ixgbe: Allow reduced delays during SFP detection
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_phy.c
1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2014 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32
33 #include "ixgbe.h"
34 #include "ixgbe_phy.h"
35
36 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
37 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
38 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
39 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
40 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
41 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
42 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
43 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
45 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
46 static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
47 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
48 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
49 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
50 static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
51
52 /**
53 * ixgbe_out_i2c_byte_ack - Send I2C byte with ack
54 * @hw: pointer to the hardware structure
55 * @byte: byte to send
56 *
57 * Returns an error code on error.
58 **/
59 static s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
60 {
61 s32 status;
62
63 status = ixgbe_clock_out_i2c_byte(hw, byte);
64 if (status)
65 return status;
66 return ixgbe_get_i2c_ack(hw);
67 }
68
69 /**
70 * ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
71 * @hw: pointer to the hardware structure
72 * @byte: pointer to a u8 to receive the byte
73 *
74 * Returns an error code on error.
75 **/
76 static s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
77 {
78 s32 status;
79
80 status = ixgbe_clock_in_i2c_byte(hw, byte);
81 if (status)
82 return status;
83 /* ACK */
84 return ixgbe_clock_out_i2c_bit(hw, false);
85 }
86
87 /**
88 * ixgbe_ones_comp_byte_add - Perform one's complement addition
89 * @add1: addend 1
90 * @add2: addend 2
91 *
92 * Returns one's complement 8-bit sum.
93 **/
94 static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
95 {
96 u16 sum = add1 + add2;
97
98 sum = (sum & 0xFF) + (sum >> 8);
99 return sum & 0xFF;
100 }
101
102 /**
103 * ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
104 * @hw: pointer to the hardware structure
105 * @addr: I2C bus address to read from
106 * @reg: I2C device register to read from
107 * @val: pointer to location to receive read value
108 * @lock: true if to take and release semaphore
109 *
110 * Returns an error code on error.
111 */
112 static s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
113 u16 reg, u16 *val, bool lock)
114 {
115 u32 swfw_mask = hw->phy.phy_semaphore_mask;
116 int max_retry = 10;
117 int retry = 0;
118 u8 csum_byte;
119 u8 high_bits;
120 u8 low_bits;
121 u8 reg_high;
122 u8 csum;
123
124 reg_high = ((reg >> 7) & 0xFE) | 1; /* Indicate read combined */
125 csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
126 csum = ~csum;
127 do {
128 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
129 return IXGBE_ERR_SWFW_SYNC;
130 ixgbe_i2c_start(hw);
131 /* Device Address and write indication */
132 if (ixgbe_out_i2c_byte_ack(hw, addr))
133 goto fail;
134 /* Write bits 14:8 */
135 if (ixgbe_out_i2c_byte_ack(hw, reg_high))
136 goto fail;
137 /* Write bits 7:0 */
138 if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
139 goto fail;
140 /* Write csum */
141 if (ixgbe_out_i2c_byte_ack(hw, csum))
142 goto fail;
143 /* Re-start condition */
144 ixgbe_i2c_start(hw);
145 /* Device Address and read indication */
146 if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
147 goto fail;
148 /* Get upper bits */
149 if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
150 goto fail;
151 /* Get low bits */
152 if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
153 goto fail;
154 /* Get csum */
155 if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
156 goto fail;
157 /* NACK */
158 if (ixgbe_clock_out_i2c_bit(hw, false))
159 goto fail;
160 ixgbe_i2c_stop(hw);
161 if (lock)
162 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
163 *val = (high_bits << 8) | low_bits;
164 return 0;
165
166 fail:
167 ixgbe_i2c_bus_clear(hw);
168 if (lock)
169 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
170 retry++;
171 if (retry < max_retry)
172 hw_dbg(hw, "I2C byte read combined error - Retry.\n");
173 else
174 hw_dbg(hw, "I2C byte read combined error.\n");
175 } while (retry < max_retry);
176
177 return IXGBE_ERR_I2C;
178 }
179
180 /**
181 * ixgbe_read_i2c_combined_generic - Perform I2C read combined operation
182 * @hw: pointer to the hardware structure
183 * @addr: I2C bus address to read from
184 * @reg: I2C device register to read from
185 * @val: pointer to location to receive read value
186 *
187 * Returns an error code on error.
188 */
189 s32 ixgbe_read_i2c_combined_generic(struct ixgbe_hw *hw, u8 addr,
190 u16 reg, u16 *val)
191 {
192 return ixgbe_read_i2c_combined_generic_int(hw, addr, reg, val, true);
193 }
194
195 /**
196 * ixgbe_read_i2c_combined_generic_unlocked - Unlocked I2C read combined
197 * @hw: pointer to the hardware structure
198 * @addr: I2C bus address to read from
199 * @reg: I2C device register to read from
200 * @val: pointer to location to receive read value
201 *
202 * Returns an error code on error.
203 */
204 s32 ixgbe_read_i2c_combined_generic_unlocked(struct ixgbe_hw *hw, u8 addr,
205 u16 reg, u16 *val)
206 {
207 return ixgbe_read_i2c_combined_generic_int(hw, addr, reg, val, false);
208 }
209
210 /**
211 * ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
212 * @hw: pointer to the hardware structure
213 * @addr: I2C bus address to write to
214 * @reg: I2C device register to write to
215 * @val: value to write
216 * @lock: true if to take and release semaphore
217 *
218 * Returns an error code on error.
219 */
220 static s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
221 u16 reg, u16 val, bool lock)
222 {
223 u32 swfw_mask = hw->phy.phy_semaphore_mask;
224 int max_retry = 1;
225 int retry = 0;
226 u8 reg_high;
227 u8 csum;
228
229 reg_high = (reg >> 7) & 0xFE; /* Indicate write combined */
230 csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
231 csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
232 csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
233 csum = ~csum;
234 do {
235 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
236 return IXGBE_ERR_SWFW_SYNC;
237 ixgbe_i2c_start(hw);
238 /* Device Address and write indication */
239 if (ixgbe_out_i2c_byte_ack(hw, addr))
240 goto fail;
241 /* Write bits 14:8 */
242 if (ixgbe_out_i2c_byte_ack(hw, reg_high))
243 goto fail;
244 /* Write bits 7:0 */
245 if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
246 goto fail;
247 /* Write data 15:8 */
248 if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
249 goto fail;
250 /* Write data 7:0 */
251 if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
252 goto fail;
253 /* Write csum */
254 if (ixgbe_out_i2c_byte_ack(hw, csum))
255 goto fail;
256 ixgbe_i2c_stop(hw);
257 if (lock)
258 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
259 return 0;
260
261 fail:
262 ixgbe_i2c_bus_clear(hw);
263 if (lock)
264 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
265 retry++;
266 if (retry < max_retry)
267 hw_dbg(hw, "I2C byte write combined error - Retry.\n");
268 else
269 hw_dbg(hw, "I2C byte write combined error.\n");
270 } while (retry < max_retry);
271
272 return IXGBE_ERR_I2C;
273 }
274
275 /**
276 * ixgbe_write_i2c_combined_generic - Perform I2C write combined operation
277 * @hw: pointer to the hardware structure
278 * @addr: I2C bus address to write to
279 * @reg: I2C device register to write to
280 * @val: value to write
281 *
282 * Returns an error code on error.
283 */
284 s32 ixgbe_write_i2c_combined_generic(struct ixgbe_hw *hw,
285 u8 addr, u16 reg, u16 val)
286 {
287 return ixgbe_write_i2c_combined_generic_int(hw, addr, reg, val, true);
288 }
289
290 /**
291 * ixgbe_write_i2c_combined_generic_unlocked - Unlocked I2C write combined
292 * @hw: pointer to the hardware structure
293 * @addr: I2C bus address to write to
294 * @reg: I2C device register to write to
295 * @val: value to write
296 *
297 * Returns an error code on error.
298 */
299 s32 ixgbe_write_i2c_combined_generic_unlocked(struct ixgbe_hw *hw,
300 u8 addr, u16 reg, u16 val)
301 {
302 return ixgbe_write_i2c_combined_generic_int(hw, addr, reg, val, false);
303 }
304
305 /**
306 * ixgbe_identify_phy_generic - Get physical layer module
307 * @hw: pointer to hardware structure
308 *
309 * Determines the physical layer module found on the current adapter.
