Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/net...
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_ptp.c
1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27 #include "ixgbe.h"
28 #include <linux/export.h>
29 #include <linux/ptp_classify.h>
30
31 /*
32 * The 82599 and the X540 do not have true 64bit nanosecond scale
33 * counter registers. Instead, SYSTIME is defined by a fixed point
34 * system which allows the user to define the scale counter increment
35 * value at every level change of the oscillator driving the SYSTIME
36 * value. For both devices the TIMINCA:IV field defines this
37 * increment. On the X540 device, 31 bits are provided. However on the
38 * 82599 only provides 24 bits. The time unit is determined by the
39 * clock frequency of the oscillator in combination with the TIMINCA
40 * register. When these devices link at 10Gb the oscillator has a
41 * period of 6.4ns. In order to convert the scale counter into
42 * nanoseconds the cyclecounter and timecounter structures are
43 * used. The SYSTIME registers need to be converted to ns values by use
44 * of only a right shift (division by power of 2). The following math
45 * determines the largest incvalue that will fit into the available
46 * bits in the TIMINCA register.
47 *
48 * PeriodWidth: Number of bits to store the clock period
49 * MaxWidth: The maximum width value of the TIMINCA register
50 * Period: The clock period for the oscillator
51 * round(): discard the fractional portion of the calculation
52 *
53 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
54 *
55 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
56 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
57 *
58 * The period also changes based on the link speed:
59 * At 10Gb link or no link, the period remains the same.
60 * At 1Gb link, the period is multiplied by 10. (64ns)
61 * At 100Mb link, the period is multiplied by 100. (640ns)
62 *
63 * The calculated value allows us to right shift the SYSTIME register
64 * value in order to quickly convert it into a nanosecond clock,
65 * while allowing for the maximum possible adjustment value.
66 *
67 * These diagrams are only for the 10Gb link period
68 *
69 * SYSTIMEH SYSTIMEL
70 * +--------------+ +--------------+
71 * X540 | 32 | | 1 | 3 | 28 |
72 * *--------------+ +--------------+
73 * \________ 36 bits ______/ fract
74 *
75 * +--------------+ +--------------+
76 * 82599 | 32 | | 8 | 3 | 21 |
77 * *--------------+ +--------------+
78 * \________ 43 bits ______/ fract
79 *
80 * The 36 bit X540 SYSTIME overflows every
81 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
82 *
83 * The 43 bit 82599 SYSTIME overflows every
84 * 2^43 * 10^-9 / 3600 = 2.4 hours
85 */
86 #define IXGBE_INCVAL_10GB 0x66666666
87 #define IXGBE_INCVAL_1GB 0x40000000
88 #define IXGBE_INCVAL_100 0x50000000
89
90 #define IXGBE_INCVAL_SHIFT_10GB 28
91 #define IXGBE_INCVAL_SHIFT_1GB 24
92 #define IXGBE_INCVAL_SHIFT_100 21
93
94 #define IXGBE_INCVAL_SHIFT_82599 7
95 #define IXGBE_INCPER_SHIFT_82599 24
96 #define IXGBE_MAX_TIMEADJ_VALUE 0x7FFFFFFFFFFFFFFFULL
97
98 #define IXGBE_OVERFLOW_PERIOD (HZ * 30)
99
100 #ifndef NSECS_PER_SEC
101 #define NSECS_PER_SEC 1000000000ULL
102 #endif
103
104 static struct sock_filter ptp_filter[] = {
105 PTP_FILTER
106 };
107
108 /**
109 * ixgbe_ptp_setup_sdp
110 * @hw: the hardware private structure
111 *
112 * this function enables or disables the clock out feature on SDP0 for
113 * the X540 device. It will create a 1second periodic output that can
114 * be used as the PPS (via an interrupt).
115 *
116 * It calculates when the systime will be on an exact second, and then
117 * aligns the start of the PPS signal to that value. The shift is
118 * necessary because it can change based on the link speed.
