d86e51116384c46905264d874cc62b4f7deb6c62
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3 Intel 82599 Virtual Function driver
4 Copyright(c) 1999 - 2015 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
17
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 /******************************************************************************
28 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
29 ******************************************************************************/
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/vmalloc.h>
39 #include <linux/string.h>
40 #include <linux/in.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/sctp.h>
44 #include <linux/ipv6.h>
45 #include <linux/slab.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/ethtool.h>
49 #include <linux/if.h>
50 #include <linux/if_vlan.h>
51 #include <linux/prefetch.h>
52
53 #include "ixgbevf.h"
54
55 const char ixgbevf_driver_name[] = "ixgbevf";
56 static const char ixgbevf_driver_string[] =
57 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
58
59 #define DRV_VERSION "2.12.1-k"
60 const char ixgbevf_driver_version[] = DRV_VERSION;
61 static char ixgbevf_copyright[] =
62 "Copyright (c) 2009 - 2015 Intel Corporation.";
63
64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
65 [board_82599_vf] = &ixgbevf_82599_vf_info,
66 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info,
67 [board_X540_vf] = &ixgbevf_X540_vf_info,
68 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info,
69 [board_X550_vf] = &ixgbevf_X550_vf_info,
70 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info,
71 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
72 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info,
73 };
74
75 /* ixgbevf_pci_tbl - PCI Device ID Table
76 *
77 * Wildcard entries (PCI_ANY_ID) should come last
78 * Last entry must be all 0s
79 *
80 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
81 * Class, Class Mask, private data (not used) }
82 */
83 static const struct pci_device_id ixgbevf_pci_tbl[] = {
84 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
85 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
86 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
87 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
88 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
89 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
90 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
91 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
92 /* required last entry */
93 {0, }
94 };
95 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
96
97 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
98 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
99 MODULE_LICENSE("GPL");
100 MODULE_VERSION(DRV_VERSION);
101
102 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
103 static int debug = -1;
104 module_param(debug, int, 0);
105 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
106
107 static struct workqueue_struct *ixgbevf_wq;
108
109 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
110 {
111 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
112 !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
113 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
114 queue_work(ixgbevf_wq, &adapter->service_task);
115 }
116
117 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
118 {
119 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
120
121 /* flush memory to make sure state is correct before next watchdog */
122 smp_mb__before_atomic();
123 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
124 }
125
126 /* forward decls */
127 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
128 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
129 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
130
131 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
132 {
133 struct ixgbevf_adapter *adapter = hw->back;
134
135 if (!hw->hw_addr)
136 return;
137 hw->hw_addr = NULL;
138 dev_err(&adapter->pdev->dev, "Adapter removed\n");
139 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
140 ixgbevf_service_event_schedule(adapter);
141 }
142
143 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
144 {
145 u32 value;
146
147 /* The following check not only optimizes a bit by not
148 * performing a read on the status register when the
149 * register just read was a status register read that
150 * returned IXGBE_FAILED_READ_REG. It also blocks any
151 * potential recursion.
152 */
153 if (reg == IXGBE_VFSTATUS) {
154 ixgbevf_remove_adapter(hw);
155 return;
156 }
157 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
158 if (value == IXGBE_FAILED_READ_REG)
159 ixgbevf_remove_adapter(hw);
160 }
161
162 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
163 {
164 u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr);
165 u32 value;
166
167 if (IXGBE_REMOVED(reg_addr))
168 return IXGBE_FAILED_READ_REG;
169 value = readl(reg_addr + reg);
170 if (unlikely(value == IXGBE_FAILED_READ_REG))
171 ixgbevf_check_remove(hw, reg);
172 return value;
173 }
174
175 /**
176 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
177 * @adapter: pointer to adapter struct
178 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
179 * @queue: queue to map the corresponding interrupt to
180 * @msix_vector: the vector to map to the corresponding queue
181 **/
182 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
183 u8 queue, u8 msix_vector)
184 {
185 u32 ivar, index;
186 struct ixgbe_hw *hw = &adapter->hw;
187
188 if (direction == -1) {
189 /* other causes */
190 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
191 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
192 ivar &= ~0xFF;
193 ivar |= msix_vector;
194 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
195 } else {
196 /* Tx or Rx causes */
197 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
198 index = ((16 * (queue & 1)) + (8 * direction));
199 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
200 ivar &= ~(0xFF << index);
201 ivar |= (msix_vector << index);
202 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
203 }
204 }
205
206 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
207 struct ixgbevf_tx_buffer *tx_buffer)
208 {
209 if (tx_buffer->skb) {
210 dev_kfree_skb_any(tx_buffer->skb);
211 if (dma_unmap_len(tx_buffer, len))
212 dma_unmap_single(tx_ring->dev,
213 dma_unmap_addr(tx_buffer, dma),
214 dma_unmap_len(tx_buffer, len),
215 DMA_TO_DEVICE);
216 } else if (dma_unmap_len(tx_buffer, len)) {
217 dma_unmap_page(tx_ring->dev,
218 dma_unmap_addr(tx_buffer, dma),
219 dma_unmap_len(tx_buffer, len),
220 DMA_TO_DEVICE);
221 }
222 tx_buffer->next_to_watch = NULL;
223 tx_buffer->skb = NULL;
224 dma_unmap_len_set(tx_buffer, len, 0);
225 /* tx_buffer must be completely set up in the transmit path */
226 }
227
228 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
229 {
230 return ring->stats.packets;
231 }
232
233 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
234 {
235 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
236 struct ixgbe_hw *hw = &adapter->hw;
237
238 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
239 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
240
241 if (head != tail)
242 return (head < tail) ?
243 tail - head : (tail + ring->count - head);
244
245 return 0;
246 }
247
248 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
249 {
250 u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
251 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
252 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
253
254 clear_check_for_tx_hang(tx_ring);
255
256 /* Check for a hung queue, but be thorough. This verifies
257 * that a transmit has been completed since the previous
258 * check AND there is at least one packet pending. The
259 * ARMED bit is set to indicate a potential hang.
260 */
261 if ((tx_done_old == tx_done) && tx_pending) {
262 /* make sure it is true for two checks in a row */
263 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
264 &tx_ring->state);
265 }
266 /* reset the countdown */
267 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
268
269 /* update completed stats and continue */
270 tx_ring->tx_stats.tx_done_old = tx_done;
271
272 return false;
273 }
274
275 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
276 {
277 /* Do the reset outside of interrupt context */
278 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
279 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
280 ixgbevf_service_event_schedule(adapter);
281 }
282 }
283
284 /**
285 * ixgbevf_tx_timeout - Respond to a Tx Hang
286 * @netdev: network interface device structure
287 **/
288 static void ixgbevf_tx_timeout(struct net_device *netdev)
289 {
290 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
291
292 ixgbevf_tx_timeout_reset(adapter);
293 }
294
295 /**
296 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
297 * @q_vector: board private structure
298 * @tx_ring: tx ring to clean
299 * @napi_budget: Used to determine if we are in netpoll
300 **/
301 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
302 struct ixgbevf_ring *tx_ring, int napi_budget)
303 {
304 struct ixgbevf_adapter *adapter = q_vector->adapter;
305 struct ixgbevf_tx_buffer *tx_buffer;
306 union ixgbe_adv_tx_desc *tx_desc;
307 unsigned int total_bytes = 0, total_packets = 0;
308 unsigned int budget = tx_ring->count / 2;
309 unsigned int i = tx_ring->next_to_clean;
310
311 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
312 return true;
313
314 tx_buffer = &tx_ring->tx_buffer_info[i];
315 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
316 i -= tx_ring->count;
317
318 do {
319 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
320
321 /* if next_to_watch is not set then there is no work pending */
322 if (!eop_desc)
323 break;
324
325 /* prevent any other reads prior to eop_desc */
326 read_barrier_depends();
327
328 /* if DD is not set pending work has not been completed */
329 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
330 break;
331
332 /* clear next_to_watch to prevent false hangs */
333 tx_buffer->next_to_watch = NULL;
334
335 /* update the statistics for this packet */
336 total_bytes += tx_buffer->bytecount;
337 total_packets += tx_buffer->gso_segs;
338
339 /* free the skb */
340 napi_consume_skb(tx_buffer->skb, napi_budget);
341
342 /* unmap skb header data */
343 dma_unmap_single(tx_ring->dev,
344 dma_unmap_addr(tx_buffer, dma),
345 dma_unmap_len(tx_buffer, len),
346 DMA_TO_DEVICE);
347
348 /* clear tx_buffer data */
349 tx_buffer->skb = NULL;
350 dma_unmap_len_set(tx_buffer, len, 0);
351
352 /* unmap remaining buffers */
353 while (tx_desc != eop_desc) {
354 tx_buffer++;
355 tx_desc++;
356 i++;
357 if (unlikely(!i)) {
358 i -= tx_ring->count;
359 tx_buffer = tx_ring->tx_buffer_info;
360 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
361 }
362
363 /* unmap any remaining paged data */
364 if (dma_unmap_len(tx_buffer, len)) {
365 dma_unmap_page(tx_ring->dev,
366 dma_unmap_addr(tx_buffer, dma),
367 dma_unmap_len(tx_buffer, len),
368 DMA_TO_DEVICE);
369 dma_unmap_len_set(tx_buffer, len, 0);
370 }
371 }
372
373 /* move us one more past the eop_desc for start of next pkt */
374 tx_buffer++;
375 tx_desc++;
376 i++;
377 if (unlikely(!i)) {
378 i -= tx_ring->count;
379 tx_buffer = tx_ring->tx_buffer_info;
380 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
381 }
382
383 /* issue prefetch for next Tx descriptor */
384 prefetch(tx_desc);
385
386 /* update budget accounting */
387 budget--;
388 } while (likely(budget));
389
390 i += tx_ring->count;
391 tx_ring->next_to_clean = i;
392 u64_stats_update_begin(&tx_ring->syncp);
393 tx_ring->stats.bytes += total_bytes;
394 tx_ring->stats.packets += total_packets;
395 u64_stats_update_end(&tx_ring->syncp);
396 q_vector->tx.total_bytes += total_bytes;
397 q_vector->tx.total_packets += total_packets;
398
399 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
400 struct ixgbe_hw *hw = &adapter->hw;
401 union ixgbe_adv_tx_desc *eop_desc;
402
403 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
404
405 pr_err("Detected Tx Unit Hang\n"
406 " Tx Queue <%d>\n"
407 " TDH, TDT <%x>, <%x>\n"
408 " next_to_use <%x>\n"
409 " next_to_clean <%x>\n"
410 "tx_buffer_info[next_to_clean]\n"
411 " next_to_watch <%p>\n"
412 " eop_desc->wb.status <%x>\n"
413 " time_stamp <%lx>\n"
414 " jiffies <%lx>\n",
415 tx_ring->queue_index,
416 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
417 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
418 tx_ring->next_to_use, i,
419 eop_desc, (eop_desc ? eop_desc->wb.status : 0),
420 tx_ring->tx_buffer_info[i].time_stamp, jiffies);
421
422 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
423
424 /* schedule immediate reset if we believe we hung */
425 ixgbevf_tx_timeout_reset(adapter);
426
427 return true;
428 }
429
430 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
431 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
432 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
433 /* Make sure that anybody stopping the queue after this
434 * sees the new next_to_clean.
435 */
436 smp_mb();
437
438 if (__netif_subqueue_stopped(tx_ring->netdev,
439 tx_ring->queue_index) &&
440 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
441 netif_wake_subqueue(tx_ring->netdev,
442 tx_ring->queue_index);
443 ++tx_ring->tx_stats.restart_queue;
444 }
445 }
446
447 return !!budget;
448 }
449
450 /**
451 * ixgbevf_rx_skb - Helper function to determine proper Rx method
452 * @q_vector: structure containing interrupt and ring information
453 * @skb: packet to send up
454 **/
455 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
456 struct sk_buff *skb)
457 {
458 #ifdef CONFIG_NET_RX_BUSY_POLL
459 skb_mark_napi_id(skb, &q_vector->napi);
460
461 if (ixgbevf_qv_busy_polling(q_vector)) {
462 netif_receive_skb(skb);
463 /* exit early if we busy polled */
464 return;
465 }
466 #endif /* CONFIG_NET_RX_BUSY_POLL */
467
468 napi_gro_receive(&q_vector->napi, skb);
469 }
470
471 #define IXGBE_RSS_L4_TYPES_MASK \
472 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
473 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
474 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
475 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
476
477 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
478 union ixgbe_adv_rx_desc *rx_desc,
479 struct sk_buff *skb)
480 {
481 u16 rss_type;
482
483 if (!(ring->netdev->features & NETIF_F_RXHASH))
484 return;
485
486 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
487 IXGBE_RXDADV_RSSTYPE_MASK;
488
489 if (!rss_type)
490 return;
491
492 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
493 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
494 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
495 }
496
497 /**
498 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
499 * @ring: structure containig ring specific data
500 * @rx_desc: current Rx descriptor being processed
501 * @skb: skb currently being received and modified
502 **/
503 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
504 union ixgbe_adv_rx_desc *rx_desc,
505 struct sk_buff *skb)
506 {
507 skb_checksum_none_assert(skb);
508
509 /* Rx csum disabled */
510 if (!(ring->netdev->features & NETIF_F_RXCSUM))
511 return;
512
513 /* if IP and error */
514 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
515 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
516 ring->rx_stats.csum_err++;
517 return;
518 }
519
520 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
521 return;
522
523 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
524 ring->rx_stats.csum_err++;
525 return;
526 }
527
528 /* It must be a TCP or UDP packet with a valid checksum */
529 skb->ip_summed = CHECKSUM_UNNECESSARY;
530 }
531
532 /**
533 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
534 * @rx_ring: rx descriptor ring packet is being transacted on
535 * @rx_desc: pointer to the EOP Rx descriptor
536 * @skb: pointer to current skb being populated
537 *
538 * This function checks the ring, descriptor, and packet information in
539 * order to populate the checksum, VLAN, protocol, and other fields within
540 * the skb.
541 **/
542 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
543 union ixgbe_adv_rx_desc *rx_desc,
544 struct sk_buff *skb)
545 {
546 ixgbevf_rx_hash(rx_ring, rx_desc, skb);
547 ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
548
549 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
550 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
551 unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
552
553 if (test_bit(vid & VLAN_VID_MASK, active_vlans))
554 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
555 }
556
557 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
558 }
559
560 /**
561 * ixgbevf_is_non_eop - process handling of non-EOP buffers
562 * @rx_ring: Rx ring being processed
563 * @rx_desc: Rx descriptor for current buffer
564 * @skb: current socket buffer containing buffer in progress
565 *
566 * This function updates next to clean. If the buffer is an EOP buffer
567 * this function exits returning false, otherwise it will place the
568 * sk_buff in the next buffer to be chained and return true indicating
569 * that this is in fact a non-EOP buffer.