310 **/
311 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
312 {
313 u32 phy_addr;
314 u16 ext_ability = 0;
315
316 if (!hw->phy.phy_semaphore_mask) {
317 if (hw->bus.lan_id)
318 hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
319 else
320 hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
321 }
322
323 if (hw->phy.type == ixgbe_phy_unknown) {
324 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
325 hw->phy.mdio.prtad = phy_addr;
326 if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
327 ixgbe_get_phy_id(hw);
328 hw->phy.type =
329 ixgbe_get_phy_type_from_id(hw->phy.id);
330
331 if (hw->phy.type == ixgbe_phy_unknown) {
332 hw->phy.ops.read_reg(hw,
333 MDIO_PMA_EXTABLE,
334 MDIO_MMD_PMAPMD,
335 &ext_ability);
336 if (ext_ability &
337 (MDIO_PMA_EXTABLE_10GBT |
338 MDIO_PMA_EXTABLE_1000BT))
339 hw->phy.type =
340 ixgbe_phy_cu_unknown;
341 else
342 hw->phy.type =
343 ixgbe_phy_generic;
344 }
345
346 return 0;
347 }
348 }
349 /* clear value if nothing found */
350 hw->phy.mdio.prtad = 0;
351 return IXGBE_ERR_PHY_ADDR_INVALID;
352 }
353 return 0;
354 }
355
356 /**
357 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
358 * @hw: pointer to the hardware structure
359 *
360 * This function checks the MMNGC.MNG_VETO bit to see if there are
361 * any constraints on link from manageability. For MAC's that don't
362 * have this bit just return false since the link can not be blocked
363 * via this method.
364 **/
365 bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
366 {
367 u32 mmngc;
368
369 /* If we don't have this bit, it can't be blocking */
370 if (hw->mac.type == ixgbe_mac_82598EB)
371 return false;
372
373 mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
374 if (mmngc & IXGBE_MMNGC_MNG_VETO) {
375 hw_dbg(hw, "MNG_VETO bit detected.\n");
376 return true;
377 }
378
379 return false;
380 }
381
382 /**
383 * ixgbe_get_phy_id - Get the phy type
384 * @hw: pointer to hardware structure
385 *
386 **/
387 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
388 {
389 s32 status;
390 u16 phy_id_high = 0;
391 u16 phy_id_low = 0;
392
393 status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
394 &phy_id_high);
395
396 if (!status) {
397 hw->phy.id = (u32)(phy_id_high << 16);
398 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
399 &phy_id_low);
400 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
401 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
402 }
403 return status;
404 }
405
406 /**
407 * ixgbe_get_phy_type_from_id - Get the phy type
408 * @hw: pointer to hardware structure
409 *
410 **/
411 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
412 {
413 enum ixgbe_phy_type phy_type;
414
415 switch (phy_id) {
416 case TN1010_PHY_ID:
417 phy_type = ixgbe_phy_tn;
418 break;
419 case X550_PHY_ID:
420 case X540_PHY_ID:
421 phy_type = ixgbe_phy_aq;
422 break;
423 case QT2022_PHY_ID:
424 phy_type = ixgbe_phy_qt;
425 break;
426 case ATH_PHY_ID:
427 phy_type = ixgbe_phy_nl;
428 break;
429 case X557_PHY_ID:
430 phy_type = ixgbe_phy_x550em_ext_t;
431 break;
432 default:
433 phy_type = ixgbe_phy_unknown;
434 break;
435 }
436
437 return phy_type;
438 }
439
440 /**
441 * ixgbe_reset_phy_generic - Performs a PHY reset
442 * @hw: pointer to hardware structure
443 **/
444 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
445 {
446 u32 i;
447 u16 ctrl = 0;
448 s32 status = 0;
449
450 if (hw->phy.type == ixgbe_phy_unknown)
451 status = ixgbe_identify_phy_generic(hw);
452
453 if (status != 0 || hw->phy.type == ixgbe_phy_none)
454 return status;
455
456 /* Don't reset PHY if it's shut down due to overtemp. */
457 if (!hw->phy.reset_if_overtemp &&
458 (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
459 return 0;
460
461 /* Blocked by MNG FW so bail */
462 if (ixgbe_check_reset_blocked(hw))
463 return 0;
464
465 /*
466 * Perform soft PHY reset to the PHY_XS.
467 * This will cause a soft reset to the PHY
468 */
469 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
470 MDIO_MMD_PHYXS,
471 MDIO_CTRL1_RESET);
472
473 /*
474 * Poll for reset bit to self-clear indicating reset is complete.
475 * Some PHYs could take up to 3 seconds to complete and need about
476 * 1.7 usec delay after the reset is complete.
477 */
478 for (i = 0; i < 30; i++) {
479 msleep(100);
480 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
481 MDIO_MMD_PHYXS, &ctrl);
482 if (!(ctrl & MDIO_CTRL1_RESET)) {
483 udelay(2);
484 break;
485 }
486 }
487
488 if (ctrl & MDIO_CTRL1_RESET) {
489 hw_dbg(hw, "PHY reset polling failed to complete.\n");
490 return IXGBE_ERR_RESET_FAILED;
491 }
492
493 return 0;
494 }
495
496 /**
497 * ixgbe_read_phy_mdi - Reads a value from a specified PHY register without
498 * the SWFW lock
499 * @hw: pointer to hardware structure
500 * @reg_addr: 32 bit address of PHY register to read
501 * @phy_data: Pointer to read data from PHY register
502 **/
503 s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
504 u16 *phy_data)
505 {
506 u32 i, data, command;
507
508 /* Setup and write the address cycle command */
509 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
510 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
511 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
512 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
513
514 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
515
516 /* Check every 10 usec to see if the address cycle completed.
517 * The MDI Command bit will clear when the operation is
518 * complete
519 */
520 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
521 udelay(10);
522
523 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
524 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
525 break;
526 }
527
528
529 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
530 hw_dbg(hw, "PHY address command did not complete.\n");
531 return IXGBE_ERR_PHY;
532 }
533
534 /* Address cycle complete, setup and write the read
535 * command
536 */
537 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
538 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
539 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
540 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
541
542 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
543
544 /* Check every 10 usec to see if the address cycle
545 * completed. The MDI Command bit will clear when the
546 * operation is complete
547 */
548 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
549 udelay(10);
550
551 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
552 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
553 break;
554 }
555
556 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
557 hw_dbg(hw, "PHY read command didn't complete\n");
558 return IXGBE_ERR_PHY;
559 }
560
561 /* Read operation is complete. Get the data
562 * from MSRWD
563 */
564 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
565 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
566 *phy_data = (u16)(data);
567
568 return 0;
569 }
570
571 /**
572 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
573 * using the SWFW lock - this function is needed in most cases
574 * @hw: pointer to hardware structure
575 * @reg_addr: 32 bit address of PHY register to read
576 * @phy_data: Pointer to read data from PHY register
577 **/
578 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
579 u32 device_type, u16 *phy_data)
580 {
581 s32 status;
582 u32 gssr = hw->phy.phy_semaphore_mask;
583
584 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
585 status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
586 phy_data);
587 hw->mac.ops.release_swfw_sync(hw, gssr);
588 } else {
589 return IXGBE_ERR_SWFW_SYNC;
590 }
591
592 return status;
593 }
594
595 /**
596 * ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
597 * without SWFW lock
598 * @hw: pointer to hardware structure
599 * @reg_addr: 32 bit PHY register to write
600 * @device_type: 5 bit device type
601 * @phy_data: Data to write to the PHY register
602 **/
603 s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
604 u32 device_type, u16 phy_data)
605 {
606 u32 i, command;
607
608 /* Put the data in the MDI single read and write data register*/
609 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
610
611 /* Setup and write the address cycle command */
612 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
613 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
614 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
615 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
616
617 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
618
619 /*
620 * Check every 10 usec to see if the address cycle completed.