119 */
120 static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter)
121 {
122 struct ixgbe_hw *hw = &adapter->hw;
123 int shift = adapter->cc.shift;
124 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
125 u64 ns = 0, clock_edge = 0;
126
127 if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) &&
128 (hw->mac.type == ixgbe_mac_X540)) {
129
130 /* disable the pin first */
131 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
132 IXGBE_WRITE_FLUSH(hw);
133
134 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
135
136 /*
137 * enable the SDP0 pin as output, and connected to the
138 * native function for Timesync (ClockOut)
139 */
140 esdp |= (IXGBE_ESDP_SDP0_DIR |
141 IXGBE_ESDP_SDP0_NATIVE);
142
143 /*
144 * enable the Clock Out feature on SDP0, and allow
145 * interrupts to occur when the pin changes
146 */
147 tsauxc = (IXGBE_TSAUXC_EN_CLK |
148 IXGBE_TSAUXC_SYNCLK |
149 IXGBE_TSAUXC_SDP0_INT);
150
151 /* clock period (or pulse length) */
152 clktiml = (u32)(NSECS_PER_SEC << shift);
153 clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);
154
155 /*
156 * Account for the cyclecounter wrap-around value by
157 * using the converted ns value of the current time to
158 * check for when the next aligned second would occur.
159 */
160 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
161 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
162 ns = timecounter_cyc2time(&adapter->tc, clock_edge);
163
164 div_u64_rem(ns, NSECS_PER_SEC, &rem);
165 clock_edge += ((NSECS_PER_SEC - (u64)rem) << shift);
166
167 /* specify the initial clock start time */
168 trgttiml = (u32)clock_edge;
169 trgttimh = (u32)(clock_edge >> 32);
170
171 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
172 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
173 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
174 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
175
176 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
177 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
178 } else {
179 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
180 }
181
182 IXGBE_WRITE_FLUSH(hw);
183 }
184
185 /**
186 * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
187 * @cc: the cyclecounter structure
188 *
189 * this function reads the cyclecounter registers and is called by the
190 * cyclecounter structure used to construct a ns counter from the
191 * arbitrary fixed point registers
192 */
193 static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
194 {
195 struct ixgbe_adapter *adapter =
196 container_of(cc, struct ixgbe_adapter, cc);
197 struct ixgbe_hw *hw = &adapter->hw;
198 u64 stamp = 0;
199
200 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
201 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
202
203 return stamp;
204 }
205
206 /**
207 * ixgbe_ptp_adjfreq
208 * @ptp: the ptp clock structure
209 * @ppb: parts per billion adjustment from base
210 *
211 * adjust the frequency of the ptp cycle counter by the
212 * indicated ppb from the base frequency.
213 */
214 static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
215 {
216 struct ixgbe_adapter *adapter =
217 container_of(ptp, struct ixgbe_adapter, ptp_caps);
218 struct ixgbe_hw *hw = &adapter->hw;
219 u64 freq;
220 u32 diff, incval;
221 int neg_adj = 0;
222
223 if (ppb < 0) {
224 neg_adj = 1;
225 ppb = -ppb;
226 }
227
228 smp_mb();
229 incval = ACCESS_ONCE(adapter->base_incval);
230
231 freq = incval;
232 freq *= ppb;
233 diff = div_u64(freq, 1000000000ULL);
234
235 incval = neg_adj ? (incval - diff) : (incval + diff);
236
237 switch (hw->mac.type) {
238 case ixgbe_mac_X540:
239 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
240 break;
241 case ixgbe_mac_82599EB:
242 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
243 (1 << IXGBE_INCPER_SHIFT_82599) |
244 incval);
245 break;
246 default:
247 break;
248 }
249
250 return 0;
251 }
252
253 /**
254 * ixgbe_ptp_adjtime
255 * @ptp: the ptp clock structure
256 * @delta: offset to adjust the cycle counter by
257 *
258 * adjust the timer by resetting the timecounter structure.
