Merge branch 'GREoIPV6-followups'
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_ptp.c
1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2016 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28 #include "ixgbe.h"
29 #include <linux/ptp_classify.h>
30 #include <linux/clocksource.h>
31
32 /*
33 * The 82599 and the X540 do not have true 64bit nanosecond scale
34 * counter registers. Instead, SYSTIME is defined by a fixed point
35 * system which allows the user to define the scale counter increment
36 * value at every level change of the oscillator driving the SYSTIME
37 * value. For both devices the TIMINCA:IV field defines this
38 * increment. On the X540 device, 31 bits are provided. However on the
39 * 82599 only provides 24 bits. The time unit is determined by the
40 * clock frequency of the oscillator in combination with the TIMINCA
41 * register. When these devices link at 10Gb the oscillator has a
42 * period of 6.4ns. In order to convert the scale counter into
43 * nanoseconds the cyclecounter and timecounter structures are
44 * used. The SYSTIME registers need to be converted to ns values by use
45 * of only a right shift (division by power of 2). The following math
46 * determines the largest incvalue that will fit into the available
47 * bits in the TIMINCA register.
48 *
49 * PeriodWidth: Number of bits to store the clock period
50 * MaxWidth: The maximum width value of the TIMINCA register
51 * Period: The clock period for the oscillator
52 * round(): discard the fractional portion of the calculation
53 *
54 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
55 *
56 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
57 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
58 *
59 * The period also changes based on the link speed:
60 * At 10Gb link or no link, the period remains the same.
61 * At 1Gb link, the period is multiplied by 10. (64ns)
62 * At 100Mb link, the period is multiplied by 100. (640ns)
63 *
64 * The calculated value allows us to right shift the SYSTIME register
65 * value in order to quickly convert it into a nanosecond clock,
66 * while allowing for the maximum possible adjustment value.
67 *
68 * These diagrams are only for the 10Gb link period
69 *
70 * SYSTIMEH SYSTIMEL
71 * +--------------+ +--------------+
72 * X540 | 32 | | 1 | 3 | 28 |
73 * *--------------+ +--------------+
74 * \________ 36 bits ______/ fract
75 *
76 * +--------------+ +--------------+
77 * 82599 | 32 | | 8 | 3 | 21 |
78 * *--------------+ +--------------+
79 * \________ 43 bits ______/ fract
80 *
81 * The 36 bit X540 SYSTIME overflows every
82 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
83 *
84 * The 43 bit 82599 SYSTIME overflows every
85 * 2^43 * 10^-9 / 3600 = 2.4 hours
86 */
87 #define IXGBE_INCVAL_10GB 0x66666666
88 #define IXGBE_INCVAL_1GB 0x40000000
89 #define IXGBE_INCVAL_100 0x50000000
90
91 #define IXGBE_INCVAL_SHIFT_10GB 28
92 #define IXGBE_INCVAL_SHIFT_1GB 24
93 #define IXGBE_INCVAL_SHIFT_100 21
94
95 #define IXGBE_INCVAL_SHIFT_82599 7
96 #define IXGBE_INCPER_SHIFT_82599 24
97
98 #define IXGBE_OVERFLOW_PERIOD (HZ * 30)
99 #define IXGBE_PTP_TX_TIMEOUT (HZ * 15)
100
101 /* half of a one second clock period, for use with PPS signal. We have to use
102 * this instead of something pre-defined like IXGBE_PTP_PPS_HALF_SECOND, in
103 * order to force at least 64bits of precision for shifting
104 */
105 #define IXGBE_PTP_PPS_HALF_SECOND 500000000ULL
106
107 /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
108 * which contain measurements of seconds and nanoseconds respectively. This
109 * matches the standard linux representation of time in the kernel. In addition,
110 * the X550 also has a SYSTIMER register which represents residue, or
111 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
112 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
113 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
114 * high bit representing whether the adjustent is positive or negative. Every
115 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
116 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
117 * X550's clock for purposes of SYSTIME generation is constant and not dependent
118 * on the link speed.
119 *
120 * SYSTIMEH SYSTIMEL SYSTIMER
121 * +--------------+ +--------------+ +-------------+
122 * X550 | 32 | | 32 | | 32 |
123 * *--------------+ +--------------+ +-------------+
124 * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/
125 *
126 * This results in a full 96 bits to represent the clock, with 32 bits for
127 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
128 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
129 * underflow of adjustments.
130 *
131 * The 32 bits of seconds for the X550 overflows every
132 * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
133 *
134 * In order to adjust the clock frequency for the X550, the TIMINCA register is
135 * provided. This register represents a + or minus nearly 0.5 ns adjustment to
136 * the base frequency. It is measured in 2^-32 ns units, with the high bit being
137 * the sign bit. This register enables software to calculate frequency
138 * adjustments and apply them directly to the clock rate.
139 *
140 * The math for converting ppb into TIMINCA values is fairly straightforward.
141 * TIMINCA value = ( Base_Frequency * ppb ) / 1000000000ULL
142 *
143 * This assumes that ppb is never high enough to create a value bigger than
144 * TIMINCA's 31 bits can store. This is ensured by the stack. Calculating this
145 * value is also simple.
146 * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
147 *
148 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
149 * 12.5 nanoseconds. This means that the Max ppb is 39999999
150 * Note: We subtract one in order to ensure no overflow, because the TIMINCA
151 * register can only hold slightly under 0.5 nanoseconds.
