drivers/net/ethernet: Fix (nearly-)kernel-doc comments for various functions
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_ptp.c
1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27 #include "ixgbe.h"
28 #include <linux/export.h>
29 #include <linux/ptp_classify.h>
30
31 /*
32 * The 82599 and the X540 do not have true 64bit nanosecond scale
33 * counter registers. Instead, SYSTIME is defined by a fixed point
34 * system which allows the user to define the scale counter increment
35 * value at every level change of the oscillator driving the SYSTIME
36 * value. For both devices the TIMINCA:IV field defines this
37 * increment. On the X540 device, 31 bits are provided. However on the
38 * 82599 only provides 24 bits. The time unit is determined by the
39 * clock frequency of the oscillator in combination with the TIMINCA
40 * register. When these devices link at 10Gb the oscillator has a
41 * period of 6.4ns. In order to convert the scale counter into
42 * nanoseconds the cyclecounter and timecounter structures are
43 * used. The SYSTIME registers need to be converted to ns values by use
44 * of only a right shift (division by power of 2). The following math
45 * determines the largest incvalue that will fit into the available
46 * bits in the TIMINCA register.
47 *
48 * PeriodWidth: Number of bits to store the clock period
49 * MaxWidth: The maximum width value of the TIMINCA register
50 * Period: The clock period for the oscillator
51 * round(): discard the fractional portion of the calculation
52 *
53 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
54 *
55 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
56 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
57 *
58 * The period also changes based on the link speed:
59 * At 10Gb link or no link, the period remains the same.
60 * At 1Gb link, the period is multiplied by 10. (64ns)
61 * At 100Mb link, the period is multiplied by 100. (640ns)
62 *
63 * The calculated value allows us to right shift the SYSTIME register
64 * value in order to quickly convert it into a nanosecond clock,
65 * while allowing for the maximum possible adjustment value.
66 *
67 * These diagrams are only for the 10Gb link period
68 *
69 * SYSTIMEH SYSTIMEL
70 * +--------------+ +--------------+
71 * X540 | 32 | | 1 | 3 | 28 |
72 * *--------------+ +--------------+
73 * \________ 36 bits ______/ fract
74 *
75 * +--------------+ +--------------+
76 * 82599 | 32 | | 8 | 3 | 21 |
77 * *--------------+ +--------------+
78 * \________ 43 bits ______/ fract
79 *
80 * The 36 bit X540 SYSTIME overflows every
81 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
82 *
83 * The 43 bit 82599 SYSTIME overflows every
84 * 2^43 * 10^-9 / 3600 = 2.4 hours
85 */
86 #define IXGBE_INCVAL_10GB 0x66666666
87 #define IXGBE_INCVAL_1GB 0x40000000
88 #define IXGBE_INCVAL_100 0x50000000
89
90 #define IXGBE_INCVAL_SHIFT_10GB 28
91 #define IXGBE_INCVAL_SHIFT_1GB 24
92 #define IXGBE_INCVAL_SHIFT_100 21
93
94 #define IXGBE_INCVAL_SHIFT_82599 7
95 #define IXGBE_INCPER_SHIFT_82599 24
96 #define IXGBE_MAX_TIMEADJ_VALUE 0x7FFFFFFFFFFFFFFFULL
97
98 #define IXGBE_OVERFLOW_PERIOD (HZ * 30)
99
100 #ifndef NSECS_PER_SEC
101 #define NSECS_PER_SEC 1000000000ULL
102 #endif
103
104 static struct sock_filter ptp_filter[] = {
105 PTP_FILTER
106 };
107
108 /**
109 * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
110 * @cc: the cyclecounter structure
111 *
112 * this function reads the cyclecounter registers and is called by the
113 * cyclecounter structure used to construct a ns counter from the
114 * arbitrary fixed point registers
115 */
116 static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
117 {
118 struct ixgbe_adapter *adapter =
119 container_of(cc, struct ixgbe_adapter, cc);
120 struct ixgbe_hw *hw = &adapter->hw;
121 u64 stamp = 0;
122
123 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
124 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
125
126 return stamp;
127 }
128
129 /**
130 * ixgbe_ptp_adjfreq
131 * @ptp: the ptp clock structure
132 * @ppb: parts per billion adjustment from base
133 *
134 * adjust the frequency of the ptp cycle counter by the
135 * indicated ppb from the base frequency.