570 **/
571 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
572 union ixgbe_adv_rx_desc *rx_desc)
573 {
574 u32 ntc = rx_ring->next_to_clean + 1;
575
576 /* fetch, update, and store next to clean */
577 ntc = (ntc < rx_ring->count) ? ntc : 0;
578 rx_ring->next_to_clean = ntc;
579
580 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
581
582 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
583 return false;
584
585 return true;
586 }
587
588 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
589 struct ixgbevf_rx_buffer *bi)
590 {
591 struct page *page = bi->page;
592 dma_addr_t dma = bi->dma;
593
594 /* since we are recycling buffers we should seldom need to alloc */
595 if (likely(page))
596 return true;
597
598 /* alloc new page for storage */
599 page = dev_alloc_page();
600 if (unlikely(!page)) {
601 rx_ring->rx_stats.alloc_rx_page_failed++;
602 return false;
603 }
604
605 /* map page for use */
606 dma = dma_map_page(rx_ring->dev, page, 0,
607 PAGE_SIZE, DMA_FROM_DEVICE);
608
609 /* if mapping failed free memory back to system since
610 * there isn't much point in holding memory we can't use
611 */
612 if (dma_mapping_error(rx_ring->dev, dma)) {
613 __free_page(page);
614
615 rx_ring->rx_stats.alloc_rx_buff_failed++;
616 return false;
617 }
618
619 bi->dma = dma;
620 bi->page = page;
621 bi->page_offset = 0;
622
623 return true;
624 }
625
626 /**
627 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
628 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
629 * @cleaned_count: number of buffers to replace
630 **/
631 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
632 u16 cleaned_count)
633 {
634 union ixgbe_adv_rx_desc *rx_desc;
635 struct ixgbevf_rx_buffer *bi;
636 unsigned int i = rx_ring->next_to_use;
637
638 /* nothing to do or no valid netdev defined */
639 if (!cleaned_count || !rx_ring->netdev)
640 return;
641
642 rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
643 bi = &rx_ring->rx_buffer_info[i];
644 i -= rx_ring->count;
645
646 do {
647 if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
648 break;
649
650 /* Refresh the desc even if pkt_addr didn't change
651 * because each write-back erases this info.
652 */
653 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
654
655 rx_desc++;
656 bi++;
657 i++;
658 if (unlikely(!i)) {
659 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
660 bi = rx_ring->rx_buffer_info;
661 i -= rx_ring->count;
662 }
663
664 /* clear the hdr_addr for the next_to_use descriptor */
665 rx_desc->read.hdr_addr = 0;
666
667 cleaned_count--;
668 } while (cleaned_count);
669
670 i += rx_ring->count;
671
672 if (rx_ring->next_to_use != i) {
673 /* record the next descriptor to use */
674 rx_ring->next_to_use = i;
675
676 /* update next to alloc since we have filled the ring */
677 rx_ring->next_to_alloc = i;
678
679 /* Force memory writes to complete before letting h/w
680 * know there are new descriptors to fetch. (Only
681 * applicable for weak-ordered memory model archs,
682 * such as IA-64).
683 */
684 wmb();
685 ixgbevf_write_tail(rx_ring, i);
686 }
687 }
688
689 /**
690 * ixgbevf_cleanup_headers - Correct corrupted or empty headers
691 * @rx_ring: rx descriptor ring packet is being transacted on
692 * @rx_desc: pointer to the EOP Rx descriptor
693 * @skb: pointer to current skb being fixed
694 *
695 * Check for corrupted packet headers caused by senders on the local L2
696 * embedded NIC switch not setting up their Tx Descriptors right. These
697 * should be very rare.
698 *
699 * Also address the case where we are pulling data in on pages only
700 * and as such no data is present in the skb header.
701 *
702 * In addition if skb is not at least 60 bytes we need to pad it so that
703 * it is large enough to qualify as a valid Ethernet frame.
704 *
705 * Returns true if an error was encountered and skb was freed.
706 **/
707 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
708 union ixgbe_adv_rx_desc *rx_desc,
709 struct sk_buff *skb)
710 {
711 /* verify that the packet does not have any known errors */
712 if (unlikely(ixgbevf_test_staterr(rx_desc,
713 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
714 struct net_device *netdev = rx_ring->netdev;
715
716 if (!(netdev->features & NETIF_F_RXALL)) {
717 dev_kfree_skb_any(skb);
718 return true;
719 }
720 }
721
722 /* if eth_skb_pad returns an error the skb was freed */
723 if (eth_skb_pad(skb))
724 return true;
725
726 return false;
727 }
728
729 /**
730 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
731 * @rx_ring: rx descriptor ring to store buffers on
732 * @old_buff: donor buffer to have page reused
733 *
734 * Synchronizes page for reuse by the adapter
735 **/
736 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
737 struct ixgbevf_rx_buffer *old_buff)
738 {
739 struct ixgbevf_rx_buffer *new_buff;
740 u16 nta = rx_ring->next_to_alloc;
741
742 new_buff = &rx_ring->rx_buffer_info[nta];
743
744 /* update, and store next to alloc */
745 nta++;
746 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
747
748 /* transfer page from old buffer to new buffer */
749 new_buff->page = old_buff->page;
750 new_buff->dma = old_buff->dma;
751 new_buff->page_offset = old_buff->page_offset;
752
753 /* sync the buffer for use by the device */
754 dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma,
755 new_buff->page_offset,
756 IXGBEVF_RX_BUFSZ,
757 DMA_FROM_DEVICE);
758 }
759
760 static inline bool ixgbevf_page_is_reserved(struct page *page)
761 {
762 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
763 }
764
765 /**
766 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
767 * @rx_ring: rx descriptor ring to transact packets on
768 * @rx_buffer: buffer containing page to add
769 * @rx_desc: descriptor containing length of buffer written by hardware
770 * @skb: sk_buff to place the data into
771 *
772 * This function will add the data contained in rx_buffer->page to the skb.
773 * This is done either through a direct copy if the data in the buffer is
774 * less than the skb header size, otherwise it will just attach the page as
775 * a frag to the skb.
776 *
777 * The function will then update the page offset if necessary and return
778 * true if the buffer can be reused by the adapter.
779 **/
780 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
781 struct ixgbevf_rx_buffer *rx_buffer,
782 union ixgbe_adv_rx_desc *rx_desc,
783 struct sk_buff *skb)
784 {
785 struct page *page = rx_buffer->page;
786 unsigned char *va = page_address(page) + rx_buffer->page_offset;
787 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
788 #if (PAGE_SIZE < 8192)
789 unsigned int truesize = IXGBEVF_RX_BUFSZ;
790 #else
791 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
792 #endif
793 unsigned int pull_len;
794
795 if (unlikely(skb_is_nonlinear(skb)))
796 goto add_tail_frag;
797
798 if (likely(size <= IXGBEVF_RX_HDR_SIZE)) {
799 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
800
801 /* page is not reserved, we can reuse buffer as is */
802 if (likely(!ixgbevf_page_is_reserved(page)))
803 return true;
804
805 /* this page cannot be reused so discard it */
806 put_page(page);
807 return false;
808 }
809
810 /* we need the header to contain the greater of either ETH_HLEN or
811 * 60 bytes if the skb->len is less than 60 for skb_pad.
812 */
813 pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
814
815 /* align pull length to size of long to optimize memcpy performance */
816 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
817
818 /* update all of the pointers */
819 va += pull_len;
820 size -= pull_len;
821
822 add_tail_frag:
823 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
824 (unsigned long)va & ~PAGE_MASK, size, truesize);
825
826 /* avoid re-using remote pages */
827 if (unlikely(ixgbevf_page_is_reserved(page)))
828 return false;
829
830 #if (PAGE_SIZE < 8192)
831 /* if we are only owner of page we can reuse it */
832 if (unlikely(page_count(page) != 1))
833 return false;
834
835 /* flip page offset to other buffer */
836 rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
837
838 #else
839 /* move offset up to the next cache line */
840 rx_buffer->page_offset += truesize;
841
842 if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
843 return false;
844
845 #endif
846 /* Even if we own the page, we are not allowed to use atomic_set()
847 * This would break get_page_unless_zero() users.
848 */
849 page_ref_inc(page);
850
851 return true;
852 }
853
854 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
855 union ixgbe_adv_rx_desc *rx_desc,
856 struct sk_buff *skb)
857 {
858 struct ixgbevf_rx_buffer *rx_buffer;
859 struct page *page;
860
861 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
862 page = rx_buffer->page;
863 prefetchw(page);
864
865 if (likely(!skb)) {
866 void *page_addr = page_address(page) +
867 rx_buffer->page_offset;
868
869 /* prefetch first cache line of first page */
870 prefetch(page_addr);
871 #if L1_CACHE_BYTES < 128
872 prefetch(page_addr + L1_CACHE_BYTES);
873 #endif
874
875 /* allocate a skb to store the frags */
876 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
877 IXGBEVF_RX_HDR_SIZE);
878 if (unlikely(!skb)) {
879 rx_ring->rx_stats.alloc_rx_buff_failed++;
880 return NULL;
881 }
882
883 /* we will be copying header into skb->data in
884 * pskb_may_pull so it is in our interest to prefetch
885 * it now to avoid a possible cache miss
886 */
887 prefetchw(skb->data);
888 }
889
890 /* we are reusing so sync this buffer for CPU use */
891 dma_sync_single_range_for_cpu(rx_ring->dev,
892 rx_buffer->dma,
893 rx_buffer->page_offset,
894 IXGBEVF_RX_BUFSZ,
895 DMA_FROM_DEVICE);
896
897 /* pull page into skb */
898 if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
899 /* hand second half of page back to the ring */
900 ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
901 } else {
902 /* we are not reusing the buffer so unmap it */
903 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
904 PAGE_SIZE, DMA_FROM_DEVICE);
905 }
906
907 /* clear contents of buffer_info */
908 rx_buffer->dma = 0;
909 rx_buffer->page = NULL;
910
911 return skb;
912 }
913
914 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
915 u32 qmask)
916 {
917 struct ixgbe_hw *hw = &adapter->hw;
918
919 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
920 }
921
922 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
923 struct ixgbevf_ring *rx_ring,
924 int budget)
925 {
926 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
927 u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
928 struct sk_buff *skb = rx_ring->skb;
929
930 while (likely(total_rx_packets < budget)) {
931 union ixgbe_adv_rx_desc *rx_desc;
932
933 /* return some buffers to hardware, one at a time is too slow */
934 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
935 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
936 cleaned_count = 0;
937 }
938
939 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
940
941 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
942 break;
943
944 /* This memory barrier is needed to keep us from reading
945 * any other fields out of the rx_desc until we know the
946 * RXD_STAT_DD bit is set
947 */
948 rmb();
949
950 /* retrieve a buffer from the ring */
951 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
952
953 /* exit if we failed to retrieve a buffer */
954 if (!skb)
955 break;
956
957 cleaned_count++;
958
959 /* fetch next buffer in frame if non-eop */
960 if (ixgbevf_is_non_eop(rx_ring, rx_desc))
961 continue;
962
963 /* verify the packet layout is correct */
964 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
965 skb = NULL;
966 continue;
967 }
968
969 /* probably a little skewed due to removing CRC */
970 total_rx_bytes += skb->len;
971
972 /* Workaround hardware that can't do proper VEPA multicast
973 * source pruning.
974 */
975 if ((skb->pkt_type == PACKET_BROADCAST ||
976 skb->pkt_type == PACKET_MULTICAST) &&
977 ether_addr_equal(rx_ring->netdev->dev_addr,
978 eth_hdr(skb)->h_source)) {
979 dev_kfree_skb_irq(skb);
980 continue;
981 }
982
983 /* populate checksum, VLAN, and protocol */
984 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
985
986 ixgbevf_rx_skb(q_vector, skb);
987
988 /* reset skb pointer */
989 skb = NULL;
990
991 /* update budget accounting */
992 total_rx_packets++;
993 }
994
995 /* place incomplete frames back on ring for completion */
996 rx_ring->skb = skb;
997
998 u64_stats_update_begin(&rx_ring->syncp);
999 rx_ring->stats.packets += total_rx_packets;
1000 rx_ring->stats.bytes += total_rx_bytes;
1001 u64_stats_update_end(&rx_ring->syncp);
1002 q_vector->rx.total_packets += total_rx_packets;
1003 q_vector->rx.total_bytes += total_rx_bytes;
1004
1005 return total_rx_packets;
1006 }
1007
1008 /**
1009 * ixgbevf_poll - NAPI polling calback
1010 * @napi: napi struct with our devices info in it
1011 * @budget: amount of work driver is allowed to do this pass, in packets
1012 *
1013 * This function will clean more than one or more rings associated with a
1014 * q_vector.
1015 **/
1016 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1017 {
1018 struct ixgbevf_q_vector *q_vector =
1019 container_of(napi, struct ixgbevf_q_vector, napi);
1020 struct ixgbevf_adapter *adapter = q_vector->adapter;
1021 struct ixgbevf_ring *ring;
1022 int per_ring_budget, work_done = 0;
1023 bool clean_complete = true;
1024
1025 ixgbevf_for_each_ring(ring, q_vector->tx) {
1026 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1027 clean_complete = false;
1028 }
1029
1030 if (budget <= 0)
1031 return budget;
1032 #ifdef CONFIG_NET_RX_BUSY_POLL
1033 if (!ixgbevf_qv_lock_napi(q_vector))
1034 return budget;
1035 #endif
1036
1037 /* attempt to distribute budget to each queue fairly, but don't allow
1038 * the budget to go below 1 because we'll exit polling
1039 */
1040 if (q_vector->rx.count > 1)
1041 per_ring_budget = max(budget/q_vector->rx.count, 1);
1042 else
1043 per_ring_budget = budget;
1044
1045 ixgbevf_for_each_ring(ring, q_vector->rx) {
1046 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1047 per_ring_budget);
1048 work_done += cleaned;
1049 if (cleaned >= per_ring_budget)
1050 clean_complete = false;
1051 }
1052
1053 #ifdef CONFIG_NET_RX_BUSY_POLL
1054 ixgbevf_qv_unlock_napi(q_vector);
1055 #endif
1056
1057 /* If all work not completed, return budget and keep polling */
1058 if (!clean_complete)
1059 return budget;
1060 /* all work done, exit the polling mode */
1061 napi_complete_done(napi, work_done);
1062 if (adapter->rx_itr_setting == 1)
1063 ixgbevf_set_itr(q_vector);
1064 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1065 !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1066 ixgbevf_irq_enable_queues(adapter,
1067 BIT(q_vector->v_idx));
1068
1069 return 0;
1070 }
1071
1072 /**
1073 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1074 * @q_vector: structure containing interrupt and ring information
1075 **/
1076 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1077 {
1078 struct ixgbevf_adapter *adapter = q_vector->adapter;
1079 struct ixgbe_hw *hw = &adapter->hw;
1080 int v_idx = q_vector->v_idx;
1081 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1082
1083 /* set the WDIS bit to not clear the timer bits and cause an
1084 * immediate assertion of the interrupt
1085 */
1086 itr_reg |= IXGBE_EITR_CNT_WDIS;
1087
1088 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1089 }
1090
1091 #ifdef CONFIG_NET_RX_BUSY_POLL
1092 /* must be called with local_bh_disable()d */
1093 static int ixgbevf_busy_poll_recv(struct napi_struct *napi)
1094 {
1095 struct ixgbevf_q_vector *q_vector =
1096 container_of(napi, struct ixgbevf_q_vector, napi);
1097 struct ixgbevf_adapter *adapter = q_vector->adapter;
1098 struct ixgbevf_ring *ring;
1099 int found = 0;
1100
1101 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
1102 return LL_FLUSH_FAILED;
1103
1104 if (!ixgbevf_qv_lock_poll(q_vector))
1105 return LL_FLUSH_BUSY;
1106
1107 ixgbevf_for_each_ring(ring, q_vector->rx) {
1108 found = ixgbevf_clean_rx_irq(q_vector, ring, 4);
1109 #ifdef BP_EXTENDED_STATS
1110 if (found)
1111 ring->stats.cleaned += found;
1112 else
1113 ring->stats.misses++;
1114 #endif
1115 if (found)
1116 break;
1117 }
1118
1119 ixgbevf_qv_unlock_poll(q_vector);
1120
1121 return found;
1122 }
1123 #endif /* CONFIG_NET_RX_BUSY_POLL */
1124
1125 /**
1126 * ixgbevf_configure_msix - Configure MSI-X hardware
1127 * @adapter: board private structure
1128 *
1129 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1130 * interrupts.
