ixgbe, ixgbevf: Add new mbox API xcast mode
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3 Intel 82599 Virtual Function driver
4 Copyright(c) 1999 - 2015 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
17
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 /******************************************************************************
28 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
29 ******************************************************************************/
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/vmalloc.h>
39 #include <linux/string.h>
40 #include <linux/in.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/sctp.h>
44 #include <linux/ipv6.h>
45 #include <linux/slab.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/ethtool.h>
49 #include <linux/if.h>
50 #include <linux/if_vlan.h>
51 #include <linux/prefetch.h>
52
53 #include "ixgbevf.h"
54
55 const char ixgbevf_driver_name[] = "ixgbevf";
56 static const char ixgbevf_driver_string[] =
57 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
58
59 #define DRV_VERSION "2.12.1-k"
60 const char ixgbevf_driver_version[] = DRV_VERSION;
61 static char ixgbevf_copyright[] =
62 "Copyright (c) 2009 - 2012 Intel Corporation.";
63
64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
65 [board_82599_vf] = &ixgbevf_82599_vf_info,
66 [board_X540_vf] = &ixgbevf_X540_vf_info,
67 [board_X550_vf] = &ixgbevf_X550_vf_info,
68 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
69 };
70
71 /* ixgbevf_pci_tbl - PCI Device ID Table
72 *
73 * Wildcard entries (PCI_ANY_ID) should come last
74 * Last entry must be all 0s
75 *
76 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
77 * Class, Class Mask, private data (not used) }
78 */
79 static const struct pci_device_id ixgbevf_pci_tbl[] = {
80 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
81 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
82 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
83 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
84 /* required last entry */
85 {0, }
86 };
87 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
88
89 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
90 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_VERSION);
93
94 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
95 static int debug = -1;
96 module_param(debug, int, 0);
97 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
98
99 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
100 {
101 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
102 !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
103 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
104 schedule_work(&adapter->service_task);
105 }
106
107 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
108 {
109 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
110
111 /* flush memory to make sure state is correct before next watchdog */
112 smp_mb__before_atomic();
113 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
114 }
115
116 /* forward decls */
117 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
118 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
119 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
120
121 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
122 {
123 struct ixgbevf_adapter *adapter = hw->back;
124
125 if (!hw->hw_addr)
126 return;
127 hw->hw_addr = NULL;
128 dev_err(&adapter->pdev->dev, "Adapter removed\n");
129 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
130 ixgbevf_service_event_schedule(adapter);
131 }
132
133 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
134 {
135 u32 value;
136
137 /* The following check not only optimizes a bit by not
138 * performing a read on the status register when the
139 * register just read was a status register read that
140 * returned IXGBE_FAILED_READ_REG. It also blocks any
141 * potential recursion.
142 */
143 if (reg == IXGBE_VFSTATUS) {
144 ixgbevf_remove_adapter(hw);
145 return;
146 }
147 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
148 if (value == IXGBE_FAILED_READ_REG)
149 ixgbevf_remove_adapter(hw);
150 }
151
152 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
153 {
154 u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr);
155 u32 value;
156
157 if (IXGBE_REMOVED(reg_addr))
158 return IXGBE_FAILED_READ_REG;
159 value = readl(reg_addr + reg);
160 if (unlikely(value == IXGBE_FAILED_READ_REG))
161 ixgbevf_check_remove(hw, reg);
162 return value;
163 }
164
165 /**
166 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
167 * @adapter: pointer to adapter struct
168 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
169 * @queue: queue to map the corresponding interrupt to
170 * @msix_vector: the vector to map to the corresponding queue
171 **/
172 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
173 u8 queue, u8 msix_vector)
174 {
175 u32 ivar, index;
176 struct ixgbe_hw *hw = &adapter->hw;
177
178 if (direction == -1) {
179 /* other causes */
180 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
181 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
182 ivar &= ~0xFF;
183 ivar |= msix_vector;
184 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
185 } else {
186 /* Tx or Rx causes */
187 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
188 index = ((16 * (queue & 1)) + (8 * direction));
189 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
190 ivar &= ~(0xFF << index);
191 ivar |= (msix_vector << index);
192 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
193 }
194 }
195
196 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
197 struct ixgbevf_tx_buffer *tx_buffer)
198 {
199 if (tx_buffer->skb) {
200 dev_kfree_skb_any(tx_buffer->skb);
201 if (dma_unmap_len(tx_buffer, len))
202 dma_unmap_single(tx_ring->dev,
203 dma_unmap_addr(tx_buffer, dma),
204 dma_unmap_len(tx_buffer, len),
205 DMA_TO_DEVICE);
206 } else if (dma_unmap_len(tx_buffer, len)) {
207 dma_unmap_page(tx_ring->dev,
208 dma_unmap_addr(tx_buffer, dma),
209 dma_unmap_len(tx_buffer, len),
210 DMA_TO_DEVICE);
211 }
212 tx_buffer->next_to_watch = NULL;
213 tx_buffer->skb = NULL;
214 dma_unmap_len_set(tx_buffer, len, 0);
215 /* tx_buffer must be completely set up in the transmit path */
216 }
217
218 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
219 {
220 return ring->stats.packets;
221 }
222
223 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
224 {
225 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
226 struct ixgbe_hw *hw = &adapter->hw;
227
228 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
229 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
230
231 if (head != tail)
232 return (head < tail) ?
233 tail - head : (tail + ring->count - head);
234
235 return 0;
236 }
237
238 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
239 {
240 u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
241 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
242 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
243
244 clear_check_for_tx_hang(tx_ring);
245
246 /* Check for a hung queue, but be thorough. This verifies
247 * that a transmit has been completed since the previous
248 * check AND there is at least one packet pending. The
249 * ARMED bit is set to indicate a potential hang.
250 */
251 if ((tx_done_old == tx_done) && tx_pending) {
252 /* make sure it is true for two checks in a row */
253 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
254 &tx_ring->state);
255 }
256 /* reset the countdown */
257 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
258
259 /* update completed stats and continue */
260 tx_ring->tx_stats.tx_done_old = tx_done;
261
262 return false;
263 }
264
265 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
266 {
267 /* Do the reset outside of interrupt context */
268 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
269 adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED;
270 ixgbevf_service_event_schedule(adapter);
271 }
272 }
273
274 /**
275 * ixgbevf_tx_timeout - Respond to a Tx Hang
276 * @netdev: network interface device structure
277 **/
278 static void ixgbevf_tx_timeout(struct net_device *netdev)
279 {
280 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
281
282 ixgbevf_tx_timeout_reset(adapter);
283 }
284
285 /**
286 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
287 * @q_vector: board private structure
288 * @tx_ring: tx ring to clean
289 **/
290 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
291 struct ixgbevf_ring *tx_ring)
292 {
293 struct ixgbevf_adapter *adapter = q_vector->adapter;
294 struct ixgbevf_tx_buffer *tx_buffer;
295 union ixgbe_adv_tx_desc *tx_desc;
296 unsigned int total_bytes = 0, total_packets = 0;
297 unsigned int budget = tx_ring->count / 2;
298 unsigned int i = tx_ring->next_to_clean;
299
300 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
301 return true;
302
303 tx_buffer = &tx_ring->tx_buffer_info[i];
304 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
305 i -= tx_ring->count;
306
307 do {
308 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
309
310 /* if next_to_watch is not set then there is no work pending */
311 if (!eop_desc)
312 break;
313
314 /* prevent any other reads prior to eop_desc */
315 read_barrier_depends();
316
317 /* if DD is not set pending work has not been completed */
318 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
319 break;
320
321 /* clear next_to_watch to prevent false hangs */
322 tx_buffer->next_to_watch = NULL;
323
324 /* update the statistics for this packet */
325 total_bytes += tx_buffer->bytecount;
326 total_packets += tx_buffer->gso_segs;
327
328 /* free the skb */
329 dev_kfree_skb_any(tx_buffer->skb);
330
331 /* unmap skb header data */
332 dma_unmap_single(tx_ring->dev,
333 dma_unmap_addr(tx_buffer, dma),
334 dma_unmap_len(tx_buffer, len),
335 DMA_TO_DEVICE);
336
337 /* clear tx_buffer data */
338 tx_buffer->skb = NULL;
339 dma_unmap_len_set(tx_buffer, len, 0);
340
341 /* unmap remaining buffers */
342 while (tx_desc != eop_desc) {
343 tx_buffer++;
344 tx_desc++;
345 i++;
346 if (unlikely(!i)) {
347 i -= tx_ring->count;
348 tx_buffer = tx_ring->tx_buffer_info;
349 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
350 }
351
352 /* unmap any remaining paged data */
353 if (dma_unmap_len(tx_buffer, len)) {
354 dma_unmap_page(tx_ring->dev,
355 dma_unmap_addr(tx_buffer, dma),
356 dma_unmap_len(tx_buffer, len),
357 DMA_TO_DEVICE);
358 dma_unmap_len_set(tx_buffer, len, 0);
359 }
360 }
361
362 /* move us one more past the eop_desc for start of next pkt */
363 tx_buffer++;
364 tx_desc++;
365 i++;
366 if (unlikely(!i)) {
367 i -= tx_ring->count;
368 tx_buffer = tx_ring->tx_buffer_info;
369 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
370 }
371
372 /* issue prefetch for next Tx descriptor */
373 prefetch(tx_desc);
374
375 /* update budget accounting */
376 budget--;
377 } while (likely(budget));
378
379 i += tx_ring->count;
380 tx_ring->next_to_clean = i;
381 u64_stats_update_begin(&tx_ring->syncp);
382 tx_ring->stats.bytes += total_bytes;
383 tx_ring->stats.packets += total_packets;
384 u64_stats_update_end(&tx_ring->syncp);
385 q_vector->tx.total_bytes += total_bytes;
386 q_vector->tx.total_packets += total_packets;
387
388 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
389 struct ixgbe_hw *hw = &adapter->hw;
390 union ixgbe_adv_tx_desc *eop_desc;
391
392 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
393
394 pr_err("Detected Tx Unit Hang\n"
395 " Tx Queue <%d>\n"
396 " TDH, TDT <%x>, <%x>\n"
397 " next_to_use <%x>\n"
398 " next_to_clean <%x>\n"
399 "tx_buffer_info[next_to_clean]\n"
400 " next_to_watch <%p>\n"
401 " eop_desc->wb.status <%x>\n"
402 " time_stamp <%lx>\n"
403 " jiffies <%lx>\n",
404 tx_ring->queue_index,
405 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
406 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
407 tx_ring->next_to_use, i,
408 eop_desc, (eop_desc ? eop_desc->wb.status : 0),
409 tx_ring->tx_buffer_info[i].time_stamp, jiffies);
410
411 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
412
413 /* schedule immediate reset if we believe we hung */
414 ixgbevf_tx_timeout_reset(adapter);
415
416 return true;
417 }
418
419 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
420 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
421 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
422 /* Make sure that anybody stopping the queue after this
423 * sees the new next_to_clean.
424 */
425 smp_mb();
426
427 if (__netif_subqueue_stopped(tx_ring->netdev,
428 tx_ring->queue_index) &&
429 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
430 netif_wake_subqueue(tx_ring->netdev,
431 tx_ring->queue_index);
432 ++tx_ring->tx_stats.restart_queue;
433 }
434 }
435
436 return !!budget;
437 }
438
439 /**
440 * ixgbevf_rx_skb - Helper function to determine proper Rx method
441 * @q_vector: structure containing interrupt and ring information
442 * @skb: packet to send up
443 **/
444 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
445 struct sk_buff *skb)
446 {
447 #ifdef CONFIG_NET_RX_BUSY_POLL
448 skb_mark_napi_id(skb, &q_vector->napi);
449
450 if (ixgbevf_qv_busy_polling(q_vector)) {
451 netif_receive_skb(skb);
452 /* exit early if we busy polled */
453 return;
454 }
455 #endif /* CONFIG_NET_RX_BUSY_POLL */
456
457 napi_gro_receive(&q_vector->napi, skb);
458 }
459
460 #define IXGBE_RSS_L4_TYPES_MASK \
461 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
462 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
463 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
464 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
465
466 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
467 union ixgbe_adv_rx_desc *rx_desc,
468 struct sk_buff *skb)
469 {
470 u16 rss_type;
471
472 if (!(ring->netdev->features & NETIF_F_RXHASH))
473 return;
474
475 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
476 IXGBE_RXDADV_RSSTYPE_MASK;
477
478 if (!rss_type)
479 return;
480
481 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
482 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
483 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
484 }
485
486 /**
487 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
488 * @ring: structure containig ring specific data
489 * @rx_desc: current Rx descriptor being processed
490 * @skb: skb currently being received and modified
491 **/
492 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
493 union ixgbe_adv_rx_desc *rx_desc,
494 struct sk_buff *skb)
495 {
496 skb_checksum_none_assert(skb);
497
498 /* Rx csum disabled */
499 if (!(ring->netdev->features & NETIF_F_RXCSUM))
500 return;
501
502 /* if IP and error */
503 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
504 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
505 ring->rx_stats.csum_err++;
506 return;
507 }
508
509 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
510 return;
511
512 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
513 ring->rx_stats.csum_err++;
514 return;
515 }
516
517 /* It must be a TCP or UDP packet with a valid checksum */
518 skb->ip_summed = CHECKSUM_UNNECESSARY;
519 }
520
521 /**
522 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
523 * @rx_ring: rx descriptor ring packet is being transacted on
524 * @rx_desc: pointer to the EOP Rx descriptor
525 * @skb: pointer to current skb being populated
526 *
527 * This function checks the ring, descriptor, and packet information in
528 * order to populate the checksum, VLAN, protocol, and other fields within
529 * the skb.
530 **/
531 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
532 union ixgbe_adv_rx_desc *rx_desc,
533 struct sk_buff *skb)
534 {
535 ixgbevf_rx_hash(rx_ring, rx_desc, skb);
536 ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
537
538 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
539 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
540 unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
541
542 if (test_bit(vid & VLAN_VID_MASK, active_vlans))
543 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
544 }
545
546 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
547 }
548
549 /**
550 * ixgbevf_is_non_eop - process handling of non-EOP buffers
551 * @rx_ring: Rx ring being processed
552 * @rx_desc: Rx descriptor for current buffer
553 * @skb: current socket buffer containing buffer in progress
554 *
555 * This function updates next to clean. If the buffer is an EOP buffer
556 * this function exits returning false, otherwise it will place the
557 * sk_buff in the next buffer to be chained and return true indicating
558 * that this is in fact a non-EOP buffer.