259 */
260 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
261 {
262 struct ixgbe_adapter *adapter =
263 container_of(ptp, struct ixgbe_adapter, ptp_caps);
264 unsigned long flags;
265 u64 now;
266
267 spin_lock_irqsave(&adapter->tmreg_lock, flags);
268
269 now = timecounter_read(&adapter->tc);
270 now += delta;
271
272 /* reset the timecounter */
273 timecounter_init(&adapter->tc,
274 &adapter->cc,
275 now);
276
277 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
278
279 ixgbe_ptp_setup_sdp(adapter);
280
281 return 0;
282 }
283
284 /**
285 * ixgbe_ptp_gettime
286 * @ptp: the ptp clock structure
287 * @ts: timespec structure to hold the current time value
288 *
289 * read the timecounter and return the correct value on ns,
290 * after converting it into a struct timespec.
291 */
292 static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
293 {
294 struct ixgbe_adapter *adapter =
295 container_of(ptp, struct ixgbe_adapter, ptp_caps);
296 u64 ns;
297 u32 remainder;
298 unsigned long flags;
299
300 spin_lock_irqsave(&adapter->tmreg_lock, flags);
301 ns = timecounter_read(&adapter->tc);
302 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
303
304 ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
305 ts->tv_nsec = remainder;
306
307 return 0;
308 }
309
310 /**
311 * ixgbe_ptp_settime
312 * @ptp: the ptp clock structure
313 * @ts: the timespec containing the new time for the cycle counter
314 *
315 * reset the timecounter to use a new base value instead of the kernel
316 * wall timer value.
317 */
318 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
319 const struct timespec *ts)
320 {
321 struct ixgbe_adapter *adapter =
322 container_of(ptp, struct ixgbe_adapter, ptp_caps);
323 u64 ns;
324 unsigned long flags;
325
326 ns = ts->tv_sec * 1000000000ULL;
327 ns += ts->tv_nsec;
328
329 /* reset the timecounter */
330 spin_lock_irqsave(&adapter->tmreg_lock, flags);
331 timecounter_init(&adapter->tc, &adapter->cc, ns);
332 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
333
334 ixgbe_ptp_setup_sdp(adapter);
335 return 0;
336 }
337
338 /**
339 * ixgbe_ptp_enable
340 * @ptp: the ptp clock structure
341 * @rq: the requested feature to change
342 * @on: whether to enable or disable the feature
343 *
344 * enable (or disable) ancillary features of the phc subsystem.
345 * our driver only supports the PPS feature on the X540
346 */
347 static int ixgbe_ptp_enable(struct ptp_clock_info *ptp,
348 struct ptp_clock_request *rq, int on)
349 {
350 struct ixgbe_adapter *adapter =
351 container_of(ptp, struct ixgbe_adapter, ptp_caps);
352
353 /**
354 * When PPS is enabled, unmask the interrupt for the ClockOut
355 * feature, so that the interrupt handler can send the PPS
356 * event when the clock SDP triggers. Clear mask when PPS is
357 * disabled
358 */
359 if (rq->type == PTP_CLK_REQ_PPS) {
360 switch (adapter->hw.mac.type) {
361 case ixgbe_mac_X540:
362 if (on)
363 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
364 else
365 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
366
367 ixgbe_ptp_setup_sdp(adapter);
368 return 0;
369 default:
370 break;
371 }
372 }
373
374 return -ENOTSUPP;
375 }
376
377 /**
378 * ixgbe_ptp_check_pps_event
379 * @adapter: the private adapter structure
380 * @eicr: the interrupt cause register value
381 *
382 * This function is called by the interrupt routine when checking for
383 * interrupts. It will check and handle a pps event.
384 */
385 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
386 {
387 struct ixgbe_hw *hw = &adapter->hw;
388 struct ptp_clock_event event;
389
390 event.type = PTP_CLOCK_PPS;
391
392 /* this check is necessary in case the interrupt was enabled via some
393 * alternative means (ex. debug_fs). Better to check here than
394 * everywhere that calls this function.