1131 **/
1132 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1133 {
1134 struct ixgbevf_q_vector *q_vector;
1135 int q_vectors, v_idx;
1136
1137 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1138 adapter->eims_enable_mask = 0;
1139
1140 /* Populate the IVAR table and set the ITR values to the
1141 * corresponding register.
1142 */
1143 for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1144 struct ixgbevf_ring *ring;
1145
1146 q_vector = adapter->q_vector[v_idx];
1147
1148 ixgbevf_for_each_ring(ring, q_vector->rx)
1149 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1150
1151 ixgbevf_for_each_ring(ring, q_vector->tx)
1152 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1153
1154 if (q_vector->tx.ring && !q_vector->rx.ring) {
1155 /* Tx only vector */
1156 if (adapter->tx_itr_setting == 1)
1157 q_vector->itr = IXGBE_12K_ITR;
1158 else
1159 q_vector->itr = adapter->tx_itr_setting;
1160 } else {
1161 /* Rx or Rx/Tx vector */
1162 if (adapter->rx_itr_setting == 1)
1163 q_vector->itr = IXGBE_20K_ITR;
1164 else
1165 q_vector->itr = adapter->rx_itr_setting;
1166 }
1167
1168 /* add q_vector eims value to global eims_enable_mask */
1169 adapter->eims_enable_mask |= BIT(v_idx);
1170
1171 ixgbevf_write_eitr(q_vector);
1172 }
1173
1174 ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1175 /* setup eims_other and add value to global eims_enable_mask */
1176 adapter->eims_other = BIT(v_idx);
1177 adapter->eims_enable_mask |= adapter->eims_other;
1178 }
1179
1180 enum latency_range {
1181 lowest_latency = 0,
1182 low_latency = 1,
1183 bulk_latency = 2,
1184 latency_invalid = 255
1185 };
1186
1187 /**
1188 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1189 * @q_vector: structure containing interrupt and ring information
1190 * @ring_container: structure containing ring performance data
1191 *
1192 * Stores a new ITR value based on packets and byte
1193 * counts during the last interrupt. The advantage of per interrupt
1194 * computation is faster updates and more accurate ITR for the current
1195 * traffic pattern. Constants in this function were computed
1196 * based on theoretical maximum wire speed and thresholds were set based
1197 * on testing data as well as attempting to minimize response time
1198 * while increasing bulk throughput.
1199 **/
1200 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1201 struct ixgbevf_ring_container *ring_container)
1202 {
1203 int bytes = ring_container->total_bytes;
1204 int packets = ring_container->total_packets;
1205 u32 timepassed_us;
1206 u64 bytes_perint;
1207 u8 itr_setting = ring_container->itr;
1208
1209 if (packets == 0)
1210 return;
1211
1212 /* simple throttle rate management
1213 * 0-20MB/s lowest (100000 ints/s)
1214 * 20-100MB/s low (20000 ints/s)
1215 * 100-1249MB/s bulk (12000 ints/s)
1216 */
1217 /* what was last interrupt timeslice? */
1218 timepassed_us = q_vector->itr >> 2;
1219 bytes_perint = bytes / timepassed_us; /* bytes/usec */
1220
1221 switch (itr_setting) {
1222 case lowest_latency:
1223 if (bytes_perint > 10)
1224 itr_setting = low_latency;
1225 break;
1226 case low_latency:
1227 if (bytes_perint > 20)
1228 itr_setting = bulk_latency;
1229 else if (bytes_perint <= 10)
1230 itr_setting = lowest_latency;
1231 break;
1232 case bulk_latency:
1233 if (bytes_perint <= 20)
1234 itr_setting = low_latency;
1235 break;
1236 }
1237
1238 /* clear work counters since we have the values we need */
1239 ring_container->total_bytes = 0;
1240 ring_container->total_packets = 0;
1241
1242 /* write updated itr to ring container */
1243 ring_container->itr = itr_setting;
1244 }
1245
1246 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1247 {
1248 u32 new_itr = q_vector->itr;
1249 u8 current_itr;
1250
1251 ixgbevf_update_itr(q_vector, &q_vector->tx);
1252 ixgbevf_update_itr(q_vector, &q_vector->rx);
1253
1254 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1255
1256 switch (current_itr) {
1257 /* counts and packets in update_itr are dependent on these numbers */
1258 case lowest_latency:
1259 new_itr = IXGBE_100K_ITR;
1260 break;
1261 case low_latency:
1262 new_itr = IXGBE_20K_ITR;
1263 break;
1264 case bulk_latency:
1265 new_itr = IXGBE_12K_ITR;
1266 break;
1267 default:
1268 break;
1269 }
1270
1271 if (new_itr != q_vector->itr) {
1272 /* do an exponential smoothing */
1273 new_itr = (10 * new_itr * q_vector->itr) /
1274 ((9 * new_itr) + q_vector->itr);
1275
1276 /* save the algorithm value here */
1277 q_vector->itr = new_itr;
1278
1279 ixgbevf_write_eitr(q_vector);
1280 }
1281 }
1282
1283 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1284 {
1285 struct ixgbevf_adapter *adapter = data;
1286 struct ixgbe_hw *hw = &adapter->hw;
1287
1288 hw->mac.get_link_status = 1;
1289
1290 ixgbevf_service_event_schedule(adapter);
1291
1292 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1293
1294 return IRQ_HANDLED;
1295 }
1296
1297 /**
1298 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1299 * @irq: unused
1300 * @data: pointer to our q_vector struct for this interrupt vector
1301 **/
1302 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1303 {
1304 struct ixgbevf_q_vector *q_vector = data;
1305
1306 /* EIAM disabled interrupts (on this vector) for us */
1307 if (q_vector->rx.ring || q_vector->tx.ring)
1308 napi_schedule_irqoff(&q_vector->napi);
1309
1310 return IRQ_HANDLED;
1311 }
1312
1313 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1314 int r_idx)
1315 {
1316 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1317
1318 a->rx_ring[r_idx]->next = q_vector->rx.ring;
1319 q_vector->rx.ring = a->rx_ring[r_idx];
1320 q_vector->rx.count++;
1321 }
1322
1323 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1324 int t_idx)
1325 {
1326 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1327
1328 a->tx_ring[t_idx]->next = q_vector->tx.ring;
1329 q_vector->tx.ring = a->tx_ring[t_idx];
1330 q_vector->tx.count++;
1331 }
1332
1333 /**
1334 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1335 * @adapter: board private structure to initialize
1336 *
1337 * This function maps descriptor rings to the queue-specific vectors
1338 * we were allotted through the MSI-X enabling code. Ideally, we'd have
1339 * one vector per ring/queue, but on a constrained vector budget, we
1340 * group the rings as "efficiently" as possible. You would add new
1341 * mapping configurations in here.
1342 **/
1343 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1344 {
1345 int q_vectors;
1346 int v_start = 0;
1347 int rxr_idx = 0, txr_idx = 0;
1348 int rxr_remaining = adapter->num_rx_queues;
1349 int txr_remaining = adapter->num_tx_queues;
1350 int i, j;
1351 int rqpv, tqpv;
1352
1353 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1354
1355 /* The ideal configuration...
1356 * We have enough vectors to map one per queue.
1357 */
1358 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1359 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1360 map_vector_to_rxq(adapter, v_start, rxr_idx);
1361
1362 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1363 map_vector_to_txq(adapter, v_start, txr_idx);
1364 return 0;
1365 }
1366
1367 /* If we don't have enough vectors for a 1-to-1
1368 * mapping, we'll have to group them so there are
1369 * multiple queues per vector.
1370 */
1371 /* Re-adjusting *qpv takes care of the remainder. */
1372 for (i = v_start; i < q_vectors; i++) {
1373 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1374 for (j = 0; j < rqpv; j++) {
1375 map_vector_to_rxq(adapter, i, rxr_idx);
1376 rxr_idx++;
1377 rxr_remaining--;
1378 }
1379 }
1380 for (i = v_start; i < q_vectors; i++) {
1381 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1382 for (j = 0; j < tqpv; j++) {
1383 map_vector_to_txq(adapter, i, txr_idx);
1384 txr_idx++;
1385 txr_remaining--;
1386 }
1387 }
1388
1389 return 0;
1390 }
1391
1392 /**
1393 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1394 * @adapter: board private structure
1395 *
1396 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1397 * interrupts from the kernel.
1398 **/
1399 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1400 {
1401 struct net_device *netdev = adapter->netdev;
1402 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1403 int vector, err;
1404 int ri = 0, ti = 0;
1405
1406 for (vector = 0; vector < q_vectors; vector++) {
1407 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1408 struct msix_entry *entry = &adapter->msix_entries[vector];
1409
1410 if (q_vector->tx.ring && q_vector->rx.ring) {
1411 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1412 "%s-%s-%d", netdev->name, "TxRx", ri++);
1413 ti++;
1414 } else if (q_vector->rx.ring) {
1415 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1416 "%s-%s-%d", netdev->name, "rx", ri++);
1417 } else if (q_vector->tx.ring) {
1418 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1419 "%s-%s-%d", netdev->name, "tx", ti++);
1420 } else {
1421 /* skip this unused q_vector */
1422 continue;
1423 }
1424 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1425 q_vector->name, q_vector);
1426 if (err) {
1427 hw_dbg(&adapter->hw,
1428 "request_irq failed for MSIX interrupt Error: %d\n",
1429 err);
1430 goto free_queue_irqs;
1431 }
1432 }
1433
1434 err = request_irq(adapter->msix_entries[vector].vector,
1435 &ixgbevf_msix_other, 0, netdev->name, adapter);
1436 if (err) {
1437 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1438 err);
1439 goto free_queue_irqs;
1440 }
1441
1442 return 0;
1443
1444 free_queue_irqs:
1445 while (vector) {
1446 vector--;
1447 free_irq(adapter->msix_entries[vector].vector,
1448 adapter->q_vector[vector]);
1449 }
1450 /* This failure is non-recoverable - it indicates the system is
1451 * out of MSIX vector resources and the VF driver cannot run
1452 * without them. Set the number of msix vectors to zero
1453 * indicating that not enough can be allocated. The error
1454 * will be returned to the user indicating device open failed.
1455 * Any further attempts to force the driver to open will also
1456 * fail. The only way to recover is to unload the driver and
1457 * reload it again. If the system has recovered some MSIX
1458 * vectors then it may succeed.
1459 */
1460 adapter->num_msix_vectors = 0;
1461 return err;
1462 }
1463
1464 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1465 {
1466 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1467
1468 for (i = 0; i < q_vectors; i++) {
1469 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1470
1471 q_vector->rx.ring = NULL;
1472 q_vector->tx.ring = NULL;
1473 q_vector->rx.count = 0;
1474 q_vector->tx.count = 0;
1475 }
1476 }
1477
1478 /**
1479 * ixgbevf_request_irq - initialize interrupts
1480 * @adapter: board private structure
1481 *
1482 * Attempts to configure interrupts using the best available
1483 * capabilities of the hardware and kernel.
1484 **/
1485 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1486 {
1487 int err = ixgbevf_request_msix_irqs(adapter);
1488
1489 if (err)
1490 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1491
1492 return err;
1493 }
1494
1495 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1496 {
1497 int i, q_vectors;
1498
1499 q_vectors = adapter->num_msix_vectors;
1500 i = q_vectors - 1;
1501
1502 free_irq(adapter->msix_entries[i].vector, adapter);
1503 i--;
1504
1505 for (; i >= 0; i--) {
1506 /* free only the irqs that were actually requested */
1507 if (!adapter->q_vector[i]->rx.ring &&
1508 !adapter->q_vector[i]->tx.ring)
1509 continue;
1510
1511 free_irq(adapter->msix_entries[i].vector,
1512 adapter->q_vector[i]);
1513 }
1514
1515 ixgbevf_reset_q_vectors(adapter);
1516 }
1517
1518 /**
1519 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1520 * @adapter: board private structure
1521 **/
1522 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1523 {
1524 struct ixgbe_hw *hw = &adapter->hw;
1525 int i;
1526
1527 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1528 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1529 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1530
1531 IXGBE_WRITE_FLUSH(hw);
1532
1533 for (i = 0; i < adapter->num_msix_vectors; i++)
1534 synchronize_irq(adapter->msix_entries[i].vector);
1535 }
1536
1537 /**
1538 * ixgbevf_irq_enable - Enable default interrupt generation settings
1539 * @adapter: board private structure
1540 **/
1541 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1542 {
1543 struct ixgbe_hw *hw = &adapter->hw;
1544
1545 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1546 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1547 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1548 }
1549
1550 /**
1551 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1552 * @adapter: board private structure
1553 * @ring: structure containing ring specific data
1554 *
1555 * Configure the Tx descriptor ring after a reset.
1556 **/
1557 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1558 struct ixgbevf_ring *ring)
1559 {
1560 struct ixgbe_hw *hw = &adapter->hw;
1561 u64 tdba = ring->dma;
1562 int wait_loop = 10;
1563 u32 txdctl = IXGBE_TXDCTL_ENABLE;
1564 u8 reg_idx = ring->reg_idx;
1565
1566 /* disable queue to avoid issues while updating state */
1567 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1568 IXGBE_WRITE_FLUSH(hw);
1569
1570 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1571 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1572 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1573 ring->count * sizeof(union ixgbe_adv_tx_desc));
1574
1575 /* disable head writeback */
1576 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1577 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1578
1579 /* enable relaxed ordering */
1580 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1581 (IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1582 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1583
1584 /* reset head and tail pointers */
1585 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1586 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1587 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1588
1589 /* reset ntu and ntc to place SW in sync with hardwdare */
1590 ring->next_to_clean = 0;
1591 ring->next_to_use = 0;
1592
1593 /* In order to avoid issues WTHRESH + PTHRESH should always be equal
1594 * to or less than the number of on chip descriptors, which is
1595 * currently 40.
1596 */
1597 txdctl |= (8 << 16); /* WTHRESH = 8 */
1598
1599 /* Setting PTHRESH to 32 both improves performance */
1600 txdctl |= (1u << 8) | /* HTHRESH = 1 */
1601 32; /* PTHRESH = 32 */
1602
1603 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1604
1605 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1606
1607 /* poll to verify queue is enabled */
1608 do {
1609 usleep_range(1000, 2000);
1610 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1611 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1612 if (!wait_loop)
1613 pr_err("Could not enable Tx Queue %d\n", reg_idx);
1614 }
1615
1616 /**
1617 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1618 * @adapter: board private structure
1619 *
1620 * Configure the Tx unit of the MAC after a reset.
