Merge tag 'backlight-fixes-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / ethernet / marvell / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/if_vlan.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26 #include <linux/io.h>
27 #include <net/tso.h>
28 #include <linux/of.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_address.h>
33 #include <linux/phy.h>
34 #include <linux/clk.h>
35
36 /* Registers */
37 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
38 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
39 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
40 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
41 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
42 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
43 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
44 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
45 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
46 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
47 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
48 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
49 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
50 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
51 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
52 #define MVNETA_PORT_RX_RESET 0x1cc0
53 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
54 #define MVNETA_PHY_ADDR 0x2000
55 #define MVNETA_PHY_ADDR_MASK 0x1f
56 #define MVNETA_MBUS_RETRY 0x2010
57 #define MVNETA_UNIT_INTR_CAUSE 0x2080
58 #define MVNETA_UNIT_CONTROL 0x20B0
59 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
60 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
61 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
62 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
63 #define MVNETA_BASE_ADDR_ENABLE 0x2290
64 #define MVNETA_PORT_CONFIG 0x2400
65 #define MVNETA_UNI_PROMISC_MODE BIT(0)
66 #define MVNETA_DEF_RXQ(q) ((q) << 1)
67 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
68 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
69 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
70 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
71 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
72 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
73 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
74 MVNETA_DEF_RXQ_ARP(q) | \
75 MVNETA_DEF_RXQ_TCP(q) | \
76 MVNETA_DEF_RXQ_UDP(q) | \
77 MVNETA_DEF_RXQ_BPDU(q) | \
78 MVNETA_TX_UNSET_ERR_SUM | \
79 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
80 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
81 #define MVNETA_MAC_ADDR_LOW 0x2414
82 #define MVNETA_MAC_ADDR_HIGH 0x2418
83 #define MVNETA_SDMA_CONFIG 0x241c
84 #define MVNETA_SDMA_BRST_SIZE_16 4
85 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
86 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
87 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
88 #define MVNETA_DESC_SWAP BIT(6)
89 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
90 #define MVNETA_PORT_STATUS 0x2444
91 #define MVNETA_TX_IN_PRGRS BIT(1)
92 #define MVNETA_TX_FIFO_EMPTY BIT(8)
93 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
94 #define MVNETA_SERDES_CFG 0x24A0
95 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
96 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
97 #define MVNETA_TYPE_PRIO 0x24bc
98 #define MVNETA_FORCE_UNI BIT(21)
99 #define MVNETA_TXQ_CMD_1 0x24e4
100 #define MVNETA_TXQ_CMD 0x2448
101 #define MVNETA_TXQ_DISABLE_SHIFT 8
102 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
103 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
104 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
105 #define MVNETA_ACC_MODE 0x2500
106 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
107 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
108 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
109 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
110
111 /* Exception Interrupt Port/Queue Cause register */
112
113 #define MVNETA_INTR_NEW_CAUSE 0x25a0
114 #define MVNETA_INTR_NEW_MASK 0x25a4
115
116 /* bits 0..7 = TXQ SENT, one bit per queue.
117 * bits 8..15 = RXQ OCCUP, one bit per queue.
118 * bits 16..23 = RXQ FREE, one bit per queue.
119 * bit 29 = OLD_REG_SUM, see old reg ?
120 * bit 30 = TX_ERR_SUM, one bit for 4 ports
121 * bit 31 = MISC_SUM, one bit for 4 ports
122 */
123 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
124 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
125 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
126 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
127 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
128
129 #define MVNETA_INTR_OLD_CAUSE 0x25a8
130 #define MVNETA_INTR_OLD_MASK 0x25ac
131
132 /* Data Path Port/Queue Cause Register */
133 #define MVNETA_INTR_MISC_CAUSE 0x25b0
134 #define MVNETA_INTR_MISC_MASK 0x25b4
135
136 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
137 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
138 #define MVNETA_CAUSE_PTP BIT(4)
139
140 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
141 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
142 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
143 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
144 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
145 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
146 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
147 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
148
149 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
150 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
151 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
152
153 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
154 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
155 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
156
157 #define MVNETA_INTR_ENABLE 0x25b8
158 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
159 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF
160
161 #define MVNETA_RXQ_CMD 0x2680
162 #define MVNETA_RXQ_DISABLE_SHIFT 8
163 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
164 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
165 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
166 #define MVNETA_GMAC_CTRL_0 0x2c00
167 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
168 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
169 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
170 #define MVNETA_GMAC_CTRL_2 0x2c08
171 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
172 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
173 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
174 #define MVNETA_GMAC2_PORT_RESET BIT(6)
175 #define MVNETA_GMAC_STATUS 0x2c10
176 #define MVNETA_GMAC_LINK_UP BIT(0)
177 #define MVNETA_GMAC_SPEED_1000 BIT(1)
178 #define MVNETA_GMAC_SPEED_100 BIT(2)
179 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
180 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
181 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
182 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
183 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
184 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
185 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
186 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
187 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
188 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
189 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
190 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
191 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
192 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
193 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
194 #define MVNETA_MIB_COUNTERS_BASE 0x3080
195 #define MVNETA_MIB_LATE_COLLISION 0x7c
196 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
197 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
198 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
199 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
200 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
201 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
202 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
203 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
204 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
205 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
206 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
207 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
208 #define MVNETA_PORT_TX_RESET 0x3cf0
209 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
210 #define MVNETA_TX_MTU 0x3e0c
211 #define MVNETA_TX_TOKEN_SIZE 0x3e14
212 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
213 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
214 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
215
216 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
217
218 /* Descriptor ring Macros */
219 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
220 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
221
222 /* Various constants */
223
224 /* Coalescing */
225 #define MVNETA_TXDONE_COAL_PKTS 1
226 #define MVNETA_RX_COAL_PKTS 32
227 #define MVNETA_RX_COAL_USEC 100
228
229 /* The two bytes Marvell header. Either contains a special value used
230 * by Marvell switches when a specific hardware mode is enabled (not
231 * supported by this driver) or is filled automatically by zeroes on
232 * the RX side. Those two bytes being at the front of the Ethernet
233 * header, they allow to have the IP header aligned on a 4 bytes
234 * boundary automatically: the hardware skips those two bytes on its
235 * own.
