ixgbevf: Minor cleanups
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3 Intel 82599 Virtual Function driver
4 Copyright(c) 1999 - 2015 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
17
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 /******************************************************************************
28 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
29 ******************************************************************************/
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/vmalloc.h>
39 #include <linux/string.h>
40 #include <linux/in.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/sctp.h>
44 #include <linux/ipv6.h>
45 #include <linux/slab.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/ethtool.h>
49 #include <linux/if.h>
50 #include <linux/if_vlan.h>
51 #include <linux/prefetch.h>
52
53 #include "ixgbevf.h"
54
55 const char ixgbevf_driver_name[] = "ixgbevf";
56 static const char ixgbevf_driver_string[] =
57 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
58
59 #define DRV_VERSION "2.12.1-k"
60 const char ixgbevf_driver_version[] = DRV_VERSION;
61 static char ixgbevf_copyright[] =
62 "Copyright (c) 2009 - 2015 Intel Corporation.";
63
64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
65 [board_82599_vf] = &ixgbevf_82599_vf_info,
66 [board_X540_vf] = &ixgbevf_X540_vf_info,
67 [board_X550_vf] = &ixgbevf_X550_vf_info,
68 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
69 };
70
71 /* ixgbevf_pci_tbl - PCI Device ID Table
72 *
73 * Wildcard entries (PCI_ANY_ID) should come last
74 * Last entry must be all 0s
75 *
76 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
77 * Class, Class Mask, private data (not used) }
78 */
79 static const struct pci_device_id ixgbevf_pci_tbl[] = {
80 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
81 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
82 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
83 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
84 /* required last entry */
85 {0, }
86 };
87 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
88
89 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
90 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_VERSION);
93
94 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
95 static int debug = -1;
96 module_param(debug, int, 0);
97 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
98
99 static struct workqueue_struct *ixgbevf_wq;
100
101 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
102 {
103 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
104 !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
105 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
106 queue_work(ixgbevf_wq, &adapter->service_task);
107 }
108
109 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
110 {
111 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
112
113 /* flush memory to make sure state is correct before next watchdog */
114 smp_mb__before_atomic();
115 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
116 }
117
118 /* forward decls */
119 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
120 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
121 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
122
123 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
124 {
125 struct ixgbevf_adapter *adapter = hw->back;
126
127 if (!hw->hw_addr)
128 return;
129 hw->hw_addr = NULL;
130 dev_err(&adapter->pdev->dev, "Adapter removed\n");
131 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
132 ixgbevf_service_event_schedule(adapter);
133 }
134
135 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
136 {
137 u32 value;
138
139 /* The following check not only optimizes a bit by not
140 * performing a read on the status register when the
141 * register just read was a status register read that
142 * returned IXGBE_FAILED_READ_REG. It also blocks any
143 * potential recursion.
144 */
145 if (reg == IXGBE_VFSTATUS) {
146 ixgbevf_remove_adapter(hw);
147 return;
148 }
149 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
150 if (value == IXGBE_FAILED_READ_REG)
151 ixgbevf_remove_adapter(hw);
152 }
153
154 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
155 {
156 u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr);
157 u32 value;
158
159 if (IXGBE_REMOVED(reg_addr))
160 return IXGBE_FAILED_READ_REG;
161 value = readl(reg_addr + reg);
162 if (unlikely(value == IXGBE_FAILED_READ_REG))
163 ixgbevf_check_remove(hw, reg);
164 return value;
165 }
166
167 /**
168 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
169 * @adapter: pointer to adapter struct
170 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
171 * @queue: queue to map the corresponding interrupt to
172 * @msix_vector: the vector to map to the corresponding queue
173 **/
174 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
175 u8 queue, u8 msix_vector)
176 {
177 u32 ivar, index;
178 struct ixgbe_hw *hw = &adapter->hw;
179
180 if (direction == -1) {
181 /* other causes */
182 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
183 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
184 ivar &= ~0xFF;
185 ivar |= msix_vector;
186 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
187 } else {
188 /* Tx or Rx causes */
189 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
190 index = ((16 * (queue & 1)) + (8 * direction));
191 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
192 ivar &= ~(0xFF << index);
193 ivar |= (msix_vector << index);
194 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
195 }
196 }
197
198 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
199 struct ixgbevf_tx_buffer *tx_buffer)
200 {
201 if (tx_buffer->skb) {
202 dev_kfree_skb_any(tx_buffer->skb);
203 if (dma_unmap_len(tx_buffer, len))
204 dma_unmap_single(tx_ring->dev,
205 dma_unmap_addr(tx_buffer, dma),
206 dma_unmap_len(tx_buffer, len),
207 DMA_TO_DEVICE);
208 } else if (dma_unmap_len(tx_buffer, len)) {
209 dma_unmap_page(tx_ring->dev,
210 dma_unmap_addr(tx_buffer, dma),
211 dma_unmap_len(tx_buffer, len),
212 DMA_TO_DEVICE);
213 }
214 tx_buffer->next_to_watch = NULL;
215 tx_buffer->skb = NULL;
216 dma_unmap_len_set(tx_buffer, len, 0);
217 /* tx_buffer must be completely set up in the transmit path */
218 }
219
220 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
221 {
222 return ring->stats.packets;
223 }
224
225 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
226 {
227 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
228 struct ixgbe_hw *hw = &adapter->hw;
229
230 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
231 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
232
233 if (head != tail)
234 return (head < tail) ?
235 tail - head : (tail + ring->count - head);
236
237 return 0;
238 }
239
240 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
241 {
242 u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
243 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
244 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
245
246 clear_check_for_tx_hang(tx_ring);
247
248 /* Check for a hung queue, but be thorough. This verifies
249 * that a transmit has been completed since the previous
250 * check AND there is at least one packet pending. The
251 * ARMED bit is set to indicate a potential hang.
252 */
253 if ((tx_done_old == tx_done) && tx_pending) {
254 /* make sure it is true for two checks in a row */
255 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
256 &tx_ring->state);
257 }
258 /* reset the countdown */
259 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
260
261 /* update completed stats and continue */
262 tx_ring->tx_stats.tx_done_old = tx_done;
263
264 return false;
265 }
266
267 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
268 {
269 /* Do the reset outside of interrupt context */
270 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
271 adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED;
272 ixgbevf_service_event_schedule(adapter);
273 }
274 }
275
276 /**
277 * ixgbevf_tx_timeout - Respond to a Tx Hang
278 * @netdev: network interface device structure
279 **/
280 static void ixgbevf_tx_timeout(struct net_device *netdev)
281 {
282 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
283
284 ixgbevf_tx_timeout_reset(adapter);
285 }
286
287 /**
288 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
289 * @q_vector: board private structure
290 * @tx_ring: tx ring to clean
291 **/
292 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
293 struct ixgbevf_ring *tx_ring)
294 {
295 struct ixgbevf_adapter *adapter = q_vector->adapter;
296 struct ixgbevf_tx_buffer *tx_buffer;
297 union ixgbe_adv_tx_desc *tx_desc;
298 unsigned int total_bytes = 0, total_packets = 0;
299 unsigned int budget = tx_ring->count / 2;
300 unsigned int i = tx_ring->next_to_clean;
301
302 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
303 return true;
304
305 tx_buffer = &tx_ring->tx_buffer_info[i];
306 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
307 i -= tx_ring->count;
308
309 do {
310 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
311
312 /* if next_to_watch is not set then there is no work pending */
313 if (!eop_desc)
314 break;
315
316 /* prevent any other reads prior to eop_desc */
317 read_barrier_depends();
318
319 /* if DD is not set pending work has not been completed */
320 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
321 break;
322
323 /* clear next_to_watch to prevent false hangs */
324 tx_buffer->next_to_watch = NULL;
325
326 /* update the statistics for this packet */
327 total_bytes += tx_buffer->bytecount;
328 total_packets += tx_buffer->gso_segs;
329
330 /* free the skb */
331 dev_kfree_skb_any(tx_buffer->skb);
332
333 /* unmap skb header data */
334 dma_unmap_single(tx_ring->dev,
335 dma_unmap_addr(tx_buffer, dma),
336 dma_unmap_len(tx_buffer, len),
337 DMA_TO_DEVICE);
338
339 /* clear tx_buffer data */
340 tx_buffer->skb = NULL;
341 dma_unmap_len_set(tx_buffer, len, 0);
342
343 /* unmap remaining buffers */
344 while (tx_desc != eop_desc) {
345 tx_buffer++;
346 tx_desc++;
347 i++;
348 if (unlikely(!i)) {
349 i -= tx_ring->count;
350 tx_buffer = tx_ring->tx_buffer_info;
351 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
352 }
353
354 /* unmap any remaining paged data */
355 if (dma_unmap_len(tx_buffer, len)) {
356 dma_unmap_page(tx_ring->dev,
357 dma_unmap_addr(tx_buffer, dma),
358 dma_unmap_len(tx_buffer, len),
359 DMA_TO_DEVICE);
360 dma_unmap_len_set(tx_buffer, len, 0);
361 }
362 }
363
364 /* move us one more past the eop_desc for start of next pkt */
365 tx_buffer++;
366 tx_desc++;
367 i++;
368 if (unlikely(!i)) {
369 i -= tx_ring->count;
370 tx_buffer = tx_ring->tx_buffer_info;
371 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
372 }
373
374 /* issue prefetch for next Tx descriptor */
375 prefetch(tx_desc);
376
377 /* update budget accounting */
378 budget--;
379 } while (likely(budget));
380
381 i += tx_ring->count;
382 tx_ring->next_to_clean = i;
383 u64_stats_update_begin(&tx_ring->syncp);
384 tx_ring->stats.bytes += total_bytes;
385 tx_ring->stats.packets += total_packets;
386 u64_stats_update_end(&tx_ring->syncp);
387 q_vector->tx.total_bytes += total_bytes;
388 q_vector->tx.total_packets += total_packets;
389
390 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
391 struct ixgbe_hw *hw = &adapter->hw;
392 union ixgbe_adv_tx_desc *eop_desc;
393
394 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
395
396 pr_err("Detected Tx Unit Hang\n"
397 " Tx Queue <%d>\n"
398 " TDH, TDT <%x>, <%x>\n"
399 " next_to_use <%x>\n"
400 " next_to_clean <%x>\n"
401 "tx_buffer_info[next_to_clean]\n"
402 " next_to_watch <%p>\n"
403 " eop_desc->wb.status <%x>\n"
404 " time_stamp <%lx>\n"
405 " jiffies <%lx>\n",
406 tx_ring->queue_index,
407 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
408 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
409 tx_ring->next_to_use, i,
410 eop_desc, (eop_desc ? eop_desc->wb.status : 0),
411 tx_ring->tx_buffer_info[i].time_stamp, jiffies);
412
413 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
414
415 /* schedule immediate reset if we believe we hung */
416 ixgbevf_tx_timeout_reset(adapter);
417
418 return true;
419 }
420
421 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
422 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
423 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
424 /* Make sure that anybody stopping the queue after this
425 * sees the new next_to_clean.
426 */
427 smp_mb();
428
429 if (__netif_subqueue_stopped(tx_ring->netdev,
430 tx_ring->queue_index) &&
431 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
432 netif_wake_subqueue(tx_ring->netdev,
433 tx_ring->queue_index);
434 ++tx_ring->tx_stats.restart_queue;
435 }
436 }
437
438 return !!budget;
439 }
440
441 /**
442 * ixgbevf_rx_skb - Helper function to determine proper Rx method
443 * @q_vector: structure containing interrupt and ring information
444 * @skb: packet to send up
445 **/
446 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
447 struct sk_buff *skb)
448 {
449 #ifdef CONFIG_NET_RX_BUSY_POLL
450 skb_mark_napi_id(skb, &q_vector->napi);
451
452 if (ixgbevf_qv_busy_polling(q_vector)) {
453 netif_receive_skb(skb);
454 /* exit early if we busy polled */
455 return;
456 }
457 #endif /* CONFIG_NET_RX_BUSY_POLL */
458
459 napi_gro_receive(&q_vector->napi, skb);
460 }
461
462 #define IXGBE_RSS_L4_TYPES_MASK \
463 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
464 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
465 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
466 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
467
468 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
469 union ixgbe_adv_rx_desc *rx_desc,
470 struct sk_buff *skb)
471 {
472 u16 rss_type;
473
474 if (!(ring->netdev->features & NETIF_F_RXHASH))
475 return;
476
477 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
478 IXGBE_RXDADV_RSSTYPE_MASK;
479
480 if (!rss_type)
481 return;
482
483 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
484 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
485 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
486 }
487
488 /**
489 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
490 * @ring: structure containig ring specific data
491 * @rx_desc: current Rx descriptor being processed
492 * @skb: skb currently being received and modified
493 **/
494 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
495 union ixgbe_adv_rx_desc *rx_desc,
496 struct sk_buff *skb)
497 {
498 skb_checksum_none_assert(skb);
499
500 /* Rx csum disabled */
501 if (!(ring->netdev->features & NETIF_F_RXCSUM))
502 return;
503
504 /* if IP and error */
505 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
506 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
507 ring->rx_stats.csum_err++;
508 return;
509 }
510
511 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
512 return;
513
514 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
515 ring->rx_stats.csum_err++;
516 return;
517 }
518
519 /* It must be a TCP or UDP packet with a valid checksum */
520 skb->ip_summed = CHECKSUM_UNNECESSARY;
521 }
522
523 /**
524 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
525 * @rx_ring: rx descriptor ring packet is being transacted on
526 * @rx_desc: pointer to the EOP Rx descriptor
527 * @skb: pointer to current skb being populated
528 *
529 * This function checks the ring, descriptor, and packet information in
530 * order to populate the checksum, VLAN, protocol, and other fields within
531 * the skb.
532 **/
533 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
534 union ixgbe_adv_rx_desc *rx_desc,
535 struct sk_buff *skb)
536 {
537 ixgbevf_rx_hash(rx_ring, rx_desc, skb);
538 ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
539
540 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
541 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
542 unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
543
544 if (test_bit(vid & VLAN_VID_MASK, active_vlans))
545 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
546 }
547
548 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
549 }
550
551 /**
552 * ixgbevf_is_non_eop - process handling of non-EOP buffers
553 * @rx_ring: Rx ring being processed
554 * @rx_desc: Rx descriptor for current buffer
555 * @skb: current socket buffer containing buffer in progress
556 *
557 * This function updates next to clean. If the buffer is an EOP buffer
558 * this function exits returning false, otherwise it will place the
559 * sk_buff in the next buffer to be chained and return true indicating
560 * that this is in fact a non-EOP buffer.
