492 /**
1493 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1494 * @hw: pointer to hardware structure
1495 * @data: data to send to the EEPROM
1496 * @count: number of bits to shift out
1497 **/
1498 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1499 u16 count)
1500 {
1501 u32 eec;
1502 u32 mask;
1503 u32 i;
1504
1505 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1506
1507 /*
1508 * Mask is used to shift "count" bits of "data" out to the EEPROM
1509 * one bit at a time. Determine the starting bit based on count
1510 */
1511 mask = BIT(count - 1);
1512
1513 for (i = 0; i < count; i++) {
1514 /*
1515 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1516 * "1", and then raising and then lowering the clock (the SK
1517 * bit controls the clock input to the EEPROM). A "0" is
1518 * shifted out to the EEPROM by setting "DI" to "0" and then
1519 * raising and then lowering the clock.
1520 */
1521 if (data & mask)
1522 eec |= IXGBE_EEC_DI;
1523 else
1524 eec &= ~IXGBE_EEC_DI;
1525
1526 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1527 IXGBE_WRITE_FLUSH(hw);
1528
1529 udelay(1);
1530
1531 ixgbe_raise_eeprom_clk(hw, &eec);
1532 ixgbe_lower_eeprom_clk(hw, &eec);
1533
1534 /*
1535 * Shift mask to signify next bit of data to shift in to the
1536 * EEPROM
1537 */
1538 mask = mask >> 1;
1539 }
1540
1541 /* We leave the "DI" bit set to "0" when we leave this routine. */
1542 eec &= ~IXGBE_EEC_DI;
1543 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1544 IXGBE_WRITE_FLUSH(hw);
1545 }
1546
1547 /**
1548 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1549 * @hw: pointer to hardware structure
1550 **/
1551 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1552 {
1553 u32 eec;
1554 u32 i;
1555 u16 data = 0;
1556
1557 /*
1558 * In order to read a register from the EEPROM, we need to shift
1559 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1560 * the clock input to the EEPROM (setting the SK bit), and then reading
1561 * the value of the "DO" bit. During this "shifting in" process the
1562 * "DI" bit should always be clear.
1563 */
1564 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1565
1566 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1567
1568 for (i = 0; i < count; i++) {
1569 data = data << 1;
1570 ixgbe_raise_eeprom_clk(hw, &eec);
1571
1572 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1573
1574 eec &= ~(IXGBE_EEC_DI);
1575 if (eec & IXGBE_EEC_DO)
1576 data |= 1;
1577
1578 ixgbe_lower_eeprom_clk(hw, &eec);
1579 }
1580
1581 return data;
1582 }
1583
1584 /**
1585 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1586 * @hw: pointer to hardware structure
1587 * @eec: EEC register's current value
1588 **/
1589 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1590 {
1591 /*
1592 * Raise the clock input to the EEPROM
1593 * (setting the SK bit), then delay
1594 */
1595 *eec = *eec | IXGBE_EEC_SK;
1596 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1597 IXGBE_WRITE_FLUSH(hw);
1598 udelay(1);
1599 }
1600
1601 /**
1602 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1603 * @hw: pointer to hardware structure
1604 * @eecd: EECD's current value
1605 **/
1606 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1607 {
1608 /*
1609 * Lower the clock input to the EEPROM (clearing the SK bit), then
1610 * delay
1611 */
1612 *eec = *eec & ~IXGBE_EEC_SK;
1613 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1614 IXGBE_WRITE_FLUSH(hw);
1615 udelay(1);
1616 }
1617
1618 /**
1619 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1620 * @hw: pointer to hardware structure
1621 **/
1622 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1623 {
1624 u32 eec;
1625
1626 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1627
1628 eec |= IXGBE_EEC_CS; /* Pull CS high */
1629 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1630
1631 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1632 IXGBE_WRITE_FLUSH(hw);
1633
1634 udelay(1);
1635
1636 /* Stop requesting EEPROM access */
1637 eec &= ~IXGBE_EEC_REQ;
1638 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1639
1640 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1641
1642 /*
1643 * Delay before attempt to obtain semaphore again to allow FW
1644 * access. semaphore_delay is in ms we need us for usleep_range
1645 */
1646 usleep_range(hw->eeprom.semaphore_delay * 1000,
1647 hw->eeprom.semaphore_delay * 2000);
1648 }
1649
1650 /**
1651 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1652 * @hw: pointer to hardware structure
1653 **/
1654 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1655 {
1656 u16 i;
1657 u16 j;
1658 u16 checksum = 0;
1659 u16 length = 0;
1660 u16 pointer = 0;
1661 u16 word = 0;
1662
1663 /* Include 0x0-0x3F in the checksum */
1664 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1665 if (hw->eeprom.ops.read(hw, i, &word)) {
1666 hw_dbg(hw, "EEPROM read failed\n");
1667 break;
1668 }
1669 checksum += word;
1670 }
1671
1672 /* Include all data from pointers except for the fw pointer */
1673 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1674 if (hw->eeprom.ops.read(hw, i, &pointer)) {
1675 hw_dbg(hw, "EEPROM read failed\n");
1676 return IXGBE_ERR_EEPROM;
1677 }
1678
1679 /* If the pointer seems invalid */
1680 if (pointer == 0xFFFF || pointer == 0)
1681 continue;
1682
1683 if (hw->eeprom.ops.read(hw, pointer, &length)) {
1684 hw_dbg(hw, "EEPROM read failed\n");
1685 return IXGBE_ERR_EEPROM;
1686 }
1687
1688 if (length == 0xFFFF || length == 0)
1689 continue;
1690
1691 for (j = pointer + 1; j <= pointer + length; j++) {
1692 if (hw->eeprom.ops.read(hw, j, &word)) {
1693 hw_dbg(hw, "EEPROM read failed\n");
1694 return IXGBE_ERR_EEPROM;
1695 }
1696 checksum += word;
1697 }
1698 }
1699
1700 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1701
1702 return (s32)checksum;
1703 }
1704
1705 /**
1706 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1707 * @hw: pointer to hardware structure
1708 * @checksum_val: calculated checksum
1709 *
1710 * Performs checksum calculation and validates the EEPROM checksum. If the
1711 * caller does not need checksum_val, the value can be NULL.
1712 **/
1713 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1714 u16 *checksum_val)
1715 {
1716 s32 status;
1717 u16 checksum;
1718 u16 read_checksum = 0;
1719
1720 /*
1721 * Read the first word from the EEPROM. If this times out or fails, do
1722 * not continue or we could be in for a very long wait while every
1723 * EEPROM read fails
1724 */
1725 status = hw->eeprom.ops.read(hw, 0, &checksum);
1726 if (status) {
1727 hw_dbg(hw, "EEPROM read failed\n");
1728 return status;
1729 }
1730
1731 status = hw->eeprom.ops.calc_checksum(hw);
1732 if (status < 0)
1733 return status;
1734
1735 checksum = (u16)(status & 0xffff);
1736
1737 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1738 if (status) {
1739 hw_dbg(hw, "EEPROM read failed\n");
1740 return status;
1741 }
1742
1743 /* Verify read checksum from EEPROM is the same as
1744 * calculated checksum
1745 */
1746 if (read_checksum != checksum)
1747 status = IXGBE_ERR_EEPROM_CHECKSUM;
1748
1749 /* If the user cares, return the calculated checksum */
1750 if (checksum_val)
1751 *checksum_val = checksum;
1752
1753 return status;
1754 }
1755
1756 /**
1757 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1758 * @hw: pointer to hardware structure
1759 **/
1760 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1761 {
1762 s32 status;
1763 u16 checksum;
1764
1765 /*
1766 * Read the first word from the EEPROM. If this times out or fails, do
1767 * not continue or we could be in for a very long wait while every
1768 * EEPROM read fails
1769 */
1770 status = hw->eeprom.ops.read(hw, 0, &checksum);
1771 if (status) {
1772 hw_dbg(hw, "EEPROM read failed\n");
1773 return status;
1774 }
1775
1776 status = hw->eeprom.ops.calc_checksum(hw);
1777 if (status < 0)
1778 return status;
1779
1780 checksum = (u16)(status & 0xffff);
1781
1782 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1783
1784 return status;
1785 }
1786
1787 /**
1788 * ixgbe_set_rar_generic - Set Rx address register
1789 * @hw: pointer to hardware structure
1790 * @index: Receive address register to write
1791 * @addr: Address to put into receive address register
1792 * @vmdq: VMDq "set" or "pool" index
1793 * @enable_addr: set flag that address is active
1794 *
1795 * Puts an ethernet address into a receive address register.
1796 **/
1797 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1798 u32 enable_addr)
1799 {
1800 u32 rar_low, rar_high;
1801 u32 rar_entries = hw->mac.num_rar_entries;
1802
1803 /* Make sure we are using a valid rar index range */
1804 if (index >= rar_entries) {
1805 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1806 return IXGBE_ERR_INVALID_ARGUMENT;
1807 }
1808
1809 /* setup VMDq pool selection before this RAR gets enabled */
1810 hw->mac.ops.set_vmdq(hw, index, vmdq);
1811
1812 /*
1813 * HW expects these in little endian so we reverse the byte
1814 * order from network order (big endian) to little endian
1815 */
1816 rar_low = ((u32)addr[0] |
1817 ((u32)addr[1] << 8) |
1818 ((u32)addr[2] << 16) |
1819 ((u32)addr[3] << 24));
1820 /*
1821 * Some parts put the VMDq setting in the extra RAH bits,
1822 * so save everything except the lower 16 bits that hold part
1823 * of the address and the address valid bit.