236 */
237 #define MVNETA_MH_SIZE 2
238
239 #define MVNETA_VLAN_TAG_LEN 4
240
241 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
242 #define MVNETA_TX_CSUM_MAX_SIZE 9800
243 #define MVNETA_ACC_MODE_EXT 1
244
245 /* Timeout constants */
246 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
247 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
248 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
249
250 #define MVNETA_TX_MTU_MAX 0x3ffff
251
252 /* TSO header size */
253 #define TSO_HEADER_SIZE 128
254
255 /* Max number of Rx descriptors */
256 #define MVNETA_MAX_RXD 128
257
258 /* Max number of Tx descriptors */
259 #define MVNETA_MAX_TXD 532
260
261 /* Max number of allowed TCP segments for software TSO */
262 #define MVNETA_MAX_TSO_SEGS 100
263
264 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
265
266 /* descriptor aligned size */
267 #define MVNETA_DESC_ALIGNED_SIZE 32
268
269 #define MVNETA_RX_PKT_SIZE(mtu) \
270 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
271 ETH_HLEN + ETH_FCS_LEN, \
272 MVNETA_CPU_D_CACHE_LINE_SIZE)
273
274 #define IS_TSO_HEADER(txq, addr) \
275 ((addr >= txq->tso_hdrs_phys) && \
276 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
277
278 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
279
280 struct mvneta_pcpu_stats {
281 struct u64_stats_sync syncp;
282 u64 rx_packets;
283 u64 rx_bytes;
284 u64 tx_packets;
285 u64 tx_bytes;
286 };
287
288 struct mvneta_port {
289 int pkt_size;
290 unsigned int frag_size;
291 void __iomem *base;
292 struct mvneta_rx_queue *rxqs;
293 struct mvneta_tx_queue *txqs;
294 struct net_device *dev;
295
296 u32 cause_rx_tx;
297 struct napi_struct napi;
298
299 /* Core clock */
300 struct clk *clk;
301 u8 mcast_count[256];
302 u16 tx_ring_size;
303 u16 rx_ring_size;
304 struct mvneta_pcpu_stats *stats;
305
306 struct mii_bus *mii_bus;
307 struct phy_device *phy_dev;
308 phy_interface_t phy_interface;
309 struct device_node *phy_node;
310 unsigned int link;
311 unsigned int duplex;
312 unsigned int speed;
313 int use_inband_status:1;
314 };
315
316 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
317 * layout of the transmit and reception DMA descriptors, and their
318 * layout is therefore defined by the hardware design
319 */
320
321 #define MVNETA_TX_L3_OFF_SHIFT 0
322 #define MVNETA_TX_IP_HLEN_SHIFT 8
323 #define MVNETA_TX_L4_UDP BIT(16)
324 #define MVNETA_TX_L3_IP6 BIT(17)
325 #define MVNETA_TXD_IP_CSUM BIT(18)
326 #define MVNETA_TXD_Z_PAD BIT(19)
327 #define MVNETA_TXD_L_DESC BIT(20)
328 #define MVNETA_TXD_F_DESC BIT(21)
329 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
330 MVNETA_TXD_L_DESC | \
331 MVNETA_TXD_F_DESC)
332 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
333 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
334
335 #define MVNETA_RXD_ERR_CRC 0x0
336 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
337 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
338 #define MVNETA_RXD_ERR_LEN BIT(18)
339 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
340 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
341 #define MVNETA_RXD_L3_IP4 BIT(25)
342 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
343 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
344
345 #if defined(__LITTLE_ENDIAN)
346 struct mvneta_tx_desc {
347 u32 command; /* Options used by HW for packet transmitting.*/
348 u16 reserverd1; /* csum_l4 (for future use) */
349 u16 data_size; /* Data size of transmitted packet in bytes */
350 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
351 u32 reserved2; /* hw_cmd - (for future use, PMT) */
352 u32 reserved3[4]; /* Reserved - (for future use) */
353 };
354
355 struct mvneta_rx_desc {
356 u32 status; /* Info about received packet */
357 u16 reserved1; /* pnc_info - (for future use, PnC) */
358 u16 data_size; /* Size of received packet in bytes */
359
360 u32 buf_phys_addr; /* Physical address of the buffer */
361 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
362
363 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
364 u16 reserved3; /* prefetch_cmd, for future use */
365 u16 reserved4; /* csum_l4 - (for future use, PnC) */
366
367 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
368 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
369 };
370 #else
371 struct mvneta_tx_desc {
372 u16 data_size; /* Data size of transmitted packet in bytes */
373 u16 reserverd1; /* csum_l4 (for future use) */
374 u32 command; /* Options used by HW for packet transmitting.*/
375 u32 reserved2; /* hw_cmd - (for future use, PMT) */
376 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
377 u32 reserved3[4]; /* Reserved - (for future use) */
378 };
379
380 struct mvneta_rx_desc {
381 u16 data_size; /* Size of received packet in bytes */
382 u16 reserved1; /* pnc_info - (for future use, PnC) */
383 u32 status; /* Info about received packet */
384
385 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
386 u32 buf_phys_addr; /* Physical address of the buffer */
387
388 u16 reserved4; /* csum_l4 - (for future use, PnC) */
389 u16 reserved3; /* prefetch_cmd, for future use */
390 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
391
392 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
393 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
394 };
395 #endif
396
397 struct mvneta_tx_queue {
398 /* Number of this TX queue, in the range 0-7 */
399 u8 id;
400
401 /* Number of TX DMA descriptors in the descriptor ring */
402 int size;
403
404 /* Number of currently used TX DMA descriptor in the
405 * descriptor ring
406 */
407 int count;
408 int tx_stop_threshold;
409 int tx_wake_threshold;
410
411 /* Array of transmitted skb */
412 struct sk_buff **tx_skb;
413
414 /* Index of last TX DMA descriptor that was inserted */
415 int txq_put_index;
416
417 /* Index of the TX DMA descriptor to be cleaned up */
418 int txq_get_index;
419
420 u32 done_pkts_coal;
421
422 /* Virtual address of the TX DMA descriptors array */
423 struct mvneta_tx_desc *descs;
424
425 /* DMA address of the TX DMA descriptors array */
426 dma_addr_t descs_phys;
427
428 /* Index of the last TX DMA descriptor */
429 int last_desc;
430
431 /* Index of the next TX DMA descriptor to process */
432 int next_desc_to_proc;
433
434 /* DMA buffers for TSO headers */
435 char *tso_hdrs;
436
437 /* DMA address of TSO headers */
438 dma_addr_t tso_hdrs_phys;
439 };
440
441 struct mvneta_rx_queue {
442 /* rx queue number, in the range 0-7 */
443 u8 id;
444
445 /* num of rx descriptors in the rx descriptor ring */
446 int size;
447
448 /* counter of times when mvneta_refill() failed */
449 int missed;
450
451 u32 pkts_coal;
452 u32 time_coal;
453
454 /* Virtual address of the RX DMA descriptors array */
455 struct mvneta_rx_desc *descs;
456
457 /* DMA address of the RX DMA descriptors array */
458 dma_addr_t descs_phys;
459
460 /* Index of the last RX DMA descriptor */
461 int last_desc;
462
463 /* Index of the next RX DMA descriptor to process */
464 int next_desc_to_proc;
465 };
466
467 /* The hardware supports eight (8) rx queues, but we are only allowing
468 * the first one to be used. Therefore, let's just allocate one queue.