621 * The MDI Command bit will clear when the operation is
622 * complete
623 */
624 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
625 udelay(10);
626
627 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
628 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
629 break;
630 }
631
632 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
633 hw_dbg(hw, "PHY address cmd didn't complete\n");
634 return IXGBE_ERR_PHY;
635 }
636
637 /*
638 * Address cycle complete, setup and write the write
639 * command
640 */
641 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
642 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
643 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
644 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
645
646 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
647
648 /* Check every 10 usec to see if the address cycle
649 * completed. The MDI Command bit will clear when the
650 * operation is complete
651 */
652 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
653 udelay(10);
654
655 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
656 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
657 break;
658 }
659
660 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
661 hw_dbg(hw, "PHY write cmd didn't complete\n");
662 return IXGBE_ERR_PHY;
663 }
664
665 return 0;
666 }
667
668 /**
669 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
670 * using SWFW lock- this function is needed in most cases
671 * @hw: pointer to hardware structure
672 * @reg_addr: 32 bit PHY register to write
673 * @device_type: 5 bit device type
674 * @phy_data: Data to write to the PHY register
675 **/
676 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
677 u32 device_type, u16 phy_data)
678 {
679 s32 status;
680 u32 gssr = hw->phy.phy_semaphore_mask;
681
682 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
683 status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
684 phy_data);
685 hw->mac.ops.release_swfw_sync(hw, gssr);
686 } else {
687 return IXGBE_ERR_SWFW_SYNC;
688 }
689
690 return status;
691 }
692
693 /**
694 * ixgbe_setup_phy_link_generic - Set and restart autoneg
695 * @hw: pointer to hardware structure
696 *
697 * Restart autonegotiation and PHY and waits for completion.
698 **/
699 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
700 {
701 s32 status = 0;
702 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
703 bool autoneg = false;
704 ixgbe_link_speed speed;
705
706 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
707
708 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
709 /* Set or unset auto-negotiation 10G advertisement */
710 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
711 MDIO_MMD_AN,
712 &autoneg_reg);
713
714 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
715 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
716 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
717
718 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
719 MDIO_MMD_AN,
720 autoneg_reg);
721 }
722
723 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
724 /* Set or unset auto-negotiation 1G advertisement */
725 hw->phy.ops.read_reg(hw,
726 IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
727 MDIO_MMD_AN,
728 &autoneg_reg);
729
730 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
731 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
732 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
733
734 hw->phy.ops.write_reg(hw,
735 IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
736 MDIO_MMD_AN,
737 autoneg_reg);
738 }
739
740 if (speed & IXGBE_LINK_SPEED_100_FULL) {
741 /* Set or unset auto-negotiation 100M advertisement */
742 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
743 MDIO_MMD_AN,
744 &autoneg_reg);
745
746 autoneg_reg &= ~(ADVERTISE_100FULL |
747 ADVERTISE_100HALF);
748 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
749 autoneg_reg |= ADVERTISE_100FULL;
750
751 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
752 MDIO_MMD_AN,
753 autoneg_reg);
754 }
755
756 /* Blocked by MNG FW so don't reset PHY */
757 if (ixgbe_check_reset_blocked(hw))
758 return 0;
759
760 /* Restart PHY autonegotiation and wait for completion */
761 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
762 MDIO_MMD_AN, &autoneg_reg);
763
764 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
765
766 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
767 MDIO_MMD_AN, autoneg_reg);
768
769 return status;
770 }
771
772 /**
773 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
774 * @hw: pointer to hardware structure
775 * @speed: new link speed
776 **/
777 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
778 ixgbe_link_speed speed,
779 bool autoneg_wait_to_complete)
780 {
781
782 /*
783 * Clear autoneg_advertised and set new values based on input link
784 * speed.
785 */
786 hw->phy.autoneg_advertised = 0;
787
788 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
789 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
790
791 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
792 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
793
794 if (speed & IXGBE_LINK_SPEED_100_FULL)
795 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
796
797 /* Setup link based on the new speed settings */
798 hw->phy.ops.setup_link(hw);
799
800 return 0;
801 }
802
803 /**
804 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
805 * @hw: pointer to hardware structure
806 *
807 * Determines the supported link capabilities by reading the PHY auto
808 * negotiation register.
809 */
810 static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
811 {
812 u16 speed_ability;
813 s32 status;
814
815 status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
816 &speed_ability);
817 if (status)
818 return status;
819
820 if (speed_ability & MDIO_SPEED_10G)
821 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
822 if (speed_ability & MDIO_PMA_SPEED_1000)
823 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
824 if (speed_ability & MDIO_PMA_SPEED_100)
825 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
826
827 switch (hw->mac.type) {
828 case ixgbe_mac_X550:
829 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
830 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
831 break;
832 case ixgbe_mac_X550EM_x:
833 hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
834 break;
835 default:
836 break;
837 }
838
839 return 0;
840 }
841
842 /**
843 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
844 * @hw: pointer to hardware structure
845 * @speed: pointer to link speed
846 * @autoneg: boolean auto-negotiation value
847 */
848 s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
849 ixgbe_link_speed *speed,
850 bool *autoneg)
851 {
852 s32 status = 0;
853
854 *autoneg = true;
855 if (!hw->phy.speeds_supported)
856 status = ixgbe_get_copper_speeds_supported(hw);
857
858 *speed = hw->phy.speeds_supported;
859 return status;
860 }
861
862 /**
863 * ixgbe_check_phy_link_tnx - Determine link and speed status
864 * @hw: pointer to hardware structure
865 *
866 * Reads the VS1 register to determine if link is up and the current speed for
867 * the PHY.
868 **/
869 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
870 bool *link_up)
871 {
872 s32 status;
873 u32 time_out;
874 u32 max_time_out = 10;
875 u16 phy_link = 0;
876 u16 phy_speed = 0;
877 u16 phy_data = 0;
878
879 /* Initialize speed and link to default case */
880 *link_up = false;
881 *speed = IXGBE_LINK_SPEED_10GB_FULL;
882
883 /*
884 * Check current speed and link status of the PHY register.
885 * This is a vendor specific register and may have to
886 * be changed for other copper PHYs.
887 */
888 for (time_out = 0; time_out < max_time_out; time_out++) {
889 udelay(10);
890 status = hw->phy.ops.read_reg(hw,
891 MDIO_STAT1,
892 MDIO_MMD_VEND1,
893 &phy_data);
894 phy_link = phy_data &
895 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
896 phy_speed = phy_data &
897 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
898 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
899 *link_up = true;
900 if (phy_speed ==
901 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
902 *speed = IXGBE_LINK_SPEED_1GB_FULL;
903 break;
904 }
905 }
906
907 return status;
908 }
909
910 /**
911 * ixgbe_setup_phy_link_tnx - Set and restart autoneg
912 * @hw: pointer to hardware structure
913 *
914 * Restart autonegotiation and PHY and waits for completion.
915 * This function always returns success, this is nessary since
916 * it is called via a function pointer that could call other
917 * functions that could return an error.