559 **/
560 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
561 union ixgbe_adv_rx_desc *rx_desc)
562 {
563 u32 ntc = rx_ring->next_to_clean + 1;
564
565 /* fetch, update, and store next to clean */
566 ntc = (ntc < rx_ring->count) ? ntc : 0;
567 rx_ring->next_to_clean = ntc;
568
569 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
570
571 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
572 return false;
573
574 return true;
575 }
576
577 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
578 struct ixgbevf_rx_buffer *bi)
579 {
580 struct page *page = bi->page;
581 dma_addr_t dma = bi->dma;
582
583 /* since we are recycling buffers we should seldom need to alloc */
584 if (likely(page))
585 return true;
586
587 /* alloc new page for storage */
588 page = dev_alloc_page();
589 if (unlikely(!page)) {
590 rx_ring->rx_stats.alloc_rx_page_failed++;
591 return false;
592 }
593
594 /* map page for use */
595 dma = dma_map_page(rx_ring->dev, page, 0,
596 PAGE_SIZE, DMA_FROM_DEVICE);
597
598 /* if mapping failed free memory back to system since
599 * there isn't much point in holding memory we can't use
600 */
601 if (dma_mapping_error(rx_ring->dev, dma)) {
602 __free_page(page);
603
604 rx_ring->rx_stats.alloc_rx_buff_failed++;
605 return false;
606 }
607
608 bi->dma = dma;
609 bi->page = page;
610 bi->page_offset = 0;
611
612 return true;
613 }
614
615 /**
616 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
617 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
618 * @cleaned_count: number of buffers to replace
619 **/
620 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
621 u16 cleaned_count)
622 {
623 union ixgbe_adv_rx_desc *rx_desc;
624 struct ixgbevf_rx_buffer *bi;
625 unsigned int i = rx_ring->next_to_use;
626
627 /* nothing to do or no valid netdev defined */
628 if (!cleaned_count || !rx_ring->netdev)
629 return;
630
631 rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
632 bi = &rx_ring->rx_buffer_info[i];
633 i -= rx_ring->count;
634
635 do {
636 if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
637 break;
638
639 /* Refresh the desc even if pkt_addr didn't change
640 * because each write-back erases this info.
641 */
642 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
643
644 rx_desc++;
645 bi++;
646 i++;
647 if (unlikely(!i)) {
648 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
649 bi = rx_ring->rx_buffer_info;
650 i -= rx_ring->count;
651 }
652
653 /* clear the hdr_addr for the next_to_use descriptor */
654 rx_desc->read.hdr_addr = 0;
655
656 cleaned_count--;
657 } while (cleaned_count);
658
659 i += rx_ring->count;
660
661 if (rx_ring->next_to_use != i) {
662 /* record the next descriptor to use */
663 rx_ring->next_to_use = i;
664
665 /* update next to alloc since we have filled the ring */
666 rx_ring->next_to_alloc = i;
667
668 /* Force memory writes to complete before letting h/w
669 * know there are new descriptors to fetch. (Only
670 * applicable for weak-ordered memory model archs,
671 * such as IA-64).
672 */
673 wmb();
674 ixgbevf_write_tail(rx_ring, i);
675 }
676 }
677
678 /**
679 * ixgbevf_cleanup_headers - Correct corrupted or empty headers
680 * @rx_ring: rx descriptor ring packet is being transacted on
681 * @rx_desc: pointer to the EOP Rx descriptor
682 * @skb: pointer to current skb being fixed
683 *
684 * Check for corrupted packet headers caused by senders on the local L2
685 * embedded NIC switch not setting up their Tx Descriptors right. These
686 * should be very rare.
687 *
688 * Also address the case where we are pulling data in on pages only
689 * and as such no data is present in the skb header.
690 *
691 * In addition if skb is not at least 60 bytes we need to pad it so that
692 * it is large enough to qualify as a valid Ethernet frame.
693 *
694 * Returns true if an error was encountered and skb was freed.
695 **/
696 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
697 union ixgbe_adv_rx_desc *rx_desc,
698 struct sk_buff *skb)
699 {
700 /* verify that the packet does not have any known errors */
701 if (unlikely(ixgbevf_test_staterr(rx_desc,
702 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
703 struct net_device *netdev = rx_ring->netdev;
704
705 if (!(netdev->features & NETIF_F_RXALL)) {
706 dev_kfree_skb_any(skb);
707 return true;
708 }
709 }
710
711 /* if eth_skb_pad returns an error the skb was freed */
712 if (eth_skb_pad(skb))
713 return true;
714
715 return false;
716 }
717
718 /**
719 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
720 * @rx_ring: rx descriptor ring to store buffers on
721 * @old_buff: donor buffer to have page reused
722 *
723 * Synchronizes page for reuse by the adapter
724 **/
725 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
726 struct ixgbevf_rx_buffer *old_buff)
727 {
728 struct ixgbevf_rx_buffer *new_buff;
729 u16 nta = rx_ring->next_to_alloc;
730
731 new_buff = &rx_ring->rx_buffer_info[nta];
732
733 /* update, and store next to alloc */
734 nta++;
735 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
736
737 /* transfer page from old buffer to new buffer */
738 new_buff->page = old_buff->page;
739 new_buff->dma = old_buff->dma;
740 new_buff->page_offset = old_buff->page_offset;
741
742 /* sync the buffer for use by the device */
743 dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma,
744 new_buff->page_offset,
745 IXGBEVF_RX_BUFSZ,
746 DMA_FROM_DEVICE);
747 }
748
749 static inline bool ixgbevf_page_is_reserved(struct page *page)
750 {
751 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
752 }
753
754 /**
755 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
756 * @rx_ring: rx descriptor ring to transact packets on
757 * @rx_buffer: buffer containing page to add
758 * @rx_desc: descriptor containing length of buffer written by hardware
759 * @skb: sk_buff to place the data into
760 *
761 * This function will add the data contained in rx_buffer->page to the skb.
762 * This is done either through a direct copy if the data in the buffer is
763 * less than the skb header size, otherwise it will just attach the page as
764 * a frag to the skb.
765 *
766 * The function will then update the page offset if necessary and return
767 * true if the buffer can be reused by the adapter.
768 **/
769 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
770 struct ixgbevf_rx_buffer *rx_buffer,
771 union ixgbe_adv_rx_desc *rx_desc,
772 struct sk_buff *skb)
773 {
774 struct page *page = rx_buffer->page;
775 unsigned char *va = page_address(page) + rx_buffer->page_offset;
776 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
777 #if (PAGE_SIZE < 8192)
778 unsigned int truesize = IXGBEVF_RX_BUFSZ;
779 #else
780 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
781 #endif
782 unsigned int pull_len;
783
784 if (unlikely(skb_is_nonlinear(skb)))
785 goto add_tail_frag;
786
787 if (likely(size <= IXGBEVF_RX_HDR_SIZE)) {
788 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
789
790 /* page is not reserved, we can reuse buffer as is */
791 if (likely(!ixgbevf_page_is_reserved(page)))
792 return true;
793
794 /* this page cannot be reused so discard it */
795 put_page(page);
796 return false;
797 }
798
799 /* we need the header to contain the greater of either ETH_HLEN or
800 * 60 bytes if the skb->len is less than 60 for skb_pad.
801 */
802 pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
803
804 /* align pull length to size of long to optimize memcpy performance */
805 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
806
807 /* update all of the pointers */
808 va += pull_len;
809 size -= pull_len;
810
811 add_tail_frag:
812 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
813 (unsigned long)va & ~PAGE_MASK, size, truesize);
814
815 /* avoid re-using remote pages */
816 if (unlikely(ixgbevf_page_is_reserved(page)))
817 return false;
818
819 #if (PAGE_SIZE < 8192)
820 /* if we are only owner of page we can reuse it */
821 if (unlikely(page_count(page) != 1))
822 return false;
823
824 /* flip page offset to other buffer */
825 rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
826
827 #else
828 /* move offset up to the next cache line */
829 rx_buffer->page_offset += truesize;
830
831 if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
832 return false;
833
834 #endif
835 /* Even if we own the page, we are not allowed to use atomic_set()
836 * This would break get_page_unless_zero() users.
837 */
838 atomic_inc(&page->_count);
839
840 return true;
841 }
842
843 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
844 union ixgbe_adv_rx_desc *rx_desc,
845 struct sk_buff *skb)
846 {
847 struct ixgbevf_rx_buffer *rx_buffer;
848 struct page *page;
849
850 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
851 page = rx_buffer->page;
852 prefetchw(page);
853
854 if (likely(!skb)) {
855 void *page_addr = page_address(page) +
856 rx_buffer->page_offset;
857
858 /* prefetch first cache line of first page */
859 prefetch(page_addr);
860 #if L1_CACHE_BYTES < 128
861 prefetch(page_addr + L1_CACHE_BYTES);
862 #endif
863
864 /* allocate a skb to store the frags */
865 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
866 IXGBEVF_RX_HDR_SIZE);
867 if (unlikely(!skb)) {
868 rx_ring->rx_stats.alloc_rx_buff_failed++;
869 return NULL;
870 }
871
872 /* we will be copying header into skb->data in
873 * pskb_may_pull so it is in our interest to prefetch
874 * it now to avoid a possible cache miss
875 */
876 prefetchw(skb->data);
877 }
878
879 /* we are reusing so sync this buffer for CPU use */
880 dma_sync_single_range_for_cpu(rx_ring->dev,
881 rx_buffer->dma,
882 rx_buffer->page_offset,
883 IXGBEVF_RX_BUFSZ,
884 DMA_FROM_DEVICE);
885
886 /* pull page into skb */
887 if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
888 /* hand second half of page back to the ring */
889 ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
890 } else {
891 /* we are not reusing the buffer so unmap it */
892 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
893 PAGE_SIZE, DMA_FROM_DEVICE);
894 }
895
896 /* clear contents of buffer_info */
897 rx_buffer->dma = 0;
898 rx_buffer->page = NULL;
899
900 return skb;
901 }
902
903 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
904 u32 qmask)
905 {
906 struct ixgbe_hw *hw = &adapter->hw;
907
908 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
909 }
910
911 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
912 struct ixgbevf_ring *rx_ring,
913 int budget)
914 {
915 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
916 u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
917 struct sk_buff *skb = rx_ring->skb;
918
919 while (likely(total_rx_packets < budget)) {
920 union ixgbe_adv_rx_desc *rx_desc;
921
922 /* return some buffers to hardware, one at a time is too slow */
923 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
924 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
925 cleaned_count = 0;
926 }
927
928 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
929
930 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
931 break;
932
933 /* This memory barrier is needed to keep us from reading
934 * any other fields out of the rx_desc until we know the
935 * RXD_STAT_DD bit is set
936 */
937 rmb();
938
939 /* retrieve a buffer from the ring */
940 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
941
942 /* exit if we failed to retrieve a buffer */
943 if (!skb)
944 break;
945
946 cleaned_count++;
947
948 /* fetch next buffer in frame if non-eop */
949 if (ixgbevf_is_non_eop(rx_ring, rx_desc))
950 continue;
951
952 /* verify the packet layout is correct */
953 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
954 skb = NULL;
955 continue;
956 }
957
958 /* probably a little skewed due to removing CRC */
959 total_rx_bytes += skb->len;
960
961 /* Workaround hardware that can't do proper VEPA multicast
962 * source pruning.
963 */
964 if ((skb->pkt_type == PACKET_BROADCAST ||
965 skb->pkt_type == PACKET_MULTICAST) &&
966 ether_addr_equal(rx_ring->netdev->dev_addr,
967 eth_hdr(skb)->h_source)) {
968 dev_kfree_skb_irq(skb);
969 continue;
970 }
971
972 /* populate checksum, VLAN, and protocol */
973 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
974
975 ixgbevf_rx_skb(q_vector, skb);
976
977 /* reset skb pointer */
978 skb = NULL;
979
980 /* update budget accounting */
981 total_rx_packets++;
982 }
983
984 /* place incomplete frames back on ring for completion */
985 rx_ring->skb = skb;
986
987 u64_stats_update_begin(&rx_ring->syncp);
988 rx_ring->stats.packets += total_rx_packets;
989 rx_ring->stats.bytes += total_rx_bytes;
990 u64_stats_update_end(&rx_ring->syncp);
991 q_vector->rx.total_packets += total_rx_packets;
992 q_vector->rx.total_bytes += total_rx_bytes;
993
994 return total_rx_packets;
995 }
996
997 /**
998 * ixgbevf_poll - NAPI polling calback
999 * @napi: napi struct with our devices info in it
1000 * @budget: amount of work driver is allowed to do this pass, in packets
1001 *
1002 * This function will clean more than one or more rings associated with a
1003 * q_vector.
1004 **/
1005 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1006 {
1007 struct ixgbevf_q_vector *q_vector =
1008 container_of(napi, struct ixgbevf_q_vector, napi);
1009 struct ixgbevf_adapter *adapter = q_vector->adapter;
1010 struct ixgbevf_ring *ring;
1011 int per_ring_budget, work_done = 0;
1012 bool clean_complete = true;
1013
1014 ixgbevf_for_each_ring(ring, q_vector->tx)
1015 clean_complete &= ixgbevf_clean_tx_irq(q_vector, ring);
1016
1017 #ifdef CONFIG_NET_RX_BUSY_POLL
1018 if (!ixgbevf_qv_lock_napi(q_vector))
1019 return budget;
1020 #endif
1021
1022 /* attempt to distribute budget to each queue fairly, but don't allow
1023 * the budget to go below 1 because we'll exit polling
1024 */
1025 if (q_vector->rx.count > 1)
1026 per_ring_budget = max(budget/q_vector->rx.count, 1);
1027 else
1028 per_ring_budget = budget;
1029
1030 ixgbevf_for_each_ring(ring, q_vector->rx) {
1031 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1032 per_ring_budget);
1033 work_done += cleaned;
1034 clean_complete &= (cleaned < per_ring_budget);
1035 }
1036
1037 #ifdef CONFIG_NET_RX_BUSY_POLL
1038 ixgbevf_qv_unlock_napi(q_vector);
1039 #endif
1040
1041 /* If all work not completed, return budget and keep polling */
1042 if (!clean_complete)
1043 return budget;
1044 /* all work done, exit the polling mode */
1045 napi_complete_done(napi, work_done);
1046 if (adapter->rx_itr_setting & 1)
1047 ixgbevf_set_itr(q_vector);
1048 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1049 !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1050 ixgbevf_irq_enable_queues(adapter,
1051 1 << q_vector->v_idx);
1052
1053 return 0;
1054 }
1055
1056 /**
1057 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1058 * @q_vector: structure containing interrupt and ring information
1059 **/
1060 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1061 {
1062 struct ixgbevf_adapter *adapter = q_vector->adapter;
1063 struct ixgbe_hw *hw = &adapter->hw;
1064 int v_idx = q_vector->v_idx;
1065 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1066
1067 /* set the WDIS bit to not clear the timer bits and cause an
1068 * immediate assertion of the interrupt
1069 */
1070 itr_reg |= IXGBE_EITR_CNT_WDIS;
1071
1072 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1073 }
1074
1075 #ifdef CONFIG_NET_RX_BUSY_POLL
1076 /* must be called with local_bh_disable()d */
1077 static int ixgbevf_busy_poll_recv(struct napi_struct *napi)
1078 {
1079 struct ixgbevf_q_vector *q_vector =
1080 container_of(napi, struct ixgbevf_q_vector, napi);
1081 struct ixgbevf_adapter *adapter = q_vector->adapter;
1082 struct ixgbevf_ring *ring;
1083 int found = 0;
1084
1085 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
1086 return LL_FLUSH_FAILED;
1087
1088 if (!ixgbevf_qv_lock_poll(q_vector))
1089 return LL_FLUSH_BUSY;
1090
1091 ixgbevf_for_each_ring(ring, q_vector->rx) {
1092 found = ixgbevf_clean_rx_irq(q_vector, ring, 4);
1093 #ifdef BP_EXTENDED_STATS
1094 if (found)
1095 ring->stats.cleaned += found;
1096 else
1097 ring->stats.misses++;
1098 #endif
1099 if (found)
1100 break;
1101 }
1102
1103 ixgbevf_qv_unlock_poll(q_vector);
1104
1105 return found;
1106 }
1107 #endif /* CONFIG_NET_RX_BUSY_POLL */
1108
1109 /**
1110 * ixgbevf_configure_msix - Configure MSI-X hardware
1111 * @adapter: board private structure
1112 *
1113 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1114 * interrupts.