1824 */
1825 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1826 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1827 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1828
1829 if (enable_addr != 0)
1830 rar_high |= IXGBE_RAH_AV;
1831
1832 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1833 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1834
1835 return 0;
1836 }
1837
1838 /**
1839 * ixgbe_clear_rar_generic - Remove Rx address register
1840 * @hw: pointer to hardware structure
1841 * @index: Receive address register to write
1842 *
1843 * Clears an ethernet address from a receive address register.
1844 **/
1845 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1846 {
1847 u32 rar_high;
1848 u32 rar_entries = hw->mac.num_rar_entries;
1849
1850 /* Make sure we are using a valid rar index range */
1851 if (index >= rar_entries) {
1852 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1853 return IXGBE_ERR_INVALID_ARGUMENT;
1854 }
1855
1856 /*
1857 * Some parts put the VMDq setting in the extra RAH bits,
1858 * so save everything except the lower 16 bits that hold part
1859 * of the address and the address valid bit.
1860 */
1861 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1862 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1863
1864 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1865 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1866
1867 /* clear VMDq pool/queue selection for this RAR */
1868 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1869
1870 return 0;
1871 }
1872
1873 /**
1874 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1875 * @hw: pointer to hardware structure
1876 *
1877 * Places the MAC address in receive address register 0 and clears the rest
1878 * of the receive address registers. Clears the multicast table. Assumes
1879 * the receiver is in reset when the routine is called.
1880 **/
1881 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1882 {
1883 u32 i;
1884 u32 rar_entries = hw->mac.num_rar_entries;
1885
1886 /*
1887 * If the current mac address is valid, assume it is a software override
1888 * to the permanent address.
1889 * Otherwise, use the permanent address from the eeprom.
1890 */
1891 if (!is_valid_ether_addr(hw->mac.addr)) {
1892 /* Get the MAC address from the RAR0 for later reference */
1893 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1894
1895 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1896 } else {
1897 /* Setup the receive address. */
1898 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1899 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1900
1901 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1902 }
1903
1904 /* clear VMDq pool/queue selection for RAR 0 */
1905 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1906
1907 hw->addr_ctrl.overflow_promisc = 0;
1908
1909 hw->addr_ctrl.rar_used_count = 1;
1910
1911 /* Zero out the other receive addresses. */
1912 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1913 for (i = 1; i < rar_entries; i++) {
1914 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1915 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1916 }
1917
1918 /* Clear the MTA */
1919 hw->addr_ctrl.mta_in_use = 0;
1920 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1921
1922 hw_dbg(hw, " Clearing MTA\n");
1923 for (i = 0; i < hw->mac.mcft_size; i++)
1924 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1925
1926 if (hw->mac.ops.init_uta_tables)
1927 hw->mac.ops.init_uta_tables(hw);
1928
1929 return 0;
1930 }
1931
1932 /**
1933 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1934 * @hw: pointer to hardware structure
1935 * @mc_addr: the multicast address
1936 *
1937 * Extracts the 12 bits, from a multicast address, to determine which
1938 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1939 * incoming rx multicast addresses, to determine the bit-vector to check in
1940 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1941 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1942 * to mc_filter_type.
1943 **/
1944 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1945 {
1946 u32 vector = 0;
1947
1948 switch (hw->mac.mc_filter_type) {
1949 case 0: /* use bits [47:36] of the address */
1950 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1951 break;
1952 case 1: /* use bits [46:35] of the address */
1953 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1954 break;
1955 case 2: /* use bits [45:34] of the address */
1956 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1957 break;
1958 case 3: /* use bits [43:32] of the address */
1959 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1960 break;
1961 default: /* Invalid mc_filter_type */
1962 hw_dbg(hw, "MC filter type param set incorrectly\n");
1963 break;
1964 }
1965
1966 /* vector can only be 12-bits or boundary will be exceeded */
1967 vector &= 0xFFF;
1968 return vector;
1969 }
1970
1971 /**
1972 * ixgbe_set_mta - Set bit-vector in multicast table
1973 * @hw: pointer to hardware structure
1974 * @hash_value: Multicast address hash value
1975 *
1976 * Sets the bit-vector in the multicast table.
1977 **/
1978 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1979 {
1980 u32 vector;
1981 u32 vector_bit;
1982 u32 vector_reg;
1983
1984 hw->addr_ctrl.mta_in_use++;
1985
1986 vector = ixgbe_mta_vector(hw, mc_addr);
1987 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1988
1989 /*
1990 * The MTA is a register array of 128 32-bit registers. It is treated
1991 * like an array of 4096 bits. We want to set bit
1992 * BitArray[vector_value]. So we figure out what register the bit is
1993 * in, read it, OR in the new bit, then write back the new value. The
1994 * register is determined by the upper 7 bits of the vector value and
1995 * the bit within that register are determined by the lower 5 bits of
1996 * the value.
1997 */
1998 vector_reg = (vector >> 5) & 0x7F;
1999 vector_bit = vector & 0x1F;
2000 hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2001 }
2002
2003 /**
2004 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2005 * @hw: pointer to hardware structure
2006 * @netdev: pointer to net device structure
2007 *
2008 * The given list replaces any existing list. Clears the MC addrs from receive
2009 * address registers and the multicast table. Uses unused receive address
2010 * registers for the first multicast addresses, and hashes the rest into the
2011 * multicast table.
2012 **/
2013 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2014 struct net_device *netdev)
2015 {
2016 struct netdev_hw_addr *ha;
2017 u32 i;
2018
2019 /*
2020 * Set the new number of MC addresses that we are being requested to
2021 * use.
2022 */
2023 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2024 hw->addr_ctrl.mta_in_use = 0;
2025
2026 /* Clear mta_shadow */
2027 hw_dbg(hw, " Clearing MTA\n");
2028 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2029
2030 /* Update mta shadow */
2031 netdev_for_each_mc_addr(ha, netdev) {
2032 hw_dbg(hw, " Adding the multicast addresses:\n");
2033 ixgbe_set_mta(hw, ha->addr);
2034 }
2035
2036 /* Enable mta */
2037 for (i = 0; i < hw->mac.mcft_size; i++)
2038 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2039 hw->mac.mta_shadow[i]);
2040
2041 if (hw->addr_ctrl.mta_in_use > 0)
2042 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2043 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2044
2045 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2046 return 0;
2047 }
2048
2049 /**
2050 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2051 * @hw: pointer to hardware structure
2052 *
2053 * Enables multicast address in RAR and the use of the multicast hash table.
2054 **/
2055 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2056 {
2057 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2058
2059 if (a->mta_in_use > 0)
2060 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2061 hw->mac.mc_filter_type);
2062
2063 return 0;
2064 }
2065
2066 /**
2067 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2068 * @hw: pointer to hardware structure
2069 *
2070 * Disables multicast address in RAR and the use of the multicast hash table.
2071 **/
2072 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2073 {
2074 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2075
2076 if (a->mta_in_use > 0)
2077 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2078
2079 return 0;
2080 }
2081
2082 /**
2083 * ixgbe_fc_enable_generic - Enable flow control
2084 * @hw: pointer to hardware structure
2085 *
2086 * Enable flow control according to the current settings.
2087 **/
2088 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2089 {
2090 u32 mflcn_reg, fccfg_reg;
2091 u32 reg;
2092 u32 fcrtl, fcrth;
2093 int i;
2094
2095 /* Validate the water mark configuration. */
2096 if (!hw->fc.pause_time)
2097 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2098
2099 /* Low water mark of zero causes XOFF floods */
2100 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2101 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2102 hw->fc.high_water[i]) {
2103 if (!hw->fc.low_water[i] ||
2104 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2105 hw_dbg(hw, "Invalid water mark configuration\n");
2106 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2107 }
2108 }
2109 }
2110
2111 /* Negotiate the fc mode to use */
2112 ixgbe_fc_autoneg(hw);
2113
2114 /* Disable any previous flow control settings */
2115 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2116 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2117
2118 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2119 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2120
2121 /*
2122 * The possible values of fc.current_mode are:
2123 * 0: Flow control is completely disabled
2124 * 1: Rx flow control is enabled (we can receive pause frames,
2125 * but not send pause frames).
2126 * 2: Tx flow control is enabled (we can send pause frames but
2127 * we do not support receiving pause frames).
2128 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2129 * other: Invalid.
2130 */
2131 switch (hw->fc.current_mode) {
2132 case ixgbe_fc_none:
2133 /*
2134 * Flow control is disabled by software override or autoneg.
2135 * The code below will actually disable it in the HW.