561 **/
562 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
563 union ixgbe_adv_rx_desc *rx_desc)
564 {
565 u32 ntc = rx_ring->next_to_clean + 1;
566
567 /* fetch, update, and store next to clean */
568 ntc = (ntc < rx_ring->count) ? ntc : 0;
569 rx_ring->next_to_clean = ntc;
570
571 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
572
573 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
574 return false;
575
576 return true;
577 }
578
579 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
580 struct ixgbevf_rx_buffer *bi)
581 {
582 struct page *page = bi->page;
583 dma_addr_t dma = bi->dma;
584
585 /* since we are recycling buffers we should seldom need to alloc */
586 if (likely(page))
587 return true;
588
589 /* alloc new page for storage */
590 page = dev_alloc_page();
591 if (unlikely(!page)) {
592 rx_ring->rx_stats.alloc_rx_page_failed++;
593 return false;
594 }
595
596 /* map page for use */
597 dma = dma_map_page(rx_ring->dev, page, 0,
598 PAGE_SIZE, DMA_FROM_DEVICE);
599
600 /* if mapping failed free memory back to system since
601 * there isn't much point in holding memory we can't use
602 */
603 if (dma_mapping_error(rx_ring->dev, dma)) {
604 __free_page(page);
605
606 rx_ring->rx_stats.alloc_rx_buff_failed++;
607 return false;
608 }
609
610 bi->dma = dma;
611 bi->page = page;
612 bi->page_offset = 0;
613
614 return true;
615 }
616
617 /**
618 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
619 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
620 * @cleaned_count: number of buffers to replace
621 **/
622 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
623 u16 cleaned_count)
624 {
625 union ixgbe_adv_rx_desc *rx_desc;
626 struct ixgbevf_rx_buffer *bi;
627 unsigned int i = rx_ring->next_to_use;
628
629 /* nothing to do or no valid netdev defined */
630 if (!cleaned_count || !rx_ring->netdev)
631 return;
632
633 rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
634 bi = &rx_ring->rx_buffer_info[i];
635 i -= rx_ring->count;
636
637 do {
638 if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
639 break;
640
641 /* Refresh the desc even if pkt_addr didn't change
642 * because each write-back erases this info.
643 */
644 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
645
646 rx_desc++;
647 bi++;
648 i++;
649 if (unlikely(!i)) {
650 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
651 bi = rx_ring->rx_buffer_info;
652 i -= rx_ring->count;
653 }
654
655 /* clear the hdr_addr for the next_to_use descriptor */
656 rx_desc->read.hdr_addr = 0;
657
658 cleaned_count--;
659 } while (cleaned_count);
660
661 i += rx_ring->count;
662
663 if (rx_ring->next_to_use != i) {
664 /* record the next descriptor to use */
665 rx_ring->next_to_use = i;
666
667 /* update next to alloc since we have filled the ring */
668 rx_ring->next_to_alloc = i;
669
670 /* Force memory writes to complete before letting h/w
671 * know there are new descriptors to fetch. (Only
672 * applicable for weak-ordered memory model archs,
673 * such as IA-64).
674 */
675 wmb();
676 ixgbevf_write_tail(rx_ring, i);
677 }
678 }
679
680 /**
681 * ixgbevf_cleanup_headers - Correct corrupted or empty headers
682 * @rx_ring: rx descriptor ring packet is being transacted on
683 * @rx_desc: pointer to the EOP Rx descriptor
684 * @skb: pointer to current skb being fixed
685 *
686 * Check for corrupted packet headers caused by senders on the local L2
687 * embedded NIC switch not setting up their Tx Descriptors right. These
688 * should be very rare.
689 *
690 * Also address the case where we are pulling data in on pages only
691 * and as such no data is present in the skb header.
692 *
693 * In addition if skb is not at least 60 bytes we need to pad it so that
694 * it is large enough to qualify as a valid Ethernet frame.
695 *
696 * Returns true if an error was encountered and skb was freed.
697 **/
698 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
699 union ixgbe_adv_rx_desc *rx_desc,
700 struct sk_buff *skb)
701 {
702 /* verify that the packet does not have any known errors */
703 if (unlikely(ixgbevf_test_staterr(rx_desc,
704 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
705 struct net_device *netdev = rx_ring->netdev;
706
707 if (!(netdev->features & NETIF_F_RXALL)) {
708 dev_kfree_skb_any(skb);
709 return true;
710 }
711 }
712
713 /* if eth_skb_pad returns an error the skb was freed */
714 if (eth_skb_pad(skb))
715 return true;
716
717 return false;
718 }
719
720 /**
721 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
722 * @rx_ring: rx descriptor ring to store buffers on
723 * @old_buff: donor buffer to have page reused
724 *
725 * Synchronizes page for reuse by the adapter
726 **/
727 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
728 struct ixgbevf_rx_buffer *old_buff)
729 {
730 struct ixgbevf_rx_buffer *new_buff;
731 u16 nta = rx_ring->next_to_alloc;
732
733 new_buff = &rx_ring->rx_buffer_info[nta];
734
735 /* update, and store next to alloc */
736 nta++;
737 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
738
739 /* transfer page from old buffer to new buffer */
740 new_buff->page = old_buff->page;
741 new_buff->dma = old_buff->dma;
742 new_buff->page_offset = old_buff->page_offset;
743
744 /* sync the buffer for use by the device */
745 dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma,
746 new_buff->page_offset,
747 IXGBEVF_RX_BUFSZ,
748 DMA_FROM_DEVICE);
749 }
750
751 static inline bool ixgbevf_page_is_reserved(struct page *page)
752 {
753 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
754 }
755
756 /**
757 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
758 * @rx_ring: rx descriptor ring to transact packets on
759 * @rx_buffer: buffer containing page to add
760 * @rx_desc: descriptor containing length of buffer written by hardware
761 * @skb: sk_buff to place the data into
762 *
763 * This function will add the data contained in rx_buffer->page to the skb.
764 * This is done either through a direct copy if the data in the buffer is
765 * less than the skb header size, otherwise it will just attach the page as
766 * a frag to the skb.
767 *
768 * The function will then update the page offset if necessary and return
769 * true if the buffer can be reused by the adapter.
770 **/
771 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
772 struct ixgbevf_rx_buffer *rx_buffer,
773 union ixgbe_adv_rx_desc *rx_desc,
774 struct sk_buff *skb)
775 {
776 struct page *page = rx_buffer->page;
777 unsigned char *va = page_address(page) + rx_buffer->page_offset;
778 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
779 #if (PAGE_SIZE < 8192)
780 unsigned int truesize = IXGBEVF_RX_BUFSZ;
781 #else
782 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
783 #endif
784 unsigned int pull_len;
785
786 if (unlikely(skb_is_nonlinear(skb)))
787 goto add_tail_frag;
788
789 if (likely(size <= IXGBEVF_RX_HDR_SIZE)) {
790 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
791
792 /* page is not reserved, we can reuse buffer as is */
793 if (likely(!ixgbevf_page_is_reserved(page)))
794 return true;
795
796 /* this page cannot be reused so discard it */
797 put_page(page);
798 return false;
799 }
800
801 /* we need the header to contain the greater of either ETH_HLEN or
802 * 60 bytes if the skb->len is less than 60 for skb_pad.
803 */
804 pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
805
806 /* align pull length to size of long to optimize memcpy performance */
807 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
808
809 /* update all of the pointers */
810 va += pull_len;
811 size -= pull_len;
812
813 add_tail_frag:
814 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
815 (unsigned long)va & ~PAGE_MASK, size, truesize);
816
817 /* avoid re-using remote pages */
818 if (unlikely(ixgbevf_page_is_reserved(page)))
819 return false;
820
821 #if (PAGE_SIZE < 8192)
822 /* if we are only owner of page we can reuse it */
823 if (unlikely(page_count(page) != 1))
824 return false;
825
826 /* flip page offset to other buffer */
827 rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
828
829 #else
830 /* move offset up to the next cache line */
831 rx_buffer->page_offset += truesize;
832
833 if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
834 return false;
835
836 #endif
837 /* Even if we own the page, we are not allowed to use atomic_set()
838 * This would break get_page_unless_zero() users.
839 */
840 atomic_inc(&page->_count);
841
842 return true;
843 }
844
845 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
846 union ixgbe_adv_rx_desc *rx_desc,
847 struct sk_buff *skb)
848 {
849 struct ixgbevf_rx_buffer *rx_buffer;
850 struct page *page;
851
852 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
853 page = rx_buffer->page;
854 prefetchw(page);
855
856 if (likely(!skb)) {
857 void *page_addr = page_address(page) +
858 rx_buffer->page_offset;
859
860 /* prefetch first cache line of first page */
861 prefetch(page_addr);
862 #if L1_CACHE_BYTES < 128
863 prefetch(page_addr + L1_CACHE_BYTES);
864 #endif
865
866 /* allocate a skb to store the frags */
867 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
868 IXGBEVF_RX_HDR_SIZE);
869 if (unlikely(!skb)) {
870 rx_ring->rx_stats.alloc_rx_buff_failed++;
871 return NULL;
872 }
873
874 /* we will be copying header into skb->data in
875 * pskb_may_pull so it is in our interest to prefetch
876 * it now to avoid a possible cache miss
877 */
878 prefetchw(skb->data);
879 }
880
881 /* we are reusing so sync this buffer for CPU use */
882 dma_sync_single_range_for_cpu(rx_ring->dev,
883 rx_buffer->dma,
884 rx_buffer->page_offset,
885 IXGBEVF_RX_BUFSZ,
886 DMA_FROM_DEVICE);
887
888 /* pull page into skb */
889 if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
890 /* hand second half of page back to the ring */
891 ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
892 } else {
893 /* we are not reusing the buffer so unmap it */
894 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
895 PAGE_SIZE, DMA_FROM_DEVICE);
896 }
897
898 /* clear contents of buffer_info */
899 rx_buffer->dma = 0;
900 rx_buffer->page = NULL;
901
902 return skb;
903 }
904
905 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
906 u32 qmask)
907 {
908 struct ixgbe_hw *hw = &adapter->hw;
909
910 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
911 }
912
913 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
914 struct ixgbevf_ring *rx_ring,
915 int budget)
916 {
917 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
918 u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
919 struct sk_buff *skb = rx_ring->skb;
920
921 while (likely(total_rx_packets < budget)) {
922 union ixgbe_adv_rx_desc *rx_desc;
923
924 /* return some buffers to hardware, one at a time is too slow */
925 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
926 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
927 cleaned_count = 0;
928 }
929
930 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
931
932 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
933 break;
934
935 /* This memory barrier is needed to keep us from reading
936 * any other fields out of the rx_desc until we know the
937 * RXD_STAT_DD bit is set
938 */
939 rmb();
940
941 /* retrieve a buffer from the ring */
942 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
943
944 /* exit if we failed to retrieve a buffer */
945 if (!skb)
946 break;
947
948 cleaned_count++;
949
950 /* fetch next buffer in frame if non-eop */
951 if (ixgbevf_is_non_eop(rx_ring, rx_desc))
952 continue;
953
954 /* verify the packet layout is correct */
955 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
956 skb = NULL;
957 continue;
958 }
959
960 /* probably a little skewed due to removing CRC */
961 total_rx_bytes += skb->len;
962
963 /* Workaround hardware that can't do proper VEPA multicast
964 * source pruning.
965 */
966 if ((skb->pkt_type == PACKET_BROADCAST ||
967 skb->pkt_type == PACKET_MULTICAST) &&
968 ether_addr_equal(rx_ring->netdev->dev_addr,
969 eth_hdr(skb)->h_source)) {
970 dev_kfree_skb_irq(skb);
971 continue;
972 }
973
974 /* populate checksum, VLAN, and protocol */
975 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
976
977 ixgbevf_rx_skb(q_vector, skb);
978
979 /* reset skb pointer */
980 skb = NULL;
981
982 /* update budget accounting */
983 total_rx_packets++;
984 }
985
986 /* place incomplete frames back on ring for completion */
987 rx_ring->skb = skb;
988
989 u64_stats_update_begin(&rx_ring->syncp);
990 rx_ring->stats.packets += total_rx_packets;
991 rx_ring->stats.bytes += total_rx_bytes;
992 u64_stats_update_end(&rx_ring->syncp);
993 q_vector->rx.total_packets += total_rx_packets;
994 q_vector->rx.total_bytes += total_rx_bytes;
995
996 return total_rx_packets;
997 }
998
999 /**
1000 * ixgbevf_poll - NAPI polling calback
1001 * @napi: napi struct with our devices info in it
1002 * @budget: amount of work driver is allowed to do this pass, in packets
1003 *
1004 * This function will clean more than one or more rings associated with a
1005 * q_vector.
1006 **/
1007 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1008 {
1009 struct ixgbevf_q_vector *q_vector =
1010 container_of(napi, struct ixgbevf_q_vector, napi);
1011 struct ixgbevf_adapter *adapter = q_vector->adapter;
1012 struct ixgbevf_ring *ring;
1013 int per_ring_budget, work_done = 0;
1014 bool clean_complete = true;
1015
1016 ixgbevf_for_each_ring(ring, q_vector->tx)
1017 clean_complete &= ixgbevf_clean_tx_irq(q_vector, ring);
1018
1019 #ifdef CONFIG_NET_RX_BUSY_POLL
1020 if (!ixgbevf_qv_lock_napi(q_vector))
1021 return budget;
1022 #endif
1023
1024 /* attempt to distribute budget to each queue fairly, but don't allow
1025 * the budget to go below 1 because we'll exit polling
1026 */
1027 if (q_vector->rx.count > 1)
1028 per_ring_budget = max(budget/q_vector->rx.count, 1);
1029 else
1030 per_ring_budget = budget;
1031
1032 ixgbevf_for_each_ring(ring, q_vector->rx) {
1033 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1034 per_ring_budget);
1035 work_done += cleaned;
1036 clean_complete &= (cleaned < per_ring_budget);
1037 }
1038
1039 #ifdef CONFIG_NET_RX_BUSY_POLL
1040 ixgbevf_qv_unlock_napi(q_vector);
1041 #endif
1042
1043 /* If all work not completed, return budget and keep polling */
1044 if (!clean_complete)
1045 return budget;
1046 /* all work done, exit the polling mode */
1047 napi_complete_done(napi, work_done);
1048 if (adapter->rx_itr_setting & 1)
1049 ixgbevf_set_itr(q_vector);
1050 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1051 !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1052 ixgbevf_irq_enable_queues(adapter,
1053 1 << q_vector->v_idx);
1054
1055 return 0;
1056 }
1057
1058 /**
1059 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1060 * @q_vector: structure containing interrupt and ring information
1061 **/
1062 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1063 {
1064 struct ixgbevf_adapter *adapter = q_vector->adapter;
1065 struct ixgbe_hw *hw = &adapter->hw;
1066 int v_idx = q_vector->v_idx;
1067 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1068
1069 /* set the WDIS bit to not clear the timer bits and cause an
1070 * immediate assertion of the interrupt
1071 */
1072 itr_reg |= IXGBE_EITR_CNT_WDIS;
1073
1074 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1075 }
1076
1077 #ifdef CONFIG_NET_RX_BUSY_POLL
1078 /* must be called with local_bh_disable()d */
1079 static int ixgbevf_busy_poll_recv(struct napi_struct *napi)
1080 {
1081 struct ixgbevf_q_vector *q_vector =
1082 container_of(napi, struct ixgbevf_q_vector, napi);
1083 struct ixgbevf_adapter *adapter = q_vector->adapter;
1084 struct ixgbevf_ring *ring;
1085 int found = 0;
1086
1087 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
1088 return LL_FLUSH_FAILED;
1089
1090 if (!ixgbevf_qv_lock_poll(q_vector))
1091 return LL_FLUSH_BUSY;
1092
1093 ixgbevf_for_each_ring(ring, q_vector->rx) {
1094 found = ixgbevf_clean_rx_irq(q_vector, ring, 4);
1095 #ifdef BP_EXTENDED_STATS
1096 if (found)
1097 ring->stats.cleaned += found;
1098 else
1099 ring->stats.misses++;
1100 #endif
1101 if (found)
1102 break;
1103 }
1104
1105 ixgbevf_qv_unlock_poll(q_vector);
1106
1107 return found;
1108 }
1109 #endif /* CONFIG_NET_RX_BUSY_POLL */
1110
1111 /**
1112 * ixgbevf_configure_msix - Configure MSI-X hardware
1113 * @adapter: board private structure
1114 *
1115 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1116 * interrupts.