152 *
153 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
154 * into 2^-32 units, which is
155 *
156 * 12.5 * 2^32 = C80000000
157 *
158 * Some revisions of hardware have a faster base frequency than the registers
159 * were defined for. To fix this, we use a timecounter structure with the
160 * proper mult and shift to convert the cycles into nanoseconds of time.
161 */
162 #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
163 #define INCVALUE_MASK 0x7FFFFFFF
164 #define ISGN 0x80000000
165 #define MAX_TIMADJ 0x7FFFFFFF
166
167 /**
168 * ixgbe_ptp_setup_sdp_x540
169 * @hw: the hardware private structure
170 *
171 * this function enables or disables the clock out feature on SDP0 for
172 * the X540 device. It will create a 1second periodic output that can
173 * be used as the PPS (via an interrupt).
174 *
175 * It calculates when the systime will be on an exact second, and then
176 * aligns the start of the PPS signal to that value. The shift is
177 * necessary because it can change based on the link speed.
178 */
179 static void ixgbe_ptp_setup_sdp_x540(struct ixgbe_adapter *adapter)
180 {
181 struct ixgbe_hw *hw = &adapter->hw;
182 int shift = adapter->hw_cc.shift;
183 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
184 u64 ns = 0, clock_edge = 0;
185
186 /* disable the pin first */
187 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
188 IXGBE_WRITE_FLUSH(hw);
189
190 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
191 return;
192
193 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
194
195 /* enable the SDP0 pin as output, and connected to the
196 * native function for Timesync (ClockOut)
197 */
198 esdp |= IXGBE_ESDP_SDP0_DIR |
199 IXGBE_ESDP_SDP0_NATIVE;
200
201 /* enable the Clock Out feature on SDP0, and allow
202 * interrupts to occur when the pin changes
203 */
204 tsauxc = IXGBE_TSAUXC_EN_CLK |
205 IXGBE_TSAUXC_SYNCLK |
206 IXGBE_TSAUXC_SDP0_INT;
207
208 /* clock period (or pulse length) */
209 clktiml = (u32)(IXGBE_PTP_PPS_HALF_SECOND << shift);
210 clktimh = (u32)((IXGBE_PTP_PPS_HALF_SECOND << shift) >> 32);
211
212 /* Account for the cyclecounter wrap-around value by
213 * using the converted ns value of the current time to
214 * check for when the next aligned second would occur.
215 */
216 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
217 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
218 ns = timecounter_cyc2time(&adapter->hw_tc, clock_edge);
219
220 div_u64_rem(ns, IXGBE_PTP_PPS_HALF_SECOND, &rem);
221 clock_edge += ((IXGBE_PTP_PPS_HALF_SECOND - (u64)rem) << shift);
222
223 /* specify the initial clock start time */
224 trgttiml = (u32)clock_edge;
225 trgttimh = (u32)(clock_edge >> 32);
226
227 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
228 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
229 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
230 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
231
232 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
233 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
234
235 IXGBE_WRITE_FLUSH(hw);
236 }
237
238 /**
239 * ixgbe_ptp_read_X550 - read cycle counter value
240 * @hw_cc: cyclecounter structure
241 *
242 * This function reads SYSTIME registers. It is called by the cyclecounter
243 * structure to convert from internal representation into nanoseconds. We need
244 * this for X550 since some skews do not have expected clock frequency and
245 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
246 * "cycles", rather than seconds and nanoseconds.
247 */
248 static cycle_t ixgbe_ptp_read_X550(const struct cyclecounter *hw_cc)
249 {
250 struct ixgbe_adapter *adapter =
251 container_of(hw_cc, struct ixgbe_adapter, hw_cc);
252 struct ixgbe_hw *hw = &adapter->hw;
253 struct timespec64 ts;
254
255 /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
256 * Some revisions of hardware run at a higher frequency and so the
257 * cycles are not guaranteed to be nanoseconds. The timespec64 created
258 * here is used for its math/conversions but does not necessarily
259 * represent nominal time.
260 *
261 * It should be noted that this cyclecounter will overflow at a
262 * non-bitmask field since we have to convert our billions of cycles
263 * into an actual cycles count. This results in some possible weird
264 * situations at high cycle counter stamps. However given that 32 bits
265 * of "seconds" is ~138 years this isn't a problem. Even at the
266 * increased frequency of some revisions, this is still ~103 years.
267 * Since the SYSTIME values start at 0 and we never write them, it is
268 * highly unlikely for the cyclecounter to overflow in practice.
269 */
270 IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
271 ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
272 ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
273
274 return (u64)timespec64_to_ns(&ts);
275 }
276
277 /**
278 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
279 * @cc: the cyclecounter structure
280 *
281 * this function reads the cyclecounter registers and is called by the
282 * cyclecounter structure used to construct a ns counter from the
283 * arbitrary fixed point registers
284 */
285 static cycle_t ixgbe_ptp_read_82599(const struct cyclecounter *cc)
286 {
287 struct ixgbe_adapter *adapter =
288 container_of(cc, struct ixgbe_adapter, hw_cc);
289 struct ixgbe_hw *hw = &adapter->hw;
290 u64 stamp = 0;
291
292 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
293 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
294
295 return stamp;
296 }
297
298 /**
299 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
300 * @adapter: private adapter structure
301 * @hwtstamp: stack timestamp structure
302 * @systim: unsigned 64bit system time value
303 *
304 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
305 * which can be used by the stack's ptp functions.