136 */
137 static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
138 {
139 struct ixgbe_adapter *adapter =
140 container_of(ptp, struct ixgbe_adapter, ptp_caps);
141 struct ixgbe_hw *hw = &adapter->hw;
142 u64 freq;
143 u32 diff, incval;
144 int neg_adj = 0;
145
146 if (ppb < 0) {
147 neg_adj = 1;
148 ppb = -ppb;
149 }
150
151 smp_mb();
152 incval = ACCESS_ONCE(adapter->base_incval);
153
154 freq = incval;
155 freq *= ppb;
156 diff = div_u64(freq, 1000000000ULL);
157
158 incval = neg_adj ? (incval - diff) : (incval + diff);
159
160 switch (hw->mac.type) {
161 case ixgbe_mac_X540:
162 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
163 break;
164 case ixgbe_mac_82599EB:
165 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
166 (1 << IXGBE_INCPER_SHIFT_82599) |
167 incval);
168 break;
169 default:
170 break;
171 }
172
173 return 0;
174 }
175
176 /**
177 * ixgbe_ptp_adjtime
178 * @ptp: the ptp clock structure
179 * @delta: offset to adjust the cycle counter by
180 *
181 * adjust the timer by resetting the timecounter structure.
182 */
183 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
184 {
185 struct ixgbe_adapter *adapter =
186 container_of(ptp, struct ixgbe_adapter, ptp_caps);
187 unsigned long flags;
188 u64 now;
189
190 spin_lock_irqsave(&adapter->tmreg_lock, flags);
191
192 now = timecounter_read(&adapter->tc);
193 now += delta;
194
195 /* reset the timecounter */
196 timecounter_init(&adapter->tc,
197 &adapter->cc,
198 now);
199
200 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
201 return 0;
202 }
203
204 /**
205 * ixgbe_ptp_gettime
206 * @ptp: the ptp clock structure
207 * @ts: timespec structure to hold the current time value
208 *
209 * read the timecounter and return the correct value on ns,
210 * after converting it into a struct timespec.
211 */
212 static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
213 {
214 struct ixgbe_adapter *adapter =
215 container_of(ptp, struct ixgbe_adapter, ptp_caps);
216 u64 ns;
217 u32 remainder;
218 unsigned long flags;
219
220 spin_lock_irqsave(&adapter->tmreg_lock, flags);
221 ns = timecounter_read(&adapter->tc);
222 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
223
224 ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
225 ts->tv_nsec = remainder;
226
227 return 0;
228 }
229
230 /**
231 * ixgbe_ptp_settime
232 * @ptp: the ptp clock structure
233 * @ts: the timespec containing the new time for the cycle counter
234 *
235 * reset the timecounter to use a new base value instead of the kernel
236 * wall timer value.
237 */
238 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
239 const struct timespec *ts)
240 {
241 struct ixgbe_adapter *adapter =
242 container_of(ptp, struct ixgbe_adapter, ptp_caps);
243 u64 ns;
244 unsigned long flags;
245
246 ns = ts->tv_sec * 1000000000ULL;
247 ns += ts->tv_nsec;
248
249 /* reset the timecounter */
250 spin_lock_irqsave(&adapter->tmreg_lock, flags);
251 timecounter_init(&adapter->tc, &adapter->cc, ns);
252 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
253
254 return 0;
255 }
256
257 /**
258 * ixgbe_ptp_enable
259 * @ptp: the ptp clock structure
260 * @rq: the requested feature to change
261 * @on: whether to enable or disable the feature
262 *
263 * enable (or disable) ancillary features of the phc subsystem.