1117 **/
1118 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1119 {
1120 struct ixgbevf_q_vector *q_vector;
1121 int q_vectors, v_idx;
1122
1123 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1124 adapter->eims_enable_mask = 0;
1125
1126 /* Populate the IVAR table and set the ITR values to the
1127 * corresponding register.
1128 */
1129 for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1130 struct ixgbevf_ring *ring;
1131
1132 q_vector = adapter->q_vector[v_idx];
1133
1134 ixgbevf_for_each_ring(ring, q_vector->rx)
1135 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1136
1137 ixgbevf_for_each_ring(ring, q_vector->tx)
1138 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1139
1140 if (q_vector->tx.ring && !q_vector->rx.ring) {
1141 /* Tx only vector */
1142 if (adapter->tx_itr_setting == 1)
1143 q_vector->itr = IXGBE_12K_ITR;
1144 else
1145 q_vector->itr = adapter->tx_itr_setting;
1146 } else {
1147 /* Rx or Rx/Tx vector */
1148 if (adapter->rx_itr_setting == 1)
1149 q_vector->itr = IXGBE_20K_ITR;
1150 else
1151 q_vector->itr = adapter->rx_itr_setting;
1152 }
1153
1154 /* add q_vector eims value to global eims_enable_mask */
1155 adapter->eims_enable_mask |= 1 << v_idx;
1156
1157 ixgbevf_write_eitr(q_vector);
1158 }
1159
1160 ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1161 /* setup eims_other and add value to global eims_enable_mask */
1162 adapter->eims_other = 1 << v_idx;
1163 adapter->eims_enable_mask |= adapter->eims_other;
1164 }
1165
1166 enum latency_range {
1167 lowest_latency = 0,
1168 low_latency = 1,
1169 bulk_latency = 2,
1170 latency_invalid = 255
1171 };
1172
1173 /**
1174 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1175 * @q_vector: structure containing interrupt and ring information
1176 * @ring_container: structure containing ring performance data
1177 *
1178 * Stores a new ITR value based on packets and byte
1179 * counts during the last interrupt. The advantage of per interrupt
1180 * computation is faster updates and more accurate ITR for the current
1181 * traffic pattern. Constants in this function were computed
1182 * based on theoretical maximum wire speed and thresholds were set based
1183 * on testing data as well as attempting to minimize response time
1184 * while increasing bulk throughput.
1185 **/
1186 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1187 struct ixgbevf_ring_container *ring_container)
1188 {
1189 int bytes = ring_container->total_bytes;
1190 int packets = ring_container->total_packets;
1191 u32 timepassed_us;
1192 u64 bytes_perint;
1193 u8 itr_setting = ring_container->itr;
1194
1195 if (packets == 0)
1196 return;
1197
1198 /* simple throttle rate management
1199 * 0-20MB/s lowest (100000 ints/s)
1200 * 20-100MB/s low (20000 ints/s)
1201 * 100-1249MB/s bulk (12000 ints/s)
1202 */
1203 /* what was last interrupt timeslice? */
1204 timepassed_us = q_vector->itr >> 2;
1205 bytes_perint = bytes / timepassed_us; /* bytes/usec */
1206
1207 switch (itr_setting) {
1208 case lowest_latency:
1209 if (bytes_perint > 10)
1210 itr_setting = low_latency;
1211 break;
1212 case low_latency:
1213 if (bytes_perint > 20)
1214 itr_setting = bulk_latency;
1215 else if (bytes_perint <= 10)
1216 itr_setting = lowest_latency;
1217 break;
1218 case bulk_latency:
1219 if (bytes_perint <= 20)
1220 itr_setting = low_latency;
1221 break;
1222 }
1223
1224 /* clear work counters since we have the values we need */
1225 ring_container->total_bytes = 0;
1226 ring_container->total_packets = 0;
1227
1228 /* write updated itr to ring container */
1229 ring_container->itr = itr_setting;
1230 }
1231
1232 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1233 {
1234 u32 new_itr = q_vector->itr;
1235 u8 current_itr;
1236
1237 ixgbevf_update_itr(q_vector, &q_vector->tx);
1238 ixgbevf_update_itr(q_vector, &q_vector->rx);
1239
1240 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1241
1242 switch (current_itr) {
1243 /* counts and packets in update_itr are dependent on these numbers */
1244 case lowest_latency:
1245 new_itr = IXGBE_100K_ITR;
1246 break;
1247 case low_latency:
1248 new_itr = IXGBE_20K_ITR;
1249 break;
1250 case bulk_latency:
1251 default:
1252 new_itr = IXGBE_12K_ITR;
1253 break;
1254 }
1255
1256 if (new_itr != q_vector->itr) {
1257 /* do an exponential smoothing */
1258 new_itr = (10 * new_itr * q_vector->itr) /
1259 ((9 * new_itr) + q_vector->itr);
1260
1261 /* save the algorithm value here */
1262 q_vector->itr = new_itr;
1263
1264 ixgbevf_write_eitr(q_vector);
1265 }
1266 }
1267
1268 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1269 {
1270 struct ixgbevf_adapter *adapter = data;
1271 struct ixgbe_hw *hw = &adapter->hw;
1272
1273 hw->mac.get_link_status = 1;
1274
1275 ixgbevf_service_event_schedule(adapter);
1276
1277 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1278
1279 return IRQ_HANDLED;
1280 }
1281
1282 /**
1283 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1284 * @irq: unused
1285 * @data: pointer to our q_vector struct for this interrupt vector
1286 **/
1287 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1288 {
1289 struct ixgbevf_q_vector *q_vector = data;
1290
1291 /* EIAM disabled interrupts (on this vector) for us */
1292 if (q_vector->rx.ring || q_vector->tx.ring)
1293 napi_schedule_irqoff(&q_vector->napi);
1294
1295 return IRQ_HANDLED;
1296 }
1297
1298 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1299 int r_idx)
1300 {
1301 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1302
1303 a->rx_ring[r_idx]->next = q_vector->rx.ring;
1304 q_vector->rx.ring = a->rx_ring[r_idx];
1305 q_vector->rx.count++;
1306 }
1307
1308 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1309 int t_idx)
1310 {
1311 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1312
1313 a->tx_ring[t_idx]->next = q_vector->tx.ring;
1314 q_vector->tx.ring = a->tx_ring[t_idx];
1315 q_vector->tx.count++;
1316 }
1317
1318 /**
1319 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1320 * @adapter: board private structure to initialize
1321 *
1322 * This function maps descriptor rings to the queue-specific vectors
1323 * we were allotted through the MSI-X enabling code. Ideally, we'd have
1324 * one vector per ring/queue, but on a constrained vector budget, we
1325 * group the rings as "efficiently" as possible. You would add new
1326 * mapping configurations in here.
1327 **/
1328 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1329 {
1330 int q_vectors;
1331 int v_start = 0;
1332 int rxr_idx = 0, txr_idx = 0;
1333 int rxr_remaining = adapter->num_rx_queues;
1334 int txr_remaining = adapter->num_tx_queues;
1335 int i, j;
1336 int rqpv, tqpv;
1337
1338 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1339
1340 /* The ideal configuration...
1341 * We have enough vectors to map one per queue.
1342 */
1343 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1344 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1345 map_vector_to_rxq(adapter, v_start, rxr_idx);
1346
1347 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1348 map_vector_to_txq(adapter, v_start, txr_idx);
1349 return 0;
1350 }
1351
1352 /* If we don't have enough vectors for a 1-to-1
1353 * mapping, we'll have to group them so there are
1354 * multiple queues per vector.
1355 */
1356 /* Re-adjusting *qpv takes care of the remainder. */
1357 for (i = v_start; i < q_vectors; i++) {
1358 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1359 for (j = 0; j < rqpv; j++) {
1360 map_vector_to_rxq(adapter, i, rxr_idx);
1361 rxr_idx++;
1362 rxr_remaining--;
1363 }
1364 }
1365 for (i = v_start; i < q_vectors; i++) {
1366 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1367 for (j = 0; j < tqpv; j++) {
1368 map_vector_to_txq(adapter, i, txr_idx);
1369 txr_idx++;
1370 txr_remaining--;
1371 }
1372 }
1373
1374 return 0;
1375 }
1376
1377 /**
1378 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1379 * @adapter: board private structure
1380 *
1381 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1382 * interrupts from the kernel.
1383 **/
1384 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1385 {
1386 struct net_device *netdev = adapter->netdev;
1387 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1388 int vector, err;
1389 int ri = 0, ti = 0;
1390
1391 for (vector = 0; vector < q_vectors; vector++) {
1392 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1393 struct msix_entry *entry = &adapter->msix_entries[vector];
1394
1395 if (q_vector->tx.ring && q_vector->rx.ring) {
1396 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1397 "%s-%s-%d", netdev->name, "TxRx", ri++);
1398 ti++;
1399 } else if (q_vector->rx.ring) {
1400 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1401 "%s-%s-%d", netdev->name, "rx", ri++);
1402 } else if (q_vector->tx.ring) {
1403 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1404 "%s-%s-%d", netdev->name, "tx", ti++);
1405 } else {
1406 /* skip this unused q_vector */
1407 continue;
1408 }
1409 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1410 q_vector->name, q_vector);
1411 if (err) {
1412 hw_dbg(&adapter->hw,
1413 "request_irq failed for MSIX interrupt Error: %d\n",
1414 err);
1415 goto free_queue_irqs;
1416 }
1417 }
1418
1419 err = request_irq(adapter->msix_entries[vector].vector,
1420 &ixgbevf_msix_other, 0, netdev->name, adapter);
1421 if (err) {
1422 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1423 err);
1424 goto free_queue_irqs;
1425 }
1426
1427 return 0;
1428
1429 free_queue_irqs:
1430 while (vector) {
1431 vector--;
1432 free_irq(adapter->msix_entries[vector].vector,
1433 adapter->q_vector[vector]);
1434 }
1435 /* This failure is non-recoverable - it indicates the system is
1436 * out of MSIX vector resources and the VF driver cannot run
1437 * without them. Set the number of msix vectors to zero
1438 * indicating that not enough can be allocated. The error
1439 * will be returned to the user indicating device open failed.
1440 * Any further attempts to force the driver to open will also
1441 * fail. The only way to recover is to unload the driver and
1442 * reload it again. If the system has recovered some MSIX
1443 * vectors then it may succeed.
1444 */
1445 adapter->num_msix_vectors = 0;
1446 return err;
1447 }
1448
1449 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1450 {
1451 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1452
1453 for (i = 0; i < q_vectors; i++) {
1454 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1455
1456 q_vector->rx.ring = NULL;
1457 q_vector->tx.ring = NULL;
1458 q_vector->rx.count = 0;
1459 q_vector->tx.count = 0;
1460 }
1461 }
1462
1463 /**
1464 * ixgbevf_request_irq - initialize interrupts
1465 * @adapter: board private structure
1466 *
1467 * Attempts to configure interrupts using the best available
1468 * capabilities of the hardware and kernel.
1469 **/
1470 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1471 {
1472 int err = ixgbevf_request_msix_irqs(adapter);
1473
1474 if (err)
1475 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1476
1477 return err;
1478 }
1479
1480 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1481 {
1482 int i, q_vectors;
1483
1484 q_vectors = adapter->num_msix_vectors;
1485 i = q_vectors - 1;
1486
1487 free_irq(adapter->msix_entries[i].vector, adapter);
1488 i--;
1489
1490 for (; i >= 0; i--) {
1491 /* free only the irqs that were actually requested */
1492 if (!adapter->q_vector[i]->rx.ring &&
1493 !adapter->q_vector[i]->tx.ring)
1494 continue;
1495
1496 free_irq(adapter->msix_entries[i].vector,
1497 adapter->q_vector[i]);
1498 }
1499
1500 ixgbevf_reset_q_vectors(adapter);
1501 }
1502
1503 /**
1504 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1505 * @adapter: board private structure
1506 **/
1507 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1508 {
1509 struct ixgbe_hw *hw = &adapter->hw;
1510 int i;
1511
1512 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1513 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1514 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1515
1516 IXGBE_WRITE_FLUSH(hw);
1517
1518 for (i = 0; i < adapter->num_msix_vectors; i++)
1519 synchronize_irq(adapter->msix_entries[i].vector);
1520 }
1521
1522 /**
1523 * ixgbevf_irq_enable - Enable default interrupt generation settings
1524 * @adapter: board private structure
1525 **/
1526 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1527 {
1528 struct ixgbe_hw *hw = &adapter->hw;
1529
1530 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1531 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1532 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1533 }
1534
1535 /**
1536 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1537 * @adapter: board private structure
1538 * @ring: structure containing ring specific data
1539 *
1540 * Configure the Tx descriptor ring after a reset.
1541 **/
1542 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1543 struct ixgbevf_ring *ring)
1544 {
1545 struct ixgbe_hw *hw = &adapter->hw;
1546 u64 tdba = ring->dma;
1547 int wait_loop = 10;
1548 u32 txdctl = IXGBE_TXDCTL_ENABLE;
1549 u8 reg_idx = ring->reg_idx;
1550
1551 /* disable queue to avoid issues while updating state */
1552 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1553 IXGBE_WRITE_FLUSH(hw);
1554
1555 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1556 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1557 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1558 ring->count * sizeof(union ixgbe_adv_tx_desc));
1559
1560 /* disable head writeback */
1561 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1562 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1563
1564 /* enable relaxed ordering */
1565 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1566 (IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1567 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1568
1569 /* reset head and tail pointers */
1570 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1571 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1572 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1573
1574 /* reset ntu and ntc to place SW in sync with hardwdare */
1575 ring->next_to_clean = 0;
1576 ring->next_to_use = 0;
1577
1578 /* In order to avoid issues WTHRESH + PTHRESH should always be equal
1579 * to or less than the number of on chip descriptors, which is
1580 * currently 40.
1581 */
1582 txdctl |= (8 << 16); /* WTHRESH = 8 */
1583
1584 /* Setting PTHRESH to 32 both improves performance */
1585 txdctl |= (1 << 8) | /* HTHRESH = 1 */
1586 32; /* PTHRESH = 32 */
1587
1588 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1589
1590 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1591
1592 /* poll to verify queue is enabled */
1593 do {
1594 usleep_range(1000, 2000);
1595 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1596 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1597 if (!wait_loop)
1598 pr_err("Could not enable Tx Queue %d\n", reg_idx);
1599 }
1600
1601 /**
1602 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1603 * @adapter: board private structure
1604 *
1605 * Configure the Tx unit of the MAC after a reset.