918 **/
919 s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
920 {
921 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
922 bool autoneg = false;
923 ixgbe_link_speed speed;
924
925 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
926
927 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
928 /* Set or unset auto-negotiation 10G advertisement */
929 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
930 MDIO_MMD_AN,
931 &autoneg_reg);
932
933 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
934 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
935 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
936
937 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
938 MDIO_MMD_AN,
939 autoneg_reg);
940 }
941
942 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
943 /* Set or unset auto-negotiation 1G advertisement */
944 hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
945 MDIO_MMD_AN,
946 &autoneg_reg);
947
948 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
949 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
950 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
951
952 hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
953 MDIO_MMD_AN,
954 autoneg_reg);
955 }
956
957 if (speed & IXGBE_LINK_SPEED_100_FULL) {
958 /* Set or unset auto-negotiation 100M advertisement */
959 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
960 MDIO_MMD_AN,
961 &autoneg_reg);
962
963 autoneg_reg &= ~(ADVERTISE_100FULL |
964 ADVERTISE_100HALF);
965 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
966 autoneg_reg |= ADVERTISE_100FULL;
967
968 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
969 MDIO_MMD_AN,
970 autoneg_reg);
971 }
972
973 /* Blocked by MNG FW so don't reset PHY */
974 if (ixgbe_check_reset_blocked(hw))
975 return 0;
976
977 /* Restart PHY autonegotiation and wait for completion */
978 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
979 MDIO_MMD_AN, &autoneg_reg);
980
981 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
982
983 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
984 MDIO_MMD_AN, autoneg_reg);
985 return 0;
986 }
987
988 /**
989 * ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
990 * @hw: pointer to hardware structure
991 * @firmware_version: pointer to the PHY Firmware Version
992 **/
993 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
994 u16 *firmware_version)
995 {
996 s32 status;
997
998 status = hw->phy.ops.read_reg(hw, TNX_FW_REV,
999 MDIO_MMD_VEND1,
1000 firmware_version);
1001
1002 return status;
1003 }
1004
1005 /**
1006 * ixgbe_get_phy_firmware_version_generic - Gets the PHY Firmware Version
1007 * @hw: pointer to hardware structure
1008 * @firmware_version: pointer to the PHY Firmware Version
1009 **/
1010 s32 ixgbe_get_phy_firmware_version_generic(struct ixgbe_hw *hw,
1011 u16 *firmware_version)
1012 {
1013 s32 status;
1014
1015 status = hw->phy.ops.read_reg(hw, AQ_FW_REV,
1016 MDIO_MMD_VEND1,
1017 firmware_version);
1018
1019 return status;
1020 }
1021
1022 /**
1023 * ixgbe_reset_phy_nl - Performs a PHY reset
1024 * @hw: pointer to hardware structure
1025 **/
1026 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1027 {
1028 u16 phy_offset, control, eword, edata, block_crc;
1029 bool end_data = false;
1030 u16 list_offset, data_offset;
1031 u16 phy_data = 0;
1032 s32 ret_val;
1033 u32 i;
1034
1035 /* Blocked by MNG FW so bail */
1036 if (ixgbe_check_reset_blocked(hw))
1037 return 0;
1038
1039 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1040
1041 /* reset the PHY and poll for completion */
1042 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1043 (phy_data | MDIO_CTRL1_RESET));
1044
1045 for (i = 0; i < 100; i++) {
1046 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1047 &phy_data);
1048 if ((phy_data & MDIO_CTRL1_RESET) == 0)
1049 break;
1050 usleep_range(10000, 20000);
1051 }
1052
1053 if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1054 hw_dbg(hw, "PHY reset did not complete.\n");
1055 return IXGBE_ERR_PHY;
1056 }
1057
1058 /* Get init offsets */
1059 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1060 &data_offset);
1061 if (ret_val)
1062 return ret_val;
1063
1064 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1065 data_offset++;
1066 while (!end_data) {
1067 /*
1068 * Read control word from PHY init contents offset
1069 */
1070 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1071 if (ret_val)
1072 goto err_eeprom;
1073 control = (eword & IXGBE_CONTROL_MASK_NL) >>
1074 IXGBE_CONTROL_SHIFT_NL;
1075 edata = eword & IXGBE_DATA_MASK_NL;
1076 switch (control) {
1077 case IXGBE_DELAY_NL:
1078 data_offset++;
1079 hw_dbg(hw, "DELAY: %d MS\n", edata);
1080 usleep_range(edata * 1000, edata * 2000);
1081 break;
1082 case IXGBE_DATA_NL:
1083 hw_dbg(hw, "DATA:\n");
1084 data_offset++;
1085 ret_val = hw->eeprom.ops.read(hw, data_offset++,
1086 &phy_offset);
1087 if (ret_val)
1088 goto err_eeprom;
1089 for (i = 0; i < edata; i++) {
1090 ret_val = hw->eeprom.ops.read(hw, data_offset,
1091 &eword);
1092 if (ret_val)
1093 goto err_eeprom;
1094 hw->phy.ops.write_reg(hw, phy_offset,
1095 MDIO_MMD_PMAPMD, eword);
1096 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1097 phy_offset);
1098 data_offset++;
1099 phy_offset++;
1100 }
1101 break;
1102 case IXGBE_CONTROL_NL:
1103 data_offset++;
1104 hw_dbg(hw, "CONTROL:\n");
1105 if (edata == IXGBE_CONTROL_EOL_NL) {
1106 hw_dbg(hw, "EOL\n");
1107 end_data = true;
1108 } else if (edata == IXGBE_CONTROL_SOL_NL) {
1109 hw_dbg(hw, "SOL\n");
1110 } else {
1111 hw_dbg(hw, "Bad control value\n");
1112 return IXGBE_ERR_PHY;
1113 }
1114 break;
1115 default:
1116 hw_dbg(hw, "Bad control type\n");
1117 return IXGBE_ERR_PHY;
1118 }
1119 }
1120
1121 return ret_val;
1122
1123 err_eeprom:
1124 hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1125 return IXGBE_ERR_PHY;
1126 }
1127
1128 /**
1129 * ixgbe_identify_module_generic - Identifies module type
1130 * @hw: pointer to hardware structure
1131 *
1132 * Determines HW type and calls appropriate function.
1133 **/
1134 s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1135 {
1136 switch (hw->mac.ops.get_media_type(hw)) {
1137 case ixgbe_media_type_fiber:
1138 return ixgbe_identify_sfp_module_generic(hw);
1139 case ixgbe_media_type_fiber_qsfp:
1140 return ixgbe_identify_qsfp_module_generic(hw);
1141 default:
1142 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1143 return IXGBE_ERR_SFP_NOT_PRESENT;
1144 }
1145
1146 return IXGBE_ERR_SFP_NOT_PRESENT;
1147 }
1148
1149 /**
1150 * ixgbe_identify_sfp_module_generic - Identifies SFP modules
1151 * @hw: pointer to hardware structure
1152 *
1153 * Searches for and identifies the SFP module and assigns appropriate PHY type.
1154 **/
1155 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1156 {
1157 struct ixgbe_adapter *adapter = hw->back;
1158 s32 status;
1159 u32 vendor_oui = 0;
1160 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1161 u8 identifier = 0;
1162 u8 comp_codes_1g = 0;
1163 u8 comp_codes_10g = 0;
1164 u8 oui_bytes[3] = {0, 0, 0};
1165 u8 cable_tech = 0;
1166 u8 cable_spec = 0;
1167 u16 enforce_sfp = 0;
1168
1169 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1170 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1171 return IXGBE_ERR_SFP_NOT_PRESENT;
1172 }
1173
1174 /* LAN ID is needed for sfp_type determination */
1175 hw->mac.ops.set_lan_id(hw);
1176
1177 status = hw->phy.ops.read_i2c_eeprom(hw,
1178 IXGBE_SFF_IDENTIFIER,
1179 &identifier);
1180
1181 if (status)
1182 goto err_read_i2c_eeprom;
1183
1184 if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1185 hw->phy.type = ixgbe_phy_sfp_unsupported;
1186 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1187 }
1188 status = hw->phy.ops.read_i2c_eeprom(hw,
1189 IXGBE_SFF_1GBE_COMP_CODES,
1190 &comp_codes_1g);
1191
1192 if (status)
1193 goto err_read_i2c_eeprom;
1194
1195 status = hw->phy.ops.read_i2c_eeprom(hw,
1196 IXGBE_SFF_10GBE_COMP_CODES,
1197 &comp_codes_10g);
1198
1199 if (status)
1200 goto err_read_i2c_eeprom;
1201 status = hw->phy.ops.read_i2c_eeprom(hw,
1202 IXGBE_SFF_CABLE_TECHNOLOGY,
1203 &cable_tech);
1204
1205 if (status)
1206 goto err_read_i2c_eeprom;
1207
1208 /* ID Module
1209 * =========
1210 * 0 SFP_DA_CU
1211 * 1 SFP_SR
1212 * 2 SFP_LR
1213 * 3 SFP_DA_CORE0 - 82599-specific
1214 * 4 SFP_DA_CORE1 - 82599-specific
1215 * 5 SFP_SR/LR_CORE0 - 82599-specific
1216 * 6 SFP_SR/LR_CORE1 - 82599-specific
1217 * 7 SFP_act_lmt_DA_CORE0 - 82599-specific
1218 * 8 SFP_act_lmt_DA_CORE1 - 82599-specific
1219 * 9 SFP_1g_cu_CORE0 - 82599-specific
1220 * 10 SFP_1g_cu_CORE1 - 82599-specific
1221 * 11 SFP_1g_sx_CORE0 - 82599-specific
1222 * 12 SFP_1g_sx_CORE1 - 82599-specific
1223 */
1224 if (hw->mac.type == ixgbe_mac_82598EB) {
1225 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1226 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1227 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1228 hw->phy.sfp_type = ixgbe_sfp_type_sr;
1229 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1230 hw->phy.sfp_type = ixgbe_sfp_type_lr;
1231 else
1232 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1233 } else if (hw->mac.type == ixgbe_mac_82599EB) {
1234 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1235 if (hw->bus.lan_id == 0)
1236 hw->phy.sfp_type =