395 */
396 if (!adapter->ptp_clock)
397 return;
398
399 switch (hw->mac.type) {
400 case ixgbe_mac_X540:
401 ptp_clock_event(adapter->ptp_clock, &event);
402 break;
403 default:
404 break;
405 }
406 }
407
408
409 /**
410 * ixgbe_ptp_overflow_check - delayed work to detect SYSTIME overflow
411 * @work: structure containing information about this work task
412 *
413 * this work function is scheduled to continue reading the timecounter
414 * in order to prevent missing when the system time registers wrap
415 * around. This needs to be run approximately twice a minute when no
416 * PTP activity is occurring.
417 */
418 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
419 {
420 unsigned long elapsed_jiffies = adapter->last_overflow_check - jiffies;
421 struct timespec ts;
422
423 if ((adapter->flags2 & IXGBE_FLAG2_PTP_ENABLED) &&
424 (elapsed_jiffies >= IXGBE_OVERFLOW_PERIOD)) {
425 ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
426 adapter->last_overflow_check = jiffies;
427 }
428 }
429
430 /**
431 * ixgbe_ptp_match - determine if this skb matches a ptp packet
432 * @skb: pointer to the skb
433 * @hwtstamp: pointer to the hwtstamp_config to check
434 *
435 * Determine whether the skb should have been timestamped, assuming the
436 * hwtstamp was set via the hwtstamp ioctl. Returns non-zero when the packet
437 * should have a timestamp waiting in the registers, and 0 otherwise.
438 *
439 * V1 packets have to check the version type to determine whether they are
440 * correct. However, we can't directly access the data because it might be
441 * fragmented in the SKB, in paged memory. In order to work around this, we
442 * use skb_copy_bits which will properly copy the data whether it is in the
443 * paged memory fragments or not. We have to copy the IP header as well as the
444 * message type.
445 */
446 static int ixgbe_ptp_match(struct sk_buff *skb, int rx_filter)
447 {
448 struct iphdr iph;
449 u8 msgtype;
450 unsigned int type, offset;
451
452 if (rx_filter == HWTSTAMP_FILTER_NONE)
453 return 0;
454
455 type = sk_run_filter(skb, ptp_filter);
456
457 if (likely(rx_filter == HWTSTAMP_FILTER_PTP_V2_EVENT))
458 return type & PTP_CLASS_V2;
459
460 /* For the remaining cases actually check message type */
461 switch (type) {
462 case PTP_CLASS_V1_IPV4:
463 skb_copy_bits(skb, OFF_IHL, &iph, sizeof(iph));
464 offset = ETH_HLEN + (iph.ihl << 2) + UDP_HLEN + OFF_PTP_CONTROL;
465 break;
466 case PTP_CLASS_V1_IPV6:
467 offset = OFF_PTP6 + OFF_PTP_CONTROL;
468 break;
469 default:
470 /* other cases invalid or handled above */
471 return 0;
472 }
473
474 /* Make sure our buffer is long enough */
475 if (skb->len < offset)
476 return 0;
477
478 skb_copy_bits(skb, offset, &msgtype, sizeof(msgtype));
479
480 switch (rx_filter) {
481 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
482 return (msgtype == IXGBE_RXMTRL_V1_SYNC_MSG);
483 break;
484 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
485 return (msgtype == IXGBE_RXMTRL_V1_DELAY_REQ_MSG);
486 break;
487 default:
488 return 0;
489 }
490 }
491
492 /**
493 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
494 * @q_vector: structure containing interrupt and ring information
495 * @skb: particular skb to send timestamp with
496 *
497 * if the timestamp is valid, we convert it into the timecounter ns
498 * value, then store that result into the shhwtstamps structure which
499 * is passed up the network stack
500 */
501 void ixgbe_ptp_tx_hwtstamp(struct ixgbe_q_vector *q_vector,
502 struct sk_buff *skb)
503 {
504 struct ixgbe_adapter *adapter;
505 struct ixgbe_hw *hw;
506 struct skb_shared_hwtstamps shhwtstamps;
507 u64 regval = 0, ns;
508 u32 tsynctxctl;
509 unsigned long flags;
510
511 /* we cannot process timestamps on a ring without a q_vector */
512 if (!q_vector || !q_vector->adapter)
513 return;
514
515 adapter = q_vector->adapter;
516 hw = &adapter->hw;
517
518 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
519 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