1606 **/
1607 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1608 {
1609 u32 i;
1610
1611 /* Setup the HW Tx Head and Tail descriptor pointers */
1612 for (i = 0; i < adapter->num_tx_queues; i++)
1613 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1614 }
1615
1616 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1617
1618 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1619 {
1620 struct ixgbe_hw *hw = &adapter->hw;
1621 u32 srrctl;
1622
1623 srrctl = IXGBE_SRRCTL_DROP_EN;
1624
1625 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1626 srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1627 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1628
1629 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1630 }
1631
1632 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1633 {
1634 struct ixgbe_hw *hw = &adapter->hw;
1635
1636 /* PSRTYPE must be initialized in 82599 */
1637 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1638 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1639 IXGBE_PSRTYPE_L2HDR;
1640
1641 if (adapter->num_rx_queues > 1)
1642 psrtype |= 1 << 29;
1643
1644 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1645 }
1646
1647 #define IXGBEVF_MAX_RX_DESC_POLL 10
1648 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1649 struct ixgbevf_ring *ring)
1650 {
1651 struct ixgbe_hw *hw = &adapter->hw;
1652 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1653 u32 rxdctl;
1654 u8 reg_idx = ring->reg_idx;
1655
1656 if (IXGBE_REMOVED(hw->hw_addr))
1657 return;
1658 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1659 rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1660
1661 /* write value back with RXDCTL.ENABLE bit cleared */
1662 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1663
1664 /* the hardware may take up to 100us to really disable the Rx queue */
1665 do {
1666 udelay(10);
1667 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1668 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1669
1670 if (!wait_loop)
1671 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1672 reg_idx);
1673 }
1674
1675 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1676 struct ixgbevf_ring *ring)
1677 {
1678 struct ixgbe_hw *hw = &adapter->hw;
1679 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1680 u32 rxdctl;
1681 u8 reg_idx = ring->reg_idx;
1682
1683 if (IXGBE_REMOVED(hw->hw_addr))
1684 return;
1685 do {
1686 usleep_range(1000, 2000);
1687 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1688 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1689
1690 if (!wait_loop)
1691 pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1692 reg_idx);
1693 }
1694
1695 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1696 {
1697 struct ixgbe_hw *hw = &adapter->hw;
1698 u32 vfmrqc = 0, vfreta = 0;
1699 u16 rss_i = adapter->num_rx_queues;
1700 u8 i, j;
1701
1702 /* Fill out hash function seeds */
1703 netdev_rss_key_fill(adapter->rss_key, sizeof(adapter->rss_key));
1704 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1705 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), adapter->rss_key[i]);
1706
1707 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1708 if (j == rss_i)
1709 j = 0;
1710
1711 adapter->rss_indir_tbl[i] = j;
1712
1713 vfreta |= j << (i & 0x3) * 8;
1714 if ((i & 3) == 3) {
1715 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1716 vfreta = 0;
1717 }
1718 }
1719
1720 /* Perform hash on these packet types */
1721 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1722 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1723 IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1724 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1725
1726 vfmrqc |= IXGBE_VFMRQC_RSSEN;
1727
1728 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1729 }
1730
1731 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1732 struct ixgbevf_ring *ring)
1733 {
1734 struct ixgbe_hw *hw = &adapter->hw;
1735 u64 rdba = ring->dma;
1736 u32 rxdctl;
1737 u8 reg_idx = ring->reg_idx;
1738
1739 /* disable queue to avoid issues while updating state */
1740 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1741 ixgbevf_disable_rx_queue(adapter, ring);
1742
1743 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1744 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1745 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1746 ring->count * sizeof(union ixgbe_adv_rx_desc));
1747
1748 /* enable relaxed ordering */
1749 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1750 IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1751
1752 /* reset head and tail pointers */
1753 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1754 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1755 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1756
1757 /* reset ntu and ntc to place SW in sync with hardwdare */
1758 ring->next_to_clean = 0;
1759 ring->next_to_use = 0;
1760 ring->next_to_alloc = 0;
1761
1762 ixgbevf_configure_srrctl(adapter, reg_idx);
1763
1764 /* allow any size packet since we can handle overflow */
1765 rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1766
1767 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1768 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1769
1770 ixgbevf_rx_desc_queue_enable(adapter, ring);
1771 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1772 }
1773
1774 /**
1775 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1776 * @adapter: board private structure
1777 *
1778 * Configure the Rx unit of the MAC after a reset.
1779 **/
1780 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1781 {
1782 int i;
1783 struct ixgbe_hw *hw = &adapter->hw;
1784 struct net_device *netdev = adapter->netdev;
1785
1786 ixgbevf_setup_psrtype(adapter);
1787 if (hw->mac.type >= ixgbe_mac_X550_vf)
1788 ixgbevf_setup_vfmrqc(adapter);
1789
1790 /* notify the PF of our intent to use this size of frame */
1791 ixgbevf_rlpml_set_vf(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1792
1793 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1794 * the Base and Length of the Rx Descriptor Ring
1795 */
1796 for (i = 0; i < adapter->num_rx_queues; i++)
1797 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1798 }
1799
1800 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1801 __be16 proto, u16 vid)
1802 {
1803 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1804 struct ixgbe_hw *hw = &adapter->hw;
1805 int err;
1806
1807 spin_lock_bh(&adapter->mbx_lock);
1808
1809 /* add VID to filter table */
1810 err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1811
1812 spin_unlock_bh(&adapter->mbx_lock);
1813
1814 /* translate error return types so error makes sense */
1815 if (err == IXGBE_ERR_MBX)
1816 return -EIO;
1817
1818 if (err == IXGBE_ERR_INVALID_ARGUMENT)
1819 return -EACCES;
1820
1821 set_bit(vid, adapter->active_vlans);
1822
1823 return err;
1824 }
1825
1826 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1827 __be16 proto, u16 vid)
1828 {
1829 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1830 struct ixgbe_hw *hw = &adapter->hw;
1831 int err;
1832
1833 spin_lock_bh(&adapter->mbx_lock);
1834
1835 /* remove VID from filter table */
1836 err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1837
1838 spin_unlock_bh(&adapter->mbx_lock);
1839
1840 clear_bit(vid, adapter->active_vlans);
1841
1842 return err;
1843 }
1844
1845 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1846 {
1847 u16 vid;
1848
1849 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1850 ixgbevf_vlan_rx_add_vid(adapter->netdev,
1851 htons(ETH_P_8021Q), vid);
1852 }
1853
1854 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1855 {
1856 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1857 struct ixgbe_hw *hw = &adapter->hw;
1858 int count = 0;
1859
1860 if ((netdev_uc_count(netdev)) > 10) {
1861 pr_err("Too many unicast filters - No Space\n");
1862 return -ENOSPC;
1863 }
1864
1865 if (!netdev_uc_empty(netdev)) {
1866 struct netdev_hw_addr *ha;
1867
1868 netdev_for_each_uc_addr(ha, netdev) {
1869 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1870 udelay(200);
1871 }
1872 } else {
1873 /* If the list is empty then send message to PF driver to
1874 * clear all MAC VLANs on this VF.
1875 */
1876 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1877 }
1878
1879 return count;
1880 }
1881
1882 /**
1883 * ixgbevf_set_rx_mode - Multicast and unicast set
1884 * @netdev: network interface device structure
1885 *
1886 * The set_rx_method entry point is called whenever the multicast address
1887 * list, unicast address list or the network interface flags are updated.
1888 * This routine is responsible for configuring the hardware for proper
1889 * multicast mode and configuring requested unicast filters.
1890 **/
1891 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1892 {
1893 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1894 struct ixgbe_hw *hw = &adapter->hw;
1895 unsigned int flags = netdev->flags;
1896 int xcast_mode;
1897
1898 xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI :
1899 (flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1900 IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE;
1901
1902 spin_lock_bh(&adapter->mbx_lock);
1903
1904 hw->mac.ops.update_xcast_mode(hw, netdev, xcast_mode);
1905
1906 /* reprogram multicast list */
1907 hw->mac.ops.update_mc_addr_list(hw, netdev);
1908
1909 ixgbevf_write_uc_addr_list(netdev);
1910
1911 spin_unlock_bh(&adapter->mbx_lock);
1912 }
1913
1914 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1915 {
1916 int q_idx;
1917 struct ixgbevf_q_vector *q_vector;
1918 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1919
1920 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1921 q_vector = adapter->q_vector[q_idx];
1922 #ifdef CONFIG_NET_RX_BUSY_POLL
1923 ixgbevf_qv_init_lock(adapter->q_vector[q_idx]);
1924 #endif
1925 napi_enable(&q_vector->napi);
1926 }
1927 }
1928
1929 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1930 {
1931 int q_idx;
1932 struct ixgbevf_q_vector *q_vector;
1933 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1934
1935 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1936 q_vector = adapter->q_vector[q_idx];
1937 napi_disable(&q_vector->napi);
1938 #ifdef CONFIG_NET_RX_BUSY_POLL
1939 while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) {
1940 pr_info("QV %d locked\n", q_idx);
1941 usleep_range(1000, 20000);
1942 }
1943 #endif /* CONFIG_NET_RX_BUSY_POLL */
1944 }
1945 }
1946
1947 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1948 {
1949 struct ixgbe_hw *hw = &adapter->hw;
1950 unsigned int def_q = 0;
1951 unsigned int num_tcs = 0;
1952 unsigned int num_rx_queues = adapter->num_rx_queues;
1953 unsigned int num_tx_queues = adapter->num_tx_queues;
1954 int err;
1955
1956 spin_lock_bh(&adapter->mbx_lock);
1957
1958 /* fetch queue configuration from the PF */
1959 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1960
1961 spin_unlock_bh(&adapter->mbx_lock);
1962
1963 if (err)
1964 return err;
1965
1966 if (num_tcs > 1) {
1967 /* we need only one Tx queue */
1968 num_tx_queues = 1;
1969
1970 /* update default Tx ring register index */
1971 adapter->tx_ring[0]->reg_idx = def_q;
1972
1973 /* we need as many queues as traffic classes */
1974 num_rx_queues = num_tcs;
1975 }
1976
1977 /* if we have a bad config abort request queue reset */
1978 if ((adapter->num_rx_queues != num_rx_queues) ||
1979 (adapter->num_tx_queues != num_tx_queues)) {
1980 /* force mailbox timeout to prevent further messages */
1981 hw->mbx.timeout = 0;
1982
1983 /* wait for watchdog to come around and bail us out */
1984 adapter->flags |= IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
1985 }
1986
1987 return 0;
1988 }
1989
1990 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1991 {
1992 ixgbevf_configure_dcb(adapter);
1993
1994 ixgbevf_set_rx_mode(adapter->netdev);
1995
1996 ixgbevf_restore_vlan(adapter);
1997
1998 ixgbevf_configure_tx(adapter);
1999 ixgbevf_configure_rx(adapter);
2000 }
2001
2002 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2003 {
2004 /* Only save pre-reset stats if there are some */
2005 if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2006 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2007 adapter->stats.base_vfgprc;
2008 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2009 adapter->stats.base_vfgptc;
2010 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2011 adapter->stats.base_vfgorc;
2012 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2013 adapter->stats.base_vfgotc;
2014 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2015 adapter->stats.base_vfmprc;
2016 }
2017 }
2018
2019 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2020 {
2021 struct ixgbe_hw *hw = &adapter->hw;
2022
2023 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2024 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2025 adapter->stats.last_vfgorc |=
2026 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2027 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2028 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2029 adapter->stats.last_vfgotc |=
2030 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2031 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2032
2033 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2034 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2035 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2036 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2037 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2038 }
2039
2040 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2041 {
2042 struct ixgbe_hw *hw = &adapter->hw;
2043 int api[] = { ixgbe_mbox_api_12,
2044 ixgbe_mbox_api_11,
2045 ixgbe_mbox_api_10,
2046 ixgbe_mbox_api_unknown };
2047 int err, idx = 0;
2048
2049 spin_lock_bh(&adapter->mbx_lock);
2050
2051 while (api[idx] != ixgbe_mbox_api_unknown) {
2052 err = ixgbevf_negotiate_api_version(hw, api[idx]);
2053 if (!err)
2054 break;
2055 idx++;
2056 }
2057
2058 spin_unlock_bh(&adapter->mbx_lock);
2059 }
2060
2061 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2062 {
2063 struct net_device *netdev = adapter->netdev;
2064 struct ixgbe_hw *hw = &adapter->hw;
2065
2066 ixgbevf_configure_msix(adapter);
2067
2068 spin_lock_bh(&adapter->mbx_lock);
2069
2070 if (is_valid_ether_addr(hw->mac.addr))
2071 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2072 else
2073 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2074
2075 spin_unlock_bh(&adapter->mbx_lock);
2076
2077 smp_mb__before_atomic();
2078 clear_bit(__IXGBEVF_DOWN, &adapter->state);
2079 ixgbevf_napi_enable_all(adapter);
2080
2081 /* clear any pending interrupts, may auto mask */
2082 IXGBE_READ_REG(hw, IXGBE_VTEICR);
2083 ixgbevf_irq_enable(adapter);
2084
2085 /* enable transmits */
2086 netif_tx_start_all_queues(netdev);
2087
2088 ixgbevf_save_reset_stats(adapter);
2089 ixgbevf_init_last_counter_stats(adapter);
2090
2091 hw->mac.get_link_status = 1;
2092 mod_timer(&adapter->service_timer, jiffies);
2093 }
2094
2095 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2096 {
2097 ixgbevf_configure(adapter);
2098
2099 ixgbevf_up_complete(adapter);
2100 }
2101
2102 /**
2103 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2104 * @rx_ring: ring to free buffers from
2105 **/
2106 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2107 {
2108 struct device *dev = rx_ring->dev;
2109 unsigned long size;
2110 unsigned int i;
2111
2112 /* Free Rx ring sk_buff */
2113 if (rx_ring->skb) {
2114 dev_kfree_skb(rx_ring->skb);
2115 rx_ring->skb = NULL;
2116 }
2117
2118 /* ring already cleared, nothing to do */
2119 if (!rx_ring->rx_buffer_info)
2120 return;
2121
2122 /* Free all the Rx ring pages */
2123 for (i = 0; i < rx_ring->count; i++) {
2124 struct ixgbevf_rx_buffer *rx_buffer;
2125
2126 rx_buffer = &rx_ring->rx_buffer_info[i];
2127 if (rx_buffer->dma)
2128 dma_unmap_page(dev, rx_buffer->dma,
2129 PAGE_SIZE, DMA_FROM_DEVICE);
2130 rx_buffer->dma = 0;
2131 if (rx_buffer->page)
2132 __free_page(rx_buffer->page);
2133 rx_buffer->page = NULL;
2134 }
2135
2136 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2137 memset(rx_ring->rx_buffer_info, 0, size);
2138
2139 /* Zero out the descriptor ring */
2140 memset(rx_ring->desc, 0, rx_ring->size);
2141 }
2142
2143 /**
2144 * ixgbevf_clean_tx_ring - Free Tx Buffers
2145 * @tx_ring: ring to be cleaned
2146 **/
2147 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2148 {
2149 struct ixgbevf_tx_buffer *tx_buffer_info;
2150 unsigned long size;
2151 unsigned int i;
2152
2153 if (!tx_ring->tx_buffer_info)
2154 return;
2155
2156 /* Free all the Tx ring sk_buffs */
2157 for (i = 0; i < tx_ring->count; i++) {
2158 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2159 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2160 }
2161
2162 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2163 memset(tx_ring->tx_buffer_info, 0, size);
2164
2165 memset(tx_ring->desc, 0, tx_ring->size);
2166 }
2167
2168 /**
2169 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2170 * @adapter: board private structure
2171 **/
2172 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2173 {
2174 int i;
2175
2176 for (i = 0; i < adapter->num_rx_queues; i++)
2177 ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2178 }
2179
2180 /**
2181 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2182 * @adapter: board private structure
2183 **/
2184 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2185 {
2186 int i;
2187
2188 for (i = 0; i < adapter->num_tx_queues; i++)
2189 ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2190 }
2191
2192 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2193 {
2194 struct net_device *netdev = adapter->netdev;
2195 struct ixgbe_hw *hw = &adapter->hw;
2196 int i;
2197
2198 /* signal that we are down to the interrupt handler */
2199 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2200 return; /* do nothing if already down */
2201
2202 /* disable all enabled Rx queues */
2203 for (i = 0; i < adapter->num_rx_queues; i++)
2204 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2205
2206 usleep_range(10000, 20000);
2207
2208 netif_tx_stop_all_queues(netdev);
2209
2210 /* call carrier off first to avoid false dev_watchdog timeouts */
2211 netif_carrier_off(netdev);
2212 netif_tx_disable(netdev);
2213
2214 ixgbevf_irq_disable(adapter);
2215
2216 ixgbevf_napi_disable_all(adapter);
2217
2218 del_timer_sync(&adapter->service_timer);
2219
2220 /* disable transmits in the hardware now that interrupts are off */
2221 for (i = 0; i < adapter->num_tx_queues; i++) {
2222 u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2223
2224 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2225 IXGBE_TXDCTL_SWFLSH);
2226 }
2227
2228 if (!pci_channel_offline(adapter->pdev))
2229 ixgbevf_reset(adapter);
2230
2231 ixgbevf_clean_all_tx_rings(adapter);
2232 ixgbevf_clean_all_rx_rings(adapter);
2233 }
2234
2235 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2236 {
2237 WARN_ON(in_interrupt());
2238
2239 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2240 msleep(1);
2241
2242 ixgbevf_down(adapter);
2243 ixgbevf_up(adapter);
2244
2245 clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2246 }
2247
2248 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2249 {
2250 struct ixgbe_hw *hw = &adapter->hw;
2251 struct net_device *netdev = adapter->netdev;
2252
2253 if (hw->mac.ops.reset_hw(hw)) {
2254 hw_dbg(hw, "PF still resetting\n");
2255 } else {
2256 hw->mac.ops.init_hw(hw);
2257 ixgbevf_negotiate_api(adapter);
2258 }
2259
2260 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2261 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2262 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2263 }
2264
2265 adapter->last_reset = jiffies;
2266 }
2267
2268 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2269 int vectors)
2270 {
2271 int vector_threshold;
2272
2273 /* We'll want at least 2 (vector_threshold):
2274 * 1) TxQ[0] + RxQ[0] handler
2275 * 2) Other (Link Status Change, etc.)