1237 ixgbe_sfp_type_da_cu_core0;
1238 else
1239 hw->phy.sfp_type =
1240 ixgbe_sfp_type_da_cu_core1;
1241 } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1242 hw->phy.ops.read_i2c_eeprom(
1243 hw, IXGBE_SFF_CABLE_SPEC_COMP,
1244 &cable_spec);
1245 if (cable_spec &
1246 IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1247 if (hw->bus.lan_id == 0)
1248 hw->phy.sfp_type =
1249 ixgbe_sfp_type_da_act_lmt_core0;
1250 else
1251 hw->phy.sfp_type =
1252 ixgbe_sfp_type_da_act_lmt_core1;
1253 } else {
1254 hw->phy.sfp_type =
1255 ixgbe_sfp_type_unknown;
1256 }
1257 } else if (comp_codes_10g &
1258 (IXGBE_SFF_10GBASESR_CAPABLE |
1259 IXGBE_SFF_10GBASELR_CAPABLE)) {
1260 if (hw->bus.lan_id == 0)
1261 hw->phy.sfp_type =
1262 ixgbe_sfp_type_srlr_core0;
1263 else
1264 hw->phy.sfp_type =
1265 ixgbe_sfp_type_srlr_core1;
1266 } else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1267 if (hw->bus.lan_id == 0)
1268 hw->phy.sfp_type =
1269 ixgbe_sfp_type_1g_cu_core0;
1270 else
1271 hw->phy.sfp_type =
1272 ixgbe_sfp_type_1g_cu_core1;
1273 } else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1274 if (hw->bus.lan_id == 0)
1275 hw->phy.sfp_type =
1276 ixgbe_sfp_type_1g_sx_core0;
1277 else
1278 hw->phy.sfp_type =
1279 ixgbe_sfp_type_1g_sx_core1;
1280 } else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1281 if (hw->bus.lan_id == 0)
1282 hw->phy.sfp_type =
1283 ixgbe_sfp_type_1g_lx_core0;
1284 else
1285 hw->phy.sfp_type =
1286 ixgbe_sfp_type_1g_lx_core1;
1287 } else {
1288 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1289 }
1290 }
1291
1292 if (hw->phy.sfp_type != stored_sfp_type)
1293 hw->phy.sfp_setup_needed = true;
1294
1295 /* Determine if the SFP+ PHY is dual speed or not. */
1296 hw->phy.multispeed_fiber = false;
1297 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1298 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1299 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1300 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1301 hw->phy.multispeed_fiber = true;
1302
1303 /* Determine PHY vendor */
1304 if (hw->phy.type != ixgbe_phy_nl) {
1305 hw->phy.id = identifier;
1306 status = hw->phy.ops.read_i2c_eeprom(hw,
1307 IXGBE_SFF_VENDOR_OUI_BYTE0,
1308 &oui_bytes[0]);
1309
1310 if (status != 0)
1311 goto err_read_i2c_eeprom;
1312
1313 status = hw->phy.ops.read_i2c_eeprom(hw,
1314 IXGBE_SFF_VENDOR_OUI_BYTE1,
1315 &oui_bytes[1]);
1316
1317 if (status != 0)
1318 goto err_read_i2c_eeprom;
1319
1320 status = hw->phy.ops.read_i2c_eeprom(hw,
1321 IXGBE_SFF_VENDOR_OUI_BYTE2,
1322 &oui_bytes[2]);
1323
1324 if (status != 0)
1325 goto err_read_i2c_eeprom;
1326
1327 vendor_oui =
1328 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1329 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1330 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1331
1332 switch (vendor_oui) {
1333 case IXGBE_SFF_VENDOR_OUI_TYCO:
1334 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1335 hw->phy.type =
1336 ixgbe_phy_sfp_passive_tyco;
1337 break;
1338 case IXGBE_SFF_VENDOR_OUI_FTL:
1339 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1340 hw->phy.type = ixgbe_phy_sfp_ftl_active;
1341 else
1342 hw->phy.type = ixgbe_phy_sfp_ftl;
1343 break;
1344 case IXGBE_SFF_VENDOR_OUI_AVAGO:
1345 hw->phy.type = ixgbe_phy_sfp_avago;
1346 break;
1347 case IXGBE_SFF_VENDOR_OUI_INTEL:
1348 hw->phy.type = ixgbe_phy_sfp_intel;
1349 break;
1350 default:
1351 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1352 hw->phy.type =
1353 ixgbe_phy_sfp_passive_unknown;
1354 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1355 hw->phy.type =
1356 ixgbe_phy_sfp_active_unknown;
1357 else
1358 hw->phy.type = ixgbe_phy_sfp_unknown;
1359 break;
1360 }
1361 }
1362
1363 /* Allow any DA cable vendor */
1364 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1365 IXGBE_SFF_DA_ACTIVE_CABLE))
1366 return 0;
1367
1368 /* Verify supported 1G SFP modules */
1369 if (comp_codes_10g == 0 &&
1370 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1371 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1372 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1373 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1374 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1375 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1376 hw->phy.type = ixgbe_phy_sfp_unsupported;
1377 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1378 }
1379
1380 /* Anything else 82598-based is supported */
1381 if (hw->mac.type == ixgbe_mac_82598EB)
1382 return 0;
1383
1384 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1385 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1386 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1387 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1388 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1389 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1390 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1391 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1392 /* Make sure we're a supported PHY type */
1393 if (hw->phy.type == ixgbe_phy_sfp_intel)
1394 return 0;
1395 if (hw->allow_unsupported_sfp) {
1396 e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1397 return 0;
1398 }
1399 hw_dbg(hw, "SFP+ module not supported\n");
1400 hw->phy.type = ixgbe_phy_sfp_unsupported;
1401 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1402 }
1403 return 0;
1404
1405 err_read_i2c_eeprom:
1406 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1407 if (hw->phy.type != ixgbe_phy_nl) {
1408 hw->phy.id = 0;
1409 hw->phy.type = ixgbe_phy_unknown;
1410 }
1411 return IXGBE_ERR_SFP_NOT_PRESENT;
1412 }
1413
1414 /**
1415 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1416 * @hw: pointer to hardware structure
1417 *
1418 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1419 **/
1420 static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1421 {
1422 struct ixgbe_adapter *adapter = hw->back;
1423 s32 status;
1424 u32 vendor_oui = 0;
1425 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1426 u8 identifier = 0;
1427 u8 comp_codes_1g = 0;
1428 u8 comp_codes_10g = 0;
1429 u8 oui_bytes[3] = {0, 0, 0};
1430 u16 enforce_sfp = 0;
1431 u8 connector = 0;
1432 u8 cable_length = 0;
1433 u8 device_tech = 0;
1434 bool active_cable = false;
1435
1436 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1437 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1438 return IXGBE_ERR_SFP_NOT_PRESENT;
1439 }
1440
1441 /* LAN ID is needed for sfp_type determination */
1442 hw->mac.ops.set_lan_id(hw);
1443
1444 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1445 &identifier);
1446
1447 if (status != 0)
1448 goto err_read_i2c_eeprom;
1449
1450 if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1451 hw->phy.type = ixgbe_phy_sfp_unsupported;
1452 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1453 }
1454
1455 hw->phy.id = identifier;
1456
1457 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1458 &comp_codes_10g);
1459
1460 if (status != 0)
1461 goto err_read_i2c_eeprom;
1462
1463 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1464 &comp_codes_1g);
1465
1466 if (status != 0)
1467 goto err_read_i2c_eeprom;
1468
1469 if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1470 hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1471 if (hw->bus.lan_id == 0)
1472 hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1473 else
1474 hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1475 } else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1476 IXGBE_SFF_10GBASELR_CAPABLE)) {
1477 if (hw->bus.lan_id == 0)
1478 hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1479 else
1480 hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1481 } else {
1482 if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1483 active_cable = true;
1484
1485 if (!active_cable) {
1486 /* check for active DA cables that pre-date
1487 * SFF-8436 v3.6
1488 */
1489 hw->phy.ops.read_i2c_eeprom(hw,
1490 IXGBE_SFF_QSFP_CONNECTOR,
1491 &connector);
1492
1493 hw->phy.ops.read_i2c_eeprom(hw,
1494 IXGBE_SFF_QSFP_CABLE_LENGTH,
1495 &cable_length);
1496
1497 hw->phy.ops.read_i2c_eeprom(hw,
1498 IXGBE_SFF_QSFP_DEVICE_TECH,
1499 &device_tech);
1500
1501 if ((connector ==
1502 IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1503 (cable_length > 0) &&
1504 ((device_tech >> 4) ==
1505 IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1506 active_cable = true;
1507 }
1508
1509 if (active_cable) {
1510 hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1511 if (hw->bus.lan_id == 0)
1512 hw->phy.sfp_type =
1513 ixgbe_sfp_type_da_act_lmt_core0;
1514 else
1515 hw->phy.sfp_type =
1516 ixgbe_sfp_type_da_act_lmt_core1;
1517 } else {
1518 /* unsupported module type */
1519 hw->phy.type = ixgbe_phy_sfp_unsupported;
1520 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1521 }
1522 }
1523
1524 if (hw->phy.sfp_type != stored_sfp_type)
1525 hw->phy.sfp_setup_needed = true;
1526
1527 /* Determine if the QSFP+ PHY is dual speed or not. */
1528 hw->phy.multispeed_fiber = false;
1529 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1530 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1531 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1532 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1533 hw->phy.multispeed_fiber = true;
1534