1621 **/
1622 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1623 {
1624 u32 i;
1625
1626 /* Setup the HW Tx Head and Tail descriptor pointers */
1627 for (i = 0; i < adapter->num_tx_queues; i++)
1628 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1629 }
1630
1631 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1632
1633 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1634 {
1635 struct ixgbe_hw *hw = &adapter->hw;
1636 u32 srrctl;
1637
1638 srrctl = IXGBE_SRRCTL_DROP_EN;
1639
1640 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1641 srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1642 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1643
1644 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1645 }
1646
1647 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1648 {
1649 struct ixgbe_hw *hw = &adapter->hw;
1650
1651 /* PSRTYPE must be initialized in 82599 */
1652 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1653 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1654 IXGBE_PSRTYPE_L2HDR;
1655
1656 if (adapter->num_rx_queues > 1)
1657 psrtype |= BIT(29);
1658
1659 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1660 }
1661
1662 #define IXGBEVF_MAX_RX_DESC_POLL 10
1663 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1664 struct ixgbevf_ring *ring)
1665 {
1666 struct ixgbe_hw *hw = &adapter->hw;
1667 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1668 u32 rxdctl;
1669 u8 reg_idx = ring->reg_idx;
1670
1671 if (IXGBE_REMOVED(hw->hw_addr))
1672 return;
1673 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1674 rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1675
1676 /* write value back with RXDCTL.ENABLE bit cleared */
1677 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1678
1679 /* the hardware may take up to 100us to really disable the Rx queue */
1680 do {
1681 udelay(10);
1682 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1683 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1684
1685 if (!wait_loop)
1686 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1687 reg_idx);
1688 }
1689
1690 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1691 struct ixgbevf_ring *ring)
1692 {
1693 struct ixgbe_hw *hw = &adapter->hw;
1694 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1695 u32 rxdctl;
1696 u8 reg_idx = ring->reg_idx;
1697
1698 if (IXGBE_REMOVED(hw->hw_addr))
1699 return;
1700 do {
1701 usleep_range(1000, 2000);
1702 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1703 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1704
1705 if (!wait_loop)
1706 pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1707 reg_idx);
1708 }
1709
1710 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1711 {
1712 struct ixgbe_hw *hw = &adapter->hw;
1713 u32 vfmrqc = 0, vfreta = 0;
1714 u16 rss_i = adapter->num_rx_queues;
1715 u8 i, j;
1716
1717 /* Fill out hash function seeds */
1718 netdev_rss_key_fill(adapter->rss_key, sizeof(adapter->rss_key));
1719 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1720 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), adapter->rss_key[i]);
1721
1722 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1723 if (j == rss_i)
1724 j = 0;
1725
1726 adapter->rss_indir_tbl[i] = j;
1727
1728 vfreta |= j << (i & 0x3) * 8;
1729 if ((i & 3) == 3) {
1730 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1731 vfreta = 0;
1732 }
1733 }
1734
1735 /* Perform hash on these packet types */
1736 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1737 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1738 IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1739 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1740
1741 vfmrqc |= IXGBE_VFMRQC_RSSEN;
1742
1743 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1744 }
1745
1746 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1747 struct ixgbevf_ring *ring)
1748 {
1749 struct ixgbe_hw *hw = &adapter->hw;
1750 u64 rdba = ring->dma;
1751 u32 rxdctl;
1752 u8 reg_idx = ring->reg_idx;
1753
1754 /* disable queue to avoid issues while updating state */
1755 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1756 ixgbevf_disable_rx_queue(adapter, ring);
1757
1758 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1759 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1760 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1761 ring->count * sizeof(union ixgbe_adv_rx_desc));
1762
1763 #ifndef CONFIG_SPARC
1764 /* enable relaxed ordering */
1765 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1766 IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1767 #else
1768 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1769 IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1770 IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1771 #endif
1772
1773 /* reset head and tail pointers */
1774 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1775 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1776 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1777
1778 /* reset ntu and ntc to place SW in sync with hardwdare */
1779 ring->next_to_clean = 0;
1780 ring->next_to_use = 0;
1781 ring->next_to_alloc = 0;
1782
1783 ixgbevf_configure_srrctl(adapter, reg_idx);
1784
1785 /* allow any size packet since we can handle overflow */
1786 rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1787
1788 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1789 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1790
1791 ixgbevf_rx_desc_queue_enable(adapter, ring);
1792 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1793 }
1794
1795 /**
1796 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1797 * @adapter: board private structure
1798 *
1799 * Configure the Rx unit of the MAC after a reset.
1800 **/
1801 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1802 {
1803 int i;
1804 struct ixgbe_hw *hw = &adapter->hw;
1805 struct net_device *netdev = adapter->netdev;
1806
1807 ixgbevf_setup_psrtype(adapter);
1808 if (hw->mac.type >= ixgbe_mac_X550_vf)
1809 ixgbevf_setup_vfmrqc(adapter);
1810
1811 /* notify the PF of our intent to use this size of frame */
1812 hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1813
1814 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1815 * the Base and Length of the Rx Descriptor Ring
1816 */
1817 for (i = 0; i < adapter->num_rx_queues; i++)
1818 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1819 }
1820
1821 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1822 __be16 proto, u16 vid)
1823 {
1824 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1825 struct ixgbe_hw *hw = &adapter->hw;
1826 int err;
1827
1828 spin_lock_bh(&adapter->mbx_lock);
1829
1830 /* add VID to filter table */
1831 err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1832
1833 spin_unlock_bh(&adapter->mbx_lock);
1834
1835 /* translate error return types so error makes sense */
1836 if (err == IXGBE_ERR_MBX)
1837 return -EIO;
1838
1839 if (err == IXGBE_ERR_INVALID_ARGUMENT)
1840 return -EACCES;
1841
1842 set_bit(vid, adapter->active_vlans);
1843
1844 return err;
1845 }
1846
1847 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1848 __be16 proto, u16 vid)
1849 {
1850 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1851 struct ixgbe_hw *hw = &adapter->hw;
1852 int err;
1853
1854 spin_lock_bh(&adapter->mbx_lock);
1855
1856 /* remove VID from filter table */
1857 err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1858
1859 spin_unlock_bh(&adapter->mbx_lock);
1860
1861 clear_bit(vid, adapter->active_vlans);
1862
1863 return err;
1864 }
1865
1866 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1867 {
1868 u16 vid;
1869
1870 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1871 ixgbevf_vlan_rx_add_vid(adapter->netdev,
1872 htons(ETH_P_8021Q), vid);
1873 }
1874
1875 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1876 {
1877 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1878 struct ixgbe_hw *hw = &adapter->hw;
1879 int count = 0;
1880
1881 if ((netdev_uc_count(netdev)) > 10) {
1882 pr_err("Too many unicast filters - No Space\n");
1883 return -ENOSPC;
1884 }
1885
1886 if (!netdev_uc_empty(netdev)) {
1887 struct netdev_hw_addr *ha;
1888
1889 netdev_for_each_uc_addr(ha, netdev) {
1890 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1891 udelay(200);
1892 }
1893 } else {
1894 /* If the list is empty then send message to PF driver to
1895 * clear all MAC VLANs on this VF.
1896 */
1897 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1898 }
1899
1900 return count;
1901 }
1902
1903 /**
1904 * ixgbevf_set_rx_mode - Multicast and unicast set
1905 * @netdev: network interface device structure
1906 *
1907 * The set_rx_method entry point is called whenever the multicast address
1908 * list, unicast address list or the network interface flags are updated.
1909 * This routine is responsible for configuring the hardware for proper
1910 * multicast mode and configuring requested unicast filters.
1911 **/
1912 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1913 {
1914 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1915 struct ixgbe_hw *hw = &adapter->hw;
1916 unsigned int flags = netdev->flags;
1917 int xcast_mode;
1918
1919 xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI :
1920 (flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1921 IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE;
1922
1923 spin_lock_bh(&adapter->mbx_lock);
1924
1925 hw->mac.ops.update_xcast_mode(hw, xcast_mode);
1926
1927 /* reprogram multicast list */
1928 hw->mac.ops.update_mc_addr_list(hw, netdev);
1929
1930 ixgbevf_write_uc_addr_list(netdev);
1931
1932 spin_unlock_bh(&adapter->mbx_lock);
1933 }
1934
1935 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1936 {
1937 int q_idx;
1938 struct ixgbevf_q_vector *q_vector;
1939 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1940
1941 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1942 q_vector = adapter->q_vector[q_idx];
1943 #ifdef CONFIG_NET_RX_BUSY_POLL
1944 ixgbevf_qv_init_lock(adapter->q_vector[q_idx]);
1945 #endif
1946 napi_enable(&q_vector->napi);
1947 }
1948 }
1949
1950 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1951 {
1952 int q_idx;
1953 struct ixgbevf_q_vector *q_vector;
1954 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1955
1956 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1957 q_vector = adapter->q_vector[q_idx];
1958 napi_disable(&q_vector->napi);
1959 #ifdef CONFIG_NET_RX_BUSY_POLL
1960 while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) {
1961 pr_info("QV %d locked\n", q_idx);
1962 usleep_range(1000, 20000);
1963 }
1964 #endif /* CONFIG_NET_RX_BUSY_POLL */
1965 }
1966 }
1967
1968 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1969 {
1970 struct ixgbe_hw *hw = &adapter->hw;
1971 unsigned int def_q = 0;
1972 unsigned int num_tcs = 0;
1973 unsigned int num_rx_queues = adapter->num_rx_queues;
1974 unsigned int num_tx_queues = adapter->num_tx_queues;
1975 int err;
1976
1977 spin_lock_bh(&adapter->mbx_lock);
1978
1979 /* fetch queue configuration from the PF */
1980 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1981
1982 spin_unlock_bh(&adapter->mbx_lock);
1983
1984 if (err)
1985 return err;
1986
1987 if (num_tcs > 1) {
1988 /* we need only one Tx queue */
1989 num_tx_queues = 1;
1990
1991 /* update default Tx ring register index */
1992 adapter->tx_ring[0]->reg_idx = def_q;
1993
1994 /* we need as many queues as traffic classes */
1995 num_rx_queues = num_tcs;
1996 }
1997
1998 /* if we have a bad config abort request queue reset */
1999 if ((adapter->num_rx_queues != num_rx_queues) ||
2000 (adapter->num_tx_queues != num_tx_queues)) {
2001 /* force mailbox timeout to prevent further messages */
2002 hw->mbx.timeout = 0;
2003
2004 /* wait for watchdog to come around and bail us out */
2005 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2006 }
2007
2008 return 0;
2009 }
2010
2011 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2012 {
2013 ixgbevf_configure_dcb(adapter);
2014
2015 ixgbevf_set_rx_mode(adapter->netdev);
2016
2017 ixgbevf_restore_vlan(adapter);
2018
2019 ixgbevf_configure_tx(adapter);
2020 ixgbevf_configure_rx(adapter);
2021 }
2022
2023 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2024 {
2025 /* Only save pre-reset stats if there are some */
2026 if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2027 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2028 adapter->stats.base_vfgprc;
2029 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2030 adapter->stats.base_vfgptc;
2031 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2032 adapter->stats.base_vfgorc;
2033 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2034 adapter->stats.base_vfgotc;
2035 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2036 adapter->stats.base_vfmprc;
2037 }
2038 }
2039
2040 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2041 {
2042 struct ixgbe_hw *hw = &adapter->hw;
2043
2044 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2045 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2046 adapter->stats.last_vfgorc |=
2047 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2048 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2049 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2050 adapter->stats.last_vfgotc |=
2051 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2052 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2053
2054 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2055 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2056 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2057 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2058 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2059 }
2060
2061 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2062 {
2063 struct ixgbe_hw *hw = &adapter->hw;
2064 int api[] = { ixgbe_mbox_api_12,
2065 ixgbe_mbox_api_11,
2066 ixgbe_mbox_api_10,
2067 ixgbe_mbox_api_unknown };
2068 int err, idx = 0;
2069
2070 spin_lock_bh(&adapter->mbx_lock);
2071
2072 while (api[idx] != ixgbe_mbox_api_unknown) {
2073 err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2074 if (!err)
2075 break;
2076 idx++;
2077 }
2078
2079 spin_unlock_bh(&adapter->mbx_lock);
2080 }
2081
2082 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2083 {
2084 struct net_device *netdev = adapter->netdev;
2085 struct ixgbe_hw *hw = &adapter->hw;
2086
2087 ixgbevf_configure_msix(adapter);
2088
2089 spin_lock_bh(&adapter->mbx_lock);
2090
2091 if (is_valid_ether_addr(hw->mac.addr))
2092 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2093 else
2094 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2095
2096 spin_unlock_bh(&adapter->mbx_lock);
2097
2098 smp_mb__before_atomic();
2099 clear_bit(__IXGBEVF_DOWN, &adapter->state);
2100 ixgbevf_napi_enable_all(adapter);
2101
2102 /* clear any pending interrupts, may auto mask */
2103 IXGBE_READ_REG(hw, IXGBE_VTEICR);
2104 ixgbevf_irq_enable(adapter);
2105
2106 /* enable transmits */
2107 netif_tx_start_all_queues(netdev);
2108
2109 ixgbevf_save_reset_stats(adapter);
2110 ixgbevf_init_last_counter_stats(adapter);
2111
2112 hw->mac.get_link_status = 1;
2113 mod_timer(&adapter->service_timer, jiffies);
2114 }
2115
2116 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2117 {
2118 ixgbevf_configure(adapter);
2119
2120 ixgbevf_up_complete(adapter);
2121 }
2122
2123 /**
2124 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2125 * @rx_ring: ring to free buffers from
2126 **/
2127 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2128 {
2129 struct device *dev = rx_ring->dev;
2130 unsigned long size;
2131 unsigned int i;
2132
2133 /* Free Rx ring sk_buff */
2134 if (rx_ring->skb) {
2135 dev_kfree_skb(rx_ring->skb);
2136 rx_ring->skb = NULL;
2137 }
2138
2139 /* ring already cleared, nothing to do */
2140 if (!rx_ring->rx_buffer_info)
2141 return;
2142
2143 /* Free all the Rx ring pages */
2144 for (i = 0; i < rx_ring->count; i++) {
2145 struct ixgbevf_rx_buffer *rx_buffer;
2146
2147 rx_buffer = &rx_ring->rx_buffer_info[i];
2148 if (rx_buffer->dma)
2149 dma_unmap_page(dev, rx_buffer->dma,
2150 PAGE_SIZE, DMA_FROM_DEVICE);
2151 rx_buffer->dma = 0;
2152 if (rx_buffer->page)
2153 __free_page(rx_buffer->page);
2154 rx_buffer->page = NULL;
2155 }
2156
2157 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2158 memset(rx_ring->rx_buffer_info, 0, size);
2159
2160 /* Zero out the descriptor ring */
2161 memset(rx_ring->desc, 0, rx_ring->size);
2162 }
2163
2164 /**
2165 * ixgbevf_clean_tx_ring - Free Tx Buffers
2166 * @tx_ring: ring to be cleaned
2167 **/
2168 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2169 {
2170 struct ixgbevf_tx_buffer *tx_buffer_info;
2171 unsigned long size;
2172 unsigned int i;
2173
2174 if (!tx_ring->tx_buffer_info)
2175 return;
2176
2177 /* Free all the Tx ring sk_buffs */
2178 for (i = 0; i < tx_ring->count; i++) {
2179 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2180 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2181 }
2182
2183 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2184 memset(tx_ring->tx_buffer_info, 0, size);
2185
2186 memset(tx_ring->desc, 0, tx_ring->size);
2187 }
2188
2189 /**
2190 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2191 * @adapter: board private structure
2192 **/
2193 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2194 {
2195 int i;
2196
2197 for (i = 0; i < adapter->num_rx_queues; i++)
2198 ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2199 }
2200
2201 /**
2202 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2203 * @adapter: board private structure
2204 **/
2205 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2206 {
2207 int i;
2208
2209 for (i = 0; i < adapter->num_tx_queues; i++)
2210 ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2211 }
2212
2213 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2214 {
2215 struct net_device *netdev = adapter->netdev;
2216 struct ixgbe_hw *hw = &adapter->hw;
2217 int i;
2218
2219 /* signal that we are down to the interrupt handler */
2220 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2221 return; /* do nothing if already down */
2222
2223 /* disable all enabled Rx queues */
2224 for (i = 0; i < adapter->num_rx_queues; i++)
2225 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2226
2227 usleep_range(10000, 20000);
2228
2229 netif_tx_stop_all_queues(netdev);
2230
2231 /* call carrier off first to avoid false dev_watchdog timeouts */
2232 netif_carrier_off(netdev);
2233 netif_tx_disable(netdev);
2234
2235 ixgbevf_irq_disable(adapter);
2236
2237 ixgbevf_napi_disable_all(adapter);
2238
2239 del_timer_sync(&adapter->service_timer);
2240
2241 /* disable transmits in the hardware now that interrupts are off */
2242 for (i = 0; i < adapter->num_tx_queues; i++) {
2243 u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2244
2245 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2246 IXGBE_TXDCTL_SWFLSH);
2247 }
2248
2249 if (!pci_channel_offline(adapter->pdev))
2250 ixgbevf_reset(adapter);
2251
2252 ixgbevf_clean_all_tx_rings(adapter);
2253 ixgbevf_clean_all_rx_rings(adapter);
2254 }
2255
2256 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2257 {
2258 WARN_ON(in_interrupt());
2259
2260 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2261 msleep(1);
2262
2263 ixgbevf_down(adapter);
2264 ixgbevf_up(adapter);
2265
2266 clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2267 }
2268
2269 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2270 {
2271 struct ixgbe_hw *hw = &adapter->hw;
2272 struct net_device *netdev = adapter->netdev;
2273
2274 if (hw->mac.ops.reset_hw(hw)) {
2275 hw_dbg(hw, "PF still resetting\n");
2276 } else {
2277 hw->mac.ops.init_hw(hw);
2278 ixgbevf_negotiate_api(adapter);
2279 }
2280
2281 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2282 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2283 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2284 }
2285
2286 adapter->last_reset = jiffies;
2287 }
2288
2289 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2290 int vectors)
2291 {
2292 int vector_threshold;
2293
2294 /* We'll want at least 2 (vector_threshold):
2295 * 1) TxQ[0] + RxQ[0] handler
2296 * 2) Other (Link Status Change, etc.)