2276 */
2277 vector_threshold = MIN_MSIX_COUNT;
2278
2279 /* The more we get, the more we will assign to Tx/Rx Cleanup
2280 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2281 * Right now, we simply care about how many we'll get; we'll
2282 * set them up later while requesting irq's.
2283 */
2284 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2285 vector_threshold, vectors);
2286
2287 if (vectors < 0) {
2288 dev_err(&adapter->pdev->dev,
2289 "Unable to allocate MSI-X interrupts\n");
2290 kfree(adapter->msix_entries);
2291 adapter->msix_entries = NULL;
2292 return vectors;
2293 }
2294
2295 /* Adjust for only the vectors we'll use, which is minimum
2296 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2297 * vectors we were allocated.
2298 */
2299 adapter->num_msix_vectors = vectors;
2300
2301 return 0;
2302 }
2303
2304 /**
2305 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2306 * @adapter: board private structure to initialize
2307 *
2308 * This is the top level queue allocation routine. The order here is very
2309 * important, starting with the "most" number of features turned on at once,
2310 * and ending with the smallest set of features. This way large combinations
2311 * can be allocated if they're turned on, and smaller combinations are the
2312 * fallthrough conditions.
2313 *
2314 **/
2315 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2316 {
2317 struct ixgbe_hw *hw = &adapter->hw;
2318 unsigned int def_q = 0;
2319 unsigned int num_tcs = 0;
2320 int err;
2321
2322 /* Start with base case */
2323 adapter->num_rx_queues = 1;
2324 adapter->num_tx_queues = 1;
2325
2326 spin_lock_bh(&adapter->mbx_lock);
2327
2328 /* fetch queue configuration from the PF */
2329 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2330
2331 spin_unlock_bh(&adapter->mbx_lock);
2332
2333 if (err)
2334 return;
2335
2336 /* we need as many queues as traffic classes */
2337 if (num_tcs > 1) {
2338 adapter->num_rx_queues = num_tcs;
2339 } else {
2340 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2341
2342 switch (hw->api_version) {
2343 case ixgbe_mbox_api_11:
2344 case ixgbe_mbox_api_12:
2345 adapter->num_rx_queues = rss;
2346 adapter->num_tx_queues = rss;
2347 default:
2348 break;
2349 }
2350 }
2351 }
2352
2353 /**
2354 * ixgbevf_alloc_queues - Allocate memory for all rings
2355 * @adapter: board private structure to initialize
2356 *
2357 * We allocate one ring per queue at run-time since we don't know the
2358 * number of queues at compile-time. The polling_netdev array is
2359 * intended for Multiqueue, but should work fine with a single queue.
2360 **/
2361 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2362 {
2363 struct ixgbevf_ring *ring;
2364 int rx = 0, tx = 0;
2365
2366 for (; tx < adapter->num_tx_queues; tx++) {
2367 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2368 if (!ring)
2369 goto err_allocation;
2370
2371 ring->dev = &adapter->pdev->dev;
2372 ring->netdev = adapter->netdev;
2373 ring->count = adapter->tx_ring_count;
2374 ring->queue_index = tx;
2375 ring->reg_idx = tx;
2376
2377 adapter->tx_ring[tx] = ring;
2378 }
2379
2380 for (; rx < adapter->num_rx_queues; rx++) {
2381 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2382 if (!ring)
2383 goto err_allocation;
2384
2385 ring->dev = &adapter->pdev->dev;
2386 ring->netdev = adapter->netdev;
2387
2388 ring->count = adapter->rx_ring_count;
2389 ring->queue_index = rx;
2390 ring->reg_idx = rx;
2391
2392 adapter->rx_ring[rx] = ring;
2393 }
2394
2395 return 0;
2396
2397 err_allocation:
2398 while (tx) {
2399 kfree(adapter->tx_ring[--tx]);
2400 adapter->tx_ring[tx] = NULL;
2401 }
2402
2403 while (rx) {
2404 kfree(adapter->rx_ring[--rx]);
2405 adapter->rx_ring[rx] = NULL;
2406 }
2407 return -ENOMEM;
2408 }
2409
2410 /**
2411 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2412 * @adapter: board private structure to initialize
2413 *
2414 * Attempt to configure the interrupts using the best available
2415 * capabilities of the hardware and the kernel.
2416 **/
2417 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2418 {
2419 struct net_device *netdev = adapter->netdev;
2420 int err;
2421 int vector, v_budget;
2422
2423 /* It's easy to be greedy for MSI-X vectors, but it really
2424 * doesn't do us much good if we have a lot more vectors
2425 * than CPU's. So let's be conservative and only ask for
2426 * (roughly) the same number of vectors as there are CPU's.
2427 * The default is to use pairs of vectors.
2428 */
2429 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2430 v_budget = min_t(int, v_budget, num_online_cpus());
2431 v_budget += NON_Q_VECTORS;
2432
2433 /* A failure in MSI-X entry allocation isn't fatal, but it does
2434 * mean we disable MSI-X capabilities of the adapter.
2435 */
2436 adapter->msix_entries = kcalloc(v_budget,
2437 sizeof(struct msix_entry), GFP_KERNEL);
2438 if (!adapter->msix_entries)
2439 return -ENOMEM;
2440
2441 for (vector = 0; vector < v_budget; vector++)
2442 adapter->msix_entries[vector].entry = vector;
2443
2444 err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2445 if (err)
2446 return err;
2447
2448 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2449 if (err)
2450 return err;
2451
2452 return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2453 }
2454
2455 /**
2456 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2457 * @adapter: board private structure to initialize
2458 *
2459 * We allocate one q_vector per queue interrupt. If allocation fails we
2460 * return -ENOMEM.
2461 **/
2462 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2463 {
2464 int q_idx, num_q_vectors;
2465 struct ixgbevf_q_vector *q_vector;
2466
2467 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2468
2469 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2470 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2471 if (!q_vector)
2472 goto err_out;
2473 q_vector->adapter = adapter;
2474 q_vector->v_idx = q_idx;
2475 netif_napi_add(adapter->netdev, &q_vector->napi,
2476 ixgbevf_poll, 64);
2477 adapter->q_vector[q_idx] = q_vector;
2478 }
2479
2480 return 0;
2481
2482 err_out:
2483 while (q_idx) {
2484 q_idx--;
2485 q_vector = adapter->q_vector[q_idx];
2486 #ifdef CONFIG_NET_RX_BUSY_POLL
2487 napi_hash_del(&q_vector->napi);
2488 #endif
2489 netif_napi_del(&q_vector->napi);
2490 kfree(q_vector);
2491 adapter->q_vector[q_idx] = NULL;
2492 }
2493 return -ENOMEM;
2494 }
2495
2496 /**
2497 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2498 * @adapter: board private structure to initialize
2499 *
2500 * This function frees the memory allocated to the q_vectors. In addition if
2501 * NAPI is enabled it will delete any references to the NAPI struct prior
2502 * to freeing the q_vector.
2503 **/
2504 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2505 {
2506 int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2507
2508 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2509 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2510
2511 adapter->q_vector[q_idx] = NULL;
2512 #ifdef CONFIG_NET_RX_BUSY_POLL
2513 napi_hash_del(&q_vector->napi);
2514 #endif
2515 netif_napi_del(&q_vector->napi);
2516 kfree(q_vector);
2517 }
2518 }
2519
2520 /**
2521 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2522 * @adapter: board private structure
2523 *
2524 **/
2525 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2526 {
2527 pci_disable_msix(adapter->pdev);
2528 kfree(adapter->msix_entries);
2529 adapter->msix_entries = NULL;
2530 }
2531
2532 /**
2533 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2534 * @adapter: board private structure to initialize
2535 *
2536 **/
2537 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2538 {
2539 int err;
2540
2541 /* Number of supported queues */
2542 ixgbevf_set_num_queues(adapter);
2543
2544 err = ixgbevf_set_interrupt_capability(adapter);
2545 if (err) {
2546 hw_dbg(&adapter->hw,
2547 "Unable to setup interrupt capabilities\n");
2548 goto err_set_interrupt;
2549 }
2550
2551 err = ixgbevf_alloc_q_vectors(adapter);
2552 if (err) {
2553 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2554 goto err_alloc_q_vectors;
2555 }
2556
2557 err = ixgbevf_alloc_queues(adapter);
2558 if (err) {
2559 pr_err("Unable to allocate memory for queues\n");
2560 goto err_alloc_queues;
2561 }
2562
2563 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n",
2564 (adapter->num_rx_queues > 1) ? "Enabled" :
2565 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2566
2567 set_bit(__IXGBEVF_DOWN, &adapter->state);
2568
2569 return 0;
2570 err_alloc_queues:
2571 ixgbevf_free_q_vectors(adapter);
2572 err_alloc_q_vectors:
2573 ixgbevf_reset_interrupt_capability(adapter);
2574 err_set_interrupt:
2575 return err;
2576 }
2577
2578 /**
2579 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2580 * @adapter: board private structure to clear interrupt scheme on
2581 *
2582 * We go through and clear interrupt specific resources and reset the structure
2583 * to pre-load conditions
2584 **/
2585 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2586 {
2587 int i;
2588
2589 for (i = 0; i < adapter->num_tx_queues; i++) {
2590 kfree(adapter->tx_ring[i]);
2591 adapter->tx_ring[i] = NULL;
2592 }
2593 for (i = 0; i < adapter->num_rx_queues; i++) {
2594 kfree(adapter->rx_ring[i]);
2595 adapter->rx_ring[i] = NULL;
2596 }
2597
2598 adapter->num_tx_queues = 0;
2599 adapter->num_rx_queues = 0;
2600
2601 ixgbevf_free_q_vectors(adapter);
2602 ixgbevf_reset_interrupt_capability(adapter);
2603 }
2604
2605 /**
2606 * ixgbevf_sw_init - Initialize general software structures
2607 * @adapter: board private structure to initialize
2608 *
2609 * ixgbevf_sw_init initializes the Adapter private data structure.
2610 * Fields are initialized based on PCI device information and
2611 * OS network device settings (MTU size).
2612 **/
2613 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2614 {
2615 struct ixgbe_hw *hw = &adapter->hw;
2616 struct pci_dev *pdev = adapter->pdev;
2617 struct net_device *netdev = adapter->netdev;
2618 int err;
2619
2620 /* PCI config space info */
2621 hw->vendor_id = pdev->vendor;
2622 hw->device_id = pdev->device;
2623 hw->revision_id = pdev->revision;
2624 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2625 hw->subsystem_device_id = pdev->subsystem_device;
2626
2627 hw->mbx.ops.init_params(hw);
2628
2629 /* assume legacy case in which PF would only give VF 2 queues */
2630 hw->mac.max_tx_queues = 2;
2631 hw->mac.max_rx_queues = 2;
2632
2633 /* lock to protect mailbox accesses */
2634 spin_lock_init(&adapter->mbx_lock);
2635
2636 err = hw->mac.ops.reset_hw(hw);
2637 if (err) {
2638 dev_info(&pdev->dev,
2639 "PF still in reset state. Is the PF interface up?\n");
2640 } else {
2641 err = hw->mac.ops.init_hw(hw);
2642 if (err) {
2643 pr_err("init_shared_code failed: %d\n", err);
2644 goto out;
2645 }
2646 ixgbevf_negotiate_api(adapter);
2647 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2648 if (err)
2649 dev_info(&pdev->dev, "Error reading MAC address\n");
2650 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2651 dev_info(&pdev->dev,
2652 "MAC address not assigned by administrator.\n");
2653 ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2654 }
2655
2656 if (!is_valid_ether_addr(netdev->dev_addr)) {
2657 dev_info(&pdev->dev, "Assigning random MAC address\n");
2658 eth_hw_addr_random(netdev);
2659 ether_addr_copy(hw->mac.addr, netdev->dev_addr);
2660 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
2661 }
2662
2663 /* Enable dynamic interrupt throttling rates */
2664 adapter->rx_itr_setting = 1;
2665 adapter->tx_itr_setting = 1;
2666
2667 /* set default ring sizes */
2668 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2669 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2670
2671 set_bit(__IXGBEVF_DOWN, &adapter->state);
2672 return 0;
2673
2674 out:
2675 return err;
2676 }
2677
2678 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
2679 { \
2680 u32 current_counter = IXGBE_READ_REG(hw, reg); \
2681 if (current_counter < last_counter) \
2682 counter += 0x100000000LL; \
2683 last_counter = current_counter; \
2684 counter &= 0xFFFFFFFF00000000LL; \
2685 counter |= current_counter; \
2686 }
2687
2688 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2689 { \
2690 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
2691 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
2692 u64 current_counter = (current_counter_msb << 32) | \
2693 current_counter_lsb; \
2694 if (current_counter < last_counter) \
2695 counter += 0x1000000000LL; \
2696 last_counter = current_counter; \
2697 counter &= 0xFFFFFFF000000000LL; \
2698 counter |= current_counter; \
2699 }
2700 /**
2701 * ixgbevf_update_stats - Update the board statistics counters.