306 *
307 * The lock is used to protect consistency of the cyclecounter and the SYSTIME
308 * registers. However, it does not need to protect against the Rx or Tx
309 * timestamp registers, as there can't be a new timestamp until the old one is
310 * unlatched by reading.
311 *
312 * In addition to the timestamp in hardware, some controllers need a software
313 * overflow cyclecounter, and this function takes this into account as well.
314 **/
315 static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
316 struct skb_shared_hwtstamps *hwtstamp,
317 u64 timestamp)
318 {
319 unsigned long flags;
320 struct timespec64 systime;
321 u64 ns;
322
323 memset(hwtstamp, 0, sizeof(*hwtstamp));
324
325 switch (adapter->hw.mac.type) {
326 /* X550 and later hardware supposedly represent time using a seconds
327 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
328 * to convert the timestamp into cycles before it can be fed to the
329 * cyclecounter. We need an actual cyclecounter because some revisions
330 * of hardware run at a higher frequency and thus the counter does
331 * not represent seconds/nanoseconds. Instead it can be thought of as
332 * cycles and billions of cycles.
333 */
334 case ixgbe_mac_X550:
335 case ixgbe_mac_X550EM_x:
336 case ixgbe_mac_x550em_a:
337 /* Upper 32 bits represent billions of cycles, lower 32 bits
338 * represent cycles. However, we use timespec64_to_ns for the
339 * correct math even though the units haven't been corrected
340 * yet.
341 */
342 systime.tv_sec = timestamp >> 32;
343 systime.tv_nsec = timestamp & 0xFFFFFFFF;
344
345 timestamp = timespec64_to_ns(&systime);
346 break;
347 default:
348 break;
349 }
350
351 spin_lock_irqsave(&adapter->tmreg_lock, flags);
352 ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
353 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
354
355 hwtstamp->hwtstamp = ns_to_ktime(ns);
356 }
357
358 /**
359 * ixgbe_ptp_adjfreq_82599
360 * @ptp: the ptp clock structure
361 * @ppb: parts per billion adjustment from base
362 *
363 * adjust the frequency of the ptp cycle counter by the
364 * indicated ppb from the base frequency.
365 */
366 static int ixgbe_ptp_adjfreq_82599(struct ptp_clock_info *ptp, s32 ppb)
367 {
368 struct ixgbe_adapter *adapter =
369 container_of(ptp, struct ixgbe_adapter, ptp_caps);
370 struct ixgbe_hw *hw = &adapter->hw;
371 u64 freq, incval;
372 u32 diff;
373 int neg_adj = 0;
374
375 if (ppb < 0) {
376 neg_adj = 1;
377 ppb = -ppb;
378 }
379
380 smp_mb();
381 incval = ACCESS_ONCE(adapter->base_incval);
382
383 freq = incval;
384 freq *= ppb;
385 diff = div_u64(freq, 1000000000ULL);
386
387 incval = neg_adj ? (incval - diff) : (incval + diff);
388
389 switch (hw->mac.type) {
390 case ixgbe_mac_X540:
391 if (incval > 0xFFFFFFFFULL)
392 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
393 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
394 break;
395 case ixgbe_mac_82599EB:
396 if (incval > 0x00FFFFFFULL)
397 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
398 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
399 BIT(IXGBE_INCPER_SHIFT_82599) |
400 ((u32)incval & 0x00FFFFFFUL));
401 break;
402 default:
403 break;
404 }
405
406 return 0;
407 }
408
409 /**
410 * ixgbe_ptp_adjfreq_X550
411 * @ptp: the ptp clock structure
412 * @ppb: parts per billion adjustment from base
413 *
414 * adjust the frequency of the SYSTIME registers by the indicated ppb from base
415 * frequency
416 */
417 static int ixgbe_ptp_adjfreq_X550(struct ptp_clock_info *ptp, s32 ppb)
418 {
419 struct ixgbe_adapter *adapter =
420 container_of(ptp, struct ixgbe_adapter, ptp_caps);
421 struct ixgbe_hw *hw = &adapter->hw;
422 int neg_adj = 0;
423 u64 rate = IXGBE_X550_BASE_PERIOD;
424 u32 inca;
425
426 if (ppb < 0) {
427 neg_adj = 1;
428 ppb = -ppb;
429 }
430 rate *= ppb;
431 rate = div_u64(rate, 1000000000ULL);
432
433 /* warn if rate is too large */
434 if (rate >= INCVALUE_MASK)
435 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
436
437 inca = rate & INCVALUE_MASK;
438 if (neg_adj)
439 inca |= ISGN;
440
441 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
442
443 return 0;
444 }
445
446 /**
447 * ixgbe_ptp_adjtime
448 * @ptp: the ptp clock structure
449 * @delta: offset to adjust the cycle counter by
450 *
451 * adjust the timer by resetting the timecounter structure.
452 */
453 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
454 {
455 struct ixgbe_adapter *adapter =
456 container_of(ptp, struct ixgbe_adapter, ptp_caps);
457 unsigned long flags;
458
459 spin_lock_irqsave(&adapter->tmreg_lock, flags);
460 timecounter_adjtime(&adapter->hw_tc, delta);
461 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
462
463 if (adapter->ptp_setup_sdp)
464 adapter->ptp_setup_sdp(adapter);
465
466 return 0;
467 }
468
469 /**
470 * ixgbe_ptp_gettime
471 * @ptp: the ptp clock structure
472 * @ts: timespec structure to hold the current time value
473 *
474 * read the timecounter and return the correct value on ns,
475 * after converting it into a struct timespec.
