Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3 Intel 82599 Virtual Function driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/types.h>
36 #include <linux/bitops.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/vmalloc.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/ipv6.h>
46 #include <linux/slab.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/ethtool.h>
50 #include <linux/if.h>
51 #include <linux/if_vlan.h>
52 #include <linux/prefetch.h>
53
54 #include "ixgbevf.h"
55
56 const char ixgbevf_driver_name[] = "ixgbevf";
57 static const char ixgbevf_driver_string[] =
58 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
59
60 #define DRV_VERSION "2.6.0-k"
61 const char ixgbevf_driver_version[] = DRV_VERSION;
62 static char ixgbevf_copyright[] =
63 "Copyright (c) 2009 - 2012 Intel Corporation.";
64
65 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
66 [board_82599_vf] = &ixgbevf_82599_vf_info,
67 [board_X540_vf] = &ixgbevf_X540_vf_info,
68 };
69
70 /* ixgbevf_pci_tbl - PCI Device ID Table
71 *
72 * Wildcard entries (PCI_ANY_ID) should come last
73 * Last entry must be all 0s
74 *
75 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
76 * Class, Class Mask, private data (not used) }
77 */
78 static struct pci_device_id ixgbevf_pci_tbl[] = {
79 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
80 board_82599_vf},
81 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
82 board_X540_vf},
83
84 /* required last entry */
85 {0, }
86 };
87 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
88
89 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
90 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_VERSION);
93
94 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
95 static int debug = -1;
96 module_param(debug, int, 0);
97 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
98
99 /* forward decls */
100 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
101 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
102 u32 itr_reg);
103
104 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
105 struct ixgbevf_ring *rx_ring,
106 u32 val)
107 {
108 /*
109 * Force memory writes to complete before letting h/w
110 * know there are new descriptors to fetch. (Only
111 * applicable for weak-ordered memory model archs,
112 * such as IA-64).
113 */
114 wmb();
115 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
116 }
117
118 /*
119 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
120 * @adapter: pointer to adapter struct
121 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
122 * @queue: queue to map the corresponding interrupt to
123 * @msix_vector: the vector to map to the corresponding queue
124 *
125 */
126 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
127 u8 queue, u8 msix_vector)
128 {
129 u32 ivar, index;
130 struct ixgbe_hw *hw = &adapter->hw;
131 if (direction == -1) {
132 /* other causes */
133 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
134 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
135 ivar &= ~0xFF;
136 ivar |= msix_vector;
137 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
138 } else {
139 /* tx or rx causes */
140 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
141 index = ((16 * (queue & 1)) + (8 * direction));
142 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
143 ivar &= ~(0xFF << index);
144 ivar |= (msix_vector << index);
145 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
146 }
147 }
148
149 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
150 struct ixgbevf_tx_buffer
151 *tx_buffer_info)
152 {
153 if (tx_buffer_info->dma) {
154 if (tx_buffer_info->mapped_as_page)
155 dma_unmap_page(&adapter->pdev->dev,
156 tx_buffer_info->dma,
157 tx_buffer_info->length,
158 DMA_TO_DEVICE);
159 else
160 dma_unmap_single(&adapter->pdev->dev,
161 tx_buffer_info->dma,
162 tx_buffer_info->length,
163 DMA_TO_DEVICE);
164 tx_buffer_info->dma = 0;
165 }
166 if (tx_buffer_info->skb) {
167 dev_kfree_skb_any(tx_buffer_info->skb);
168 tx_buffer_info->skb = NULL;
169 }
170 tx_buffer_info->time_stamp = 0;
171 /* tx_buffer_info must be completely set up in the transmit path */
172 }
173
174 #define IXGBE_MAX_TXD_PWR 14
175 #define IXGBE_MAX_DATA_PER_TXD (1 << IXGBE_MAX_TXD_PWR)
176
177 /* Tx Descriptors needed, worst case */
178 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
179 (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
180 #ifdef MAX_SKB_FRAGS
181 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
182 MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1) /* for context */
183 #else
184 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
185 #endif
186
187 static void ixgbevf_tx_timeout(struct net_device *netdev);
188
189 /**
190 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
191 * @adapter: board private structure
192 * @tx_ring: tx ring to clean
193 **/
194 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
195 struct ixgbevf_ring *tx_ring)
196 {
197 struct net_device *netdev = adapter->netdev;
198 struct ixgbe_hw *hw = &adapter->hw;
199 union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
200 struct ixgbevf_tx_buffer *tx_buffer_info;
201 unsigned int i, eop, count = 0;
202 unsigned int total_bytes = 0, total_packets = 0;
203
204 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
205 return true;
206
207 i = tx_ring->next_to_clean;
208 eop = tx_ring->tx_buffer_info[i].next_to_watch;
209 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
210
211 while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
212 (count < tx_ring->work_limit)) {
213 bool cleaned = false;
214 rmb(); /* read buffer_info after eop_desc */
215 /* eop could change between read and DD-check */
216 if (unlikely(eop != tx_ring->tx_buffer_info[i].next_to_watch))
217 goto cont_loop;
218 for ( ; !cleaned; count++) {
219 struct sk_buff *skb;
220 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
221 tx_buffer_info = &tx_ring->tx_buffer_info[i];
222 cleaned = (i == eop);
223 skb = tx_buffer_info->skb;
224
225 if (cleaned && skb) {
226 unsigned int segs, bytecount;
227
228 /* gso_segs is currently only valid for tcp */
229 segs = skb_shinfo(skb)->gso_segs ?: 1;
230 /* multiply data chunks by size of headers */
231 bytecount = ((segs - 1) * skb_headlen(skb)) +
232 skb->len;
233 total_packets += segs;
234 total_bytes += bytecount;
235 }
236
237 ixgbevf_unmap_and_free_tx_resource(adapter,
238 tx_buffer_info);
239
240 tx_desc->wb.status = 0;
241
242 i++;
243 if (i == tx_ring->count)
244 i = 0;
245 }
246
247 cont_loop:
248 eop = tx_ring->tx_buffer_info[i].next_to_watch;
249 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
250 }
251
252 tx_ring->next_to_clean = i;
253
254 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
255 if (unlikely(count && netif_carrier_ok(netdev) &&
256 (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
257 /* Make sure that anybody stopping the queue after this
258 * sees the new next_to_clean.
259 */
260 smp_mb();
261 #ifdef HAVE_TX_MQ
262 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
263 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
264 netif_wake_subqueue(netdev, tx_ring->queue_index);
265 ++adapter->restart_queue;
266 }
267 #else
268 if (netif_queue_stopped(netdev) &&
269 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
270 netif_wake_queue(netdev);
271 ++adapter->restart_queue;
272 }
273 #endif
274 }
275
276 /* re-arm the interrupt */
277 if ((count >= tx_ring->work_limit) &&
278 (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
279 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
280 }
281
282 u64_stats_update_begin(&tx_ring->syncp);
283 tx_ring->total_bytes += total_bytes;
284 tx_ring->total_packets += total_packets;
285 u64_stats_update_end(&tx_ring->syncp);
286
287 return count < tx_ring->work_limit;
288 }
289
290 /**
291 * ixgbevf_receive_skb - Send a completed packet up the stack
292 * @q_vector: structure containing interrupt and ring information
293 * @skb: packet to send up
294 * @status: hardware indication of status of receive
295 * @rx_ring: rx descriptor ring (for a specific queue) to setup
296 * @rx_desc: rx descriptor
297 **/
298 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
299 struct sk_buff *skb, u8 status,
300 struct ixgbevf_ring *ring,
301 union ixgbe_adv_rx_desc *rx_desc)
302 {
303 struct ixgbevf_adapter *adapter = q_vector->adapter;
304 bool is_vlan = (status & IXGBE_RXD_STAT_VP);
305 u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
306
307 if (is_vlan && test_bit(tag, adapter->active_vlans))
308 __vlan_hwaccel_put_tag(skb, tag);
309
310 if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL))
311 napi_gro_receive(&q_vector->napi, skb);
312 else
313 netif_rx(skb);
314 }
315
316 /**
317 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
318 * @adapter: address of board private structure
319 * @status_err: hardware indication of status of receive
320 * @skb: skb currently being received and modified
321 **/
322 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
323 u32 status_err, struct sk_buff *skb)
324 {
325 skb_checksum_none_assert(skb);
326
327 /* Rx csum disabled */
328 if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
329 return;
330
331 /* if IP and error */
332 if ((status_err & IXGBE_RXD_STAT_IPCS) &&
333 (status_err & IXGBE_RXDADV_ERR_IPE)) {
334 adapter->hw_csum_rx_error++;
335 return;
336 }
337
338 if (!(status_err & IXGBE_RXD_STAT_L4CS))
339 return;
340
341 if (status_err & IXGBE_RXDADV_ERR_TCPE) {
342 adapter->hw_csum_rx_error++;
343 return;
344 }
345
346 /* It must be a TCP or UDP packet with a valid checksum */
347 skb->ip_summed = CHECKSUM_UNNECESSARY;
348 adapter->hw_csum_rx_good++;
349 }
350
351 /**
352 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
353 * @adapter: address of board private structure
354 **/
355 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
356 struct ixgbevf_ring *rx_ring,
357 int cleaned_count)
358 {
359 struct pci_dev *pdev = adapter->pdev;
360 union ixgbe_adv_rx_desc *rx_desc;
361 struct ixgbevf_rx_buffer *bi;
362 struct sk_buff *skb;
363 unsigned int i;
364 unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
365
366 i = rx_ring->next_to_use;
367 bi = &rx_ring->rx_buffer_info[i];
368
369 while (cleaned_count--) {
370 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
371
372 if (!bi->page_dma &&
373 (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
374 if (!bi->page) {
375 bi->page = alloc_page(GFP_ATOMIC | __GFP_COLD);
376 if (!bi->page) {
377 adapter->alloc_rx_page_failed++;
378 goto no_buffers;
379 }
380 bi->page_offset = 0;
381 } else {
382 /* use a half page if we're re-using */
383 bi->page_offset ^= (PAGE_SIZE / 2);
384 }
385
386 bi->page_dma = dma_map_page(&pdev->dev, bi->page,
387 bi->page_offset,
388 (PAGE_SIZE / 2),
389 DMA_FROM_DEVICE);
390 }
391
392 skb = bi->skb;
393 if (!skb) {
394 skb = netdev_alloc_skb(adapter->netdev,
395 bufsz);
396
397 if (!skb) {
398 adapter->alloc_rx_buff_failed++;
399 goto no_buffers;
400 }
401
402 /*
403 * Make buffer alignment 2 beyond a 16 byte boundary
404 * this will result in a 16 byte aligned IP header after
405 * the 14 byte MAC header is removed
406 */
407 skb_reserve(skb, NET_IP_ALIGN);
408
409 bi->skb = skb;
410 }
411 if (!bi->dma) {
412 bi->dma = dma_map_single(&pdev->dev, skb->data,
413 rx_ring->rx_buf_len,
414 DMA_FROM_DEVICE);
415 }
416 /* Refresh the desc even if buffer_addrs didn't change because
417 * each write-back erases this info. */
418 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
419 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
420 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
421 } else {
422 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
423 }
424
425 i++;
426 if (i == rx_ring->count)
427 i = 0;
428 bi = &rx_ring->rx_buffer_info[i];
429 }
430
431 no_buffers:
432 if (rx_ring->next_to_use != i) {
433 rx_ring->next_to_use = i;
434 if (i-- == 0)
435 i = (rx_ring->count - 1);
436
437 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
438 }
439 }
440
441 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
442 u64 qmask)
443 {
444 u32 mask;
445 struct ixgbe_hw *hw = &adapter->hw;
446
447 mask = (qmask & 0xFFFFFFFF);
448 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
449 }
450
451 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
452 {
453 return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
454 }
455
456 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
457 {
458 return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
459 }
460
461 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
462 struct ixgbevf_ring *rx_ring,
463 int *work_done, int work_to_do)
464 {
465 struct ixgbevf_adapter *adapter = q_vector->adapter;
466 struct pci_dev *pdev = adapter->pdev;
467 union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
468 struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
469 struct sk_buff *skb;
470 unsigned int i;
471 u32 len, staterr;
472 u16 hdr_info;
473 bool cleaned = false;
474 int cleaned_count = 0;
475 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
476
477 i = rx_ring->next_to_clean;
478 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
479 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
480 rx_buffer_info = &rx_ring->rx_buffer_info[i];
481
482 while (staterr & IXGBE_RXD_STAT_DD) {
483 u32 upper_len = 0;
484 if (*work_done >= work_to_do)
485 break;
486 (*work_done)++;
487
488 rmb(); /* read descriptor and rx_buffer_info after status DD */
489 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
490 hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
491 len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
492 IXGBE_RXDADV_HDRBUFLEN_SHIFT;
493 if (hdr_info & IXGBE_RXDADV_SPH)
494 adapter->rx_hdr_split++;
495 if (len > IXGBEVF_RX_HDR_SIZE)
496 len = IXGBEVF_RX_HDR_SIZE;
497 upper_len = le16_to_cpu(rx_desc->wb.upper.length);
498 } else {
499 len = le16_to_cpu(rx_desc->wb.upper.length);
500 }
501 cleaned = true;
502 skb = rx_buffer_info->skb;
503 prefetch(skb->data - NET_IP_ALIGN);
504 rx_buffer_info->skb = NULL;
505
506 if (rx_buffer_info->dma) {
507 dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
508 rx_ring->rx_buf_len,
509 DMA_FROM_DEVICE);
510 rx_buffer_info->dma = 0;
511 skb_put(skb, len);
512 }
513
514 if (upper_len) {
515 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
516 PAGE_SIZE / 2, DMA_FROM_DEVICE);
517 rx_buffer_info->page_dma = 0;
518 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
519 rx_buffer_info->page,
520 rx_buffer_info->page_offset,
521 upper_len);
522
523 if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
524 (page_count(rx_buffer_info->page) != 1))
525 rx_buffer_info->page = NULL;
526 else
527 get_page(rx_buffer_info->page);
528
529 skb->len += upper_len;
530 skb->data_len += upper_len;
531 skb->truesize += upper_len;
532 }
533
534 i++;
535 if (i == rx_ring->count)
536 i = 0;
537
538 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
539 prefetch(next_rxd);
540 cleaned_count++;
541
542 next_buffer = &rx_ring->rx_buffer_info[i];
543
544 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
545 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
546 rx_buffer_info->skb = next_buffer->skb;
547 rx_buffer_info->dma = next_buffer->dma;
548 next_buffer->skb = skb;
549 next_buffer->dma = 0;
550 } else {
551 skb->next = next_buffer->skb;
552 skb->next->prev = skb;
553 }
554 adapter->non_eop_descs++;
555 goto next_desc;
556 }
557
558 /* ERR_MASK will only have valid bits if EOP set */
559 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
560 dev_kfree_skb_irq(skb);
561 goto next_desc;
562 }
563
564 ixgbevf_rx_checksum(adapter, staterr, skb);
565
566 /* probably a little skewed due to removing CRC */
567 total_rx_bytes += skb->len;
568 total_rx_packets++;
569
570 /*
571 * Work around issue of some types of VM to VM loop back
572 * packets not getting split correctly
573 */
574 if (staterr & IXGBE_RXD_STAT_LB) {
575 u32 header_fixup_len = skb_headlen(skb);
576 if (header_fixup_len < 14)
577 skb_push(skb, header_fixup_len);
578 }
579 skb->protocol = eth_type_trans(skb, adapter->netdev);
580
581 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
582
583 next_desc:
584 rx_desc->wb.upper.status_error = 0;
585
586 /* return some buffers to hardware, one at a time is too slow */
587 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
588 ixgbevf_alloc_rx_buffers(adapter, rx_ring,
589 cleaned_count);
590 cleaned_count = 0;
591 }
592
593 /* use prefetched values */
594 rx_desc = next_rxd;
595 rx_buffer_info = &rx_ring->rx_buffer_info[i];
596
597 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
598 }
599
600 rx_ring->next_to_clean = i;
601 cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
602
603 if (cleaned_count)
604 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
605
606 u64_stats_update_begin(&rx_ring->syncp);
607 rx_ring->total_packets += total_rx_packets;
608 rx_ring->total_bytes += total_rx_bytes;
609 u64_stats_update_end(&rx_ring->syncp);
610
611 return cleaned;
612 }
613
614 /**
615 * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
616 * @napi: napi struct with our devices info in it
617 * @budget: amount of work driver is allowed to do this pass, in packets
618 *
619 * This function is optimized for cleaning one queue only on a single
620 * q_vector!!!