520 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
521
522 /*
523 * if TX timestamp is not valid, exit after clearing the
524 * timestamp registers
525 */
526 if (!(tsynctxctl & IXGBE_TSYNCTXCTL_VALID))
527 return;
528
529 spin_lock_irqsave(&adapter->tmreg_lock, flags);
530 ns = timecounter_cyc2time(&adapter->tc, regval);
531 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
532
533 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
534 shhwtstamps.hwtstamp = ns_to_ktime(ns);
535 skb_tstamp_tx(skb, &shhwtstamps);
536 }
537
538 /**
539 * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
540 * @q_vector: structure containing interrupt and ring information
541 * @rx_desc: the rx descriptor
542 * @skb: particular skb to send timestamp with
543 *
544 * if the timestamp is valid, we convert it into the timecounter ns
545 * value, then store that result into the shhwtstamps structure which
546 * is passed up the network stack
547 */
548 void ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector,
549 union ixgbe_adv_rx_desc *rx_desc,
550 struct sk_buff *skb)
551 {
552 struct ixgbe_adapter *adapter;
553 struct ixgbe_hw *hw;
554 struct skb_shared_hwtstamps *shhwtstamps;
555 u64 regval = 0, ns;
556 u32 tsyncrxctl;
557 unsigned long flags;
558
559 /* we cannot process timestamps on a ring without a q_vector */
560 if (!q_vector || !q_vector->adapter)
561 return;
562
563 adapter = q_vector->adapter;
564 hw = &adapter->hw;
565
566 if (likely(!ixgbe_ptp_match(skb, adapter->rx_hwtstamp_filter)))
567 return;
568
569 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
570
571 /* Check if we have a valid timestamp and make sure the skb should
572 * have been timestamped */
573 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
574 return;
575
576 /*
577 * Always read the registers, in order to clear a possible fault
578 * because of stagnant RX timestamp values for a packet that never
579 * reached the queue.
580 */
581 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
582 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
583
584 /*
585 * If the timestamp bit is set in the packet's descriptor, we know the
586 * timestamp belongs to this packet. No other packet can be
587 * timestamped until the registers for timestamping have been read.
588 * Therefor only one packet with this bit can be in the queue at a
589 * time, and the rx timestamp values that were in the registers belong
590 * to this packet.
591 *
592 * If nothing went wrong, then it should have a skb_shared_tx that we
593 * can turn into a skb_shared_hwtstamps.
594 */
595 if (unlikely(!ixgbe_test_staterr(rx_desc, IXGBE_RXDADV_STAT_TS)))
596 return;
597
598 spin_lock_irqsave(&adapter->tmreg_lock, flags);
599 ns = timecounter_cyc2time(&adapter->tc, regval);
600 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
601
602 shhwtstamps = skb_hwtstamps(skb);
603 shhwtstamps->hwtstamp = ns_to_ktime(ns);
604 }
605
606 /**
607 * ixgbe_ptp_hwtstamp_ioctl - control hardware time stamping
608 * @adapter: pointer to adapter struct
609 * @ifreq: ioctl data
610 * @cmd: particular ioctl requested
611 *
612 * Outgoing time stamping can be enabled and disabled. Play nice and
613 * disable it when requested, although it shouldn't case any overhead
614 * when no packet needs it. At most one packet in the queue may be
615 * marked for time stamping, otherwise it would be impossible to tell
616 * for sure to which packet the hardware time stamp belongs.
617 *
618 * Incoming time stamping has to be configured via the hardware
619 * filters. Not all combinations are supported, in particular event
620 * type has to be specified. Matching the kind of event packet is
621 * not supported, with the exception of "all V2 events regardless of
622 * level 2 or 4".
623 *
624 * Since hardware always timestamps Path delay packets when timestamping V2
625 * packets, regardless of the type specified in the register, only use V2
626 * Event mode. This more accurately tells the user what the hardware is going
627 * to do anyways.