1115 **/
1116 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1117 {
1118 struct ixgbevf_q_vector *q_vector;
1119 int q_vectors, v_idx;
1120
1121 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1122 adapter->eims_enable_mask = 0;
1123
1124 /* Populate the IVAR table and set the ITR values to the
1125 * corresponding register.
1126 */
1127 for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1128 struct ixgbevf_ring *ring;
1129
1130 q_vector = adapter->q_vector[v_idx];
1131
1132 ixgbevf_for_each_ring(ring, q_vector->rx)
1133 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1134
1135 ixgbevf_for_each_ring(ring, q_vector->tx)
1136 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1137
1138 if (q_vector->tx.ring && !q_vector->rx.ring) {
1139 /* Tx only vector */
1140 if (adapter->tx_itr_setting == 1)
1141 q_vector->itr = IXGBE_10K_ITR;
1142 else
1143 q_vector->itr = adapter->tx_itr_setting;
1144 } else {
1145 /* Rx or Rx/Tx vector */
1146 if (adapter->rx_itr_setting == 1)
1147 q_vector->itr = IXGBE_20K_ITR;
1148 else
1149 q_vector->itr = adapter->rx_itr_setting;
1150 }
1151
1152 /* add q_vector eims value to global eims_enable_mask */
1153 adapter->eims_enable_mask |= 1 << v_idx;
1154
1155 ixgbevf_write_eitr(q_vector);
1156 }
1157
1158 ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1159 /* setup eims_other and add value to global eims_enable_mask */
1160 adapter->eims_other = 1 << v_idx;
1161 adapter->eims_enable_mask |= adapter->eims_other;
1162 }
1163
1164 enum latency_range {
1165 lowest_latency = 0,
1166 low_latency = 1,
1167 bulk_latency = 2,
1168 latency_invalid = 255
1169 };
1170
1171 /**
1172 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1173 * @q_vector: structure containing interrupt and ring information
1174 * @ring_container: structure containing ring performance data
1175 *
1176 * Stores a new ITR value based on packets and byte
1177 * counts during the last interrupt. The advantage of per interrupt
1178 * computation is faster updates and more accurate ITR for the current
1179 * traffic pattern. Constants in this function were computed
1180 * based on theoretical maximum wire speed and thresholds were set based
1181 * on testing data as well as attempting to minimize response time
1182 * while increasing bulk throughput.
1183 **/
1184 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1185 struct ixgbevf_ring_container *ring_container)
1186 {
1187 int bytes = ring_container->total_bytes;
1188 int packets = ring_container->total_packets;
1189 u32 timepassed_us;
1190 u64 bytes_perint;
1191 u8 itr_setting = ring_container->itr;
1192
1193 if (packets == 0)
1194 return;
1195
1196 /* simple throttle rate management
1197 * 0-20MB/s lowest (100000 ints/s)
1198 * 20-100MB/s low (20000 ints/s)
1199 * 100-1249MB/s bulk (8000 ints/s)
1200 */
1201 /* what was last interrupt timeslice? */
1202 timepassed_us = q_vector->itr >> 2;
1203 bytes_perint = bytes / timepassed_us; /* bytes/usec */
1204
1205 switch (itr_setting) {
1206 case lowest_latency:
1207 if (bytes_perint > 10)
1208 itr_setting = low_latency;
1209 break;
1210 case low_latency:
1211 if (bytes_perint > 20)
1212 itr_setting = bulk_latency;
1213 else if (bytes_perint <= 10)
1214 itr_setting = lowest_latency;
1215 break;
1216 case bulk_latency:
1217 if (bytes_perint <= 20)
1218 itr_setting = low_latency;
1219 break;
1220 }
1221
1222 /* clear work counters since we have the values we need */
1223 ring_container->total_bytes = 0;
1224 ring_container->total_packets = 0;
1225
1226 /* write updated itr to ring container */
1227 ring_container->itr = itr_setting;
1228 }
1229
1230 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1231 {
1232 u32 new_itr = q_vector->itr;
1233 u8 current_itr;
1234
1235 ixgbevf_update_itr(q_vector, &q_vector->tx);
1236 ixgbevf_update_itr(q_vector, &q_vector->rx);
1237
1238 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1239
1240 switch (current_itr) {
1241 /* counts and packets in update_itr are dependent on these numbers */
1242 case lowest_latency:
1243 new_itr = IXGBE_100K_ITR;
1244 break;
1245 case low_latency:
1246 new_itr = IXGBE_20K_ITR;
1247 break;
1248 case bulk_latency:
1249 default:
1250 new_itr = IXGBE_8K_ITR;
1251 break;
1252 }
1253
1254 if (new_itr != q_vector->itr) {
1255 /* do an exponential smoothing */
1256 new_itr = (10 * new_itr * q_vector->itr) /
1257 ((9 * new_itr) + q_vector->itr);
1258
1259 /* save the algorithm value here */
1260 q_vector->itr = new_itr;
1261
1262 ixgbevf_write_eitr(q_vector);
1263 }
1264 }
1265
1266 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1267 {
1268 struct ixgbevf_adapter *adapter = data;
1269 struct ixgbe_hw *hw = &adapter->hw;
1270
1271 hw->mac.get_link_status = 1;
1272
1273 ixgbevf_service_event_schedule(adapter);
1274
1275 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1276
1277 return IRQ_HANDLED;
1278 }
1279
1280 /**
1281 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1282 * @irq: unused
1283 * @data: pointer to our q_vector struct for this interrupt vector
1284 **/
1285 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1286 {
1287 struct ixgbevf_q_vector *q_vector = data;
1288
1289 /* EIAM disabled interrupts (on this vector) for us */
1290 if (q_vector->rx.ring || q_vector->tx.ring)
1291 napi_schedule(&q_vector->napi);
1292
1293 return IRQ_HANDLED;
1294 }
1295
1296 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1297 int r_idx)
1298 {
1299 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1300
1301 a->rx_ring[r_idx]->next = q_vector->rx.ring;
1302 q_vector->rx.ring = a->rx_ring[r_idx];
1303 q_vector->rx.count++;
1304 }
1305
1306 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1307 int t_idx)
1308 {
1309 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1310
1311 a->tx_ring[t_idx]->next = q_vector->tx.ring;
1312 q_vector->tx.ring = a->tx_ring[t_idx];
1313 q_vector->tx.count++;
1314 }
1315
1316 /**
1317 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1318 * @adapter: board private structure to initialize
1319 *
1320 * This function maps descriptor rings to the queue-specific vectors
1321 * we were allotted through the MSI-X enabling code. Ideally, we'd have
1322 * one vector per ring/queue, but on a constrained vector budget, we
1323 * group the rings as "efficiently" as possible. You would add new
1324 * mapping configurations in here.
1325 **/
1326 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1327 {
1328 int q_vectors;
1329 int v_start = 0;
1330 int rxr_idx = 0, txr_idx = 0;
1331 int rxr_remaining = adapter->num_rx_queues;
1332 int txr_remaining = adapter->num_tx_queues;
1333 int i, j;
1334 int rqpv, tqpv;
1335 int err = 0;
1336
1337 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1338
1339 /* The ideal configuration...
1340 * We have enough vectors to map one per queue.
1341 */
1342 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1343 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1344 map_vector_to_rxq(adapter, v_start, rxr_idx);
1345
1346 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1347 map_vector_to_txq(adapter, v_start, txr_idx);
1348 goto out;
1349 }
1350
1351 /* If we don't have enough vectors for a 1-to-1
1352 * mapping, we'll have to group them so there are
1353 * multiple queues per vector.
1354 */
1355 /* Re-adjusting *qpv takes care of the remainder. */
1356 for (i = v_start; i < q_vectors; i++) {
1357 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1358 for (j = 0; j < rqpv; j++) {
1359 map_vector_to_rxq(adapter, i, rxr_idx);
1360 rxr_idx++;
1361 rxr_remaining--;
1362 }
1363 }
1364 for (i = v_start; i < q_vectors; i++) {
1365 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1366 for (j = 0; j < tqpv; j++) {
1367 map_vector_to_txq(adapter, i, txr_idx);
1368 txr_idx++;
1369 txr_remaining--;
1370 }
1371 }
1372
1373 out:
1374 return err;
1375 }
1376
1377 /**
1378 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1379 * @adapter: board private structure
1380 *
1381 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1382 * interrupts from the kernel.
1383 **/
1384 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1385 {
1386 struct net_device *netdev = adapter->netdev;
1387 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1388 int vector, err;
1389 int ri = 0, ti = 0;
1390
1391 for (vector = 0; vector < q_vectors; vector++) {
1392 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1393 struct msix_entry *entry = &adapter->msix_entries[vector];
1394
1395 if (q_vector->tx.ring && q_vector->rx.ring) {
1396 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1397 "%s-%s-%d", netdev->name, "TxRx", ri++);
1398 ti++;
1399 } else if (q_vector->rx.ring) {
1400 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1401 "%s-%s-%d", netdev->name, "rx", ri++);
1402 } else if (q_vector->tx.ring) {
1403 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1404 "%s-%s-%d", netdev->name, "tx", ti++);
1405 } else {
1406 /* skip this unused q_vector */
1407 continue;
1408 }
1409 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1410 q_vector->name, q_vector);
1411 if (err) {
1412 hw_dbg(&adapter->hw,
1413 "request_irq failed for MSIX interrupt Error: %d\n",
1414 err);
1415 goto free_queue_irqs;
1416 }
1417 }
1418
1419 err = request_irq(adapter->msix_entries[vector].vector,
1420 &ixgbevf_msix_other, 0, netdev->name, adapter);
1421 if (err) {
1422 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1423 err);
1424 goto free_queue_irqs;
1425 }
1426
1427 return 0;
1428
1429 free_queue_irqs:
1430 while (vector) {
1431 vector--;
1432 free_irq(adapter->msix_entries[vector].vector,
1433 adapter->q_vector[vector]);
1434 }
1435 /* This failure is non-recoverable - it indicates the system is
1436 * out of MSIX vector resources and the VF driver cannot run
1437 * without them. Set the number of msix vectors to zero
1438 * indicating that not enough can be allocated. The error
1439 * will be returned to the user indicating device open failed.
1440 * Any further attempts to force the driver to open will also
1441 * fail. The only way to recover is to unload the driver and
1442 * reload it again. If the system has recovered some MSIX
1443 * vectors then it may succeed.
1444 */
1445 adapter->num_msix_vectors = 0;
1446 return err;
1447 }
1448
1449 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1450 {
1451 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1452
1453 for (i = 0; i < q_vectors; i++) {
1454 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1455
1456 q_vector->rx.ring = NULL;
1457 q_vector->tx.ring = NULL;
1458 q_vector->rx.count = 0;
1459 q_vector->tx.count = 0;
1460 }
1461 }
1462
1463 /**
1464 * ixgbevf_request_irq - initialize interrupts
1465 * @adapter: board private structure
1466 *
1467 * Attempts to configure interrupts using the best available
1468 * capabilities of the hardware and kernel.
1469 **/
1470 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1471 {
1472 int err = 0;
1473
1474 err = ixgbevf_request_msix_irqs(adapter);
1475
1476 if (err)
1477 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1478
1479 return err;
1480 }
1481
1482 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1483 {
1484 int i, q_vectors;
1485
1486 q_vectors = adapter->num_msix_vectors;
1487 i = q_vectors - 1;
1488
1489 free_irq(adapter->msix_entries[i].vector, adapter);
1490 i--;
1491
1492 for (; i >= 0; i--) {
1493 /* free only the irqs that were actually requested */
1494 if (!adapter->q_vector[i]->rx.ring &&
1495 !adapter->q_vector[i]->tx.ring)
1496 continue;
1497
1498 free_irq(adapter->msix_entries[i].vector,
1499 adapter->q_vector[i]);
1500 }
1501
1502 ixgbevf_reset_q_vectors(adapter);
1503 }
1504
1505 /**
1506 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1507 * @adapter: board private structure
1508 **/
1509 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1510 {
1511 struct ixgbe_hw *hw = &adapter->hw;
1512 int i;
1513
1514 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1515 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1516 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1517
1518 IXGBE_WRITE_FLUSH(hw);
1519
1520 for (i = 0; i < adapter->num_msix_vectors; i++)
1521 synchronize_irq(adapter->msix_entries[i].vector);
1522 }
1523
1524 /**
1525 * ixgbevf_irq_enable - Enable default interrupt generation settings
1526 * @adapter: board private structure
1527 **/
1528 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1529 {
1530 struct ixgbe_hw *hw = &adapter->hw;
1531
1532 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1533 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1534 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1535 }
1536
1537 /**
1538 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1539 * @adapter: board private structure
1540 * @ring: structure containing ring specific data
1541 *
1542 * Configure the Tx descriptor ring after a reset.
1543 **/
1544 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1545 struct ixgbevf_ring *ring)
1546 {
1547 struct ixgbe_hw *hw = &adapter->hw;
1548 u64 tdba = ring->dma;
1549 int wait_loop = 10;
1550 u32 txdctl = IXGBE_TXDCTL_ENABLE;
1551 u8 reg_idx = ring->reg_idx;
1552
1553 /* disable queue to avoid issues while updating state */
1554 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1555 IXGBE_WRITE_FLUSH(hw);
1556
1557 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1558 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1559 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1560 ring->count * sizeof(union ixgbe_adv_tx_desc));
1561
1562 /* disable head writeback */
1563 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1564 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1565
1566 /* enable relaxed ordering */
1567 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1568 (IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1569 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1570
1571 /* reset head and tail pointers */
1572 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1573 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1574 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1575
1576 /* reset ntu and ntc to place SW in sync with hardwdare */
1577 ring->next_to_clean = 0;
1578 ring->next_to_use = 0;
1579
1580 /* In order to avoid issues WTHRESH + PTHRESH should always be equal
1581 * to or less than the number of on chip descriptors, which is
1582 * currently 40.
1583 */
1584 txdctl |= (8 << 16); /* WTHRESH = 8 */
1585
1586 /* Setting PTHRESH to 32 both improves performance */
1587 txdctl |= (1 << 8) | /* HTHRESH = 1 */
1588 32; /* PTHRESH = 32 */
1589
1590 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1591
1592 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1593
1594 /* poll to verify queue is enabled */
1595 do {
1596 usleep_range(1000, 2000);
1597 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1598 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1599 if (!wait_loop)
1600 pr_err("Could not enable Tx Queue %d\n", reg_idx);
1601 }
1602
1603 /**
1604 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1605 * @adapter: board private structure
1606 *
1607 * Configure the Tx unit of the MAC after a reset.