621 **/
622 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
623 {
624 struct ixgbevf_q_vector *q_vector =
625 container_of(napi, struct ixgbevf_q_vector, napi);
626 struct ixgbevf_adapter *adapter = q_vector->adapter;
627 struct ixgbevf_ring *rx_ring = NULL;
628 int work_done = 0;
629 long r_idx;
630
631 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
632 rx_ring = &(adapter->rx_ring[r_idx]);
633
634 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
635
636 /* If all Rx work done, exit the polling mode */
637 if (work_done < budget) {
638 napi_complete(napi);
639 if (adapter->itr_setting & 1)
640 ixgbevf_set_itr_msix(q_vector);
641 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
642 ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
643 }
644
645 return work_done;
646 }
647
648 /**
649 * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
650 * @napi: napi struct with our devices info in it
651 * @budget: amount of work driver is allowed to do this pass, in packets
652 *
653 * This function will clean more than one rx queue associated with a
654 * q_vector.
655 **/
656 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
657 {
658 struct ixgbevf_q_vector *q_vector =
659 container_of(napi, struct ixgbevf_q_vector, napi);
660 struct ixgbevf_adapter *adapter = q_vector->adapter;
661 struct ixgbevf_ring *rx_ring = NULL;
662 int work_done = 0, i;
663 long r_idx;
664 u64 enable_mask = 0;
665
666 /* attempt to distribute budget to each queue fairly, but don't allow
667 * the budget to go below 1 because we'll exit polling */
668 budget /= (q_vector->rxr_count ?: 1);
669 budget = max(budget, 1);
670 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
671 for (i = 0; i < q_vector->rxr_count; i++) {
672 rx_ring = &(adapter->rx_ring[r_idx]);
673 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
674 enable_mask |= rx_ring->v_idx;
675 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
676 r_idx + 1);
677 }
678
679 #ifndef HAVE_NETDEV_NAPI_LIST
680 if (!netif_running(adapter->netdev))
681 work_done = 0;
682
683 #endif
684 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
685 rx_ring = &(adapter->rx_ring[r_idx]);
686
687 /* If all Rx work done, exit the polling mode */
688 if (work_done < budget) {
689 napi_complete(napi);
690 if (adapter->itr_setting & 1)
691 ixgbevf_set_itr_msix(q_vector);
692 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
693 ixgbevf_irq_enable_queues(adapter, enable_mask);
694 }
695
696 return work_done;
697 }
698
699
700 /**
701 * ixgbevf_configure_msix - Configure MSI-X hardware
702 * @adapter: board private structure
703 *
704 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
705 * interrupts.
706 **/
707 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
708 {
709 struct ixgbevf_q_vector *q_vector;
710 struct ixgbe_hw *hw = &adapter->hw;
711 int i, j, q_vectors, v_idx, r_idx;
712 u32 mask;
713
714 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
715
716 /*
717 * Populate the IVAR table and set the ITR values to the
718 * corresponding register.
719 */
720 for (v_idx = 0; v_idx < q_vectors; v_idx++) {
721 q_vector = adapter->q_vector[v_idx];
722 /* XXX for_each_set_bit(...) */
723 r_idx = find_first_bit(q_vector->rxr_idx,
724 adapter->num_rx_queues);
725
726 for (i = 0; i < q_vector->rxr_count; i++) {
727 j = adapter->rx_ring[r_idx].reg_idx;
728 ixgbevf_set_ivar(adapter, 0, j, v_idx);
729 r_idx = find_next_bit(q_vector->rxr_idx,
730 adapter->num_rx_queues,
731 r_idx + 1);
732 }
733 r_idx = find_first_bit(q_vector->txr_idx,
734 adapter->num_tx_queues);
735
736 for (i = 0; i < q_vector->txr_count; i++) {
737 j = adapter->tx_ring[r_idx].reg_idx;
738 ixgbevf_set_ivar(adapter, 1, j, v_idx);
739 r_idx = find_next_bit(q_vector->txr_idx,
740 adapter->num_tx_queues,
741 r_idx + 1);
742 }
743
744 /* if this is a tx only vector halve the interrupt rate */
745 if (q_vector->txr_count && !q_vector->rxr_count)
746 q_vector->eitr = (adapter->eitr_param >> 1);
747 else if (q_vector->rxr_count)
748 /* rx only */
749 q_vector->eitr = adapter->eitr_param;
750
751 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
752 }
753
754 ixgbevf_set_ivar(adapter, -1, 1, v_idx);
755
756 /* set up to autoclear timer, and the vectors */
757 mask = IXGBE_EIMS_ENABLE_MASK;
758 mask &= ~IXGBE_EIMS_OTHER;
759 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
760 }
761
762 enum latency_range {
763 lowest_latency = 0,
764 low_latency = 1,
765 bulk_latency = 2,
766 latency_invalid = 255
767 };
768
769 /**
770 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
771 * @adapter: pointer to adapter
772 * @eitr: eitr setting (ints per sec) to give last timeslice
773 * @itr_setting: current throttle rate in ints/second
774 * @packets: the number of packets during this measurement interval
775 * @bytes: the number of bytes during this measurement interval
776 *
777 * Stores a new ITR value based on packets and byte
778 * counts during the last interrupt. The advantage of per interrupt
779 * computation is faster updates and more accurate ITR for the current
780 * traffic pattern. Constants in this function were computed
781 * based on theoretical maximum wire speed and thresholds were set based
782 * on testing data as well as attempting to minimize response time
783 * while increasing bulk throughput.
784 **/
785 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
786 u32 eitr, u8 itr_setting,
787 int packets, int bytes)
788 {
789 unsigned int retval = itr_setting;
790 u32 timepassed_us;
791 u64 bytes_perint;
792
793 if (packets == 0)
794 goto update_itr_done;
795
796
797 /* simple throttlerate management
798 * 0-20MB/s lowest (100000 ints/s)
799 * 20-100MB/s low (20000 ints/s)
800 * 100-1249MB/s bulk (8000 ints/s)
801 */
802 /* what was last interrupt timeslice? */
803 timepassed_us = 1000000/eitr;
804 bytes_perint = bytes / timepassed_us; /* bytes/usec */
805
806 switch (itr_setting) {
807 case lowest_latency:
808 if (bytes_perint > adapter->eitr_low)
809 retval = low_latency;
810 break;
811 case low_latency:
812 if (bytes_perint > adapter->eitr_high)
813 retval = bulk_latency;
814 else if (bytes_perint <= adapter->eitr_low)
815 retval = lowest_latency;
816 break;
817 case bulk_latency:
818 if (bytes_perint <= adapter->eitr_high)
819 retval = low_latency;
820 break;
821 }
822
823 update_itr_done:
824 return retval;
825 }
826
827 /**
828 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
829 * @adapter: pointer to adapter struct
830 * @v_idx: vector index into q_vector array
831 * @itr_reg: new value to be written in *register* format, not ints/s
832 *
833 * This function is made to be called by ethtool and by the driver
834 * when it needs to update VTEITR registers at runtime. Hardware
835 * specific quirks/differences are taken care of here.