2702 * @adapter: board private structure
2703 **/
2704 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2705 {
2706 struct ixgbe_hw *hw = &adapter->hw;
2707 int i;
2708
2709 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2710 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2711 return;
2712
2713 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2714 adapter->stats.vfgprc);
2715 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2716 adapter->stats.vfgptc);
2717 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2718 adapter->stats.last_vfgorc,
2719 adapter->stats.vfgorc);
2720 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2721 adapter->stats.last_vfgotc,
2722 adapter->stats.vfgotc);
2723 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2724 adapter->stats.vfmprc);
2725
2726 for (i = 0; i < adapter->num_rx_queues; i++) {
2727 adapter->hw_csum_rx_error +=
2728 adapter->rx_ring[i]->hw_csum_rx_error;
2729 adapter->rx_ring[i]->hw_csum_rx_error = 0;
2730 }
2731 }
2732
2733 /**
2734 * ixgbevf_service_timer - Timer Call-back
2735 * @data: pointer to adapter cast into an unsigned long
2736 **/
2737 static void ixgbevf_service_timer(unsigned long data)
2738 {
2739 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2740
2741 /* Reset the timer */
2742 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2743
2744 ixgbevf_service_event_schedule(adapter);
2745 }
2746
2747 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2748 {
2749 if (!(adapter->flags & IXGBEVF_FLAG_RESET_REQUESTED))
2750 return;
2751
2752 adapter->flags &= ~IXGBEVF_FLAG_RESET_REQUESTED;
2753
2754 /* If we're already down or resetting, just bail */
2755 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2756 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2757 return;
2758
2759 adapter->tx_timeout_count++;
2760
2761 ixgbevf_reinit_locked(adapter);
2762 }
2763
2764 /**
2765 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2766 * @adapter: pointer to the device adapter structure
2767 *
2768 * This function serves two purposes. First it strobes the interrupt lines
2769 * in order to make certain interrupts are occurring. Secondly it sets the
2770 * bits needed to check for TX hangs. As a result we should immediately
2771 * determine if a hang has occurred.
2772 **/
2773 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2774 {
2775 struct ixgbe_hw *hw = &adapter->hw;
2776 u32 eics = 0;
2777 int i;
2778
2779 /* If we're down or resetting, just bail */
2780 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2781 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2782 return;
2783
2784 /* Force detection of hung controller */
2785 if (netif_carrier_ok(adapter->netdev)) {
2786 for (i = 0; i < adapter->num_tx_queues; i++)
2787 set_check_for_tx_hang(adapter->tx_ring[i]);
2788 }
2789
2790 /* get one bit for every active Tx/Rx interrupt vector */
2791 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2792 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2793
2794 if (qv->rx.ring || qv->tx.ring)
2795 eics |= 1 << i;
2796 }
2797
2798 /* Cause software interrupt to ensure rings are cleaned */
2799 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2800 }
2801
2802 /**
2803 * ixgbevf_watchdog_update_link - update the link status
2804 * @adapter: pointer to the device adapter structure
2805 **/
2806 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2807 {
2808 struct ixgbe_hw *hw = &adapter->hw;
2809 u32 link_speed = adapter->link_speed;
2810 bool link_up = adapter->link_up;
2811 s32 err;
2812
2813 spin_lock_bh(&adapter->mbx_lock);
2814
2815 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2816
2817 spin_unlock_bh(&adapter->mbx_lock);
2818
2819 /* if check for link returns error we will need to reset */
2820 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2821 adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED;
2822 link_up = false;
2823 }
2824
2825 adapter->link_up = link_up;
2826 adapter->link_speed = link_speed;
2827 }
2828
2829 /**
2830 * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2831 * print link up message
2832 * @adapter: pointer to the device adapter structure
2833 **/
2834 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2835 {
2836 struct net_device *netdev = adapter->netdev;
2837
2838 /* only continue if link was previously down */
2839 if (netif_carrier_ok(netdev))
2840 return;
2841
2842 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2843 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2844 "10 Gbps" :
2845 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2846 "1 Gbps" :
2847 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2848 "100 Mbps" :
2849 "unknown speed");
2850
2851 netif_carrier_on(netdev);
2852 }
2853
2854 /**
2855 * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2856 * print link down message
2857 * @adapter: pointer to the adapter structure
2858 **/
2859 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2860 {
2861 struct net_device *netdev = adapter->netdev;
2862
2863 adapter->link_speed = 0;
2864
2865 /* only continue if link was up previously */
2866 if (!netif_carrier_ok(netdev))
2867 return;
2868
2869 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2870
2871 netif_carrier_off(netdev);
2872 }
2873
2874 /**
2875 * ixgbevf_watchdog_subtask - worker thread to bring link up
2876 * @work: pointer to work_struct containing our data
2877 **/
2878 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
2879 {
2880 /* if interface is down do nothing */
2881 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2882 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2883 return;
2884
2885 ixgbevf_watchdog_update_link(adapter);
2886
2887 if (adapter->link_up)
2888 ixgbevf_watchdog_link_is_up(adapter);
2889 else
2890 ixgbevf_watchdog_link_is_down(adapter);
2891
2892 ixgbevf_update_stats(adapter);
2893 }
2894
2895 /**
2896 * ixgbevf_service_task - manages and runs subtasks
2897 * @work: pointer to work_struct containing our data
2898 **/
2899 static void ixgbevf_service_task(struct work_struct *work)
2900 {
2901 struct ixgbevf_adapter *adapter = container_of(work,
2902 struct ixgbevf_adapter,
2903 service_task);
2904 struct ixgbe_hw *hw = &adapter->hw;
2905
2906 if (IXGBE_REMOVED(hw->hw_addr)) {
2907 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2908 rtnl_lock();
2909 ixgbevf_down(adapter);
2910 rtnl_unlock();
2911 }
2912 return;
2913 }
2914
2915 ixgbevf_queue_reset_subtask(adapter);
2916 ixgbevf_reset_subtask(adapter);
2917 ixgbevf_watchdog_subtask(adapter);
2918 ixgbevf_check_hang_subtask(adapter);
2919
2920 ixgbevf_service_event_complete(adapter);
2921 }
2922
2923 /**
2924 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2925 * @tx_ring: Tx descriptor ring for a specific queue
2926 *
2927 * Free all transmit software resources
2928 **/
2929 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
2930 {
2931 ixgbevf_clean_tx_ring(tx_ring);
2932
2933 vfree(tx_ring->tx_buffer_info);
2934 tx_ring->tx_buffer_info = NULL;
2935
2936 /* if not set, then don't free */
2937 if (!tx_ring->desc)
2938 return;
2939
2940 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
2941 tx_ring->dma);
2942
2943 tx_ring->desc = NULL;
2944 }
2945
2946 /**
2947 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2948 * @adapter: board private structure
2949 *
2950 * Free all transmit software resources
2951 **/
2952 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2953 {
2954 int i;
2955
2956 for (i = 0; i < adapter->num_tx_queues; i++)
2957 if (adapter->tx_ring[i]->desc)
2958 ixgbevf_free_tx_resources(adapter->tx_ring[i]);
2959 }
2960
2961 /**
2962 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2963 * @tx_ring: Tx descriptor ring (for a specific queue) to setup
2964 *
2965 * Return 0 on success, negative on failure
2966 **/
2967 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
2968 {
2969 int size;
2970
2971 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2972 tx_ring->tx_buffer_info = vzalloc(size);
2973 if (!tx_ring->tx_buffer_info)
2974 goto err;
2975
2976 /* round up to nearest 4K */
2977 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2978 tx_ring->size = ALIGN(tx_ring->size, 4096);
2979
2980 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
2981 &tx_ring->dma, GFP_KERNEL);
2982 if (!tx_ring->desc)
2983 goto err;
2984
2985 return 0;
2986
2987 err:
2988 vfree(tx_ring->tx_buffer_info);
2989 tx_ring->tx_buffer_info = NULL;
2990 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
2991 return -ENOMEM;
2992 }
2993
2994 /**
2995 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2996 * @adapter: board private structure
2997 *
2998 * If this function returns with an error, then it's possible one or
2999 * more of the rings is populated (while the rest are not). It is the
3000 * callers duty to clean those orphaned rings.
3001 *
3002 * Return 0 on success, negative on failure
3003 **/
3004 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3005 {
3006 int i, err = 0;
3007
3008 for (i = 0; i < adapter->num_tx_queues; i++) {
3009 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3010 if (!err)
3011 continue;
3012 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3013 break;
3014 }
3015
3016 return err;
3017 }
3018
3019 /**
3020 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3021 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3022 *
3023 * Returns 0 on success, negative on failure
3024 **/
3025 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3026 {
3027 int size;
3028
3029 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3030 rx_ring->rx_buffer_info = vzalloc(size);
3031 if (!rx_ring->rx_buffer_info)
3032 goto err;
3033
3034 /* Round up to nearest 4K */
3035 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3036 rx_ring->size = ALIGN(rx_ring->size, 4096);
3037
3038 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3039 &rx_ring->dma, GFP_KERNEL);
3040
3041 if (!rx_ring->desc)
3042 goto err;
3043
3044 return 0;
3045 err:
3046 vfree(rx_ring->rx_buffer_info);
3047 rx_ring->rx_buffer_info = NULL;
3048 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3049 return -ENOMEM;
3050 }
3051
3052 /**
3053 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3054 * @adapter: board private structure
3055 *
3056 * If this function returns with an error, then it's possible one or
3057 * more of the rings is populated (while the rest are not). It is the
3058 * callers duty to clean those orphaned rings.
3059 *
3060 * Return 0 on success, negative on failure
3061 **/
3062 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3063 {
3064 int i, err = 0;
3065
3066 for (i = 0; i < adapter->num_rx_queues; i++) {
3067 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3068 if (!err)
3069 continue;
3070 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3071 break;
3072 }
3073 return err;
3074 }
3075
3076 /**
3077 * ixgbevf_free_rx_resources - Free Rx Resources
3078 * @rx_ring: ring to clean the resources from
3079 *
3080 * Free all receive software resources
3081 **/
3082 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3083 {
3084 ixgbevf_clean_rx_ring(rx_ring);
3085
3086 vfree(rx_ring->rx_buffer_info);
3087 rx_ring->rx_buffer_info = NULL;
3088
3089 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3090 rx_ring->dma);
3091
3092 rx_ring->desc = NULL;
3093 }
3094
3095 /**
3096 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3097 * @adapter: board private structure
3098 *
3099 * Free all receive software resources
3100 **/
3101 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3102 {
3103 int i;
3104
3105 for (i = 0; i < adapter->num_rx_queues; i++)
3106 if (adapter->rx_ring[i]->desc)
3107 ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3108 }
3109
3110 /**
3111 * ixgbevf_open - Called when a network interface is made active
3112 * @netdev: network interface device structure
3113 *
3114 * Returns 0 on success, negative value on failure
3115 *
3116 * The open entry point is called when a network interface is made
3117 * active by the system (IFF_UP). At this point all resources needed
3118 * for transmit and receive operations are allocated, the interrupt
3119 * handler is registered with the OS, the watchdog timer is started,
3120 * and the stack is notified that the interface is ready.
3121 **/
3122 static int ixgbevf_open(struct net_device *netdev)
3123 {
3124 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3125 struct ixgbe_hw *hw = &adapter->hw;
3126 int err;
3127
3128 /* A previous failure to open the device because of a lack of
3129 * available MSIX vector resources may have reset the number
3130 * of msix vectors variable to zero. The only way to recover
3131 * is to unload/reload the driver and hope that the system has
3132 * been able to recover some MSIX vector resources.
3133 */
3134 if (!adapter->num_msix_vectors)
3135 return -ENOMEM;
3136
3137 if (hw->adapter_stopped) {
3138 ixgbevf_reset(adapter);
3139 /* if adapter is still stopped then PF isn't up and
3140 * the VF can't start.
3141 */
3142 if (hw->adapter_stopped) {
3143 err = IXGBE_ERR_MBX;
3144 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3145 goto err_setup_reset;
3146 }
3147 }
3148
3149 /* disallow open during test */
3150 if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3151 return -EBUSY;
3152
3153 netif_carrier_off(netdev);
3154
3155 /* allocate transmit descriptors */
3156 err = ixgbevf_setup_all_tx_resources(adapter);
3157 if (err)
3158 goto err_setup_tx;
3159
3160 /* allocate receive descriptors */
3161 err = ixgbevf_setup_all_rx_resources(adapter);
3162 if (err)
3163 goto err_setup_rx;
3164
3165 ixgbevf_configure(adapter);
3166
3167 /* Map the Tx/Rx rings to the vectors we were allotted.
3168 * if request_irq will be called in this function map_rings
3169 * must be called *before* up_complete
3170 */
3171 ixgbevf_map_rings_to_vectors(adapter);
3172
3173 err = ixgbevf_request_irq(adapter);
3174 if (err)
3175 goto err_req_irq;
3176
3177 ixgbevf_up_complete(adapter);
3178
3179 return 0;
3180
3181 err_req_irq:
3182 ixgbevf_down(adapter);
3183 err_setup_rx:
3184 ixgbevf_free_all_rx_resources(adapter);
3185 err_setup_tx:
3186 ixgbevf_free_all_tx_resources(adapter);
3187 ixgbevf_reset(adapter);
3188
3189 err_setup_reset:
3190
3191 return err;
3192 }
3193
3194 /**
3195 * ixgbevf_close - Disables a network interface
3196 * @netdev: network interface device structure
3197 *
3198 * Returns 0, this is not allowed to fail
3199 *
3200 * The close entry point is called when an interface is de-activated
3201 * by the OS. The hardware is still under the drivers control, but
3202 * needs to be disabled. A global MAC reset is issued to stop the
3203 * hardware, and all transmit and receive resources are freed.
3204 **/
3205 static int ixgbevf_close(struct net_device *netdev)
3206 {
3207 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3208
3209 ixgbevf_down(adapter);
3210 ixgbevf_free_irq(adapter);
3211
3212 ixgbevf_free_all_tx_resources(adapter);
3213 ixgbevf_free_all_rx_resources(adapter);
3214
3215 return 0;
3216 }
3217
3218 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3219 {
3220 struct net_device *dev = adapter->netdev;
3221
3222 if (!(adapter->flags & IXGBEVF_FLAG_QUEUE_RESET_REQUESTED))
3223 return;
3224
3225 adapter->flags &= ~IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
3226
3227 /* if interface is down do nothing */
3228 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3229 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3230 return;
3231
3232 /* Hardware has to reinitialize queues and interrupts to
3233 * match packet buffer alignment. Unfortunately, the
3234 * hardware is not flexible enough to do this dynamically.