1535 /* Determine PHY vendor for optical modules */
1536 if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1537 IXGBE_SFF_10GBASELR_CAPABLE)) {
1538 status = hw->phy.ops.read_i2c_eeprom(hw,
1539 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1540 &oui_bytes[0]);
1541
1542 if (status != 0)
1543 goto err_read_i2c_eeprom;
1544
1545 status = hw->phy.ops.read_i2c_eeprom(hw,
1546 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1547 &oui_bytes[1]);
1548
1549 if (status != 0)
1550 goto err_read_i2c_eeprom;
1551
1552 status = hw->phy.ops.read_i2c_eeprom(hw,
1553 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1554 &oui_bytes[2]);
1555
1556 if (status != 0)
1557 goto err_read_i2c_eeprom;
1558
1559 vendor_oui =
1560 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1561 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1562 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1563
1564 if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1565 hw->phy.type = ixgbe_phy_qsfp_intel;
1566 else
1567 hw->phy.type = ixgbe_phy_qsfp_unknown;
1568
1569 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1570 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1571 /* Make sure we're a supported PHY type */
1572 if (hw->phy.type == ixgbe_phy_qsfp_intel)
1573 return 0;
1574 if (hw->allow_unsupported_sfp) {
1575 e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1576 return 0;
1577 }
1578 hw_dbg(hw, "QSFP module not supported\n");
1579 hw->phy.type = ixgbe_phy_sfp_unsupported;
1580 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1581 }
1582 return 0;
1583 }
1584 return 0;
1585
1586 err_read_i2c_eeprom:
1587 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1588 hw->phy.id = 0;
1589 hw->phy.type = ixgbe_phy_unknown;
1590
1591 return IXGBE_ERR_SFP_NOT_PRESENT;
1592 }
1593
1594 /**
1595 * ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1596 * @hw: pointer to hardware structure
1597 * @list_offset: offset to the SFP ID list
1598 * @data_offset: offset to the SFP data block
1599 *
1600 * Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1601 * so it returns the offsets to the phy init sequence block.
1602 **/
1603 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1604 u16 *list_offset,
1605 u16 *data_offset)
1606 {
1607 u16 sfp_id;
1608 u16 sfp_type = hw->phy.sfp_type;
1609
1610 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1611 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1612
1613 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1614 return IXGBE_ERR_SFP_NOT_PRESENT;
1615
1616 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1617 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1618 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1619
1620 /*
1621 * Limiting active cables and 1G Phys must be initialized as
1622 * SR modules
1623 */
1624 if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1625 sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1626 sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1627 sfp_type == ixgbe_sfp_type_1g_sx_core0)
1628 sfp_type = ixgbe_sfp_type_srlr_core0;
1629 else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1630 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1631 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1632 sfp_type == ixgbe_sfp_type_1g_sx_core1)
1633 sfp_type = ixgbe_sfp_type_srlr_core1;
1634
1635 /* Read offset to PHY init contents */
1636 if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
1637 hw_err(hw, "eeprom read at %d failed\n",
1638 IXGBE_PHY_INIT_OFFSET_NL);
1639 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1640 }
1641
1642 if ((!*list_offset) || (*list_offset == 0xFFFF))
1643 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1644
1645 /* Shift offset to first ID word */
1646 (*list_offset)++;
1647
1648 /*
1649 * Find the matching SFP ID in the EEPROM
1650 * and program the init sequence
1651 */
1652 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1653 goto err_phy;
1654
1655 while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1656 if (sfp_id == sfp_type) {
1657 (*list_offset)++;
1658 if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
1659 goto err_phy;
1660 if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1661 hw_dbg(hw, "SFP+ module not supported\n");
1662 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1663 } else {
1664 break;
1665 }
1666 } else {
1667 (*list_offset) += 2;
1668 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1669 goto err_phy;
1670 }
1671 }
1672
1673 if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1674 hw_dbg(hw, "No matching SFP+ module found\n");
1675 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1676 }
1677
1678 return 0;
1679
1680 err_phy:
1681 hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
1682 return IXGBE_ERR_PHY;
1683 }
1684
1685 /**
1686 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1687 * @hw: pointer to hardware structure
1688 * @byte_offset: EEPROM byte offset to read
1689 * @eeprom_data: value read
1690 *
1691 * Performs byte read operation to SFP module's EEPROM over I2C interface.
1692 **/
1693 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1694 u8 *eeprom_data)
1695 {
1696 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1697 IXGBE_I2C_EEPROM_DEV_ADDR,
1698 eeprom_data);
1699 }
1700
1701 /**
1702 * ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
1703 * @hw: pointer to hardware structure
1704 * @byte_offset: byte offset at address 0xA2
1705 * @eeprom_data: value read
1706 *
1707 * Performs byte read operation to SFP module's SFF-8472 data over I2C
1708 **/
1709 s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
1710 u8 *sff8472_data)
1711 {
1712 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1713 IXGBE_I2C_EEPROM_DEV_ADDR2,
1714 sff8472_data);
1715 }
1716
1717 /**
1718 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1719 * @hw: pointer to hardware structure
1720 * @byte_offset: EEPROM byte offset to write
1721 * @eeprom_data: value to write
1722 *
1723 * Performs byte write operation to SFP module's EEPROM over I2C interface.
1724 **/
1725 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1726 u8 eeprom_data)
1727 {
1728 return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1729 IXGBE_I2C_EEPROM_DEV_ADDR,
1730 eeprom_data);
1731 }
1732
1733 /**
1734 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
1735 * @hw: pointer to hardware structure
1736 * @offset: eeprom offset to be read
1737 * @addr: I2C address to be read
1738 */
1739 static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
1740 {
1741 if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
1742 offset == IXGBE_SFF_IDENTIFIER &&
1743 hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1744 return true;
1745 return false;
1746 }
1747
1748 /**
1749 * ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
1750 * @hw: pointer to hardware structure
1751 * @byte_offset: byte offset to read
1752 * @data: value read
1753 * @lock: true if to take and release semaphore
1754 *
1755 * Performs byte read operation to SFP module's EEPROM over I2C interface at
1756 * a specified device address.
1757 */
1758 static s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
1759 u8 dev_addr, u8 *data, bool lock)
1760 {
1761 s32 status;
1762 u32 max_retry = 10;
1763 u32 retry = 0;
1764 u32 swfw_mask = hw->phy.phy_semaphore_mask;
1765 bool nack = true;
1766
1767 if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
1768 max_retry = IXGBE_SFP_DETECT_RETRIES;
1769
1770 *data = 0;
1771
1772 do {
1773 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
1774 return IXGBE_ERR_SWFW_SYNC;
1775
1776 ixgbe_i2c_start(hw);
1777
1778 /* Device Address and write indication */
1779 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1780 if (status != 0)
1781 goto fail;
1782
1783 status = ixgbe_get_i2c_ack(hw);
1784 if (status != 0)
1785 goto fail;
1786
1787 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1788 if (status != 0)
1789 goto fail;
1790
1791 status = ixgbe_get_i2c_ack(hw);
1792 if (status != 0)
1793 goto fail;
1794
1795 ixgbe_i2c_start(hw);
1796
1797 /* Device Address and read indication */
1798 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
1799 if (status != 0)
1800 goto fail;
1801
1802 status = ixgbe_get_i2c_ack(hw);
1803 if (status != 0)
1804 goto fail;
1805
1806 status = ixgbe_clock_in_i2c_byte(hw, data);
1807 if (status != 0)
1808 goto fail;
1809
1810 status = ixgbe_clock_out_i2c_bit(hw, nack);
1811 if (status != 0)
1812 goto fail;
1813
1814 ixgbe_i2c_stop(hw);
1815 if (lock)
1816 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1817 return 0;
1818
1819 fail:
1820 ixgbe_i2c_bus_clear(hw);
1821 if (lock) {
1822 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1823 msleep(100);
1824 }
1825 retry++;
1826 if (retry < max_retry)
1827 hw_dbg(hw, "I2C byte read error - Retrying.\n");
1828 else
1829 hw_dbg(hw, "I2C byte read error.\n");
1830
1831 } while (retry < max_retry);
1832
1833 return status;
1834 }
1835
1836 /**
1837 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
1838 * @hw: pointer to hardware structure
1839 * @byte_offset: byte offset to read
1840 * @data: value read
1841 *
1842 * Performs byte read operation to SFP module's EEPROM over I2C interface at
1843 * a specified device address.