469 */
470 static int rxq_number = 1;
471 static int txq_number = 8;
472
473 static int rxq_def;
474
475 static int rx_copybreak __read_mostly = 256;
476
477 #define MVNETA_DRIVER_NAME "mvneta"
478 #define MVNETA_DRIVER_VERSION "1.0"
479
480 /* Utility/helper methods */
481
482 /* Write helper method */
483 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
484 {
485 writel(data, pp->base + offset);
486 }
487
488 /* Read helper method */
489 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
490 {
491 return readl(pp->base + offset);
492 }
493
494 /* Increment txq get counter */
495 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
496 {
497 txq->txq_get_index++;
498 if (txq->txq_get_index == txq->size)
499 txq->txq_get_index = 0;
500 }
501
502 /* Increment txq put counter */
503 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
504 {
505 txq->txq_put_index++;
506 if (txq->txq_put_index == txq->size)
507 txq->txq_put_index = 0;
508 }
509
510
511 /* Clear all MIB counters */
512 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
513 {
514 int i;
515 u32 dummy;
516
517 /* Perform dummy reads from MIB counters */
518 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
519 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
520 }
521
522 /* Get System Network Statistics */
523 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
524 struct rtnl_link_stats64 *stats)
525 {
526 struct mvneta_port *pp = netdev_priv(dev);
527 unsigned int start;
528 int cpu;
529
530 for_each_possible_cpu(cpu) {
531 struct mvneta_pcpu_stats *cpu_stats;
532 u64 rx_packets;
533 u64 rx_bytes;
534 u64 tx_packets;
535 u64 tx_bytes;
536
537 cpu_stats = per_cpu_ptr(pp->stats, cpu);
538 do {
539 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
540 rx_packets = cpu_stats->rx_packets;
541 rx_bytes = cpu_stats->rx_bytes;
542 tx_packets = cpu_stats->tx_packets;
543 tx_bytes = cpu_stats->tx_bytes;
544 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
545
546 stats->rx_packets += rx_packets;
547 stats->rx_bytes += rx_bytes;
548 stats->tx_packets += tx_packets;
549 stats->tx_bytes += tx_bytes;
550 }
551
552 stats->rx_errors = dev->stats.rx_errors;
553 stats->rx_dropped = dev->stats.rx_dropped;
554
555 stats->tx_dropped = dev->stats.tx_dropped;
556
557 return stats;
558 }
559
560 /* Rx descriptors helper methods */
561
562 /* Checks whether the RX descriptor having this status is both the first
563 * and the last descriptor for the RX packet. Each RX packet is currently
564 * received through a single RX descriptor, so not having each RX
565 * descriptor with its first and last bits set is an error
566 */
567 static int mvneta_rxq_desc_is_first_last(u32 status)
568 {
569 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
570 MVNETA_RXD_FIRST_LAST_DESC;
571 }
572
573 /* Add number of descriptors ready to receive new packets */
574 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
575 struct mvneta_rx_queue *rxq,
576 int ndescs)
577 {
578 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
579 * be added at once
580 */
581 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
582 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
583 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
584 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
585 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
586 }
587
588 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
589 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
590 }
591
592 /* Get number of RX descriptors occupied by received packets */
593 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
594 struct mvneta_rx_queue *rxq)
595 {
596 u32 val;
597
598 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
599 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
600 }
601
602 /* Update num of rx desc called upon return from rx path or
603 * from mvneta_rxq_drop_pkts().
604 */
605 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
606 struct mvneta_rx_queue *rxq,
607 int rx_done, int rx_filled)
608 {
609 u32 val;
610
611 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
612 val = rx_done |
613 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
614 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
615 return;
616 }
617
618 /* Only 255 descriptors can be added at once */
619 while ((rx_done > 0) || (rx_filled > 0)) {
620 if (rx_done <= 0xff) {
621 val = rx_done;
622 rx_done = 0;
623 } else {
624 val = 0xff;
625 rx_done -= 0xff;
626 }
627 if (rx_filled <= 0xff) {
628 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
629 rx_filled = 0;
630 } else {
631 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
632 rx_filled -= 0xff;
633 }
634 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
635 }
636 }
637
638 /* Get pointer to next RX descriptor to be processed by SW */
639 static struct mvneta_rx_desc *
640 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
641 {
642 int rx_desc = rxq->next_desc_to_proc;
643
644 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
645 prefetch(rxq->descs + rxq->next_desc_to_proc);
646 return rxq->descs + rx_desc;
647 }
648
649 /* Change maximum receive size of the port. */
650 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
651 {
652 u32 val;
653
654 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
655 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
656 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
657 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
658 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
659 }
660
661
662 /* Set rx queue offset */
663 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
664 struct mvneta_rx_queue *rxq,
665 int offset)
666 {
667 u32 val;
668
669 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
670 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
671
672 /* Offset is in */
673 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
674 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
675 }
676
677
678 /* Tx descriptors helper methods */
679
680 /* Update HW with number of TX descriptors to be sent */
681 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
682 struct mvneta_tx_queue *txq,
683 int pend_desc)
684 {
685 u32 val;
686
687 /* Only 255 descriptors can be added at once ; Assume caller
688 * process TX desriptors in quanta less than 256
689 */
690 val = pend_desc;
691 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
692 }
693
694 /* Get pointer to next TX descriptor to be processed (send) by HW */
695 static struct mvneta_tx_desc *
696 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
697 {
698 int tx_desc = txq->next_desc_to_proc;
699
700 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
701 return txq->descs + tx_desc;
702 }
703
704 /* Release the last allocated TX descriptor. Useful to handle DMA
705 * mapping failures in the TX path.
706 */
707 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
708 {
709 if (txq->next_desc_to_proc == 0)
710 txq->next_desc_to_proc = txq->last_desc - 1;
711 else
712 txq->next_desc_to_proc--;
713 }
714
715 /* Set rxq buf size */
716 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
717 struct mvneta_rx_queue *rxq,
718 int buf_size)
719 {
720 u32 val;
721
722 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
723
724 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
725 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
726
727 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
728 }
729
730 /* Disable buffer management (BM) */
731 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
732 struct mvneta_rx_queue *rxq)
733 {
734 u32 val;
735
736 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
737 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
738 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
739 }
740
741 /* Start the Ethernet port RX and TX activity */
742 static void mvneta_port_up(struct mvneta_port *pp)
743 {
744 int queue;
745 u32 q_map;
746
747 /* Enable all initialized TXs. */
748 mvneta_mib_counters_clear(pp);
749 q_map = 0;
750 for (queue = 0; queue < txq_number; queue++) {
751 struct mvneta_tx_queue *txq = &pp->txqs[queue];
752 if (txq->descs != NULL)
753 q_map |= (1 << queue);
754 }
755 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
756
757 /* Enable all initialized RXQs. */
758 q_map = 0;
759 for (queue = 0; queue < rxq_number; queue++) {
760 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
761 if (rxq->descs != NULL)
762 q_map |= (1 << queue);
763 }
764
765 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
766 }
767
768 /* Stop the Ethernet port activity */
769 static void mvneta_port_down(struct mvneta_port *pp)
770 {
771 u32 val;
772 int count;
773
774 /* Stop Rx port activity. Check port Rx activity. */
775 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
776
777 /* Issue stop command for active channels only */
778 if (val != 0)
779 mvreg_write(pp, MVNETA_RXQ_CMD,
780 val << MVNETA_RXQ_DISABLE_SHIFT);
781
782 /* Wait for all Rx activity to terminate. */
783 count = 0;
784 do {
785 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
786 netdev_warn(pp->dev,
787 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
788 val);
789 break;
790 }
791 mdelay(1);
792
793 val = mvreg_read(pp, MVNETA_RXQ_CMD);
794 } while (val & 0xff);
795
796 /* Stop Tx port activity. Check port Tx activity. Issue stop
797 * command for active channels only
798 */
799 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
800
801 if (val != 0)
802 mvreg_write(pp, MVNETA_TXQ_CMD,
803 (val << MVNETA_TXQ_DISABLE_SHIFT));
804
805 /* Wait for all Tx activity to terminate. */
806 count = 0;
807 do {
808 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
809 netdev_warn(pp->dev,
810 "TIMEOUT for TX stopped status=0x%08x\n",
811 val);
812 break;
813 }
814 mdelay(1);
815
816 /* Check TX Command reg that all Txqs are stopped */
817 val = mvreg_read(pp, MVNETA_TXQ_CMD);
818
819 } while (val & 0xff);
820
821 /* Double check to verify that TX FIFO is empty */
822 count = 0;
823 do {
824 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
825 netdev_warn(pp->dev,
826 "TX FIFO empty timeout status=0x08%x\n",
827 val);
828 break;
829 }
830 mdelay(1);
831
832 val = mvreg_read(pp, MVNETA_PORT_STATUS);
833 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
834 (val & MVNETA_TX_IN_PRGRS));
835
836 udelay(200);
837 }
838
839 /* Enable the port by setting the port enable bit of the MAC control register */
840 static void mvneta_port_enable(struct mvneta_port *pp)
841 {
842 u32 val;
843
844 /* Enable port */
845 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
846 val |= MVNETA_GMAC0_PORT_ENABLE;
847 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
848 }
849
850 /* Disable the port and wait for about 200 usec before retuning */
851 static void mvneta_port_disable(struct mvneta_port *pp)
852 {
853 u32 val;
854
855 /* Reset the Enable bit in the Serial Control Register */
856 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
857 val &= ~MVNETA_GMAC0_PORT_ENABLE;
858 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
859
860 udelay(200);
861 }
862
863 /* Multicast tables methods */
864
865 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
866 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
867 {
868 int offset;
869 u32 val;
870
871 if (queue == -1) {
872 val = 0;
873 } else {
874 val = 0x1 | (queue << 1);
875 val |= (val << 24) | (val << 16) | (val << 8);
876 }
877
878 for (offset = 0; offset <= 0xc; offset += 4)
879 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
880 }
881
882 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
883 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
884 {
885 int offset;
886 u32 val;
887
888 if (queue == -1) {
889 val = 0;
890 } else {
891 val = 0x1 | (queue << 1);
892 val |= (val << 24) | (val << 16) | (val << 8);
893 }
894
895 for (offset = 0; offset <= 0xfc; offset += 4)
896 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
897
898 }
899
900 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
901 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
902 {
903 int offset;
904 u32 val;
905
906 if (queue == -1) {
907 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
908 val = 0;
909 } else {
910 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
911 val = 0x1 | (queue << 1);
912 val |= (val << 24) | (val << 16) | (val << 8);
913 }
914
915 for (offset = 0; offset <= 0xfc; offset += 4)
916 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
917 }
918
919 /* This method sets defaults to the NETA port:
920 * Clears interrupt Cause and Mask registers.