836 */
837 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
838 u32 itr_reg)
839 {
840 struct ixgbe_hw *hw = &adapter->hw;
841
842 itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
843
844 /*
845 * set the WDIS bit to not clear the timer bits and cause an
846 * immediate assertion of the interrupt
847 */
848 itr_reg |= IXGBE_EITR_CNT_WDIS;
849
850 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
851 }
852
853 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
854 {
855 struct ixgbevf_adapter *adapter = q_vector->adapter;
856 u32 new_itr;
857 u8 current_itr, ret_itr;
858 int i, r_idx, v_idx = q_vector->v_idx;
859 struct ixgbevf_ring *rx_ring, *tx_ring;
860
861 r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
862 for (i = 0; i < q_vector->txr_count; i++) {
863 tx_ring = &(adapter->tx_ring[r_idx]);
864 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
865 q_vector->tx_itr,
866 tx_ring->total_packets,
867 tx_ring->total_bytes);
868 /* if the result for this queue would decrease interrupt
869 * rate for this vector then use that result */
870 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
871 q_vector->tx_itr - 1 : ret_itr);
872 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
873 r_idx + 1);
874 }
875
876 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
877 for (i = 0; i < q_vector->rxr_count; i++) {
878 rx_ring = &(adapter->rx_ring[r_idx]);
879 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
880 q_vector->rx_itr,
881 rx_ring->total_packets,
882 rx_ring->total_bytes);
883 /* if the result for this queue would decrease interrupt
884 * rate for this vector then use that result */
885 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
886 q_vector->rx_itr - 1 : ret_itr);
887 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
888 r_idx + 1);
889 }
890
891 current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
892
893 switch (current_itr) {
894 /* counts and packets in update_itr are dependent on these numbers */
895 case lowest_latency:
896 new_itr = 100000;
897 break;
898 case low_latency:
899 new_itr = 20000; /* aka hwitr = ~200 */
900 break;
901 case bulk_latency:
902 default:
903 new_itr = 8000;
904 break;
905 }
906
907 if (new_itr != q_vector->eitr) {
908 u32 itr_reg;
909
910 /* save the algorithm value here, not the smoothed one */
911 q_vector->eitr = new_itr;
912 /* do an exponential smoothing */
913 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
914 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
915 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
916 }
917 }
918
919 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
920 {
921 struct net_device *netdev = data;
922 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
923 struct ixgbe_hw *hw = &adapter->hw;
924 u32 eicr;
925 u32 msg;
926 bool got_ack = false;
927
928 eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
929 IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
930
931 if (!hw->mbx.ops.check_for_ack(hw))
932 got_ack = true;
933
934 if (!hw->mbx.ops.check_for_msg(hw)) {
935 hw->mbx.ops.read(hw, &msg, 1);
936
937 if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
938 mod_timer(&adapter->watchdog_timer,
939 round_jiffies(jiffies + 1));
940
941 if (msg & IXGBE_VT_MSGTYPE_NACK)
942 pr_warn("Last Request of type %2.2x to PF Nacked\n",
943 msg & 0xFF);
944 /*
945 * Restore the PFSTS bit in case someone is polling for a
946 * return message from the PF
947 */
948 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFSTS;
949 }
950
951 /*
952 * checking for the ack clears the PFACK bit. Place
953 * it back in the v2p_mailbox cache so that anyone
954 * polling for an ack will not miss it
955 */
956 if (got_ack)
957 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
958
959 return IRQ_HANDLED;
960 }
961
962 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
963 {
964 struct ixgbevf_q_vector *q_vector = data;
965 struct ixgbevf_adapter *adapter = q_vector->adapter;
966 struct ixgbevf_ring *tx_ring;
967 int i, r_idx;
968
969 if (!q_vector->txr_count)
970 return IRQ_HANDLED;
971
972 r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
973 for (i = 0; i < q_vector->txr_count; i++) {
974 tx_ring = &(adapter->tx_ring[r_idx]);
975 ixgbevf_clean_tx_irq(adapter, tx_ring);
976 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
977 r_idx + 1);
978 }
979
980 if (adapter->itr_setting & 1)
981 ixgbevf_set_itr_msix(q_vector);
982
983 return IRQ_HANDLED;
984 }
985
986 /**
987 * ixgbevf_msix_clean_rx - single unshared vector rx clean (all queues)
988 * @irq: unused
989 * @data: pointer to our q_vector struct for this interrupt vector
990 **/
991 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
992 {
993 struct ixgbevf_q_vector *q_vector = data;
994 struct ixgbevf_adapter *adapter = q_vector->adapter;
995 struct ixgbe_hw *hw = &adapter->hw;
996 struct ixgbevf_ring *rx_ring;
997 int r_idx;
998
999 if (!q_vector->rxr_count)
1000 return IRQ_HANDLED;
1001
1002 r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1003 rx_ring = &(adapter->rx_ring[r_idx]);
1004 /* disable interrupts on this vector only */
1005 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1006 napi_schedule(&q_vector->napi);
1007
1008
1009 return IRQ_HANDLED;
1010 }
1011
1012 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1013 {
1014 ixgbevf_msix_clean_rx(irq, data);
1015 ixgbevf_msix_clean_tx(irq, data);
1016
1017 return IRQ_HANDLED;
1018 }
1019
1020 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1021 int r_idx)
1022 {
1023 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1024
1025 set_bit(r_idx, q_vector->rxr_idx);
1026 q_vector->rxr_count++;
1027 a->rx_ring[r_idx].v_idx = 1 << v_idx;
1028 }
1029
1030 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1031 int t_idx)
1032 {
1033 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1034
1035 set_bit(t_idx, q_vector->txr_idx);
1036 q_vector->txr_count++;
1037 a->tx_ring[t_idx].v_idx = 1 << v_idx;
1038 }
1039
1040 /**
1041 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1042 * @adapter: board private structure to initialize
1043 *
1044 * This function maps descriptor rings to the queue-specific vectors
1045 * we were allotted through the MSI-X enabling code. Ideally, we'd have
1046 * one vector per ring/queue, but on a constrained vector budget, we
1047 * group the rings as "efficiently" as possible. You would add new
1048 * mapping configurations in here.
1049 **/
1050 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1051 {
1052 int q_vectors;
1053 int v_start = 0;
1054 int rxr_idx = 0, txr_idx = 0;
1055 int rxr_remaining = adapter->num_rx_queues;
1056 int txr_remaining = adapter->num_tx_queues;
1057 int i, j;
1058 int rqpv, tqpv;
1059 int err = 0;
1060
1061 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1062
1063 /*
1064 * The ideal configuration...
1065 * We have enough vectors to map one per queue.
1066 */
1067 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1068 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1069 map_vector_to_rxq(adapter, v_start, rxr_idx);
1070
1071 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1072 map_vector_to_txq(adapter, v_start, txr_idx);
1073 goto out;
1074 }
1075
1076 /*
1077 * If we don't have enough vectors for a 1-to-1
1078 * mapping, we'll have to group them so there are
1079 * multiple queues per vector.
1080 */
1081 /* Re-adjusting *qpv takes care of the remainder. */
1082 for (i = v_start; i < q_vectors; i++) {
1083 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1084 for (j = 0; j < rqpv; j++) {
1085 map_vector_to_rxq(adapter, i, rxr_idx);
1086 rxr_idx++;
1087 rxr_remaining--;
1088 }
1089 }
1090 for (i = v_start; i < q_vectors; i++) {
1091 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1092 for (j = 0; j < tqpv; j++) {
1093 map_vector_to_txq(adapter, i, txr_idx);
1094 txr_idx++;
1095 txr_remaining--;
1096 }
1097 }
1098
1099 out:
1100 return err;
1101 }
1102
1103 /**
1104 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1105 * @adapter: board private structure
1106 *
1107 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1108 * interrupts from the kernel.
1109 **/
1110 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1111 {
1112 struct net_device *netdev = adapter->netdev;
1113 irqreturn_t (*handler)(int, void *);
1114 int i, vector, q_vectors, err;
1115 int ri = 0, ti = 0;
1116
1117 /* Decrement for Other and TCP Timer vectors */
1118 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1119
1120 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count) \
1121 ? &ixgbevf_msix_clean_many : \
1122 (_v)->rxr_count ? &ixgbevf_msix_clean_rx : \
1123 (_v)->txr_count ? &ixgbevf_msix_clean_tx : \
1124 NULL)
1125 for (vector = 0; vector < q_vectors; vector++) {
1126 handler = SET_HANDLER(adapter->q_vector[vector]);
1127
1128 if (handler == &ixgbevf_msix_clean_rx) {
1129 sprintf(adapter->name[vector], "%s-%s-%d",
1130 netdev->name, "rx", ri++);
1131 } else if (handler == &ixgbevf_msix_clean_tx) {
1132 sprintf(adapter->name[vector], "%s-%s-%d",
1133 netdev->name, "tx", ti++);
1134 } else if (handler == &ixgbevf_msix_clean_many) {
1135 sprintf(adapter->name[vector], "%s-%s-%d",
1136 netdev->name, "TxRx", vector);
1137 } else {
1138 /* skip this unused q_vector */
1139 continue;
1140 }
1141 err = request_irq(adapter->msix_entries[vector].vector,
1142 handler, 0, adapter->name[vector],
1143 adapter->q_vector[vector]);
1144 if (err) {
1145 hw_dbg(&adapter->hw,
1146 "request_irq failed for MSIX interrupt "
1147 "Error: %d\n", err);
1148 goto free_queue_irqs;
1149 }
1150 }
1151
1152 sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1153 err = request_irq(adapter->msix_entries[vector].vector,
1154 &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1155 if (err) {
1156 hw_dbg(&adapter->hw,
1157 "request_irq for msix_mbx failed: %d\n", err);
1158 goto free_queue_irqs;
1159 }
1160
1161 return 0;
1162
1163 free_queue_irqs:
1164 for (i = vector - 1; i >= 0; i--)
1165 free_irq(adapter->msix_entries[--vector].vector,
1166 &(adapter->q_vector[i]));
1167 pci_disable_msix(adapter->pdev);
1168 kfree(adapter->msix_entries);
1169 adapter->msix_entries = NULL;
1170 return err;
1171 }
1172
1173 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1174 {
1175 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1176
1177 for (i = 0; i < q_vectors; i++) {
1178 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1179 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1180 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1181 q_vector->rxr_count = 0;
1182 q_vector->txr_count = 0;
1183 q_vector->eitr = adapter->eitr_param;
1184 }
1185 }
1186
1187 /**
1188 * ixgbevf_request_irq - initialize interrupts
1189 * @adapter: board private structure
1190 *
1191 * Attempts to configure interrupts using the best available
1192 * capabilities of the hardware and kernel.
1193 **/
1194 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1195 {
1196 int err = 0;
1197
1198 err = ixgbevf_request_msix_irqs(adapter);
1199
1200 if (err)
1201 hw_dbg(&adapter->hw,
1202 "request_irq failed, Error %d\n", err);
1203
1204 return err;
1205 }
1206
1207 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1208 {
1209 struct net_device *netdev = adapter->netdev;
1210 int i, q_vectors;
1211
1212 q_vectors = adapter->num_msix_vectors;
1213
1214 i = q_vectors - 1;
1215
1216 free_irq(adapter->msix_entries[i].vector, netdev);
1217 i--;
1218
1219 for (; i >= 0; i--) {
1220 free_irq(adapter->msix_entries[i].vector,
1221 adapter->q_vector[i]);
1222 }
1223
1224 ixgbevf_reset_q_vectors(adapter);
1225 }
1226
1227 /**
1228 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1229 * @adapter: board private structure
1230 **/
1231 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1232 {
1233 int i;
1234 struct ixgbe_hw *hw = &adapter->hw;
1235
1236 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1237
1238 IXGBE_WRITE_FLUSH(hw);
1239
1240 for (i = 0; i < adapter->num_msix_vectors; i++)
1241 synchronize_irq(adapter->msix_entries[i].vector);
1242 }
1243
1244 /**
1245 * ixgbevf_irq_enable - Enable default interrupt generation settings
1246 * @adapter: board private structure
1247 **/
1248 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1249 bool queues, bool flush)
1250 {
1251 struct ixgbe_hw *hw = &adapter->hw;
1252 u32 mask;
1253 u64 qmask;
1254
1255 mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1256 qmask = ~0;
1257
1258 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1259
1260 if (queues)
1261 ixgbevf_irq_enable_queues(adapter, qmask);
1262
1263 if (flush)
1264 IXGBE_WRITE_FLUSH(hw);
1265 }
1266
1267 /**
1268 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1269 * @adapter: board private structure
1270 *
1271 * Configure the Tx unit of the MAC after a reset.
1272 **/
1273 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1274 {
1275 u64 tdba;
1276 struct ixgbe_hw *hw = &adapter->hw;
1277 u32 i, j, tdlen, txctrl;
1278
1279 /* Setup the HW Tx Head and Tail descriptor pointers */
1280 for (i = 0; i < adapter->num_tx_queues; i++) {
1281 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1282 j = ring->reg_idx;
1283 tdba = ring->dma;
1284 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1285 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1286 (tdba & DMA_BIT_MASK(32)));
1287 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1288 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1289 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1290 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1291 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1292 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1293 /* Disable Tx Head Writeback RO bit, since this hoses
1294 * bookkeeping if things aren't delivered in order.
1295 */
1296 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1297 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1298 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1299 }
1300 }
1301
1302 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1303
1304 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1305 {
1306 struct ixgbevf_ring *rx_ring;
1307 struct ixgbe_hw *hw = &adapter->hw;
1308 u32 srrctl;
1309
1310 rx_ring = &adapter->rx_ring[index];
1311
1312 srrctl = IXGBE_SRRCTL_DROP_EN;
1313
1314 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1315 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1316 /* grow the amount we can receive on large page machines */
1317 if (bufsz < (PAGE_SIZE / 2))
1318 bufsz = (PAGE_SIZE / 2);
1319 /* cap the bufsz at our largest descriptor size */
1320 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1321
1322 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1323 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1324 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1325 IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1326 IXGBE_SRRCTL_BSIZEHDR_MASK);
1327 } else {
1328 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1329
1330 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1331 srrctl |= IXGBEVF_RXBUFFER_2048 >>
1332 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1333 else
1334 srrctl |= rx_ring->rx_buf_len >>
1335 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1336 }
1337 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1338 }
1339
1340 /**
1341 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1342 * @adapter: board private structure
1343 *
1344 * Configure the Rx unit of the MAC after a reset.