3235 */
3236 if (netif_running(dev))
3237 ixgbevf_close(dev);
3238
3239 ixgbevf_clear_interrupt_scheme(adapter);
3240 ixgbevf_init_interrupt_scheme(adapter);
3241
3242 if (netif_running(dev))
3243 ixgbevf_open(dev);
3244 }
3245
3246 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3247 u32 vlan_macip_lens, u32 type_tucmd,
3248 u32 mss_l4len_idx)
3249 {
3250 struct ixgbe_adv_tx_context_desc *context_desc;
3251 u16 i = tx_ring->next_to_use;
3252
3253 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3254
3255 i++;
3256 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3257
3258 /* set bits to identify this as an advanced context descriptor */
3259 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3260
3261 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
3262 context_desc->seqnum_seed = 0;
3263 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
3264 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3265 }
3266
3267 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3268 struct ixgbevf_tx_buffer *first,
3269 u8 *hdr_len)
3270 {
3271 struct sk_buff *skb = first->skb;
3272 u32 vlan_macip_lens, type_tucmd;
3273 u32 mss_l4len_idx, l4len;
3274 int err;
3275
3276 if (skb->ip_summed != CHECKSUM_PARTIAL)
3277 return 0;
3278
3279 if (!skb_is_gso(skb))
3280 return 0;
3281
3282 err = skb_cow_head(skb, 0);
3283 if (err < 0)
3284 return err;
3285
3286 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3287 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3288
3289 if (first->protocol == htons(ETH_P_IP)) {
3290 struct iphdr *iph = ip_hdr(skb);
3291
3292 iph->tot_len = 0;
3293 iph->check = 0;
3294 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3295 iph->daddr, 0,
3296 IPPROTO_TCP,
3297 0);
3298 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3299 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3300 IXGBE_TX_FLAGS_CSUM |
3301 IXGBE_TX_FLAGS_IPV4;
3302 } else if (skb_is_gso_v6(skb)) {
3303 ipv6_hdr(skb)->payload_len = 0;
3304 tcp_hdr(skb)->check =
3305 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3306 &ipv6_hdr(skb)->daddr,
3307 0, IPPROTO_TCP, 0);
3308 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3309 IXGBE_TX_FLAGS_CSUM;
3310 }
3311
3312 /* compute header lengths */
3313 l4len = tcp_hdrlen(skb);
3314 *hdr_len += l4len;
3315 *hdr_len = skb_transport_offset(skb) + l4len;
3316
3317 /* update GSO size and bytecount with header size */
3318 first->gso_segs = skb_shinfo(skb)->gso_segs;
3319 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3320
3321 /* mss_l4len_id: use 1 as index for TSO */
3322 mss_l4len_idx = l4len << IXGBE_ADVTXD_L4LEN_SHIFT;
3323 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3324 mss_l4len_idx |= 1 << IXGBE_ADVTXD_IDX_SHIFT;
3325
3326 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3327 vlan_macip_lens = skb_network_header_len(skb);
3328 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3329 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3330
3331 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3332 type_tucmd, mss_l4len_idx);
3333
3334 return 1;
3335 }
3336
3337 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3338 struct ixgbevf_tx_buffer *first)
3339 {
3340 struct sk_buff *skb = first->skb;
3341 u32 vlan_macip_lens = 0;
3342 u32 mss_l4len_idx = 0;
3343 u32 type_tucmd = 0;
3344
3345 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3346 u8 l4_hdr = 0;
3347
3348 switch (first->protocol) {
3349 case htons(ETH_P_IP):
3350 vlan_macip_lens |= skb_network_header_len(skb);
3351 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3352 l4_hdr = ip_hdr(skb)->protocol;
3353 break;
3354 case htons(ETH_P_IPV6):
3355 vlan_macip_lens |= skb_network_header_len(skb);
3356 l4_hdr = ipv6_hdr(skb)->nexthdr;
3357 break;
3358 default:
3359 if (unlikely(net_ratelimit())) {
3360 dev_warn(tx_ring->dev,
3361 "partial checksum but proto=%x!\n",
3362 first->protocol);
3363 }
3364 break;
3365 }
3366
3367 switch (l4_hdr) {
3368 case IPPROTO_TCP:
3369 type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
3370 mss_l4len_idx = tcp_hdrlen(skb) <<
3371 IXGBE_ADVTXD_L4LEN_SHIFT;
3372 break;
3373 case IPPROTO_SCTP:
3374 type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3375 mss_l4len_idx = sizeof(struct sctphdr) <<
3376 IXGBE_ADVTXD_L4LEN_SHIFT;
3377 break;
3378 case IPPROTO_UDP:
3379 mss_l4len_idx = sizeof(struct udphdr) <<
3380 IXGBE_ADVTXD_L4LEN_SHIFT;
3381 break;
3382 default:
3383 if (unlikely(net_ratelimit())) {
3384 dev_warn(tx_ring->dev,
3385 "partial checksum but l4 proto=%x!\n",
3386 l4_hdr);
3387 }
3388 break;
3389 }
3390
3391 /* update TX checksum flag */
3392 first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3393 }
3394
3395 /* vlan_macip_lens: MACLEN, VLAN tag */
3396 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3397 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3398
3399 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3400 type_tucmd, mss_l4len_idx);
3401 }
3402
3403 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3404 {
3405 /* set type for advanced descriptor with frame checksum insertion */
3406 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3407 IXGBE_ADVTXD_DCMD_IFCS |
3408 IXGBE_ADVTXD_DCMD_DEXT);
3409
3410 /* set HW VLAN bit if VLAN is present */
3411 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3412 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3413
3414 /* set segmentation enable bits for TSO/FSO */
3415 if (tx_flags & IXGBE_TX_FLAGS_TSO)
3416 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3417
3418 return cmd_type;
3419 }
3420
3421 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3422 u32 tx_flags, unsigned int paylen)
3423 {
3424 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3425
3426 /* enable L4 checksum for TSO and TX checksum offload */
3427 if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3428 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3429
3430 /* enble IPv4 checksum for TSO */
3431 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3432 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3433
3434 /* use index 1 context for TSO/FSO/FCOE */
3435 if (tx_flags & IXGBE_TX_FLAGS_TSO)
3436 olinfo_status |= cpu_to_le32(1 << IXGBE_ADVTXD_IDX_SHIFT);
3437
3438 /* Check Context must be set if Tx switch is enabled, which it
3439 * always is for case where virtual functions are running
3440 */
3441 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3442
3443 tx_desc->read.olinfo_status = olinfo_status;
3444 }
3445
3446 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3447 struct ixgbevf_tx_buffer *first,
3448 const u8 hdr_len)
3449 {
3450 dma_addr_t dma;
3451 struct sk_buff *skb = first->skb;
3452 struct ixgbevf_tx_buffer *tx_buffer;
3453 union ixgbe_adv_tx_desc *tx_desc;
3454 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
3455 unsigned int data_len = skb->data_len;
3456 unsigned int size = skb_headlen(skb);
3457 unsigned int paylen = skb->len - hdr_len;
3458 u32 tx_flags = first->tx_flags;
3459 __le32 cmd_type;
3460 u16 i = tx_ring->next_to_use;
3461
3462 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3463
3464 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen);
3465 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3466
3467 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3468 if (dma_mapping_error(tx_ring->dev, dma))
3469 goto dma_error;
3470
3471 /* record length, and DMA address */
3472 dma_unmap_len_set(first, len, size);
3473 dma_unmap_addr_set(first, dma, dma);
3474
3475 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3476
3477 for (;;) {
3478 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3479 tx_desc->read.cmd_type_len =
3480 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3481
3482 i++;
3483 tx_desc++;
3484 if (i == tx_ring->count) {
3485 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3486 i = 0;
3487 }
3488
3489 dma += IXGBE_MAX_DATA_PER_TXD;
3490 size -= IXGBE_MAX_DATA_PER_TXD;
3491
3492 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3493 tx_desc->read.olinfo_status = 0;
3494 }
3495
3496 if (likely(!data_len))
3497 break;
3498
3499 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3500
3501 i++;
3502 tx_desc++;
3503 if (i == tx_ring->count) {
3504 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3505 i = 0;
3506 }
3507
3508 size = skb_frag_size(frag);
3509 data_len -= size;
3510
3511 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3512 DMA_TO_DEVICE);
3513 if (dma_mapping_error(tx_ring->dev, dma))
3514 goto dma_error;
3515
3516 tx_buffer = &tx_ring->tx_buffer_info[i];
3517 dma_unmap_len_set(tx_buffer, len, size);
3518 dma_unmap_addr_set(tx_buffer, dma, dma);
3519
3520 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3521 tx_desc->read.olinfo_status = 0;
3522
3523 frag++;
3524 }
3525
3526 /* write last descriptor with RS and EOP bits */
3527 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3528 tx_desc->read.cmd_type_len = cmd_type;
3529
3530 /* set the timestamp */
3531 first->time_stamp = jiffies;
3532
3533 /* Force memory writes to complete before letting h/w know there
3534 * are new descriptors to fetch. (Only applicable for weak-ordered
3535 * memory model archs, such as IA-64).
3536 *
3537 * We also need this memory barrier (wmb) to make certain all of the
3538 * status bits have been updated before next_to_watch is written.
3539 */
3540 wmb();
3541
3542 /* set next_to_watch value indicating a packet is present */
3543 first->next_to_watch = tx_desc;
3544
3545 i++;
3546 if (i == tx_ring->count)
3547 i = 0;
3548
3549 tx_ring->next_to_use = i;
3550
3551 /* notify HW of packet */
3552 ixgbevf_write_tail(tx_ring, i);
3553
3554 return;
3555 dma_error:
3556 dev_err(tx_ring->dev, "TX DMA map failed\n");
3557
3558 /* clear dma mappings for failed tx_buffer_info map */
3559 for (;;) {
3560 tx_buffer = &tx_ring->tx_buffer_info[i];
3561 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer);
3562 if (tx_buffer == first)
3563 break;
3564 if (i == 0)
3565 i = tx_ring->count;
3566 i--;
3567 }
3568
3569 tx_ring->next_to_use = i;
3570 }
3571
3572 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3573 {
3574 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3575 /* Herbert's original patch had:
3576 * smp_mb__after_netif_stop_queue();
3577 * but since that doesn't exist yet, just open code it.
3578 */
3579 smp_mb();
3580
3581 /* We need to check again in a case another CPU has just
3582 * made room available.
3583 */
3584 if (likely(ixgbevf_desc_unused(tx_ring) < size))
3585 return -EBUSY;
3586
3587 /* A reprieve! - use start_queue because it doesn't call schedule */
3588 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3589 ++tx_ring->tx_stats.restart_queue;
3590
3591 return 0;
3592 }
3593
3594 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3595 {
3596 if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3597 return 0;
3598 return __ixgbevf_maybe_stop_tx(tx_ring, size);
3599 }
3600
3601 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3602 {
3603 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3604 struct ixgbevf_tx_buffer *first;
3605 struct ixgbevf_ring *tx_ring;
3606 int tso;
3607 u32 tx_flags = 0;
3608 u16 count = TXD_USE_COUNT(skb_headlen(skb));
3609 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3610 unsigned short f;
3611 #endif
3612 u8 hdr_len = 0;
3613 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3614
3615 if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3616 dev_kfree_skb_any(skb);
3617 return NETDEV_TX_OK;
3618 }
3619
3620 tx_ring = adapter->tx_ring[skb->queue_mapping];
3621
3622 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3623 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3624 * + 2 desc gap to keep tail from touching head,
3625 * + 1 desc for context descriptor,
3626 * otherwise try next time
3627 */
3628 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3629 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3630 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3631 #else
3632 count += skb_shinfo(skb)->nr_frags;
3633 #endif
3634 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3635 tx_ring->tx_stats.tx_busy++;
3636 return NETDEV_TX_BUSY;
3637 }
3638
3639 /* record the location of the first descriptor for this packet */
3640 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3641 first->skb = skb;
3642 first->bytecount = skb->len;
3643 first->gso_segs = 1;
3644
3645 if (skb_vlan_tag_present(skb)) {
3646 tx_flags |= skb_vlan_tag_get(skb);
3647 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3648 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3649 }
3650
3651 /* record initial flags and protocol */
3652 first->tx_flags = tx_flags;
3653 first->protocol = vlan_get_protocol(skb);
3654
3655 tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3656 if (tso < 0)
3657 goto out_drop;
3658 else if (!tso)
3659 ixgbevf_tx_csum(tx_ring, first);
3660
3661 ixgbevf_tx_map(tx_ring, first, hdr_len);
3662
3663 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3664
3665 return NETDEV_TX_OK;
3666
3667 out_drop:
3668 dev_kfree_skb_any(first->skb);
3669 first->skb = NULL;
3670
3671 return NETDEV_TX_OK;
3672 }
3673
3674 /**
3675 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3676 * @netdev: network interface device structure
3677 * @p: pointer to an address structure
3678 *
3679 * Returns 0 on success, negative on failure
3680 **/
3681 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3682 {
3683 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3684 struct ixgbe_hw *hw = &adapter->hw;
3685 struct sockaddr *addr = p;
3686
3687 if (!is_valid_ether_addr(addr->sa_data))
3688 return -EADDRNOTAVAIL;
3689
3690 ether_addr_copy(netdev->dev_addr, addr->sa_data);
3691 ether_addr_copy(hw->mac.addr, addr->sa_data);
3692
3693 spin_lock_bh(&adapter->mbx_lock);
3694
3695 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3696
3697 spin_unlock_bh(&adapter->mbx_lock);
3698
3699 return 0;
3700 }
3701
3702 /**
3703 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3704 * @netdev: network interface device structure
3705 * @new_mtu: new value for maximum frame size
3706 *
3707 * Returns 0 on success, negative on failure
3708 **/
3709 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3710 {
3711 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3712 struct ixgbe_hw *hw = &adapter->hw;
3713 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3714 int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3715
3716 switch (adapter->hw.api_version) {
3717 case ixgbe_mbox_api_11:
3718 case ixgbe_mbox_api_12:
3719 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3720 break;
3721 default:
3722 if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
3723 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3724 break;
3725 }
3726
3727 /* MTU < 68 is an error and causes problems on some kernels */
3728 if ((new_mtu < 68) || (max_frame > max_possible_frame))
3729 return -EINVAL;
3730
3731 hw_dbg(hw, "changing MTU from %d to %d\n",
3732 netdev->mtu, new_mtu);
3733 /* must set new MTU before calling down or up */
3734 netdev->mtu = new_mtu;
3735
3736 /* notify the PF of our intent to use this size of frame */
3737 ixgbevf_rlpml_set_vf(hw, max_frame);
3738
3739 return 0;
3740 }
3741
3742 #ifdef CONFIG_NET_POLL_CONTROLLER
3743 /* Polling 'interrupt' - used by things like netconsole to send skbs
3744 * without having to re-enable interrupts. It's not called while
3745 * the interrupt routine is executing.
3746 */
3747 static void ixgbevf_netpoll(struct net_device *netdev)
3748 {
3749 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3750 int i;
3751
3752 /* if interface is down do nothing */
3753 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3754 return;
3755 for (i = 0; i < adapter->num_rx_queues; i++)
3756 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3757 }
3758 #endif /* CONFIG_NET_POLL_CONTROLLER */
3759
3760 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3761 {
3762 struct net_device *netdev = pci_get_drvdata(pdev);
3763 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3764 #ifdef CONFIG_PM
3765 int retval = 0;
3766 #endif
3767
3768 netif_device_detach(netdev);
3769
3770 if (netif_running(netdev)) {
3771 rtnl_lock();
3772 ixgbevf_down(adapter);
3773 ixgbevf_free_irq(adapter);
3774 ixgbevf_free_all_tx_resources(adapter);
3775 ixgbevf_free_all_rx_resources(adapter);
3776 rtnl_unlock();
3777 }
3778
3779 ixgbevf_clear_interrupt_scheme(adapter);
3780
3781 #ifdef CONFIG_PM
3782 retval = pci_save_state(pdev);
3783 if (retval)
3784 return retval;
3785
3786 #endif
3787 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3788 pci_disable_device(pdev);
3789
3790 return 0;
3791 }
3792
3793 #ifdef CONFIG_PM
3794 static int ixgbevf_resume(struct pci_dev *pdev)
3795 {
3796 struct net_device *netdev = pci_get_drvdata(pdev);
3797 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3798 u32 err;
3799
3800 pci_restore_state(pdev);
3801 /* pci_restore_state clears dev->state_saved so call
3802 * pci_save_state to restore it.