2136 */
2137 break;
2138 case ixgbe_fc_rx_pause:
2139 /*
2140 * Rx Flow control is enabled and Tx Flow control is
2141 * disabled by software override. Since there really
2142 * isn't a way to advertise that we are capable of RX
2143 * Pause ONLY, we will advertise that we support both
2144 * symmetric and asymmetric Rx PAUSE. Later, we will
2145 * disable the adapter's ability to send PAUSE frames.
2146 */
2147 mflcn_reg |= IXGBE_MFLCN_RFCE;
2148 break;
2149 case ixgbe_fc_tx_pause:
2150 /*
2151 * Tx Flow control is enabled, and Rx Flow control is
2152 * disabled by software override.
2153 */
2154 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2155 break;
2156 case ixgbe_fc_full:
2157 /* Flow control (both Rx and Tx) is enabled by SW override. */
2158 mflcn_reg |= IXGBE_MFLCN_RFCE;
2159 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2160 break;
2161 default:
2162 hw_dbg(hw, "Flow control param set incorrectly\n");
2163 return IXGBE_ERR_CONFIG;
2164 }
2165
2166 /* Set 802.3x based flow control settings. */
2167 mflcn_reg |= IXGBE_MFLCN_DPF;
2168 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2169 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2170
2171 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2172 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2173 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2174 hw->fc.high_water[i]) {
2175 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2176 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2177 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2178 } else {
2179 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2180 /*
2181 * In order to prevent Tx hangs when the internal Tx
2182 * switch is enabled we must set the high water mark
2183 * to the Rx packet buffer size - 24KB. This allows
2184 * the Tx switch to function even under heavy Rx
2185 * workloads.
2186 */
2187 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2188 }
2189
2190 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2191 }
2192
2193 /* Configure pause time (2 TCs per register) */
2194 reg = hw->fc.pause_time * 0x00010001;
2195 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2196 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2197
2198 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2199
2200 return 0;
2201 }
2202
2203 /**
2204 * ixgbe_negotiate_fc - Negotiate flow control
2205 * @hw: pointer to hardware structure
2206 * @adv_reg: flow control advertised settings
2207 * @lp_reg: link partner's flow control settings
2208 * @adv_sym: symmetric pause bit in advertisement
2209 * @adv_asm: asymmetric pause bit in advertisement
2210 * @lp_sym: symmetric pause bit in link partner advertisement
2211 * @lp_asm: asymmetric pause bit in link partner advertisement
2212 *
2213 * Find the intersection between advertised settings and link partner's
2214 * advertised settings
2215 **/
2216 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2217 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2218 {
2219 if ((!(adv_reg)) || (!(lp_reg)))
2220 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2221
2222 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2223 /*
2224 * Now we need to check if the user selected Rx ONLY
2225 * of pause frames. In this case, we had to advertise
2226 * FULL flow control because we could not advertise RX
2227 * ONLY. Hence, we must now check to see if we need to
2228 * turn OFF the TRANSMISSION of PAUSE frames.
2229 */
2230 if (hw->fc.requested_mode == ixgbe_fc_full) {
2231 hw->fc.current_mode = ixgbe_fc_full;
2232 hw_dbg(hw, "Flow Control = FULL.\n");
2233 } else {
2234 hw->fc.current_mode = ixgbe_fc_rx_pause;
2235 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2236 }
2237 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2238 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2239 hw->fc.current_mode = ixgbe_fc_tx_pause;
2240 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2241 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2242 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2243 hw->fc.current_mode = ixgbe_fc_rx_pause;
2244 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2245 } else {
2246 hw->fc.current_mode = ixgbe_fc_none;
2247 hw_dbg(hw, "Flow Control = NONE.\n");
2248 }
2249 return 0;
2250 }
2251
2252 /**
2253 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2254 * @hw: pointer to hardware structure
2255 *
2256 * Enable flow control according on 1 gig fiber.
2257 **/
2258 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2259 {
2260 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2261 s32 ret_val;
2262
2263 /*
2264 * On multispeed fiber at 1g, bail out if
2265 * - link is up but AN did not complete, or if
2266 * - link is up and AN completed but timed out
2267 */
2268
2269 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2270 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2271 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2272 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2273
2274 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2275 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2276
2277 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2278 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2279 IXGBE_PCS1GANA_ASM_PAUSE,
2280 IXGBE_PCS1GANA_SYM_PAUSE,
2281 IXGBE_PCS1GANA_ASM_PAUSE);
2282
2283 return ret_val;
2284 }
2285
2286 /**
2287 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2288 * @hw: pointer to hardware structure
2289 *
2290 * Enable flow control according to IEEE clause 37.
2291 **/
2292 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2293 {
2294 u32 links2, anlp1_reg, autoc_reg, links;
2295 s32 ret_val;
2296
2297 /*
2298 * On backplane, bail out if
2299 * - backplane autoneg was not completed, or if
2300 * - we are 82599 and link partner is not AN enabled
2301 */
2302 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2303 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2304 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2305
2306 if (hw->mac.type == ixgbe_mac_82599EB) {
2307 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2308 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2309 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2310 }
2311 /*
2312 * Read the 10g AN autoc and LP ability registers and resolve
2313 * local flow control settings accordingly
2314 */
2315 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2316 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2317
2318 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2319 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2320 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2321
2322 return ret_val;
2323 }
2324
2325 /**
2326 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2327 * @hw: pointer to hardware structure
2328 *
2329 * Enable flow control according to IEEE clause 37.
2330 **/
2331 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2332 {
2333 u16 technology_ability_reg = 0;
2334 u16 lp_technology_ability_reg = 0;
2335
2336 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2337 MDIO_MMD_AN,
2338 &technology_ability_reg);
2339 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2340 MDIO_MMD_AN,
2341 &lp_technology_ability_reg);
2342
2343 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2344 (u32)lp_technology_ability_reg,
2345 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2346 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2347 }
2348
2349 /**
2350 * ixgbe_fc_autoneg - Configure flow control
2351 * @hw: pointer to hardware structure
2352 *
2353 * Compares our advertised flow control capabilities to those advertised by
2354 * our link partner, and determines the proper flow control mode to use.
2355 **/
2356 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2357 {
2358 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2359 ixgbe_link_speed speed;
2360 bool link_up;
2361
2362 /*
2363 * AN should have completed when the cable was plugged in.
2364 * Look for reasons to bail out. Bail out if:
2365 * - FC autoneg is disabled, or if
2366 * - link is not up.
2367 *
2368 * Since we're being called from an LSC, link is already known to be up.
2369 * So use link_up_wait_to_complete=false.
2370 */
2371 if (hw->fc.disable_fc_autoneg)
2372 goto out;
2373
2374 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2375 if (!link_up)
2376 goto out;
2377
2378 switch (hw->phy.media_type) {
2379 /* Autoneg flow control on fiber adapters */
2380 case ixgbe_media_type_fiber:
2381 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2382 ret_val = ixgbe_fc_autoneg_fiber(hw);
2383 break;
2384
2385 /* Autoneg flow control on backplane adapters */
2386 case ixgbe_media_type_backplane:
2387 ret_val = ixgbe_fc_autoneg_backplane(hw);
2388 break;
2389
2390 /* Autoneg flow control on copper adapters */
2391 case ixgbe_media_type_copper:
2392 if (ixgbe_device_supports_autoneg_fc(hw))
2393 ret_val = ixgbe_fc_autoneg_copper(hw);
2394 break;
2395
2396 default:
2397 break;
2398 }
2399
2400 out:
2401 if (ret_val == 0) {
2402 hw->fc.fc_was_autonegged = true;
2403 } else {
2404 hw->fc.fc_was_autonegged = false;
2405 hw->fc.current_mode = hw->fc.requested_mode;
2406 }
2407 }
2408
2409 /**
2410 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2411 * @hw: pointer to hardware structure
2412 *
2413 * System-wide timeout range is encoded in PCIe Device Control2 register.
2414 *
2415 * Add 10% to specified maximum and return the number of times to poll for
2416 * completion timeout, in units of 100 microsec. Never return less than
2417 * 800 = 80 millisec.
2418 **/
2419 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2420 {
2421 s16 devctl2;
2422 u32 pollcnt;
2423
2424 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2425 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2426
2427 switch (devctl2) {
2428 case IXGBE_PCIDEVCTRL2_65_130ms:
2429 pollcnt = 1300; /* 130 millisec */
2430 break;
2431 case IXGBE_PCIDEVCTRL2_260_520ms:
2432 pollcnt = 5200; /* 520 millisec */
2433 break;
2434 case IXGBE_PCIDEVCTRL2_1_2s:
2435 pollcnt = 20000; /* 2 sec */
2436 break;
2437 case IXGBE_PCIDEVCTRL2_4_8s:
2438 pollcnt = 80000; /* 8 sec */
2439 break;
2440 case IXGBE_PCIDEVCTRL2_17_34s:
2441 pollcnt = 34000; /* 34 sec */
2442 break;
2443 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
2444 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
2445 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
2446 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
2447 default:
2448 pollcnt = 800; /* 80 millisec minimum */
2449 break;
2450 }
2451
2452 /* add 10% to spec maximum */
2453 return (pollcnt * 11) / 10;
2454 }
2455
2456 /**
2457 * ixgbe_disable_pcie_master - Disable PCI-express master access
2458 * @hw: pointer to hardware structure
2459 *
2460 * Disables PCI-Express master access and verifies there are no pending
2461 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2462 * bit hasn't caused the master requests to be disabled, else 0
2463 * is returned signifying master requests disabled.