1608 **/
1609 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1610 {
1611 u32 i;
1612
1613 /* Setup the HW Tx Head and Tail descriptor pointers */
1614 for (i = 0; i < adapter->num_tx_queues; i++)
1615 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1616 }
1617
1618 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1619
1620 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1621 {
1622 struct ixgbe_hw *hw = &adapter->hw;
1623 u32 srrctl;
1624
1625 srrctl = IXGBE_SRRCTL_DROP_EN;
1626
1627 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1628 srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1629 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1630
1631 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1632 }
1633
1634 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1635 {
1636 struct ixgbe_hw *hw = &adapter->hw;
1637
1638 /* PSRTYPE must be initialized in 82599 */
1639 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1640 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1641 IXGBE_PSRTYPE_L2HDR;
1642
1643 if (adapter->num_rx_queues > 1)
1644 psrtype |= 1 << 29;
1645
1646 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1647 }
1648
1649 #define IXGBEVF_MAX_RX_DESC_POLL 10
1650 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1651 struct ixgbevf_ring *ring)
1652 {
1653 struct ixgbe_hw *hw = &adapter->hw;
1654 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1655 u32 rxdctl;
1656 u8 reg_idx = ring->reg_idx;
1657
1658 if (IXGBE_REMOVED(hw->hw_addr))
1659 return;
1660 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1661 rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1662
1663 /* write value back with RXDCTL.ENABLE bit cleared */
1664 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1665
1666 /* the hardware may take up to 100us to really disable the Rx queue */
1667 do {
1668 udelay(10);
1669 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1670 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1671
1672 if (!wait_loop)
1673 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1674 reg_idx);
1675 }
1676
1677 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1678 struct ixgbevf_ring *ring)
1679 {
1680 struct ixgbe_hw *hw = &adapter->hw;
1681 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1682 u32 rxdctl;
1683 u8 reg_idx = ring->reg_idx;
1684
1685 if (IXGBE_REMOVED(hw->hw_addr))
1686 return;
1687 do {
1688 usleep_range(1000, 2000);
1689 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1690 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1691
1692 if (!wait_loop)
1693 pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1694 reg_idx);
1695 }
1696
1697 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1698 {
1699 struct ixgbe_hw *hw = &adapter->hw;
1700 u32 vfmrqc = 0, vfreta = 0;
1701 u16 rss_i = adapter->num_rx_queues;
1702 u8 i, j;
1703
1704 /* Fill out hash function seeds */
1705 netdev_rss_key_fill(adapter->rss_key, sizeof(adapter->rss_key));
1706 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1707 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), adapter->rss_key[i]);
1708
1709 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1710 if (j == rss_i)
1711 j = 0;
1712
1713 adapter->rss_indir_tbl[i] = j;
1714
1715 vfreta |= j << (i & 0x3) * 8;
1716 if ((i & 3) == 3) {
1717 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1718 vfreta = 0;
1719 }
1720 }
1721
1722 /* Perform hash on these packet types */
1723 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1724 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1725 IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1726 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1727
1728 vfmrqc |= IXGBE_VFMRQC_RSSEN;
1729
1730 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1731 }
1732
1733 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1734 struct ixgbevf_ring *ring)
1735 {
1736 struct ixgbe_hw *hw = &adapter->hw;
1737 u64 rdba = ring->dma;
1738 u32 rxdctl;
1739 u8 reg_idx = ring->reg_idx;
1740
1741 /* disable queue to avoid issues while updating state */
1742 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1743 ixgbevf_disable_rx_queue(adapter, ring);
1744
1745 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1746 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1747 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1748 ring->count * sizeof(union ixgbe_adv_rx_desc));
1749
1750 /* enable relaxed ordering */
1751 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1752 IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1753
1754 /* reset head and tail pointers */
1755 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1756 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1757 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1758
1759 /* reset ntu and ntc to place SW in sync with hardwdare */
1760 ring->next_to_clean = 0;
1761 ring->next_to_use = 0;
1762 ring->next_to_alloc = 0;
1763
1764 ixgbevf_configure_srrctl(adapter, reg_idx);
1765
1766 /* allow any size packet since we can handle overflow */
1767 rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1768
1769 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1770 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1771
1772 ixgbevf_rx_desc_queue_enable(adapter, ring);
1773 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1774 }
1775
1776 /**
1777 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1778 * @adapter: board private structure
1779 *
1780 * Configure the Rx unit of the MAC after a reset.
1781 **/
1782 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1783 {
1784 int i;
1785 struct ixgbe_hw *hw = &adapter->hw;
1786 struct net_device *netdev = adapter->netdev;
1787
1788 ixgbevf_setup_psrtype(adapter);
1789 if (hw->mac.type >= ixgbe_mac_X550_vf)
1790 ixgbevf_setup_vfmrqc(adapter);
1791
1792 /* notify the PF of our intent to use this size of frame */
1793 ixgbevf_rlpml_set_vf(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1794
1795 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1796 * the Base and Length of the Rx Descriptor Ring
1797 */
1798 for (i = 0; i < adapter->num_rx_queues; i++)
1799 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1800 }
1801
1802 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1803 __be16 proto, u16 vid)
1804 {
1805 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1806 struct ixgbe_hw *hw = &adapter->hw;
1807 int err;
1808
1809 spin_lock_bh(&adapter->mbx_lock);
1810
1811 /* add VID to filter table */
1812 err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1813
1814 spin_unlock_bh(&adapter->mbx_lock);
1815
1816 /* translate error return types so error makes sense */
1817 if (err == IXGBE_ERR_MBX)
1818 return -EIO;
1819
1820 if (err == IXGBE_ERR_INVALID_ARGUMENT)
1821 return -EACCES;
1822
1823 set_bit(vid, adapter->active_vlans);
1824
1825 return err;
1826 }
1827
1828 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1829 __be16 proto, u16 vid)
1830 {
1831 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1832 struct ixgbe_hw *hw = &adapter->hw;
1833 int err = -EOPNOTSUPP;
1834
1835 spin_lock_bh(&adapter->mbx_lock);
1836
1837 /* remove VID from filter table */
1838 err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1839
1840 spin_unlock_bh(&adapter->mbx_lock);
1841
1842 clear_bit(vid, adapter->active_vlans);
1843
1844 return err;
1845 }
1846
1847 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1848 {
1849 u16 vid;
1850
1851 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1852 ixgbevf_vlan_rx_add_vid(adapter->netdev,
1853 htons(ETH_P_8021Q), vid);
1854 }
1855
1856 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1857 {
1858 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1859 struct ixgbe_hw *hw = &adapter->hw;
1860 int count = 0;
1861
1862 if ((netdev_uc_count(netdev)) > 10) {
1863 pr_err("Too many unicast filters - No Space\n");
1864 return -ENOSPC;
1865 }
1866
1867 if (!netdev_uc_empty(netdev)) {
1868 struct netdev_hw_addr *ha;
1869
1870 netdev_for_each_uc_addr(ha, netdev) {
1871 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1872 udelay(200);
1873 }
1874 } else {
1875 /* If the list is empty then send message to PF driver to
1876 * clear all MAC VLANs on this VF.
1877 */
1878 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1879 }
1880
1881 return count;
1882 }
1883
1884 /**
1885 * ixgbevf_set_rx_mode - Multicast and unicast set
1886 * @netdev: network interface device structure
1887 *
1888 * The set_rx_method entry point is called whenever the multicast address
1889 * list, unicast address list or the network interface flags are updated.
1890 * This routine is responsible for configuring the hardware for proper
1891 * multicast mode and configuring requested unicast filters.
1892 **/
1893 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1894 {
1895 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1896 struct ixgbe_hw *hw = &adapter->hw;
1897 unsigned int flags = netdev->flags;
1898 int xcast_mode;
1899
1900 xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI :
1901 (flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1902 IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE;
1903
1904 spin_lock_bh(&adapter->mbx_lock);
1905
1906 hw->mac.ops.update_xcast_mode(hw, netdev, xcast_mode);
1907
1908 /* reprogram multicast list */
1909 hw->mac.ops.update_mc_addr_list(hw, netdev);
1910
1911 ixgbevf_write_uc_addr_list(netdev);
1912
1913 spin_unlock_bh(&adapter->mbx_lock);
1914 }
1915
1916 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1917 {
1918 int q_idx;
1919 struct ixgbevf_q_vector *q_vector;
1920 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1921
1922 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1923 q_vector = adapter->q_vector[q_idx];
1924 #ifdef CONFIG_NET_RX_BUSY_POLL
1925 ixgbevf_qv_init_lock(adapter->q_vector[q_idx]);
1926 #endif
1927 napi_enable(&q_vector->napi);
1928 }
1929 }
1930
1931 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1932 {
1933 int q_idx;
1934 struct ixgbevf_q_vector *q_vector;
1935 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1936
1937 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1938 q_vector = adapter->q_vector[q_idx];
1939 napi_disable(&q_vector->napi);
1940 #ifdef CONFIG_NET_RX_BUSY_POLL
1941 while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) {
1942 pr_info("QV %d locked\n", q_idx);
1943 usleep_range(1000, 20000);
1944 }
1945 #endif /* CONFIG_NET_RX_BUSY_POLL */
1946 }
1947 }
1948
1949 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1950 {
1951 struct ixgbe_hw *hw = &adapter->hw;
1952 unsigned int def_q = 0;
1953 unsigned int num_tcs = 0;
1954 unsigned int num_rx_queues = adapter->num_rx_queues;
1955 unsigned int num_tx_queues = adapter->num_tx_queues;
1956 int err;
1957
1958 spin_lock_bh(&adapter->mbx_lock);
1959
1960 /* fetch queue configuration from the PF */
1961 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1962
1963 spin_unlock_bh(&adapter->mbx_lock);
1964
1965 if (err)
1966 return err;
1967
1968 if (num_tcs > 1) {
1969 /* we need only one Tx queue */
1970 num_tx_queues = 1;
1971
1972 /* update default Tx ring register index */
1973 adapter->tx_ring[0]->reg_idx = def_q;
1974
1975 /* we need as many queues as traffic classes */
1976 num_rx_queues = num_tcs;
1977 }
1978
1979 /* if we have a bad config abort request queue reset */
1980 if ((adapter->num_rx_queues != num_rx_queues) ||
1981 (adapter->num_tx_queues != num_tx_queues)) {
1982 /* force mailbox timeout to prevent further messages */
1983 hw->mbx.timeout = 0;
1984
1985 /* wait for watchdog to come around and bail us out */
1986 adapter->flags |= IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
1987 }
1988
1989 return 0;
1990 }
1991
1992 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1993 {
1994 ixgbevf_configure_dcb(adapter);
1995
1996 ixgbevf_set_rx_mode(adapter->netdev);
1997
1998 ixgbevf_restore_vlan(adapter);
1999
2000 ixgbevf_configure_tx(adapter);
2001 ixgbevf_configure_rx(adapter);
2002 }
2003
2004 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2005 {
2006 /* Only save pre-reset stats if there are some */
2007 if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2008 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2009 adapter->stats.base_vfgprc;
2010 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2011 adapter->stats.base_vfgptc;
2012 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2013 adapter->stats.base_vfgorc;
2014 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2015 adapter->stats.base_vfgotc;
2016 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2017 adapter->stats.base_vfmprc;
2018 }
2019 }
2020
2021 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2022 {
2023 struct ixgbe_hw *hw = &adapter->hw;
2024
2025 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2026 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2027 adapter->stats.last_vfgorc |=
2028 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2029 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2030 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2031 adapter->stats.last_vfgotc |=
2032 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2033 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2034
2035 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2036 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2037 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2038 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2039 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2040 }
2041
2042 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2043 {
2044 struct ixgbe_hw *hw = &adapter->hw;
2045 int api[] = { ixgbe_mbox_api_12,
2046 ixgbe_mbox_api_11,
2047 ixgbe_mbox_api_10,
2048 ixgbe_mbox_api_unknown };
2049 int err = 0, idx = 0;
2050
2051 spin_lock_bh(&adapter->mbx_lock);
2052
2053 while (api[idx] != ixgbe_mbox_api_unknown) {
2054 err = ixgbevf_negotiate_api_version(hw, api[idx]);
2055 if (!err)
2056 break;
2057 idx++;
2058 }
2059
2060 spin_unlock_bh(&adapter->mbx_lock);
2061 }
2062
2063 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2064 {
2065 struct net_device *netdev = adapter->netdev;
2066 struct ixgbe_hw *hw = &adapter->hw;
2067
2068 ixgbevf_configure_msix(adapter);
2069
2070 spin_lock_bh(&adapter->mbx_lock);
2071
2072 if (is_valid_ether_addr(hw->mac.addr))
2073 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2074 else
2075 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2076
2077 spin_unlock_bh(&adapter->mbx_lock);
2078
2079 smp_mb__before_atomic();
2080 clear_bit(__IXGBEVF_DOWN, &adapter->state);
2081 ixgbevf_napi_enable_all(adapter);
2082
2083 /* clear any pending interrupts, may auto mask */
2084 IXGBE_READ_REG(hw, IXGBE_VTEICR);
2085 ixgbevf_irq_enable(adapter);
2086
2087 /* enable transmits */
2088 netif_tx_start_all_queues(netdev);
2089
2090 ixgbevf_save_reset_stats(adapter);
2091 ixgbevf_init_last_counter_stats(adapter);
2092
2093 hw->mac.get_link_status = 1;
2094 mod_timer(&adapter->service_timer, jiffies);
2095 }
2096
2097 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2098 {
2099 ixgbevf_configure(adapter);
2100
2101 ixgbevf_up_complete(adapter);
2102 }
2103
2104 /**
2105 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2106 * @rx_ring: ring to free buffers from
2107 **/
2108 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2109 {
2110 struct device *dev = rx_ring->dev;
2111 unsigned long size;
2112 unsigned int i;
2113
2114 /* Free Rx ring sk_buff */
2115 if (rx_ring->skb) {
2116 dev_kfree_skb(rx_ring->skb);
2117 rx_ring->skb = NULL;
2118 }
2119
2120 /* ring already cleared, nothing to do */
2121 if (!rx_ring->rx_buffer_info)
2122 return;
2123
2124 /* Free all the Rx ring pages */
2125 for (i = 0; i < rx_ring->count; i++) {
2126 struct ixgbevf_rx_buffer *rx_buffer;
2127
2128 rx_buffer = &rx_ring->rx_buffer_info[i];
2129 if (rx_buffer->dma)
2130 dma_unmap_page(dev, rx_buffer->dma,
2131 PAGE_SIZE, DMA_FROM_DEVICE);
2132 rx_buffer->dma = 0;
2133 if (rx_buffer->page)
2134 __free_page(rx_buffer->page);
2135 rx_buffer->page = NULL;
2136 }
2137
2138 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2139 memset(rx_ring->rx_buffer_info, 0, size);
2140
2141 /* Zero out the descriptor ring */
2142 memset(rx_ring->desc, 0, rx_ring->size);
2143 }
2144
2145 /**
2146 * ixgbevf_clean_tx_ring - Free Tx Buffers
2147 * @tx_ring: ring to be cleaned
2148 **/
2149 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2150 {
2151 struct ixgbevf_tx_buffer *tx_buffer_info;
2152 unsigned long size;
2153 unsigned int i;
2154
2155 if (!tx_ring->tx_buffer_info)
2156 return;
2157
2158 /* Free all the Tx ring sk_buffs */
2159 for (i = 0; i < tx_ring->count; i++) {
2160 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2161 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2162 }
2163
2164 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2165 memset(tx_ring->tx_buffer_info, 0, size);
2166
2167 memset(tx_ring->desc, 0, tx_ring->size);
2168 }
2169
2170 /**
2171 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2172 * @adapter: board private structure
2173 **/
2174 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2175 {
2176 int i;
2177
2178 for (i = 0; i < adapter->num_rx_queues; i++)
2179 ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2180 }
2181
2182 /**
2183 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2184 * @adapter: board private structure
2185 **/
2186 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2187 {
2188 int i;
2189
2190 for (i = 0; i < adapter->num_tx_queues; i++)
2191 ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2192 }
2193
2194 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2195 {
2196 struct net_device *netdev = adapter->netdev;
2197 struct ixgbe_hw *hw = &adapter->hw;
2198 int i;
2199
2200 /* signal that we are down to the interrupt handler */
2201 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2202 return; /* do nothing if already down */
2203
2204 /* disable all enabled Rx queues */
2205 for (i = 0; i < adapter->num_rx_queues; i++)
2206 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2207
2208 usleep_range(10000, 20000);
2209
2210 netif_tx_stop_all_queues(netdev);
2211
2212 /* call carrier off first to avoid false dev_watchdog timeouts */
2213 netif_carrier_off(netdev);
2214 netif_tx_disable(netdev);
2215
2216 ixgbevf_irq_disable(adapter);
2217
2218 ixgbevf_napi_disable_all(adapter);
2219
2220 del_timer_sync(&adapter->service_timer);
2221
2222 /* disable transmits in the hardware now that interrupts are off */
2223 for (i = 0; i < adapter->num_tx_queues; i++) {
2224 u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2225
2226 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2227 IXGBE_TXDCTL_SWFLSH);
2228 }
2229
2230 if (!pci_channel_offline(adapter->pdev))
2231 ixgbevf_reset(adapter);
2232
2233 ixgbevf_clean_all_tx_rings(adapter);
2234 ixgbevf_clean_all_rx_rings(adapter);
2235 }
2236
2237 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2238 {
2239 WARN_ON(in_interrupt());
2240
2241 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2242 msleep(1);
2243
2244 ixgbevf_down(adapter);
2245 ixgbevf_up(adapter);
2246
2247 clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2248 }
2249
2250 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2251 {
2252 struct ixgbe_hw *hw = &adapter->hw;
2253 struct net_device *netdev = adapter->netdev;
2254
2255 if (hw->mac.ops.reset_hw(hw)) {
2256 hw_dbg(hw, "PF still resetting\n");
2257 } else {
2258 hw->mac.ops.init_hw(hw);
2259 ixgbevf_negotiate_api(adapter);
2260 }
2261
2262 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2263 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2264 netdev->addr_len);
2265 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
2266 netdev->addr_len);
2267 }
2268
2269 adapter->last_reset = jiffies;
2270 }
2271
2272 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2273 int vectors)
2274 {
2275 int vector_threshold;
2276
2277 /* We'll want at least 2 (vector_threshold):
2278 * 1) TxQ[0] + RxQ[0] handler
2279 * 2) Other (Link Status Change, etc.)