1345 **/
1346 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1347 {
1348 u64 rdba;
1349 struct ixgbe_hw *hw = &adapter->hw;
1350 struct net_device *netdev = adapter->netdev;
1351 int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1352 int i, j;
1353 u32 rdlen;
1354 int rx_buf_len;
1355
1356 /* Decide whether to use packet split mode or not */
1357 if (netdev->mtu > ETH_DATA_LEN) {
1358 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1359 adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1360 else
1361 adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1362 } else {
1363 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1364 adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1365 else
1366 adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1367 }
1368
1369 /* Set the RX buffer length according to the mode */
1370 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1371 /* PSRTYPE must be initialized in 82599 */
1372 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1373 IXGBE_PSRTYPE_UDPHDR |
1374 IXGBE_PSRTYPE_IPV4HDR |
1375 IXGBE_PSRTYPE_IPV6HDR |
1376 IXGBE_PSRTYPE_L2HDR;
1377 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1378 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1379 } else {
1380 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1381 if (netdev->mtu <= ETH_DATA_LEN)
1382 rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1383 else
1384 rx_buf_len = ALIGN(max_frame, 1024);
1385 }
1386
1387 rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1388 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1389 * the Base and Length of the Rx Descriptor Ring */
1390 for (i = 0; i < adapter->num_rx_queues; i++) {
1391 rdba = adapter->rx_ring[i].dma;
1392 j = adapter->rx_ring[i].reg_idx;
1393 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1394 (rdba & DMA_BIT_MASK(32)));
1395 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1396 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1397 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1398 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1399 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1400 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1401 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1402
1403 ixgbevf_configure_srrctl(adapter, j);
1404 }
1405 }
1406
1407 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1408 {
1409 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1410 struct ixgbe_hw *hw = &adapter->hw;
1411
1412 /* add VID to filter table */
1413 if (hw->mac.ops.set_vfta)
1414 hw->mac.ops.set_vfta(hw, vid, 0, true);
1415 set_bit(vid, adapter->active_vlans);
1416
1417 return 0;
1418 }
1419
1420 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1421 {
1422 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1423 struct ixgbe_hw *hw = &adapter->hw;
1424
1425 /* remove VID from filter table */
1426 if (hw->mac.ops.set_vfta)
1427 hw->mac.ops.set_vfta(hw, vid, 0, false);
1428 clear_bit(vid, adapter->active_vlans);
1429
1430 return 0;
1431 }
1432
1433 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1434 {
1435 u16 vid;
1436
1437 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1438 ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1439 }
1440
1441 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1442 {
1443 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1444 struct ixgbe_hw *hw = &adapter->hw;
1445 int count = 0;
1446
1447 if ((netdev_uc_count(netdev)) > 10) {
1448 pr_err("Too many unicast filters - No Space\n");
1449 return -ENOSPC;
1450 }
1451
1452 if (!netdev_uc_empty(netdev)) {
1453 struct netdev_hw_addr *ha;
1454 netdev_for_each_uc_addr(ha, netdev) {
1455 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1456 udelay(200);
1457 }
1458 } else {
1459 /*
1460 * If the list is empty then send message to PF driver to
1461 * clear all macvlans on this VF.
1462 */
1463 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1464 }
1465
1466 return count;
1467 }
1468
1469 /**
1470 * ixgbevf_set_rx_mode - Multicast set
1471 * @netdev: network interface device structure
1472 *
1473 * The set_rx_method entry point is called whenever the multicast address
1474 * list or the network interface flags are updated. This routine is
1475 * responsible for configuring the hardware for proper multicast mode.
1476 **/
1477 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1478 {
1479 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1480 struct ixgbe_hw *hw = &adapter->hw;
1481
1482 /* reprogram multicast list */
1483 if (hw->mac.ops.update_mc_addr_list)
1484 hw->mac.ops.update_mc_addr_list(hw, netdev);
1485
1486 ixgbevf_write_uc_addr_list(netdev);
1487 }
1488
1489 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1490 {
1491 int q_idx;
1492 struct ixgbevf_q_vector *q_vector;
1493 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1494
1495 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1496 struct napi_struct *napi;
1497 q_vector = adapter->q_vector[q_idx];
1498 if (!q_vector->rxr_count)
1499 continue;
1500 napi = &q_vector->napi;
1501 if (q_vector->rxr_count > 1)
1502 napi->poll = &ixgbevf_clean_rxonly_many;
1503
1504 napi_enable(napi);
1505 }
1506 }
1507
1508 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1509 {
1510 int q_idx;
1511 struct ixgbevf_q_vector *q_vector;
1512 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1513
1514 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1515 q_vector = adapter->q_vector[q_idx];
1516 if (!q_vector->rxr_count)
1517 continue;
1518 napi_disable(&q_vector->napi);
1519 }
1520 }
1521
1522 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1523 {
1524 struct net_device *netdev = adapter->netdev;
1525 int i;
1526
1527 ixgbevf_set_rx_mode(netdev);
1528
1529 ixgbevf_restore_vlan(adapter);
1530
1531 ixgbevf_configure_tx(adapter);
1532 ixgbevf_configure_rx(adapter);
1533 for (i = 0; i < adapter->num_rx_queues; i++) {
1534 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1535 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1536 ring->next_to_use = ring->count - 1;
1537 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1538 }
1539 }
1540
1541 #define IXGBE_MAX_RX_DESC_POLL 10
1542 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1543 int rxr)
1544 {
1545 struct ixgbe_hw *hw = &adapter->hw;
1546 int j = adapter->rx_ring[rxr].reg_idx;
1547 int k;
1548
1549 for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1550 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1551 break;
1552 else
1553 msleep(1);
1554 }
1555 if (k >= IXGBE_MAX_RX_DESC_POLL) {
1556 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1557 "not set within the polling period\n", rxr);
1558 }
1559
1560 ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1561 (adapter->rx_ring[rxr].count - 1));
1562 }
1563
1564 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1565 {
1566 /* Only save pre-reset stats if there are some */
1567 if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1568 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1569 adapter->stats.base_vfgprc;
1570 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1571 adapter->stats.base_vfgptc;
1572 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1573 adapter->stats.base_vfgorc;
1574 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1575 adapter->stats.base_vfgotc;
1576 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1577 adapter->stats.base_vfmprc;
1578 }
1579 }
1580
1581 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1582 {
1583 struct ixgbe_hw *hw = &adapter->hw;
1584
1585 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1586 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1587 adapter->stats.last_vfgorc |=
1588 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1589 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1590 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1591 adapter->stats.last_vfgotc |=
1592 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1593 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1594
1595 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1596 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1597 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1598 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1599 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1600 }
1601
1602 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1603 {
1604 struct net_device *netdev = adapter->netdev;
1605 struct ixgbe_hw *hw = &adapter->hw;
1606 int i, j = 0;
1607 int num_rx_rings = adapter->num_rx_queues;
1608 u32 txdctl, rxdctl;
1609 u32 msg[2];
1610
1611 for (i = 0; i < adapter->num_tx_queues; i++) {
1612 j = adapter->tx_ring[i].reg_idx;
1613 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1614 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1615 txdctl |= (8 << 16);
1616 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1617 }
1618
1619 for (i = 0; i < adapter->num_tx_queues; i++) {
1620 j = adapter->tx_ring[i].reg_idx;
1621 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1622 txdctl |= IXGBE_TXDCTL_ENABLE;
1623 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1624 }
1625
1626 for (i = 0; i < num_rx_rings; i++) {
1627 j = adapter->rx_ring[i].reg_idx;
1628 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1629 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1630 if (hw->mac.type == ixgbe_mac_X540_vf) {
1631 rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1632 rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1633 IXGBE_RXDCTL_RLPML_EN);
1634 }
1635 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1636 ixgbevf_rx_desc_queue_enable(adapter, i);
1637 }
1638
1639 ixgbevf_configure_msix(adapter);
1640
1641 if (hw->mac.ops.set_rar) {
1642 if (is_valid_ether_addr(hw->mac.addr))
1643 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1644 else
1645 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1646 }
1647
1648 msg[0] = IXGBE_VF_SET_LPE;
1649 msg[1] = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1650 hw->mbx.ops.write_posted(hw, msg, 2);
1651
1652 clear_bit(__IXGBEVF_DOWN, &adapter->state);
1653 ixgbevf_napi_enable_all(adapter);
1654
1655 /* enable transmits */
1656 netif_tx_start_all_queues(netdev);
1657
1658 ixgbevf_save_reset_stats(adapter);
1659 ixgbevf_init_last_counter_stats(adapter);
1660
1661 /* bring the link up in the watchdog, this could race with our first
1662 * link up interrupt but shouldn't be a problem */
1663 adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1664 adapter->link_check_timeout = jiffies;
1665 mod_timer(&adapter->watchdog_timer, jiffies);
1666 }
1667
1668 void ixgbevf_up(struct ixgbevf_adapter *adapter)
1669 {
1670 struct ixgbe_hw *hw = &adapter->hw;
1671
1672 ixgbevf_configure(adapter);
1673
1674 ixgbevf_up_complete(adapter);
1675
1676 /* clear any pending interrupts, may auto mask */
1677 IXGBE_READ_REG(hw, IXGBE_VTEICR);
1678
1679 ixgbevf_irq_enable(adapter, true, true);
1680 }
1681
1682 /**
1683 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1684 * @adapter: board private structure
1685 * @rx_ring: ring to free buffers from
1686 **/
1687 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1688 struct ixgbevf_ring *rx_ring)
1689 {
1690 struct pci_dev *pdev = adapter->pdev;
1691 unsigned long size;
1692 unsigned int i;
1693
1694 if (!rx_ring->rx_buffer_info)
1695 return;
1696
1697 /* Free all the Rx ring sk_buffs */
1698 for (i = 0; i < rx_ring->count; i++) {
1699 struct ixgbevf_rx_buffer *rx_buffer_info;
1700
1701 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1702 if (rx_buffer_info->dma) {
1703 dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1704 rx_ring->rx_buf_len,
1705 DMA_FROM_DEVICE);
1706 rx_buffer_info->dma = 0;
1707 }
1708 if (rx_buffer_info->skb) {
1709 struct sk_buff *skb = rx_buffer_info->skb;
1710 rx_buffer_info->skb = NULL;
1711 do {
1712 struct sk_buff *this = skb;
1713 skb = skb->prev;
1714 dev_kfree_skb(this);
1715 } while (skb);
1716 }
1717 if (!rx_buffer_info->page)
1718 continue;
1719 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1720 PAGE_SIZE / 2, DMA_FROM_DEVICE);
1721 rx_buffer_info->page_dma = 0;
1722 put_page(rx_buffer_info->page);
1723 rx_buffer_info->page = NULL;
1724 rx_buffer_info->page_offset = 0;
1725 }
1726
1727 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1728 memset(rx_ring->rx_buffer_info, 0, size);
1729
1730 /* Zero out the descriptor ring */
1731 memset(rx_ring->desc, 0, rx_ring->size);
1732
1733 rx_ring->next_to_clean = 0;
1734 rx_ring->next_to_use = 0;
1735
1736 if (rx_ring->head)
1737 writel(0, adapter->hw.hw_addr + rx_ring->head);
1738 if (rx_ring->tail)
1739 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1740 }
1741
1742 /**
1743 * ixgbevf_clean_tx_ring - Free Tx Buffers
1744 * @adapter: board private structure
1745 * @tx_ring: ring to be cleaned
1746 **/
1747 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1748 struct ixgbevf_ring *tx_ring)
1749 {
1750 struct ixgbevf_tx_buffer *tx_buffer_info;
1751 unsigned long size;
1752 unsigned int i;
1753
1754 if (!tx_ring->tx_buffer_info)
1755 return;
1756
1757 /* Free all the Tx ring sk_buffs */
1758
1759 for (i = 0; i < tx_ring->count; i++) {
1760 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1761 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1762 }
1763
1764 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1765 memset(tx_ring->tx_buffer_info, 0, size);
1766
1767 memset(tx_ring->desc, 0, tx_ring->size);
1768
1769 tx_ring->next_to_use = 0;
1770 tx_ring->next_to_clean = 0;
1771
1772 if (tx_ring->head)
1773 writel(0, adapter->hw.hw_addr + tx_ring->head);
1774 if (tx_ring->tail)
1775 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1776 }
1777
1778 /**
1779 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1780 * @adapter: board private structure
1781 **/
1782 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1783 {
1784 int i;
1785
1786 for (i = 0; i < adapter->num_rx_queues; i++)
1787 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1788 }
1789
1790 /**
1791 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1792 * @adapter: board private structure
1793 **/
1794 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1795 {
1796 int i;
1797
1798 for (i = 0; i < adapter->num_tx_queues; i++)
1799 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1800 }
1801
1802 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1803 {
1804 struct net_device *netdev = adapter->netdev;
1805 struct ixgbe_hw *hw = &adapter->hw;
1806 u32 txdctl;
1807 int i, j;
1808
1809 /* signal that we are down to the interrupt handler */
1810 set_bit(__IXGBEVF_DOWN, &adapter->state);
1811 /* disable receives */
1812
1813 netif_tx_disable(netdev);
1814
1815 msleep(10);
1816
1817 netif_tx_stop_all_queues(netdev);
1818
1819 ixgbevf_irq_disable(adapter);
1820
1821 ixgbevf_napi_disable_all(adapter);
1822
1823 del_timer_sync(&adapter->watchdog_timer);
1824 /* can't call flush scheduled work here because it can deadlock
1825 * if linkwatch_event tries to acquire the rtnl_lock which we are
1826 * holding */
1827 while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1828 msleep(1);
1829
1830 /* disable transmits in the hardware now that interrupts are off */
1831 for (i = 0; i < adapter->num_tx_queues; i++) {
1832 j = adapter->tx_ring[i].reg_idx;
1833 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1834 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1835 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1836 }
1837
1838 netif_carrier_off(netdev);
1839
1840 if (!pci_channel_offline(adapter->pdev))
1841 ixgbevf_reset(adapter);
1842
1843 ixgbevf_clean_all_tx_rings(adapter);
1844 ixgbevf_clean_all_rx_rings(adapter);
1845 }
1846
1847 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1848 {
1849 struct ixgbe_hw *hw = &adapter->hw;
1850
1851 WARN_ON(in_interrupt());
1852
1853 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1854 msleep(1);
1855
1856 /*
1857 * Check if PF is up before re-init. If not then skip until
1858 * later when the PF is up and ready to service requests from
1859 * the VF via mailbox. If the VF is up and running then the
1860 * watchdog task will continue to schedule reset tasks until
1861 * the PF is up and running.