921 * Clears all MAC tables.
922 * Sets defaults to all registers.
923 * Resets RX and TX descriptor rings.
924 * Resets PHY.
925 * This method can be called after mvneta_port_down() to return the port
926 * settings to defaults.
927 */
928 static void mvneta_defaults_set(struct mvneta_port *pp)
929 {
930 int cpu;
931 int queue;
932 u32 val;
933
934 /* Clear all Cause registers */
935 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
936 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
937 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
938
939 /* Mask all interrupts */
940 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
941 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
942 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
943 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
944
945 /* Enable MBUS Retry bit16 */
946 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
947
948 /* Set CPU queue access map - all CPUs have access to all RX
949 * queues and to all TX queues
950 */
951 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
952 mvreg_write(pp, MVNETA_CPU_MAP(cpu),
953 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
954 MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
955
956 /* Reset RX and TX DMAs */
957 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
958 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
959
960 /* Disable Legacy WRR, Disable EJP, Release from reset */
961 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
962 for (queue = 0; queue < txq_number; queue++) {
963 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
964 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
965 }
966
967 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
968 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
969
970 /* Set Port Acceleration Mode */
971 val = MVNETA_ACC_MODE_EXT;
972 mvreg_write(pp, MVNETA_ACC_MODE, val);
973
974 /* Update val of portCfg register accordingly with all RxQueue types */
975 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
976 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
977
978 val = 0;
979 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
980 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
981
982 /* Build PORT_SDMA_CONFIG_REG */
983 val = 0;
984
985 /* Default burst size */
986 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
987 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
988 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
989
990 #if defined(__BIG_ENDIAN)
991 val |= MVNETA_DESC_SWAP;
992 #endif
993
994 /* Assign port SDMA configuration */
995 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
996
997 /* Disable PHY polling in hardware, since we're using the
998 * kernel phylib to do this.
999 */
1000 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1001 val &= ~MVNETA_PHY_POLLING_ENABLE;
1002 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1003
1004 if (pp->use_inband_status) {
1005 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1006 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1007 MVNETA_GMAC_FORCE_LINK_DOWN |
1008 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1009 val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1010 MVNETA_GMAC_AN_SPEED_EN |
1011 MVNETA_GMAC_AN_DUPLEX_EN;
1012 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1013 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1014 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1015 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1016 }
1017
1018 mvneta_set_ucast_table(pp, -1);
1019 mvneta_set_special_mcast_table(pp, -1);
1020 mvneta_set_other_mcast_table(pp, -1);
1021
1022 /* Set port interrupt enable register - default enable all */
1023 mvreg_write(pp, MVNETA_INTR_ENABLE,
1024 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1025 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1026 }
1027
1028 /* Set max sizes for tx queues */
1029 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1030
1031 {
1032 u32 val, size, mtu;
1033 int queue;
1034
1035 mtu = max_tx_size * 8;
1036 if (mtu > MVNETA_TX_MTU_MAX)
1037 mtu = MVNETA_TX_MTU_MAX;
1038
1039 /* Set MTU */
1040 val = mvreg_read(pp, MVNETA_TX_MTU);
1041 val &= ~MVNETA_TX_MTU_MAX;
1042 val |= mtu;
1043 mvreg_write(pp, MVNETA_TX_MTU, val);
1044
1045 /* TX token size and all TXQs token size must be larger that MTU */
1046 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1047
1048 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1049 if (size < mtu) {
1050 size = mtu;
1051 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1052 val |= size;
1053 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1054 }
1055 for (queue = 0; queue < txq_number; queue++) {
1056 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1057
1058 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1059 if (size < mtu) {
1060 size = mtu;
1061 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1062 val |= size;
1063 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1064 }
1065 }
1066 }
1067
1068 /* Set unicast address */
1069 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1070 int queue)
1071 {
1072 unsigned int unicast_reg;
1073 unsigned int tbl_offset;
1074 unsigned int reg_offset;
1075
1076 /* Locate the Unicast table entry */
1077 last_nibble = (0xf & last_nibble);
1078
1079 /* offset from unicast tbl base */
1080 tbl_offset = (last_nibble / 4) * 4;
1081
1082 /* offset within the above reg */
1083 reg_offset = last_nibble % 4;
1084
1085 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1086
1087 if (queue == -1) {
1088 /* Clear accepts frame bit at specified unicast DA tbl entry */
1089 unicast_reg &= ~(0xff << (8 * reg_offset));
1090 } else {
1091 unicast_reg &= ~(0xff << (8 * reg_offset));
1092 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1093 }
1094
1095 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1096 }
1097
1098 /* Set mac address */
1099 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1100 int queue)
1101 {
1102 unsigned int mac_h;
1103 unsigned int mac_l;
1104
1105 if (queue != -1) {
1106 mac_l = (addr[4] << 8) | (addr[5]);
1107 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1108 (addr[2] << 8) | (addr[3] << 0);
1109
1110 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1111 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1112 }
1113
1114 /* Accept frames of this address */
1115 mvneta_set_ucast_addr(pp, addr[5], queue);
1116 }
1117
1118 /* Set the number of packets that will be received before RX interrupt
1119 * will be generated by HW.
1120 */
1121 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1122 struct mvneta_rx_queue *rxq, u32 value)
1123 {
1124 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1125 value | MVNETA_RXQ_NON_OCCUPIED(0));
1126 rxq->pkts_coal = value;
1127 }
1128
1129 /* Set the time delay in usec before RX interrupt will be generated by
1130 * HW.