264 * our driver only supports the PPS feature on the X540
265 */
266 static int ixgbe_ptp_enable(struct ptp_clock_info *ptp,
267 struct ptp_clock_request *rq, int on)
268 {
269 struct ixgbe_adapter *adapter =
270 container_of(ptp, struct ixgbe_adapter, ptp_caps);
271
272 /**
273 * When PPS is enabled, unmask the interrupt for the ClockOut
274 * feature, so that the interrupt handler can send the PPS
275 * event when the clock SDP triggers. Clear mask when PPS is
276 * disabled
277 */
278 if (rq->type == PTP_CLK_REQ_PPS) {
279 switch (adapter->hw.mac.type) {
280 case ixgbe_mac_X540:
281 if (on)
282 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
283 else
284 adapter->flags2 &=
285 ~IXGBE_FLAG2_PTP_PPS_ENABLED;
286 return 0;
287 default:
288 break;
289 }
290 }
291
292 return -ENOTSUPP;
293 }
294
295 /**
296 * ixgbe_ptp_check_pps_event
297 * @adapter: the private adapter structure
298 * @eicr: the interrupt cause register value
299 *
300 * This function is called by the interrupt routine when checking for
301 * interrupts. It will check and handle a pps event.
302 */
303 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
304 {
305 struct ixgbe_hw *hw = &adapter->hw;
306 struct ptp_clock_event event;
307
308 event.type = PTP_CLOCK_PPS;
309
310 /* Make sure ptp clock is valid, and PPS event enabled */
311 if (!adapter->ptp_clock ||
312 !(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
313 return;
314
315 if (unlikely(eicr & IXGBE_EICR_TIMESYNC)) {
316 switch (hw->mac.type) {
317 case ixgbe_mac_X540:
318 ptp_clock_event(adapter->ptp_clock, &event);
319 break;
320 default:
321 break;
322 }
323 }
324 }
325
326 /**
327 * ixgbe_ptp_enable_sdp
328 * @hw: the hardware private structure
329 * @shift: the clock shift for calculating nanoseconds
330 *
331 * this function enables the clock out feature on the sdp0 for the
332 * X540 device. It will create a 1second periodic output that can be
333 * used as the PPS (via an interrupt).
334 *
335 * It calculates when the systime will be on an exact second, and then
336 * aligns the start of the PPS signal to that value. The shift is
337 * necessary because it can change based on the link speed.
338 */
339 static void ixgbe_ptp_enable_sdp(struct ixgbe_hw *hw, int shift)
340 {
341 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh;
342 u64 clock_edge = 0;
343 u32 rem;
344
345 switch (hw->mac.type) {
346 case ixgbe_mac_X540:
347 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
348
349 /*
350 * enable the SDP0 pin as output, and connected to the native
351 * function for Timesync (ClockOut)
352 */
353 esdp |= (IXGBE_ESDP_SDP0_DIR |
354 IXGBE_ESDP_SDP0_NATIVE);
355
356 /*
357 * enable the Clock Out feature on SDP0, and allow interrupts
358 * to occur when the pin changes
359 */
360 tsauxc = (IXGBE_TSAUXC_EN_CLK |
361 IXGBE_TSAUXC_SYNCLK |
362 IXGBE_TSAUXC_SDP0_INT);
363
364 /* clock period (or pulse length) */
365 clktiml = (u32)(NSECS_PER_SEC << shift);
366 clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);
367
368 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
369 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
370
371 /*
372 * account for the fact that we can't do u64 division
373 * with remainder, by converting the clock values into
374 * nanoseconds first
375 */
376 clock_edge >>= shift;
377 div_u64_rem(clock_edge, NSECS_PER_SEC, &rem);
378 clock_edge += (NSECS_PER_SEC - rem);
379 clock_edge <<= shift;
380
381 /* specify the initial clock start time */
382 trgttiml = (u32)clock_edge;
383 trgttimh = (u32)(clock_edge >> 32);
384
385 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
386 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
387 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
388 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
389
390 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
391 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
392
393 IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EICR_TIMESYNC);
394 break;
395 default:
396 break;
397 }
398 }
399
400 /**
401 * ixgbe_ptp_disable_sdp
402 * @hw: the private hardware structure
403 *
404 * this function disables the auxiliary SDP clock out feature
405 */
406 static void ixgbe_ptp_disable_sdp(struct ixgbe_hw *hw)
407 {
408 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_EICR_TIMESYNC);
409 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0);
410 }
411
412 /**
413 * ixgbe_ptp_overflow_check - delayed work to detect SYSTIME overflow
414 * @work: structure containing information about this work task
415 *
416 * this work function is scheduled to continue reading the timecounter
417 * in order to prevent missing when the system time registers wrap
418 * around. This needs to be run approximately twice a minute when no
419 * PTP activity is occurring.