1862 */
1863 if (!hw->mac.ops.reset_hw(hw)) {
1864 ixgbevf_down(adapter);
1865 ixgbevf_up(adapter);
1866 }
1867
1868 clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1869 }
1870
1871 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1872 {
1873 struct ixgbe_hw *hw = &adapter->hw;
1874 struct net_device *netdev = adapter->netdev;
1875
1876 if (hw->mac.ops.reset_hw(hw))
1877 hw_dbg(hw, "PF still resetting\n");
1878 else
1879 hw->mac.ops.init_hw(hw);
1880
1881 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1882 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1883 netdev->addr_len);
1884 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1885 netdev->addr_len);
1886 }
1887 }
1888
1889 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1890 int vectors)
1891 {
1892 int err, vector_threshold;
1893
1894 /* We'll want at least 3 (vector_threshold):
1895 * 1) TxQ[0] Cleanup
1896 * 2) RxQ[0] Cleanup
1897 * 3) Other (Link Status Change, etc.)
1898 */
1899 vector_threshold = MIN_MSIX_COUNT;
1900
1901 /* The more we get, the more we will assign to Tx/Rx Cleanup
1902 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1903 * Right now, we simply care about how many we'll get; we'll
1904 * set them up later while requesting irq's.
1905 */
1906 while (vectors >= vector_threshold) {
1907 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1908 vectors);
1909 if (!err) /* Success in acquiring all requested vectors. */
1910 break;
1911 else if (err < 0)
1912 vectors = 0; /* Nasty failure, quit now */
1913 else /* err == number of vectors we should try again with */
1914 vectors = err;
1915 }
1916
1917 if (vectors < vector_threshold) {
1918 /* Can't allocate enough MSI-X interrupts? Oh well.
1919 * This just means we'll go with either a single MSI
1920 * vector or fall back to legacy interrupts.
1921 */
1922 hw_dbg(&adapter->hw,
1923 "Unable to allocate MSI-X interrupts\n");
1924 kfree(adapter->msix_entries);
1925 adapter->msix_entries = NULL;
1926 } else {
1927 /*
1928 * Adjust for only the vectors we'll use, which is minimum
1929 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1930 * vectors we were allocated.
1931 */
1932 adapter->num_msix_vectors = vectors;
1933 }
1934 }
1935
1936 /*
1937 * ixgbevf_set_num_queues: Allocate queues for device, feature dependent
1938 * @adapter: board private structure to initialize
1939 *
1940 * This is the top level queue allocation routine. The order here is very
1941 * important, starting with the "most" number of features turned on at once,
1942 * and ending with the smallest set of features. This way large combinations
1943 * can be allocated if they're turned on, and smaller combinations are the
1944 * fallthrough conditions.
1945 *
1946 **/
1947 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1948 {
1949 /* Start with base case */
1950 adapter->num_rx_queues = 1;
1951 adapter->num_tx_queues = 1;
1952 adapter->num_rx_pools = adapter->num_rx_queues;
1953 adapter->num_rx_queues_per_pool = 1;
1954 }
1955
1956 /**
1957 * ixgbevf_alloc_queues - Allocate memory for all rings
1958 * @adapter: board private structure to initialize
1959 *
1960 * We allocate one ring per queue at run-time since we don't know the
1961 * number of queues at compile-time. The polling_netdev array is
1962 * intended for Multiqueue, but should work fine with a single queue.
1963 **/
1964 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1965 {
1966 int i;
1967
1968 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1969 sizeof(struct ixgbevf_ring), GFP_KERNEL);
1970 if (!adapter->tx_ring)
1971 goto err_tx_ring_allocation;
1972
1973 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1974 sizeof(struct ixgbevf_ring), GFP_KERNEL);
1975 if (!adapter->rx_ring)
1976 goto err_rx_ring_allocation;
1977
1978 for (i = 0; i < adapter->num_tx_queues; i++) {
1979 adapter->tx_ring[i].count = adapter->tx_ring_count;
1980 adapter->tx_ring[i].queue_index = i;
1981 adapter->tx_ring[i].reg_idx = i;
1982 }
1983
1984 for (i = 0; i < adapter->num_rx_queues; i++) {
1985 adapter->rx_ring[i].count = adapter->rx_ring_count;
1986 adapter->rx_ring[i].queue_index = i;
1987 adapter->rx_ring[i].reg_idx = i;
1988 }
1989
1990 return 0;
1991
1992 err_rx_ring_allocation:
1993 kfree(adapter->tx_ring);
1994 err_tx_ring_allocation:
1995 return -ENOMEM;
1996 }
1997
1998 /**
1999 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2000 * @adapter: board private structure to initialize
2001 *
2002 * Attempt to configure the interrupts using the best available
2003 * capabilities of the hardware and the kernel.
2004 **/
2005 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2006 {
2007 int err = 0;
2008 int vector, v_budget;
2009
2010 /*
2011 * It's easy to be greedy for MSI-X vectors, but it really
2012 * doesn't do us much good if we have a lot more vectors
2013 * than CPU's. So let's be conservative and only ask for
2014 * (roughly) twice the number of vectors as there are CPU's.
2015 */
2016 v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2017 (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2018
2019 /* A failure in MSI-X entry allocation isn't fatal, but it does
2020 * mean we disable MSI-X capabilities of the adapter. */
2021 adapter->msix_entries = kcalloc(v_budget,
2022 sizeof(struct msix_entry), GFP_KERNEL);
2023 if (!adapter->msix_entries) {
2024 err = -ENOMEM;
2025 goto out;
2026 }
2027
2028 for (vector = 0; vector < v_budget; vector++)
2029 adapter->msix_entries[vector].entry = vector;
2030
2031 ixgbevf_acquire_msix_vectors(adapter, v_budget);
2032
2033 out:
2034 return err;
2035 }
2036
2037 /**
2038 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2039 * @adapter: board private structure to initialize
2040 *
2041 * We allocate one q_vector per queue interrupt. If allocation fails we
2042 * return -ENOMEM.
2043 **/
2044 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2045 {
2046 int q_idx, num_q_vectors;
2047 struct ixgbevf_q_vector *q_vector;
2048 int napi_vectors;
2049 int (*poll)(struct napi_struct *, int);
2050
2051 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2052 napi_vectors = adapter->num_rx_queues;
2053 poll = &ixgbevf_clean_rxonly;
2054
2055 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2056 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2057 if (!q_vector)
2058 goto err_out;
2059 q_vector->adapter = adapter;
2060 q_vector->v_idx = q_idx;
2061 q_vector->eitr = adapter->eitr_param;
2062 if (q_idx < napi_vectors)
2063 netif_napi_add(adapter->netdev, &q_vector->napi,
2064 (*poll), 64);
2065 adapter->q_vector[q_idx] = q_vector;
2066 }
2067
2068 return 0;
2069
2070 err_out:
2071 while (q_idx) {
2072 q_idx--;
2073 q_vector = adapter->q_vector[q_idx];
2074 netif_napi_del(&q_vector->napi);
2075 kfree(q_vector);
2076 adapter->q_vector[q_idx] = NULL;
2077 }
2078 return -ENOMEM;
2079 }
2080
2081 /**
2082 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2083 * @adapter: board private structure to initialize
2084 *
2085 * This function frees the memory allocated to the q_vectors. In addition if
2086 * NAPI is enabled it will delete any references to the NAPI struct prior
2087 * to freeing the q_vector.
2088 **/
2089 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2090 {
2091 int q_idx, num_q_vectors;
2092 int napi_vectors;
2093
2094 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2095 napi_vectors = adapter->num_rx_queues;
2096
2097 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2098 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2099
2100 adapter->q_vector[q_idx] = NULL;
2101 if (q_idx < napi_vectors)
2102 netif_napi_del(&q_vector->napi);
2103 kfree(q_vector);
2104 }
2105 }
2106
2107 /**
2108 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2109 * @adapter: board private structure
2110 *
2111 **/
2112 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2113 {
2114 pci_disable_msix(adapter->pdev);
2115 kfree(adapter->msix_entries);
2116 adapter->msix_entries = NULL;
2117 }
2118
2119 /**
2120 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2121 * @adapter: board private structure to initialize
2122 *
2123 **/
2124 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2125 {
2126 int err;
2127
2128 /* Number of supported queues */
2129 ixgbevf_set_num_queues(adapter);
2130
2131 err = ixgbevf_set_interrupt_capability(adapter);
2132 if (err) {
2133 hw_dbg(&adapter->hw,
2134 "Unable to setup interrupt capabilities\n");
2135 goto err_set_interrupt;
2136 }
2137
2138 err = ixgbevf_alloc_q_vectors(adapter);
2139 if (err) {
2140 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2141 "vectors\n");
2142 goto err_alloc_q_vectors;
2143 }
2144
2145 err = ixgbevf_alloc_queues(adapter);
2146 if (err) {
2147 pr_err("Unable to allocate memory for queues\n");
2148 goto err_alloc_queues;
2149 }
2150
2151 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2152 "Tx Queue count = %u\n",
2153 (adapter->num_rx_queues > 1) ? "Enabled" :
2154 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2155
2156 set_bit(__IXGBEVF_DOWN, &adapter->state);
2157
2158 return 0;
2159 err_alloc_queues:
2160 ixgbevf_free_q_vectors(adapter);
2161 err_alloc_q_vectors:
2162 ixgbevf_reset_interrupt_capability(adapter);
2163 err_set_interrupt:
2164 return err;
2165 }
2166
2167 /**
2168 * ixgbevf_sw_init - Initialize general software structures
2169 * (struct ixgbevf_adapter)
2170 * @adapter: board private structure to initialize
2171 *
2172 * ixgbevf_sw_init initializes the Adapter private data structure.
2173 * Fields are initialized based on PCI device information and
2174 * OS network device settings (MTU size).
2175 **/
2176 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2177 {
2178 struct ixgbe_hw *hw = &adapter->hw;
2179 struct pci_dev *pdev = adapter->pdev;
2180 int err;
2181
2182 /* PCI config space info */
2183
2184 hw->vendor_id = pdev->vendor;
2185 hw->device_id = pdev->device;
2186 hw->revision_id = pdev->revision;
2187 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2188 hw->subsystem_device_id = pdev->subsystem_device;
2189
2190 hw->mbx.ops.init_params(hw);
2191 hw->mac.max_tx_queues = MAX_TX_QUEUES;
2192 hw->mac.max_rx_queues = MAX_RX_QUEUES;
2193 err = hw->mac.ops.reset_hw(hw);
2194 if (err) {
2195 dev_info(&pdev->dev,
2196 "PF still in reset state, assigning new address\n");
2197 eth_hw_addr_random(adapter->netdev);
2198 memcpy(adapter->hw.mac.addr, adapter->netdev->dev_addr,
2199 adapter->netdev->addr_len);
2200 } else {
2201 err = hw->mac.ops.init_hw(hw);
2202 if (err) {
2203 pr_err("init_shared_code failed: %d\n", err);
2204 goto out;
2205 }
2206 memcpy(adapter->netdev->dev_addr, adapter->hw.mac.addr,
2207 adapter->netdev->addr_len);
2208 }
2209
2210 /* Enable dynamic interrupt throttling rates */
2211 adapter->eitr_param = 20000;
2212 adapter->itr_setting = 1;
2213
2214 /* set defaults for eitr in MegaBytes */
2215 adapter->eitr_low = 10;
2216 adapter->eitr_high = 20;
2217
2218 /* set default ring sizes */
2219 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2220 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2221
2222 /* enable rx csum by default */
2223 adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2224
2225 set_bit(__IXGBEVF_DOWN, &adapter->state);
2226 return 0;
2227
2228 out:
2229 return err;
2230 }
2231
2232 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
2233 { \
2234 u32 current_counter = IXGBE_READ_REG(hw, reg); \
2235 if (current_counter < last_counter) \
2236 counter += 0x100000000LL; \
2237 last_counter = current_counter; \
2238 counter &= 0xFFFFFFFF00000000LL; \
2239 counter |= current_counter; \
2240 }
2241
2242 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2243 { \
2244 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
2245 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
2246 u64 current_counter = (current_counter_msb << 32) | \
2247 current_counter_lsb; \
2248 if (current_counter < last_counter) \
2249 counter += 0x1000000000LL; \
2250 last_counter = current_counter; \
2251 counter &= 0xFFFFFFF000000000LL; \
2252 counter |= current_counter; \
2253 }
2254 /**
2255 * ixgbevf_update_stats - Update the board statistics counters.