2280 */
2281 vector_threshold = MIN_MSIX_COUNT;
2282
2283 /* The more we get, the more we will assign to Tx/Rx Cleanup
2284 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2285 * Right now, we simply care about how many we'll get; we'll
2286 * set them up later while requesting irq's.
2287 */
2288 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2289 vector_threshold, vectors);
2290
2291 if (vectors < 0) {
2292 dev_err(&adapter->pdev->dev,
2293 "Unable to allocate MSI-X interrupts\n");
2294 kfree(adapter->msix_entries);
2295 adapter->msix_entries = NULL;
2296 return vectors;
2297 }
2298
2299 /* Adjust for only the vectors we'll use, which is minimum
2300 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2301 * vectors we were allocated.
2302 */
2303 adapter->num_msix_vectors = vectors;
2304
2305 return 0;
2306 }
2307
2308 /**
2309 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2310 * @adapter: board private structure to initialize
2311 *
2312 * This is the top level queue allocation routine. The order here is very
2313 * important, starting with the "most" number of features turned on at once,
2314 * and ending with the smallest set of features. This way large combinations
2315 * can be allocated if they're turned on, and smaller combinations are the
2316 * fallthrough conditions.
2317 *
2318 **/
2319 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2320 {
2321 struct ixgbe_hw *hw = &adapter->hw;
2322 unsigned int def_q = 0;
2323 unsigned int num_tcs = 0;
2324 int err;
2325
2326 /* Start with base case */
2327 adapter->num_rx_queues = 1;
2328 adapter->num_tx_queues = 1;
2329
2330 spin_lock_bh(&adapter->mbx_lock);
2331
2332 /* fetch queue configuration from the PF */
2333 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2334
2335 spin_unlock_bh(&adapter->mbx_lock);
2336
2337 if (err)
2338 return;
2339
2340 /* we need as many queues as traffic classes */
2341 if (num_tcs > 1) {
2342 adapter->num_rx_queues = num_tcs;
2343 } else {
2344 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2345
2346 switch (hw->api_version) {
2347 case ixgbe_mbox_api_11:
2348 case ixgbe_mbox_api_12:
2349 adapter->num_rx_queues = rss;
2350 adapter->num_tx_queues = rss;
2351 default:
2352 break;
2353 }
2354 }
2355 }
2356
2357 /**
2358 * ixgbevf_alloc_queues - Allocate memory for all rings
2359 * @adapter: board private structure to initialize
2360 *
2361 * We allocate one ring per queue at run-time since we don't know the
2362 * number of queues at compile-time. The polling_netdev array is
2363 * intended for Multiqueue, but should work fine with a single queue.
2364 **/
2365 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2366 {
2367 struct ixgbevf_ring *ring;
2368 int rx = 0, tx = 0;
2369
2370 for (; tx < adapter->num_tx_queues; tx++) {
2371 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2372 if (!ring)
2373 goto err_allocation;
2374
2375 ring->dev = &adapter->pdev->dev;
2376 ring->netdev = adapter->netdev;
2377 ring->count = adapter->tx_ring_count;
2378 ring->queue_index = tx;
2379 ring->reg_idx = tx;
2380
2381 adapter->tx_ring[tx] = ring;
2382 }
2383
2384 for (; rx < adapter->num_rx_queues; rx++) {
2385 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2386 if (!ring)
2387 goto err_allocation;
2388
2389 ring->dev = &adapter->pdev->dev;
2390 ring->netdev = adapter->netdev;
2391
2392 ring->count = adapter->rx_ring_count;
2393 ring->queue_index = rx;
2394 ring->reg_idx = rx;
2395
2396 adapter->rx_ring[rx] = ring;
2397 }
2398
2399 return 0;
2400
2401 err_allocation:
2402 while (tx) {
2403 kfree(adapter->tx_ring[--tx]);
2404 adapter->tx_ring[tx] = NULL;
2405 }
2406
2407 while (rx) {
2408 kfree(adapter->rx_ring[--rx]);
2409 adapter->rx_ring[rx] = NULL;
2410 }
2411 return -ENOMEM;
2412 }
2413
2414 /**
2415 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2416 * @adapter: board private structure to initialize
2417 *
2418 * Attempt to configure the interrupts using the best available
2419 * capabilities of the hardware and the kernel.
2420 **/
2421 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2422 {
2423 struct net_device *netdev = adapter->netdev;
2424 int err = 0;
2425 int vector, v_budget;
2426
2427 /* It's easy to be greedy for MSI-X vectors, but it really
2428 * doesn't do us much good if we have a lot more vectors
2429 * than CPU's. So let's be conservative and only ask for
2430 * (roughly) the same number of vectors as there are CPU's.
2431 * The default is to use pairs of vectors.
2432 */
2433 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2434 v_budget = min_t(int, v_budget, num_online_cpus());
2435 v_budget += NON_Q_VECTORS;
2436
2437 /* A failure in MSI-X entry allocation isn't fatal, but it does
2438 * mean we disable MSI-X capabilities of the adapter.
2439 */
2440 adapter->msix_entries = kcalloc(v_budget,
2441 sizeof(struct msix_entry), GFP_KERNEL);
2442 if (!adapter->msix_entries) {
2443 err = -ENOMEM;
2444 goto out;
2445 }
2446
2447 for (vector = 0; vector < v_budget; vector++)
2448 adapter->msix_entries[vector].entry = vector;
2449
2450 err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2451 if (err)
2452 goto out;
2453
2454 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2455 if (err)
2456 goto out;
2457
2458 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2459
2460 out:
2461 return err;
2462 }
2463
2464 /**
2465 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2466 * @adapter: board private structure to initialize
2467 *
2468 * We allocate one q_vector per queue interrupt. If allocation fails we
2469 * return -ENOMEM.
2470 **/
2471 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2472 {
2473 int q_idx, num_q_vectors;
2474 struct ixgbevf_q_vector *q_vector;
2475
2476 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2477
2478 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2479 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2480 if (!q_vector)
2481 goto err_out;
2482 q_vector->adapter = adapter;
2483 q_vector->v_idx = q_idx;
2484 netif_napi_add(adapter->netdev, &q_vector->napi,
2485 ixgbevf_poll, 64);
2486 #ifdef CONFIG_NET_RX_BUSY_POLL
2487 napi_hash_add(&q_vector->napi);
2488 #endif
2489 adapter->q_vector[q_idx] = q_vector;
2490 }
2491
2492 return 0;
2493
2494 err_out:
2495 while (q_idx) {
2496 q_idx--;
2497 q_vector = adapter->q_vector[q_idx];
2498 #ifdef CONFIG_NET_RX_BUSY_POLL
2499 napi_hash_del(&q_vector->napi);
2500 #endif
2501 netif_napi_del(&q_vector->napi);
2502 kfree(q_vector);
2503 adapter->q_vector[q_idx] = NULL;
2504 }
2505 return -ENOMEM;
2506 }
2507
2508 /**
2509 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2510 * @adapter: board private structure to initialize
2511 *
2512 * This function frees the memory allocated to the q_vectors. In addition if
2513 * NAPI is enabled it will delete any references to the NAPI struct prior
2514 * to freeing the q_vector.
2515 **/
2516 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2517 {
2518 int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2519
2520 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2521 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2522
2523 adapter->q_vector[q_idx] = NULL;
2524 #ifdef CONFIG_NET_RX_BUSY_POLL
2525 napi_hash_del(&q_vector->napi);
2526 #endif
2527 netif_napi_del(&q_vector->napi);
2528 kfree(q_vector);
2529 }
2530 }
2531
2532 /**
2533 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2534 * @adapter: board private structure
2535 *
2536 **/
2537 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2538 {
2539 pci_disable_msix(adapter->pdev);
2540 kfree(adapter->msix_entries);
2541 adapter->msix_entries = NULL;
2542 }
2543
2544 /**
2545 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2546 * @adapter: board private structure to initialize
2547 *
2548 **/
2549 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2550 {
2551 int err;
2552
2553 /* Number of supported queues */
2554 ixgbevf_set_num_queues(adapter);
2555
2556 err = ixgbevf_set_interrupt_capability(adapter);
2557 if (err) {
2558 hw_dbg(&adapter->hw,
2559 "Unable to setup interrupt capabilities\n");
2560 goto err_set_interrupt;
2561 }
2562
2563 err = ixgbevf_alloc_q_vectors(adapter);
2564 if (err) {
2565 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2566 goto err_alloc_q_vectors;
2567 }
2568
2569 err = ixgbevf_alloc_queues(adapter);
2570 if (err) {
2571 pr_err("Unable to allocate memory for queues\n");
2572 goto err_alloc_queues;
2573 }
2574
2575 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n",
2576 (adapter->num_rx_queues > 1) ? "Enabled" :
2577 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2578
2579 set_bit(__IXGBEVF_DOWN, &adapter->state);
2580
2581 return 0;
2582 err_alloc_queues:
2583 ixgbevf_free_q_vectors(adapter);
2584 err_alloc_q_vectors:
2585 ixgbevf_reset_interrupt_capability(adapter);
2586 err_set_interrupt:
2587 return err;
2588 }
2589
2590 /**
2591 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2592 * @adapter: board private structure to clear interrupt scheme on
2593 *
2594 * We go through and clear interrupt specific resources and reset the structure
2595 * to pre-load conditions
2596 **/
2597 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2598 {
2599 int i;
2600
2601 for (i = 0; i < adapter->num_tx_queues; i++) {
2602 kfree(adapter->tx_ring[i]);
2603 adapter->tx_ring[i] = NULL;
2604 }
2605 for (i = 0; i < adapter->num_rx_queues; i++) {
2606 kfree(adapter->rx_ring[i]);
2607 adapter->rx_ring[i] = NULL;
2608 }
2609
2610 adapter->num_tx_queues = 0;
2611 adapter->num_rx_queues = 0;
2612
2613 ixgbevf_free_q_vectors(adapter);
2614 ixgbevf_reset_interrupt_capability(adapter);
2615 }
2616
2617 /**
2618 * ixgbevf_sw_init - Initialize general software structures
2619 * @adapter: board private structure to initialize
2620 *
2621 * ixgbevf_sw_init initializes the Adapter private data structure.
2622 * Fields are initialized based on PCI device information and
2623 * OS network device settings (MTU size).
2624 **/
2625 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2626 {
2627 struct ixgbe_hw *hw = &adapter->hw;
2628 struct pci_dev *pdev = adapter->pdev;
2629 struct net_device *netdev = adapter->netdev;
2630 int err;
2631
2632 /* PCI config space info */
2633 hw->vendor_id = pdev->vendor;
2634 hw->device_id = pdev->device;
2635 hw->revision_id = pdev->revision;
2636 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2637 hw->subsystem_device_id = pdev->subsystem_device;
2638
2639 hw->mbx.ops.init_params(hw);
2640
2641 /* assume legacy case in which PF would only give VF 2 queues */
2642 hw->mac.max_tx_queues = 2;
2643 hw->mac.max_rx_queues = 2;
2644
2645 /* lock to protect mailbox accesses */
2646 spin_lock_init(&adapter->mbx_lock);
2647
2648 err = hw->mac.ops.reset_hw(hw);
2649 if (err) {
2650 dev_info(&pdev->dev,
2651 "PF still in reset state. Is the PF interface up?\n");
2652 } else {
2653 err = hw->mac.ops.init_hw(hw);
2654 if (err) {
2655 pr_err("init_shared_code failed: %d\n", err);
2656 goto out;
2657 }
2658 ixgbevf_negotiate_api(adapter);
2659 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2660 if (err)
2661 dev_info(&pdev->dev, "Error reading MAC address\n");
2662 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2663 dev_info(&pdev->dev,
2664 "MAC address not assigned by administrator.\n");
2665 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2666 }
2667
2668 if (!is_valid_ether_addr(netdev->dev_addr)) {
2669 dev_info(&pdev->dev, "Assigning random MAC address\n");
2670 eth_hw_addr_random(netdev);
2671 memcpy(hw->mac.addr, netdev->dev_addr, netdev->addr_len);
2672 }
2673
2674 /* Enable dynamic interrupt throttling rates */
2675 adapter->rx_itr_setting = 1;
2676 adapter->tx_itr_setting = 1;
2677
2678 /* set default ring sizes */
2679 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2680 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2681
2682 set_bit(__IXGBEVF_DOWN, &adapter->state);
2683 return 0;
2684
2685 out:
2686 return err;
2687 }
2688
2689 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
2690 { \
2691 u32 current_counter = IXGBE_READ_REG(hw, reg); \
2692 if (current_counter < last_counter) \
2693 counter += 0x100000000LL; \
2694 last_counter = current_counter; \
2695 counter &= 0xFFFFFFFF00000000LL; \
2696 counter |= current_counter; \
2697 }
2698
2699 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2700 { \
2701 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
2702 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
2703 u64 current_counter = (current_counter_msb << 32) | \
2704 current_counter_lsb; \
2705 if (current_counter < last_counter) \
2706 counter += 0x1000000000LL; \
2707 last_counter = current_counter; \
2708 counter &= 0xFFFFFFF000000000LL; \
2709 counter |= current_counter; \
2710 }
2711 /**
2712 * ixgbevf_update_stats - Update the board statistics counters.