2297 */
2298 vector_threshold = MIN_MSIX_COUNT;
2299
2300 /* The more we get, the more we will assign to Tx/Rx Cleanup
2301 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2302 * Right now, we simply care about how many we'll get; we'll
2303 * set them up later while requesting irq's.
2304 */
2305 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2306 vector_threshold, vectors);
2307
2308 if (vectors < 0) {
2309 dev_err(&adapter->pdev->dev,
2310 "Unable to allocate MSI-X interrupts\n");
2311 kfree(adapter->msix_entries);
2312 adapter->msix_entries = NULL;
2313 return vectors;
2314 }
2315
2316 /* Adjust for only the vectors we'll use, which is minimum
2317 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2318 * vectors we were allocated.
2319 */
2320 adapter->num_msix_vectors = vectors;
2321
2322 return 0;
2323 }
2324
2325 /**
2326 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2327 * @adapter: board private structure to initialize
2328 *
2329 * This is the top level queue allocation routine. The order here is very
2330 * important, starting with the "most" number of features turned on at once,
2331 * and ending with the smallest set of features. This way large combinations
2332 * can be allocated if they're turned on, and smaller combinations are the
2333 * fallthrough conditions.
2334 *
2335 **/
2336 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2337 {
2338 struct ixgbe_hw *hw = &adapter->hw;
2339 unsigned int def_q = 0;
2340 unsigned int num_tcs = 0;
2341 int err;
2342
2343 /* Start with base case */
2344 adapter->num_rx_queues = 1;
2345 adapter->num_tx_queues = 1;
2346
2347 spin_lock_bh(&adapter->mbx_lock);
2348
2349 /* fetch queue configuration from the PF */
2350 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2351
2352 spin_unlock_bh(&adapter->mbx_lock);
2353
2354 if (err)
2355 return;
2356
2357 /* we need as many queues as traffic classes */
2358 if (num_tcs > 1) {
2359 adapter->num_rx_queues = num_tcs;
2360 } else {
2361 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2362
2363 switch (hw->api_version) {
2364 case ixgbe_mbox_api_11:
2365 case ixgbe_mbox_api_12:
2366 adapter->num_rx_queues = rss;
2367 adapter->num_tx_queues = rss;
2368 default:
2369 break;
2370 }
2371 }
2372 }
2373
2374 /**
2375 * ixgbevf_alloc_queues - Allocate memory for all rings
2376 * @adapter: board private structure to initialize
2377 *
2378 * We allocate one ring per queue at run-time since we don't know the
2379 * number of queues at compile-time. The polling_netdev array is
2380 * intended for Multiqueue, but should work fine with a single queue.
2381 **/
2382 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2383 {
2384 struct ixgbevf_ring *ring;
2385 int rx = 0, tx = 0;
2386
2387 for (; tx < adapter->num_tx_queues; tx++) {
2388 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2389 if (!ring)
2390 goto err_allocation;
2391
2392 ring->dev = &adapter->pdev->dev;
2393 ring->netdev = adapter->netdev;
2394 ring->count = adapter->tx_ring_count;
2395 ring->queue_index = tx;
2396 ring->reg_idx = tx;
2397
2398 adapter->tx_ring[tx] = ring;
2399 }
2400
2401 for (; rx < adapter->num_rx_queues; rx++) {
2402 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2403 if (!ring)
2404 goto err_allocation;
2405
2406 ring->dev = &adapter->pdev->dev;
2407 ring->netdev = adapter->netdev;
2408
2409 ring->count = adapter->rx_ring_count;
2410 ring->queue_index = rx;
2411 ring->reg_idx = rx;
2412
2413 adapter->rx_ring[rx] = ring;
2414 }
2415
2416 return 0;
2417
2418 err_allocation:
2419 while (tx) {
2420 kfree(adapter->tx_ring[--tx]);
2421 adapter->tx_ring[tx] = NULL;
2422 }
2423
2424 while (rx) {
2425 kfree(adapter->rx_ring[--rx]);
2426 adapter->rx_ring[rx] = NULL;
2427 }
2428 return -ENOMEM;
2429 }
2430
2431 /**
2432 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2433 * @adapter: board private structure to initialize
2434 *
2435 * Attempt to configure the interrupts using the best available
2436 * capabilities of the hardware and the kernel.
2437 **/
2438 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2439 {
2440 struct net_device *netdev = adapter->netdev;
2441 int err;
2442 int vector, v_budget;
2443
2444 /* It's easy to be greedy for MSI-X vectors, but it really
2445 * doesn't do us much good if we have a lot more vectors
2446 * than CPU's. So let's be conservative and only ask for
2447 * (roughly) the same number of vectors as there are CPU's.
2448 * The default is to use pairs of vectors.
2449 */
2450 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2451 v_budget = min_t(int, v_budget, num_online_cpus());
2452 v_budget += NON_Q_VECTORS;
2453
2454 /* A failure in MSI-X entry allocation isn't fatal, but it does
2455 * mean we disable MSI-X capabilities of the adapter.
2456 */
2457 adapter->msix_entries = kcalloc(v_budget,
2458 sizeof(struct msix_entry), GFP_KERNEL);
2459 if (!adapter->msix_entries)
2460 return -ENOMEM;
2461
2462 for (vector = 0; vector < v_budget; vector++)
2463 adapter->msix_entries[vector].entry = vector;
2464
2465 err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2466 if (err)
2467 return err;
2468
2469 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2470 if (err)
2471 return err;
2472
2473 return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2474 }
2475
2476 /**
2477 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2478 * @adapter: board private structure to initialize
2479 *
2480 * We allocate one q_vector per queue interrupt. If allocation fails we
2481 * return -ENOMEM.
2482 **/
2483 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2484 {
2485 int q_idx, num_q_vectors;
2486 struct ixgbevf_q_vector *q_vector;
2487
2488 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2489
2490 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2491 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2492 if (!q_vector)
2493 goto err_out;
2494 q_vector->adapter = adapter;
2495 q_vector->v_idx = q_idx;
2496 netif_napi_add(adapter->netdev, &q_vector->napi,
2497 ixgbevf_poll, 64);
2498 adapter->q_vector[q_idx] = q_vector;
2499 }
2500
2501 return 0;
2502
2503 err_out:
2504 while (q_idx) {
2505 q_idx--;
2506 q_vector = adapter->q_vector[q_idx];
2507 #ifdef CONFIG_NET_RX_BUSY_POLL
2508 napi_hash_del(&q_vector->napi);
2509 #endif
2510 netif_napi_del(&q_vector->napi);
2511 kfree(q_vector);
2512 adapter->q_vector[q_idx] = NULL;
2513 }
2514 return -ENOMEM;
2515 }
2516
2517 /**
2518 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2519 * @adapter: board private structure to initialize
2520 *
2521 * This function frees the memory allocated to the q_vectors. In addition if
2522 * NAPI is enabled it will delete any references to the NAPI struct prior
2523 * to freeing the q_vector.
2524 **/
2525 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2526 {
2527 int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2528
2529 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2530 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2531
2532 adapter->q_vector[q_idx] = NULL;
2533 #ifdef CONFIG_NET_RX_BUSY_POLL
2534 napi_hash_del(&q_vector->napi);
2535 #endif
2536 netif_napi_del(&q_vector->napi);
2537 kfree(q_vector);
2538 }
2539 }
2540
2541 /**
2542 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2543 * @adapter: board private structure
2544 *
2545 **/
2546 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2547 {
2548 pci_disable_msix(adapter->pdev);
2549 kfree(adapter->msix_entries);
2550 adapter->msix_entries = NULL;
2551 }
2552
2553 /**
2554 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2555 * @adapter: board private structure to initialize
2556 *
2557 **/
2558 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2559 {
2560 int err;
2561
2562 /* Number of supported queues */
2563 ixgbevf_set_num_queues(adapter);
2564
2565 err = ixgbevf_set_interrupt_capability(adapter);
2566 if (err) {
2567 hw_dbg(&adapter->hw,
2568 "Unable to setup interrupt capabilities\n");
2569 goto err_set_interrupt;
2570 }
2571
2572 err = ixgbevf_alloc_q_vectors(adapter);
2573 if (err) {
2574 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2575 goto err_alloc_q_vectors;
2576 }
2577
2578 err = ixgbevf_alloc_queues(adapter);
2579 if (err) {
2580 pr_err("Unable to allocate memory for queues\n");
2581 goto err_alloc_queues;
2582 }
2583
2584 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n",
2585 (adapter->num_rx_queues > 1) ? "Enabled" :
2586 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2587
2588 set_bit(__IXGBEVF_DOWN, &adapter->state);
2589
2590 return 0;
2591 err_alloc_queues:
2592 ixgbevf_free_q_vectors(adapter);
2593 err_alloc_q_vectors:
2594 ixgbevf_reset_interrupt_capability(adapter);
2595 err_set_interrupt:
2596 return err;
2597 }
2598
2599 /**
2600 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2601 * @adapter: board private structure to clear interrupt scheme on
2602 *
2603 * We go through and clear interrupt specific resources and reset the structure
2604 * to pre-load conditions
2605 **/
2606 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2607 {
2608 int i;
2609
2610 for (i = 0; i < adapter->num_tx_queues; i++) {
2611 kfree(adapter->tx_ring[i]);
2612 adapter->tx_ring[i] = NULL;
2613 }
2614 for (i = 0; i < adapter->num_rx_queues; i++) {
2615 kfree(adapter->rx_ring[i]);
2616 adapter->rx_ring[i] = NULL;
2617 }
2618
2619 adapter->num_tx_queues = 0;
2620 adapter->num_rx_queues = 0;
2621
2622 ixgbevf_free_q_vectors(adapter);
2623 ixgbevf_reset_interrupt_capability(adapter);
2624 }
2625
2626 /**
2627 * ixgbevf_sw_init - Initialize general software structures
2628 * @adapter: board private structure to initialize
2629 *
2630 * ixgbevf_sw_init initializes the Adapter private data structure.
2631 * Fields are initialized based on PCI device information and
2632 * OS network device settings (MTU size).
2633 **/
2634 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2635 {
2636 struct ixgbe_hw *hw = &adapter->hw;
2637 struct pci_dev *pdev = adapter->pdev;
2638 struct net_device *netdev = adapter->netdev;
2639 int err;
2640
2641 /* PCI config space info */
2642 hw->vendor_id = pdev->vendor;
2643 hw->device_id = pdev->device;
2644 hw->revision_id = pdev->revision;
2645 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2646 hw->subsystem_device_id = pdev->subsystem_device;
2647
2648 hw->mbx.ops.init_params(hw);
2649
2650 /* assume legacy case in which PF would only give VF 2 queues */
2651 hw->mac.max_tx_queues = 2;
2652 hw->mac.max_rx_queues = 2;
2653
2654 /* lock to protect mailbox accesses */
2655 spin_lock_init(&adapter->mbx_lock);
2656
2657 err = hw->mac.ops.reset_hw(hw);
2658 if (err) {
2659 dev_info(&pdev->dev,
2660 "PF still in reset state. Is the PF interface up?\n");
2661 } else {
2662 err = hw->mac.ops.init_hw(hw);
2663 if (err) {
2664 pr_err("init_shared_code failed: %d\n", err);
2665 goto out;
2666 }
2667 ixgbevf_negotiate_api(adapter);
2668 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2669 if (err)
2670 dev_info(&pdev->dev, "Error reading MAC address\n");
2671 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2672 dev_info(&pdev->dev,
2673 "MAC address not assigned by administrator.\n");
2674 ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2675 }
2676
2677 if (!is_valid_ether_addr(netdev->dev_addr)) {
2678 dev_info(&pdev->dev, "Assigning random MAC address\n");
2679 eth_hw_addr_random(netdev);
2680 ether_addr_copy(hw->mac.addr, netdev->dev_addr);
2681 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
2682 }
2683
2684 /* Enable dynamic interrupt throttling rates */
2685 adapter->rx_itr_setting = 1;
2686 adapter->tx_itr_setting = 1;
2687
2688 /* set default ring sizes */
2689 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2690 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2691
2692 set_bit(__IXGBEVF_DOWN, &adapter->state);
2693 return 0;
2694
2695 out:
2696 return err;
2697 }
2698
2699 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
2700 { \
2701 u32 current_counter = IXGBE_READ_REG(hw, reg); \
2702 if (current_counter < last_counter) \
2703 counter += 0x100000000LL; \
2704 last_counter = current_counter; \
2705 counter &= 0xFFFFFFFF00000000LL; \
2706 counter |= current_counter; \
2707 }
2708
2709 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2710 { \
2711 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
2712 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
2713 u64 current_counter = (current_counter_msb << 32) | \
2714 current_counter_lsb; \
2715 if (current_counter < last_counter) \
2716 counter += 0x1000000000LL; \
2717 last_counter = current_counter; \
2718 counter &= 0xFFFFFFF000000000LL; \
2719 counter |= current_counter; \
2720 }
2721 /**
2722 * ixgbevf_update_stats - Update the board statistics counters.