2256 * @adapter: board private structure
2257 **/
2258 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2259 {
2260 struct ixgbe_hw *hw = &adapter->hw;
2261
2262 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2263 adapter->stats.vfgprc);
2264 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2265 adapter->stats.vfgptc);
2266 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2267 adapter->stats.last_vfgorc,
2268 adapter->stats.vfgorc);
2269 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2270 adapter->stats.last_vfgotc,
2271 adapter->stats.vfgotc);
2272 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2273 adapter->stats.vfmprc);
2274 }
2275
2276 /**
2277 * ixgbevf_watchdog - Timer Call-back
2278 * @data: pointer to adapter cast into an unsigned long
2279 **/
2280 static void ixgbevf_watchdog(unsigned long data)
2281 {
2282 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2283 struct ixgbe_hw *hw = &adapter->hw;
2284 u64 eics = 0;
2285 int i;
2286
2287 /*
2288 * Do the watchdog outside of interrupt context due to the lovely
2289 * delays that some of the newer hardware requires
2290 */
2291
2292 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2293 goto watchdog_short_circuit;
2294
2295 /* get one bit for every active tx/rx interrupt vector */
2296 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2297 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2298 if (qv->rxr_count || qv->txr_count)
2299 eics |= (1 << i);
2300 }
2301
2302 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2303
2304 watchdog_short_circuit:
2305 schedule_work(&adapter->watchdog_task);
2306 }
2307
2308 /**
2309 * ixgbevf_tx_timeout - Respond to a Tx Hang
2310 * @netdev: network interface device structure
2311 **/
2312 static void ixgbevf_tx_timeout(struct net_device *netdev)
2313 {
2314 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2315
2316 /* Do the reset outside of interrupt context */
2317 schedule_work(&adapter->reset_task);
2318 }
2319
2320 static void ixgbevf_reset_task(struct work_struct *work)
2321 {
2322 struct ixgbevf_adapter *adapter;
2323 adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2324
2325 /* If we're already down or resetting, just bail */
2326 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2327 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2328 return;
2329
2330 adapter->tx_timeout_count++;
2331
2332 ixgbevf_reinit_locked(adapter);
2333 }
2334
2335 /**
2336 * ixgbevf_watchdog_task - worker thread to bring link up
2337 * @work: pointer to work_struct containing our data
2338 **/
2339 static void ixgbevf_watchdog_task(struct work_struct *work)
2340 {
2341 struct ixgbevf_adapter *adapter = container_of(work,
2342 struct ixgbevf_adapter,
2343 watchdog_task);
2344 struct net_device *netdev = adapter->netdev;
2345 struct ixgbe_hw *hw = &adapter->hw;
2346 u32 link_speed = adapter->link_speed;
2347 bool link_up = adapter->link_up;
2348
2349 adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2350
2351 /*
2352 * Always check the link on the watchdog because we have
2353 * no LSC interrupt
2354 */
2355 if (hw->mac.ops.check_link) {
2356 if ((hw->mac.ops.check_link(hw, &link_speed,
2357 &link_up, false)) != 0) {
2358 adapter->link_up = link_up;
2359 adapter->link_speed = link_speed;
2360 netif_carrier_off(netdev);
2361 netif_tx_stop_all_queues(netdev);
2362 schedule_work(&adapter->reset_task);
2363 goto pf_has_reset;
2364 }
2365 } else {
2366 /* always assume link is up, if no check link
2367 * function */
2368 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2369 link_up = true;
2370 }
2371 adapter->link_up = link_up;
2372 adapter->link_speed = link_speed;
2373
2374 if (link_up) {
2375 if (!netif_carrier_ok(netdev)) {
2376 hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2377 (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2378 10 : 1);
2379 netif_carrier_on(netdev);
2380 netif_tx_wake_all_queues(netdev);
2381 }
2382 } else {
2383 adapter->link_up = false;
2384 adapter->link_speed = 0;
2385 if (netif_carrier_ok(netdev)) {
2386 hw_dbg(&adapter->hw, "NIC Link is Down\n");
2387 netif_carrier_off(netdev);
2388 netif_tx_stop_all_queues(netdev);
2389 }
2390 }
2391
2392 ixgbevf_update_stats(adapter);
2393
2394 pf_has_reset:
2395 /* Reset the timer */
2396 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2397 mod_timer(&adapter->watchdog_timer,
2398 round_jiffies(jiffies + (2 * HZ)));
2399
2400 adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2401 }
2402
2403 /**
2404 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2405 * @adapter: board private structure
2406 * @tx_ring: Tx descriptor ring for a specific queue
2407 *
2408 * Free all transmit software resources
2409 **/
2410 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2411 struct ixgbevf_ring *tx_ring)
2412 {
2413 struct pci_dev *pdev = adapter->pdev;
2414
2415 ixgbevf_clean_tx_ring(adapter, tx_ring);
2416
2417 vfree(tx_ring->tx_buffer_info);
2418 tx_ring->tx_buffer_info = NULL;
2419
2420 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2421 tx_ring->dma);
2422
2423 tx_ring->desc = NULL;
2424 }
2425
2426 /**
2427 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2428 * @adapter: board private structure
2429 *
2430 * Free all transmit software resources
2431 **/
2432 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2433 {
2434 int i;
2435
2436 for (i = 0; i < adapter->num_tx_queues; i++)
2437 if (adapter->tx_ring[i].desc)
2438 ixgbevf_free_tx_resources(adapter,
2439 &adapter->tx_ring[i]);
2440
2441 }
2442
2443 /**
2444 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2445 * @adapter: board private structure
2446 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2447 *
2448 * Return 0 on success, negative on failure
2449 **/
2450 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2451 struct ixgbevf_ring *tx_ring)
2452 {
2453 struct pci_dev *pdev = adapter->pdev;
2454 int size;
2455
2456 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2457 tx_ring->tx_buffer_info = vzalloc(size);
2458 if (!tx_ring->tx_buffer_info)
2459 goto err;
2460
2461 /* round up to nearest 4K */
2462 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2463 tx_ring->size = ALIGN(tx_ring->size, 4096);
2464
2465 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2466 &tx_ring->dma, GFP_KERNEL);
2467 if (!tx_ring->desc)
2468 goto err;
2469
2470 tx_ring->next_to_use = 0;
2471 tx_ring->next_to_clean = 0;
2472 tx_ring->work_limit = tx_ring->count;
2473 return 0;
2474
2475 err:
2476 vfree(tx_ring->tx_buffer_info);
2477 tx_ring->tx_buffer_info = NULL;
2478 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2479 "descriptor ring\n");
2480 return -ENOMEM;
2481 }
2482
2483 /**
2484 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2485 * @adapter: board private structure
2486 *
2487 * If this function returns with an error, then it's possible one or
2488 * more of the rings is populated (while the rest are not). It is the
2489 * callers duty to clean those orphaned rings.
2490 *
2491 * Return 0 on success, negative on failure
2492 **/
2493 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2494 {
2495 int i, err = 0;
2496
2497 for (i = 0; i < adapter->num_tx_queues; i++) {
2498 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2499 if (!err)
2500 continue;
2501 hw_dbg(&adapter->hw,
2502 "Allocation for Tx Queue %u failed\n", i);
2503 break;
2504 }
2505
2506 return err;
2507 }
2508
2509 /**
2510 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2511 * @adapter: board private structure
2512 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2513 *
2514 * Returns 0 on success, negative on failure
2515 **/
2516 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2517 struct ixgbevf_ring *rx_ring)
2518 {
2519 struct pci_dev *pdev = adapter->pdev;
2520 int size;
2521
2522 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2523 rx_ring->rx_buffer_info = vzalloc(size);
2524 if (!rx_ring->rx_buffer_info)
2525 goto alloc_failed;
2526
2527 /* Round up to nearest 4K */
2528 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2529 rx_ring->size = ALIGN(rx_ring->size, 4096);
2530
2531 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2532 &rx_ring->dma, GFP_KERNEL);
2533
2534 if (!rx_ring->desc) {
2535 hw_dbg(&adapter->hw,
2536 "Unable to allocate memory for "
2537 "the receive descriptor ring\n");
2538 vfree(rx_ring->rx_buffer_info);
2539 rx_ring->rx_buffer_info = NULL;
2540 goto alloc_failed;
2541 }
2542
2543 rx_ring->next_to_clean = 0;
2544 rx_ring->next_to_use = 0;
2545
2546 return 0;
2547 alloc_failed:
2548 return -ENOMEM;
2549 }
2550
2551 /**
2552 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2553 * @adapter: board private structure
2554 *
2555 * If this function returns with an error, then it's possible one or
2556 * more of the rings is populated (while the rest are not). It is the
2557 * callers duty to clean those orphaned rings.
2558 *
2559 * Return 0 on success, negative on failure
2560 **/
2561 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2562 {
2563 int i, err = 0;
2564
2565 for (i = 0; i < adapter->num_rx_queues; i++) {
2566 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2567 if (!err)
2568 continue;
2569 hw_dbg(&adapter->hw,
2570 "Allocation for Rx Queue %u failed\n", i);
2571 break;
2572 }
2573 return err;
2574 }
2575
2576 /**
2577 * ixgbevf_free_rx_resources - Free Rx Resources
2578 * @adapter: board private structure
2579 * @rx_ring: ring to clean the resources from
2580 *
2581 * Free all receive software resources
2582 **/
2583 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2584 struct ixgbevf_ring *rx_ring)
2585 {
2586 struct pci_dev *pdev = adapter->pdev;
2587
2588 ixgbevf_clean_rx_ring(adapter, rx_ring);
2589
2590 vfree(rx_ring->rx_buffer_info);
2591 rx_ring->rx_buffer_info = NULL;
2592
2593 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2594 rx_ring->dma);
2595
2596 rx_ring->desc = NULL;
2597 }
2598
2599 /**
2600 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2601 * @adapter: board private structure
2602 *
2603 * Free all receive software resources
2604 **/
2605 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2606 {
2607 int i;
2608
2609 for (i = 0; i < adapter->num_rx_queues; i++)
2610 if (adapter->rx_ring[i].desc)
2611 ixgbevf_free_rx_resources(adapter,
2612 &adapter->rx_ring[i]);
2613 }
2614
2615 /**
2616 * ixgbevf_open - Called when a network interface is made active
2617 * @netdev: network interface device structure
2618 *
2619 * Returns 0 on success, negative value on failure
2620 *
2621 * The open entry point is called when a network interface is made
2622 * active by the system (IFF_UP). At this point all resources needed
2623 * for transmit and receive operations are allocated, the interrupt
2624 * handler is registered with the OS, the watchdog timer is started,
2625 * and the stack is notified that the interface is ready.
2626 **/
2627 static int ixgbevf_open(struct net_device *netdev)
2628 {
2629 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2630 struct ixgbe_hw *hw = &adapter->hw;
2631 int err;
2632
2633 /* disallow open during test */
2634 if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2635 return -EBUSY;
2636
2637 if (hw->adapter_stopped) {
2638 ixgbevf_reset(adapter);
2639 /* if adapter is still stopped then PF isn't up and
2640 * the vf can't start. */
2641 if (hw->adapter_stopped) {
2642 err = IXGBE_ERR_MBX;
2643 pr_err("Unable to start - perhaps the PF Driver isn't "
2644 "up yet\n");
2645 goto err_setup_reset;
2646 }
2647 }
2648
2649 /* allocate transmit descriptors */
2650 err = ixgbevf_setup_all_tx_resources(adapter);
2651 if (err)
2652 goto err_setup_tx;
2653
2654 /* allocate receive descriptors */
2655 err = ixgbevf_setup_all_rx_resources(adapter);
2656 if (err)
2657 goto err_setup_rx;
2658
2659 ixgbevf_configure(adapter);
2660
2661 /*
2662 * Map the Tx/Rx rings to the vectors we were allotted.
2663 * if request_irq will be called in this function map_rings
2664 * must be called *before* up_complete
2665 */
2666 ixgbevf_map_rings_to_vectors(adapter);
2667
2668 ixgbevf_up_complete(adapter);
2669
2670 /* clear any pending interrupts, may auto mask */
2671 IXGBE_READ_REG(hw, IXGBE_VTEICR);
2672 err = ixgbevf_request_irq(adapter);
2673 if (err)
2674 goto err_req_irq;
2675
2676 ixgbevf_irq_enable(adapter, true, true);
2677
2678 return 0;
2679
2680 err_req_irq:
2681 ixgbevf_down(adapter);
2682 ixgbevf_free_irq(adapter);
2683 err_setup_rx:
2684 ixgbevf_free_all_rx_resources(adapter);
2685 err_setup_tx:
2686 ixgbevf_free_all_tx_resources(adapter);
2687 ixgbevf_reset(adapter);
2688
2689 err_setup_reset:
2690
2691 return err;
2692 }
2693
2694 /**
2695 * ixgbevf_close - Disables a network interface
2696 * @netdev: network interface device structure
2697 *
2698 * Returns 0, this is not allowed to fail
2699 *
2700 * The close entry point is called when an interface is de-activated
2701 * by the OS. The hardware is still under the drivers control, but
2702 * needs to be disabled. A global MAC reset is issued to stop the
2703 * hardware, and all transmit and receive resources are freed.
