net: mvneta: add clk support
[deliverable/linux.git] / drivers / net / ethernet / marvell / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/version.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/platform_device.h>
19 #include <linux/skbuff.h>
20 #include <linux/inetdevice.h>
21 #include <linux/mbus.h>
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26 #include <linux/of.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/of_address.h>
31 #include <linux/phy.h>
32 #include <linux/clk.h>
33
34 /* Registers */
35 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
36 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
37 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
38 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
39 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
40 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
41 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
42 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
43 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
44 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
45 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
46 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
47 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
48 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
49 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
50 #define MVNETA_PORT_RX_RESET 0x1cc0
51 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
52 #define MVNETA_PHY_ADDR 0x2000
53 #define MVNETA_PHY_ADDR_MASK 0x1f
54 #define MVNETA_MBUS_RETRY 0x2010
55 #define MVNETA_UNIT_INTR_CAUSE 0x2080
56 #define MVNETA_UNIT_CONTROL 0x20B0
57 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
58 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
59 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
60 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
61 #define MVNETA_BASE_ADDR_ENABLE 0x2290
62 #define MVNETA_PORT_CONFIG 0x2400
63 #define MVNETA_UNI_PROMISC_MODE BIT(0)
64 #define MVNETA_DEF_RXQ(q) ((q) << 1)
65 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
66 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
67 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
68 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
69 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
70 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
71 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
72 MVNETA_DEF_RXQ_ARP(q) | \
73 MVNETA_DEF_RXQ_TCP(q) | \
74 MVNETA_DEF_RXQ_UDP(q) | \
75 MVNETA_DEF_RXQ_BPDU(q) | \
76 MVNETA_TX_UNSET_ERR_SUM | \
77 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
78 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
79 #define MVNETA_MAC_ADDR_LOW 0x2414
80 #define MVNETA_MAC_ADDR_HIGH 0x2418
81 #define MVNETA_SDMA_CONFIG 0x241c
82 #define MVNETA_SDMA_BRST_SIZE_16 4
83 #define MVNETA_NO_DESC_SWAP 0x0
84 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
85 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
86 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
87 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
88 #define MVNETA_PORT_STATUS 0x2444
89 #define MVNETA_TX_IN_PRGRS BIT(1)
90 #define MVNETA_TX_FIFO_EMPTY BIT(8)
91 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
92 #define MVNETA_TYPE_PRIO 0x24bc
93 #define MVNETA_FORCE_UNI BIT(21)
94 #define MVNETA_TXQ_CMD_1 0x24e4
95 #define MVNETA_TXQ_CMD 0x2448
96 #define MVNETA_TXQ_DISABLE_SHIFT 8
97 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
98 #define MVNETA_ACC_MODE 0x2500
99 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
100 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
101 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
102 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
103 #define MVNETA_INTR_NEW_CAUSE 0x25a0
104 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
105 #define MVNETA_INTR_NEW_MASK 0x25a4
106 #define MVNETA_INTR_OLD_CAUSE 0x25a8
107 #define MVNETA_INTR_OLD_MASK 0x25ac
108 #define MVNETA_INTR_MISC_CAUSE 0x25b0
109 #define MVNETA_INTR_MISC_MASK 0x25b4
110 #define MVNETA_INTR_ENABLE 0x25b8
111 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
112 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000
113 #define MVNETA_RXQ_CMD 0x2680
114 #define MVNETA_RXQ_DISABLE_SHIFT 8
115 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
116 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
117 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
118 #define MVNETA_GMAC_CTRL_0 0x2c00
119 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
120 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
121 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
122 #define MVNETA_GMAC_CTRL_2 0x2c08
123 #define MVNETA_GMAC2_PSC_ENABLE BIT(3)
124 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
125 #define MVNETA_GMAC2_PORT_RESET BIT(6)
126 #define MVNETA_GMAC_STATUS 0x2c10
127 #define MVNETA_GMAC_LINK_UP BIT(0)
128 #define MVNETA_GMAC_SPEED_1000 BIT(1)
129 #define MVNETA_GMAC_SPEED_100 BIT(2)
130 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
131 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
132 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
133 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
134 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
135 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
136 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
137 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
138 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
139 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
140 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
141 #define MVNETA_MIB_COUNTERS_BASE 0x3080
142 #define MVNETA_MIB_LATE_COLLISION 0x7c
143 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
144 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
145 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
146 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
147 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
148 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
149 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
150 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
151 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
152 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
153 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
154 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
155 #define MVNETA_PORT_TX_RESET 0x3cf0
156 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
157 #define MVNETA_TX_MTU 0x3e0c
158 #define MVNETA_TX_TOKEN_SIZE 0x3e14
159 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
160 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
161 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
162
163 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
164
165 /* Descriptor ring Macros */
166 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
167 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
168
169 /* Various constants */
170
171 /* Coalescing */
172 #define MVNETA_TXDONE_COAL_PKTS 16
173 #define MVNETA_RX_COAL_PKTS 32
174 #define MVNETA_RX_COAL_USEC 100
175
176 /* Timer */
177 #define MVNETA_TX_DONE_TIMER_PERIOD 10
178
179 /* Napi polling weight */
180 #define MVNETA_RX_POLL_WEIGHT 64
181
182 /* The two bytes Marvell header. Either contains a special value used
183 * by Marvell switches when a specific hardware mode is enabled (not
184 * supported by this driver) or is filled automatically by zeroes on
185 * the RX side. Those two bytes being at the front of the Ethernet
186 * header, they allow to have the IP header aligned on a 4 bytes
187 * boundary automatically: the hardware skips those two bytes on its
188 * own.
189 */
190 #define MVNETA_MH_SIZE 2
191
192 #define MVNETA_VLAN_TAG_LEN 4
193
194 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
195 #define MVNETA_TX_CSUM_MAX_SIZE 9800
196 #define MVNETA_ACC_MODE_EXT 1
197
198 /* Timeout constants */
199 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
200 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
201 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
202
203 #define MVNETA_TX_MTU_MAX 0x3ffff
204
205 /* Max number of Rx descriptors */
206 #define MVNETA_MAX_RXD 128
207
208 /* Max number of Tx descriptors */
209 #define MVNETA_MAX_TXD 532
210
211 /* descriptor aligned size */
212 #define MVNETA_DESC_ALIGNED_SIZE 32
213
214 #define MVNETA_RX_PKT_SIZE(mtu) \
215 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
216 ETH_HLEN + ETH_FCS_LEN, \
217 MVNETA_CPU_D_CACHE_LINE_SIZE)
218
219 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
220
221 struct mvneta_stats {
222 struct u64_stats_sync syncp;
223 u64 packets;
224 u64 bytes;
225 };
226
227 struct mvneta_port {
228 int pkt_size;
229 void __iomem *base;
230 struct mvneta_rx_queue *rxqs;
231 struct mvneta_tx_queue *txqs;
232 struct timer_list tx_done_timer;
233 struct net_device *dev;
234
235 u32 cause_rx_tx;
236 struct napi_struct napi;
237
238 /* Flags */
239 unsigned long flags;
240 #define MVNETA_F_TX_DONE_TIMER_BIT 0
241
242 /* Napi weight */
243 int weight;
244
245 /* Core clock */
246 struct clk *clk;
247 u8 mcast_count[256];
248 u16 tx_ring_size;
249 u16 rx_ring_size;
250 struct mvneta_stats tx_stats;
251 struct mvneta_stats rx_stats;
252
253 struct mii_bus *mii_bus;
254 struct phy_device *phy_dev;
255 phy_interface_t phy_interface;
256 struct device_node *phy_node;
257 unsigned int link;
258 unsigned int duplex;
259 unsigned int speed;
260 };
261
262 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
263 * layout of the transmit and reception DMA descriptors, and their
264 * layout is therefore defined by the hardware design
265 */
266 struct mvneta_tx_desc {
267 u32 command; /* Options used by HW for packet transmitting.*/
268 #define MVNETA_TX_L3_OFF_SHIFT 0
269 #define MVNETA_TX_IP_HLEN_SHIFT 8
270 #define MVNETA_TX_L4_UDP BIT(16)
271 #define MVNETA_TX_L3_IP6 BIT(17)
272 #define MVNETA_TXD_IP_CSUM BIT(18)
273 #define MVNETA_TXD_Z_PAD BIT(19)
274 #define MVNETA_TXD_L_DESC BIT(20)
275 #define MVNETA_TXD_F_DESC BIT(21)
276 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
277 MVNETA_TXD_L_DESC | \
278 MVNETA_TXD_F_DESC)
279 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
280 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
281
282 u16 reserverd1; /* csum_l4 (for future use) */
283 u16 data_size; /* Data size of transmitted packet in bytes */
284 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
285 u32 reserved2; /* hw_cmd - (for future use, PMT) */
286 u32 reserved3[4]; /* Reserved - (for future use) */
287 };
288
289 struct mvneta_rx_desc {
290 u32 status; /* Info about received packet */
291 #define MVNETA_RXD_ERR_CRC 0x0
292 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
293 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
294 #define MVNETA_RXD_ERR_LEN BIT(18)
295 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
296 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
297 #define MVNETA_RXD_L3_IP4 BIT(25)
298 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
299 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
300
301 u16 reserved1; /* pnc_info - (for future use, PnC) */
302 u16 data_size; /* Size of received packet in bytes */
303 u32 buf_phys_addr; /* Physical address of the buffer */
304 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
305 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
306 u16 reserved3; /* prefetch_cmd, for future use */
307 u16 reserved4; /* csum_l4 - (for future use, PnC) */
308 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
309 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
310 };
311
312 struct mvneta_tx_queue {
313 /* Number of this TX queue, in the range 0-7 */
314 u8 id;
315
316 /* Number of TX DMA descriptors in the descriptor ring */
317 int size;
318
319 /* Number of currently used TX DMA descriptor in the
320 * descriptor ring
321 */
322 int count;
323
324 /* Array of transmitted skb */
325 struct sk_buff **tx_skb;
326
327 /* Index of last TX DMA descriptor that was inserted */
328 int txq_put_index;
329
330 /* Index of the TX DMA descriptor to be cleaned up */
331 int txq_get_index;
332
333 u32 done_pkts_coal;
334
335 /* Virtual address of the TX DMA descriptors array */
336 struct mvneta_tx_desc *descs;
337
338 /* DMA address of the TX DMA descriptors array */
339 dma_addr_t descs_phys;
340
341 /* Index of the last TX DMA descriptor */
342 int last_desc;
343
344 /* Index of the next TX DMA descriptor to process */
345 int next_desc_to_proc;
346 };
347
348 struct mvneta_rx_queue {
349 /* rx queue number, in the range 0-7 */
350 u8 id;
351
352 /* num of rx descriptors in the rx descriptor ring */
353 int size;
354
355 /* counter of times when mvneta_refill() failed */
356 int missed;
357
358 u32 pkts_coal;
359 u32 time_coal;
360
361 /* Virtual address of the RX DMA descriptors array */
362 struct mvneta_rx_desc *descs;
363
364 /* DMA address of the RX DMA descriptors array */
365 dma_addr_t descs_phys;
366
367 /* Index of the last RX DMA descriptor */
368 int last_desc;
369