2723 * @adapter: board private structure
2724 **/
2725 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2726 {
2727 struct ixgbe_hw *hw = &adapter->hw;
2728 int i;
2729
2730 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2731 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2732 return;
2733
2734 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2735 adapter->stats.vfgprc);
2736 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2737 adapter->stats.vfgptc);
2738 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2739 adapter->stats.last_vfgorc,
2740 adapter->stats.vfgorc);
2741 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2742 adapter->stats.last_vfgotc,
2743 adapter->stats.vfgotc);
2744 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2745 adapter->stats.vfmprc);
2746
2747 for (i = 0; i < adapter->num_rx_queues; i++) {
2748 adapter->hw_csum_rx_error +=
2749 adapter->rx_ring[i]->hw_csum_rx_error;
2750 adapter->rx_ring[i]->hw_csum_rx_error = 0;
2751 }
2752 }
2753
2754 /**
2755 * ixgbevf_service_timer - Timer Call-back
2756 * @data: pointer to adapter cast into an unsigned long
2757 **/
2758 static void ixgbevf_service_timer(unsigned long data)
2759 {
2760 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2761
2762 /* Reset the timer */
2763 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2764
2765 ixgbevf_service_event_schedule(adapter);
2766 }
2767
2768 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2769 {
2770 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
2771 return;
2772
2773 /* If we're already down or resetting, just bail */
2774 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2775 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2776 return;
2777
2778 adapter->tx_timeout_count++;
2779
2780 ixgbevf_reinit_locked(adapter);
2781 }
2782
2783 /**
2784 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2785 * @adapter: pointer to the device adapter structure
2786 *
2787 * This function serves two purposes. First it strobes the interrupt lines
2788 * in order to make certain interrupts are occurring. Secondly it sets the
2789 * bits needed to check for TX hangs. As a result we should immediately
2790 * determine if a hang has occurred.
2791 **/
2792 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2793 {
2794 struct ixgbe_hw *hw = &adapter->hw;
2795 u32 eics = 0;
2796 int i;
2797
2798 /* If we're down or resetting, just bail */
2799 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2800 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2801 return;
2802
2803 /* Force detection of hung controller */
2804 if (netif_carrier_ok(adapter->netdev)) {
2805 for (i = 0; i < adapter->num_tx_queues; i++)
2806 set_check_for_tx_hang(adapter->tx_ring[i]);
2807 }
2808
2809 /* get one bit for every active Tx/Rx interrupt vector */
2810 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2811 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2812
2813 if (qv->rx.ring || qv->tx.ring)
2814 eics |= BIT(i);
2815 }
2816
2817 /* Cause software interrupt to ensure rings are cleaned */
2818 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2819 }
2820
2821 /**
2822 * ixgbevf_watchdog_update_link - update the link status
2823 * @adapter: pointer to the device adapter structure
2824 **/
2825 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2826 {
2827 struct ixgbe_hw *hw = &adapter->hw;
2828 u32 link_speed = adapter->link_speed;
2829 bool link_up = adapter->link_up;
2830 s32 err;
2831
2832 spin_lock_bh(&adapter->mbx_lock);
2833
2834 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2835
2836 spin_unlock_bh(&adapter->mbx_lock);
2837
2838 /* if check for link returns error we will need to reset */
2839 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2840 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
2841 link_up = false;
2842 }
2843
2844 adapter->link_up = link_up;
2845 adapter->link_speed = link_speed;
2846 }
2847
2848 /**
2849 * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2850 * print link up message
2851 * @adapter: pointer to the device adapter structure
2852 **/
2853 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2854 {
2855 struct net_device *netdev = adapter->netdev;
2856
2857 /* only continue if link was previously down */
2858 if (netif_carrier_ok(netdev))
2859 return;
2860
2861 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2862 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2863 "10 Gbps" :
2864 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2865 "1 Gbps" :
2866 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2867 "100 Mbps" :
2868 "unknown speed");
2869
2870 netif_carrier_on(netdev);
2871 }
2872
2873 /**
2874 * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2875 * print link down message
2876 * @adapter: pointer to the adapter structure
2877 **/
2878 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2879 {
2880 struct net_device *netdev = adapter->netdev;
2881
2882 adapter->link_speed = 0;
2883
2884 /* only continue if link was up previously */
2885 if (!netif_carrier_ok(netdev))
2886 return;
2887
2888 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2889
2890 netif_carrier_off(netdev);
2891 }
2892
2893 /**
2894 * ixgbevf_watchdog_subtask - worker thread to bring link up
2895 * @work: pointer to work_struct containing our data
2896 **/
2897 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
2898 {
2899 /* if interface is down do nothing */
2900 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2901 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2902 return;
2903
2904 ixgbevf_watchdog_update_link(adapter);
2905
2906 if (adapter->link_up)
2907 ixgbevf_watchdog_link_is_up(adapter);
2908 else
2909 ixgbevf_watchdog_link_is_down(adapter);
2910
2911 ixgbevf_update_stats(adapter);
2912 }
2913
2914 /**
2915 * ixgbevf_service_task - manages and runs subtasks
2916 * @work: pointer to work_struct containing our data
2917 **/
2918 static void ixgbevf_service_task(struct work_struct *work)
2919 {
2920 struct ixgbevf_adapter *adapter = container_of(work,
2921 struct ixgbevf_adapter,
2922 service_task);
2923 struct ixgbe_hw *hw = &adapter->hw;
2924
2925 if (IXGBE_REMOVED(hw->hw_addr)) {
2926 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2927 rtnl_lock();
2928 ixgbevf_down(adapter);
2929 rtnl_unlock();
2930 }
2931 return;
2932 }
2933
2934 ixgbevf_queue_reset_subtask(adapter);
2935 ixgbevf_reset_subtask(adapter);
2936 ixgbevf_watchdog_subtask(adapter);
2937 ixgbevf_check_hang_subtask(adapter);
2938
2939 ixgbevf_service_event_complete(adapter);
2940 }
2941
2942 /**
2943 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2944 * @tx_ring: Tx descriptor ring for a specific queue
2945 *
2946 * Free all transmit software resources
2947 **/
2948 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
2949 {
2950 ixgbevf_clean_tx_ring(tx_ring);
2951
2952 vfree(tx_ring->tx_buffer_info);
2953 tx_ring->tx_buffer_info = NULL;
2954
2955 /* if not set, then don't free */
2956 if (!tx_ring->desc)
2957 return;
2958
2959 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
2960 tx_ring->dma);
2961
2962 tx_ring->desc = NULL;
2963 }
2964
2965 /**
2966 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2967 * @adapter: board private structure
2968 *
2969 * Free all transmit software resources
2970 **/
2971 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2972 {
2973 int i;
2974
2975 for (i = 0; i < adapter->num_tx_queues; i++)
2976 if (adapter->tx_ring[i]->desc)
2977 ixgbevf_free_tx_resources(adapter->tx_ring[i]);
2978 }
2979
2980 /**
2981 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2982 * @tx_ring: Tx descriptor ring (for a specific queue) to setup
2983 *
2984 * Return 0 on success, negative on failure
2985 **/
2986 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
2987 {
2988 int size;
2989
2990 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2991 tx_ring->tx_buffer_info = vzalloc(size);
2992 if (!tx_ring->tx_buffer_info)
2993 goto err;
2994
2995 /* round up to nearest 4K */
2996 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2997 tx_ring->size = ALIGN(tx_ring->size, 4096);
2998
2999 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3000 &tx_ring->dma, GFP_KERNEL);
3001 if (!tx_ring->desc)
3002 goto err;
3003
3004 return 0;
3005
3006 err:
3007 vfree(tx_ring->tx_buffer_info);
3008 tx_ring->tx_buffer_info = NULL;
3009 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3010 return -ENOMEM;
3011 }
3012
3013 /**
3014 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3015 * @adapter: board private structure
3016 *
3017 * If this function returns with an error, then it's possible one or
3018 * more of the rings is populated (while the rest are not). It is the
3019 * callers duty to clean those orphaned rings.
3020 *
3021 * Return 0 on success, negative on failure
3022 **/
3023 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3024 {
3025 int i, err = 0;
3026
3027 for (i = 0; i < adapter->num_tx_queues; i++) {
3028 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3029 if (!err)
3030 continue;
3031 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3032 break;
3033 }
3034
3035 return err;
3036 }
3037
3038 /**
3039 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3040 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3041 *
3042 * Returns 0 on success, negative on failure
3043 **/
3044 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3045 {
3046 int size;
3047
3048 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3049 rx_ring->rx_buffer_info = vzalloc(size);
3050 if (!rx_ring->rx_buffer_info)
3051 goto err;
3052
3053 /* Round up to nearest 4K */
3054 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3055 rx_ring->size = ALIGN(rx_ring->size, 4096);
3056
3057 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3058 &rx_ring->dma, GFP_KERNEL);
3059
3060 if (!rx_ring->desc)
3061 goto err;
3062
3063 return 0;
3064 err:
3065 vfree(rx_ring->rx_buffer_info);
3066 rx_ring->rx_buffer_info = NULL;
3067 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3068 return -ENOMEM;
3069 }
3070
3071 /**
3072 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3073 * @adapter: board private structure
3074 *
3075 * If this function returns with an error, then it's possible one or
3076 * more of the rings is populated (while the rest are not). It is the
3077 * callers duty to clean those orphaned rings.
3078 *
3079 * Return 0 on success, negative on failure
3080 **/
3081 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3082 {
3083 int i, err = 0;
3084
3085 for (i = 0; i < adapter->num_rx_queues; i++) {
3086 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3087 if (!err)
3088 continue;
3089 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3090 break;
3091 }
3092 return err;
3093 }
3094
3095 /**
3096 * ixgbevf_free_rx_resources - Free Rx Resources
3097 * @rx_ring: ring to clean the resources from
3098 *
3099 * Free all receive software resources
3100 **/
3101 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3102 {
3103 ixgbevf_clean_rx_ring(rx_ring);
3104
3105 vfree(rx_ring->rx_buffer_info);
3106 rx_ring->rx_buffer_info = NULL;
3107
3108 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3109 rx_ring->dma);
3110
3111 rx_ring->desc = NULL;
3112 }
3113
3114 /**
3115 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3116 * @adapter: board private structure
3117 *
3118 * Free all receive software resources
3119 **/
3120 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3121 {
3122 int i;
3123
3124 for (i = 0; i < adapter->num_rx_queues; i++)
3125 if (adapter->rx_ring[i]->desc)
3126 ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3127 }
3128
3129 /**
3130 * ixgbevf_open - Called when a network interface is made active
3131 * @netdev: network interface device structure
3132 *
3133 * Returns 0 on success, negative value on failure
3134 *
3135 * The open entry point is called when a network interface is made
3136 * active by the system (IFF_UP). At this point all resources needed
3137 * for transmit and receive operations are allocated, the interrupt
3138 * handler is registered with the OS, the watchdog timer is started,
3139 * and the stack is notified that the interface is ready.
3140 **/
3141 int ixgbevf_open(struct net_device *netdev)
3142 {
3143 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3144 struct ixgbe_hw *hw = &adapter->hw;
3145 int err;
3146
3147 /* A previous failure to open the device because of a lack of
3148 * available MSIX vector resources may have reset the number
3149 * of msix vectors variable to zero. The only way to recover
3150 * is to unload/reload the driver and hope that the system has
3151 * been able to recover some MSIX vector resources.
3152 */
3153 if (!adapter->num_msix_vectors)
3154 return -ENOMEM;
3155
3156 if (hw->adapter_stopped) {
3157 ixgbevf_reset(adapter);
3158 /* if adapter is still stopped then PF isn't up and
3159 * the VF can't start.
3160 */
3161 if (hw->adapter_stopped) {
3162 err = IXGBE_ERR_MBX;
3163 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3164 goto err_setup_reset;
3165 }
3166 }
3167
3168 /* disallow open during test */
3169 if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3170 return -EBUSY;
3171
3172 netif_carrier_off(netdev);
3173
3174 /* allocate transmit descriptors */
3175 err = ixgbevf_setup_all_tx_resources(adapter);
3176 if (err)
3177 goto err_setup_tx;
3178
3179 /* allocate receive descriptors */
3180 err = ixgbevf_setup_all_rx_resources(adapter);
3181 if (err)
3182 goto err_setup_rx;
3183
3184 ixgbevf_configure(adapter);
3185
3186 /* Map the Tx/Rx rings to the vectors we were allotted.
3187 * if request_irq will be called in this function map_rings
3188 * must be called *before* up_complete
3189 */
3190 ixgbevf_map_rings_to_vectors(adapter);
3191
3192 err = ixgbevf_request_irq(adapter);
3193 if (err)
3194 goto err_req_irq;
3195
3196 ixgbevf_up_complete(adapter);
3197
3198 return 0;
3199
3200 err_req_irq:
3201 ixgbevf_down(adapter);
3202 err_setup_rx:
3203 ixgbevf_free_all_rx_resources(adapter);
3204 err_setup_tx:
3205 ixgbevf_free_all_tx_resources(adapter);
3206 ixgbevf_reset(adapter);
3207
3208 err_setup_reset:
3209
3210 return err;
3211 }
3212
3213 /**
3214 * ixgbevf_close - Disables a network interface
3215 * @netdev: network interface device structure
3216 *
3217 * Returns 0, this is not allowed to fail
3218 *
3219 * The close entry point is called when an interface is de-activated
3220 * by the OS. The hardware is still under the drivers control, but
3221 * needs to be disabled. A global MAC reset is issued to stop the
3222 * hardware, and all transmit and receive resources are freed.
3223 **/
3224 int ixgbevf_close(struct net_device *netdev)
3225 {
3226 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3227
3228 ixgbevf_down(adapter);
3229 ixgbevf_free_irq(adapter);
3230
3231 ixgbevf_free_all_tx_resources(adapter);
3232 ixgbevf_free_all_rx_resources(adapter);
3233
3234 return 0;
3235 }
3236
3237 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3238 {
3239 struct net_device *dev = adapter->netdev;
3240
3241 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3242 &adapter->state))
3243 return;
3244
3245 /* if interface is down do nothing */
3246 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3247 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3248 return;
3249
3250 /* Hardware has to reinitialize queues and interrupts to
3251 * match packet buffer alignment. Unfortunately, the
3252 * hardware is not flexible enough to do this dynamically.