2704 **/
2705 static int ixgbevf_close(struct net_device *netdev)
2706 {
2707 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2708
2709 ixgbevf_down(adapter);
2710 ixgbevf_free_irq(adapter);
2711
2712 ixgbevf_free_all_tx_resources(adapter);
2713 ixgbevf_free_all_rx_resources(adapter);
2714
2715 return 0;
2716 }
2717
2718 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2719 struct ixgbevf_ring *tx_ring,
2720 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2721 {
2722 struct ixgbe_adv_tx_context_desc *context_desc;
2723 unsigned int i;
2724 int err;
2725 struct ixgbevf_tx_buffer *tx_buffer_info;
2726 u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2727 u32 mss_l4len_idx, l4len;
2728
2729 if (skb_is_gso(skb)) {
2730 if (skb_header_cloned(skb)) {
2731 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2732 if (err)
2733 return err;
2734 }
2735 l4len = tcp_hdrlen(skb);
2736 *hdr_len += l4len;
2737
2738 if (skb->protocol == htons(ETH_P_IP)) {
2739 struct iphdr *iph = ip_hdr(skb);
2740 iph->tot_len = 0;
2741 iph->check = 0;
2742 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2743 iph->daddr, 0,
2744 IPPROTO_TCP,
2745 0);
2746 adapter->hw_tso_ctxt++;
2747 } else if (skb_is_gso_v6(skb)) {
2748 ipv6_hdr(skb)->payload_len = 0;
2749 tcp_hdr(skb)->check =
2750 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2751 &ipv6_hdr(skb)->daddr,
2752 0, IPPROTO_TCP, 0);
2753 adapter->hw_tso6_ctxt++;
2754 }
2755
2756 i = tx_ring->next_to_use;
2757
2758 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2759 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2760
2761 /* VLAN MACLEN IPLEN */
2762 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2763 vlan_macip_lens |=
2764 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2765 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2766 IXGBE_ADVTXD_MACLEN_SHIFT);
2767 *hdr_len += skb_network_offset(skb);
2768 vlan_macip_lens |=
2769 (skb_transport_header(skb) - skb_network_header(skb));
2770 *hdr_len +=
2771 (skb_transport_header(skb) - skb_network_header(skb));
2772 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2773 context_desc->seqnum_seed = 0;
2774
2775 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2776 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2777 IXGBE_ADVTXD_DTYP_CTXT);
2778
2779 if (skb->protocol == htons(ETH_P_IP))
2780 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2781 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2782 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2783
2784 /* MSS L4LEN IDX */
2785 mss_l4len_idx =
2786 (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2787 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2788 /* use index 1 for TSO */
2789 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2790 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2791
2792 tx_buffer_info->time_stamp = jiffies;
2793 tx_buffer_info->next_to_watch = i;
2794
2795 i++;
2796 if (i == tx_ring->count)
2797 i = 0;
2798 tx_ring->next_to_use = i;
2799
2800 return true;
2801 }
2802
2803 return false;
2804 }
2805
2806 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2807 struct ixgbevf_ring *tx_ring,
2808 struct sk_buff *skb, u32 tx_flags)
2809 {
2810 struct ixgbe_adv_tx_context_desc *context_desc;
2811 unsigned int i;
2812 struct ixgbevf_tx_buffer *tx_buffer_info;
2813 u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2814
2815 if (skb->ip_summed == CHECKSUM_PARTIAL ||
2816 (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2817 i = tx_ring->next_to_use;
2818 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2819 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2820
2821 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2822 vlan_macip_lens |= (tx_flags &
2823 IXGBE_TX_FLAGS_VLAN_MASK);
2824 vlan_macip_lens |= (skb_network_offset(skb) <<
2825 IXGBE_ADVTXD_MACLEN_SHIFT);
2826 if (skb->ip_summed == CHECKSUM_PARTIAL)
2827 vlan_macip_lens |= (skb_transport_header(skb) -
2828 skb_network_header(skb));
2829
2830 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2831 context_desc->seqnum_seed = 0;
2832
2833 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2834 IXGBE_ADVTXD_DTYP_CTXT);
2835
2836 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2837 switch (skb->protocol) {
2838 case __constant_htons(ETH_P_IP):
2839 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2840 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2841 type_tucmd_mlhl |=
2842 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2843 break;
2844 case __constant_htons(ETH_P_IPV6):
2845 /* XXX what about other V6 headers?? */
2846 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2847 type_tucmd_mlhl |=
2848 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2849 break;
2850 default:
2851 if (unlikely(net_ratelimit())) {
2852 pr_warn("partial checksum but "
2853 "proto=%x!\n", skb->protocol);
2854 }
2855 break;
2856 }
2857 }
2858
2859 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2860 /* use index zero for tx checksum offload */
2861 context_desc->mss_l4len_idx = 0;
2862
2863 tx_buffer_info->time_stamp = jiffies;
2864 tx_buffer_info->next_to_watch = i;
2865
2866 adapter->hw_csum_tx_good++;
2867 i++;
2868 if (i == tx_ring->count)
2869 i = 0;
2870 tx_ring->next_to_use = i;
2871
2872 return true;
2873 }
2874
2875 return false;
2876 }
2877
2878 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2879 struct ixgbevf_ring *tx_ring,
2880 struct sk_buff *skb, u32 tx_flags,
2881 unsigned int first)
2882 {
2883 struct pci_dev *pdev = adapter->pdev;
2884 struct ixgbevf_tx_buffer *tx_buffer_info;
2885 unsigned int len;
2886 unsigned int total = skb->len;
2887 unsigned int offset = 0, size;
2888 int count = 0;
2889 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2890 unsigned int f;
2891 int i;
2892
2893 i = tx_ring->next_to_use;
2894
2895 len = min(skb_headlen(skb), total);
2896 while (len) {
2897 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2898 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2899
2900 tx_buffer_info->length = size;
2901 tx_buffer_info->mapped_as_page = false;
2902 tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2903 skb->data + offset,
2904 size, DMA_TO_DEVICE);
2905 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2906 goto dma_error;
2907 tx_buffer_info->time_stamp = jiffies;
2908 tx_buffer_info->next_to_watch = i;
2909
2910 len -= size;
2911 total -= size;
2912 offset += size;
2913 count++;
2914 i++;
2915 if (i == tx_ring->count)
2916 i = 0;
2917 }
2918
2919 for (f = 0; f < nr_frags; f++) {
2920 const struct skb_frag_struct *frag;
2921
2922 frag = &skb_shinfo(skb)->frags[f];
2923 len = min((unsigned int)skb_frag_size(frag), total);
2924 offset = 0;
2925
2926 while (len) {
2927 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2928 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2929
2930 tx_buffer_info->length = size;
2931 tx_buffer_info->dma =
2932 skb_frag_dma_map(&adapter->pdev->dev, frag,
2933 offset, size, DMA_TO_DEVICE);
2934 tx_buffer_info->mapped_as_page = true;
2935 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2936 goto dma_error;
2937 tx_buffer_info->time_stamp = jiffies;
2938 tx_buffer_info->next_to_watch = i;
2939
2940 len -= size;
2941 total -= size;
2942 offset += size;
2943 count++;
2944 i++;
2945 if (i == tx_ring->count)
2946 i = 0;
2947 }
2948 if (total == 0)
2949 break;
2950 }
2951
2952 if (i == 0)
2953 i = tx_ring->count - 1;
2954 else
2955 i = i - 1;
2956 tx_ring->tx_buffer_info[i].skb = skb;
2957 tx_ring->tx_buffer_info[first].next_to_watch = i;
2958
2959 return count;
2960
2961 dma_error:
2962 dev_err(&pdev->dev, "TX DMA map failed\n");
2963
2964 /* clear timestamp and dma mappings for failed tx_buffer_info map */
2965 tx_buffer_info->dma = 0;
2966 tx_buffer_info->time_stamp = 0;
2967 tx_buffer_info->next_to_watch = 0;
2968 count--;
2969
2970 /* clear timestamp and dma mappings for remaining portion of packet */
2971 while (count >= 0) {
2972 count--;
2973 i--;
2974 if (i < 0)
2975 i += tx_ring->count;
2976 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2977 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
2978 }
2979
2980 return count;
2981 }
2982
2983 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
2984 struct ixgbevf_ring *tx_ring, int tx_flags,
2985 int count, u32 paylen, u8 hdr_len)
2986 {
2987 union ixgbe_adv_tx_desc *tx_desc = NULL;
2988 struct ixgbevf_tx_buffer *tx_buffer_info;
2989 u32 olinfo_status = 0, cmd_type_len = 0;
2990 unsigned int i;
2991
2992 u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
2993
2994 cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
2995
2996 cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
2997
2998 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2999 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3000
3001 if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3002 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3003
3004 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3005 IXGBE_ADVTXD_POPTS_SHIFT;
3006
3007 /* use index 1 context for tso */
3008 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3009 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3010 olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3011 IXGBE_ADVTXD_POPTS_SHIFT;
3012
3013 } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3014 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3015 IXGBE_ADVTXD_POPTS_SHIFT;
3016
3017 olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3018
3019 i = tx_ring->next_to_use;
3020 while (count--) {
3021 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3022 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3023 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3024 tx_desc->read.cmd_type_len =
3025 cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3026 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3027 i++;
3028 if (i == tx_ring->count)
3029 i = 0;
3030 }
3031
3032 tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3033
3034 /*
3035 * Force memory writes to complete before letting h/w
3036 * know there are new descriptors to fetch. (Only
3037 * applicable for weak-ordered memory model archs,
3038 * such as IA-64).