370 /* Index of the next RX DMA descriptor to process */
371 int next_desc_to_proc;
372 };
373
374 static int rxq_number = 8;
375 static int txq_number = 8;
376
377 static int rxq_def;
378 static int txq_def;
379
380 #define MVNETA_DRIVER_NAME "mvneta"
381 #define MVNETA_DRIVER_VERSION "1.0"
382
383 /* Utility/helper methods */
384
385 /* Write helper method */
386 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
387 {
388 writel(data, pp->base + offset);
389 }
390
391 /* Read helper method */
392 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
393 {
394 return readl(pp->base + offset);
395 }
396
397 /* Increment txq get counter */
398 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
399 {
400 txq->txq_get_index++;
401 if (txq->txq_get_index == txq->size)
402 txq->txq_get_index = 0;
403 }
404
405 /* Increment txq put counter */
406 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
407 {
408 txq->txq_put_index++;
409 if (txq->txq_put_index == txq->size)
410 txq->txq_put_index = 0;
411 }
412
413
414 /* Clear all MIB counters */
415 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
416 {
417 int i;
418 u32 dummy;
419
420 /* Perform dummy reads from MIB counters */
421 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
422 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
423 }
424
425 /* Get System Network Statistics */
426 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
427 struct rtnl_link_stats64 *stats)
428 {
429 struct mvneta_port *pp = netdev_priv(dev);
430 unsigned int start;
431
432 memset(stats, 0, sizeof(struct rtnl_link_stats64));
433
434 do {
435 start = u64_stats_fetch_begin_bh(&pp->rx_stats.syncp);
436 stats->rx_packets = pp->rx_stats.packets;
437 stats->rx_bytes = pp->rx_stats.bytes;
438 } while (u64_stats_fetch_retry_bh(&pp->rx_stats.syncp, start));
439
440
441 do {
442 start = u64_stats_fetch_begin_bh(&pp->tx_stats.syncp);
443 stats->tx_packets = pp->tx_stats.packets;
444 stats->tx_bytes = pp->tx_stats.bytes;
445 } while (u64_stats_fetch_retry_bh(&pp->tx_stats.syncp, start));
446
447 stats->rx_errors = dev->stats.rx_errors;
448 stats->rx_dropped = dev->stats.rx_dropped;
449
450 stats->tx_dropped = dev->stats.tx_dropped;
451
452 return stats;
453 }
454
455 /* Rx descriptors helper methods */
456
457 /* Checks whether the given RX descriptor is both the first and the
458 * last descriptor for the RX packet. Each RX packet is currently
459 * received through a single RX descriptor, so not having each RX
460 * descriptor with its first and last bits set is an error
461 */
462 static int mvneta_rxq_desc_is_first_last(struct mvneta_rx_desc *desc)
463 {
464 return (desc->status & MVNETA_RXD_FIRST_LAST_DESC) ==
465 MVNETA_RXD_FIRST_LAST_DESC;
466 }
467
468 /* Add number of descriptors ready to receive new packets */
469 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
470 struct mvneta_rx_queue *rxq,
471 int ndescs)
472 {
473 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
474 * be added at once
475 */
476 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
477 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
478 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
479 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
480 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
481 }
482
483 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
484 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
485 }
486
487 /* Get number of RX descriptors occupied by received packets */
488 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
489 struct mvneta_rx_queue *rxq)
490 {
491 u32 val;
492
493 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
494 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
495 }
496
497 /* Update num of rx desc called upon return from rx path or
498 * from mvneta_rxq_drop_pkts().
499 */
500 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
501 struct mvneta_rx_queue *rxq,
502 int rx_done, int rx_filled)
503 {
504 u32 val;
505
506 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
507 val = rx_done |
508 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
509 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
510 return;
511 }
512
513 /* Only 255 descriptors can be added at once */
514 while ((rx_done > 0) || (rx_filled > 0)) {
515 if (rx_done <= 0xff) {
516 val = rx_done;
517 rx_done = 0;
518 } else {
519 val = 0xff;
520 rx_done -= 0xff;
521 }
522 if (rx_filled <= 0xff) {
523 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
524 rx_filled = 0;
525 } else {
526 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
527 rx_filled -= 0xff;
528 }
529 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
530 }
531 }
532
533 /* Get pointer to next RX descriptor to be processed by SW */
534 static struct mvneta_rx_desc *
535 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
536 {
537 int rx_desc = rxq->next_desc_to_proc;
538
539 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
540 return rxq->descs + rx_desc;
541 }
542
543 /* Change maximum receive size of the port. */
544 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
545 {
546 u32 val;
547
548 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
549 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
550 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
551 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
552 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
553 }
554
555
556 /* Set rx queue offset */
557 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
558 struct mvneta_rx_queue *rxq,
559 int offset)
560 {
561 u32 val;
562
563 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
564 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
565
566 /* Offset is in */
567 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
568 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
569 }
570
571
572 /* Tx descriptors helper methods */
573
574 /* Update HW with number of TX descriptors to be sent */
575 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
576 struct mvneta_tx_queue *txq,
577 int pend_desc)
578 {
579 u32 val;
580
581 /* Only 255 descriptors can be added at once ; Assume caller
582 * process TX desriptors in quanta less than 256
583 */
584 val = pend_desc;
585 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
586 }
587
588 /* Get pointer to next TX descriptor to be processed (send) by HW */
589 static struct mvneta_tx_desc *
590 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
591 {
592 int tx_desc = txq->next_desc_to_proc;
593
594 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
595 return txq->descs + tx_desc;
596 }
597
598 /* Release the last allocated TX descriptor. Useful to handle DMA
599 * mapping failures in the TX path.
600 */
601 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
602 {
603 if (txq->next_desc_to_proc == 0)
604 txq->next_desc_to_proc = txq->last_desc - 1;
605 else
606 txq->next_desc_to_proc--;
607 }
608
609 /* Set rxq buf size */
610 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
611 struct mvneta_rx_queue *rxq,
612 int buf_size)
613 {
614 u32 val;
615
616 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
617
618 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
619 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
620
621 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
622 }
623
624 /* Disable buffer management (BM) */
625 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
626 struct mvneta_rx_queue *rxq)
627 {
628 u32 val;
629
630 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
631 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
632 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
633 }
634
635
636
637 /* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */
638 static void __devinit mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable)
639 {
640 u32 val;
641
642 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
643
644 if (enable)
645 val |= MVNETA_GMAC2_PORT_RGMII;
646 else
647 val &= ~MVNETA_GMAC2_PORT_RGMII;
648
649 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
650 }
651
652 /* Config SGMII port */
653 static void __devinit mvneta_port_sgmii_config(struct mvneta_port *pp)
654 {
655 u32 val;
656
657 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
658 val |= MVNETA_GMAC2_PSC_ENABLE;
659 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
660 }
661
662 /* Start the Ethernet port RX and TX activity */
663 static void mvneta_port_up(struct mvneta_port *pp)
664 {
665 int queue;
666 u32 q_map;
667
668 /* Enable all initialized TXs. */
669 mvneta_mib_counters_clear(pp);
670 q_map = 0;
671 for (queue = 0; queue < txq_number; queue++) {
672 struct mvneta_tx_queue *txq = &pp->txqs[queue];
673 if (txq->descs != NULL)
674 q_map |= (1 << queue);
675 }
676 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
677
678 /* Enable all initialized RXQs. */
679 q_map = 0;
680 for (queue = 0; queue < rxq_number; queue++) {
681 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
682 if (rxq->descs != NULL)
683 q_map |= (1 << queue);
684 }
685
686 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
687 }
688
689 /* Stop the Ethernet port activity */
690 static void mvneta_port_down(struct mvneta_port *pp)
691 {
692 u32 val;
693 int count;
694
695 /* Stop Rx port activity. Check port Rx activity. */
696 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
697
698 /* Issue stop command for active channels only */
699 if (val != 0)
700 mvreg_write(pp, MVNETA_RXQ_CMD,
701 val << MVNETA_RXQ_DISABLE_SHIFT);
702
703 /* Wait for all Rx activity to terminate. */
704 count = 0;
705 do {
706 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
707 netdev_warn(pp->dev,
708 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
709 val);
710 break;
711 }
712 mdelay(1);
713
714 val = mvreg_read(pp, MVNETA_RXQ_CMD);
715 } while (val & 0xff);
716
717 /* Stop Tx port activity. Check port Tx activity. Issue stop
718 * command for active channels only
719 */
720 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
721
722 if (val != 0)
723 mvreg_write(pp, MVNETA_TXQ_CMD,
724 (val << MVNETA_TXQ_DISABLE_SHIFT));
725
726 /* Wait for all Tx activity to terminate. */
727 count = 0;
728 do {
729 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
730 netdev_warn(pp->dev,
731 "TIMEOUT for TX stopped status=0x%08x\n",
732 val);
733 break;
734 }
735 mdelay(1);
736
737 /* Check TX Command reg that all Txqs are stopped */
738 val = mvreg_read(pp, MVNETA_TXQ_CMD);
739
740 } while (val & 0xff);
741
742 /* Double check to verify that TX FIFO is empty */
743 count = 0;
744 do {
745 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
746 netdev_warn(pp->dev,
747 "TX FIFO empty timeout status=0x08%x\n",
748 val);
749 break;
750 }
751 mdelay(1);
752
753 val = mvreg_read(pp, MVNETA_PORT_STATUS);
754 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
755 (val & MVNETA_TX_IN_PRGRS));
756
757 udelay(200);
758 }
759
760 /* Enable the port by setting the port enable bit of the MAC control register */
761 static void mvneta_port_enable(struct mvneta_port *pp)
762 {
763 u32 val;
764
765 /* Enable port */
766 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
767 val |= MVNETA_GMAC0_PORT_ENABLE;
768 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
769 }
770
771 /* Disable the port and wait for about 200 usec before retuning */
772 static void mvneta_port_disable(struct mvneta_port *pp)
773 {
774 u32 val;
775
776 /* Reset the Enable bit in the Serial Control Register */
777 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
778 val &= ~MVNETA_GMAC0_PORT_ENABLE;
779 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
780
781 udelay(200);
782 }
783
784 /* Multicast tables methods */
785
786 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
787 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
788 {
789 int offset;
790 u32 val;
791
792 if (queue == -1) {
793 val = 0;
794 } else {
795 val = 0x1 | (queue << 1);
796 val |= (val << 24) | (val << 16) | (val << 8);
797 }
798
799 for (offset = 0; offset <= 0xc; offset += 4)
800 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
801 }
802
803 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
804 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
805 {
806 int offset;
807 u32 val;
808
809 if (queue == -1) {
810 val = 0;
811 } else {
812 val = 0x1 | (queue << 1);
813 val |= (val << 24) | (val << 16) | (val << 8);
814 }
815
816 for (offset = 0; offset <= 0xfc; offset += 4)
817 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
818
819 }
820
821 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
822 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
823 {
824 int offset;
825 u32 val;
826
827 if (queue == -1) {
828 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
829 val = 0;
830 } else {
831 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
832 val = 0x1 | (queue << 1);
833 val |= (val << 24) | (val << 16) | (val << 8);
834 }
835
836 for (offset = 0; offset <= 0xfc; offset += 4)
837 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
838 }
839
840 /* This method sets defaults to the NETA port:
841 * Clears interrupt Cause and Mask registers.