3253 */
3254 if (netif_running(dev))
3255 ixgbevf_close(dev);
3256
3257 ixgbevf_clear_interrupt_scheme(adapter);
3258 ixgbevf_init_interrupt_scheme(adapter);
3259
3260 if (netif_running(dev))
3261 ixgbevf_open(dev);
3262 }
3263
3264 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3265 u32 vlan_macip_lens, u32 type_tucmd,
3266 u32 mss_l4len_idx)
3267 {
3268 struct ixgbe_adv_tx_context_desc *context_desc;
3269 u16 i = tx_ring->next_to_use;
3270
3271 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3272
3273 i++;
3274 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3275
3276 /* set bits to identify this as an advanced context descriptor */
3277 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3278
3279 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
3280 context_desc->seqnum_seed = 0;
3281 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
3282 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3283 }
3284
3285 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3286 struct ixgbevf_tx_buffer *first,
3287 u8 *hdr_len)
3288 {
3289 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3290 struct sk_buff *skb = first->skb;
3291 union {
3292 struct iphdr *v4;
3293 struct ipv6hdr *v6;
3294 unsigned char *hdr;
3295 } ip;
3296 union {
3297 struct tcphdr *tcp;
3298 unsigned char *hdr;
3299 } l4;
3300 u32 paylen, l4_offset;
3301 int err;
3302
3303 if (skb->ip_summed != CHECKSUM_PARTIAL)
3304 return 0;
3305
3306 if (!skb_is_gso(skb))
3307 return 0;
3308
3309 err = skb_cow_head(skb, 0);
3310 if (err < 0)
3311 return err;
3312
3313 ip.hdr = skb_network_header(skb);
3314 l4.hdr = skb_checksum_start(skb);
3315
3316 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3317 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3318
3319 /* initialize outer IP header fields */
3320 if (ip.v4->version == 4) {
3321 /* IP header will have to cancel out any data that
3322 * is not a part of the outer IP header
3323 */
3324 ip.v4->check = csum_fold(csum_add(lco_csum(skb),
3325 csum_unfold(l4.tcp->check)));
3326 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3327
3328 ip.v4->tot_len = 0;
3329 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3330 IXGBE_TX_FLAGS_CSUM |
3331 IXGBE_TX_FLAGS_IPV4;
3332 } else {
3333 ip.v6->payload_len = 0;
3334 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3335 IXGBE_TX_FLAGS_CSUM;
3336 }
3337
3338 /* determine offset of inner transport header */
3339 l4_offset = l4.hdr - skb->data;
3340
3341 /* compute length of segmentation header */
3342 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3343
3344 /* remove payload length from inner checksum */
3345 paylen = skb->len - l4_offset;
3346 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3347
3348 /* update gso size and bytecount with header size */
3349 first->gso_segs = skb_shinfo(skb)->gso_segs;
3350 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3351
3352 /* mss_l4len_id: use 1 as index for TSO */
3353 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3354 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3355 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3356
3357 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3358 vlan_macip_lens = l4.hdr - ip.hdr;
3359 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3360 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3361
3362 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3363 type_tucmd, mss_l4len_idx);
3364
3365 return 1;
3366 }
3367
3368 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb)
3369 {
3370 unsigned int offset = 0;
3371
3372 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
3373
3374 return offset == skb_checksum_start_offset(skb);
3375 }
3376
3377 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3378 struct ixgbevf_tx_buffer *first)
3379 {
3380 struct sk_buff *skb = first->skb;
3381 u32 vlan_macip_lens = 0;
3382 u32 type_tucmd = 0;
3383
3384 if (skb->ip_summed != CHECKSUM_PARTIAL)
3385 goto no_csum;
3386
3387 switch (skb->csum_offset) {
3388 case offsetof(struct tcphdr, check):
3389 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3390 /* fall through */
3391 case offsetof(struct udphdr, check):
3392 break;
3393 case offsetof(struct sctphdr, checksum):
3394 /* validate that this is actually an SCTP request */
3395 if (((first->protocol == htons(ETH_P_IP)) &&
3396 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
3397 ((first->protocol == htons(ETH_P_IPV6)) &&
3398 ixgbevf_ipv6_csum_is_sctp(skb))) {
3399 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3400 break;
3401 }
3402 /* fall through */
3403 default:
3404 skb_checksum_help(skb);
3405 goto no_csum;
3406 }
3407 /* update TX checksum flag */
3408 first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3409 vlan_macip_lens = skb_checksum_start_offset(skb) -
3410 skb_network_offset(skb);
3411 no_csum:
3412 /* vlan_macip_lens: MACLEN, VLAN tag */
3413 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3414 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3415
3416 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
3417 }
3418
3419 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3420 {
3421 /* set type for advanced descriptor with frame checksum insertion */
3422 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3423 IXGBE_ADVTXD_DCMD_IFCS |
3424 IXGBE_ADVTXD_DCMD_DEXT);
3425
3426 /* set HW VLAN bit if VLAN is present */
3427 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3428 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3429
3430 /* set segmentation enable bits for TSO/FSO */
3431 if (tx_flags & IXGBE_TX_FLAGS_TSO)
3432 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3433
3434 return cmd_type;
3435 }
3436
3437 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3438 u32 tx_flags, unsigned int paylen)
3439 {
3440 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3441
3442 /* enable L4 checksum for TSO and TX checksum offload */
3443 if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3444 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3445
3446 /* enble IPv4 checksum for TSO */
3447 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3448 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3449
3450 /* use index 1 context for TSO/FSO/FCOE */
3451 if (tx_flags & IXGBE_TX_FLAGS_TSO)
3452 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3453
3454 /* Check Context must be set if Tx switch is enabled, which it
3455 * always is for case where virtual functions are running
3456 */
3457 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3458
3459 tx_desc->read.olinfo_status = olinfo_status;
3460 }
3461
3462 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3463 struct ixgbevf_tx_buffer *first,
3464 const u8 hdr_len)
3465 {
3466 dma_addr_t dma;
3467 struct sk_buff *skb = first->skb;
3468 struct ixgbevf_tx_buffer *tx_buffer;
3469 union ixgbe_adv_tx_desc *tx_desc;
3470 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
3471 unsigned int data_len = skb->data_len;
3472 unsigned int size = skb_headlen(skb);
3473 unsigned int paylen = skb->len - hdr_len;
3474 u32 tx_flags = first->tx_flags;
3475 __le32 cmd_type;
3476 u16 i = tx_ring->next_to_use;
3477
3478 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3479
3480 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen);
3481 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3482
3483 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3484 if (dma_mapping_error(tx_ring->dev, dma))
3485 goto dma_error;
3486
3487 /* record length, and DMA address */
3488 dma_unmap_len_set(first, len, size);
3489 dma_unmap_addr_set(first, dma, dma);
3490
3491 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3492
3493 for (;;) {
3494 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3495 tx_desc->read.cmd_type_len =
3496 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3497
3498 i++;
3499 tx_desc++;
3500 if (i == tx_ring->count) {
3501 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3502 i = 0;
3503 }
3504
3505 dma += IXGBE_MAX_DATA_PER_TXD;
3506 size -= IXGBE_MAX_DATA_PER_TXD;
3507
3508 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3509 tx_desc->read.olinfo_status = 0;
3510 }
3511
3512 if (likely(!data_len))
3513 break;
3514
3515 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3516
3517 i++;
3518 tx_desc++;
3519 if (i == tx_ring->count) {
3520 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3521 i = 0;
3522 }
3523
3524 size = skb_frag_size(frag);
3525 data_len -= size;
3526
3527 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3528 DMA_TO_DEVICE);
3529 if (dma_mapping_error(tx_ring->dev, dma))
3530 goto dma_error;
3531
3532 tx_buffer = &tx_ring->tx_buffer_info[i];
3533 dma_unmap_len_set(tx_buffer, len, size);
3534 dma_unmap_addr_set(tx_buffer, dma, dma);
3535
3536 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3537 tx_desc->read.olinfo_status = 0;
3538
3539 frag++;
3540 }
3541
3542 /* write last descriptor with RS and EOP bits */
3543 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3544 tx_desc->read.cmd_type_len = cmd_type;
3545
3546 /* set the timestamp */
3547 first->time_stamp = jiffies;
3548
3549 /* Force memory writes to complete before letting h/w know there
3550 * are new descriptors to fetch. (Only applicable for weak-ordered
3551 * memory model archs, such as IA-64).
3552 *
3553 * We also need this memory barrier (wmb) to make certain all of the
3554 * status bits have been updated before next_to_watch is written.
3555 */
3556 wmb();
3557
3558 /* set next_to_watch value indicating a packet is present */
3559 first->next_to_watch = tx_desc;
3560
3561 i++;
3562 if (i == tx_ring->count)
3563 i = 0;
3564
3565 tx_ring->next_to_use = i;
3566
3567 /* notify HW of packet */
3568 ixgbevf_write_tail(tx_ring, i);
3569
3570 return;
3571 dma_error:
3572 dev_err(tx_ring->dev, "TX DMA map failed\n");
3573
3574 /* clear dma mappings for failed tx_buffer_info map */
3575 for (;;) {
3576 tx_buffer = &tx_ring->tx_buffer_info[i];
3577 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer);
3578 if (tx_buffer == first)
3579 break;
3580 if (i == 0)
3581 i = tx_ring->count;
3582 i--;
3583 }
3584
3585 tx_ring->next_to_use = i;
3586 }
3587
3588 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3589 {
3590 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3591 /* Herbert's original patch had:
3592 * smp_mb__after_netif_stop_queue();
3593 * but since that doesn't exist yet, just open code it.
3594 */
3595 smp_mb();
3596
3597 /* We need to check again in a case another CPU has just
3598 * made room available.
3599 */
3600 if (likely(ixgbevf_desc_unused(tx_ring) < size))
3601 return -EBUSY;
3602
3603 /* A reprieve! - use start_queue because it doesn't call schedule */
3604 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3605 ++tx_ring->tx_stats.restart_queue;
3606
3607 return 0;
3608 }
3609
3610 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3611 {
3612 if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3613 return 0;
3614 return __ixgbevf_maybe_stop_tx(tx_ring, size);
3615 }
3616
3617 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3618 {
3619 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3620 struct ixgbevf_tx_buffer *first;
3621 struct ixgbevf_ring *tx_ring;
3622 int tso;
3623 u32 tx_flags = 0;
3624 u16 count = TXD_USE_COUNT(skb_headlen(skb));
3625 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3626 unsigned short f;
3627 #endif
3628 u8 hdr_len = 0;
3629 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3630
3631 if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3632 dev_kfree_skb_any(skb);
3633 return NETDEV_TX_OK;
3634 }
3635
3636 tx_ring = adapter->tx_ring[skb->queue_mapping];
3637
3638 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3639 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3640 * + 2 desc gap to keep tail from touching head,
3641 * + 1 desc for context descriptor,
3642 * otherwise try next time
3643 */
3644 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3645 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3646 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3647 #else
3648 count += skb_shinfo(skb)->nr_frags;
3649 #endif
3650 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3651 tx_ring->tx_stats.tx_busy++;
3652 return NETDEV_TX_BUSY;
3653 }
3654
3655 /* record the location of the first descriptor for this packet */
3656 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3657 first->skb = skb;
3658 first->bytecount = skb->len;
3659 first->gso_segs = 1;
3660
3661 if (skb_vlan_tag_present(skb)) {
3662 tx_flags |= skb_vlan_tag_get(skb);
3663 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3664 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3665 }
3666
3667 /* record initial flags and protocol */
3668 first->tx_flags = tx_flags;
3669 first->protocol = vlan_get_protocol(skb);
3670
3671 tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3672 if (tso < 0)
3673 goto out_drop;
3674 else if (!tso)
3675 ixgbevf_tx_csum(tx_ring, first);
3676
3677 ixgbevf_tx_map(tx_ring, first, hdr_len);
3678
3679 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3680
3681 return NETDEV_TX_OK;
3682
3683 out_drop:
3684 dev_kfree_skb_any(first->skb);
3685 first->skb = NULL;
3686
3687 return NETDEV_TX_OK;
3688 }
3689
3690 /**
3691 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3692 * @netdev: network interface device structure
3693 * @p: pointer to an address structure
3694 *
3695 * Returns 0 on success, negative on failure
3696 **/
3697 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3698 {
3699 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3700 struct ixgbe_hw *hw = &adapter->hw;
3701 struct sockaddr *addr = p;
3702 int err;
3703
3704 if (!is_valid_ether_addr(addr->sa_data))
3705 return -EADDRNOTAVAIL;
3706
3707 spin_lock_bh(&adapter->mbx_lock);
3708
3709 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
3710
3711 spin_unlock_bh(&adapter->mbx_lock);
3712
3713 if (err)
3714 return -EPERM;
3715
3716 ether_addr_copy(hw->mac.addr, addr->sa_data);
3717 ether_addr_copy(netdev->dev_addr, addr->sa_data);
3718
3719 return 0;
3720 }
3721
3722 /**
3723 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3724 * @netdev: network interface device structure
3725 * @new_mtu: new value for maximum frame size
3726 *
3727 * Returns 0 on success, negative on failure
3728 **/
3729 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3730 {
3731 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3732 struct ixgbe_hw *hw = &adapter->hw;
3733 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3734 int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3735
3736 switch (adapter->hw.api_version) {
3737 case ixgbe_mbox_api_11:
3738 case ixgbe_mbox_api_12:
3739 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3740 break;
3741 default:
3742 if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
3743 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3744 break;
3745 }
3746
3747 /* MTU < 68 is an error and causes problems on some kernels */
3748 if ((new_mtu < 68) || (max_frame > max_possible_frame))
3749 return -EINVAL;
3750
3751 hw_dbg(hw, "changing MTU from %d to %d\n",
3752 netdev->mtu, new_mtu);
3753 /* must set new MTU before calling down or up */
3754 netdev->mtu = new_mtu;
3755
3756 /* notify the PF of our intent to use this size of frame */
3757 hw->mac.ops.set_rlpml(hw, max_frame);
3758
3759 return 0;
3760 }
3761
3762 #ifdef CONFIG_NET_POLL_CONTROLLER
3763 /* Polling 'interrupt' - used by things like netconsole to send skbs
3764 * without having to re-enable interrupts. It's not called while
3765 * the interrupt routine is executing.
3766 */
3767 static void ixgbevf_netpoll(struct net_device *netdev)
3768 {
3769 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3770 int i;
3771
3772 /* if interface is down do nothing */
3773 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3774 return;
3775 for (i = 0; i < adapter->num_rx_queues; i++)
3776 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3777 }
3778 #endif /* CONFIG_NET_POLL_CONTROLLER */
3779
3780 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3781 {
3782 struct net_device *netdev = pci_get_drvdata(pdev);
3783 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3784 #ifdef CONFIG_PM
3785 int retval = 0;
3786 #endif
3787
3788 netif_device_detach(netdev);
3789
3790 if (netif_running(netdev)) {
3791 rtnl_lock();
3792 ixgbevf_down(adapter);
3793 ixgbevf_free_irq(adapter);
3794 ixgbevf_free_all_tx_resources(adapter);
3795 ixgbevf_free_all_rx_resources(adapter);
3796 rtnl_unlock();
3797 }
3798
3799 ixgbevf_clear_interrupt_scheme(adapter);
3800
3801 #ifdef CONFIG_PM
3802 retval = pci_save_state(pdev);
3803 if (retval)
3804 return retval;
3805
3806 #endif
3807 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3808 pci_disable_device(pdev);
3809
3810 return 0;
3811 }
3812
3813 #ifdef CONFIG_PM
3814 static int ixgbevf_resume(struct pci_dev *pdev)
3815 {
3816 struct net_device *netdev = pci_get_drvdata(pdev);
3817 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3818 u32 err;
3819
3820 pci_restore_state(pdev);
3821 /* pci_restore_state clears dev->state_saved so call
3822 * pci_save_state to restore it.