420 */
421 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
422 {
423 unsigned long elapsed_jiffies = adapter->last_overflow_check - jiffies;
424 struct timespec ts;
425
426 if ((adapter->flags2 & IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED) &&
427 (elapsed_jiffies >= IXGBE_OVERFLOW_PERIOD)) {
428 ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
429 adapter->last_overflow_check = jiffies;
430 }
431 }
432
433 /**
434 * ixgbe_ptp_match - determine if this skb matches a ptp packet
435 * @skb: pointer to the skb
436 * @hwtstamp: pointer to the hwtstamp_config to check
437 *
438 * Determine whether the skb should have been timestamped, assuming the
439 * hwtstamp was set via the hwtstamp ioctl. Returns non-zero when the packet
440 * should have a timestamp waiting in the registers, and 0 otherwise.
441 *
442 * V1 packets have to check the version type to determine whether they are
443 * correct. However, we can't directly access the data because it might be
444 * fragmented in the SKB, in paged memory. In order to work around this, we
445 * use skb_copy_bits which will properly copy the data whether it is in the
446 * paged memory fragments or not. We have to copy the IP header as well as the
447 * message type.
448 */
449 static int ixgbe_ptp_match(struct sk_buff *skb, int rx_filter)
450 {
451 struct iphdr iph;
452 u8 msgtype;
453 unsigned int type, offset;
454
455 if (rx_filter == HWTSTAMP_FILTER_NONE)
456 return 0;
457
458 type = sk_run_filter(skb, ptp_filter);
459
460 if (likely(rx_filter == HWTSTAMP_FILTER_PTP_V2_EVENT))
461 return type & PTP_CLASS_V2;
462
463 /* For the remaining cases actually check message type */
464 switch (type) {
465 case PTP_CLASS_V1_IPV4:
466 skb_copy_bits(skb, OFF_IHL, &iph, sizeof(iph));
467 offset = ETH_HLEN + (iph.ihl << 2) + UDP_HLEN + OFF_PTP_CONTROL;
468 break;
469 case PTP_CLASS_V1_IPV6:
470 offset = OFF_PTP6 + OFF_PTP_CONTROL;
471 break;
472 default:
473 /* other cases invalid or handled above */
474 return 0;
475 }
476
477 /* Make sure our buffer is long enough */
478 if (skb->len < offset)
479 return 0;
480
481 skb_copy_bits(skb, offset, &msgtype, sizeof(msgtype));
482
483 switch (rx_filter) {
484 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
485 return (msgtype == IXGBE_RXMTRL_V1_SYNC_MSG);
486 break;
487 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
488 return (msgtype == IXGBE_RXMTRL_V1_DELAY_REQ_MSG);
489 break;
490 default:
491 return 0;
492 }
493 }
494
495 /**
496 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
497 * @q_vector: structure containing interrupt and ring information
498 * @skb: particular skb to send timestamp with
499 *
500 * if the timestamp is valid, we convert it into the timecounter ns
501 * value, then store that result into the shhwtstamps structure which
502 * is passed up the network stack
503 */
504 void ixgbe_ptp_tx_hwtstamp(struct ixgbe_q_vector *q_vector,
505 struct sk_buff *skb)
506 {
507 struct ixgbe_adapter *adapter;
508 struct ixgbe_hw *hw;
509 struct skb_shared_hwtstamps shhwtstamps;
510 u64 regval = 0, ns;
511 u32 tsynctxctl;
512 unsigned long flags;
513
514 /* we cannot process timestamps on a ring without a q_vector */
515 if (!q_vector || !q_vector->adapter)
516 return;
517
518 adapter = q_vector->adapter;
519 hw = &adapter->hw;
520
521 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
522 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
523 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
524
525 /*
526 * if TX timestamp is not valid, exit after clearing the
527 * timestamp registers
528 */
529 if (!(tsynctxctl & IXGBE_TSYNCTXCTL_VALID))
530 return;
531
532 spin_lock_irqsave(&adapter->tmreg_lock, flags);