842 * Clears all MAC tables.
843 * Sets defaults to all registers.
844 * Resets RX and TX descriptor rings.
845 * Resets PHY.
846 * This method can be called after mvneta_port_down() to return the port
847 * settings to defaults.
848 */
849 static void mvneta_defaults_set(struct mvneta_port *pp)
850 {
851 int cpu;
852 int queue;
853 u32 val;
854
855 /* Clear all Cause registers */
856 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
857 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
858 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
859
860 /* Mask all interrupts */
861 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
862 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
863 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
864 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
865
866 /* Enable MBUS Retry bit16 */
867 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
868
869 /* Set CPU queue access map - all CPUs have access to all RX
870 * queues and to all TX queues
871 */
872 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
873 mvreg_write(pp, MVNETA_CPU_MAP(cpu),
874 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
875 MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
876
877 /* Reset RX and TX DMAs */
878 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
879 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
880
881 /* Disable Legacy WRR, Disable EJP, Release from reset */
882 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
883 for (queue = 0; queue < txq_number; queue++) {
884 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
885 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
886 }
887
888 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
889 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
890
891 /* Set Port Acceleration Mode */
892 val = MVNETA_ACC_MODE_EXT;
893 mvreg_write(pp, MVNETA_ACC_MODE, val);
894
895 /* Update val of portCfg register accordingly with all RxQueue types */
896 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
897 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
898
899 val = 0;
900 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
901 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
902
903 /* Build PORT_SDMA_CONFIG_REG */
904 val = 0;
905
906 /* Default burst size */
907 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
908 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
909
910 val |= (MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP |
911 MVNETA_NO_DESC_SWAP);
912
913 /* Assign port SDMA configuration */
914 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
915
916 mvneta_set_ucast_table(pp, -1);
917 mvneta_set_special_mcast_table(pp, -1);
918 mvneta_set_other_mcast_table(pp, -1);
919
920 /* Set port interrupt enable register - default enable all */
921 mvreg_write(pp, MVNETA_INTR_ENABLE,
922 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
923 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
924 }
925
926 /* Set max sizes for tx queues */
927 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
928
929 {
930 u32 val, size, mtu;
931 int queue;
932
933 mtu = max_tx_size * 8;
934 if (mtu > MVNETA_TX_MTU_MAX)
935 mtu = MVNETA_TX_MTU_MAX;
936
937 /* Set MTU */
938 val = mvreg_read(pp, MVNETA_TX_MTU);
939 val &= ~MVNETA_TX_MTU_MAX;
940 val |= mtu;
941 mvreg_write(pp, MVNETA_TX_MTU, val);
942
943 /* TX token size and all TXQs token size must be larger that MTU */
944 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
945
946 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
947 if (size < mtu) {
948 size = mtu;
949 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
950 val |= size;
951 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
952 }
953 for (queue = 0; queue < txq_number; queue++) {
954 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
955
956 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
957 if (size < mtu) {
958 size = mtu;
959 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
960 val |= size;
961 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
962 }
963 }
964 }
965
966 /* Set unicast address */
967 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
968 int queue)
969 {
970 unsigned int unicast_reg;
971 unsigned int tbl_offset;
972 unsigned int reg_offset;
973
974 /* Locate the Unicast table entry */
975 last_nibble = (0xf & last_nibble);
976
977 /* offset from unicast tbl base */
978 tbl_offset = (last_nibble / 4) * 4;
979
980 /* offset within the above reg */
981 reg_offset = last_nibble % 4;
982
983 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
984
985 if (queue == -1) {
986 /* Clear accepts frame bit at specified unicast DA tbl entry */
987 unicast_reg &= ~(0xff << (8 * reg_offset));
988 } else {
989 unicast_reg &= ~(0xff << (8 * reg_offset));
990 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
991 }
992
993 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
994 }
995
996 /* Set mac address */
997 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
998 int queue)
999 {
1000 unsigned int mac_h;
1001 unsigned int mac_l;
1002
1003 if (queue != -1) {
1004 mac_l = (addr[4] << 8) | (addr[5]);
1005 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1006 (addr[2] << 8) | (addr[3] << 0);
1007
1008 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1009 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1010 }
1011
1012 /* Accept frames of this address */
1013 mvneta_set_ucast_addr(pp, addr[5], queue);
1014 }
1015
1016 /* Set the number of packets that will be received before RX interrupt
1017 * will be generated by HW.
1018 */
1019 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1020 struct mvneta_rx_queue *rxq, u32 value)
1021 {
1022 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1023 value | MVNETA_RXQ_NON_OCCUPIED(0));
1024 rxq->pkts_coal = value;
1025 }
1026
1027 /* Set the time delay in usec before RX interrupt will be generated by
1028 * HW.
1029 */
1030 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1031 struct mvneta_rx_queue *rxq, u32 value)
1032 {
1033 u32 val;
1034 unsigned long clk_rate;
1035
1036 clk_rate = clk_get_rate(pp->clk);
1037 val = (clk_rate / 1000000) * value;
1038
1039 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1040 rxq->time_coal = value;
1041 }
1042
1043 /* Set threshold for TX_DONE pkts coalescing */
1044 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1045 struct mvneta_tx_queue *txq, u32 value)
1046 {
1047 u32 val;
1048
1049 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1050
1051 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1052 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1053
1054 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1055
1056 txq->done_pkts_coal = value;
1057 }
1058
1059 /* Trigger tx done timer in MVNETA_TX_DONE_TIMER_PERIOD msecs */
1060 static void mvneta_add_tx_done_timer(struct mvneta_port *pp)
1061 {
1062 if (test_and_set_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags) == 0) {
1063 pp->tx_done_timer.expires = jiffies +
1064 msecs_to_jiffies(MVNETA_TX_DONE_TIMER_PERIOD);
1065 add_timer(&pp->tx_done_timer);
1066 }
1067 }
1068
1069
1070 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1071 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1072 u32 phys_addr, u32 cookie)
1073 {
1074 rx_desc->buf_cookie = cookie;
1075 rx_desc->buf_phys_addr = phys_addr;
1076 }
1077
1078 /* Decrement sent descriptors counter */
1079 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1080 struct mvneta_tx_queue *txq,
1081 int sent_desc)
1082 {
1083 u32 val;
1084
1085 /* Only 255 TX descriptors can be updated at once */
1086 while (sent_desc > 0xff) {
1087 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1088 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1089 sent_desc = sent_desc - 0xff;
1090 }
1091
1092 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1093 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1094 }
1095
1096 /* Get number of TX descriptors already sent by HW */
1097 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1098 struct mvneta_tx_queue *txq)
1099 {
1100 u32 val;
1101 int sent_desc;
1102
1103 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1104 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1105 MVNETA_TXQ_SENT_DESC_SHIFT;
1106
1107 return sent_desc;
1108 }
1109
1110 /* Get number of sent descriptors and decrement counter.
1111 * The number of sent descriptors is returned.