476 */
477 static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
478 {
479 struct ixgbe_adapter *adapter =
480 container_of(ptp, struct ixgbe_adapter, ptp_caps);
481 unsigned long flags;
482 u64 ns;
483
484 spin_lock_irqsave(&adapter->tmreg_lock, flags);
485 ns = timecounter_read(&adapter->hw_tc);
486 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
487
488 *ts = ns_to_timespec64(ns);
489
490 return 0;
491 }
492
493 /**
494 * ixgbe_ptp_settime
495 * @ptp: the ptp clock structure
496 * @ts: the timespec containing the new time for the cycle counter
497 *
498 * reset the timecounter to use a new base value instead of the kernel
499 * wall timer value.
500 */
501 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
502 const struct timespec64 *ts)
503 {
504 struct ixgbe_adapter *adapter =
505 container_of(ptp, struct ixgbe_adapter, ptp_caps);
506 unsigned long flags;
507 u64 ns = timespec64_to_ns(ts);
508
509 /* reset the timecounter */
510 spin_lock_irqsave(&adapter->tmreg_lock, flags);
511 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
512 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
513
514 if (adapter->ptp_setup_sdp)
515 adapter->ptp_setup_sdp(adapter);
516 return 0;
517 }
518
519 /**
520 * ixgbe_ptp_feature_enable
521 * @ptp: the ptp clock structure
522 * @rq: the requested feature to change
523 * @on: whether to enable or disable the feature
524 *
525 * enable (or disable) ancillary features of the phc subsystem.
526 * our driver only supports the PPS feature on the X540
527 */
528 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
529 struct ptp_clock_request *rq, int on)
530 {
531 struct ixgbe_adapter *adapter =
532 container_of(ptp, struct ixgbe_adapter, ptp_caps);
533
534 /**
535 * When PPS is enabled, unmask the interrupt for the ClockOut
536 * feature, so that the interrupt handler can send the PPS
537 * event when the clock SDP triggers. Clear mask when PPS is
538 * disabled
539 */
540 if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
541 return -ENOTSUPP;
542
543 if (on)
544 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
545 else
546 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
547
548 adapter->ptp_setup_sdp(adapter);
549 return 0;
550 }
551
552 /**
553 * ixgbe_ptp_check_pps_event
554 * @adapter: the private adapter structure
555 *
556 * This function is called by the interrupt routine when checking for
557 * interrupts. It will check and handle a pps event.
558 */
559 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
560 {
561 struct ixgbe_hw *hw = &adapter->hw;
562 struct ptp_clock_event event;
563
564 event.type = PTP_CLOCK_PPS;
565
566 /* this check is necessary in case the interrupt was enabled via some
567 * alternative means (ex. debug_fs). Better to check here than
568 * everywhere that calls this function.
569 */
570 if (!adapter->ptp_clock)
571 return;
572
573 switch (hw->mac.type) {
574 case ixgbe_mac_X540:
575 ptp_clock_event(adapter->ptp_clock, &event);
576 break;
577 default:
578 break;
579 }
580 }
581
582 /**
583 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
584 * @adapter: private adapter struct
585 *
586 * this watchdog task periodically reads the timecounter
587 * in order to prevent missing when the system time registers wrap
588 * around. This needs to be run approximately twice a minute.
589 */
590 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
591 {
592 bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
593 IXGBE_OVERFLOW_PERIOD);
594 struct timespec64 ts;
595
596 if (timeout) {
597 ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
598 adapter->last_overflow_check = jiffies;
599 }
600 }
601
602 /**
603 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
604 * @adapter: private network adapter structure
605 *
606 * this watchdog task is scheduled to detect error case where hardware has
607 * dropped an Rx packet that was timestamped when the ring is full. The
608 * particular error is rare but leaves the device in a state unable to timestamp
609 * any future packets.
610 */
611 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
612 {
613 struct ixgbe_hw *hw = &adapter->hw;
614 u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
615 struct ixgbe_ring *rx_ring;
616 unsigned long rx_event;
617 int n;
618
619 /* if we don't have a valid timestamp in the registers, just update the
620 * timeout counter and exit
621 */
622 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
623 adapter->last_rx_ptp_check = jiffies;
624 return;
625 }
626
627 /* determine the most recent watchdog or rx_timestamp event */
628 rx_event = adapter->last_rx_ptp_check;
629 for (n = 0; n < adapter->num_rx_queues; n++) {
630 rx_ring = adapter->rx_ring[n];
631 if (time_after(rx_ring->last_rx_timestamp, rx_event))
632 rx_event = rx_ring->last_rx_timestamp;
633 }
634
635 /* only need to read the high RXSTMP register to clear the lock */
636 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
637 IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
638 adapter->last_rx_ptp_check = jiffies;
639
640 adapter->rx_hwtstamp_cleared++;
641 e_warn(drv, "clearing RX Timestamp hang\n");
642 }
643 }
644
645 /**
646 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
647 * @adapter: the private adapter structure
648 *
649 * This function should be called whenever the state related to a Tx timestamp
650 * needs to be cleared. This helps ensure that all related bits are reset for
651 * the next Tx timestamp event.