2464 **/
2465 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2466 {
2467 u32 i, poll;
2468 u16 value;
2469
2470 /* Always set this bit to ensure any future transactions are blocked */
2471 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2472
2473 /* Poll for bit to read as set */
2474 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2475 if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2476 break;
2477 usleep_range(100, 120);
2478 }
2479 if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2480 hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2481 goto gio_disable_fail;
2482 }
2483
2484 /* Exit if master requests are blocked */
2485 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2486 ixgbe_removed(hw->hw_addr))
2487 return 0;
2488
2489 /* Poll for master request bit to clear */
2490 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2491 udelay(100);
2492 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2493 return 0;
2494 }
2495
2496 /*
2497 * Two consecutive resets are required via CTRL.RST per datasheet
2498 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2499 * of this need. The first reset prevents new master requests from
2500 * being issued by our device. We then must wait 1usec or more for any
2501 * remaining completions from the PCIe bus to trickle in, and then reset
2502 * again to clear out any effects they may have had on our device.
2503 */
2504 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2505 gio_disable_fail:
2506 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2507
2508 if (hw->mac.type >= ixgbe_mac_X550)
2509 return 0;
2510
2511 /*
2512 * Before proceeding, make sure that the PCIe block does not have
2513 * transactions pending.
2514 */
2515 poll = ixgbe_pcie_timeout_poll(hw);
2516 for (i = 0; i < poll; i++) {
2517 udelay(100);
2518 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2519 if (ixgbe_removed(hw->hw_addr))
2520 return 0;
2521 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2522 return 0;
2523 }
2524
2525 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2526 return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2527 }
2528
2529 /**
2530 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2531 * @hw: pointer to hardware structure
2532 * @mask: Mask to specify which semaphore to acquire
2533 *
2534 * Acquires the SWFW semaphore through the GSSR register for the specified
2535 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2536 **/
2537 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2538 {
2539 u32 gssr = 0;
2540 u32 swmask = mask;
2541 u32 fwmask = mask << 5;
2542 u32 timeout = 200;
2543 u32 i;
2544
2545 for (i = 0; i < timeout; i++) {
2546 /*
2547 * SW NVM semaphore bit is used for access to all
2548 * SW_FW_SYNC bits (not just NVM)
2549 */
2550 if (ixgbe_get_eeprom_semaphore(hw))
2551 return IXGBE_ERR_SWFW_SYNC;
2552
2553 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2554 if (!(gssr & (fwmask | swmask))) {
2555 gssr |= swmask;
2556 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2557 ixgbe_release_eeprom_semaphore(hw);
2558 return 0;
2559 } else {
2560 /* Resource is currently in use by FW or SW */
2561 ixgbe_release_eeprom_semaphore(hw);
2562 usleep_range(5000, 10000);
2563 }
2564 }
2565
2566 /* If time expired clear the bits holding the lock and retry */
2567 if (gssr & (fwmask | swmask))
2568 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2569
2570 usleep_range(5000, 10000);
2571 return IXGBE_ERR_SWFW_SYNC;
2572 }
2573
2574 /**
2575 * ixgbe_release_swfw_sync - Release SWFW semaphore
2576 * @hw: pointer to hardware structure
2577 * @mask: Mask to specify which semaphore to release
2578 *
2579 * Releases the SWFW semaphore through the GSSR register for the specified
2580 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2581 **/
2582 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2583 {
2584 u32 gssr;
2585 u32 swmask = mask;
2586
2587 ixgbe_get_eeprom_semaphore(hw);
2588
2589 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2590 gssr &= ~swmask;
2591 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2592
2593 ixgbe_release_eeprom_semaphore(hw);
2594 }
2595
2596 /**
2597 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2598 * @hw: pointer to hardware structure
2599 * @reg_val: Value we read from AUTOC
2600 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2601 * true in this the generic case.
2602 *
2603 * The default case requires no protection so just to the register read.
2604 **/
2605 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2606 {
2607 *locked = false;
2608 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2609 return 0;
2610 }
2611
2612 /**
2613 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2614 * @hw: pointer to hardware structure
2615 * @reg_val: value to write to AUTOC
2616 * @locked: bool to indicate whether the SW/FW lock was already taken by
2617 * previous read.
2618 **/
2619 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2620 {
2621 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2622 return 0;
2623 }
2624
2625 /**
2626 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2627 * @hw: pointer to hardware structure
2628 *
2629 * Stops the receive data path and waits for the HW to internally
2630 * empty the Rx security block.
2631 **/
2632 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2633 {
2634 #define IXGBE_MAX_SECRX_POLL 40
2635 int i;
2636 int secrxreg;
2637
2638 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2639 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2640 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2641 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2642 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2643 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2644 break;
2645 else
2646 /* Use interrupt-safe sleep just in case */
2647 udelay(1000);
2648 }
2649
2650 /* For informational purposes only */
2651 if (i >= IXGBE_MAX_SECRX_POLL)
2652 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2653
2654 return 0;
2655
2656 }
2657
2658 /**
2659 * ixgbe_enable_rx_buff - Enables the receive data path
2660 * @hw: pointer to hardware structure
2661 *
2662 * Enables the receive data path
2663 **/
2664 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2665 {
2666 int secrxreg;
2667
2668 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2669 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2670 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2671 IXGBE_WRITE_FLUSH(hw);
2672
2673 return 0;
2674 }
2675
2676 /**
2677 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2678 * @hw: pointer to hardware structure
2679 * @regval: register value to write to RXCTRL
2680 *
2681 * Enables the Rx DMA unit
2682 **/
2683 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2684 {
2685 if (regval & IXGBE_RXCTRL_RXEN)
2686 hw->mac.ops.enable_rx(hw);
2687 else
2688 hw->mac.ops.disable_rx(hw);
2689
2690 return 0;
2691 }
2692
2693 /**
2694 * ixgbe_blink_led_start_generic - Blink LED based on index.
2695 * @hw: pointer to hardware structure
2696 * @index: led number to blink
2697 **/
2698 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2699 {
2700 ixgbe_link_speed speed = 0;
2701 bool link_up = false;
2702 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2703 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2704 bool locked = false;
2705 s32 ret_val;
2706
2707 if (index > 3)
2708 return IXGBE_ERR_PARAM;
2709
2710 /*
2711 * Link must be up to auto-blink the LEDs;
2712 * Force it if link is down.
2713 */
2714 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2715
2716 if (!link_up) {
2717 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2718 if (ret_val)
2719 return ret_val;
2720
2721 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2722 autoc_reg |= IXGBE_AUTOC_FLU;
2723
2724 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2725 if (ret_val)
2726 return ret_val;
2727
2728 IXGBE_WRITE_FLUSH(hw);
2729
2730 usleep_range(10000, 20000);
2731 }
2732
2733 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2734 led_reg |= IXGBE_LED_BLINK(index);
2735 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2736 IXGBE_WRITE_FLUSH(hw);
2737
2738 return 0;
2739 }
2740
2741 /**
2742 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2743 * @hw: pointer to hardware structure
2744 * @index: led number to stop blinking
2745 **/
2746 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2747 {
2748 u32 autoc_reg = 0;
2749 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2750 bool locked = false;
2751 s32 ret_val;
2752
2753 if (index > 3)
2754 return IXGBE_ERR_PARAM;
2755
2756 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2757 if (ret_val)
2758 return ret_val;
2759
2760 autoc_reg &= ~IXGBE_AUTOC_FLU;
2761 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2762
2763 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2764 if (ret_val)
2765 return ret_val;
2766
2767 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2768 led_reg &= ~IXGBE_LED_BLINK(index);
2769 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2770 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2771 IXGBE_WRITE_FLUSH(hw);
2772
2773 return 0;
2774 }
2775
2776 /**
2777 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2778 * @hw: pointer to hardware structure
2779 * @san_mac_offset: SAN MAC address offset
2780 *
2781 * This function will read the EEPROM location for the SAN MAC address
2782 * pointer, and returns the value at that location. This is used in both
2783 * get and set mac_addr routines.
2784 **/
2785 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2786 u16 *san_mac_offset)
2787 {
2788 s32 ret_val;
2789
2790 /*
2791 * First read the EEPROM pointer to see if the MAC addresses are
2792 * available.
2793 */
2794 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2795 san_mac_offset);
2796 if (ret_val)
2797 hw_err(hw, "eeprom read at offset %d failed\n",
2798 IXGBE_SAN_MAC_ADDR_PTR);
2799
2800 return ret_val;
2801 }
2802
2803 /**
2804 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2805 * @hw: pointer to hardware structure
2806 * @san_mac_addr: SAN MAC address
2807 *
2808 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2809 * per-port, so set_lan_id() must be called before reading the addresses.
2810 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2811 * upon for non-SFP connections, so we must call it here.