1112 */
1113 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1114 struct mvneta_tx_queue *txq)
1115 {
1116 int sent_desc;
1117
1118 /* Get number of sent descriptors */
1119 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1120
1121 /* Decrement sent descriptors counter */
1122 if (sent_desc)
1123 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1124
1125 return sent_desc;
1126 }
1127
1128 /* Set TXQ descriptors fields relevant for CSUM calculation */
1129 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1130 int ip_hdr_len, int l4_proto)
1131 {
1132 u32 command;
1133
1134 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1135 * G_L4_chk, L4_type; required only for checksum
1136 * calculation
1137 */
1138 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1139 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1140
1141 if (l3_proto == swab16(ETH_P_IP))
1142 command |= MVNETA_TXD_IP_CSUM;
1143 else
1144 command |= MVNETA_TX_L3_IP6;
1145
1146 if (l4_proto == IPPROTO_TCP)
1147 command |= MVNETA_TX_L4_CSUM_FULL;
1148 else if (l4_proto == IPPROTO_UDP)
1149 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1150 else
1151 command |= MVNETA_TX_L4_CSUM_NOT;
1152
1153 return command;
1154 }
1155
1156
1157 /* Display more error info */
1158 static void mvneta_rx_error(struct mvneta_port *pp,
1159 struct mvneta_rx_desc *rx_desc)
1160 {
1161 u32 status = rx_desc->status;
1162
1163 if (!mvneta_rxq_desc_is_first_last(rx_desc)) {
1164 netdev_err(pp->dev,
1165 "bad rx status %08x (buffer oversize), size=%d\n",
1166 rx_desc->status, rx_desc->data_size);
1167 return;
1168 }
1169
1170 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1171 case MVNETA_RXD_ERR_CRC:
1172 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1173 status, rx_desc->data_size);
1174 break;
1175 case MVNETA_RXD_ERR_OVERRUN:
1176 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1177 status, rx_desc->data_size);
1178 break;
1179 case MVNETA_RXD_ERR_LEN:
1180 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1181 status, rx_desc->data_size);
1182 break;
1183 case MVNETA_RXD_ERR_RESOURCE:
1184 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1185 status, rx_desc->data_size);
1186 break;
1187 }
1188 }
1189
1190 /* Handle RX checksum offload */
1191 static void mvneta_rx_csum(struct mvneta_port *pp,
1192 struct mvneta_rx_desc *rx_desc,
1193 struct sk_buff *skb)
1194 {
1195 if ((rx_desc->status & MVNETA_RXD_L3_IP4) &&
1196 (rx_desc->status & MVNETA_RXD_L4_CSUM_OK)) {
1197 skb->csum = 0;
1198 skb->ip_summed = CHECKSUM_UNNECESSARY;
1199 return;
1200 }
1201
1202 skb->ip_summed = CHECKSUM_NONE;
1203 }
1204
1205 /* Return tx queue pointer (find last set bit) according to causeTxDone reg */
1206 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1207 u32 cause)
1208 {
1209 int queue = fls(cause) - 1;
1210
1211 return (queue < 0 || queue >= txq_number) ? NULL : &pp->txqs[queue];
1212 }
1213
1214 /* Free tx queue skbuffs */
1215 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1216 struct mvneta_tx_queue *txq, int num)
1217 {
1218 int i;
1219
1220 for (i = 0; i < num; i++) {
1221 struct mvneta_tx_desc *tx_desc = txq->descs +
1222 txq->txq_get_index;
1223 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1224
1225 mvneta_txq_inc_get(txq);
1226
1227 if (!skb)
1228 continue;
1229
1230 dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
1231 tx_desc->data_size, DMA_TO_DEVICE);
1232 dev_kfree_skb_any(skb);
1233 }
1234 }
1235
1236 /* Handle end of transmission */
1237 static int mvneta_txq_done(struct mvneta_port *pp,
1238 struct mvneta_tx_queue *txq)
1239 {
1240 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1241 int tx_done;
1242
1243 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1244 if (tx_done == 0)
1245 return tx_done;
1246 mvneta_txq_bufs_free(pp, txq, tx_done);
1247
1248 txq->count -= tx_done;
1249
1250 if (netif_tx_queue_stopped(nq)) {
1251 if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
1252 netif_tx_wake_queue(nq);
1253 }
1254
1255 return tx_done;
1256 }
1257
1258 /* Refill processing */
1259 static int mvneta_rx_refill(struct mvneta_port *pp,
1260 struct mvneta_rx_desc *rx_desc)
1261
1262 {
1263 dma_addr_t phys_addr;
1264 struct sk_buff *skb;
1265
1266 skb = netdev_alloc_skb(pp->dev, pp->pkt_size);
1267 if (!skb)
1268 return -ENOMEM;
1269
1270 phys_addr = dma_map_single(pp->dev->dev.parent, skb->head,
1271 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1272 DMA_FROM_DEVICE);
1273 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1274 dev_kfree_skb(skb);
1275 return -ENOMEM;
1276 }
1277
1278 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1279
1280 return 0;
1281 }
1282
1283 /* Handle tx checksum */
1284 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1285 {
1286 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1287 int ip_hdr_len = 0;
1288 u8 l4_proto;
1289
1290 if (skb->protocol == htons(ETH_P_IP)) {
1291 struct iphdr *ip4h = ip_hdr(skb);
1292
1293 /* Calculate IPv4 checksum and L4 checksum */
1294 ip_hdr_len = ip4h->ihl;
1295 l4_proto = ip4h->protocol;
1296 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1297 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1298
1299 /* Read l4_protocol from one of IPv6 extra headers */
1300 if (skb_network_header_len(skb) > 0)
1301 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1302 l4_proto = ip6h->nexthdr;
1303 } else
1304 return MVNETA_TX_L4_CSUM_NOT;
1305
1306 return mvneta_txq_desc_csum(skb_network_offset(skb),
1307 skb->protocol, ip_hdr_len, l4_proto);
1308 }
1309
1310 return MVNETA_TX_L4_CSUM_NOT;
1311 }
1312
1313 /* Returns rx queue pointer (find last set bit) according to causeRxTx
1314 * value
1315 */
1316 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1317 u32 cause)
1318 {
1319 int queue = fls(cause >> 8) - 1;
1320
1321 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1322 }
1323
1324 /* Drop packets received by the RXQ and free buffers */
1325 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1326 struct mvneta_rx_queue *rxq)
1327 {
1328 int rx_done, i;
1329
1330 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1331 for (i = 0; i < rxq->size; i++) {
1332 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1333 struct sk_buff *skb = (struct sk_buff *)rx_desc->buf_cookie;
1334
1335 dev_kfree_skb_any(skb);
1336 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1337 rx_desc->data_size, DMA_FROM_DEVICE);
1338 }
1339
1340 if (rx_done)
1341 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1342 }
1343
1344 /* Main rx processing */
1345 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1346 struct mvneta_rx_queue *rxq)
1347 {
1348 struct net_device *dev = pp->dev;
1349 int rx_done, rx_filled;
1350
1351 /* Get number of received packets */
1352 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1353
1354 if (rx_todo > rx_done)
1355 rx_todo = rx_done;
1356
1357 rx_done = 0;
1358 rx_filled = 0;
1359
1360 /* Fairness NAPI loop */
1361 while (rx_done < rx_todo) {
1362 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1363 struct sk_buff *skb;
1364 u32 rx_status;
1365 int rx_bytes, err;
1366
1367 prefetch(rx_desc);
1368 rx_done++;
1369 rx_filled++;
1370 rx_status = rx_desc->status;
1371 skb = (struct sk_buff *)rx_desc->buf_cookie;
1372
1373 if (!mvneta_rxq_desc_is_first_last(rx_desc) ||
1374 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1375 dev->stats.rx_errors++;
1376 mvneta_rx_error(pp, rx_desc);
1377 mvneta_rx_desc_fill(rx_desc, rx_desc->buf_phys_addr,
1378 (u32)skb);
1379 continue;
1380 }
1381
1382 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1383 rx_desc->data_size, DMA_FROM_DEVICE);
1384
1385 rx_bytes = rx_desc->data_size -
1386 (ETH_FCS_LEN + MVNETA_MH_SIZE);
1387 u64_stats_update_begin(&pp->rx_stats.syncp);
1388 pp->rx_stats.packets++;
1389 pp->rx_stats.bytes += rx_bytes;
1390 u64_stats_update_end(&pp->rx_stats.syncp);
1391
1392 /* Linux processing */
1393 skb_reserve(skb, MVNETA_MH_SIZE);
1394 skb_put(skb, rx_bytes);
1395
1396 skb->protocol = eth_type_trans(skb, dev);
1397
1398 mvneta_rx_csum(pp, rx_desc, skb);
1399
1400 napi_gro_receive(&pp->napi, skb);
1401
1402 /* Refill processing */
1403 err = mvneta_rx_refill(pp, rx_desc);
1404 if (err) {
1405 netdev_err(pp->dev, "Linux processing - Can't refill\n");
1406 rxq->missed++;
1407 rx_filled--;
1408 }
1409 }
1410
1411 /* Update rxq management counters */
1412 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1413
1414 return rx_done;
1415 }
1416
1417 /* Handle tx fragmentation processing */
1418 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1419 struct mvneta_tx_queue *txq)
1420 {
1421 struct mvneta_tx_desc *tx_desc;
1422 int i;
1423
1424 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1425 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1426 void *addr = page_address(frag->page.p) + frag->page_offset;
1427
1428 tx_desc = mvneta_txq_next_desc_get(txq);
1429 tx_desc->data_size = frag->size;
1430
1431 tx_desc->buf_phys_addr =
1432 dma_map_single(pp->dev->dev.parent, addr,
1433 tx_desc->data_size, DMA_TO_DEVICE);
1434
1435 if (dma_mapping_error(pp->dev->dev.parent,
1436 tx_desc->buf_phys_addr)) {
1437 mvneta_txq_desc_put(txq);
1438 goto error;
1439 }
1440
1441 if (i == (skb_shinfo(skb)->nr_frags - 1)) {
1442 /* Last descriptor */
1443 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1444
1445 txq->tx_skb[txq->txq_put_index] = skb;
1446
1447 mvneta_txq_inc_put(txq);
1448 } else {
1449 /* Descriptor in the middle: Not First, Not Last */
1450 tx_desc->command = 0;
1451
1452 txq->tx_skb[txq->txq_put_index] = NULL;
1453 mvneta_txq_inc_put(txq);
1454 }
1455 }
1456
1457 return 0;
1458
1459 error:
1460 /* Release all descriptors that were used to map fragments of
1461 * this packet, as well as the corresponding DMA mappings