1131 */
1132 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1133 struct mvneta_rx_queue *rxq, u32 value)
1134 {
1135 u32 val;
1136 unsigned long clk_rate;
1137
1138 clk_rate = clk_get_rate(pp->clk);
1139 val = (clk_rate / 1000000) * value;
1140
1141 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1142 rxq->time_coal = value;
1143 }
1144
1145 /* Set threshold for TX_DONE pkts coalescing */
1146 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1147 struct mvneta_tx_queue *txq, u32 value)
1148 {
1149 u32 val;
1150
1151 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1152
1153 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1154 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1155
1156 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1157
1158 txq->done_pkts_coal = value;
1159 }
1160
1161 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1162 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1163 u32 phys_addr, u32 cookie)
1164 {
1165 rx_desc->buf_cookie = cookie;
1166 rx_desc->buf_phys_addr = phys_addr;
1167 }
1168
1169 /* Decrement sent descriptors counter */
1170 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1171 struct mvneta_tx_queue *txq,
1172 int sent_desc)
1173 {
1174 u32 val;
1175
1176 /* Only 255 TX descriptors can be updated at once */
1177 while (sent_desc > 0xff) {
1178 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1179 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1180 sent_desc = sent_desc - 0xff;
1181 }
1182
1183 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1184 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1185 }
1186
1187 /* Get number of TX descriptors already sent by HW */
1188 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1189 struct mvneta_tx_queue *txq)
1190 {
1191 u32 val;
1192 int sent_desc;
1193
1194 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1195 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1196 MVNETA_TXQ_SENT_DESC_SHIFT;
1197
1198 return sent_desc;
1199 }
1200
1201 /* Get number of sent descriptors and decrement counter.
1202 * The number of sent descriptors is returned.
1203 */
1204 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1205 struct mvneta_tx_queue *txq)
1206 {
1207 int sent_desc;
1208
1209 /* Get number of sent descriptors */
1210 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1211
1212 /* Decrement sent descriptors counter */
1213 if (sent_desc)
1214 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1215
1216 return sent_desc;
1217 }
1218
1219 /* Set TXQ descriptors fields relevant for CSUM calculation */
1220 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1221 int ip_hdr_len, int l4_proto)
1222 {
1223 u32 command;
1224
1225 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1226 * G_L4_chk, L4_type; required only for checksum
1227 * calculation
1228 */
1229 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1230 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1231
1232 if (l3_proto == htons(ETH_P_IP))
1233 command |= MVNETA_TXD_IP_CSUM;
1234 else
1235 command |= MVNETA_TX_L3_IP6;
1236
1237 if (l4_proto == IPPROTO_TCP)
1238 command |= MVNETA_TX_L4_CSUM_FULL;
1239 else if (l4_proto == IPPROTO_UDP)
1240 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1241 else
1242 command |= MVNETA_TX_L4_CSUM_NOT;
1243
1244 return command;
1245 }
1246
1247
1248 /* Display more error info */
1249 static void mvneta_rx_error(struct mvneta_port *pp,
1250 struct mvneta_rx_desc *rx_desc)
1251 {
1252 u32 status = rx_desc->status;
1253
1254 if (!mvneta_rxq_desc_is_first_last(status)) {
1255 netdev_err(pp->dev,
1256 "bad rx status %08x (buffer oversize), size=%d\n",
1257 status, rx_desc->data_size);
1258 return;
1259 }
1260
1261 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1262 case MVNETA_RXD_ERR_CRC:
1263 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1264 status, rx_desc->data_size);
1265 break;
1266 case MVNETA_RXD_ERR_OVERRUN:
1267 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1268 status, rx_desc->data_size);
1269 break;
1270 case MVNETA_RXD_ERR_LEN:
1271 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1272 status, rx_desc->data_size);
1273 break;
1274 case MVNETA_RXD_ERR_RESOURCE:
1275 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1276 status, rx_desc->data_size);
1277 break;
1278 }
1279 }
1280
1281 /* Handle RX checksum offload based on the descriptor's status */
1282 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1283 struct sk_buff *skb)
1284 {
1285 if ((status & MVNETA_RXD_L3_IP4) &&
1286 (status & MVNETA_RXD_L4_CSUM_OK)) {
1287 skb->csum = 0;
1288 skb->ip_summed = CHECKSUM_UNNECESSARY;
1289 return;
1290 }
1291
1292 skb->ip_summed = CHECKSUM_NONE;
1293 }
1294
1295 /* Return tx queue pointer (find last set bit) according to <cause> returned
1296 * form tx_done reg. <cause> must not be null. The return value is always a
1297 * valid queue for matching the first one found in <cause>.
1298 */
1299 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1300 u32 cause)
1301 {
1302 int queue = fls(cause) - 1;
1303
1304 return &pp->txqs[queue];
1305 }
1306
1307 /* Free tx queue skbuffs */
1308 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1309 struct mvneta_tx_queue *txq, int num)
1310 {
1311 int i;
1312
1313 for (i = 0; i < num; i++) {
1314 struct mvneta_tx_desc *tx_desc = txq->descs +
1315 txq->txq_get_index;
1316 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1317
1318 mvneta_txq_inc_get(txq);
1319
1320 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1321 dma_unmap_single(pp->dev->dev.parent,
1322 tx_desc->buf_phys_addr,
1323 tx_desc->data_size, DMA_TO_DEVICE);
1324 if (!skb)
1325 continue;
1326 dev_kfree_skb_any(skb);
1327 }
1328 }
1329
1330 /* Handle end of transmission */
1331 static void mvneta_txq_done(struct mvneta_port *pp,
1332 struct mvneta_tx_queue *txq)
1333 {
1334 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1335 int tx_done;
1336
1337 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1338 if (!tx_done)
1339 return;
1340
1341 mvneta_txq_bufs_free(pp, txq, tx_done);
1342
1343 txq->count -= tx_done;
1344
1345 if (netif_tx_queue_stopped(nq)) {
1346 if (txq->count <= txq->tx_wake_threshold)
1347 netif_tx_wake_queue(nq);
1348 }
1349 }
1350
1351 static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1352 {
1353 if (likely(pp->frag_size <= PAGE_SIZE))
1354 return netdev_alloc_frag(pp->frag_size);
1355 else
1356 return kmalloc(pp->frag_size, GFP_ATOMIC);
1357 }
1358
1359 static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1360 {
1361 if (likely(pp->frag_size <= PAGE_SIZE))
1362 put_page(virt_to_head_page(data));
1363 else
1364 kfree(data);
1365 }
1366
1367 /* Refill processing */
1368 static int mvneta_rx_refill(struct mvneta_port *pp,
1369 struct mvneta_rx_desc *rx_desc)
1370
1371 {
1372 dma_addr_t phys_addr;
1373 void *data;
1374
1375 data = mvneta_frag_alloc(pp);
1376 if (!data)
1377 return -ENOMEM;
1378
1379 phys_addr = dma_map_single(pp->dev->dev.parent, data,
1380 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1381 DMA_FROM_DEVICE);
1382 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1383 mvneta_frag_free(pp, data);
1384 return -ENOMEM;
1385 }
1386
1387 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1388 return 0;
1389 }
1390
1391 /* Handle tx checksum */
1392 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1393 {
1394 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1395 int ip_hdr_len = 0;
1396 __be16 l3_proto = vlan_get_protocol(skb);
1397 u8 l4_proto;
1398
1399 if (l3_proto == htons(ETH_P_IP)) {