2812 **/
2813 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2814 {
2815 u16 san_mac_data, san_mac_offset;
2816 u8 i;
2817 s32 ret_val;
2818
2819 /*
2820 * First read the EEPROM pointer to see if the MAC addresses are
2821 * available. If they're not, no point in calling set_lan_id() here.
2822 */
2823 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2824 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2825
2826 goto san_mac_addr_clr;
2827
2828 /* make sure we know which port we need to program */
2829 hw->mac.ops.set_lan_id(hw);
2830 /* apply the port offset to the address offset */
2831 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2832 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2833 for (i = 0; i < 3; i++) {
2834 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2835 &san_mac_data);
2836 if (ret_val) {
2837 hw_err(hw, "eeprom read at offset %d failed\n",
2838 san_mac_offset);
2839 goto san_mac_addr_clr;
2840 }
2841 san_mac_addr[i * 2] = (u8)(san_mac_data);
2842 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2843 san_mac_offset++;
2844 }
2845 return 0;
2846
2847 san_mac_addr_clr:
2848 /* No addresses available in this EEPROM. It's not necessarily an
2849 * error though, so just wipe the local address and return.
2850 */
2851 for (i = 0; i < 6; i++)
2852 san_mac_addr[i] = 0xFF;
2853 return ret_val;
2854 }
2855
2856 /**
2857 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2858 * @hw: pointer to hardware structure
2859 *
2860 * Read PCIe configuration space, and get the MSI-X vector count from
2861 * the capabilities table.
2862 **/
2863 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2864 {
2865 u16 msix_count;
2866 u16 max_msix_count;
2867 u16 pcie_offset;
2868
2869 switch (hw->mac.type) {
2870 case ixgbe_mac_82598EB:
2871 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2872 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2873 break;
2874 case ixgbe_mac_82599EB:
2875 case ixgbe_mac_X540:
2876 case ixgbe_mac_X550:
2877 case ixgbe_mac_X550EM_x:
2878 case ixgbe_mac_x550em_a:
2879 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2880 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2881 break;
2882 default:
2883 return 1;
2884 }
2885
2886 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2887 if (ixgbe_removed(hw->hw_addr))
2888 msix_count = 0;
2889 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2890
2891 /* MSI-X count is zero-based in HW */
2892 msix_count++;
2893
2894 if (msix_count > max_msix_count)
2895 msix_count = max_msix_count;
2896
2897 return msix_count;
2898 }
2899
2900 /**
2901 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2902 * @hw: pointer to hardware struct
2903 * @rar: receive address register index to disassociate
2904 * @vmdq: VMDq pool index to remove from the rar
2905 **/
2906 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2907 {
2908 u32 mpsar_lo, mpsar_hi;
2909 u32 rar_entries = hw->mac.num_rar_entries;
2910
2911 /* Make sure we are using a valid rar index range */
2912 if (rar >= rar_entries) {
2913 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2914 return IXGBE_ERR_INVALID_ARGUMENT;
2915 }
2916
2917 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2918 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2919
2920 if (ixgbe_removed(hw->hw_addr))
2921 return 0;
2922
2923 if (!mpsar_lo && !mpsar_hi)
2924 return 0;
2925
2926 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2927 if (mpsar_lo) {
2928 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2929 mpsar_lo = 0;
2930 }
2931 if (mpsar_hi) {
2932 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2933 mpsar_hi = 0;
2934 }
2935 } else if (vmdq < 32) {
2936 mpsar_lo &= ~BIT(vmdq);
2937 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2938 } else {
2939 mpsar_hi &= ~BIT(vmdq - 32);
2940 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2941 }
2942
2943 /* was that the last pool using this rar? */
2944 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2945 hw->mac.ops.clear_rar(hw, rar);
2946 return 0;
2947 }
2948
2949 /**
2950 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2951 * @hw: pointer to hardware struct
2952 * @rar: receive address register index to associate with a VMDq index
2953 * @vmdq: VMDq pool index
2954 **/
2955 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2956 {
2957 u32 mpsar;
2958 u32 rar_entries = hw->mac.num_rar_entries;
2959
2960 /* Make sure we are using a valid rar index range */
2961 if (rar >= rar_entries) {
2962 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2963 return IXGBE_ERR_INVALID_ARGUMENT;
2964 }
2965
2966 if (vmdq < 32) {
2967 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2968 mpsar |= BIT(vmdq);
2969 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2970 } else {
2971 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2972 mpsar |= BIT(vmdq - 32);
2973 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2974 }
2975 return 0;
2976 }
2977
2978 /**
2979 * This function should only be involved in the IOV mode.
2980 * In IOV mode, Default pool is next pool after the number of
2981 * VFs advertized and not 0.
2982 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2983 *
2984 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2985 * @hw: pointer to hardware struct
2986 * @vmdq: VMDq pool index
2987 **/
2988 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2989 {
2990 u32 rar = hw->mac.san_mac_rar_index;
2991
2992 if (vmdq < 32) {
2993 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
2994 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2995 } else {
2996 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2997 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
2998 }
2999
3000 return 0;
3001 }
3002
3003 /**
3004 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3005 * @hw: pointer to hardware structure
3006 **/
3007 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3008 {
3009 int i;
3010
3011 for (i = 0; i < 128; i++)
3012 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3013
3014 return 0;
3015 }
3016
3017 /**
3018 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3019 * @hw: pointer to hardware structure
3020 * @vlan: VLAN id to write to VLAN filter
3021 *
3022 * return the VLVF index where this VLAN id should be placed
3023 *
3024 **/
3025 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3026 {
3027 s32 regindex, first_empty_slot;
3028 u32 bits;
3029
3030 /* short cut the special case */
3031 if (vlan == 0)
3032 return 0;
3033
3034 /* if vlvf_bypass is set we don't want to use an empty slot, we
3035 * will simply bypass the VLVF if there are no entries present in the
3036 * VLVF that contain our VLAN
3037 */
3038 first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3039
3040 /* add VLAN enable bit for comparison */
3041 vlan |= IXGBE_VLVF_VIEN;
3042
3043 /* Search for the vlan id in the VLVF entries. Save off the first empty
3044 * slot found along the way.
3045 *
3046 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3047 */
3048 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3049 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3050 if (bits == vlan)
3051 return regindex;
3052 if (!first_empty_slot && !bits)
3053 first_empty_slot = regindex;
3054 }
3055
3056 /* If we are here then we didn't find the VLAN. Return first empty
3057 * slot we found during our search, else error.
3058 */
3059 if (!first_empty_slot)
3060 hw_dbg(hw, "No space in VLVF.\n");
3061
3062 return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3063 }
3064
3065 /**
3066 * ixgbe_set_vfta_generic - Set VLAN filter table
3067 * @hw: pointer to hardware structure
3068 * @vlan: VLAN id to write to VLAN filter
3069 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3070 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3071 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3072 *
3073 * Turn on/off specified VLAN in the VLAN filter table.
3074 **/
3075 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3076 bool vlan_on, bool vlvf_bypass)
3077 {
3078 u32 regidx, vfta_delta, vfta, bits;
3079 s32 vlvf_index;
3080
3081 if ((vlan > 4095) || (vind > 63))
3082 return IXGBE_ERR_PARAM;
3083
3084 /*
3085 * this is a 2 part operation - first the VFTA, then the
3086 * VLVF and VLVFB if VT Mode is set
3087 * We don't write the VFTA until we know the VLVF part succeeded.
3088 */
3089
3090 /* Part 1
3091 * The VFTA is a bitstring made up of 128 32-bit registers
3092 * that enable the particular VLAN id, much like the MTA:
3093 * bits[11-5]: which register
3094 * bits[4-0]: which bit in the register
3095 */
3096 regidx = vlan / 32;
3097 vfta_delta = BIT(vlan % 32);
3098 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3099
3100 /* vfta_delta represents the difference between the current value
3101 * of vfta and the value we want in the register. Since the diff
3102 * is an XOR mask we can just update vfta using an XOR.
3103 */
3104 vfta_delta &= vlan_on ? ~vfta : vfta;
3105 vfta ^= vfta_delta;
3106
3107 /* Part 2
3108 * If VT Mode is set
3109 * Either vlan_on
3110 * make sure the vlan is in VLVF
3111 * set the vind bit in the matching VLVFB
3112 * Or !vlan_on
3113 * clear the pool bit and possibly the vind
3114 */
3115 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3116 goto vfta_update;
3117
3118 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3119 if (vlvf_index < 0) {
3120 if (vlvf_bypass)
3121 goto vfta_update;
3122 return vlvf_index;
3123 }
3124
3125 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3126
3127 /* set the pool bit */
3128 bits |= BIT(vind % 32);
3129 if (vlan_on)
3130 goto vlvf_update;
3131
3132 /* clear the pool bit */
3133 bits ^= BIT(vind % 32);
3134
3135 if (!bits &&
3136 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3137 /* Clear VFTA first, then disable VLVF. Otherwise
3138 * we run the risk of stray packets leaking into
3139 * the PF via the default pool
3140 */
3141 if (vfta_delta)
3142 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3143
3144 /* disable VLVF and clear remaining bit from pool */
3145 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3146 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3147
3148 return 0;
3149 }
3150
3151 /* If there are still bits set in the VLVFB registers
3152 * for the VLAN ID indicated we need to see if the
3153 * caller is requesting that we clear the VFTA entry bit.