3039 */
3040 wmb();
3041
3042 tx_ring->next_to_use = i;
3043 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3044 }
3045
3046 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3047 struct ixgbevf_ring *tx_ring, int size)
3048 {
3049 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3050
3051 netif_stop_subqueue(netdev, tx_ring->queue_index);
3052 /* Herbert's original patch had:
3053 * smp_mb__after_netif_stop_queue();
3054 * but since that doesn't exist yet, just open code it. */
3055 smp_mb();
3056
3057 /* We need to check again in a case another CPU has just
3058 * made room available. */
3059 if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3060 return -EBUSY;
3061
3062 /* A reprieve! - use start_queue because it doesn't call schedule */
3063 netif_start_subqueue(netdev, tx_ring->queue_index);
3064 ++adapter->restart_queue;
3065 return 0;
3066 }
3067
3068 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3069 struct ixgbevf_ring *tx_ring, int size)
3070 {
3071 if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3072 return 0;
3073 return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3074 }
3075
3076 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3077 {
3078 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3079 struct ixgbevf_ring *tx_ring;
3080 unsigned int first;
3081 unsigned int tx_flags = 0;
3082 u8 hdr_len = 0;
3083 int r_idx = 0, tso;
3084 int count = 0;
3085
3086 unsigned int f;
3087
3088 tx_ring = &adapter->tx_ring[r_idx];
3089
3090 if (vlan_tx_tag_present(skb)) {
3091 tx_flags |= vlan_tx_tag_get(skb);
3092 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3093 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3094 }
3095
3096 /* four things can cause us to need a context descriptor */
3097 if (skb_is_gso(skb) ||
3098 (skb->ip_summed == CHECKSUM_PARTIAL) ||
3099 (tx_flags & IXGBE_TX_FLAGS_VLAN))
3100 count++;
3101
3102 count += TXD_USE_COUNT(skb_headlen(skb));
3103 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3104 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]));
3105
3106 if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3107 adapter->tx_busy++;
3108 return NETDEV_TX_BUSY;
3109 }
3110
3111 first = tx_ring->next_to_use;
3112
3113 if (skb->protocol == htons(ETH_P_IP))
3114 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3115 tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3116 if (tso < 0) {
3117 dev_kfree_skb_any(skb);
3118 return NETDEV_TX_OK;
3119 }
3120
3121 if (tso)
3122 tx_flags |= IXGBE_TX_FLAGS_TSO;
3123 else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3124 (skb->ip_summed == CHECKSUM_PARTIAL))
3125 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3126
3127 ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3128 ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3129 skb->len, hdr_len);
3130
3131 ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3132
3133 return NETDEV_TX_OK;
3134 }
3135
3136 /**
3137 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3138 * @netdev: network interface device structure
3139 * @p: pointer to an address structure
3140 *
3141 * Returns 0 on success, negative on failure
3142 **/
3143 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3144 {
3145 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3146 struct ixgbe_hw *hw = &adapter->hw;
3147 struct sockaddr *addr = p;
3148
3149 if (!is_valid_ether_addr(addr->sa_data))
3150 return -EADDRNOTAVAIL;
3151
3152 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3153 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3154
3155 if (hw->mac.ops.set_rar)
3156 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3157
3158 return 0;
3159 }
3160
3161 /**
3162 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3163 * @netdev: network interface device structure
3164 * @new_mtu: new value for maximum frame size
3165 *
3166 * Returns 0 on success, negative on failure
3167 **/
3168 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3169 {
3170 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3171 struct ixgbe_hw *hw = &adapter->hw;
3172 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3173 int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3174 u32 msg[2];
3175
3176 if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
3177 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3178
3179 /* MTU < 68 is an error and causes problems on some kernels */
3180 if ((new_mtu < 68) || (max_frame > max_possible_frame))
3181 return -EINVAL;
3182
3183 hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3184 netdev->mtu, new_mtu);
3185 /* must set new MTU before calling down or up */
3186 netdev->mtu = new_mtu;
3187
3188 if (!netif_running(netdev)) {
3189 msg[0] = IXGBE_VF_SET_LPE;
3190 msg[1] = max_frame;
3191 hw->mbx.ops.write_posted(hw, msg, 2);
3192 }
3193
3194 if (netif_running(netdev))
3195 ixgbevf_reinit_locked(adapter);
3196
3197 return 0;
3198 }
3199
3200 static void ixgbevf_shutdown(struct pci_dev *pdev)
3201 {
3202 struct net_device *netdev = pci_get_drvdata(pdev);
3203 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3204
3205 netif_device_detach(netdev);
3206
3207 if (netif_running(netdev)) {
3208 ixgbevf_down(adapter);
3209 ixgbevf_free_irq(adapter);
3210 ixgbevf_free_all_tx_resources(adapter);
3211 ixgbevf_free_all_rx_resources(adapter);
3212 }
3213
3214 #ifdef CONFIG_PM
3215 pci_save_state(pdev);
3216 #endif
3217
3218 pci_disable_device(pdev);
3219 }
3220
3221 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3222 struct rtnl_link_stats64 *stats)
3223 {
3224 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3225 unsigned int start;
3226 u64 bytes, packets;
3227 const struct ixgbevf_ring *ring;
3228 int i;
3229
3230 ixgbevf_update_stats(adapter);
3231
3232 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3233
3234 for (i = 0; i < adapter->num_rx_queues; i++) {
3235 ring = &adapter->rx_ring[i];
3236 do {
3237 start = u64_stats_fetch_begin_bh(&ring->syncp);
3238 bytes = ring->total_bytes;
3239 packets = ring->total_packets;
3240 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3241 stats->rx_bytes += bytes;
3242 stats->rx_packets += packets;
3243 }
3244
3245 for (i = 0; i < adapter->num_tx_queues; i++) {
3246 ring = &adapter->tx_ring[i];
3247 do {
3248 start = u64_stats_fetch_begin_bh(&ring->syncp);
3249 bytes = ring->total_bytes;
3250 packets = ring->total_packets;
3251 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3252 stats->tx_bytes += bytes;
3253 stats->tx_packets += packets;
3254 }
3255
3256 return stats;
3257 }
3258
3259 static int ixgbevf_set_features(struct net_device *netdev,
3260 netdev_features_t features)
3261 {
3262 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3263
3264 if (features & NETIF_F_RXCSUM)
3265 adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
3266 else
3267 adapter->flags &= ~IXGBE_FLAG_RX_CSUM_ENABLED;
3268
3269 return 0;
3270 }
3271
3272 static const struct net_device_ops ixgbe_netdev_ops = {
3273 .ndo_open = ixgbevf_open,
3274 .ndo_stop = ixgbevf_close,
3275 .ndo_start_xmit = ixgbevf_xmit_frame,
3276 .ndo_set_rx_mode = ixgbevf_set_rx_mode,
3277 .ndo_get_stats64 = ixgbevf_get_stats,
3278 .ndo_validate_addr = eth_validate_addr,
3279 .ndo_set_mac_address = ixgbevf_set_mac,
3280 .ndo_change_mtu = ixgbevf_change_mtu,
3281 .ndo_tx_timeout = ixgbevf_tx_timeout,
3282 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid,
3283 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid,
3284 .ndo_set_features = ixgbevf_set_features,
3285 };
3286
3287 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3288 {
3289 dev->netdev_ops = &ixgbe_netdev_ops;
3290 ixgbevf_set_ethtool_ops(dev);
3291 dev->watchdog_timeo = 5 * HZ;
3292 }
3293
3294 /**
3295 * ixgbevf_probe - Device Initialization Routine
3296 * @pdev: PCI device information struct
3297 * @ent: entry in ixgbevf_pci_tbl
3298 *
3299 * Returns 0 on success, negative on failure
3300 *
3301 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3302 * The OS initialization, configuring of the adapter private structure,
3303 * and a hardware reset occur.
3304 **/
3305 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3306 const struct pci_device_id *ent)
3307 {
3308 struct net_device *netdev;
3309 struct ixgbevf_adapter *adapter = NULL;
3310 struct ixgbe_hw *hw = NULL;
3311 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3312 static int cards_found;
3313 int err, pci_using_dac;
3314
3315 err = pci_enable_device(pdev);
3316 if (err)
3317 return err;
3318
3319 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3320 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3321 pci_using_dac = 1;
3322 } else {
3323 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3324 if (err) {
3325 err = dma_set_coherent_mask(&pdev->dev,
3326 DMA_BIT_MASK(32));
3327 if (err) {
3328 dev_err(&pdev->dev, "No usable DMA "
3329 "configuration, aborting\n");
3330 goto err_dma;
3331 }
3332 }
3333 pci_using_dac = 0;
3334 }
3335
3336 err = pci_request_regions(pdev, ixgbevf_driver_name);
3337 if (err) {
3338 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3339 goto err_pci_reg;
3340 }
3341
3342 pci_set_master(pdev);
3343
3344 #ifdef HAVE_TX_MQ
3345 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3346 MAX_TX_QUEUES);
3347 #else
3348 netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3349 #endif
3350 if (!netdev) {
3351 err = -ENOMEM;
3352 goto err_alloc_etherdev;
3353 }
3354
3355 SET_NETDEV_DEV(netdev, &pdev->dev);
3356
3357 pci_set_drvdata(pdev, netdev);
3358 adapter = netdev_priv(netdev);
3359
3360 adapter->netdev = netdev;
3361 adapter->pdev = pdev;
3362 hw = &adapter->hw;
3363 hw->back = adapter;
3364 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3365
3366 /*
3367 * call save state here in standalone driver because it relies on
3368 * adapter struct to exist, and needs to call netdev_priv
3369 */
3370 pci_save_state(pdev);
3371
3372 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3373 pci_resource_len(pdev, 0));
3374 if (!hw->hw_addr) {
3375 err = -EIO;
3376 goto err_ioremap;
3377 }
3378
3379 ixgbevf_assign_netdev_ops(netdev);
3380
3381 adapter->bd_number = cards_found;
3382
3383 /* Setup hw api */
3384 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3385 hw->mac.type = ii->mac;
3386
3387 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3388 sizeof(struct ixgbe_mbx_operations));
3389
3390 adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3391 adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3392 adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3393
3394 /* setup the private structure */
3395 err = ixgbevf_sw_init(adapter);
3396 if (err)
3397 goto err_sw_init;
3398
3399 /* The HW MAC address was set and/or determined in sw_init */
3400 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3401
3402 if (!is_valid_ether_addr(netdev->dev_addr)) {
3403 pr_err("invalid MAC address\n");
3404 err = -EIO;
3405 goto err_sw_init;
3406 }
3407
3408 netdev->hw_features = NETIF_F_SG |
3409 NETIF_F_IP_CSUM |
3410 NETIF_F_IPV6_CSUM |
3411 NETIF_F_TSO |
3412 NETIF_F_TSO6 |
3413 NETIF_F_RXCSUM;
3414
3415 netdev->features = netdev->hw_features |
3416 NETIF_F_HW_VLAN_TX |
3417 NETIF_F_HW_VLAN_RX |
3418 NETIF_F_HW_VLAN_FILTER;
3419
3420 netdev->vlan_features |= NETIF_F_TSO;
3421 netdev->vlan_features |= NETIF_F_TSO6;
3422 netdev->vlan_features |= NETIF_F_IP_CSUM;
3423 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3424 netdev->vlan_features |= NETIF_F_SG;
3425
3426 if (pci_using_dac)
3427 netdev->features |= NETIF_F_HIGHDMA;
3428
3429 netdev->priv_flags |= IFF_UNICAST_FLT;
3430
3431 init_timer(&adapter->watchdog_timer);
3432 adapter->watchdog_timer.function = ixgbevf_watchdog;
3433 adapter->watchdog_timer.data = (unsigned long)adapter;
3434
3435 INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3436 INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3437
3438 err = ixgbevf_init_interrupt_scheme(adapter);
3439 if (err)
3440 goto err_sw_init;
3441
3442 /* pick up the PCI bus settings for reporting later */
3443 if (hw->mac.ops.get_bus_info)
3444 hw->mac.ops.get_bus_info(hw);
3445
3446 strcpy(netdev->name, "eth%d");
3447
3448 err = register_netdev(netdev);
3449 if (err)
3450 goto err_register;
3451
3452 adapter->netdev_registered = true;
3453
3454 netif_carrier_off(netdev);
3455
3456 ixgbevf_init_last_counter_stats(adapter);
3457
3458 /* print the MAC address */
3459 hw_dbg(hw, "%pM\n", netdev->dev_addr);
3460
3461 hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3462
3463 hw_dbg(hw, "LRO is disabled\n");
3464
3465 hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3466 cards_found++;
3467 return 0;
3468
3469 err_register:
3470 err_sw_init:
3471 ixgbevf_reset_interrupt_capability(adapter);
3472 iounmap(hw->hw_addr);
3473 err_ioremap:
3474 free_netdev(netdev);
3475 err_alloc_etherdev:
3476 pci_release_regions(pdev);
3477 err_pci_reg:
3478 err_dma:
3479 pci_disable_device(pdev);
3480 return err;
3481 }
3482
3483 /**
3484 * ixgbevf_remove - Device Removal Routine
3485 * @pdev: PCI device information struct
3486 *
3487 * ixgbevf_remove is called by the PCI subsystem to alert the driver
3488 * that it should release a PCI device. The could be caused by a
3489 * Hot-Plug event, or because the driver is going to be removed from
3490 * memory.
3491 **/
3492 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3493 {
3494 struct net_device *netdev = pci_get_drvdata(pdev);
3495 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3496
3497 set_bit(__IXGBEVF_DOWN, &adapter->state);
3498
3499 del_timer_sync(&adapter->watchdog_timer);
3500
3501 cancel_work_sync(&adapter->reset_task);
3502 cancel_work_sync(&adapter->watchdog_task);
3503
3504 if (adapter->netdev_registered) {
3505 unregister_netdev(netdev);
3506 adapter->netdev_registered = false;
3507 }
3508
3509 ixgbevf_reset_interrupt_capability(adapter);
3510
3511 iounmap(adapter->hw.hw_addr);
3512 pci_release_regions(pdev);
3513
3514 hw_dbg(&adapter->hw, "Remove complete\n");
3515
3516 kfree(adapter->tx_ring);
3517 kfree(adapter->rx_ring);
3518
3519 free_netdev(netdev);
3520
3521 pci_disable_device(pdev);
3522 }
3523
3524 static struct pci_driver ixgbevf_driver = {
3525 .name = ixgbevf_driver_name,
3526 .id_table = ixgbevf_pci_tbl,
3527 .probe = ixgbevf_probe,
3528 .remove = __devexit_p(ixgbevf_remove),
3529 .shutdown = ixgbevf_shutdown,
3530 };
3531
3532 /**
3533 * ixgbevf_init_module - Driver Registration Routine
3534 *
3535 * ixgbevf_init_module is the first routine called when the driver is
3536 * loaded. All it does is register with the PCI subsystem.
3537 **/
3538 static int __init ixgbevf_init_module(void)
3539 {
3540 int ret;
3541 pr_info("%s - version %s\n", ixgbevf_driver_string,
3542 ixgbevf_driver_version);
3543
3544 pr_info("%s\n", ixgbevf_copyright);
3545
3546 ret = pci_register_driver(&ixgbevf_driver);
3547 return ret;
3548 }
3549
3550 module_init(ixgbevf_init_module);
3551
3552 /**
3553 * ixgbevf_exit_module - Driver Exit Cleanup Routine
3554 *
3555 * ixgbevf_exit_module is called just before the driver is removed
3556 * from memory.
3557 **/
3558 static void __exit ixgbevf_exit_module(void)
3559 {
3560 pci_unregister_driver(&ixgbevf_driver);
3561 }
3562
3563 #ifdef DEBUG
3564 /**
3565 * ixgbevf_get_hw_dev_name - return device name string
3566 * used by hardware layer to print debugging information
3567 **/
3568 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3569 {
3570 struct ixgbevf_adapter *adapter = hw->back;
3571 return adapter->netdev->name;
3572 }
3573
3574 #endif
3575 module_exit(ixgbevf_exit_module);
3576
3577 /* ixgbevf_main.c */
This page took 0.14854 seconds and 5 git commands to generate.