652 */
653 static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
654 {
655 struct ixgbe_hw *hw = &adapter->hw;
656
657 IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
658 if (adapter->ptp_tx_skb) {
659 dev_kfree_skb_any(adapter->ptp_tx_skb);
660 adapter->ptp_tx_skb = NULL;
661 }
662 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
663 }
664
665 /**
666 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
667 * @adapter: the private adapter struct
668 *
669 * if the timestamp is valid, we convert it into the timecounter ns
670 * value, then store that result into the shhwtstamps structure which
671 * is passed up the network stack
672 */
673 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
674 {
675 struct ixgbe_hw *hw = &adapter->hw;
676 struct skb_shared_hwtstamps shhwtstamps;
677 u64 regval = 0;
678
679 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
680 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
681
682 ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
683 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
684
685 ixgbe_ptp_clear_tx_timestamp(adapter);
686 }
687
688 /**
689 * ixgbe_ptp_tx_hwtstamp_work
690 * @work: pointer to the work struct
691 *
692 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
693 * timestamp has been taken for the current skb. It is necessary, because the
694 * descriptor's "done" bit does not correlate with the timestamp event.
695 */
696 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
697 {
698 struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
699 ptp_tx_work);
700 struct ixgbe_hw *hw = &adapter->hw;
701 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
702 IXGBE_PTP_TX_TIMEOUT);
703 u32 tsynctxctl;
704
705 /* we have to have a valid skb to poll for a timestamp */
706 if (!adapter->ptp_tx_skb) {
707 ixgbe_ptp_clear_tx_timestamp(adapter);
708 return;
709 }
710
711 /* stop polling once we have a valid timestamp */
712 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
713 if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
714 ixgbe_ptp_tx_hwtstamp(adapter);
715 return;
716 }
717
718 if (timeout) {
719 ixgbe_ptp_clear_tx_timestamp(adapter);
720 adapter->tx_hwtstamp_timeouts++;
721 e_warn(drv, "clearing Tx Timestamp hang\n");
722 } else {
723 /* reschedule to keep checking if it's not available yet */
724 schedule_work(&adapter->ptp_tx_work);
725 }
726 }
727
728 /**
729 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
730 * @q_vector: structure containing interrupt and ring information
731 * @skb: the packet
732 *
733 * This function will be called by the Rx routine of the timestamp for this
734 * packet is stored in the buffer. The value is stored in little endian format
735 * starting at the end of the packet data.
736 */
737 void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
738 struct sk_buff *skb)
739 {
740 __le64 regval;
741
742 /* copy the bits out of the skb, and then trim the skb length */
743 skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, &regval,
744 IXGBE_TS_HDR_LEN);
745 __pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
746
747 /* The timestamp is recorded in little endian format, and is stored at
748 * the end of the packet.
749 *
750 * DWORD: N N + 1 N + 2
751 * Field: End of Packet SYSTIMH SYSTIML
752 */
753 ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
754 le64_to_cpu(regval));
755 }
756
757 /**
758 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
759 * @q_vector: structure containing interrupt and ring information
760 * @skb: particular skb to send timestamp with
761 *
762 * if the timestamp is valid, we convert it into the timecounter ns
763 * value, then store that result into the shhwtstamps structure which
764 * is passed up the network stack
765 */
766 void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
767 struct sk_buff *skb)
768 {
769 struct ixgbe_adapter *adapter;
770 struct ixgbe_hw *hw;
771 u64 regval = 0;
772 u32 tsyncrxctl;
773
774 /* we cannot process timestamps on a ring without a q_vector */
775 if (!q_vector || !q_vector->adapter)
776 return;
777
778 adapter = q_vector->adapter;
779 hw = &adapter->hw;
780
781 /* Read the tsyncrxctl register afterwards in order to prevent taking an
782 * I/O hit on every packet.
783 */
784
785 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
786 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
787 return;
788
789 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
790 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
791
792 ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
793 }
794
795 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
796 {
797 struct hwtstamp_config *config = &adapter->tstamp_config;
798
799 return copy_to_user(ifr->ifr_data, config,
800 sizeof(*config)) ? -EFAULT : 0;
801 }
802
803 /**
804 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
805 * @adapter: the private ixgbe adapter structure
806 * @config: the hwtstamp configuration requested
807 *
808 * Outgoing time stamping can be enabled and disabled. Play nice and
809 * disable it when requested, although it shouldn't cause any overhead
810 * when no packet needs it. At most one packet in the queue may be
811 * marked for time stamping, otherwise it would be impossible to tell
812 * for sure to which packet the hardware time stamp belongs.
813 *
814 * Incoming time stamping has to be configured via the hardware
815 * filters. Not all combinations are supported, in particular event
816 * type has to be specified. Matching the kind of event packet is
817 * not supported, with the exception of "all V2 events regardless of
818 * level 2 or 4".
819 *
820 * Since hardware always timestamps Path delay packets when timestamping V2
821 * packets, regardless of the type specified in the register, only use V2
822 * Event mode. This more accurately tells the user what the hardware is going
823 * to do anyways.
824 *
825 * Note: this may modify the hwtstamp configuration towards a more general
826 * mode, if required to support the specifically requested mode.