3154 * If the caller has requested that we clear the VFTA
3155 * entry bit but there are still pools/VFs using this VLAN
3156 * ID entry then ignore the request. We're not worried
3157 * about the case where we're turning the VFTA VLAN ID
3158 * entry bit on, only when requested to turn it off as
3159 * there may be multiple pools and/or VFs using the
3160 * VLAN ID entry. In that case we cannot clear the
3161 * VFTA bit until all pools/VFs using that VLAN ID have also
3162 * been cleared. This will be indicated by "bits" being
3163 * zero.
3164 */
3165 vfta_delta = 0;
3166
3167 vlvf_update:
3168 /* record pool change and enable VLAN ID if not already enabled */
3169 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3170 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3171
3172 vfta_update:
3173 /* Update VFTA now that we are ready for traffic */
3174 if (vfta_delta)
3175 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3176
3177 return 0;
3178 }
3179
3180 /**
3181 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3182 * @hw: pointer to hardware structure
3183 *
3184 * Clears the VLAN filer table, and the VMDq index associated with the filter
3185 **/
3186 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3187 {
3188 u32 offset;
3189
3190 for (offset = 0; offset < hw->mac.vft_size; offset++)
3191 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3192
3193 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3194 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3195 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3196 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3197 }
3198
3199 return 0;
3200 }
3201
3202 /**
3203 * ixgbe_check_mac_link_generic - Determine link and speed status
3204 * @hw: pointer to hardware structure
3205 * @speed: pointer to link speed
3206 * @link_up: true when link is up
3207 * @link_up_wait_to_complete: bool used to wait for link up or not
3208 *
3209 * Reads the links register to determine if link is up and the current speed
3210 **/
3211 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3212 bool *link_up, bool link_up_wait_to_complete)
3213 {
3214 u32 links_reg, links_orig;
3215 u32 i;
3216
3217 /* clear the old state */
3218 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3219
3220 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3221
3222 if (links_orig != links_reg) {
3223 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3224 links_orig, links_reg);
3225 }
3226
3227 if (link_up_wait_to_complete) {
3228 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3229 if (links_reg & IXGBE_LINKS_UP) {
3230 *link_up = true;
3231 break;
3232 } else {
3233 *link_up = false;
3234 }
3235 msleep(100);
3236 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3237 }
3238 } else {
3239 if (links_reg & IXGBE_LINKS_UP)
3240 *link_up = true;
3241 else
3242 *link_up = false;
3243 }
3244
3245 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3246 case IXGBE_LINKS_SPEED_10G_82599:
3247 if ((hw->mac.type >= ixgbe_mac_X550) &&
3248 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3249 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3250 else
3251 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3252 break;
3253 case IXGBE_LINKS_SPEED_1G_82599:
3254 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3255 break;
3256 case IXGBE_LINKS_SPEED_100_82599:
3257 if ((hw->mac.type >= ixgbe_mac_X550) &&
3258 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3259 *speed = IXGBE_LINK_SPEED_5GB_FULL;
3260 else
3261 *speed = IXGBE_LINK_SPEED_100_FULL;
3262 break;
3263 default:
3264 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3265 }
3266
3267 return 0;
3268 }
3269
3270 /**
3271 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3272 * the EEPROM
3273 * @hw: pointer to hardware structure
3274 * @wwnn_prefix: the alternative WWNN prefix
3275 * @wwpn_prefix: the alternative WWPN prefix
3276 *
3277 * This function will read the EEPROM from the alternative SAN MAC address
3278 * block to check the support for the alternative WWNN/WWPN prefix support.
3279 **/
3280 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3281 u16 *wwpn_prefix)
3282 {
3283 u16 offset, caps;
3284 u16 alt_san_mac_blk_offset;
3285
3286 /* clear output first */
3287 *wwnn_prefix = 0xFFFF;
3288 *wwpn_prefix = 0xFFFF;
3289
3290 /* check if alternative SAN MAC is supported */
3291 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3292 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3293 goto wwn_prefix_err;
3294
3295 if ((alt_san_mac_blk_offset == 0) ||
3296 (alt_san_mac_blk_offset == 0xFFFF))
3297 return 0;
3298
3299 /* check capability in alternative san mac address block */
3300 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3301 if (hw->eeprom.ops.read(hw, offset, &caps))
3302 goto wwn_prefix_err;
3303 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3304 return 0;
3305
3306 /* get the corresponding prefix for WWNN/WWPN */
3307 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3308 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3309 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3310
3311 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3312 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3313 goto wwn_prefix_err;
3314
3315 return 0;
3316
3317 wwn_prefix_err:
3318 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3319 return 0;
3320 }
3321
3322 /**
3323 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3324 * @hw: pointer to hardware structure
3325 * @enable: enable or disable switch for MAC anti-spoofing
3326 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3327 *
3328 **/
3329 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3330 {
3331 int vf_target_reg = vf >> 3;
3332 int vf_target_shift = vf % 8;
3333 u32 pfvfspoof;
3334
3335 if (hw->mac.type == ixgbe_mac_82598EB)
3336 return;
3337
3338 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3339 if (enable)
3340 pfvfspoof |= BIT(vf_target_shift);
3341 else
3342 pfvfspoof &= ~BIT(vf_target_shift);
3343 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3344 }
3345
3346 /**
3347 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3348 * @hw: pointer to hardware structure
3349 * @enable: enable or disable switch for VLAN anti-spoofing
3350 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3351 *
3352 **/
3353 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3354 {
3355 int vf_target_reg = vf >> 3;
3356 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3357 u32 pfvfspoof;
3358
3359 if (hw->mac.type == ixgbe_mac_82598EB)
3360 return;
3361
3362 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3363 if (enable)
3364 pfvfspoof |= BIT(vf_target_shift);
3365 else
3366 pfvfspoof &= ~BIT(vf_target_shift);
3367 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3368 }
3369
3370 /**
3371 * ixgbe_get_device_caps_generic - Get additional device capabilities
3372 * @hw: pointer to hardware structure
3373 * @device_caps: the EEPROM word with the extra device capabilities
3374 *
3375 * This function will read the EEPROM location for the device capabilities,
3376 * and return the word through device_caps.
3377 **/
3378 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3379 {
3380 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3381
3382 return 0;
3383 }
3384
3385 /**
3386 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3387 * @hw: pointer to hardware structure
3388 * @num_pb: number of packet buffers to allocate
3389 * @headroom: reserve n KB of headroom
3390 * @strategy: packet buffer allocation strategy
3391 **/
3392 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3393 int num_pb,
3394 u32 headroom,
3395 int strategy)
3396 {
3397 u32 pbsize = hw->mac.rx_pb_size;
3398 int i = 0;
3399 u32 rxpktsize, txpktsize, txpbthresh;
3400
3401 /* Reserve headroom */
3402 pbsize -= headroom;
3403
3404 if (!num_pb)
3405 num_pb = 1;
3406
3407 /* Divide remaining packet buffer space amongst the number
3408 * of packet buffers requested using supplied strategy.
3409 */
3410 switch (strategy) {
3411 case (PBA_STRATEGY_WEIGHTED):
3412 /* pba_80_48 strategy weight first half of packet buffer with
3413 * 5/8 of the packet buffer space.
3414 */
3415 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3416 pbsize -= rxpktsize * (num_pb / 2);
3417 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3418 for (; i < (num_pb / 2); i++)
3419 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3420 /* Fall through to configure remaining packet buffers */
3421 case (PBA_STRATEGY_EQUAL):
3422 /* Divide the remaining Rx packet buffer evenly among the TCs */
3423 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3424 for (; i < num_pb; i++)
3425 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3426 break;
3427 default:
3428 break;
3429 }
3430
3431 /*
3432 * Setup Tx packet buffer and threshold equally for all TCs
3433 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3434 * 10 since the largest packet we support is just over 9K.
3435 */
3436 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3437 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3438 for (i = 0; i < num_pb; i++) {
3439 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3440 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3441 }
3442
3443 /* Clear unused TCs, if any, to zero buffer size*/
3444 for (; i < IXGBE_MAX_PB; i++) {
3445 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3446 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3447 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3448 }
3449 }
3450
3451 /**
3452 * ixgbe_calculate_checksum - Calculate checksum for buffer
3453 * @buffer: pointer to EEPROM
3454 * @length: size of EEPROM to calculate a checksum for
3455 *
3456 * Calculates the checksum for some buffer on a specified length. The
3457 * checksum calculated is returned.
3458 **/
3459 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3460 {
3461 u32 i;
3462 u8 sum = 0;
3463
3464 if (!buffer)
3465 return 0;
3466
3467 for (i = 0; i < length; i++)
3468 sum += buffer[i];
3469
3470 return (u8) (0 - sum);
3471 }
3472
3473 /**
3474 * ixgbe_host_interface_command - Issue command to manageability block
3475 * @hw: pointer to the HW structure
3476 * @buffer: contains the command to write and where the return status will
3477 * be placed
3478 * @length: length of buffer, must be multiple of 4 bytes
3479 * @timeout: time in ms to wait for command completion
3480 * @return_data: read and return data from the buffer (true) or not (false)
3481 * Needed because FW structures are big endian and decoding of
3482 * these fields can be 8 bit or 16 bit based on command. Decoding
3483 * is not easily understood without making a table of commands.