1400 struct iphdr *ip4h = ip_hdr(skb);
1401
1402 /* Calculate IPv4 checksum and L4 checksum */
1403 ip_hdr_len = ip4h->ihl;
1404 l4_proto = ip4h->protocol;
1405 } else if (l3_proto == htons(ETH_P_IPV6)) {
1406 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1407
1408 /* Read l4_protocol from one of IPv6 extra headers */
1409 if (skb_network_header_len(skb) > 0)
1410 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1411 l4_proto = ip6h->nexthdr;
1412 } else
1413 return MVNETA_TX_L4_CSUM_NOT;
1414
1415 return mvneta_txq_desc_csum(skb_network_offset(skb),
1416 l3_proto, ip_hdr_len, l4_proto);
1417 }
1418
1419 return MVNETA_TX_L4_CSUM_NOT;
1420 }
1421
1422 /* Returns rx queue pointer (find last set bit) according to causeRxTx
1423 * value
1424 */
1425 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1426 u32 cause)
1427 {
1428 int queue = fls(cause >> 8) - 1;
1429
1430 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1431 }
1432
1433 /* Drop packets received by the RXQ and free buffers */
1434 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1435 struct mvneta_rx_queue *rxq)
1436 {
1437 int rx_done, i;
1438
1439 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1440 for (i = 0; i < rxq->size; i++) {
1441 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1442 void *data = (void *)rx_desc->buf_cookie;
1443
1444 mvneta_frag_free(pp, data);
1445 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1446 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1447 }
1448
1449 if (rx_done)
1450 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1451 }
1452
1453 /* Main rx processing */
1454 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1455 struct mvneta_rx_queue *rxq)
1456 {
1457 struct net_device *dev = pp->dev;
1458 int rx_done, rx_filled;
1459 u32 rcvd_pkts = 0;
1460 u32 rcvd_bytes = 0;
1461
1462 /* Get number of received packets */
1463 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1464
1465 if (rx_todo > rx_done)
1466 rx_todo = rx_done;
1467
1468 rx_done = 0;
1469 rx_filled = 0;
1470
1471 /* Fairness NAPI loop */
1472 while (rx_done < rx_todo) {
1473 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1474 struct sk_buff *skb;
1475 unsigned char *data;
1476 u32 rx_status;
1477 int rx_bytes, err;
1478
1479 rx_done++;
1480 rx_filled++;
1481 rx_status = rx_desc->status;
1482 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1483 data = (unsigned char *)rx_desc->buf_cookie;
1484
1485 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1486 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1487 err_drop_frame:
1488 dev->stats.rx_errors++;
1489 mvneta_rx_error(pp, rx_desc);
1490 /* leave the descriptor untouched */
1491 continue;
1492 }
1493
1494 if (rx_bytes <= rx_copybreak) {
1495 /* better copy a small frame and not unmap the DMA region */
1496 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1497 if (unlikely(!skb))
1498 goto err_drop_frame;
1499
1500 dma_sync_single_range_for_cpu(dev->dev.parent,
1501 rx_desc->buf_phys_addr,
1502 MVNETA_MH_SIZE + NET_SKB_PAD,
1503 rx_bytes,
1504 DMA_FROM_DEVICE);
1505 memcpy(skb_put(skb, rx_bytes),
1506 data + MVNETA_MH_SIZE + NET_SKB_PAD,
1507 rx_bytes);
1508
1509 skb->protocol = eth_type_trans(skb, dev);
1510 mvneta_rx_csum(pp, rx_status, skb);
1511 napi_gro_receive(&pp->napi, skb);
1512
1513 rcvd_pkts++;
1514 rcvd_bytes += rx_bytes;
1515
1516 /* leave the descriptor and buffer untouched */
1517 continue;
1518 }
1519
1520 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1521 if (!skb)
1522 goto err_drop_frame;
1523
1524 dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
1525 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1526
1527 rcvd_pkts++;
1528 rcvd_bytes += rx_bytes;
1529
1530 /* Linux processing */
1531 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1532 skb_put(skb, rx_bytes);
1533
1534 skb->protocol = eth_type_trans(skb, dev);
1535
1536 mvneta_rx_csum(pp, rx_status, skb);
1537
1538 napi_gro_receive(&pp->napi, skb);
1539
1540 /* Refill processing */
1541 err = mvneta_rx_refill(pp, rx_desc);
1542 if (err) {
1543 netdev_err(dev, "Linux processing - Can't refill\n");
1544 rxq->missed++;
1545 rx_filled--;
1546 }
1547 }
1548
1549 if (rcvd_pkts) {
1550 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1551
1552 u64_stats_update_begin(&stats->syncp);
1553 stats->rx_packets += rcvd_pkts;
1554 stats->rx_bytes += rcvd_bytes;
1555 u64_stats_update_end(&stats->syncp);
1556 }
1557
1558 /* Update rxq management counters */
1559 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1560
1561 return rx_done;
1562 }
1563
1564 static inline void
1565 mvneta_tso_put_hdr(struct sk_buff *skb,
1566 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
1567 {
1568 struct mvneta_tx_desc *tx_desc;
1569 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1570
1571 txq->tx_skb[txq->txq_put_index] = NULL;
1572 tx_desc = mvneta_txq_next_desc_get(txq);
1573 tx_desc->data_size = hdr_len;
1574 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
1575 tx_desc->command |= MVNETA_TXD_F_DESC;
1576 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
1577 txq->txq_put_index * TSO_HEADER_SIZE;
1578 mvneta_txq_inc_put(txq);
1579 }
1580
1581 static inline int
1582 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
1583 struct sk_buff *skb, char *data, int size,
1584 bool last_tcp, bool is_last)
1585 {
1586 struct mvneta_tx_desc *tx_desc;
1587
1588 tx_desc = mvneta_txq_next_desc_get(txq);
1589 tx_desc->data_size = size;
1590 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
1591 size, DMA_TO_DEVICE);
1592 if (unlikely(dma_mapping_error(dev->dev.parent,
1593 tx_desc->buf_phys_addr))) {
1594 mvneta_txq_desc_put(txq);
1595 return -ENOMEM;
1596 }
1597
1598 tx_desc->command = 0;
1599 txq->tx_skb[txq->txq_put_index] = NULL;
1600
1601 if (last_tcp) {
1602 /* last descriptor in the TCP packet */
1603 tx_desc->command = MVNETA_TXD_L_DESC;
1604
1605 /* last descriptor in SKB */
1606 if (is_last)
1607 txq->tx_skb[txq->txq_put_index] = skb;
1608 }
1609 mvneta_txq_inc_put(txq);
1610 return 0;
1611 }
1612
1613 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
1614 struct mvneta_tx_queue *txq)
1615 {
1616 int total_len, data_left;
1617 int desc_count = 0;
1618 struct mvneta_port *pp = netdev_priv(dev);
1619 struct tso_t tso;
1620 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1621 int i;
1622
1623 /* Count needed descriptors */
1624 if ((txq->count + tso_count_descs(skb)) >= txq->size)
1625 return 0;
1626
1627 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
1628 pr_info("*** Is this even possible???!?!?\n");
1629 return 0;
1630 }
1631
1632 /* Initialize the TSO handler, and prepare the first payload */
1633 tso_start(skb, &tso);
1634
1635 total_len = skb->len - hdr_len;
1636 while (total_len > 0) {
1637 char *hdr;
1638
1639 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1640 total_len -= data_left;
1641 desc_count++;
1642
1643 /* prepare packet headers: MAC + IP + TCP */
1644 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
1645 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1646
1647 mvneta_tso_put_hdr(skb, pp, txq);
1648
1649 while (data_left > 0) {
1650 int size;
1651 desc_count++;
1652
1653 size = min_t(int, tso.size, data_left);
1654
1655 if (mvneta_tso_put_data(dev, txq, skb,
1656 tso.data, size,
1657 size == data_left,
1658 total_len == 0))
1659 goto err_release;
1660 data_left -= size;
1661
1662 tso_build_data(skb, &tso, size);
1663 }
1664 }
1665
1666 return desc_count;
1667
1668 err_release:
1669 /* Release all used data descriptors; header descriptors must not
1670 * be DMA-unmapped.