827 */
828 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
829 struct hwtstamp_config *config)
830 {
831 struct ixgbe_hw *hw = &adapter->hw;
832 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
833 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
834 u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
835 bool is_l2 = false;
836 u32 regval;
837
838 /* reserved for future extensions */
839 if (config->flags)
840 return -EINVAL;
841
842 switch (config->tx_type) {
843 case HWTSTAMP_TX_OFF:
844 tsync_tx_ctl = 0;
845 case HWTSTAMP_TX_ON:
846 break;
847 default:
848 return -ERANGE;
849 }
850
851 switch (config->rx_filter) {
852 case HWTSTAMP_FILTER_NONE:
853 tsync_rx_ctl = 0;
854 tsync_rx_mtrl = 0;
855 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
856 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
857 break;
858 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
859 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
860 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
861 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
862 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
863 break;
864 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
865 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
866 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
867 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
868 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
869 break;
870 case HWTSTAMP_FILTER_PTP_V2_EVENT:
871 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
872 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
873 case HWTSTAMP_FILTER_PTP_V2_SYNC:
874 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
875 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
876 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
877 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
878 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
879 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
880 is_l2 = true;
881 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
882 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
883 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
884 break;
885 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
886 case HWTSTAMP_FILTER_ALL:
887 /* The X550 controller is capable of timestamping all packets,
888 * which allows it to accept any filter.
889 */
890 if (hw->mac.type >= ixgbe_mac_X550) {
891 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
892 config->rx_filter = HWTSTAMP_FILTER_ALL;
893 adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
894 break;
895 }
896 /* fall through */
897 default:
898 /*
899 * register RXMTRL must be set in order to do V1 packets,
900 * therefore it is not possible to time stamp both V1 Sync and
901 * Delay_Req messages and hardware does not support
902 * timestamping all packets => return error
903 */
904 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
905 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
906 config->rx_filter = HWTSTAMP_FILTER_NONE;
907 return -ERANGE;
908 }
909
910 if (hw->mac.type == ixgbe_mac_82598EB) {
911 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
912 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
913 if (tsync_rx_ctl | tsync_tx_ctl)
914 return -ERANGE;
915 return 0;
916 }
917
918 /* Per-packet timestamping only works if the filter is set to all
919 * packets. Since this is desired, always timestamp all packets as long
920 * as any Rx filter was configured.
921 */
922 switch (hw->mac.type) {
923 case ixgbe_mac_X550:
924 case ixgbe_mac_X550EM_x:
925 case ixgbe_mac_x550em_a:
926 /* enable timestamping all packets only if at least some
927 * packets were requested. Otherwise, play nice and disable
928 * timestamping
929 */
930 if (config->rx_filter == HWTSTAMP_FILTER_NONE)
931 break;
932
933 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
934 IXGBE_TSYNCRXCTL_TYPE_ALL |
935 IXGBE_TSYNCRXCTL_TSIP_UT_EN;
936 config->rx_filter = HWTSTAMP_FILTER_ALL;
937 adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
938 adapter->flags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
939 is_l2 = true;
940 break;
941 default:
942 break;
943 }
944
945 /* define ethertype filter for timestamping L2 packets */
946 if (is_l2)
947 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
948 (IXGBE_ETQF_FILTER_EN | /* enable filter */
949 IXGBE_ETQF_1588 | /* enable timestamping */
950 ETH_P_1588)); /* 1588 eth protocol type */
951 else
952 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
953
954 /* enable/disable TX */
955 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
956 regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
957 regval |= tsync_tx_ctl;
958 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
959
960 /* enable/disable RX */
961 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
962 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
963 regval |= tsync_rx_ctl;
964 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
965
966 /* define which PTP packets are time stamped */
967 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
968
969 IXGBE_WRITE_FLUSH(hw);
970
971 /* clear TX/RX time stamp registers, just to be sure */
972 ixgbe_ptp_clear_tx_timestamp(adapter);
973 IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
974
975 return 0;
976 }
977
978 /**
979 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
980 * @adapter: pointer to adapter struct
981 * @ifreq: ioctl data
982 *
983 * Set hardware to requested mode. If unsupported, return an error with no
984 * changes. Otherwise, store the mode for future reference.
985 */
986 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
987 {
988 struct hwtstamp_config config;
989 int err;
990
991 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
992 return -EFAULT;
993
994 err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
995 if (err)
996 return err;
997
998 /* save these settings for future reference */
999 memcpy(&adapter->tstamp_config, &config,
1000 sizeof(adapter->tstamp_config));
1001
1002 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1003 -EFAULT : 0;
1004 }
1005
1006 static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1007 u32 *shift, u32 *incval)
1008 {
1009 /**
1010 * Scale the NIC cycle counter by a large factor so that
1011 * relatively small corrections to the frequency can be added
1012 * or subtracted. The drawbacks of a large factor include
1013 * (a) the clock register overflows more quickly, (b) the cycle
1014 * counter structure must be able to convert the systime value
1015 * to nanoseconds using only a multiplier and a right-shift,
1016 * and (c) the value must fit within the timinca register space
1017 * => math based on internal DMA clock rate and available bits
1018 *
1019 * Note that when there is no link, internal DMA clock is same as when
1020 * link speed is 10Gb. Set the registers correctly even when link is
1021 * down to preserve the clock setting
1022 */
1023 switch (adapter->link_speed) {
1024 case IXGBE_LINK_SPEED_100_FULL:
1025 *shift = IXGBE_INCVAL_SHIFT_100;
1026 *incval = IXGBE_INCVAL_100;
1027 break;
1028 case IXGBE_LINK_SPEED_1GB_FULL:
1029 *shift = IXGBE_INCVAL_SHIFT_1GB;
1030 *incval = IXGBE_INCVAL_1GB;
1031 break;
1032 case IXGBE_LINK_SPEED_10GB_FULL:
1033 default:
1034 *shift = IXGBE_INCVAL_SHIFT_10GB;
1035 *incval = IXGBE_INCVAL_10GB;
1036 break;
1037 }
1038 }
1039
1040 /**
1041 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1042 * @adapter: pointer to the adapter structure
1043 *
1044 * This function should be called to set the proper values for the TIMINCA
1045 * register and tell the cyclecounter structure what the tick rate of SYSTIME
1046 * is. It does not directly modify SYSTIME registers or the timecounter
1047 * structure. It should be called whenever a new TIMINCA value is necessary,
1048 * such as during initialization or when the link speed changes.