3823 */
3824 pci_save_state(pdev);
3825
3826 err = pci_enable_device_mem(pdev);
3827 if (err) {
3828 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3829 return err;
3830 }
3831 smp_mb__before_atomic();
3832 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3833 pci_set_master(pdev);
3834
3835 ixgbevf_reset(adapter);
3836
3837 rtnl_lock();
3838 err = ixgbevf_init_interrupt_scheme(adapter);
3839 rtnl_unlock();
3840 if (err) {
3841 dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3842 return err;
3843 }
3844
3845 if (netif_running(netdev)) {
3846 err = ixgbevf_open(netdev);
3847 if (err)
3848 return err;
3849 }
3850
3851 netif_device_attach(netdev);
3852
3853 return err;
3854 }
3855
3856 #endif /* CONFIG_PM */
3857 static void ixgbevf_shutdown(struct pci_dev *pdev)
3858 {
3859 ixgbevf_suspend(pdev, PMSG_SUSPEND);
3860 }
3861
3862 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3863 struct rtnl_link_stats64 *stats)
3864 {
3865 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3866 unsigned int start;
3867 u64 bytes, packets;
3868 const struct ixgbevf_ring *ring;
3869 int i;
3870
3871 ixgbevf_update_stats(adapter);
3872
3873 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3874
3875 for (i = 0; i < adapter->num_rx_queues; i++) {
3876 ring = adapter->rx_ring[i];
3877 do {
3878 start = u64_stats_fetch_begin_irq(&ring->syncp);
3879 bytes = ring->stats.bytes;
3880 packets = ring->stats.packets;
3881 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3882 stats->rx_bytes += bytes;
3883 stats->rx_packets += packets;
3884 }
3885
3886 for (i = 0; i < adapter->num_tx_queues; i++) {
3887 ring = adapter->tx_ring[i];
3888 do {
3889 start = u64_stats_fetch_begin_irq(&ring->syncp);
3890 bytes = ring->stats.bytes;
3891 packets = ring->stats.packets;
3892 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3893 stats->tx_bytes += bytes;
3894 stats->tx_packets += packets;
3895 }
3896
3897 return stats;
3898 }
3899
3900 #define IXGBEVF_MAX_MAC_HDR_LEN 127
3901 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511
3902
3903 static netdev_features_t
3904 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
3905 netdev_features_t features)
3906 {
3907 unsigned int network_hdr_len, mac_hdr_len;
3908
3909 /* Make certain the headers can be described by a context descriptor */
3910 mac_hdr_len = skb_network_header(skb) - skb->data;
3911 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
3912 return features & ~(NETIF_F_HW_CSUM |
3913 NETIF_F_SCTP_CRC |
3914 NETIF_F_HW_VLAN_CTAG_TX |
3915 NETIF_F_TSO |
3916 NETIF_F_TSO6);
3917
3918 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3919 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN))
3920 return features & ~(NETIF_F_HW_CSUM |
3921 NETIF_F_SCTP_CRC |
3922 NETIF_F_TSO |
3923 NETIF_F_TSO6);
3924
3925 /* We can only support IPV4 TSO in tunnels if we can mangle the
3926 * inner IP ID field, so strip TSO if MANGLEID is not supported.
3927 */
3928 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3929 features &= ~NETIF_F_TSO;
3930
3931 return features;
3932 }
3933
3934 static const struct net_device_ops ixgbevf_netdev_ops = {
3935 .ndo_open = ixgbevf_open,
3936 .ndo_stop = ixgbevf_close,
3937 .ndo_start_xmit = ixgbevf_xmit_frame,
3938 .ndo_set_rx_mode = ixgbevf_set_rx_mode,
3939 .ndo_get_stats64 = ixgbevf_get_stats,
3940 .ndo_validate_addr = eth_validate_addr,
3941 .ndo_set_mac_address = ixgbevf_set_mac,
3942 .ndo_change_mtu = ixgbevf_change_mtu,
3943 .ndo_tx_timeout = ixgbevf_tx_timeout,
3944 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid,
3945 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid,
3946 #ifdef CONFIG_NET_RX_BUSY_POLL
3947 .ndo_busy_poll = ixgbevf_busy_poll_recv,
3948 #endif
3949 #ifdef CONFIG_NET_POLL_CONTROLLER
3950 .ndo_poll_controller = ixgbevf_netpoll,
3951 #endif
3952 .ndo_features_check = ixgbevf_features_check,
3953 };
3954
3955 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3956 {
3957 dev->netdev_ops = &ixgbevf_netdev_ops;
3958 ixgbevf_set_ethtool_ops(dev);
3959 dev->watchdog_timeo = 5 * HZ;
3960 }
3961
3962 /**
3963 * ixgbevf_probe - Device Initialization Routine
3964 * @pdev: PCI device information struct
3965 * @ent: entry in ixgbevf_pci_tbl
3966 *
3967 * Returns 0 on success, negative on failure
3968 *
3969 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3970 * The OS initialization, configuring of the adapter private structure,
3971 * and a hardware reset occur.
3972 **/
3973 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3974 {
3975 struct net_device *netdev;
3976 struct ixgbevf_adapter *adapter = NULL;
3977 struct ixgbe_hw *hw = NULL;
3978 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3979 int err, pci_using_dac;
3980 bool disable_dev = false;
3981
3982 err = pci_enable_device(pdev);
3983 if (err)
3984 return err;
3985
3986 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3987 pci_using_dac = 1;
3988 } else {
3989 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3990 if (err) {
3991 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
3992 goto err_dma;
3993 }
3994 pci_using_dac = 0;
3995 }
3996
3997 err = pci_request_regions(pdev, ixgbevf_driver_name);
3998 if (err) {
3999 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4000 goto err_pci_reg;
4001 }
4002
4003 pci_set_master(pdev);
4004
4005 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4006 MAX_TX_QUEUES);
4007 if (!netdev) {
4008 err = -ENOMEM;
4009 goto err_alloc_etherdev;
4010 }
4011
4012 SET_NETDEV_DEV(netdev, &pdev->dev);
4013
4014 adapter = netdev_priv(netdev);
4015
4016 adapter->netdev = netdev;
4017 adapter->pdev = pdev;
4018 hw = &adapter->hw;
4019 hw->back = adapter;
4020 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4021
4022 /* call save state here in standalone driver because it relies on
4023 * adapter struct to exist, and needs to call netdev_priv
4024 */
4025 pci_save_state(pdev);
4026
4027 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4028 pci_resource_len(pdev, 0));
4029 adapter->io_addr = hw->hw_addr;
4030 if (!hw->hw_addr) {
4031 err = -EIO;
4032 goto err_ioremap;
4033 }
4034
4035 ixgbevf_assign_netdev_ops(netdev);
4036
4037 /* Setup HW API */
4038 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4039 hw->mac.type = ii->mac;
4040
4041 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4042 sizeof(struct ixgbe_mbx_operations));
4043
4044 /* setup the private structure */
4045 err = ixgbevf_sw_init(adapter);
4046 if (err)
4047 goto err_sw_init;
4048
4049 /* The HW MAC address was set and/or determined in sw_init */
4050 if (!is_valid_ether_addr(netdev->dev_addr)) {
4051 pr_err("invalid MAC address\n");
4052 err = -EIO;
4053 goto err_sw_init;
4054 }
4055
4056 netdev->hw_features = NETIF_F_SG |
4057 NETIF_F_TSO |
4058 NETIF_F_TSO6 |
4059 NETIF_F_RXCSUM |
4060 NETIF_F_HW_CSUM |
4061 NETIF_F_SCTP_CRC;
4062
4063 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4064 NETIF_F_GSO_GRE_CSUM | \
4065 NETIF_F_GSO_IPXIP4 | \
4066 NETIF_F_GSO_UDP_TUNNEL | \
4067 NETIF_F_GSO_UDP_TUNNEL_CSUM)
4068
4069 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4070 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4071 IXGBEVF_GSO_PARTIAL_FEATURES;
4072
4073 netdev->features = netdev->hw_features;
4074
4075 if (pci_using_dac)
4076 netdev->features |= NETIF_F_HIGHDMA;
4077
4078 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4079 netdev->mpls_features |= NETIF_F_HW_CSUM;
4080 netdev->hw_enc_features |= netdev->vlan_features;
4081
4082 /* set this bit last since it cannot be part of vlan_features */
4083 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4084 NETIF_F_HW_VLAN_CTAG_RX |
4085 NETIF_F_HW_VLAN_CTAG_TX;
4086
4087 netdev->priv_flags |= IFF_UNICAST_FLT;
4088
4089 if (IXGBE_REMOVED(hw->hw_addr)) {
4090 err = -EIO;
4091 goto err_sw_init;
4092 }
4093
4094 setup_timer(&adapter->service_timer, &ixgbevf_service_timer,
4095 (unsigned long)adapter);
4096
4097 INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4098 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4099 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4100
4101 err = ixgbevf_init_interrupt_scheme(adapter);
4102 if (err)
4103 goto err_sw_init;
4104
4105 strcpy(netdev->name, "eth%d");
4106
4107 err = register_netdev(netdev);
4108 if (err)
4109 goto err_register;
4110
4111 pci_set_drvdata(pdev, netdev);
4112 netif_carrier_off(netdev);
4113
4114 ixgbevf_init_last_counter_stats(adapter);
4115
4116 /* print the VF info */
4117 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4118 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4119
4120 switch (hw->mac.type) {
4121 case ixgbe_mac_X550_vf:
4122 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4123 break;
4124 case ixgbe_mac_X540_vf:
4125 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4126 break;
4127 case ixgbe_mac_82599_vf:
4128 default:
4129 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4130 break;
4131 }
4132
4133 return 0;
4134
4135 err_register:
4136 ixgbevf_clear_interrupt_scheme(adapter);
4137 err_sw_init:
4138 ixgbevf_reset_interrupt_capability(adapter);
4139 iounmap(adapter->io_addr);
4140 err_ioremap:
4141 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4142 free_netdev(netdev);
4143 err_alloc_etherdev:
4144 pci_release_regions(pdev);
4145 err_pci_reg:
4146 err_dma:
4147 if (!adapter || disable_dev)
4148 pci_disable_device(pdev);
4149 return err;
4150 }
4151
4152 /**
4153 * ixgbevf_remove - Device Removal Routine
4154 * @pdev: PCI device information struct
4155 *
4156 * ixgbevf_remove is called by the PCI subsystem to alert the driver
4157 * that it should release a PCI device. The could be caused by a
4158 * Hot-Plug event, or because the driver is going to be removed from
4159 * memory.
4160 **/
4161 static void ixgbevf_remove(struct pci_dev *pdev)
4162 {
4163 struct net_device *netdev = pci_get_drvdata(pdev);
4164 struct ixgbevf_adapter *adapter;
4165 bool disable_dev;
4166
4167 if (!netdev)
4168 return;
4169
4170 adapter = netdev_priv(netdev);
4171
4172 set_bit(__IXGBEVF_REMOVING, &adapter->state);
4173 cancel_work_sync(&adapter->service_task);
4174
4175 if (netdev->reg_state == NETREG_REGISTERED)
4176 unregister_netdev(netdev);
4177
4178 ixgbevf_clear_interrupt_scheme(adapter);
4179 ixgbevf_reset_interrupt_capability(adapter);
4180
4181 iounmap(adapter->io_addr);
4182 pci_release_regions(pdev);
4183
4184 hw_dbg(&adapter->hw, "Remove complete\n");
4185
4186 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4187 free_netdev(netdev);
4188
4189 if (disable_dev)
4190 pci_disable_device(pdev);
4191 }
4192
4193 /**
4194 * ixgbevf_io_error_detected - called when PCI error is detected
4195 * @pdev: Pointer to PCI device
4196 * @state: The current pci connection state
4197 *
4198 * This function is called after a PCI bus error affecting
4199 * this device has been detected.
4200 **/
4201 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4202 pci_channel_state_t state)
4203 {
4204 struct net_device *netdev = pci_get_drvdata(pdev);
4205 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4206
4207 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4208 return PCI_ERS_RESULT_DISCONNECT;
4209
4210 rtnl_lock();
4211 netif_device_detach(netdev);
4212
4213 if (state == pci_channel_io_perm_failure) {
4214 rtnl_unlock();
4215 return PCI_ERS_RESULT_DISCONNECT;
4216 }
4217
4218 if (netif_running(netdev))
4219 ixgbevf_down(adapter);
4220
4221 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4222 pci_disable_device(pdev);
4223 rtnl_unlock();
4224
4225 /* Request a slot slot reset. */
4226 return PCI_ERS_RESULT_NEED_RESET;
4227 }
4228
4229 /**
4230 * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4231 * @pdev: Pointer to PCI device
4232 *
4233 * Restart the card from scratch, as if from a cold-boot. Implementation
4234 * resembles the first-half of the ixgbevf_resume routine.
4235 **/
4236 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4237 {
4238 struct net_device *netdev = pci_get_drvdata(pdev);
4239 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4240
4241 if (pci_enable_device_mem(pdev)) {
4242 dev_err(&pdev->dev,
4243 "Cannot re-enable PCI device after reset.\n");
4244 return PCI_ERS_RESULT_DISCONNECT;
4245 }
4246
4247 smp_mb__before_atomic();
4248 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4249 pci_set_master(pdev);
4250
4251 ixgbevf_reset(adapter);
4252
4253 return PCI_ERS_RESULT_RECOVERED;
4254 }
4255
4256 /**
4257 * ixgbevf_io_resume - called when traffic can start flowing again.
4258 * @pdev: Pointer to PCI device
4259 *
4260 * This callback is called when the error recovery driver tells us that
4261 * its OK to resume normal operation. Implementation resembles the
4262 * second-half of the ixgbevf_resume routine.
4263 **/
4264 static void ixgbevf_io_resume(struct pci_dev *pdev)
4265 {
4266 struct net_device *netdev = pci_get_drvdata(pdev);
4267 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4268
4269 if (netif_running(netdev))
4270 ixgbevf_up(adapter);
4271
4272 netif_device_attach(netdev);
4273 }
4274
4275 /* PCI Error Recovery (ERS) */
4276 static const struct pci_error_handlers ixgbevf_err_handler = {
4277 .error_detected = ixgbevf_io_error_detected,
4278 .slot_reset = ixgbevf_io_slot_reset,
4279 .resume = ixgbevf_io_resume,
4280 };
4281
4282 static struct pci_driver ixgbevf_driver = {
4283 .name = ixgbevf_driver_name,
4284 .id_table = ixgbevf_pci_tbl,
4285 .probe = ixgbevf_probe,
4286 .remove = ixgbevf_remove,
4287 #ifdef CONFIG_PM
4288 /* Power Management Hooks */
4289 .suspend = ixgbevf_suspend,
4290 .resume = ixgbevf_resume,
4291 #endif
4292 .shutdown = ixgbevf_shutdown,
4293 .err_handler = &ixgbevf_err_handler
4294 };
4295
4296 /**
4297 * ixgbevf_init_module - Driver Registration Routine
4298 *
4299 * ixgbevf_init_module is the first routine called when the driver is
4300 * loaded. All it does is register with the PCI subsystem.
4301 **/
4302 static int __init ixgbevf_init_module(void)
4303 {
4304 pr_info("%s - version %s\n", ixgbevf_driver_string,
4305 ixgbevf_driver_version);
4306
4307 pr_info("%s\n", ixgbevf_copyright);
4308 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4309 if (!ixgbevf_wq) {
4310 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4311 return -ENOMEM;
4312 }
4313
4314 return pci_register_driver(&ixgbevf_driver);
4315 }
4316
4317 module_init(ixgbevf_init_module);
4318
4319 /**
4320 * ixgbevf_exit_module - Driver Exit Cleanup Routine
4321 *
4322 * ixgbevf_exit_module is called just before the driver is removed
4323 * from memory.
4324 **/
4325 static void __exit ixgbevf_exit_module(void)
4326 {
4327 pci_unregister_driver(&ixgbevf_driver);
4328 if (ixgbevf_wq) {
4329 destroy_workqueue(ixgbevf_wq);
4330 ixgbevf_wq = NULL;
4331 }
4332 }
4333
4334 #ifdef DEBUG
4335 /**
4336 * ixgbevf_get_hw_dev_name - return device name string
4337 * used by hardware layer to print debugging information
4338 **/
4339 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4340 {
4341 struct ixgbevf_adapter *adapter = hw->back;
4342
4343 return adapter->netdev->name;
4344 }
4345
4346 #endif
4347 module_exit(ixgbevf_exit_module);
4348
4349 /* ixgbevf_main.c */
This page took 0.184524 seconds and 4 git commands to generate.