2713 * @adapter: board private structure
2714 **/
2715 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2716 {
2717 struct ixgbe_hw *hw = &adapter->hw;
2718 int i;
2719
2720 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2721 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2722 return;
2723
2724 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2725 adapter->stats.vfgprc);
2726 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2727 adapter->stats.vfgptc);
2728 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2729 adapter->stats.last_vfgorc,
2730 adapter->stats.vfgorc);
2731 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2732 adapter->stats.last_vfgotc,
2733 adapter->stats.vfgotc);
2734 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2735 adapter->stats.vfmprc);
2736
2737 for (i = 0; i < adapter->num_rx_queues; i++) {
2738 adapter->hw_csum_rx_error +=
2739 adapter->rx_ring[i]->hw_csum_rx_error;
2740 adapter->rx_ring[i]->hw_csum_rx_error = 0;
2741 }
2742 }
2743
2744 /**
2745 * ixgbevf_service_timer - Timer Call-back
2746 * @data: pointer to adapter cast into an unsigned long
2747 **/
2748 static void ixgbevf_service_timer(unsigned long data)
2749 {
2750 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2751
2752 /* Reset the timer */
2753 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2754
2755 ixgbevf_service_event_schedule(adapter);
2756 }
2757
2758 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2759 {
2760 if (!(adapter->flags & IXGBEVF_FLAG_RESET_REQUESTED))
2761 return;
2762
2763 adapter->flags &= ~IXGBEVF_FLAG_RESET_REQUESTED;
2764
2765 /* If we're already down or resetting, just bail */
2766 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2767 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2768 return;
2769
2770 adapter->tx_timeout_count++;
2771
2772 ixgbevf_reinit_locked(adapter);
2773 }
2774
2775 /**
2776 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2777 * @adapter: pointer to the device adapter structure
2778 *
2779 * This function serves two purposes. First it strobes the interrupt lines
2780 * in order to make certain interrupts are occurring. Secondly it sets the
2781 * bits needed to check for TX hangs. As a result we should immediately
2782 * determine if a hang has occurred.
2783 **/
2784 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2785 {
2786 struct ixgbe_hw *hw = &adapter->hw;
2787 u32 eics = 0;
2788 int i;
2789
2790 /* If we're down or resetting, just bail */
2791 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2792 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2793 return;
2794
2795 /* Force detection of hung controller */
2796 if (netif_carrier_ok(adapter->netdev)) {
2797 for (i = 0; i < adapter->num_tx_queues; i++)
2798 set_check_for_tx_hang(adapter->tx_ring[i]);
2799 }
2800
2801 /* get one bit for every active Tx/Rx interrupt vector */
2802 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2803 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2804
2805 if (qv->rx.ring || qv->tx.ring)
2806 eics |= 1 << i;
2807 }
2808
2809 /* Cause software interrupt to ensure rings are cleaned */
2810 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2811 }
2812
2813 /**
2814 * ixgbevf_watchdog_update_link - update the link status
2815 * @adapter: pointer to the device adapter structure
2816 **/
2817 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2818 {
2819 struct ixgbe_hw *hw = &adapter->hw;
2820 u32 link_speed = adapter->link_speed;
2821 bool link_up = adapter->link_up;
2822 s32 err;
2823
2824 spin_lock_bh(&adapter->mbx_lock);
2825
2826 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2827
2828 spin_unlock_bh(&adapter->mbx_lock);
2829
2830 /* if check for link returns error we will need to reset */
2831 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2832 adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED;
2833 link_up = false;
2834 }
2835
2836 adapter->link_up = link_up;
2837 adapter->link_speed = link_speed;
2838 }
2839
2840 /**
2841 * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2842 * print link up message
2843 * @adapter: pointer to the device adapter structure
2844 **/
2845 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2846 {
2847 struct net_device *netdev = adapter->netdev;
2848
2849 /* only continue if link was previously down */
2850 if (netif_carrier_ok(netdev))
2851 return;
2852
2853 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2854 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2855 "10 Gbps" :
2856 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2857 "1 Gbps" :
2858 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2859 "100 Mbps" :
2860 "unknown speed");
2861
2862 netif_carrier_on(netdev);
2863 }
2864
2865 /**
2866 * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2867 * print link down message
2868 * @adapter: pointer to the adapter structure
2869 **/
2870 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2871 {
2872 struct net_device *netdev = adapter->netdev;
2873
2874 adapter->link_speed = 0;
2875
2876 /* only continue if link was up previously */
2877 if (!netif_carrier_ok(netdev))
2878 return;
2879
2880 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2881
2882 netif_carrier_off(netdev);
2883 }
2884
2885 /**
2886 * ixgbevf_watchdog_subtask - worker thread to bring link up
2887 * @work: pointer to work_struct containing our data
2888 **/
2889 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
2890 {
2891 /* if interface is down do nothing */
2892 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2893 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2894 return;
2895
2896 ixgbevf_watchdog_update_link(adapter);
2897
2898 if (adapter->link_up)
2899 ixgbevf_watchdog_link_is_up(adapter);
2900 else
2901 ixgbevf_watchdog_link_is_down(adapter);
2902
2903 ixgbevf_update_stats(adapter);
2904 }
2905
2906 /**
2907 * ixgbevf_service_task - manages and runs subtasks
2908 * @work: pointer to work_struct containing our data
2909 **/
2910 static void ixgbevf_service_task(struct work_struct *work)
2911 {
2912 struct ixgbevf_adapter *adapter = container_of(work,
2913 struct ixgbevf_adapter,
2914 service_task);
2915 struct ixgbe_hw *hw = &adapter->hw;
2916
2917 if (IXGBE_REMOVED(hw->hw_addr)) {
2918 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2919 rtnl_lock();
2920 ixgbevf_down(adapter);
2921 rtnl_unlock();
2922 }
2923 return;
2924 }
2925
2926 ixgbevf_queue_reset_subtask(adapter);
2927 ixgbevf_reset_subtask(adapter);
2928 ixgbevf_watchdog_subtask(adapter);
2929 ixgbevf_check_hang_subtask(adapter);
2930
2931 ixgbevf_service_event_complete(adapter);
2932 }
2933
2934 /**
2935 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2936 * @tx_ring: Tx descriptor ring for a specific queue
2937 *
2938 * Free all transmit software resources
2939 **/
2940 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
2941 {
2942 ixgbevf_clean_tx_ring(tx_ring);
2943
2944 vfree(tx_ring->tx_buffer_info);
2945 tx_ring->tx_buffer_info = NULL;
2946
2947 /* if not set, then don't free */
2948 if (!tx_ring->desc)
2949 return;
2950
2951 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
2952 tx_ring->dma);
2953
2954 tx_ring->desc = NULL;
2955 }
2956
2957 /**
2958 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2959 * @adapter: board private structure
2960 *
2961 * Free all transmit software resources
2962 **/
2963 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2964 {
2965 int i;
2966
2967 for (i = 0; i < adapter->num_tx_queues; i++)
2968 if (adapter->tx_ring[i]->desc)
2969 ixgbevf_free_tx_resources(adapter->tx_ring[i]);
2970 }
2971
2972 /**
2973 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2974 * @tx_ring: Tx descriptor ring (for a specific queue) to setup
2975 *
2976 * Return 0 on success, negative on failure
2977 **/
2978 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
2979 {
2980 int size;
2981
2982 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2983 tx_ring->tx_buffer_info = vzalloc(size);
2984 if (!tx_ring->tx_buffer_info)
2985 goto err;
2986
2987 /* round up to nearest 4K */
2988 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2989 tx_ring->size = ALIGN(tx_ring->size, 4096);
2990
2991 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
2992 &tx_ring->dma, GFP_KERNEL);
2993 if (!tx_ring->desc)
2994 goto err;
2995
2996 return 0;
2997
2998 err:
2999 vfree(tx_ring->tx_buffer_info);
3000 tx_ring->tx_buffer_info = NULL;
3001 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3002 return -ENOMEM;
3003 }
3004
3005 /**
3006 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3007 * @adapter: board private structure
3008 *
3009 * If this function returns with an error, then it's possible one or
3010 * more of the rings is populated (while the rest are not). It is the
3011 * callers duty to clean those orphaned rings.
3012 *
3013 * Return 0 on success, negative on failure
3014 **/
3015 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3016 {
3017 int i, err = 0;
3018
3019 for (i = 0; i < adapter->num_tx_queues; i++) {
3020 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3021 if (!err)
3022 continue;
3023 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3024 break;
3025 }
3026
3027 return err;
3028 }
3029
3030 /**
3031 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3032 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3033 *
3034 * Returns 0 on success, negative on failure
3035 **/
3036 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3037 {
3038 int size;
3039
3040 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3041 rx_ring->rx_buffer_info = vzalloc(size);
3042 if (!rx_ring->rx_buffer_info)
3043 goto err;
3044
3045 /* Round up to nearest 4K */
3046 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3047 rx_ring->size = ALIGN(rx_ring->size, 4096);
3048
3049 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3050 &rx_ring->dma, GFP_KERNEL);
3051
3052 if (!rx_ring->desc)
3053 goto err;
3054
3055 return 0;
3056 err:
3057 vfree(rx_ring->rx_buffer_info);
3058 rx_ring->rx_buffer_info = NULL;
3059 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3060 return -ENOMEM;
3061 }
3062
3063 /**
3064 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3065 * @adapter: board private structure
3066 *
3067 * If this function returns with an error, then it's possible one or
3068 * more of the rings is populated (while the rest are not). It is the
3069 * callers duty to clean those orphaned rings.
3070 *
3071 * Return 0 on success, negative on failure
3072 **/
3073 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3074 {
3075 int i, err = 0;
3076
3077 for (i = 0; i < adapter->num_rx_queues; i++) {
3078 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3079 if (!err)
3080 continue;
3081 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3082 break;
3083 }
3084 return err;
3085 }
3086
3087 /**
3088 * ixgbevf_free_rx_resources - Free Rx Resources
3089 * @rx_ring: ring to clean the resources from
3090 *
3091 * Free all receive software resources
3092 **/
3093 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3094 {
3095 ixgbevf_clean_rx_ring(rx_ring);
3096
3097 vfree(rx_ring->rx_buffer_info);
3098 rx_ring->rx_buffer_info = NULL;
3099
3100 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3101 rx_ring->dma);
3102
3103 rx_ring->desc = NULL;
3104 }
3105
3106 /**
3107 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3108 * @adapter: board private structure
3109 *
3110 * Free all receive software resources
3111 **/
3112 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3113 {
3114 int i;
3115
3116 for (i = 0; i < adapter->num_rx_queues; i++)
3117 if (adapter->rx_ring[i]->desc)
3118 ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3119 }
3120
3121 /**
3122 * ixgbevf_open - Called when a network interface is made active
3123 * @netdev: network interface device structure
3124 *
3125 * Returns 0 on success, negative value on failure
3126 *
3127 * The open entry point is called when a network interface is made
3128 * active by the system (IFF_UP). At this point all resources needed
3129 * for transmit and receive operations are allocated, the interrupt
3130 * handler is registered with the OS, the watchdog timer is started,
3131 * and the stack is notified that the interface is ready.
3132 **/
3133 static int ixgbevf_open(struct net_device *netdev)
3134 {
3135 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3136 struct ixgbe_hw *hw = &adapter->hw;
3137 int err;
3138
3139 /* A previous failure to open the device because of a lack of
3140 * available MSIX vector resources may have reset the number
3141 * of msix vectors variable to zero. The only way to recover
3142 * is to unload/reload the driver and hope that the system has
3143 * been able to recover some MSIX vector resources.
3144 */
3145 if (!adapter->num_msix_vectors)
3146 return -ENOMEM;
3147
3148 if (hw->adapter_stopped) {
3149 ixgbevf_reset(adapter);
3150 /* if adapter is still stopped then PF isn't up and
3151 * the VF can't start.
3152 */
3153 if (hw->adapter_stopped) {
3154 err = IXGBE_ERR_MBX;
3155 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3156 goto err_setup_reset;
3157 }
3158 }
3159
3160 /* disallow open during test */
3161 if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3162 return -EBUSY;
3163
3164 netif_carrier_off(netdev);
3165
3166 /* allocate transmit descriptors */
3167 err = ixgbevf_setup_all_tx_resources(adapter);
3168 if (err)
3169 goto err_setup_tx;
3170
3171 /* allocate receive descriptors */
3172 err = ixgbevf_setup_all_rx_resources(adapter);
3173 if (err)
3174 goto err_setup_rx;
3175
3176 ixgbevf_configure(adapter);
3177
3178 /* Map the Tx/Rx rings to the vectors we were allotted.
3179 * if request_irq will be called in this function map_rings
3180 * must be called *before* up_complete
3181 */
3182 ixgbevf_map_rings_to_vectors(adapter);
3183
3184 err = ixgbevf_request_irq(adapter);
3185 if (err)
3186 goto err_req_irq;
3187
3188 ixgbevf_up_complete(adapter);
3189
3190 return 0;
3191
3192 err_req_irq:
3193 ixgbevf_down(adapter);
3194 err_setup_rx:
3195 ixgbevf_free_all_rx_resources(adapter);
3196 err_setup_tx:
3197 ixgbevf_free_all_tx_resources(adapter);
3198 ixgbevf_reset(adapter);
3199
3200 err_setup_reset:
3201
3202 return err;
3203 }
3204
3205 /**
3206 * ixgbevf_close - Disables a network interface
3207 * @netdev: network interface device structure
3208 *
3209 * Returns 0, this is not allowed to fail
3210 *
3211 * The close entry point is called when an interface is de-activated
3212 * by the OS. The hardware is still under the drivers control, but
3213 * needs to be disabled. A global MAC reset is issued to stop the
3214 * hardware, and all transmit and receive resources are freed.
3215 **/
3216 static int ixgbevf_close(struct net_device *netdev)
3217 {
3218 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3219
3220 ixgbevf_down(adapter);
3221 ixgbevf_free_irq(adapter);
3222
3223 ixgbevf_free_all_tx_resources(adapter);
3224 ixgbevf_free_all_rx_resources(adapter);
3225
3226 return 0;
3227 }
3228
3229 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3230 {
3231 struct net_device *dev = adapter->netdev;
3232
3233 if (!(adapter->flags & IXGBEVF_FLAG_QUEUE_RESET_REQUESTED))
3234 return;
3235
3236 adapter->flags &= ~IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
3237
3238 /* if interface is down do nothing */
3239 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3240 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3241 return;
3242
3243 /* Hardware has to reinitialize queues and interrupts to
3244 * match packet buffer alignment. Unfortunately, the
3245 * hardware is not flexible enough to do this dynamically.