1671 */
1672 for (i = desc_count - 1; i >= 0; i--) {
1673 struct mvneta_tx_desc *tx_desc = txq->descs + i;
1674 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1675 dma_unmap_single(pp->dev->dev.parent,
1676 tx_desc->buf_phys_addr,
1677 tx_desc->data_size,
1678 DMA_TO_DEVICE);
1679 mvneta_txq_desc_put(txq);
1680 }
1681 return 0;
1682 }
1683
1684 /* Handle tx fragmentation processing */
1685 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1686 struct mvneta_tx_queue *txq)
1687 {
1688 struct mvneta_tx_desc *tx_desc;
1689 int i, nr_frags = skb_shinfo(skb)->nr_frags;
1690
1691 for (i = 0; i < nr_frags; i++) {
1692 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1693 void *addr = page_address(frag->page.p) + frag->page_offset;
1694
1695 tx_desc = mvneta_txq_next_desc_get(txq);
1696 tx_desc->data_size = frag->size;
1697
1698 tx_desc->buf_phys_addr =
1699 dma_map_single(pp->dev->dev.parent, addr,
1700 tx_desc->data_size, DMA_TO_DEVICE);
1701
1702 if (dma_mapping_error(pp->dev->dev.parent,
1703 tx_desc->buf_phys_addr)) {
1704 mvneta_txq_desc_put(txq);
1705 goto error;
1706 }
1707
1708 if (i == nr_frags - 1) {
1709 /* Last descriptor */
1710 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1711 txq->tx_skb[txq->txq_put_index] = skb;
1712 } else {
1713 /* Descriptor in the middle: Not First, Not Last */
1714 tx_desc->command = 0;
1715 txq->tx_skb[txq->txq_put_index] = NULL;
1716 }
1717 mvneta_txq_inc_put(txq);
1718 }
1719
1720 return 0;
1721
1722 error:
1723 /* Release all descriptors that were used to map fragments of
1724 * this packet, as well as the corresponding DMA mappings
1725 */
1726 for (i = i - 1; i >= 0; i--) {
1727 tx_desc = txq->descs + i;
1728 dma_unmap_single(pp->dev->dev.parent,
1729 tx_desc->buf_phys_addr,
1730 tx_desc->data_size,
1731 DMA_TO_DEVICE);
1732 mvneta_txq_desc_put(txq);
1733 }
1734
1735 return -ENOMEM;
1736 }
1737
1738 /* Main tx processing */
1739 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1740 {
1741 struct mvneta_port *pp = netdev_priv(dev);
1742 u16 txq_id = skb_get_queue_mapping(skb);
1743 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1744 struct mvneta_tx_desc *tx_desc;
1745 int len = skb->len;
1746 int frags = 0;
1747 u32 tx_cmd;
1748
1749 if (!netif_running(dev))
1750 goto out;
1751
1752 if (skb_is_gso(skb)) {
1753 frags = mvneta_tx_tso(skb, dev, txq);
1754 goto out;
1755 }
1756
1757 frags = skb_shinfo(skb)->nr_frags + 1;
1758
1759 /* Get a descriptor for the first part of the packet */
1760 tx_desc = mvneta_txq_next_desc_get(txq);
1761
1762 tx_cmd = mvneta_skb_tx_csum(pp, skb);
1763
1764 tx_desc->data_size = skb_headlen(skb);
1765
1766 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1767 tx_desc->data_size,
1768 DMA_TO_DEVICE);
1769 if (unlikely(dma_mapping_error(dev->dev.parent,
1770 tx_desc->buf_phys_addr))) {
1771 mvneta_txq_desc_put(txq);
1772 frags = 0;
1773 goto out;
1774 }
1775
1776 if (frags == 1) {
1777 /* First and Last descriptor */
1778 tx_cmd |= MVNETA_TXD_FLZ_DESC;
1779 tx_desc->command = tx_cmd;
1780 txq->tx_skb[txq->txq_put_index] = skb;
1781 mvneta_txq_inc_put(txq);
1782 } else {
1783 /* First but not Last */
1784 tx_cmd |= MVNETA_TXD_F_DESC;
1785 txq->tx_skb[txq->txq_put_index] = NULL;
1786 mvneta_txq_inc_put(txq);
1787 tx_desc->command = tx_cmd;
1788 /* Continue with other skb fragments */
1789 if (mvneta_tx_frag_process(pp, skb, txq)) {
1790 dma_unmap_single(dev->dev.parent,
1791 tx_desc->buf_phys_addr,
1792 tx_desc->data_size,
1793 DMA_TO_DEVICE);
1794 mvneta_txq_desc_put(txq);
1795 frags = 0;
1796 goto out;
1797 }
1798 }
1799
1800 out:
1801 if (frags > 0) {
1802 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1803 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
1804
1805 txq->count += frags;
1806 mvneta_txq_pend_desc_add(pp, txq, frags);
1807
1808 if (txq->count >= txq->tx_stop_threshold)
1809 netif_tx_stop_queue(nq);
1810
1811 u64_stats_update_begin(&stats->syncp);
1812 stats->tx_packets++;
1813 stats->tx_bytes += len;
1814 u64_stats_update_end(&stats->syncp);
1815 } else {
1816 dev->stats.tx_dropped++;
1817 dev_kfree_skb_any(skb);
1818 }
1819
1820 return NETDEV_TX_OK;
1821 }
1822
1823
1824 /* Free tx resources, when resetting a port */
1825 static void mvneta_txq_done_force(struct mvneta_port *pp,
1826 struct mvneta_tx_queue *txq)
1827
1828 {
1829 int tx_done = txq->count;
1830
1831 mvneta_txq_bufs_free(pp, txq, tx_done);
1832
1833 /* reset txq */
1834 txq->count = 0;
1835 txq->txq_put_index = 0;
1836 txq->txq_get_index = 0;
1837 }
1838
1839 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
1840 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1841 */
1842 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1843 {
1844 struct mvneta_tx_queue *txq;
1845 struct netdev_queue *nq;
1846
1847 while (cause_tx_done) {
1848 txq = mvneta_tx_done_policy(pp, cause_tx_done);
1849
1850 nq = netdev_get_tx_queue(pp->dev, txq->id);
1851 __netif_tx_lock(nq, smp_processor_id());
1852
1853 if (txq->count)
1854 mvneta_txq_done(pp, txq);
1855
1856 __netif_tx_unlock(nq);
1857 cause_tx_done &= ~((1 << txq->id));
1858 }
1859 }
1860
1861 /* Compute crc8 of the specified address, using a unique algorithm ,
1862 * according to hw spec, different than generic crc8 algorithm
1863 */
1864 static int mvneta_addr_crc(unsigned char *addr)
1865 {
1866 int crc = 0;
1867 int i;
1868
1869 for (i = 0; i < ETH_ALEN; i++) {
1870 int j;
1871
1872 crc = (crc ^ addr[i]) << 8;
1873 for (j = 7; j >= 0; j--) {
1874 if (crc & (0x100 << j))
1875 crc ^= 0x107 << j;
1876 }
1877 }
1878
1879 return crc;
1880 }
1881
1882 /* This method controls the net device special MAC multicast support.