1049 */
1050 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1051 {
1052 struct ixgbe_hw *hw = &adapter->hw;
1053 struct cyclecounter cc;
1054 unsigned long flags;
1055 u32 incval = 0;
1056 u32 tsauxc = 0;
1057 u32 fuse0 = 0;
1058
1059 /* For some of the boards below this mask is technically incorrect.
1060 * The timestamp mask overflows at approximately 61bits. However the
1061 * particular hardware does not overflow on an even bitmask value.
1062 * Instead, it overflows due to conversion of upper 32bits billions of
1063 * cycles. Timecounters are not really intended for this purpose so
1064 * they do not properly function if the overflow point isn't 2^N-1.
1065 * However, the actual SYSTIME values in question take ~138 years to
1066 * overflow. In practice this means they won't actually overflow. A
1067 * proper fix to this problem would require modification of the
1068 * timecounter delta calculations.
1069 */
1070 cc.mask = CLOCKSOURCE_MASK(64);
1071 cc.mult = 1;
1072 cc.shift = 0;
1073
1074 switch (hw->mac.type) {
1075 case ixgbe_mac_X550EM_x:
1076 /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1077 * designed to represent seconds and nanoseconds when this is
1078 * the case. However, some revisions of hardware have a 400Mhz
1079 * clock and we have to compensate for this frequency
1080 * variation using corrected mult and shift values.
1081 */
1082 fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1083 if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1084 cc.mult = 3;
1085 cc.shift = 2;
1086 }
1087 /* fallthrough */
1088 case ixgbe_mac_x550em_a:
1089 case ixgbe_mac_X550:
1090 cc.read = ixgbe_ptp_read_X550;
1091
1092 /* enable SYSTIME counter */
1093 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1094 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1095 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1096 tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1097 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1098 tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1099 IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1100 IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1101
1102 IXGBE_WRITE_FLUSH(hw);
1103 break;
1104 case ixgbe_mac_X540:
1105 cc.read = ixgbe_ptp_read_82599;
1106
1107 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1108 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1109 break;
1110 case ixgbe_mac_82599EB:
1111 cc.read = ixgbe_ptp_read_82599;
1112
1113 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1114 incval >>= IXGBE_INCVAL_SHIFT_82599;
1115 cc.shift -= IXGBE_INCVAL_SHIFT_82599;
1116 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
1117 BIT(IXGBE_INCPER_SHIFT_82599) | incval);
1118 break;
1119 default:
1120 /* other devices aren't supported */
1121 return;
1122 }
1123
1124 /* update the base incval used to calculate frequency adjustment */
1125 ACCESS_ONCE(adapter->base_incval) = incval;
1126 smp_mb();
1127
1128 /* need lock to prevent incorrect read while modifying cyclecounter */
1129 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1130 memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1131 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1132 }
1133
1134 /**
1135 * ixgbe_ptp_reset
1136 * @adapter: the ixgbe private board structure
1137 *
1138 * When the MAC resets, all the hardware bits for timesync are reset. This
1139 * function is used to re-enable the device for PTP based on current settings.
1140 * We do lose the current clock time, so just reset the cyclecounter to the
1141 * system real clock time.
1142 *
1143 * This function will maintain hwtstamp_config settings, and resets the SDP
1144 * output if it was enabled.
1145 */
1146 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1147 {
1148 struct ixgbe_hw *hw = &adapter->hw;
1149 unsigned long flags;
1150
1151 /* reset the hardware timestamping mode */
1152 ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1153
1154 /* 82598 does not support PTP */
1155 if (hw->mac.type == ixgbe_mac_82598EB)
1156 return;
1157
1158 ixgbe_ptp_start_cyclecounter(adapter);
1159
1160 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1161 timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
1162 ktime_to_ns(ktime_get_real()));
1163 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1164
1165 adapter->last_overflow_check = jiffies;
1166
1167 /* Now that the shift has been calculated and the systime
1168 * registers reset, (re-)enable the Clock out feature
1169 */
1170 if (adapter->ptp_setup_sdp)
1171 adapter->ptp_setup_sdp(adapter);
1172 }
1173
1174 /**
1175 * ixgbe_ptp_create_clock
1176 * @adapter: the ixgbe private adapter structure
1177 *
1178 * This function performs setup of the user entry point function table and
1179 * initializes the PTP clock device, which is used to access the clock-like
1180 * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1181 * reuse a previously initialized clock (such as during a suspend/resume
1182 * cycle).