3246 */
3247 if (netif_running(dev))
3248 ixgbevf_close(dev);
3249
3250 ixgbevf_clear_interrupt_scheme(adapter);
3251 ixgbevf_init_interrupt_scheme(adapter);
3252
3253 if (netif_running(dev))
3254 ixgbevf_open(dev);
3255 }
3256
3257 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3258 u32 vlan_macip_lens, u32 type_tucmd,
3259 u32 mss_l4len_idx)
3260 {
3261 struct ixgbe_adv_tx_context_desc *context_desc;
3262 u16 i = tx_ring->next_to_use;
3263
3264 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3265
3266 i++;
3267 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3268
3269 /* set bits to identify this as an advanced context descriptor */
3270 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3271
3272 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
3273 context_desc->seqnum_seed = 0;
3274 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
3275 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3276 }
3277
3278 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3279 struct ixgbevf_tx_buffer *first,
3280 u8 *hdr_len)
3281 {
3282 struct sk_buff *skb = first->skb;
3283 u32 vlan_macip_lens, type_tucmd;
3284 u32 mss_l4len_idx, l4len;
3285 int err;
3286
3287 if (skb->ip_summed != CHECKSUM_PARTIAL)
3288 return 0;
3289
3290 if (!skb_is_gso(skb))
3291 return 0;
3292
3293 err = skb_cow_head(skb, 0);
3294 if (err < 0)
3295 return err;
3296
3297 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3298 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3299
3300 if (first->protocol == htons(ETH_P_IP)) {
3301 struct iphdr *iph = ip_hdr(skb);
3302
3303 iph->tot_len = 0;
3304 iph->check = 0;
3305 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3306 iph->daddr, 0,
3307 IPPROTO_TCP,
3308 0);
3309 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3310 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3311 IXGBE_TX_FLAGS_CSUM |
3312 IXGBE_TX_FLAGS_IPV4;
3313 } else if (skb_is_gso_v6(skb)) {
3314 ipv6_hdr(skb)->payload_len = 0;
3315 tcp_hdr(skb)->check =
3316 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3317 &ipv6_hdr(skb)->daddr,
3318 0, IPPROTO_TCP, 0);
3319 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3320 IXGBE_TX_FLAGS_CSUM;
3321 }
3322
3323 /* compute header lengths */
3324 l4len = tcp_hdrlen(skb);
3325 *hdr_len += l4len;
3326 *hdr_len = skb_transport_offset(skb) + l4len;
3327
3328 /* update GSO size and bytecount with header size */
3329 first->gso_segs = skb_shinfo(skb)->gso_segs;
3330 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3331
3332 /* mss_l4len_id: use 1 as index for TSO */
3333 mss_l4len_idx = l4len << IXGBE_ADVTXD_L4LEN_SHIFT;
3334 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3335 mss_l4len_idx |= 1 << IXGBE_ADVTXD_IDX_SHIFT;
3336
3337 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3338 vlan_macip_lens = skb_network_header_len(skb);
3339 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3340 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3341
3342 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3343 type_tucmd, mss_l4len_idx);
3344
3345 return 1;
3346 }
3347
3348 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3349 struct ixgbevf_tx_buffer *first)
3350 {
3351 struct sk_buff *skb = first->skb;
3352 u32 vlan_macip_lens = 0;
3353 u32 mss_l4len_idx = 0;
3354 u32 type_tucmd = 0;
3355
3356 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3357 u8 l4_hdr = 0;
3358
3359 switch (first->protocol) {
3360 case htons(ETH_P_IP):
3361 vlan_macip_lens |= skb_network_header_len(skb);
3362 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3363 l4_hdr = ip_hdr(skb)->protocol;
3364 break;
3365 case htons(ETH_P_IPV6):
3366 vlan_macip_lens |= skb_network_header_len(skb);
3367 l4_hdr = ipv6_hdr(skb)->nexthdr;
3368 break;
3369 default:
3370 if (unlikely(net_ratelimit())) {
3371 dev_warn(tx_ring->dev,
3372 "partial checksum but proto=%x!\n",
3373 first->protocol);
3374 }
3375 break;
3376 }
3377
3378 switch (l4_hdr) {
3379 case IPPROTO_TCP:
3380 type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
3381 mss_l4len_idx = tcp_hdrlen(skb) <<
3382 IXGBE_ADVTXD_L4LEN_SHIFT;
3383 break;
3384 case IPPROTO_SCTP:
3385 type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3386 mss_l4len_idx = sizeof(struct sctphdr) <<
3387 IXGBE_ADVTXD_L4LEN_SHIFT;
3388 break;
3389 case IPPROTO_UDP:
3390 mss_l4len_idx = sizeof(struct udphdr) <<
3391 IXGBE_ADVTXD_L4LEN_SHIFT;
3392 break;
3393 default:
3394 if (unlikely(net_ratelimit())) {
3395 dev_warn(tx_ring->dev,
3396 "partial checksum but l4 proto=%x!\n",
3397 l4_hdr);
3398 }
3399 break;
3400 }
3401
3402 /* update TX checksum flag */
3403 first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3404 }
3405
3406 /* vlan_macip_lens: MACLEN, VLAN tag */
3407 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3408 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3409
3410 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3411 type_tucmd, mss_l4len_idx);
3412 }
3413
3414 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3415 {
3416 /* set type for advanced descriptor with frame checksum insertion */
3417 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3418 IXGBE_ADVTXD_DCMD_IFCS |
3419 IXGBE_ADVTXD_DCMD_DEXT);
3420
3421 /* set HW VLAN bit if VLAN is present */
3422 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3423 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3424
3425 /* set segmentation enable bits for TSO/FSO */
3426 if (tx_flags & IXGBE_TX_FLAGS_TSO)
3427 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3428
3429 return cmd_type;
3430 }
3431
3432 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3433 u32 tx_flags, unsigned int paylen)
3434 {
3435 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3436
3437 /* enable L4 checksum for TSO and TX checksum offload */
3438 if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3439 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3440
3441 /* enble IPv4 checksum for TSO */
3442 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3443 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3444
3445 /* use index 1 context for TSO/FSO/FCOE */
3446 if (tx_flags & IXGBE_TX_FLAGS_TSO)
3447 olinfo_status |= cpu_to_le32(1 << IXGBE_ADVTXD_IDX_SHIFT);
3448
3449 /* Check Context must be set if Tx switch is enabled, which it
3450 * always is for case where virtual functions are running
3451 */
3452 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3453
3454 tx_desc->read.olinfo_status = olinfo_status;
3455 }
3456
3457 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3458 struct ixgbevf_tx_buffer *first,
3459 const u8 hdr_len)
3460 {
3461 dma_addr_t dma;
3462 struct sk_buff *skb = first->skb;
3463 struct ixgbevf_tx_buffer *tx_buffer;
3464 union ixgbe_adv_tx_desc *tx_desc;
3465 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
3466 unsigned int data_len = skb->data_len;
3467 unsigned int size = skb_headlen(skb);
3468 unsigned int paylen = skb->len - hdr_len;
3469 u32 tx_flags = first->tx_flags;
3470 __le32 cmd_type;
3471 u16 i = tx_ring->next_to_use;
3472
3473 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3474
3475 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen);
3476 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3477
3478 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3479 if (dma_mapping_error(tx_ring->dev, dma))
3480 goto dma_error;
3481
3482 /* record length, and DMA address */
3483 dma_unmap_len_set(first, len, size);
3484 dma_unmap_addr_set(first, dma, dma);
3485
3486 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3487
3488 for (;;) {
3489 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3490 tx_desc->read.cmd_type_len =
3491 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3492
3493 i++;
3494 tx_desc++;
3495 if (i == tx_ring->count) {
3496 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3497 i = 0;
3498 }
3499
3500 dma += IXGBE_MAX_DATA_PER_TXD;
3501 size -= IXGBE_MAX_DATA_PER_TXD;
3502
3503 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3504 tx_desc->read.olinfo_status = 0;
3505 }
3506
3507 if (likely(!data_len))
3508 break;
3509
3510 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3511
3512 i++;
3513 tx_desc++;
3514 if (i == tx_ring->count) {
3515 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3516 i = 0;
3517 }
3518
3519 size = skb_frag_size(frag);
3520 data_len -= size;
3521
3522 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3523 DMA_TO_DEVICE);
3524 if (dma_mapping_error(tx_ring->dev, dma))
3525 goto dma_error;
3526
3527 tx_buffer = &tx_ring->tx_buffer_info[i];
3528 dma_unmap_len_set(tx_buffer, len, size);
3529 dma_unmap_addr_set(tx_buffer, dma, dma);
3530
3531 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3532 tx_desc->read.olinfo_status = 0;
3533
3534 frag++;
3535 }
3536
3537 /* write last descriptor with RS and EOP bits */
3538 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3539 tx_desc->read.cmd_type_len = cmd_type;
3540
3541 /* set the timestamp */
3542 first->time_stamp = jiffies;
3543
3544 /* Force memory writes to complete before letting h/w know there
3545 * are new descriptors to fetch. (Only applicable for weak-ordered
3546 * memory model archs, such as IA-64).
3547 *
3548 * We also need this memory barrier (wmb) to make certain all of the
3549 * status bits have been updated before next_to_watch is written.
3550 */
3551 wmb();
3552
3553 /* set next_to_watch value indicating a packet is present */
3554 first->next_to_watch = tx_desc;
3555
3556 i++;
3557 if (i == tx_ring->count)
3558 i = 0;
3559
3560 tx_ring->next_to_use = i;
3561
3562 /* notify HW of packet */
3563 ixgbevf_write_tail(tx_ring, i);
3564
3565 return;
3566 dma_error:
3567 dev_err(tx_ring->dev, "TX DMA map failed\n");
3568
3569 /* clear dma mappings for failed tx_buffer_info map */
3570 for (;;) {
3571 tx_buffer = &tx_ring->tx_buffer_info[i];
3572 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer);
3573 if (tx_buffer == first)
3574 break;
3575 if (i == 0)
3576 i = tx_ring->count;
3577 i--;
3578 }
3579
3580 tx_ring->next_to_use = i;
3581 }
3582
3583 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3584 {
3585 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3586 /* Herbert's original patch had:
3587 * smp_mb__after_netif_stop_queue();
3588 * but since that doesn't exist yet, just open code it.
3589 */
3590 smp_mb();
3591
3592 /* We need to check again in a case another CPU has just
3593 * made room available.
3594 */
3595 if (likely(ixgbevf_desc_unused(tx_ring) < size))
3596 return -EBUSY;
3597
3598 /* A reprieve! - use start_queue because it doesn't call schedule */
3599 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3600 ++tx_ring->tx_stats.restart_queue;
3601
3602 return 0;
3603 }
3604
3605 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3606 {
3607 if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3608 return 0;
3609 return __ixgbevf_maybe_stop_tx(tx_ring, size);
3610 }
3611
3612 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3613 {
3614 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3615 struct ixgbevf_tx_buffer *first;
3616 struct ixgbevf_ring *tx_ring;
3617 int tso;
3618 u32 tx_flags = 0;
3619 u16 count = TXD_USE_COUNT(skb_headlen(skb));
3620 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3621 unsigned short f;
3622 #endif
3623 u8 hdr_len = 0;
3624 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3625
3626 if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3627 dev_kfree_skb_any(skb);
3628 return NETDEV_TX_OK;
3629 }
3630
3631 tx_ring = adapter->tx_ring[skb->queue_mapping];
3632
3633 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3634 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3635 * + 2 desc gap to keep tail from touching head,
3636 * + 1 desc for context descriptor,
3637 * otherwise try next time
3638 */
3639 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3640 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3641 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3642 #else
3643 count += skb_shinfo(skb)->nr_frags;
3644 #endif
3645 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3646 tx_ring->tx_stats.tx_busy++;
3647 return NETDEV_TX_BUSY;
3648 }
3649
3650 /* record the location of the first descriptor for this packet */
3651 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3652 first->skb = skb;
3653 first->bytecount = skb->len;
3654 first->gso_segs = 1;
3655
3656 if (skb_vlan_tag_present(skb)) {
3657 tx_flags |= skb_vlan_tag_get(skb);
3658 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3659 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3660 }
3661
3662 /* record initial flags and protocol */
3663 first->tx_flags = tx_flags;
3664 first->protocol = vlan_get_protocol(skb);
3665
3666 tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3667 if (tso < 0)
3668 goto out_drop;
3669 else if (!tso)
3670 ixgbevf_tx_csum(tx_ring, first);
3671
3672 ixgbevf_tx_map(tx_ring, first, hdr_len);
3673
3674 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3675
3676 return NETDEV_TX_OK;
3677
3678 out_drop:
3679 dev_kfree_skb_any(first->skb);
3680 first->skb = NULL;
3681
3682 return NETDEV_TX_OK;
3683 }
3684
3685 /**
3686 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3687 * @netdev: network interface device structure
3688 * @p: pointer to an address structure
3689 *
3690 * Returns 0 on success, negative on failure
3691 **/
3692 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3693 {
3694 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3695 struct ixgbe_hw *hw = &adapter->hw;
3696 struct sockaddr *addr = p;
3697
3698 if (!is_valid_ether_addr(addr->sa_data))
3699 return -EADDRNOTAVAIL;
3700
3701 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3702 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3703
3704 spin_lock_bh(&adapter->mbx_lock);
3705
3706 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3707
3708 spin_unlock_bh(&adapter->mbx_lock);
3709
3710 return 0;
3711 }
3712
3713 /**
3714 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3715 * @netdev: network interface device structure
3716 * @new_mtu: new value for maximum frame size
3717 *
3718 * Returns 0 on success, negative on failure
3719 **/
3720 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3721 {
3722 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3723 struct ixgbe_hw *hw = &adapter->hw;
3724 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3725 int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3726
3727 switch (adapter->hw.api_version) {
3728 case ixgbe_mbox_api_11:
3729 case ixgbe_mbox_api_12:
3730 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3731 break;
3732 default:
3733 if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
3734 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3735 break;
3736 }
3737
3738 /* MTU < 68 is an error and causes problems on some kernels */
3739 if ((new_mtu < 68) || (max_frame > max_possible_frame))
3740 return -EINVAL;
3741
3742 hw_dbg(hw, "changing MTU from %d to %d\n",
3743 netdev->mtu, new_mtu);
3744 /* must set new MTU before calling down or up */
3745 netdev->mtu = new_mtu;
3746
3747 /* notify the PF of our intent to use this size of frame */
3748 ixgbevf_rlpml_set_vf(hw, max_frame);
3749
3750 return 0;
3751 }
3752
3753 #ifdef CONFIG_NET_POLL_CONTROLLER
3754 /* Polling 'interrupt' - used by things like netconsole to send skbs
3755 * without having to re-enable interrupts. It's not called while
3756 * the interrupt routine is executing.
3757 */
3758 static void ixgbevf_netpoll(struct net_device *netdev)
3759 {
3760 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3761 int i;
3762
3763 /* if interface is down do nothing */
3764 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3765 return;
3766 for (i = 0; i < adapter->num_rx_queues; i++)
3767 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3768 }
3769 #endif /* CONFIG_NET_POLL_CONTROLLER */
3770
3771 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3772 {
3773 struct net_device *netdev = pci_get_drvdata(pdev);
3774 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3775 #ifdef CONFIG_PM
3776 int retval = 0;
3777 #endif
3778
3779 netif_device_detach(netdev);
3780
3781 if (netif_running(netdev)) {
3782 rtnl_lock();
3783 ixgbevf_down(adapter);
3784 ixgbevf_free_irq(adapter);
3785 ixgbevf_free_all_tx_resources(adapter);
3786 ixgbevf_free_all_rx_resources(adapter);
3787 rtnl_unlock();
3788 }
3789
3790 ixgbevf_clear_interrupt_scheme(adapter);
3791
3792 #ifdef CONFIG_PM
3793 retval = pci_save_state(pdev);
3794 if (retval)
3795 return retval;
3796
3797 #endif
3798 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3799 pci_disable_device(pdev);
3800
3801 return 0;
3802 }
3803
3804 #ifdef CONFIG_PM
3805 static int ixgbevf_resume(struct pci_dev *pdev)
3806 {
3807 struct net_device *netdev = pci_get_drvdata(pdev);
3808 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3809 u32 err;
3810
3811 pci_restore_state(pdev);
3812 /* pci_restore_state clears dev->state_saved so call
3813 * pci_save_state to restore it.