533 ns = timecounter_cyc2time(&adapter->tc, regval);
534 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
535
536 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
537 shhwtstamps.hwtstamp = ns_to_ktime(ns);
538 skb_tstamp_tx(skb, &shhwtstamps);
539 }
540
541 /**
542 * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
543 * @q_vector: structure containing interrupt and ring information
544 * @rx_desc: the rx descriptor
545 * @skb: particular skb to send timestamp with
546 *
547 * if the timestamp is valid, we convert it into the timecounter ns
548 * value, then store that result into the shhwtstamps structure which
549 * is passed up the network stack
550 */
551 void ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector,
552 union ixgbe_adv_rx_desc *rx_desc,
553 struct sk_buff *skb)
554 {
555 struct ixgbe_adapter *adapter;
556 struct ixgbe_hw *hw;
557 struct skb_shared_hwtstamps *shhwtstamps;
558 u64 regval = 0, ns;
559 u32 tsyncrxctl;
560 unsigned long flags;
561
562 /* we cannot process timestamps on a ring without a q_vector */
563 if (!q_vector || !q_vector->adapter)
564 return;
565
566 adapter = q_vector->adapter;
567 hw = &adapter->hw;
568
569 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
570
571 /* Check if we have a valid timestamp and make sure the skb should
572 * have been timestamped */
573 if (likely(!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID) ||
574 !ixgbe_ptp_match(skb, adapter->rx_hwtstamp_filter)))
575 return;
576
577 /*
578 * Always read the registers, in order to clear a possible fault
579 * because of stagnant RX timestamp values for a packet that never
580 * reached the queue.
581 */
582 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
583 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
584
585 /*
586 * If the timestamp bit is set in the packet's descriptor, we know the
587 * timestamp belongs to this packet. No other packet can be
588 * timestamped until the registers for timestamping have been read.
589 * Therefor only one packet with this bit can be in the queue at a
590 * time, and the rx timestamp values that were in the registers belong
591 * to this packet.
592 *
593 * If nothing went wrong, then it should have a skb_shared_tx that we
594 * can turn into a skb_shared_hwtstamps.
595 */
596 if (unlikely(!ixgbe_test_staterr(rx_desc, IXGBE_RXDADV_STAT_TS)))
597 return;
598
599 spin_lock_irqsave(&adapter->tmreg_lock, flags);
600 ns = timecounter_cyc2time(&adapter->tc, regval);
601 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
602
603 shhwtstamps = skb_hwtstamps(skb);
604 shhwtstamps->hwtstamp = ns_to_ktime(ns);
605 }
606
607 /**
608 * ixgbe_ptp_hwtstamp_ioctl - control hardware time stamping
609 * @adapter: pointer to adapter struct
610 * @ifreq: ioctl data
611 * @cmd: particular ioctl requested
612 *
613 * Outgoing time stamping can be enabled and disabled. Play nice and
614 * disable it when requested, although it shouldn't case any overhead
615 * when no packet needs it. At most one packet in the queue may be
616 * marked for time stamping, otherwise it would be impossible to tell
617 * for sure to which packet the hardware time stamp belongs.
618 *
619 * Incoming time stamping has to be configured via the hardware
620 * filters. Not all combinations are supported, in particular event
621 * type has to be specified. Matching the kind of event packet is
622 * not supported, with the exception of "all V2 events regardless of
623 * level 2 or 4".
624 *
625 * Since hardware always timestamps Path delay packets when timestamping V2
626 * packets, regardless of the type specified in the register, only use V2
627 * Event mode. This more accurately tells the user what the hardware is going
628 * to do anyways.