1183 */
1184 static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
1185 {
1186 struct net_device *netdev = adapter->netdev;
1187 long err;
1188
1189 /* do nothing if we already have a clock device */
1190 if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1191 return 0;
1192
1193 switch (adapter->hw.mac.type) {
1194 case ixgbe_mac_X540:
1195 snprintf(adapter->ptp_caps.name,
1196 sizeof(adapter->ptp_caps.name),
1197 "%s", netdev->name);
1198 adapter->ptp_caps.owner = THIS_MODULE;
1199 adapter->ptp_caps.max_adj = 250000000;
1200 adapter->ptp_caps.n_alarm = 0;
1201 adapter->ptp_caps.n_ext_ts = 0;
1202 adapter->ptp_caps.n_per_out = 0;
1203 adapter->ptp_caps.pps = 1;
1204 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1205 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1206 adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1207 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1208 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1209 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_x540;
1210 break;
1211 case ixgbe_mac_82599EB:
1212 snprintf(adapter->ptp_caps.name,
1213 sizeof(adapter->ptp_caps.name),
1214 "%s", netdev->name);
1215 adapter->ptp_caps.owner = THIS_MODULE;
1216 adapter->ptp_caps.max_adj = 250000000;
1217 adapter->ptp_caps.n_alarm = 0;
1218 adapter->ptp_caps.n_ext_ts = 0;
1219 adapter->ptp_caps.n_per_out = 0;
1220 adapter->ptp_caps.pps = 0;
1221 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1222 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1223 adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1224 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1225 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1226 break;
1227 case ixgbe_mac_X550:
1228 case ixgbe_mac_X550EM_x:
1229 case ixgbe_mac_x550em_a:
1230 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1231 adapter->ptp_caps.owner = THIS_MODULE;
1232 adapter->ptp_caps.max_adj = 30000000;
1233 adapter->ptp_caps.n_alarm = 0;
1234 adapter->ptp_caps.n_ext_ts = 0;
1235 adapter->ptp_caps.n_per_out = 0;
1236 adapter->ptp_caps.pps = 0;
1237 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_X550;
1238 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1239 adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1240 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1241 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1242 adapter->ptp_setup_sdp = NULL;
1243 break;
1244 default:
1245 adapter->ptp_clock = NULL;
1246 adapter->ptp_setup_sdp = NULL;
1247 return -EOPNOTSUPP;
1248 }
1249
1250 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1251 &adapter->pdev->dev);
1252 if (IS_ERR(adapter->ptp_clock)) {
1253 err = PTR_ERR(adapter->ptp_clock);
1254 adapter->ptp_clock = NULL;
1255 e_dev_err("ptp_clock_register failed\n");
1256 return err;
1257 } else
1258 e_dev_info("registered PHC device on %s\n", netdev->name);
1259
1260 /* set default timestamp mode to disabled here. We do this in
1261 * create_clock instead of init, because we don't want to override the
1262 * previous settings during a resume cycle.
1263 */
1264 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1265 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1266
1267 return 0;
1268 }
1269
1270 /**
1271 * ixgbe_ptp_init
1272 * @adapter: the ixgbe private adapter structure
1273 *
1274 * This function performs the required steps for enabling PTP
1275 * support. If PTP support has already been loaded it simply calls the
1276 * cyclecounter init routine and exits.
1277 */
1278 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1279 {
1280 /* initialize the spin lock first since we can't control when a user
1281 * will call the entry functions once we have initialized the clock
1282 * device
1283 */
1284 spin_lock_init(&adapter->tmreg_lock);
1285
1286 /* obtain a PTP device, or re-use an existing device */
1287 if (ixgbe_ptp_create_clock(adapter))
1288 return;
1289
1290 /* we have a clock so we can initialize work now */
1291 INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1292
1293 /* reset the PTP related hardware bits */
1294 ixgbe_ptp_reset(adapter);
1295
1296 /* enter the IXGBE_PTP_RUNNING state */
1297 set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1298
1299 return;
1300 }
1301
1302 /**
1303 * ixgbe_ptp_suspend - stop PTP work items
1304 * @ adapter: pointer to adapter struct
1305 *
1306 * this function suspends PTP activity, and prevents more PTP work from being
1307 * generated, but does not destroy the PTP clock device.
1308 */
1309 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
1310 {
1311 /* Leave the IXGBE_PTP_RUNNING state. */
1312 if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1313 return;
1314
1315 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1316 if (adapter->ptp_setup_sdp)
1317 adapter->ptp_setup_sdp(adapter);
1318
1319 /* ensure that we cancel any pending PTP Tx work item in progress */
1320 cancel_work_sync(&adapter->ptp_tx_work);
1321 ixgbe_ptp_clear_tx_timestamp(adapter);
1322 }
1323
1324 /**
1325 * ixgbe_ptp_stop - close the PTP device
1326 * @adapter: pointer to adapter struct
1327 *
1328 * completely destroy the PTP device, should only be called when the device is
1329 * being fully closed.
1330 */
1331 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1332 {
1333 /* first, suspend PTP activity */
1334 ixgbe_ptp_suspend(adapter);
1335
1336 /* disable the PTP clock device */
1337 if (adapter->ptp_clock) {
1338 ptp_clock_unregister(adapter->ptp_clock);
1339 adapter->ptp_clock = NULL;
1340 e_dev_info("removed PHC on %s\n",
1341 adapter->netdev->name);
1342 }
1343 }
This page took 0.088722 seconds and 5 git commands to generate.