3814 */
3815 pci_save_state(pdev);
3816
3817 err = pci_enable_device_mem(pdev);
3818 if (err) {
3819 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3820 return err;
3821 }
3822 smp_mb__before_atomic();
3823 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3824 pci_set_master(pdev);
3825
3826 ixgbevf_reset(adapter);
3827
3828 rtnl_lock();
3829 err = ixgbevf_init_interrupt_scheme(adapter);
3830 rtnl_unlock();
3831 if (err) {
3832 dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3833 return err;
3834 }
3835
3836 if (netif_running(netdev)) {
3837 err = ixgbevf_open(netdev);
3838 if (err)
3839 return err;
3840 }
3841
3842 netif_device_attach(netdev);
3843
3844 return err;
3845 }
3846
3847 #endif /* CONFIG_PM */
3848 static void ixgbevf_shutdown(struct pci_dev *pdev)
3849 {
3850 ixgbevf_suspend(pdev, PMSG_SUSPEND);
3851 }
3852
3853 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3854 struct rtnl_link_stats64 *stats)
3855 {
3856 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3857 unsigned int start;
3858 u64 bytes, packets;
3859 const struct ixgbevf_ring *ring;
3860 int i;
3861
3862 ixgbevf_update_stats(adapter);
3863
3864 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3865
3866 for (i = 0; i < adapter->num_rx_queues; i++) {
3867 ring = adapter->rx_ring[i];
3868 do {
3869 start = u64_stats_fetch_begin_irq(&ring->syncp);
3870 bytes = ring->stats.bytes;
3871 packets = ring->stats.packets;
3872 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3873 stats->rx_bytes += bytes;
3874 stats->rx_packets += packets;
3875 }
3876
3877 for (i = 0; i < adapter->num_tx_queues; i++) {
3878 ring = adapter->tx_ring[i];
3879 do {
3880 start = u64_stats_fetch_begin_irq(&ring->syncp);
3881 bytes = ring->stats.bytes;
3882 packets = ring->stats.packets;
3883 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3884 stats->tx_bytes += bytes;
3885 stats->tx_packets += packets;
3886 }
3887
3888 return stats;
3889 }
3890
3891 static const struct net_device_ops ixgbevf_netdev_ops = {
3892 .ndo_open = ixgbevf_open,
3893 .ndo_stop = ixgbevf_close,
3894 .ndo_start_xmit = ixgbevf_xmit_frame,
3895 .ndo_set_rx_mode = ixgbevf_set_rx_mode,
3896 .ndo_get_stats64 = ixgbevf_get_stats,
3897 .ndo_validate_addr = eth_validate_addr,
3898 .ndo_set_mac_address = ixgbevf_set_mac,
3899 .ndo_change_mtu = ixgbevf_change_mtu,
3900 .ndo_tx_timeout = ixgbevf_tx_timeout,
3901 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid,
3902 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid,
3903 #ifdef CONFIG_NET_RX_BUSY_POLL
3904 .ndo_busy_poll = ixgbevf_busy_poll_recv,
3905 #endif
3906 #ifdef CONFIG_NET_POLL_CONTROLLER
3907 .ndo_poll_controller = ixgbevf_netpoll,
3908 #endif
3909 .ndo_features_check = passthru_features_check,
3910 };
3911
3912 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3913 {
3914 dev->netdev_ops = &ixgbevf_netdev_ops;
3915 ixgbevf_set_ethtool_ops(dev);
3916 dev->watchdog_timeo = 5 * HZ;
3917 }
3918
3919 /**
3920 * ixgbevf_probe - Device Initialization Routine
3921 * @pdev: PCI device information struct
3922 * @ent: entry in ixgbevf_pci_tbl
3923 *
3924 * Returns 0 on success, negative on failure
3925 *
3926 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3927 * The OS initialization, configuring of the adapter private structure,
3928 * and a hardware reset occur.
3929 **/
3930 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3931 {
3932 struct net_device *netdev;
3933 struct ixgbevf_adapter *adapter = NULL;
3934 struct ixgbe_hw *hw = NULL;
3935 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3936 int err, pci_using_dac;
3937 bool disable_dev = false;
3938
3939 err = pci_enable_device(pdev);
3940 if (err)
3941 return err;
3942
3943 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3944 pci_using_dac = 1;
3945 } else {
3946 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3947 if (err) {
3948 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
3949 goto err_dma;
3950 }
3951 pci_using_dac = 0;
3952 }
3953
3954 err = pci_request_regions(pdev, ixgbevf_driver_name);
3955 if (err) {
3956 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3957 goto err_pci_reg;
3958 }
3959
3960 pci_set_master(pdev);
3961
3962 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3963 MAX_TX_QUEUES);
3964 if (!netdev) {
3965 err = -ENOMEM;
3966 goto err_alloc_etherdev;
3967 }
3968
3969 SET_NETDEV_DEV(netdev, &pdev->dev);
3970
3971 adapter = netdev_priv(netdev);
3972
3973 adapter->netdev = netdev;
3974 adapter->pdev = pdev;
3975 hw = &adapter->hw;
3976 hw->back = adapter;
3977 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3978
3979 /* call save state here in standalone driver because it relies on
3980 * adapter struct to exist, and needs to call netdev_priv
3981 */
3982 pci_save_state(pdev);
3983
3984 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3985 pci_resource_len(pdev, 0));
3986 adapter->io_addr = hw->hw_addr;
3987 if (!hw->hw_addr) {
3988 err = -EIO;
3989 goto err_ioremap;
3990 }
3991
3992 ixgbevf_assign_netdev_ops(netdev);
3993
3994 /* Setup HW API */
3995 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3996 hw->mac.type = ii->mac;
3997
3998 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3999 sizeof(struct ixgbe_mbx_operations));
4000
4001 /* setup the private structure */
4002 err = ixgbevf_sw_init(adapter);
4003 if (err)
4004 goto err_sw_init;
4005
4006 /* The HW MAC address was set and/or determined in sw_init */
4007 if (!is_valid_ether_addr(netdev->dev_addr)) {
4008 pr_err("invalid MAC address\n");
4009 err = -EIO;
4010 goto err_sw_init;
4011 }
4012
4013 netdev->hw_features = NETIF_F_SG |
4014 NETIF_F_IP_CSUM |
4015 NETIF_F_IPV6_CSUM |
4016 NETIF_F_TSO |
4017 NETIF_F_TSO6 |
4018 NETIF_F_RXCSUM;
4019
4020 netdev->features = netdev->hw_features |
4021 NETIF_F_HW_VLAN_CTAG_TX |
4022 NETIF_F_HW_VLAN_CTAG_RX |
4023 NETIF_F_HW_VLAN_CTAG_FILTER;
4024
4025 netdev->vlan_features |= NETIF_F_TSO |
4026 NETIF_F_TSO6 |
4027 NETIF_F_IP_CSUM |
4028 NETIF_F_IPV6_CSUM |
4029 NETIF_F_SG;
4030
4031 if (pci_using_dac)
4032 netdev->features |= NETIF_F_HIGHDMA;
4033
4034 netdev->priv_flags |= IFF_UNICAST_FLT;
4035
4036 if (IXGBE_REMOVED(hw->hw_addr)) {
4037 err = -EIO;
4038 goto err_sw_init;
4039 }
4040
4041 setup_timer(&adapter->service_timer, &ixgbevf_service_timer,
4042 (unsigned long)adapter);
4043
4044 INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4045 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4046 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4047
4048 err = ixgbevf_init_interrupt_scheme(adapter);
4049 if (err)
4050 goto err_sw_init;
4051
4052 strcpy(netdev->name, "eth%d");
4053
4054 err = register_netdev(netdev);
4055 if (err)
4056 goto err_register;
4057
4058 pci_set_drvdata(pdev, netdev);
4059 netif_carrier_off(netdev);
4060
4061 ixgbevf_init_last_counter_stats(adapter);
4062
4063 /* print the VF info */
4064 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4065 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4066
4067 switch (hw->mac.type) {
4068 case ixgbe_mac_X550_vf:
4069 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4070 break;
4071 case ixgbe_mac_X540_vf:
4072 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4073 break;
4074 case ixgbe_mac_82599_vf:
4075 default:
4076 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4077 break;
4078 }
4079
4080 return 0;
4081
4082 err_register:
4083 ixgbevf_clear_interrupt_scheme(adapter);
4084 err_sw_init:
4085 ixgbevf_reset_interrupt_capability(adapter);
4086 iounmap(adapter->io_addr);
4087 err_ioremap:
4088 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4089 free_netdev(netdev);
4090 err_alloc_etherdev:
4091 pci_release_regions(pdev);
4092 err_pci_reg:
4093 err_dma:
4094 if (!adapter || disable_dev)
4095 pci_disable_device(pdev);
4096 return err;
4097 }
4098
4099 /**
4100 * ixgbevf_remove - Device Removal Routine
4101 * @pdev: PCI device information struct
4102 *
4103 * ixgbevf_remove is called by the PCI subsystem to alert the driver
4104 * that it should release a PCI device. The could be caused by a
4105 * Hot-Plug event, or because the driver is going to be removed from
4106 * memory.
4107 **/
4108 static void ixgbevf_remove(struct pci_dev *pdev)
4109 {
4110 struct net_device *netdev = pci_get_drvdata(pdev);
4111 struct ixgbevf_adapter *adapter;
4112 bool disable_dev;
4113
4114 if (!netdev)
4115 return;
4116
4117 adapter = netdev_priv(netdev);
4118
4119 set_bit(__IXGBEVF_REMOVING, &adapter->state);
4120 cancel_work_sync(&adapter->service_task);
4121
4122 if (netdev->reg_state == NETREG_REGISTERED)
4123 unregister_netdev(netdev);
4124
4125 ixgbevf_clear_interrupt_scheme(adapter);
4126 ixgbevf_reset_interrupt_capability(adapter);
4127
4128 iounmap(adapter->io_addr);
4129 pci_release_regions(pdev);
4130
4131 hw_dbg(&adapter->hw, "Remove complete\n");
4132
4133 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4134 free_netdev(netdev);
4135
4136 if (disable_dev)
4137 pci_disable_device(pdev);
4138 }
4139
4140 /**
4141 * ixgbevf_io_error_detected - called when PCI error is detected
4142 * @pdev: Pointer to PCI device
4143 * @state: The current pci connection state
4144 *
4145 * This function is called after a PCI bus error affecting
4146 * this device has been detected.
4147 **/
4148 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4149 pci_channel_state_t state)
4150 {
4151 struct net_device *netdev = pci_get_drvdata(pdev);
4152 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4153
4154 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4155 return PCI_ERS_RESULT_DISCONNECT;
4156
4157 rtnl_lock();
4158 netif_device_detach(netdev);
4159
4160 if (state == pci_channel_io_perm_failure) {
4161 rtnl_unlock();
4162 return PCI_ERS_RESULT_DISCONNECT;
4163 }
4164
4165 if (netif_running(netdev))
4166 ixgbevf_down(adapter);
4167
4168 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4169 pci_disable_device(pdev);
4170 rtnl_unlock();
4171
4172 /* Request a slot slot reset. */
4173 return PCI_ERS_RESULT_NEED_RESET;
4174 }
4175
4176 /**
4177 * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4178 * @pdev: Pointer to PCI device
4179 *
4180 * Restart the card from scratch, as if from a cold-boot. Implementation
4181 * resembles the first-half of the ixgbevf_resume routine.
4182 **/
4183 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4184 {
4185 struct net_device *netdev = pci_get_drvdata(pdev);
4186 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4187
4188 if (pci_enable_device_mem(pdev)) {
4189 dev_err(&pdev->dev,
4190 "Cannot re-enable PCI device after reset.\n");
4191 return PCI_ERS_RESULT_DISCONNECT;
4192 }
4193
4194 smp_mb__before_atomic();
4195 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4196 pci_set_master(pdev);
4197
4198 ixgbevf_reset(adapter);
4199
4200 return PCI_ERS_RESULT_RECOVERED;
4201 }
4202
4203 /**
4204 * ixgbevf_io_resume - called when traffic can start flowing again.
4205 * @pdev: Pointer to PCI device
4206 *
4207 * This callback is called when the error recovery driver tells us that
4208 * its OK to resume normal operation. Implementation resembles the
4209 * second-half of the ixgbevf_resume routine.
4210 **/
4211 static void ixgbevf_io_resume(struct pci_dev *pdev)
4212 {
4213 struct net_device *netdev = pci_get_drvdata(pdev);
4214 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4215
4216 if (netif_running(netdev))
4217 ixgbevf_up(adapter);
4218
4219 netif_device_attach(netdev);
4220 }
4221
4222 /* PCI Error Recovery (ERS) */
4223 static const struct pci_error_handlers ixgbevf_err_handler = {
4224 .error_detected = ixgbevf_io_error_detected,
4225 .slot_reset = ixgbevf_io_slot_reset,
4226 .resume = ixgbevf_io_resume,
4227 };
4228
4229 static struct pci_driver ixgbevf_driver = {
4230 .name = ixgbevf_driver_name,
4231 .id_table = ixgbevf_pci_tbl,
4232 .probe = ixgbevf_probe,
4233 .remove = ixgbevf_remove,
4234 #ifdef CONFIG_PM
4235 /* Power Management Hooks */
4236 .suspend = ixgbevf_suspend,
4237 .resume = ixgbevf_resume,
4238 #endif
4239 .shutdown = ixgbevf_shutdown,
4240 .err_handler = &ixgbevf_err_handler
4241 };
4242
4243 /**
4244 * ixgbevf_init_module - Driver Registration Routine
4245 *
4246 * ixgbevf_init_module is the first routine called when the driver is
4247 * loaded. All it does is register with the PCI subsystem.
4248 **/
4249 static int __init ixgbevf_init_module(void)
4250 {
4251 int ret;
4252
4253 pr_info("%s - version %s\n", ixgbevf_driver_string,
4254 ixgbevf_driver_version);
4255
4256 pr_info("%s\n", ixgbevf_copyright);
4257
4258 ret = pci_register_driver(&ixgbevf_driver);
4259 return ret;
4260 }
4261
4262 module_init(ixgbevf_init_module);
4263
4264 /**
4265 * ixgbevf_exit_module - Driver Exit Cleanup Routine
4266 *
4267 * ixgbevf_exit_module is called just before the driver is removed
4268 * from memory.
4269 **/
4270 static void __exit ixgbevf_exit_module(void)
4271 {
4272 pci_unregister_driver(&ixgbevf_driver);
4273 }
4274
4275 #ifdef DEBUG
4276 /**
4277 * ixgbevf_get_hw_dev_name - return device name string
4278 * used by hardware layer to print debugging information
4279 **/
4280 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4281 {
4282 struct ixgbevf_adapter *adapter = hw->back;
4283
4284 return adapter->netdev->name;
4285 }
4286
4287 #endif
4288 module_exit(ixgbevf_exit_module);
4289
4290 /* ixgbevf_main.c */
This page took 0.192385 seconds and 5 git commands to generate.