1462 */
1463 for (i = i - 1; i >= 0; i--) {
1464 tx_desc = txq->descs + i;
1465 dma_unmap_single(pp->dev->dev.parent,
1466 tx_desc->buf_phys_addr,
1467 tx_desc->data_size,
1468 DMA_TO_DEVICE);
1469 mvneta_txq_desc_put(txq);
1470 }
1471
1472 return -ENOMEM;
1473 }
1474
1475 /* Main tx processing */
1476 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1477 {
1478 struct mvneta_port *pp = netdev_priv(dev);
1479 struct mvneta_tx_queue *txq = &pp->txqs[txq_def];
1480 struct mvneta_tx_desc *tx_desc;
1481 struct netdev_queue *nq;
1482 int frags = 0;
1483 u32 tx_cmd;
1484
1485 if (!netif_running(dev))
1486 goto out;
1487
1488 frags = skb_shinfo(skb)->nr_frags + 1;
1489 nq = netdev_get_tx_queue(dev, txq_def);
1490
1491 /* Get a descriptor for the first part of the packet */
1492 tx_desc = mvneta_txq_next_desc_get(txq);
1493
1494 tx_cmd = mvneta_skb_tx_csum(pp, skb);
1495
1496 tx_desc->data_size = skb_headlen(skb);
1497
1498 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1499 tx_desc->data_size,
1500 DMA_TO_DEVICE);
1501 if (unlikely(dma_mapping_error(dev->dev.parent,
1502 tx_desc->buf_phys_addr))) {
1503 mvneta_txq_desc_put(txq);
1504 frags = 0;
1505 goto out;
1506 }
1507
1508 if (frags == 1) {
1509 /* First and Last descriptor */
1510 tx_cmd |= MVNETA_TXD_FLZ_DESC;
1511 tx_desc->command = tx_cmd;
1512 txq->tx_skb[txq->txq_put_index] = skb;
1513 mvneta_txq_inc_put(txq);
1514 } else {
1515 /* First but not Last */
1516 tx_cmd |= MVNETA_TXD_F_DESC;
1517 txq->tx_skb[txq->txq_put_index] = NULL;
1518 mvneta_txq_inc_put(txq);
1519 tx_desc->command = tx_cmd;
1520 /* Continue with other skb fragments */
1521 if (mvneta_tx_frag_process(pp, skb, txq)) {
1522 dma_unmap_single(dev->dev.parent,
1523 tx_desc->buf_phys_addr,
1524 tx_desc->data_size,
1525 DMA_TO_DEVICE);
1526 mvneta_txq_desc_put(txq);
1527 frags = 0;
1528 goto out;
1529 }
1530 }
1531
1532 txq->count += frags;
1533 mvneta_txq_pend_desc_add(pp, txq, frags);
1534
1535 if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
1536 netif_tx_stop_queue(nq);
1537
1538 out:
1539 if (frags > 0) {
1540 u64_stats_update_begin(&pp->tx_stats.syncp);
1541 pp->tx_stats.packets++;
1542 pp->tx_stats.bytes += skb->len;
1543 u64_stats_update_end(&pp->tx_stats.syncp);
1544
1545 } else {
1546 dev->stats.tx_dropped++;
1547 dev_kfree_skb_any(skb);
1548 }
1549
1550 if (txq->count >= MVNETA_TXDONE_COAL_PKTS)
1551 mvneta_txq_done(pp, txq);
1552
1553 /* If after calling mvneta_txq_done, count equals
1554 * frags, we need to set the timer
1555 */
1556 if (txq->count == frags && frags > 0)
1557 mvneta_add_tx_done_timer(pp);
1558
1559 return NETDEV_TX_OK;
1560 }
1561
1562
1563 /* Free tx resources, when resetting a port */
1564 static void mvneta_txq_done_force(struct mvneta_port *pp,
1565 struct mvneta_tx_queue *txq)
1566
1567 {
1568 int tx_done = txq->count;
1569
1570 mvneta_txq_bufs_free(pp, txq, tx_done);
1571
1572 /* reset txq */
1573 txq->count = 0;
1574 txq->txq_put_index = 0;
1575 txq->txq_get_index = 0;
1576 }
1577
1578 /* handle tx done - called from tx done timer callback */
1579 static u32 mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done,
1580 int *tx_todo)
1581 {
1582 struct mvneta_tx_queue *txq;
1583 u32 tx_done = 0;
1584 struct netdev_queue *nq;
1585
1586 *tx_todo = 0;
1587 while (cause_tx_done != 0) {
1588 txq = mvneta_tx_done_policy(pp, cause_tx_done);
1589 if (!txq)
1590 break;
1591
1592 nq = netdev_get_tx_queue(pp->dev, txq->id);
1593 __netif_tx_lock(nq, smp_processor_id());
1594
1595 if (txq->count) {
1596 tx_done += mvneta_txq_done(pp, txq);
1597 *tx_todo += txq->count;
1598 }
1599
1600 __netif_tx_unlock(nq);
1601 cause_tx_done &= ~((1 << txq->id));
1602 }
1603
1604 return tx_done;
1605 }
1606
1607 /* Compute crc8 of the specified address, using a unique algorithm ,
1608 * according to hw spec, different than generic crc8 algorithm
1609 */
1610 static int mvneta_addr_crc(unsigned char *addr)
1611 {
1612 int crc = 0;
1613 int i;
1614
1615 for (i = 0; i < ETH_ALEN; i++) {
1616 int j;
1617
1618 crc = (crc ^ addr[i]) << 8;
1619 for (j = 7; j >= 0; j--) {
1620 if (crc & (0x100 << j))
1621 crc ^= 0x107 << j;
1622 }
1623 }
1624
1625 return crc;
1626 }
1627
1628 /* This method controls the net device special MAC multicast support.
1629 * The Special Multicast Table for MAC addresses supports MAC of the form
1630 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1631 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1632 * Table entries in the DA-Filter table. This method set the Special
1633 * Multicast Table appropriate entry.
1634 */
1635 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1636 unsigned char last_byte,
1637 int queue)
1638 {
1639 unsigned int smc_table_reg;
1640 unsigned int tbl_offset;
1641 unsigned int reg_offset;
1642
1643 /* Register offset from SMC table base */
1644 tbl_offset = (last_byte / 4);
1645 /* Entry offset within the above reg */
1646 reg_offset = last_byte % 4;
1647
1648 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1649 + tbl_offset * 4));
1650
1651 if (queue == -1)
1652 smc_table_reg &= ~(0xff << (8 * reg_offset));
1653 else {
1654 smc_table_reg &= ~(0xff << (8 * reg_offset));
1655 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1656 }
1657
1658 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1659 smc_table_reg);
1660 }
1661
1662 /* This method controls the network device Other MAC multicast support.
1663 * The Other Multicast Table is used for multicast of another type.
1664 * A CRC-8 is used as an index to the Other Multicast Table entries
1665 * in the DA-Filter table.
1666 * The method gets the CRC-8 value from the calling routine and
1667 * sets the Other Multicast Table appropriate entry according to the
1668 * specified CRC-8 .
1669 */
1670 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1671 unsigned char crc8,
1672 int queue)
1673 {
1674 unsigned int omc_table_reg;
1675 unsigned int tbl_offset;
1676 unsigned int reg_offset;
1677
1678 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1679 reg_offset = crc8 % 4; /* Entry offset within the above reg */
1680
1681 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1682
1683 if (queue == -1) {
1684 /* Clear accepts frame bit at specified Other DA table entry */
1685 omc_table_reg &= ~(0xff << (8 * reg_offset));
1686 } else {
1687 omc_table_reg &= ~(0xff << (8 * reg_offset));
1688 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1689 }
1690
1691 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1692 }
1693
1694 /* The network device supports multicast using two tables:
1695 * 1) Special Multicast Table for MAC addresses of the form
1696 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1697 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1698 * Table entries in the DA-Filter table.
1699 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
1700 * is used as an index to the Other Multicast Table entries in the
1701 * DA-Filter table.
1702 */
1703 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1704 int queue)
1705 {
1706 unsigned char crc_result = 0;
1707
1708 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1709 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1710 return 0;
1711 }
1712
1713 crc_result = mvneta_addr_crc(p_addr);
1714 if (queue == -1) {
1715 if (pp->mcast_count[crc_result] == 0) {
1716 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1717 crc_result);
1718 return -EINVAL;
1719 }
1720
1721 pp->mcast_count[crc_result]--;
1722 if (pp->mcast_count[crc_result] != 0) {
1723 netdev_info(pp->dev,
1724 "After delete there are %d valid Mcast for crc8=0x%02x\n",
1725 pp->mcast_count[crc_result], crc_result);
1726 return -EINVAL;
1727 }
1728 } else
1729 pp->mcast_count[crc_result]++;
1730
1731 mvneta_set_other_mcast_addr(pp, crc_result, queue);
1732
1733 return 0;
1734 }
1735
1736 /* Configure Fitering mode of Ethernet port */
1737 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1738 int is_promisc)
1739 {
1740 u32 port_cfg_reg, val;
1741
1742 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1743
1744 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1745
1746 /* Set / Clear UPM bit in port configuration register */
1747 if (is_promisc) {
1748 /* Accept all Unicast addresses */
1749 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1750 val |= MVNETA_FORCE_UNI;
1751 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1752 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1753 } else {
1754 /* Reject all Unicast addresses */
1755 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1756 val &= ~MVNETA_FORCE_UNI;
1757 }
1758
1759 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1760 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1761 }
1762
1763 /* register unicast and multicast addresses */
1764 static void mvneta_set_rx_mode(struct net_device *dev)
1765 {
1766 struct mvneta_port *pp = netdev_priv(dev);
1767 struct netdev_hw_addr *ha;
1768
1769 if (dev->flags & IFF_PROMISC) {
1770 /* Accept all: Multicast + Unicast */
1771 mvneta_rx_unicast_promisc_set(pp, 1);
1772 mvneta_set_ucast_table(pp, rxq_def);
1773 mvneta_set_special_mcast_table(pp, rxq_def);
1774 mvneta_set_other_mcast_table(pp, rxq_def);
1775 } else {
1776 /* Accept single Unicast */
1777 mvneta_rx_unicast_promisc_set(pp, 0);
1778 mvneta_set_ucast_table(pp, -1);
1779 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
1780
1781 if (dev->flags & IFF_ALLMULTI) {
1782 /* Accept all multicast */
1783 mvneta_set_special_mcast_table(pp, rxq_def);
1784 mvneta_set_other_mcast_table(pp, rxq_def);
1785 } else {
1786 /* Accept only initialized multicast */
1787 mvneta_set_special_mcast_table(pp, -1);
1788 mvneta_set_other_mcast_table(pp, -1);
1789
1790 if (!netdev_mc_empty(dev)) {
1791 netdev_for_each_mc_addr(ha, dev) {
1792 mvneta_mcast_addr_set(pp, ha->addr,