628 */
629 int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter,
630 struct ifreq *ifr, int cmd)
631 {
632 struct ixgbe_hw *hw = &adapter->hw;
633 struct hwtstamp_config config;
634 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
635 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
636 u32 tsync_rx_mtrl = 0;
637 bool is_l4 = false;
638 bool is_l2 = false;
639 u32 regval;
640
641 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
642 return -EFAULT;
643
644 /* reserved for future extensions */
645 if (config.flags)
646 return -EINVAL;
647
648 switch (config.tx_type) {
649 case HWTSTAMP_TX_OFF:
650 tsync_tx_ctl = 0;
651 case HWTSTAMP_TX_ON:
652 break;
653 default:
654 return -ERANGE;
655 }
656
657 switch (config.rx_filter) {
658 case HWTSTAMP_FILTER_NONE:
659 tsync_rx_ctl = 0;
660 break;
661 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
662 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
663 tsync_rx_mtrl = IXGBE_RXMTRL_V1_SYNC_MSG;
664 is_l4 = true;
665 break;
666 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
667 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
668 tsync_rx_mtrl = IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
669 is_l4 = true;
670 break;
671 case HWTSTAMP_FILTER_PTP_V2_EVENT:
672 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
673 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
674 case HWTSTAMP_FILTER_PTP_V2_SYNC:
675 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
676 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
677 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
678 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
679 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
680 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
681 is_l2 = true;
682 is_l4 = true;
683 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
684 break;
685 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
686 case HWTSTAMP_FILTER_ALL:
687 default:
688 /*
689 * register RXMTRL must be set in order to do V1 packets,
690 * therefore it is not possible to time stamp both V1 Sync and
691 * Delay_Req messages and hardware does not support
692 * timestamping all packets => return error
693 */
694 config.rx_filter = HWTSTAMP_FILTER_NONE;
695 return -ERANGE;
696 }
697
698 if (hw->mac.type == ixgbe_mac_82598EB) {
699 if (tsync_rx_ctl | tsync_tx_ctl)
700 return -ERANGE;
701 return 0;
702 }
703
704 /* Store filter value for later use */
705 adapter->rx_hwtstamp_filter = config.rx_filter;
706
707 /* define ethertype filter for timestamped packets */
708 if (is_l2)
709 IXGBE_WRITE_REG(hw, IXGBE_ETQF(3),
710 (IXGBE_ETQF_FILTER_EN | /* enable filter */
711 IXGBE_ETQF_1588 | /* enable timestamping */
712 ETH_P_1588)); /* 1588 eth protocol type */
713 else
714 IXGBE_WRITE_REG(hw, IXGBE_ETQF(3), 0);
715
716 #define PTP_PORT 319
717 /* L4 Queue Filter[3]: filter by destination port and protocol */
718 if (is_l4) {
719 u32 ftqf = (IXGBE_FTQF_PROTOCOL_UDP /* UDP */
720 | IXGBE_FTQF_POOL_MASK_EN /* Pool not compared */
721 | IXGBE_FTQF_QUEUE_ENABLE);
722
723 ftqf |= ((IXGBE_FTQF_PROTOCOL_COMP_MASK /* protocol check */
724 & IXGBE_FTQF_DEST_PORT_MASK /* dest check */
725 & IXGBE_FTQF_SOURCE_PORT_MASK) /* source check */
726 << IXGBE_FTQF_5TUPLE_MASK_SHIFT);
727
728 IXGBE_WRITE_REG(hw, IXGBE_L34T_IMIR(3),
729 (3 << IXGBE_IMIR_RX_QUEUE_SHIFT_82599 |
730 IXGBE_IMIR_SIZE_BP_82599));
731
732 /* enable port check */
733 IXGBE_WRITE_REG(hw, IXGBE_SDPQF(3),
734 (htons(PTP_PORT) |
735 htons(PTP_PORT) << 16));
736
737 IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), ftqf);
738
739 tsync_rx_mtrl |= PTP_PORT << 16;
740 } else {
741 IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), 0);
742 }
743
744 /* enable/disable TX */
745 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
746 regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
747 regval |= tsync_tx_ctl;
748 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
749
750 /* enable/disable RX */
751 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
752 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
753 regval |= tsync_rx_ctl;
754 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
755
756 /* define which PTP packets are time stamped */
757 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
758
759 IXGBE_WRITE_FLUSH(hw);
760
761 /* clear TX/RX time stamp registers, just to be sure */
762 regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
763 regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
764
765 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
766 -EFAULT : 0;
767 }
768
769 /**
770 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
771 * @adapter: pointer to the adapter structure
772 *
773 * This function should be called to set the proper values for the TIMINCA
774 * register and tell the cyclecounter structure what the tick rate of SYSTIME
775 * is. It does not directly modify SYSTIME registers or the timecounter
776 * structure. It should be called whenever a new TIMINCA value is necessary,
777 * such as during initialization or when the link speed changes.