1844 */
1845 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1846 u8 dev_addr, u8 *data)
1847 {
1848 return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1849 data, true);
1850 }
1851
1852 /**
1853 * ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
1854 * @hw: pointer to hardware structure
1855 * @byte_offset: byte offset to read
1856 * @data: value read
1857 *
1858 * Performs byte read operation to SFP module's EEPROM over I2C interface at
1859 * a specified device address.
1860 */
1861 s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
1862 u8 dev_addr, u8 *data)
1863 {
1864 return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1865 data, false);
1866 }
1867
1868 /**
1869 * ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
1870 * @hw: pointer to hardware structure
1871 * @byte_offset: byte offset to write
1872 * @data: value to write
1873 * @lock: true if to take and release semaphore
1874 *
1875 * Performs byte write operation to SFP module's EEPROM over I2C interface at
1876 * a specified device address.
1877 */
1878 static s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
1879 u8 dev_addr, u8 data, bool lock)
1880 {
1881 s32 status;
1882 u32 max_retry = 1;
1883 u32 retry = 0;
1884 u32 swfw_mask = hw->phy.phy_semaphore_mask;
1885
1886 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
1887 return IXGBE_ERR_SWFW_SYNC;
1888
1889 do {
1890 ixgbe_i2c_start(hw);
1891
1892 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1893 if (status != 0)
1894 goto fail;
1895
1896 status = ixgbe_get_i2c_ack(hw);
1897 if (status != 0)
1898 goto fail;
1899
1900 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1901 if (status != 0)
1902 goto fail;
1903
1904 status = ixgbe_get_i2c_ack(hw);
1905 if (status != 0)
1906 goto fail;
1907
1908 status = ixgbe_clock_out_i2c_byte(hw, data);
1909 if (status != 0)
1910 goto fail;
1911
1912 status = ixgbe_get_i2c_ack(hw);
1913 if (status != 0)
1914 goto fail;
1915
1916 ixgbe_i2c_stop(hw);
1917 if (lock)
1918 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1919 return 0;
1920
1921 fail:
1922 ixgbe_i2c_bus_clear(hw);
1923 retry++;
1924 if (retry < max_retry)
1925 hw_dbg(hw, "I2C byte write error - Retrying.\n");
1926 else
1927 hw_dbg(hw, "I2C byte write error.\n");
1928 } while (retry < max_retry);
1929
1930 if (lock)
1931 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1932
1933 return status;
1934 }
1935
1936 /**
1937 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
1938 * @hw: pointer to hardware structure
1939 * @byte_offset: byte offset to write
1940 * @data: value to write
1941 *
1942 * Performs byte write operation to SFP module's EEPROM over I2C interface at
1943 * a specified device address.
1944 */
1945 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1946 u8 dev_addr, u8 data)
1947 {
1948 return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1949 data, true);
1950 }
1951
1952 /**
1953 * ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
1954 * @hw: pointer to hardware structure
1955 * @byte_offset: byte offset to write
1956 * @data: value to write
1957 *
1958 * Performs byte write operation to SFP module's EEPROM over I2C interface at
1959 * a specified device address.
1960 */
1961 s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
1962 u8 dev_addr, u8 data)
1963 {
1964 return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1965 data, false);
1966 }
1967
1968 /**
1969 * ixgbe_i2c_start - Sets I2C start condition
1970 * @hw: pointer to hardware structure
1971 *
1972 * Sets I2C start condition (High -> Low on SDA while SCL is High)
1973 * Set bit-bang mode on X550 hardware.
1974 **/
1975 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
1976 {
1977 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
1978
1979 i2cctl |= IXGBE_I2C_BB_EN(hw);
1980
1981 /* Start condition must begin with data and clock high */
1982 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1983 ixgbe_raise_i2c_clk(hw, &i2cctl);
1984
1985 /* Setup time for start condition (4.7us) */
1986 udelay(IXGBE_I2C_T_SU_STA);
1987
1988 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1989
1990 /* Hold time for start condition (4us) */
1991 udelay(IXGBE_I2C_T_HD_STA);
1992
1993 ixgbe_lower_i2c_clk(hw, &i2cctl);
1994
1995 /* Minimum low period of clock is 4.7 us */
1996 udelay(IXGBE_I2C_T_LOW);
1997
1998 }
1999
2000 /**
2001 * ixgbe_i2c_stop - Sets I2C stop condition
2002 * @hw: pointer to hardware structure
2003 *
2004 * Sets I2C stop condition (Low -> High on SDA while SCL is High)
2005 * Disables bit-bang mode and negates data output enable on X550
2006 * hardware.
2007 **/
2008 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2009 {
2010 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2011 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2012 u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2013 u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2014
2015 /* Stop condition must begin with data low and clock high */
2016 ixgbe_set_i2c_data(hw, &i2cctl, 0);
2017 ixgbe_raise_i2c_clk(hw, &i2cctl);
2018
2019 /* Setup time for stop condition (4us) */
2020 udelay(IXGBE_I2C_T_SU_STO);
2021
2022 ixgbe_set_i2c_data(hw, &i2cctl, 1);
2023
2024 /* bus free time between stop and start (4.7us)*/
2025 udelay(IXGBE_I2C_T_BUF);
2026
2027 if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2028 i2cctl &= ~bb_en_bit;
2029 i2cctl |= data_oe_bit | clk_oe_bit;
2030 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2031 IXGBE_WRITE_FLUSH(hw);
2032 }
2033 }
2034
2035 /**
2036 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2037 * @hw: pointer to hardware structure
2038 * @data: data byte to clock in
2039 *
2040 * Clocks in one byte data via I2C data/clock
2041 **/
2042 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2043 {
2044 s32 i;
2045 bool bit = false;
2046
2047 *data = 0;
2048 for (i = 7; i >= 0; i--) {
2049 ixgbe_clock_in_i2c_bit(hw, &bit);
2050 *data |= bit << i;
2051 }
2052
2053 return 0;
2054 }
2055
2056 /**
2057 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2058 * @hw: pointer to hardware structure
2059 * @data: data byte clocked out
2060 *
2061 * Clocks out one byte data via I2C data/clock
2062 **/
2063 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2064 {
2065 s32 status;
2066 s32 i;
2067 u32 i2cctl;
2068 bool bit = false;
2069
2070 for (i = 7; i >= 0; i--) {
2071 bit = (data >> i) & 0x1;
2072 status = ixgbe_clock_out_i2c_bit(hw, bit);
2073
2074 if (status != 0)
2075 break;
2076 }
2077
2078 /* Release SDA line (set high) */
2079 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2080 i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2081 i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2082 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2083 IXGBE_WRITE_FLUSH(hw);
2084
2085 return status;
2086 }
2087
2088 /**
2089 * ixgbe_get_i2c_ack - Polls for I2C ACK
2090 * @hw: pointer to hardware structure
2091 *
2092 * Clocks in/out one bit via I2C data/clock
2093 **/
2094 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2095 {
2096 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2097 s32 status = 0;
2098 u32 i = 0;
2099 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2100 u32 timeout = 10;
2101 bool ack = true;
2102
2103 if (data_oe_bit) {
2104 i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2105 i2cctl |= data_oe_bit;
2106 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2107 IXGBE_WRITE_FLUSH(hw);
2108 }
2109 ixgbe_raise_i2c_clk(hw, &i2cctl);
2110
2111 /* Minimum high period of clock is 4us */
2112 udelay(IXGBE_I2C_T_HIGH);
2113
2114 /* Poll for ACK. Note that ACK in I2C spec is
2115 * transition from 1 to 0 */
2116 for (i = 0; i < timeout; i++) {
2117 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2118 ack = ixgbe_get_i2c_data(hw, &i2cctl);
2119
2120 udelay(1);
2121 if (ack == 0)
2122 break;
2123 }
2124
2125 if (ack == 1) {
2126 hw_dbg(hw, "I2C ack was not received.\n");
2127 status = IXGBE_ERR_I2C;
2128 }
2129
2130 ixgbe_lower_i2c_clk(hw, &i2cctl);
2131
2132 /* Minimum low period of clock is 4.7 us */
2133 udelay(IXGBE_I2C_T_LOW);
2134
2135 return status;
2136 }
2137
2138 /**
2139 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2140 * @hw: pointer to hardware structure
2141 * @data: read data value
2142 *
2143 * Clocks in one bit via I2C data/clock
2144 **/
2145 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2146 {
2147 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2148 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2149
2150 if (data_oe_bit) {
2151 i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2152 i2cctl |= data_oe_bit;
2153 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2154 IXGBE_WRITE_FLUSH(hw);
2155 }
2156 ixgbe_raise_i2c_clk(hw, &i2cctl);
2157
2158 /* Minimum high period of clock is 4us */
2159 udelay(IXGBE_I2C_T_HIGH);
2160
2161 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2162 *data = ixgbe_get_i2c_data(hw, &i2cctl);
2163
2164 ixgbe_lower_i2c_clk(hw, &i2cctl);
2165
2166 /* Minimum low period of clock is 4.7 us */
2167 udelay(IXGBE_I2C_T_LOW);
2168
2169 return 0;
2170 }
2171
2172 /**
2173 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2174 * @hw: pointer to hardware structure
2175 * @data: data value to write
2176 *
2177 * Clocks out one bit via I2C data/clock
2178 **/
2179 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2180 {
2181 s32 status;
2182 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2183
2184 status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2185 if (status == 0) {
2186 ixgbe_raise_i2c_clk(hw, &i2cctl);
2187
2188 /* Minimum high period of clock is 4us */
2189 udelay(IXGBE_I2C_T_HIGH);
2190
2191 ixgbe_lower_i2c_clk(hw, &i2cctl);
2192
2193 /* Minimum low period of clock is 4.7 us.