1793 rxq_def);
1794 }
1795 }
1796 }
1797 }
1798 }
1799
1800 /* Interrupt handling - the callback for request_irq() */
1801 static irqreturn_t mvneta_isr(int irq, void *dev_id)
1802 {
1803 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
1804
1805 /* Mask all interrupts */
1806 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1807
1808 napi_schedule(&pp->napi);
1809
1810 return IRQ_HANDLED;
1811 }
1812
1813 /* NAPI handler
1814 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
1815 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
1816 * Bits 8 -15 of the cause Rx Tx register indicate that are received
1817 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
1818 * Each CPU has its own causeRxTx register
1819 */
1820 static int mvneta_poll(struct napi_struct *napi, int budget)
1821 {
1822 int rx_done = 0;
1823 u32 cause_rx_tx;
1824 unsigned long flags;
1825 struct mvneta_port *pp = netdev_priv(napi->dev);
1826
1827 if (!netif_running(pp->dev)) {
1828 napi_complete(napi);
1829 return rx_done;
1830 }
1831
1832 /* Read cause register */
1833 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
1834 MVNETA_RX_INTR_MASK(rxq_number);
1835
1836 /* For the case where the last mvneta_poll did not process all
1837 * RX packets
1838 */
1839 cause_rx_tx |= pp->cause_rx_tx;
1840 if (rxq_number > 1) {
1841 while ((cause_rx_tx != 0) && (budget > 0)) {
1842 int count;
1843 struct mvneta_rx_queue *rxq;
1844 /* get rx queue number from cause_rx_tx */
1845 rxq = mvneta_rx_policy(pp, cause_rx_tx);
1846 if (!rxq)
1847 break;
1848
1849 /* process the packet in that rx queue */
1850 count = mvneta_rx(pp, budget, rxq);
1851 rx_done += count;
1852 budget -= count;
1853 if (budget > 0) {
1854 /* set off the rx bit of the
1855 * corresponding bit in the cause rx
1856 * tx register, so that next iteration
1857 * will find the next rx queue where
1858 * packets are received on
1859 */
1860 cause_rx_tx &= ~((1 << rxq->id) << 8);
1861 }
1862 }
1863 } else {
1864 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
1865 budget -= rx_done;
1866 }
1867
1868 if (budget > 0) {
1869 cause_rx_tx = 0;
1870 napi_complete(napi);
1871 local_irq_save(flags);
1872 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1873 MVNETA_RX_INTR_MASK(rxq_number));
1874 local_irq_restore(flags);
1875 }
1876
1877 pp->cause_rx_tx = cause_rx_tx;
1878 return rx_done;
1879 }
1880
1881 /* tx done timer callback */
1882 static void mvneta_tx_done_timer_callback(unsigned long data)
1883 {
1884 struct net_device *dev = (struct net_device *)data;
1885 struct mvneta_port *pp = netdev_priv(dev);
1886 int tx_done = 0, tx_todo = 0;
1887
1888 if (!netif_running(dev))
1889 return ;
1890
1891 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
1892
1893 tx_done = mvneta_tx_done_gbe(pp,
1894 (((1 << txq_number) - 1) &
1895 MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK),
1896 &tx_todo);
1897 if (tx_todo > 0)
1898 mvneta_add_tx_done_timer(pp);
1899 }
1900
1901 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
1902 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
1903 int num)
1904 {
1905 struct net_device *dev = pp->dev;
1906 int i;
1907
1908 for (i = 0; i < num; i++) {
1909 struct sk_buff *skb;
1910 struct mvneta_rx_desc *rx_desc;
1911 unsigned long phys_addr;
1912
1913 skb = dev_alloc_skb(pp->pkt_size);
1914 if (!skb) {
1915 netdev_err(dev, "%s:rxq %d, %d of %d buffs filled\n",
1916 __func__, rxq->id, i, num);
1917 break;
1918 }
1919
1920 rx_desc = rxq->descs + i;
1921 memset(rx_desc, 0, sizeof(struct mvneta_rx_desc));
1922 phys_addr = dma_map_single(dev->dev.parent, skb->head,
1923 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1924 DMA_FROM_DEVICE);
1925 if (unlikely(dma_mapping_error(dev->dev.parent, phys_addr))) {
1926 dev_kfree_skb(skb);
1927 break;
1928 }
1929
1930 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1931 }
1932
1933 /* Add this number of RX descriptors as non occupied (ready to
1934 * get packets)
1935 */
1936 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1937
1938 return i;
1939 }
1940
1941 /* Free all packets pending transmit from all TXQs and reset TX port */
1942 static void mvneta_tx_reset(struct mvneta_port *pp)
1943 {
1944 int queue;
1945
1946 /* free the skb's in the hal tx ring */
1947 for (queue = 0; queue < txq_number; queue++)
1948 mvneta_txq_done_force(pp, &pp->txqs[queue]);
1949
1950 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1951 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1952 }
1953
1954 static void mvneta_rx_reset(struct mvneta_port *pp)
1955 {
1956 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1957 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1958 }
1959
1960 /* Rx/Tx queue initialization/cleanup methods */
1961
1962 /* Create a specified RX queue */
1963 static int mvneta_rxq_init(struct mvneta_port *pp,
1964 struct mvneta_rx_queue *rxq)
1965
1966 {
1967 rxq->size = pp->rx_ring_size;
1968
1969 /* Allocate memory for RX descriptors */
1970 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
1971 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
1972 &rxq->descs_phys, GFP_KERNEL);
1973 if (rxq->descs == NULL) {
1974 netdev_err(pp->dev,
1975 "rxq=%d: Can't allocate %d bytes for %d RX descr\n",
1976 rxq->id, rxq->size * MVNETA_DESC_ALIGNED_SIZE,
1977 rxq->size);
1978 return -ENOMEM;
1979 }
1980
1981 BUG_ON(rxq->descs !=
1982 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
1983
1984 rxq->last_desc = rxq->size - 1;
1985
1986 /* Set Rx descriptors queue starting address */
1987 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
1988 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
1989
1990 /* Set Offset */
1991 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
1992
1993 /* Set coalescing pkts and time */
1994 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
1995 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
1996
1997 /* Fill RXQ with buffers from RX pool */
1998 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
1999 mvneta_rxq_bm_disable(pp, rxq);
2000 mvneta_rxq_fill(pp, rxq, rxq->size);
2001
2002 return 0;
2003 }
2004
2005 /* Cleanup Rx queue */
2006 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2007 struct mvneta_rx_queue *rxq)
2008 {
2009 mvneta_rxq_drop_pkts(pp, rxq);
2010
2011 if (rxq->descs)
2012 dma_free_coherent(pp->dev->dev.parent,
2013 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2014 rxq->descs,
2015 rxq->descs_phys);
2016
2017 rxq->descs = NULL;
2018 rxq->last_desc = 0;
2019 rxq->next_desc_to_proc = 0;
2020 rxq->descs_phys = 0;
2021 }
2022
2023 /* Create and initialize a tx queue */
2024 static int mvneta_txq_init(struct mvneta_port *pp,
2025 struct mvneta_tx_queue *txq)
2026 {
2027 txq->size = pp->tx_ring_size;
2028
2029 /* Allocate memory for TX descriptors */
2030 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2031 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2032 &txq->descs_phys, GFP_KERNEL);
2033 if (txq->descs == NULL) {
2034 netdev_err(pp->dev,
2035 "txQ=%d: Can't allocate %d bytes for %d TX descr\n",
2036 txq->id, txq->size * MVNETA_DESC_ALIGNED_SIZE,
2037 txq->size);
2038 return -ENOMEM;
2039 }
2040
2041 /* Make sure descriptor address is cache line size aligned */
2042 BUG_ON(txq->descs !=
2043 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2044
2045 txq->last_desc = txq->size - 1;
2046
2047 /* Set maximum bandwidth for enabled TXQs */
2048 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2049 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2050
2051 /* Set Tx descriptors queue starting address */
2052 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2053 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2054
2055 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2056 if (txq->tx_skb == NULL) {
2057 dma_free_coherent(pp->dev->dev.parent,
2058 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2059 txq->descs, txq->descs_phys);
2060 return -ENOMEM;
2061 }
2062 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2063
2064 return 0;
2065 }
2066
2067 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2068 static void mvneta_txq_deinit(struct mvneta_port *pp,
2069 struct mvneta_tx_queue *txq)
2070 {
2071 kfree(txq->tx_skb);
2072
2073 if (txq->descs)
2074 dma_free_coherent(pp->dev->dev.parent,
2075 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2076 txq->descs, txq->descs_phys);
2077
2078 txq->descs = NULL;
2079 txq->last_desc = 0;
2080 txq->next_desc_to_proc = 0;
2081 txq->descs_phys = 0;
2082
2083 /* Set minimum bandwidth for disabled TXQs */
2084 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2085 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2086
2087 /* Set Tx descriptors queue starting address and size */
2088 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2089 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2090 }
2091
2092 /* Cleanup all Tx queues */
2093 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2094 {
2095 int queue;
2096
2097 for (queue = 0; queue < txq_number; queue++)
2098 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2099 }
2100
2101 /* Cleanup all Rx queues */
2102 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2103 {
2104 int queue;
2105
2106 for (queue = 0; queue < rxq_number; queue++)
2107 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2108 }
2109
2110
2111 /* Init all Rx queues */
2112 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2113 {
2114 int queue;
2115
2116 for (queue = 0; queue < rxq_number; queue++) {
2117 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2118 if (err) {
2119 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2120 __func__, queue);
2121 mvneta_cleanup_rxqs(pp);
2122 return err;
2123 }
2124 }
2125
2126 return 0;
2127 }
2128