629 */
630 int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter,
631 struct ifreq *ifr, int cmd)
632 {
633 struct ixgbe_hw *hw = &adapter->hw;
634 struct hwtstamp_config config;
635 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
636 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
637 u32 tsync_rx_mtrl = 0;
638 bool is_l4 = false;
639 bool is_l2 = false;
640 u32 regval;
641
642 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
643 return -EFAULT;
644
645 /* reserved for future extensions */
646 if (config.flags)
647 return -EINVAL;
648
649 switch (config.tx_type) {
650 case HWTSTAMP_TX_OFF:
651 tsync_tx_ctl = 0;
652 case HWTSTAMP_TX_ON:
653 break;
654 default:
655 return -ERANGE;
656 }
657
658 switch (config.rx_filter) {
659 case HWTSTAMP_FILTER_NONE:
660 tsync_rx_ctl = 0;
661 break;
662 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
663 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
664 tsync_rx_mtrl = IXGBE_RXMTRL_V1_SYNC_MSG;
665 is_l4 = true;
666 break;
667 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
668 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
669 tsync_rx_mtrl = IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
670 is_l4 = true;
671 break;
672 case HWTSTAMP_FILTER_PTP_V2_EVENT:
673 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
674 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
675 case HWTSTAMP_FILTER_PTP_V2_SYNC:
676 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
677 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
678 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
679 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
680 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
681 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
682 is_l2 = true;
683 is_l4 = true;
684 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
685 break;
686 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
687 case HWTSTAMP_FILTER_ALL:
688 default:
689 /*
690 * register RXMTRL must be set in order to do V1 packets,
691 * therefore it is not possible to time stamp both V1 Sync and
692 * Delay_Req messages and hardware does not support
693 * timestamping all packets => return error
694 */
695 config.rx_filter = HWTSTAMP_FILTER_NONE;
696 return -ERANGE;
697 }
698
699 if (hw->mac.type == ixgbe_mac_82598EB) {
700 if (tsync_rx_ctl | tsync_tx_ctl)
701 return -ERANGE;
702 return 0;
703 }
704
705 /* Store filter value for later use */
706 adapter->rx_hwtstamp_filter = config.rx_filter;
707
708 /* define ethertype filter for timestamped packets */
709 if (is_l2)
710 IXGBE_WRITE_REG(hw, IXGBE_ETQF(3),
711 (IXGBE_ETQF_FILTER_EN | /* enable filter */
712 IXGBE_ETQF_1588 | /* enable timestamping */
713 ETH_P_1588)); /* 1588 eth protocol type */
714 else
715 IXGBE_WRITE_REG(hw, IXGBE_ETQF(3), 0);
716
717 #define PTP_PORT 319
718 /* L4 Queue Filter[3]: filter by destination port and protocol */
719 if (is_l4) {
720 u32 ftqf = (IXGBE_FTQF_PROTOCOL_UDP /* UDP */
721 | IXGBE_FTQF_POOL_MASK_EN /* Pool not compared */
722 | IXGBE_FTQF_QUEUE_ENABLE);
723
724 ftqf |= ((IXGBE_FTQF_PROTOCOL_COMP_MASK /* protocol check */
725 & IXGBE_FTQF_DEST_PORT_MASK /* dest check */
726 & IXGBE_FTQF_SOURCE_PORT_MASK) /* source check */
727 << IXGBE_FTQF_5TUPLE_MASK_SHIFT);
728
729 IXGBE_WRITE_REG(hw, IXGBE_L34T_IMIR(3),
730 (3 << IXGBE_IMIR_RX_QUEUE_SHIFT_82599 |
731 IXGBE_IMIR_SIZE_BP_82599));
732
733 /* enable port check */
734 IXGBE_WRITE_REG(hw, IXGBE_SDPQF(3),
735 (htons(PTP_PORT) |
736 htons(PTP_PORT) << 16));
737
738 IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), ftqf);
739
740 tsync_rx_mtrl |= PTP_PORT << 16;
741 } else {
742 IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), 0);
743 }
744
745 /* enable/disable TX */
746 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
747 regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
748 regval |= tsync_tx_ctl;
749 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
750
751 /* enable/disable RX */
752 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
753 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
754 regval |= tsync_rx_ctl;
755 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
756
757 /* define which PTP packets are time stamped */
758 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
759
760 IXGBE_WRITE_FLUSH(hw);
761
762 /* clear TX/RX time stamp registers, just to be sure */
763 regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
764 regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
765
766 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
767 -EFAULT : 0;
768 }
769
770 /**
771 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
772 * @adapter: pointer to the adapter structure
773 *
774 * this function initializes the timecounter and cyclecounter
775 * structures for use in generated a ns counter from the arbitrary
776 * fixed point cycles registers in the hardware.