2194 * This also takes care of the data hold time.
2195 */
2196 udelay(IXGBE_I2C_T_LOW);
2197 } else {
2198 hw_dbg(hw, "I2C data was not set to %X\n", data);
2199 return IXGBE_ERR_I2C;
2200 }
2201
2202 return 0;
2203 }
2204 /**
2205 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2206 * @hw: pointer to hardware structure
2207 * @i2cctl: Current value of I2CCTL register
2208 *
2209 * Raises the I2C clock line '0'->'1'
2210 * Negates the I2C clock output enable on X550 hardware.
2211 **/
2212 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2213 {
2214 u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2215 u32 i = 0;
2216 u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2217 u32 i2cctl_r = 0;
2218
2219 if (clk_oe_bit) {
2220 *i2cctl |= clk_oe_bit;
2221 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2222 }
2223
2224 for (i = 0; i < timeout; i++) {
2225 *i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2226 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2227 IXGBE_WRITE_FLUSH(hw);
2228 /* SCL rise time (1000ns) */
2229 udelay(IXGBE_I2C_T_RISE);
2230
2231 i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2232 if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2233 break;
2234 }
2235 }
2236
2237 /**
2238 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2239 * @hw: pointer to hardware structure
2240 * @i2cctl: Current value of I2CCTL register
2241 *
2242 * Lowers the I2C clock line '1'->'0'
2243 * Asserts the I2C clock output enable on X550 hardware.
2244 **/
2245 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2246 {
2247
2248 *i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2249 *i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2250
2251 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2252 IXGBE_WRITE_FLUSH(hw);
2253
2254 /* SCL fall time (300ns) */
2255 udelay(IXGBE_I2C_T_FALL);
2256 }
2257
2258 /**
2259 * ixgbe_set_i2c_data - Sets the I2C data bit
2260 * @hw: pointer to hardware structure
2261 * @i2cctl: Current value of I2CCTL register
2262 * @data: I2C data value (0 or 1) to set
2263 *
2264 * Sets the I2C data bit
2265 * Asserts the I2C data output enable on X550 hardware.
2266 **/
2267 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2268 {
2269 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2270
2271 if (data)
2272 *i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2273 else
2274 *i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2275 *i2cctl &= ~data_oe_bit;
2276
2277 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2278 IXGBE_WRITE_FLUSH(hw);
2279
2280 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2281 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2282
2283 if (!data) /* Can't verify data in this case */
2284 return 0;
2285 if (data_oe_bit) {
2286 *i2cctl |= data_oe_bit;
2287 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2288 IXGBE_WRITE_FLUSH(hw);
2289 }
2290
2291 /* Verify data was set correctly */
2292 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2293 if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2294 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2295 return IXGBE_ERR_I2C;
2296 }
2297
2298 return 0;
2299 }
2300
2301 /**
2302 * ixgbe_get_i2c_data - Reads the I2C SDA data bit
2303 * @hw: pointer to hardware structure
2304 * @i2cctl: Current value of I2CCTL register
2305 *
2306 * Returns the I2C data bit value
2307 * Negates the I2C data output enable on X550 hardware.
2308 **/
2309 static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2310 {
2311 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2312
2313 if (data_oe_bit) {
2314 *i2cctl |= data_oe_bit;
2315 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2316 IXGBE_WRITE_FLUSH(hw);
2317 udelay(IXGBE_I2C_T_FALL);
2318 }
2319
2320 if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2321 return true;
2322 return false;
2323 }
2324
2325 /**
2326 * ixgbe_i2c_bus_clear - Clears the I2C bus
2327 * @hw: pointer to hardware structure
2328 *
2329 * Clears the I2C bus by sending nine clock pulses.
2330 * Used when data line is stuck low.
2331 **/
2332 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2333 {
2334 u32 i2cctl;
2335 u32 i;
2336
2337 ixgbe_i2c_start(hw);
2338 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2339
2340 ixgbe_set_i2c_data(hw, &i2cctl, 1);
2341
2342 for (i = 0; i < 9; i++) {
2343 ixgbe_raise_i2c_clk(hw, &i2cctl);
2344
2345 /* Min high period of clock is 4us */
2346 udelay(IXGBE_I2C_T_HIGH);
2347
2348 ixgbe_lower_i2c_clk(hw, &i2cctl);
2349
2350 /* Min low period of clock is 4.7us*/
2351 udelay(IXGBE_I2C_T_LOW);
2352 }
2353
2354 ixgbe_i2c_start(hw);
2355
2356 /* Put the i2c bus back to default state */
2357 ixgbe_i2c_stop(hw);
2358 }
2359
2360 /**
2361 * ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2362 * @hw: pointer to hardware structure
2363 *
2364 * Checks if the LASI temp alarm status was triggered due to overtemp
2365 **/
2366 s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2367 {
2368 u16 phy_data = 0;
2369
2370 if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2371 return 0;
2372
2373 /* Check that the LASI temp alarm status was triggered */
2374 hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2375 MDIO_MMD_PMAPMD, &phy_data);
2376
2377 if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
2378 return 0;
2379
2380 return IXGBE_ERR_OVERTEMP;
2381 }
2382
2383 /** ixgbe_set_copper_phy_power - Control power for copper phy
2384 * @hw: pointer to hardware structure
2385 * @on: true for on, false for off
2386 **/
2387 s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2388 {
2389 u32 status;
2390 u16 reg;
2391
2392 /* Bail if we don't have copper phy */
2393 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2394 return 0;
2395
2396 status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_VENDOR_SPECIFIC_1_CONTROL,
2397 IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
2398 &reg);
2399 if (status)
2400 return status;
2401
2402 if (on) {
2403 reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2404 } else {
2405 if (ixgbe_check_reset_blocked(hw))
2406 return 0;
2407 reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2408 }
2409
2410 status = hw->phy.ops.write_reg(hw, IXGBE_MDIO_VENDOR_SPECIFIC_1_CONTROL,
2411 IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
2412 reg);
2413 return status;
2414 }
This page took 0.117595 seconds and 5 git commands to generate.