2129 /* Init all tx queues */
2130 static int mvneta_setup_txqs(struct mvneta_port *pp)
2131 {
2132 int queue;
2133
2134 for (queue = 0; queue < txq_number; queue++) {
2135 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2136 if (err) {
2137 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2138 __func__, queue);
2139 mvneta_cleanup_txqs(pp);
2140 return err;
2141 }
2142 }
2143
2144 return 0;
2145 }
2146
2147 static void mvneta_start_dev(struct mvneta_port *pp)
2148 {
2149 mvneta_max_rx_size_set(pp, pp->pkt_size);
2150 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2151
2152 /* start the Rx/Tx activity */
2153 mvneta_port_enable(pp);
2154
2155 /* Enable polling on the port */
2156 napi_enable(&pp->napi);
2157
2158 /* Unmask interrupts */
2159 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2160 MVNETA_RX_INTR_MASK(rxq_number));
2161
2162 phy_start(pp->phy_dev);
2163 netif_tx_start_all_queues(pp->dev);
2164 }
2165
2166 static void mvneta_stop_dev(struct mvneta_port *pp)
2167 {
2168 phy_stop(pp->phy_dev);
2169
2170 napi_disable(&pp->napi);
2171
2172 netif_carrier_off(pp->dev);
2173
2174 mvneta_port_down(pp);
2175 netif_tx_stop_all_queues(pp->dev);
2176
2177 /* Stop the port activity */
2178 mvneta_port_disable(pp);
2179
2180 /* Clear all ethernet port interrupts */
2181 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2182 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2183
2184 /* Mask all ethernet port interrupts */
2185 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2186 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2187 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2188
2189 mvneta_tx_reset(pp);
2190 mvneta_rx_reset(pp);
2191 }
2192
2193 /* tx timeout callback - display a message and stop/start the network device */
2194 static void mvneta_tx_timeout(struct net_device *dev)
2195 {
2196 struct mvneta_port *pp = netdev_priv(dev);
2197
2198 netdev_info(dev, "tx timeout\n");
2199 mvneta_stop_dev(pp);
2200 mvneta_start_dev(pp);
2201 }
2202
2203 /* Return positive if MTU is valid */
2204 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2205 {
2206 if (mtu < 68) {
2207 netdev_err(dev, "cannot change mtu to less than 68\n");
2208 return -EINVAL;
2209 }
2210
2211 /* 9676 == 9700 - 20 and rounding to 8 */
2212 if (mtu > 9676) {
2213 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2214 mtu = 9676;
2215 }
2216
2217 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2218 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2219 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2220 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2221 }
2222
2223 return mtu;
2224 }
2225
2226 /* Change the device mtu */
2227 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2228 {
2229 struct mvneta_port *pp = netdev_priv(dev);
2230 int ret;
2231
2232 mtu = mvneta_check_mtu_valid(dev, mtu);
2233 if (mtu < 0)
2234 return -EINVAL;
2235
2236 dev->mtu = mtu;
2237
2238 if (!netif_running(dev))
2239 return 0;
2240
2241 /* The interface is running, so we have to force a
2242 * reallocation of the RXQs
2243 */
2244 mvneta_stop_dev(pp);
2245
2246 mvneta_cleanup_txqs(pp);
2247 mvneta_cleanup_rxqs(pp);
2248
2249 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2250
2251 ret = mvneta_setup_rxqs(pp);
2252 if (ret) {
2253 netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
2254 return ret;
2255 }
2256
2257 mvneta_setup_txqs(pp);
2258
2259 mvneta_start_dev(pp);
2260 mvneta_port_up(pp);
2261
2262 return 0;
2263 }
2264
2265 /* Handle setting mac address */
2266 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2267 {
2268 struct mvneta_port *pp = netdev_priv(dev);
2269 u8 *mac = addr + 2;
2270 int i;
2271
2272 if (netif_running(dev))
2273 return -EBUSY;
2274
2275 /* Remove previous address table entry */
2276 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2277
2278 /* Set new addr in hw */
2279 mvneta_mac_addr_set(pp, mac, rxq_def);
2280
2281 /* Set addr in the device */
2282 for (i = 0; i < ETH_ALEN; i++)
2283 dev->dev_addr[i] = mac[i];
2284
2285 return 0;
2286 }
2287
2288 static void mvneta_adjust_link(struct net_device *ndev)
2289 {
2290 struct mvneta_port *pp = netdev_priv(ndev);
2291 struct phy_device *phydev = pp->phy_dev;
2292 int status_change = 0;
2293
2294 if (phydev->link) {
2295 if ((pp->speed != phydev->speed) ||
2296 (pp->duplex != phydev->duplex)) {
2297 u32 val;
2298
2299 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2300 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2301 MVNETA_GMAC_CONFIG_GMII_SPEED |
2302 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2303
2304 if (phydev->duplex)
2305 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2306
2307 if (phydev->speed == SPEED_1000)
2308 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2309 else
2310 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2311
2312 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2313
2314 pp->duplex = phydev->duplex;
2315 pp->speed = phydev->speed;
2316 }
2317 }
2318
2319 if (phydev->link != pp->link) {
2320 if (!phydev->link) {
2321 pp->duplex = -1;
2322 pp->speed = 0;
2323 }
2324
2325 pp->link = phydev->link;
2326 status_change = 1;
2327 }
2328
2329 if (status_change) {
2330 if (phydev->link) {
2331 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2332 val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2333 MVNETA_GMAC_FORCE_LINK_DOWN);
2334 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2335 mvneta_port_up(pp);
2336 netdev_info(pp->dev, "link up\n");
2337 } else {
2338 mvneta_port_down(pp);
2339 netdev_info(pp->dev, "link down\n");
2340 }
2341 }
2342 }
2343
2344 static int mvneta_mdio_probe(struct mvneta_port *pp)
2345 {
2346 struct phy_device *phy_dev;
2347
2348 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2349 pp->phy_interface);
2350 if (!phy_dev) {
2351 netdev_err(pp->dev, "could not find the PHY\n");
2352 return -ENODEV;
2353 }
2354
2355 phy_dev->supported &= PHY_GBIT_FEATURES;
2356 phy_dev->advertising = phy_dev->supported;
2357
2358 pp->phy_dev = phy_dev;
2359 pp->link = 0;
2360 pp->duplex = 0;
2361 pp->speed = 0;
2362
2363 return 0;
2364 }
2365
2366 static void mvneta_mdio_remove(struct mvneta_port *pp)
2367 {
2368 phy_disconnect(pp->phy_dev);
2369 pp->phy_dev = NULL;
2370 }
2371
2372 static int mvneta_open(struct net_device *dev)
2373 {
2374 struct mvneta_port *pp = netdev_priv(dev);
2375 int ret;
2376
2377 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2378
2379 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2380
2381 ret = mvneta_setup_rxqs(pp);
2382 if (ret)
2383 return ret;
2384
2385 ret = mvneta_setup_txqs(pp);
2386 if (ret)
2387 goto err_cleanup_rxqs;
2388
2389 /* Connect to port interrupt line */
2390 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2391 MVNETA_DRIVER_NAME, pp);
2392 if (ret) {
2393 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2394 goto err_cleanup_txqs;
2395 }
2396
2397 /* In default link is down */
2398 netif_carrier_off(pp->dev);
2399
2400 ret = mvneta_mdio_probe(pp);
2401 if (ret < 0) {
2402 netdev_err(dev, "cannot probe MDIO bus\n");
2403 goto err_free_irq;
2404 }
2405
2406 mvneta_start_dev(pp);
2407
2408 return 0;
2409
2410 err_free_irq:
2411 free_irq(pp->dev->irq, pp);
2412 err_cleanup_txqs:
2413 mvneta_cleanup_txqs(pp);
2414 err_cleanup_rxqs:
2415 mvneta_cleanup_rxqs(pp);
2416 return ret;
2417 }
2418
2419 /* Stop the port, free port interrupt line */
2420 static int mvneta_stop(struct net_device *dev)
2421 {
2422 struct mvneta_port *pp = netdev_priv(dev);
2423
2424 mvneta_stop_dev(pp);
2425 mvneta_mdio_remove(pp);
2426 free_irq(dev->irq, pp);
2427 mvneta_cleanup_rxqs(pp);
2428 mvneta_cleanup_txqs(pp);
2429 del_timer(&pp->tx_done_timer);
2430 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
2431
2432 return 0;
2433 }
2434
2435 /* Ethtool methods */
2436
2437 /* Get settings (phy address, speed) for ethtools */
2438 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2439 {
2440 struct mvneta_port *pp = netdev_priv(dev);
2441
2442 if (!pp->phy_dev)
2443 return -ENODEV;
2444
2445 return phy_ethtool_gset(pp->phy_dev, cmd);
2446 }
2447
2448 /* Set settings (phy address, speed) for ethtools */
2449 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2450 {
2451 struct mvneta_port *pp = netdev_priv(dev);
2452
2453 if (!pp->phy_dev)
2454 return -ENODEV;
2455
2456 return phy_ethtool_sset(pp->phy_dev, cmd);
2457 }
2458
2459 /* Set interrupt coalescing for ethtools */
2460 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2461 struct ethtool_coalesce *c)
2462 {
2463 struct mvneta_port *pp = netdev_priv(dev);
2464 int queue;
2465
2466 for (queue = 0; queue < rxq_number; queue++) {
2467 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2468 rxq->time_coal = c->rx_coalesce_usecs;
2469 rxq->pkts_coal = c->rx_max_coalesced_frames;
2470 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2471 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2472 }
2473
2474 for (queue = 0; queue < txq_number; queue++) {
2475 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2476 txq->done_pkts_coal = c->tx_max_coalesced_frames;
2477 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2478 }
2479
2480 return 0;
2481 }
2482
2483 /* get coalescing for ethtools */
2484 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2485 struct ethtool_coalesce *c)
2486 {
2487 struct mvneta_port *pp = netdev_priv(dev);
2488
2489 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
2490 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
2491
2492 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
2493 return 0;
2494 }
2495
2496
2497 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2498 struct ethtool_drvinfo *drvinfo)
2499 {
2500 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2501 sizeof(drvinfo->driver));