3803 */
3804 pci_save_state(pdev);
3805
3806 err = pci_enable_device_mem(pdev);
3807 if (err) {
3808 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3809 return err;
3810 }
3811 smp_mb__before_atomic();
3812 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3813 pci_set_master(pdev);
3814
3815 ixgbevf_reset(adapter);
3816
3817 rtnl_lock();
3818 err = ixgbevf_init_interrupt_scheme(adapter);
3819 rtnl_unlock();
3820 if (err) {
3821 dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3822 return err;
3823 }
3824
3825 if (netif_running(netdev)) {
3826 err = ixgbevf_open(netdev);
3827 if (err)
3828 return err;
3829 }
3830
3831 netif_device_attach(netdev);
3832
3833 return err;
3834 }
3835
3836 #endif /* CONFIG_PM */
3837 static void ixgbevf_shutdown(struct pci_dev *pdev)
3838 {
3839 ixgbevf_suspend(pdev, PMSG_SUSPEND);
3840 }
3841
3842 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3843 struct rtnl_link_stats64 *stats)
3844 {
3845 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3846 unsigned int start;
3847 u64 bytes, packets;
3848 const struct ixgbevf_ring *ring;
3849 int i;
3850
3851 ixgbevf_update_stats(adapter);
3852
3853 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3854
3855 for (i = 0; i < adapter->num_rx_queues; i++) {
3856 ring = adapter->rx_ring[i];
3857 do {
3858 start = u64_stats_fetch_begin_irq(&ring->syncp);
3859 bytes = ring->stats.bytes;
3860 packets = ring->stats.packets;
3861 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3862 stats->rx_bytes += bytes;
3863 stats->rx_packets += packets;
3864 }
3865
3866 for (i = 0; i < adapter->num_tx_queues; i++) {
3867 ring = adapter->tx_ring[i];
3868 do {
3869 start = u64_stats_fetch_begin_irq(&ring->syncp);
3870 bytes = ring->stats.bytes;
3871 packets = ring->stats.packets;
3872 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3873 stats->tx_bytes += bytes;
3874 stats->tx_packets += packets;
3875 }
3876
3877 return stats;
3878 }
3879
3880 static const struct net_device_ops ixgbevf_netdev_ops = {
3881 .ndo_open = ixgbevf_open,
3882 .ndo_stop = ixgbevf_close,
3883 .ndo_start_xmit = ixgbevf_xmit_frame,
3884 .ndo_set_rx_mode = ixgbevf_set_rx_mode,
3885 .ndo_get_stats64 = ixgbevf_get_stats,
3886 .ndo_validate_addr = eth_validate_addr,
3887 .ndo_set_mac_address = ixgbevf_set_mac,
3888 .ndo_change_mtu = ixgbevf_change_mtu,
3889 .ndo_tx_timeout = ixgbevf_tx_timeout,
3890 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid,
3891 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid,
3892 #ifdef CONFIG_NET_RX_BUSY_POLL
3893 .ndo_busy_poll = ixgbevf_busy_poll_recv,
3894 #endif
3895 #ifdef CONFIG_NET_POLL_CONTROLLER
3896 .ndo_poll_controller = ixgbevf_netpoll,
3897 #endif
3898 .ndo_features_check = passthru_features_check,
3899 };
3900
3901 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3902 {
3903 dev->netdev_ops = &ixgbevf_netdev_ops;
3904 ixgbevf_set_ethtool_ops(dev);
3905 dev->watchdog_timeo = 5 * HZ;
3906 }
3907
3908 /**
3909 * ixgbevf_probe - Device Initialization Routine
3910 * @pdev: PCI device information struct
3911 * @ent: entry in ixgbevf_pci_tbl
3912 *
3913 * Returns 0 on success, negative on failure
3914 *
3915 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3916 * The OS initialization, configuring of the adapter private structure,
3917 * and a hardware reset occur.
3918 **/
3919 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3920 {
3921 struct net_device *netdev;
3922 struct ixgbevf_adapter *adapter = NULL;
3923 struct ixgbe_hw *hw = NULL;
3924 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3925 int err, pci_using_dac;
3926 bool disable_dev = false;
3927
3928 err = pci_enable_device(pdev);
3929 if (err)
3930 return err;
3931
3932 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3933 pci_using_dac = 1;
3934 } else {
3935 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3936 if (err) {
3937 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
3938 goto err_dma;
3939 }
3940 pci_using_dac = 0;
3941 }
3942
3943 err = pci_request_regions(pdev, ixgbevf_driver_name);
3944 if (err) {
3945 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3946 goto err_pci_reg;
3947 }
3948
3949 pci_set_master(pdev);
3950
3951 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3952 MAX_TX_QUEUES);
3953 if (!netdev) {
3954 err = -ENOMEM;
3955 goto err_alloc_etherdev;
3956 }
3957
3958 SET_NETDEV_DEV(netdev, &pdev->dev);
3959
3960 adapter = netdev_priv(netdev);
3961
3962 adapter->netdev = netdev;
3963 adapter->pdev = pdev;
3964 hw = &adapter->hw;
3965 hw->back = adapter;
3966 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3967
3968 /* call save state here in standalone driver because it relies on
3969 * adapter struct to exist, and needs to call netdev_priv
3970 */
3971 pci_save_state(pdev);
3972
3973 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3974 pci_resource_len(pdev, 0));
3975 adapter->io_addr = hw->hw_addr;
3976 if (!hw->hw_addr) {
3977 err = -EIO;
3978 goto err_ioremap;
3979 }
3980
3981 ixgbevf_assign_netdev_ops(netdev);
3982
3983 /* Setup HW API */
3984 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3985 hw->mac.type = ii->mac;
3986
3987 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3988 sizeof(struct ixgbe_mbx_operations));
3989
3990 /* setup the private structure */
3991 err = ixgbevf_sw_init(adapter);
3992 if (err)
3993 goto err_sw_init;
3994
3995 /* The HW MAC address was set and/or determined in sw_init */
3996 if (!is_valid_ether_addr(netdev->dev_addr)) {
3997 pr_err("invalid MAC address\n");
3998 err = -EIO;
3999 goto err_sw_init;
4000 }
4001
4002 netdev->hw_features = NETIF_F_SG |
4003 NETIF_F_IP_CSUM |
4004 NETIF_F_IPV6_CSUM |
4005 NETIF_F_TSO |
4006 NETIF_F_TSO6 |
4007 NETIF_F_RXCSUM;
4008
4009 netdev->features = netdev->hw_features |
4010 NETIF_F_HW_VLAN_CTAG_TX |
4011 NETIF_F_HW_VLAN_CTAG_RX |
4012 NETIF_F_HW_VLAN_CTAG_FILTER;
4013
4014 netdev->vlan_features |= NETIF_F_TSO |
4015 NETIF_F_TSO6 |
4016 NETIF_F_IP_CSUM |
4017 NETIF_F_IPV6_CSUM |
4018 NETIF_F_SG;
4019
4020 if (pci_using_dac)
4021 netdev->features |= NETIF_F_HIGHDMA;
4022
4023 netdev->priv_flags |= IFF_UNICAST_FLT;
4024
4025 if (IXGBE_REMOVED(hw->hw_addr)) {
4026 err = -EIO;
4027 goto err_sw_init;
4028 }
4029
4030 setup_timer(&adapter->service_timer, &ixgbevf_service_timer,
4031 (unsigned long)adapter);
4032
4033 INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4034 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4035 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4036
4037 err = ixgbevf_init_interrupt_scheme(adapter);
4038 if (err)
4039 goto err_sw_init;
4040
4041 strcpy(netdev->name, "eth%d");
4042
4043 err = register_netdev(netdev);
4044 if (err)
4045 goto err_register;
4046
4047 pci_set_drvdata(pdev, netdev);
4048 netif_carrier_off(netdev);
4049
4050 ixgbevf_init_last_counter_stats(adapter);
4051
4052 /* print the VF info */
4053 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4054 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4055
4056 switch (hw->mac.type) {
4057 case ixgbe_mac_X550_vf:
4058 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4059 break;
4060 case ixgbe_mac_X540_vf:
4061 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4062 break;
4063 case ixgbe_mac_82599_vf:
4064 default:
4065 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4066 break;
4067 }
4068
4069 return 0;
4070
4071 err_register:
4072 ixgbevf_clear_interrupt_scheme(adapter);
4073 err_sw_init:
4074 ixgbevf_reset_interrupt_capability(adapter);
4075 iounmap(adapter->io_addr);
4076 err_ioremap:
4077 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4078 free_netdev(netdev);
4079 err_alloc_etherdev:
4080 pci_release_regions(pdev);
4081 err_pci_reg:
4082 err_dma:
4083 if (!adapter || disable_dev)
4084 pci_disable_device(pdev);
4085 return err;
4086 }
4087
4088 /**
4089 * ixgbevf_remove - Device Removal Routine
4090 * @pdev: PCI device information struct
4091 *
4092 * ixgbevf_remove is called by the PCI subsystem to alert the driver
4093 * that it should release a PCI device. The could be caused by a
4094 * Hot-Plug event, or because the driver is going to be removed from
4095 * memory.
4096 **/
4097 static void ixgbevf_remove(struct pci_dev *pdev)
4098 {
4099 struct net_device *netdev = pci_get_drvdata(pdev);
4100 struct ixgbevf_adapter *adapter;
4101 bool disable_dev;
4102
4103 if (!netdev)
4104 return;
4105
4106 adapter = netdev_priv(netdev);
4107
4108 set_bit(__IXGBEVF_REMOVING, &adapter->state);
4109 cancel_work_sync(&adapter->service_task);
4110
4111 if (netdev->reg_state == NETREG_REGISTERED)
4112 unregister_netdev(netdev);
4113
4114 ixgbevf_clear_interrupt_scheme(adapter);
4115 ixgbevf_reset_interrupt_capability(adapter);
4116
4117 iounmap(adapter->io_addr);
4118 pci_release_regions(pdev);
4119
4120 hw_dbg(&adapter->hw, "Remove complete\n");
4121
4122 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4123 free_netdev(netdev);
4124
4125 if (disable_dev)
4126 pci_disable_device(pdev);
4127 }
4128
4129 /**
4130 * ixgbevf_io_error_detected - called when PCI error is detected
4131 * @pdev: Pointer to PCI device
4132 * @state: The current pci connection state
4133 *
4134 * This function is called after a PCI bus error affecting
4135 * this device has been detected.
4136 **/
4137 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4138 pci_channel_state_t state)
4139 {
4140 struct net_device *netdev = pci_get_drvdata(pdev);
4141 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4142
4143 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4144 return PCI_ERS_RESULT_DISCONNECT;
4145
4146 rtnl_lock();
4147 netif_device_detach(netdev);
4148
4149 if (state == pci_channel_io_perm_failure) {
4150 rtnl_unlock();
4151 return PCI_ERS_RESULT_DISCONNECT;
4152 }
4153
4154 if (netif_running(netdev))
4155 ixgbevf_down(adapter);
4156
4157 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4158 pci_disable_device(pdev);
4159 rtnl_unlock();
4160
4161 /* Request a slot slot reset. */
4162 return PCI_ERS_RESULT_NEED_RESET;
4163 }
4164
4165 /**
4166 * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4167 * @pdev: Pointer to PCI device
4168 *
4169 * Restart the card from scratch, as if from a cold-boot. Implementation
4170 * resembles the first-half of the ixgbevf_resume routine.
4171 **/
4172 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4173 {
4174 struct net_device *netdev = pci_get_drvdata(pdev);
4175 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4176
4177 if (pci_enable_device_mem(pdev)) {
4178 dev_err(&pdev->dev,
4179 "Cannot re-enable PCI device after reset.\n");
4180 return PCI_ERS_RESULT_DISCONNECT;
4181 }
4182
4183 smp_mb__before_atomic();
4184 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4185 pci_set_master(pdev);
4186
4187 ixgbevf_reset(adapter);
4188
4189 return PCI_ERS_RESULT_RECOVERED;
4190 }
4191
4192 /**
4193 * ixgbevf_io_resume - called when traffic can start flowing again.
4194 * @pdev: Pointer to PCI device
4195 *
4196 * This callback is called when the error recovery driver tells us that
4197 * its OK to resume normal operation. Implementation resembles the
4198 * second-half of the ixgbevf_resume routine.
4199 **/
4200 static void ixgbevf_io_resume(struct pci_dev *pdev)
4201 {
4202 struct net_device *netdev = pci_get_drvdata(pdev);
4203 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4204
4205 if (netif_running(netdev))
4206 ixgbevf_up(adapter);
4207
4208 netif_device_attach(netdev);
4209 }
4210
4211 /* PCI Error Recovery (ERS) */
4212 static const struct pci_error_handlers ixgbevf_err_handler = {
4213 .error_detected = ixgbevf_io_error_detected,
4214 .slot_reset = ixgbevf_io_slot_reset,
4215 .resume = ixgbevf_io_resume,
4216 };
4217
4218 static struct pci_driver ixgbevf_driver = {
4219 .name = ixgbevf_driver_name,
4220 .id_table = ixgbevf_pci_tbl,
4221 .probe = ixgbevf_probe,
4222 .remove = ixgbevf_remove,
4223 #ifdef CONFIG_PM
4224 /* Power Management Hooks */
4225 .suspend = ixgbevf_suspend,
4226 .resume = ixgbevf_resume,
4227 #endif
4228 .shutdown = ixgbevf_shutdown,
4229 .err_handler = &ixgbevf_err_handler
4230 };
4231
4232 /**
4233 * ixgbevf_init_module - Driver Registration Routine
4234 *
4235 * ixgbevf_init_module is the first routine called when the driver is
4236 * loaded. All it does is register with the PCI subsystem.
4237 **/
4238 static int __init ixgbevf_init_module(void)
4239 {
4240 pr_info("%s - version %s\n", ixgbevf_driver_string,
4241 ixgbevf_driver_version);
4242
4243 pr_info("%s\n", ixgbevf_copyright);
4244 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4245 if (!ixgbevf_wq) {
4246 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4247 return -ENOMEM;
4248 }
4249
4250 return pci_register_driver(&ixgbevf_driver);
4251 }
4252
4253 module_init(ixgbevf_init_module);
4254
4255 /**
4256 * ixgbevf_exit_module - Driver Exit Cleanup Routine
4257 *
4258 * ixgbevf_exit_module is called just before the driver is removed
4259 * from memory.
4260 **/
4261 static void __exit ixgbevf_exit_module(void)
4262 {
4263 pci_unregister_driver(&ixgbevf_driver);
4264 if (ixgbevf_wq) {
4265 destroy_workqueue(ixgbevf_wq);
4266 ixgbevf_wq = NULL;
4267 }
4268 }
4269
4270 #ifdef DEBUG
4271 /**
4272 * ixgbevf_get_hw_dev_name - return device name string
4273 * used by hardware layer to print debugging information
4274 **/
4275 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4276 {
4277 struct ixgbevf_adapter *adapter = hw->back;
4278
4279 return adapter->netdev->name;
4280 }
4281
4282 #endif
4283 module_exit(ixgbevf_exit_module);
4284
4285 /* ixgbevf_main.c */
This page took 0.1913 seconds and 5 git commands to generate.