778 */
779 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
780 {
781 struct ixgbe_hw *hw = &adapter->hw;
782 u32 incval = 0;
783 u32 shift = 0;
784 unsigned long flags;
785
786 /**
787 * Scale the NIC cycle counter by a large factor so that
788 * relatively small corrections to the frequency can be added
789 * or subtracted. The drawbacks of a large factor include
790 * (a) the clock register overflows more quickly, (b) the cycle
791 * counter structure must be able to convert the systime value
792 * to nanoseconds using only a multiplier and a right-shift,
793 * and (c) the value must fit within the timinca register space
794 * => math based on internal DMA clock rate and available bits
795 *
796 * Note that when there is no link, internal DMA clock is same as when
797 * link speed is 10Gb. Set the registers correctly even when link is
798 * down to preserve the clock setting
799 */
800 switch (adapter->link_speed) {
801 case IXGBE_LINK_SPEED_100_FULL:
802 incval = IXGBE_INCVAL_100;
803 shift = IXGBE_INCVAL_SHIFT_100;
804 break;
805 case IXGBE_LINK_SPEED_1GB_FULL:
806 incval = IXGBE_INCVAL_1GB;
807 shift = IXGBE_INCVAL_SHIFT_1GB;
808 break;
809 case IXGBE_LINK_SPEED_10GB_FULL:
810 default:
811 incval = IXGBE_INCVAL_10GB;
812 shift = IXGBE_INCVAL_SHIFT_10GB;
813 break;
814 }
815
816 /**
817 * Modify the calculated values to fit within the correct
818 * number of bits specified by the hardware. The 82599 doesn't
819 * have the same space as the X540, so bitshift the calculated
820 * values to fit.
821 */
822 switch (hw->mac.type) {
823 case ixgbe_mac_X540:
824 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
825 break;
826 case ixgbe_mac_82599EB:
827 incval >>= IXGBE_INCVAL_SHIFT_82599;
828 shift -= IXGBE_INCVAL_SHIFT_82599;
829 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
830 (1 << IXGBE_INCPER_SHIFT_82599) |
831 incval);
832 break;
833 default:
834 /* other devices aren't supported */
835 return;
836 }
837
838 /* update the base incval used to calculate frequency adjustment */
839 ACCESS_ONCE(adapter->base_incval) = incval;
840 smp_mb();
841
842 /* need lock to prevent incorrect read while modifying cyclecounter */
843 spin_lock_irqsave(&adapter->tmreg_lock, flags);
844
845 memset(&adapter->cc, 0, sizeof(adapter->cc));
846 adapter->cc.read = ixgbe_ptp_read;
847 adapter->cc.mask = CLOCKSOURCE_MASK(64);
848 adapter->cc.shift = shift;
849 adapter->cc.mult = 1;
850
851 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
852 }
853
854 /**
855 * ixgbe_ptp_reset
856 * @adapter: the ixgbe private board structure
857 *
858 * When the MAC resets, all timesync features are reset. This function should be
859 * called to re-enable the PTP clock structure. It will re-init the timecounter
860 * structure based on the kernel time as well as setup the cycle counter data.