777 *
778 * A change in link speed impacts the frequency of the DMA clock on
779 * the device, which is used to generate the cycle counter
780 * registers. Therefor this function is called whenever the link speed
781 * changes.
782 *
783 * This function also turns on the SDP pin for clock out feature (X540
784 * only), because this is where the shift is first calculated.
785 */
786 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
787 {
788 struct ixgbe_hw *hw = &adapter->hw;
789 u32 incval = 0;
790 u32 timinca = 0;
791 u32 shift = 0;
792 u32 cycle_speed;
793 unsigned long flags;
794
795 /**
796 * Determine what speed we need to set the cyclecounter
797 * for. It should be different for 100Mb, 1Gb, and 10Gb. Treat
798 * unknown speeds as 10Gb. (Hence why we can't just copy the
799 * link_speed.
800 */
801 switch (adapter->link_speed) {
802 case IXGBE_LINK_SPEED_100_FULL:
803 case IXGBE_LINK_SPEED_1GB_FULL:
804 case IXGBE_LINK_SPEED_10GB_FULL:
805 cycle_speed = adapter->link_speed;
806 break;
807 default:
808 /* cycle speed should be 10Gb when there is no link */
809 cycle_speed = IXGBE_LINK_SPEED_10GB_FULL;
810 break;
811 }
812
813 /*
814 * grab the current TIMINCA value from the register so that it can be
815 * double checked. If the register value has been cleared, it must be
816 * reset to the correct value for generating a cyclecounter. If
817 * TIMINCA is zero, the SYSTIME registers do not increment at all.
818 */
819 timinca = IXGBE_READ_REG(hw, IXGBE_TIMINCA);
820
821 /* Bail if the cycle speed didn't change and TIMINCA is non-zero */
822 if (adapter->cycle_speed == cycle_speed && timinca)
823 return;
824
825 /* disable the SDP clock out */
826 ixgbe_ptp_disable_sdp(hw);
827
828 /**
829 * Scale the NIC cycle counter by a large factor so that
830 * relatively small corrections to the frequency can be added
831 * or subtracted. The drawbacks of a large factor include
832 * (a) the clock register overflows more quickly, (b) the cycle
833 * counter structure must be able to convert the systime value
834 * to nanoseconds using only a multiplier and a right-shift,
835 * and (c) the value must fit within the timinca register space
836 * => math based on internal DMA clock rate and available bits
837 */
838 switch (cycle_speed) {
839 case IXGBE_LINK_SPEED_100_FULL:
840 incval = IXGBE_INCVAL_100;
841 shift = IXGBE_INCVAL_SHIFT_100;
842 break;
843 case IXGBE_LINK_SPEED_1GB_FULL:
844 incval = IXGBE_INCVAL_1GB;
845 shift = IXGBE_INCVAL_SHIFT_1GB;
846 break;
847 case IXGBE_LINK_SPEED_10GB_FULL:
848 incval = IXGBE_INCVAL_10GB;
849 shift = IXGBE_INCVAL_SHIFT_10GB;
850 break;
851 }
852
853 /**
854 * Modify the calculated values to fit within the correct
855 * number of bits specified by the hardware. The 82599 doesn't
856 * have the same space as the X540, so bitshift the calculated
857 * values to fit.