3484 * So we will leave this up to the caller to read back the data
3485 * in these cases.
3486 *
3487 * Communicates with the manageability block. On success return 0
3488 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3489 **/
3490 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3491 u32 length, u32 timeout,
3492 bool return_data)
3493 {
3494 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3495 u32 hicr, i, bi, fwsts;
3496 u16 buf_len, dword_len;
3497 union {
3498 struct ixgbe_hic_hdr hdr;
3499 u32 u32arr[1];
3500 } *bp = buffer;
3501 s32 status;
3502
3503 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3504 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3505 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3506 }
3507 /* Take management host interface semaphore */
3508 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3509 if (status)
3510 return status;
3511
3512 /* Set bit 9 of FWSTS clearing FW reset indication */
3513 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3514 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3515
3516 /* Check that the host interface is enabled. */
3517 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3518 if (!(hicr & IXGBE_HICR_EN)) {
3519 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3520 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3521 goto rel_out;
3522 }
3523
3524 /* Calculate length in DWORDs. We must be DWORD aligned */
3525 if (length % sizeof(u32)) {
3526 hw_dbg(hw, "Buffer length failure, not aligned to dword");
3527 status = IXGBE_ERR_INVALID_ARGUMENT;
3528 goto rel_out;
3529 }
3530
3531 dword_len = length >> 2;
3532
3533 /* The device driver writes the relevant command block
3534 * into the ram area.
3535 */
3536 for (i = 0; i < dword_len; i++)
3537 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3538 i, cpu_to_le32(bp->u32arr[i]));
3539
3540 /* Setting this bit tells the ARC that a new command is pending. */
3541 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3542
3543 for (i = 0; i < timeout; i++) {
3544 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3545 if (!(hicr & IXGBE_HICR_C))
3546 break;
3547 usleep_range(1000, 2000);
3548 }
3549
3550 /* Check command successful completion. */
3551 if ((timeout && i == timeout) ||
3552 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
3553 hw_dbg(hw, "Command has failed with no status valid.\n");
3554 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3555 goto rel_out;
3556 }
3557
3558 if (!return_data)
3559 goto rel_out;
3560
3561 /* Calculate length in DWORDs */
3562 dword_len = hdr_size >> 2;
3563
3564 /* first pull in the header so we know the buffer length */
3565 for (bi = 0; bi < dword_len; bi++) {
3566 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3567 le32_to_cpus(&bp->u32arr[bi]);
3568 }
3569
3570 /* If there is any thing in data position pull it in */
3571 buf_len = bp->hdr.buf_len;
3572 if (!buf_len)
3573 goto rel_out;
3574
3575 if (length < round_up(buf_len, 4) + hdr_size) {
3576 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3577 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3578 goto rel_out;
3579 }
3580
3581 /* Calculate length in DWORDs, add 3 for odd lengths */
3582 dword_len = (buf_len + 3) >> 2;
3583
3584 /* Pull in the rest of the buffer (bi is where we left off) */
3585 for (; bi <= dword_len; bi++) {
3586 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3587 le32_to_cpus(&bp->u32arr[bi]);
3588 }
3589
3590 rel_out:
3591 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3592
3593 return status;
3594 }
3595
3596 /**
3597 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3598 * @hw: pointer to the HW structure
3599 * @maj: driver version major number
3600 * @min: driver version minor number
3601 * @build: driver version build number
3602 * @sub: driver version sub build number
3603 *
3604 * Sends driver version number to firmware through the manageability
3605 * block. On success return 0
3606 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3607 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3608 **/
3609 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3610 u8 build, u8 sub)
3611 {
3612 struct ixgbe_hic_drv_info fw_cmd;
3613 int i;
3614 s32 ret_val;
3615
3616 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3617 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3618 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3619 fw_cmd.port_num = hw->bus.func;
3620 fw_cmd.ver_maj = maj;
3621 fw_cmd.ver_min = min;
3622 fw_cmd.ver_build = build;
3623 fw_cmd.ver_sub = sub;
3624 fw_cmd.hdr.checksum = 0;
3625 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3626 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3627 fw_cmd.pad = 0;
3628 fw_cmd.pad2 = 0;
3629
3630 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3631 ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3632 sizeof(fw_cmd),
3633 IXGBE_HI_COMMAND_TIMEOUT,
3634 true);
3635 if (ret_val != 0)
3636 continue;
3637
3638 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3639 FW_CEM_RESP_STATUS_SUCCESS)
3640 ret_val = 0;
3641 else
3642 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3643
3644 break;
3645 }
3646
3647 return ret_val;
3648 }
3649
3650 /**
3651 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3652 * @hw: pointer to the hardware structure
3653 *
3654 * The 82599 and x540 MACs can experience issues if TX work is still pending
3655 * when a reset occurs. This function prevents this by flushing the PCIe
3656 * buffers on the system.
3657 **/
3658 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3659 {
3660 u32 gcr_ext, hlreg0, i, poll;
3661 u16 value;
3662
3663 /*
3664 * If double reset is not requested then all transactions should
3665 * already be clear and as such there is no work to do
3666 */
3667 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3668 return;
3669
3670 /*
3671 * Set loopback enable to prevent any transmits from being sent
3672 * should the link come up. This assumes that the RXCTRL.RXEN bit
3673 * has already been cleared.
3674 */
3675 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3676 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3677
3678 /* wait for a last completion before clearing buffers */
3679 IXGBE_WRITE_FLUSH(hw);
3680 usleep_range(3000, 6000);
3681
3682 /* Before proceeding, make sure that the PCIe block does not have
3683 * transactions pending.
3684 */
3685 poll = ixgbe_pcie_timeout_poll(hw);
3686 for (i = 0; i < poll; i++) {
3687 usleep_range(100, 200);
3688 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3689 if (ixgbe_removed(hw->hw_addr))
3690 break;
3691 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3692 break;
3693 }
3694
3695 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3696 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3697 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3698 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3699
3700 /* Flush all writes and allow 20usec for all transactions to clear */
3701 IXGBE_WRITE_FLUSH(hw);
3702 udelay(20);
3703
3704 /* restore previous register values */
3705 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3706 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3707 }
3708
3709 static const u8 ixgbe_emc_temp_data[4] = {
3710 IXGBE_EMC_INTERNAL_DATA,
3711 IXGBE_EMC_DIODE1_DATA,
3712 IXGBE_EMC_DIODE2_DATA,
3713 IXGBE_EMC_DIODE3_DATA
3714 };
3715 static const u8 ixgbe_emc_therm_limit[4] = {
3716 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3717 IXGBE_EMC_DIODE1_THERM_LIMIT,
3718 IXGBE_EMC_DIODE2_THERM_LIMIT,
3719 IXGBE_EMC_DIODE3_THERM_LIMIT
3720 };
3721
3722 /**
3723 * ixgbe_get_ets_data - Extracts the ETS bit data
3724 * @hw: pointer to hardware structure
3725 * @ets_cfg: extected ETS data
3726 * @ets_offset: offset of ETS data
3727 *
3728 * Returns error code.