2502 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2503 sizeof(drvinfo->version));
2504 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2505 sizeof(drvinfo->bus_info));
2506 }
2507
2508
2509 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2510 struct ethtool_ringparam *ring)
2511 {
2512 struct mvneta_port *pp = netdev_priv(netdev);
2513
2514 ring->rx_max_pending = MVNETA_MAX_RXD;
2515 ring->tx_max_pending = MVNETA_MAX_TXD;
2516 ring->rx_pending = pp->rx_ring_size;
2517 ring->tx_pending = pp->tx_ring_size;
2518 }
2519
2520 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2521 struct ethtool_ringparam *ring)
2522 {
2523 struct mvneta_port *pp = netdev_priv(dev);
2524
2525 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2526 return -EINVAL;
2527 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2528 ring->rx_pending : MVNETA_MAX_RXD;
2529 pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
2530 ring->tx_pending : MVNETA_MAX_TXD;
2531
2532 if (netif_running(dev)) {
2533 mvneta_stop(dev);
2534 if (mvneta_open(dev)) {
2535 netdev_err(dev,
2536 "error on opening device after ring param change\n");
2537 return -ENOMEM;
2538 }
2539 }
2540
2541 return 0;
2542 }
2543
2544 static const struct net_device_ops mvneta_netdev_ops = {
2545 .ndo_open = mvneta_open,
2546 .ndo_stop = mvneta_stop,
2547 .ndo_start_xmit = mvneta_tx,
2548 .ndo_set_rx_mode = mvneta_set_rx_mode,
2549 .ndo_set_mac_address = mvneta_set_mac_addr,
2550 .ndo_change_mtu = mvneta_change_mtu,
2551 .ndo_tx_timeout = mvneta_tx_timeout,
2552 .ndo_get_stats64 = mvneta_get_stats64,
2553 };
2554
2555 const struct ethtool_ops mvneta_eth_tool_ops = {
2556 .get_link = ethtool_op_get_link,
2557 .get_settings = mvneta_ethtool_get_settings,
2558 .set_settings = mvneta_ethtool_set_settings,
2559 .set_coalesce = mvneta_ethtool_set_coalesce,
2560 .get_coalesce = mvneta_ethtool_get_coalesce,
2561 .get_drvinfo = mvneta_ethtool_get_drvinfo,
2562 .get_ringparam = mvneta_ethtool_get_ringparam,
2563 .set_ringparam = mvneta_ethtool_set_ringparam,
2564 };
2565
2566 /* Initialize hw */
2567 static int __devinit mvneta_init(struct mvneta_port *pp, int phy_addr)
2568 {
2569 int queue;
2570
2571 /* Disable port */
2572 mvneta_port_disable(pp);
2573
2574 /* Set port default values */
2575 mvneta_defaults_set(pp);
2576
2577 pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
2578 GFP_KERNEL);
2579 if (!pp->txqs)
2580 return -ENOMEM;
2581
2582 /* Initialize TX descriptor rings */
2583 for (queue = 0; queue < txq_number; queue++) {
2584 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2585 txq->id = queue;
2586 txq->size = pp->tx_ring_size;
2587 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2588 }
2589
2590 pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
2591 GFP_KERNEL);
2592 if (!pp->rxqs) {
2593 kfree(pp->txqs);
2594 return -ENOMEM;
2595 }
2596
2597 /* Create Rx descriptor rings */
2598 for (queue = 0; queue < rxq_number; queue++) {
2599 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2600 rxq->id = queue;
2601 rxq->size = pp->rx_ring_size;
2602 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2603 rxq->time_coal = MVNETA_RX_COAL_USEC;
2604 }
2605
2606 return 0;
2607 }
2608
2609 static void __devexit mvneta_deinit(struct mvneta_port *pp)
2610 {
2611 kfree(pp->txqs);
2612 kfree(pp->rxqs);
2613 }
2614
2615 /* platform glue : initialize decoding windows */
2616 static void __devinit
2617 mvneta_conf_mbus_windows(struct mvneta_port *pp,
2618 const struct mbus_dram_target_info *dram)
2619 {
2620 u32 win_enable;
2621 u32 win_protect;
2622 int i;
2623
2624 for (i = 0; i < 6; i++) {
2625 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2626 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2627
2628 if (i < 4)
2629 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2630 }
2631
2632 win_enable = 0x3f;
2633 win_protect = 0;
2634
2635 for (i = 0; i < dram->num_cs; i++) {
2636 const struct mbus_dram_window *cs = dram->cs + i;
2637 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2638 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2639
2640 mvreg_write(pp, MVNETA_WIN_SIZE(i),
2641 (cs->size - 1) & 0xffff0000);
2642
2643 win_enable &= ~(1 << i);
2644 win_protect |= 3 << (2 * i);
2645 }
2646
2647 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2648 }
2649
2650 /* Power up the port */
2651 static void __devinit mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2652 {
2653 u32 val;
2654
2655 /* MAC Cause register should be cleared */
2656 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2657
2658 if (phy_mode == PHY_INTERFACE_MODE_SGMII)
2659 mvneta_port_sgmii_config(pp);
2660
2661 mvneta_gmac_rgmii_set(pp, 1);
2662
2663 /* Cancel Port Reset */
2664 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2665 val &= ~MVNETA_GMAC2_PORT_RESET;
2666 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
2667
2668 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2669 MVNETA_GMAC2_PORT_RESET) != 0)
2670 continue;
2671 }
2672
2673 /* Device initialization routine */
2674 static int __devinit mvneta_probe(struct platform_device *pdev)
2675 {
2676 const struct mbus_dram_target_info *dram_target_info;
2677 struct device_node *dn = pdev->dev.of_node;
2678 struct device_node *phy_node;
2679 u32 phy_addr;
2680 struct mvneta_port *pp;
2681 struct net_device *dev;
2682 const char *mac_addr;
2683 int phy_mode;
2684 int err;
2685
2686 /* Our multiqueue support is not complete, so for now, only
2687 * allow the usage of the first RX queue
2688 */
2689 if (rxq_def != 0) {
2690 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2691 return -EINVAL;
2692 }
2693
2694 dev = alloc_etherdev_mq(sizeof(struct mvneta_port), 8);
2695 if (!dev)
2696 return -ENOMEM;
2697
2698 dev->irq = irq_of_parse_and_map(dn, 0);
2699 if (dev->irq == 0) {
2700 err = -EINVAL;
2701 goto err_free_netdev;
2702 }
2703
2704 phy_node = of_parse_phandle(dn, "phy", 0);
2705 if (!phy_node) {
2706 dev_err(&pdev->dev, "no associated PHY\n");
2707 err = -ENODEV;
2708 goto err_free_irq;
2709 }
2710
2711 phy_mode = of_get_phy_mode(dn);
2712 if (phy_mode < 0) {
2713 dev_err(&pdev->dev, "incorrect phy-mode\n");
2714 err = -EINVAL;
2715 goto err_free_irq;
2716 }
2717
2718 mac_addr = of_get_mac_address(dn);
2719
2720 if (!mac_addr || !is_valid_ether_addr(mac_addr))
2721 eth_hw_addr_random(dev);
2722 else
2723 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
2724
2725 dev->tx_queue_len = MVNETA_MAX_TXD;
2726 dev->watchdog_timeo = 5 * HZ;
2727 dev->netdev_ops = &mvneta_netdev_ops;
2728
2729 SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
2730
2731 pp = netdev_priv(dev);
2732
2733 pp->tx_done_timer.function = mvneta_tx_done_timer_callback;
2734 init_timer(&pp->tx_done_timer);
2735 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
2736
2737 pp->weight = MVNETA_RX_POLL_WEIGHT;
2738 pp->phy_node = phy_node;
2739 pp->phy_interface = phy_mode;
2740
2741 pp->base = of_iomap(dn, 0);
2742 if (pp->base == NULL) {
2743 err = -ENOMEM;
2744 goto err_free_irq;
2745 }
2746
2747 pp->clk = devm_clk_get(&pdev->dev, NULL);
2748 if (IS_ERR(pp->clk)) {
2749 err = PTR_ERR(pp->clk);
2750 goto err_unmap;
2751 }
2752
2753 clk_prepare_enable(pp->clk);
2754
2755 pp->tx_done_timer.data = (unsigned long)dev;
2756
2757 pp->tx_ring_size = MVNETA_MAX_TXD;
2758 pp->rx_ring_size = MVNETA_MAX_RXD;
2759
2760 pp->dev = dev;
2761 SET_NETDEV_DEV(dev, &pdev->dev);
2762
2763 err = mvneta_init(pp, phy_addr);
2764 if (err < 0) {
2765 dev_err(&pdev->dev, "can't init eth hal\n");
2766 goto err_clk;
2767 }
2768 mvneta_port_power_up(pp, phy_mode);
2769
2770 dram_target_info = mv_mbus_dram_info();
2771 if (dram_target_info)
2772 mvneta_conf_mbus_windows(pp, dram_target_info);
2773
2774 netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
2775
2776 err = register_netdev(dev);
2777 if (err < 0) {
2778 dev_err(&pdev->dev, "failed to register\n");
2779 goto err_deinit;
2780 }
2781
2782 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
2783 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM;
2784 dev->priv_flags |= IFF_UNICAST_FLT;
2785
2786 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
2787
2788 platform_set_drvdata(pdev, pp->dev);
2789
2790 return 0;
2791
2792 err_deinit:
2793 mvneta_deinit(pp);
2794 err_clk:
2795 clk_disable_unprepare(pp->clk);
2796 err_unmap:
2797 iounmap(pp->base);
2798 err_free_irq:
2799 irq_dispose_mapping(dev->irq);
2800 err_free_netdev:
2801 free_netdev(dev);
2802 return err;
2803 }
2804
2805 /* Device removal routine */
2806 static int __devexit mvneta_remove(struct platform_device *pdev)
2807 {
2808 struct net_device *dev = platform_get_drvdata(pdev);
2809 struct mvneta_port *pp = netdev_priv(dev);
2810
2811 unregister_netdev(dev);
2812 mvneta_deinit(pp);
2813 clk_disable_unprepare(pp->clk);
2814 iounmap(pp->base);
2815 irq_dispose_mapping(dev->irq);
2816 free_netdev(dev);
2817
2818 platform_set_drvdata(pdev, NULL);
2819
2820 return 0;
2821 }
2822
2823 static const struct of_device_id mvneta_match[] = {
2824 { .compatible = "marvell,armada-370-neta" },
2825 { }
2826 };
2827 MODULE_DEVICE_TABLE(of, mvneta_match);
2828
2829 static struct platform_driver mvneta_driver = {
2830 .probe = mvneta_probe,
2831 .remove = __devexit_p(mvneta_remove),
2832 .driver = {
2833 .name = MVNETA_DRIVER_NAME,
2834 .of_match_table = mvneta_match,
2835 },
2836 };
2837
2838 module_platform_driver(mvneta_driver);
2839
2840 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
2841 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
2842 MODULE_LICENSE("GPL");
2843
2844 module_param(rxq_number, int, S_IRUGO);
2845 module_param(txq_number, int, S_IRUGO);
2846
2847 module_param(rxq_def, int, S_IRUGO);
2848 module_param(txq_def, int, S_IRUGO);
This page took 0.1073 seconds and 5 git commands to generate.