861 */
862 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
863 {
864 struct ixgbe_hw *hw = &adapter->hw;
865 unsigned long flags;
866
867 /* set SYSTIME registers to 0 just in case */
868 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
869 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
870 IXGBE_WRITE_FLUSH(hw);
871
872 ixgbe_ptp_start_cyclecounter(adapter);
873
874 spin_lock_irqsave(&adapter->tmreg_lock, flags);
875
876 /* reset the ns time counter */
877 timecounter_init(&adapter->tc, &adapter->cc,
878 ktime_to_ns(ktime_get_real()));
879
880 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
881
882 /*
883 * Now that the shift has been calculated and the systime
884 * registers reset, (re-)enable the Clock out feature
885 */
886 ixgbe_ptp_setup_sdp(adapter);
887 }
888
889 /**
890 * ixgbe_ptp_init
891 * @adapter: the ixgbe private adapter structure
892 *
893 * This function performs the required steps for enabling ptp
894 * support. If ptp support has already been loaded it simply calls the
895 * cyclecounter init routine and exits.
896 */
897 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
898 {
899 struct net_device *netdev = adapter->netdev;
900
901 switch (adapter->hw.mac.type) {
902 case ixgbe_mac_X540:
903 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
904 adapter->ptp_caps.owner = THIS_MODULE;
905 adapter->ptp_caps.max_adj = 250000000;
906 adapter->ptp_caps.n_alarm = 0;
907 adapter->ptp_caps.n_ext_ts = 0;
908 adapter->ptp_caps.n_per_out = 0;
909 adapter->ptp_caps.pps = 1;
910 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
911 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
912 adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
913 adapter->ptp_caps.settime = ixgbe_ptp_settime;
914 adapter->ptp_caps.enable = ixgbe_ptp_enable;
915 break;
916 case ixgbe_mac_82599EB:
917 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
918 adapter->ptp_caps.owner = THIS_MODULE;
919 adapter->ptp_caps.max_adj = 250000000;
920 adapter->ptp_caps.n_alarm = 0;
921 adapter->ptp_caps.n_ext_ts = 0;
922 adapter->ptp_caps.n_per_out = 0;
923 adapter->ptp_caps.pps = 0;
924 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
925 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
926 adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
927 adapter->ptp_caps.settime = ixgbe_ptp_settime;
928 adapter->ptp_caps.enable = ixgbe_ptp_enable;
929 break;
930 default:
931 adapter->ptp_clock = NULL;
932 return;
933 }
934
935 /* initialize the ptp filter */
936 if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter)))
937 e_dev_warn("ptp_filter_init failed\n");
938
939 spin_lock_init(&adapter->tmreg_lock);
940
941 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
942 &adapter->pdev->dev);
943 if (IS_ERR(adapter->ptp_clock)) {
944 adapter->ptp_clock = NULL;
945 e_dev_err("ptp_clock_register failed\n");
946 } else
947 e_dev_info("registered PHC device on %s\n", netdev->name);
948
949 ixgbe_ptp_reset(adapter);
950
951 /* set the flag that PTP has been enabled */
952 adapter->flags2 |= IXGBE_FLAG2_PTP_ENABLED;
953
954 return;
955 }
956
957 /**
958 * ixgbe_ptp_stop - disable ptp device and stop the overflow check
959 * @adapter: pointer to adapter struct
960 *
961 * this function stops the ptp support, and cancels the delayed work.
962 */
963 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
964 {
965 /* stop the overflow check task */
966 adapter->flags2 &= ~(IXGBE_FLAG2_PTP_ENABLED |
967 IXGBE_FLAG2_PTP_PPS_ENABLED);
968
969 ixgbe_ptp_setup_sdp(adapter);
970
971 if (adapter->ptp_clock) {
972 ptp_clock_unregister(adapter->ptp_clock);
973 adapter->ptp_clock = NULL;
974 e_dev_info("removed PHC on %s\n",
975 adapter->netdev->name);
976 }
977 }
This page took 0.060706 seconds and 5 git commands to generate.