3729 **/
3730 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3731 u16 *ets_offset)
3732 {
3733 s32 status;
3734
3735 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3736 if (status)
3737 return status;
3738
3739 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3740 return IXGBE_NOT_IMPLEMENTED;
3741
3742 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3743 if (status)
3744 return status;
3745
3746 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3747 return IXGBE_NOT_IMPLEMENTED;
3748
3749 return 0;
3750 }
3751
3752 /**
3753 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3754 * @hw: pointer to hardware structure
3755 *
3756 * Returns the thermal sensor data structure
3757 **/
3758 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3759 {
3760 s32 status;
3761 u16 ets_offset;
3762 u16 ets_cfg;
3763 u16 ets_sensor;
3764 u8 num_sensors;
3765 u8 i;
3766 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3767
3768 /* Only support thermal sensors attached to physical port 0 */
3769 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3770 return IXGBE_NOT_IMPLEMENTED;
3771
3772 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3773 if (status)
3774 return status;
3775
3776 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3777 if (num_sensors > IXGBE_MAX_SENSORS)
3778 num_sensors = IXGBE_MAX_SENSORS;
3779
3780 for (i = 0; i < num_sensors; i++) {
3781 u8 sensor_index;
3782 u8 sensor_location;
3783
3784 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3785 &ets_sensor);
3786 if (status)
3787 return status;
3788
3789 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3790 IXGBE_ETS_DATA_INDEX_SHIFT);
3791 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3792 IXGBE_ETS_DATA_LOC_SHIFT);
3793
3794 if (sensor_location != 0) {
3795 status = hw->phy.ops.read_i2c_byte(hw,
3796 ixgbe_emc_temp_data[sensor_index],
3797 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3798 &data->sensor[i].temp);
3799 if (status)
3800 return status;
3801 }
3802 }
3803
3804 return 0;
3805 }
3806
3807 /**
3808 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3809 * @hw: pointer to hardware structure
3810 *
3811 * Inits the thermal sensor thresholds according to the NVM map
3812 * and save off the threshold and location values into mac.thermal_sensor_data
3813 **/
3814 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3815 {
3816 s32 status;
3817 u16 ets_offset;
3818 u16 ets_cfg;
3819 u16 ets_sensor;
3820 u8 low_thresh_delta;
3821 u8 num_sensors;
3822 u8 therm_limit;
3823 u8 i;
3824 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3825
3826 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3827
3828 /* Only support thermal sensors attached to physical port 0 */
3829 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3830 return IXGBE_NOT_IMPLEMENTED;
3831
3832 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3833 if (status)
3834 return status;
3835
3836 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3837 IXGBE_ETS_LTHRES_DELTA_SHIFT);
3838 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3839 if (num_sensors > IXGBE_MAX_SENSORS)
3840 num_sensors = IXGBE_MAX_SENSORS;
3841
3842 for (i = 0; i < num_sensors; i++) {
3843 u8 sensor_index;
3844 u8 sensor_location;
3845
3846 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3847 hw_err(hw, "eeprom read at offset %d failed\n",
3848 ets_offset + 1 + i);
3849 continue;
3850 }
3851 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3852 IXGBE_ETS_DATA_INDEX_SHIFT);
3853 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3854 IXGBE_ETS_DATA_LOC_SHIFT);
3855 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3856
3857 hw->phy.ops.write_i2c_byte(hw,
3858 ixgbe_emc_therm_limit[sensor_index],
3859 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3860
3861 if (sensor_location == 0)
3862 continue;
3863
3864 data->sensor[i].location = sensor_location;
3865 data->sensor[i].caution_thresh = therm_limit;
3866 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3867 }
3868
3869 return 0;
3870 }
3871
3872 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3873 {
3874 u32 rxctrl;
3875
3876 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3877 if (rxctrl & IXGBE_RXCTRL_RXEN) {
3878 if (hw->mac.type != ixgbe_mac_82598EB) {
3879 u32 pfdtxgswc;
3880
3881 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3882 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
3883 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
3884 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3885 hw->mac.set_lben = true;
3886 } else {
3887 hw->mac.set_lben = false;
3888 }
3889 }
3890 rxctrl &= ~IXGBE_RXCTRL_RXEN;
3891 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
3892 }
3893 }
3894
3895 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
3896 {
3897 u32 rxctrl;
3898
3899 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3900 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
3901
3902 if (hw->mac.type != ixgbe_mac_82598EB) {
3903 if (hw->mac.set_lben) {
3904 u32 pfdtxgswc;
3905
3906 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3907 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
3908 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3909 hw->mac.set_lben = false;
3910 }
3911 }
3912 }
3913
3914 /** ixgbe_mng_present - returns true when management capability is present
3915 * @hw: pointer to hardware structure
3916 **/
3917 bool ixgbe_mng_present(struct ixgbe_hw *hw)
3918 {
3919 u32 fwsm;
3920
3921 if (hw->mac.type < ixgbe_mac_82599EB)
3922 return false;
3923
3924 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
3925 fwsm &= IXGBE_FWSM_MODE_MASK;
3926 return fwsm == IXGBE_FWSM_FW_MODE_PT;
3927 }
3928
3929 /**
3930 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
3931 * @hw: pointer to hardware structure
3932 * @speed: new link speed
3933 * @autoneg_wait_to_complete: true when waiting for completion is needed
3934 *
3935 * Set the link speed in the MAC and/or PHY register and restarts link.
3936 */
3937 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
3938 ixgbe_link_speed speed,
3939 bool autoneg_wait_to_complete)
3940 {
3941 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
3942 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
3943 s32 status = 0;
3944 u32 speedcnt = 0;
3945 u32 i = 0;
3946 bool autoneg, link_up = false;
3947
3948 /* Mask off requested but non-supported speeds */
3949 status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
3950 if (status)
3951 return status;
3952
3953 speed &= link_speed;
3954
3955 /* Try each speed one by one, highest priority first. We do this in
3956 * software because 10Gb fiber doesn't support speed autonegotiation.
3957 */
3958 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
3959 speedcnt++;
3960 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
3961
3962 /* If we already have link at this speed, just jump out */
3963 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
3964 false);
3965 if (status)
3966 return status;
3967
3968 if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
3969 goto out;
3970
3971 /* Set the module link speed */
3972 switch (hw->phy.media_type) {
3973 case ixgbe_media_type_fiber:
3974 hw->mac.ops.set_rate_select_speed(hw,
3975 IXGBE_LINK_SPEED_10GB_FULL);
3976 break;
3977 case ixgbe_media_type_fiber_qsfp:
3978 /* QSFP module automatically detects MAC link speed */
3979 break;
3980 default:
3981 hw_dbg(hw, "Unexpected media type\n");
3982 break;
3983 }
3984
3985 /* Allow module to change analog characteristics (1G->10G) */
3986 msleep(40);
3987
3988 status = hw->mac.ops.setup_mac_link(hw,
3989 IXGBE_LINK_SPEED_10GB_FULL,
3990 autoneg_wait_to_complete);
3991 if (status)
3992 return status;
3993
3994 /* Flap the Tx laser if it has not already been done */
3995 if (hw->mac.ops.flap_tx_laser)
3996 hw->mac.ops.flap_tx_laser(hw);
3997
3998 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
3999 * Section 73.10.2, we may have to wait up to 500ms if KR is
4000 * attempted. 82599 uses the same timing for 10g SFI.
4001 */
4002 for (i = 0; i < 5; i++) {
4003 /* Wait for the link partner to also set speed */
4004 msleep(100);
4005
4006 /* If we have link, just jump out */
4007 status = hw->mac.ops.check_link(hw, &link_speed,
4008 &link_up, false);
4009 if (status)
4010 return status;
4011
4012 if (link_up)
4013 goto out;
4014 }
4015 }
4016
4017 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4018 speedcnt++;
4019 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4020 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4021
4022 /* If we already have link at this speed, just jump out */
4023 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4024 false);
4025 if (status)
4026 return status;
4027
4028 if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
4029 goto out;
4030
4031 /* Set the module link speed */
4032 switch (hw->phy.media_type) {
4033 case ixgbe_media_type_fiber:
4034 hw->mac.ops.set_rate_select_speed(hw,
4035 IXGBE_LINK_SPEED_1GB_FULL);
4036 break;
4037 case ixgbe_media_type_fiber_qsfp:
4038 /* QSFP module automatically detects link speed */
4039 break;
4040 default:
4041 hw_dbg(hw, "Unexpected media type\n");
4042 break;
4043 }
4044
4045 /* Allow module to change analog characteristics (10G->1G) */
4046 msleep(40);
4047
4048 status = hw->mac.ops.setup_mac_link(hw,
4049 IXGBE_LINK_SPEED_1GB_FULL,
4050 autoneg_wait_to_complete);
4051 if (status)
4052 return status;
4053
4054 /* Flap the Tx laser if it has not already been done */
4055 if (hw->mac.ops.flap_tx_laser)
4056 hw->mac.ops.flap_tx_laser(hw);
4057
4058 /* Wait for the link partner to also set speed */
4059 msleep(100);
4060
4061 /* If we have link, just jump out */
4062 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4063 false);
4064 if (status)
4065 return status;
4066
4067 if (link_up)
4068 goto out;
4069 }
4070
4071 /* We didn't get link. Configure back to the highest speed we tried,
4072 * (if there was more than one). We call ourselves back with just the
4073 * single highest speed that the user requested.
4074 */
4075 if (speedcnt > 1)
4076 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4077 highest_link_speed,
4078 autoneg_wait_to_complete);
4079
4080 out:
4081 /* Set autoneg_advertised value based on input link speed */
4082 hw->phy.autoneg_advertised = 0;
4083
4084 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4085 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4086
4087 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4088 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4089
4090 return status;
4091 }
4092
4093 /**
4094 * ixgbe_set_soft_rate_select_speed - Set module link speed
4095 * @hw: pointer to hardware structure
4096 * @speed: link speed to set
4097 *
4098 * Set module link speed via the soft rate select.
4099 */
4100 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4101 ixgbe_link_speed speed)
4102 {
4103 s32 status;
4104 u8 rs, eeprom_data;
4105
4106 switch (speed) {
4107 case IXGBE_LINK_SPEED_10GB_FULL:
4108 /* one bit mask same as setting on */
4109 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4110 break;
4111 case IXGBE_LINK_SPEED_1GB_FULL:
4112 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4113 break;
4114 default:
4115 hw_dbg(hw, "Invalid fixed module speed\n");
4116 return;
4117 }
4118
4119 /* Set RS0 */
4120 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4121 IXGBE_I2C_EEPROM_DEV_ADDR2,
4122 &eeprom_data);
4123 if (status) {
4124 hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4125 return;
4126 }
4127
4128 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4129
4130 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4131 IXGBE_I2C_EEPROM_DEV_ADDR2,
4132 eeprom_data);
4133 if (status) {
4134 hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4135 return;
4136 }
4137 }
This page took 0.132829 seconds and 5 git commands to generate.