858 */
859 switch (hw->mac.type) {
860 case ixgbe_mac_X540:
861 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
862 break;
863 case ixgbe_mac_82599EB:
864 incval >>= IXGBE_INCVAL_SHIFT_82599;
865 shift -= IXGBE_INCVAL_SHIFT_82599;
866 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
867 (1 << IXGBE_INCPER_SHIFT_82599) |
868 incval);
869 break;
870 default:
871 /* other devices aren't supported */
872 return;
873 }
874
875 /* reset the system time registers */
876 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
877 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
878 IXGBE_WRITE_FLUSH(hw);
879
880 /* now that the shift has been calculated and the systime
881 * registers reset, (re-)enable the Clock out feature*/
882 ixgbe_ptp_enable_sdp(hw, shift);
883
884 /* store the new cycle speed */
885 adapter->cycle_speed = cycle_speed;
886
887 ACCESS_ONCE(adapter->base_incval) = incval;
888 smp_mb();
889
890 /* grab the ptp lock */
891 spin_lock_irqsave(&adapter->tmreg_lock, flags);
892
893 memset(&adapter->cc, 0, sizeof(adapter->cc));
894 adapter->cc.read = ixgbe_ptp_read;
895 adapter->cc.mask = CLOCKSOURCE_MASK(64);
896 adapter->cc.shift = shift;
897 adapter->cc.mult = 1;
898
899 /* reset the ns time counter */
900 timecounter_init(&adapter->tc, &adapter->cc,
901 ktime_to_ns(ktime_get_real()));
902
903 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
904 }
905
906 /**
907 * ixgbe_ptp_init
908 * @adapter: the ixgbe private adapter structure
909 *
910 * This function performs the required steps for enabling ptp
911 * support. If ptp support has already been loaded it simply calls the
912 * cyclecounter init routine and exits.
913 */
914 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
915 {
916 struct net_device *netdev = adapter->netdev;
917
918 switch (adapter->hw.mac.type) {
919 case ixgbe_mac_X540:
920 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
921 adapter->ptp_caps.owner = THIS_MODULE;
922 adapter->ptp_caps.max_adj = 250000000;
923 adapter->ptp_caps.n_alarm = 0;
924 adapter->ptp_caps.n_ext_ts = 0;
925 adapter->ptp_caps.n_per_out = 0;
926 adapter->ptp_caps.pps = 1;
927 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
928 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
929 adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
930 adapter->ptp_caps.settime = ixgbe_ptp_settime;
931 adapter->ptp_caps.enable = ixgbe_ptp_enable;
932 break;
933 case ixgbe_mac_82599EB:
934 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
935 adapter->ptp_caps.owner = THIS_MODULE;
936 adapter->ptp_caps.max_adj = 250000000;
937 adapter->ptp_caps.n_alarm = 0;
938 adapter->ptp_caps.n_ext_ts = 0;
939 adapter->ptp_caps.n_per_out = 0;
940 adapter->ptp_caps.pps = 0;
941 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
942 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
943 adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
944 adapter->ptp_caps.settime = ixgbe_ptp_settime;
945 adapter->ptp_caps.enable = ixgbe_ptp_enable;
946 break;
947 default:
948 adapter->ptp_clock = NULL;
949 return;
950 }
951
952 /* initialize the ptp filter */
953 if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter)))
954 e_dev_warn("ptp_filter_init failed\n");
955
956 spin_lock_init(&adapter->tmreg_lock);
957
958 ixgbe_ptp_start_cyclecounter(adapter);
959
960 /* (Re)start the overflow check */
961 adapter->flags2 |= IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED;
962
963 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps);
964 if (IS_ERR(adapter->ptp_clock)) {
965 adapter->ptp_clock = NULL;
966 e_dev_err("ptp_clock_register failed\n");
967 } else
968 e_dev_info("registered PHC device on %s\n", netdev->name);
969
970 return;
971 }
972
973 /**
974 * ixgbe_ptp_stop - disable ptp device and stop the overflow check
975 * @adapter: pointer to adapter struct
976 *
977 * this function stops the ptp support, and cancels the delayed work.
978 */
979 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
980 {
981 ixgbe_ptp_disable_sdp(&adapter->hw);
982
983 /* stop the overflow check task */
984 adapter->flags2 &= ~IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED;
985
986 if (adapter->ptp_clock) {
987 ptp_clock_unregister(adapter->ptp_clock);
988 adapter->ptp_clock = NULL;
989 e_dev_info("removed PHC on %s\n",
990 adapter->netdev->name);
991 }
992 }
This page took 0.063946 seconds and 5 git commands to generate.