1883 * The Special Multicast Table for MAC addresses supports MAC of the form
1884 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1885 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1886 * Table entries in the DA-Filter table. This method set the Special
1887 * Multicast Table appropriate entry.
1888 */
1889 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1890 unsigned char last_byte,
1891 int queue)
1892 {
1893 unsigned int smc_table_reg;
1894 unsigned int tbl_offset;
1895 unsigned int reg_offset;
1896
1897 /* Register offset from SMC table base */
1898 tbl_offset = (last_byte / 4);
1899 /* Entry offset within the above reg */
1900 reg_offset = last_byte % 4;
1901
1902 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1903 + tbl_offset * 4));
1904
1905 if (queue == -1)
1906 smc_table_reg &= ~(0xff << (8 * reg_offset));
1907 else {
1908 smc_table_reg &= ~(0xff << (8 * reg_offset));
1909 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1910 }
1911
1912 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1913 smc_table_reg);
1914 }
1915
1916 /* This method controls the network device Other MAC multicast support.
1917 * The Other Multicast Table is used for multicast of another type.
1918 * A CRC-8 is used as an index to the Other Multicast Table entries
1919 * in the DA-Filter table.
1920 * The method gets the CRC-8 value from the calling routine and
1921 * sets the Other Multicast Table appropriate entry according to the
1922 * specified CRC-8 .
1923 */
1924 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1925 unsigned char crc8,
1926 int queue)
1927 {
1928 unsigned int omc_table_reg;
1929 unsigned int tbl_offset;
1930 unsigned int reg_offset;
1931
1932 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1933 reg_offset = crc8 % 4; /* Entry offset within the above reg */
1934
1935 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1936
1937 if (queue == -1) {
1938 /* Clear accepts frame bit at specified Other DA table entry */
1939 omc_table_reg &= ~(0xff << (8 * reg_offset));
1940 } else {
1941 omc_table_reg &= ~(0xff << (8 * reg_offset));
1942 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1943 }
1944
1945 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1946 }
1947
1948 /* The network device supports multicast using two tables:
1949 * 1) Special Multicast Table for MAC addresses of the form
1950 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1951 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1952 * Table entries in the DA-Filter table.
1953 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
1954 * is used as an index to the Other Multicast Table entries in the
1955 * DA-Filter table.
1956 */
1957 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1958 int queue)
1959 {
1960 unsigned char crc_result = 0;
1961
1962 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1963 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1964 return 0;
1965 }
1966
1967 crc_result = mvneta_addr_crc(p_addr);
1968 if (queue == -1) {
1969 if (pp->mcast_count[crc_result] == 0) {
1970 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1971 crc_result);
1972 return -EINVAL;
1973 }
1974
1975 pp->mcast_count[crc_result]--;
1976 if (pp->mcast_count[crc_result] != 0) {
1977 netdev_info(pp->dev,
1978 "After delete there are %d valid Mcast for crc8=0x%02x\n",
1979 pp->mcast_count[crc_result], crc_result);
1980 return -EINVAL;
1981 }
1982 } else
1983 pp->mcast_count[crc_result]++;
1984
1985 mvneta_set_other_mcast_addr(pp, crc_result, queue);
1986
1987 return 0;
1988 }
1989
1990 /* Configure Fitering mode of Ethernet port */
1991 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1992 int is_promisc)
1993 {
1994 u32 port_cfg_reg, val;
1995
1996 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1997
1998 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1999
2000 /* Set / Clear UPM bit in port configuration register */
2001 if (is_promisc) {
2002 /* Accept all Unicast addresses */
2003 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2004 val |= MVNETA_FORCE_UNI;
2005 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2006 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2007 } else {
2008 /* Reject all Unicast addresses */
2009 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2010 val &= ~MVNETA_FORCE_UNI;
2011 }
2012
2013 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2014 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2015 }
2016
2017 /* register unicast and multicast addresses */
2018 static void mvneta_set_rx_mode(struct net_device *dev)
2019 {
2020 struct mvneta_port *pp = netdev_priv(dev);
2021 struct netdev_hw_addr *ha;
2022
2023 if (dev->flags & IFF_PROMISC) {
2024 /* Accept all: Multicast + Unicast */
2025 mvneta_rx_unicast_promisc_set(pp, 1);
2026 mvneta_set_ucast_table(pp, rxq_def);
2027 mvneta_set_special_mcast_table(pp, rxq_def);
2028 mvneta_set_other_mcast_table(pp, rxq_def);
2029 } else {
2030 /* Accept single Unicast */
2031 mvneta_rx_unicast_promisc_set(pp, 0);
2032 mvneta_set_ucast_table(pp, -1);
2033 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2034
2035 if (dev->flags & IFF_ALLMULTI) {
2036 /* Accept all multicast */
2037 mvneta_set_special_mcast_table(pp, rxq_def);
2038 mvneta_set_other_mcast_table(pp, rxq_def);
2039 } else {
2040 /* Accept only initialized multicast */
2041 mvneta_set_special_mcast_table(pp, -1);
2042 mvneta_set_other_mcast_table(pp, -1);
2043
2044 if (!netdev_mc_empty(dev)) {
2045 netdev_for_each_mc_addr(ha, dev) {
2046 mvneta_mcast_addr_set(pp, ha->addr,
2047 rxq_def);
2048 }
2049 }
2050 }
2051 }
2052 }
2053
2054 /* Interrupt handling - the callback for request_irq() */
2055 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2056 {
2057 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2058
2059 /* Mask all interrupts */
2060 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2061
2062 napi_schedule(&pp->napi);
2063
2064 return IRQ_HANDLED;
2065 }
2066
2067 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2068 struct phy_device *phy)
2069 {
2070 struct fixed_phy_status status;
2071 struct fixed_phy_status changed = {};
2072 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2073
2074 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2075 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2076 status.speed = SPEED_1000;
2077 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2078 status.speed = SPEED_100;
2079 else
2080 status.speed = SPEED_10;
2081 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2082 changed.link = 1;
2083 changed.speed = 1;
2084 changed.duplex = 1;
2085 fixed_phy_update_state(phy, &status, &changed);
2086 return 0;
2087 }
2088
2089 /* NAPI handler
2090 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2091 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2092 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2093 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2094 * Each CPU has its own causeRxTx register
2095 */
2096 static int mvneta_poll(struct napi_struct *napi, int budget)
2097 {
2098 int rx_done = 0;
2099 u32 cause_rx_tx;
2100 unsigned long flags;
2101 struct mvneta_port *pp = netdev_priv(napi->dev);
2102
2103 if (!netif_running(pp->dev)) {
2104 napi_complete(napi);
2105 return rx_done;
2106 }
2107
2108 /* Read cause register */
2109 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2110 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2111 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2112
2113 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2114 if (pp->use_inband_status && (cause_misc &
2115 (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2116 MVNETA_CAUSE_LINK_CHANGE |
2117 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2118 mvneta_fixed_link_update(pp, pp->phy_dev);
2119 }
2120 }
2121
2122 /* Release Tx descriptors */
2123 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2124 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2125 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2126 }
2127
2128 /* For the case where the last mvneta_poll did not process all
2129 * RX packets
2130 */
2131 cause_rx_tx |= pp->cause_rx_tx;
2132 if (rxq_number > 1) {
2133 while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
2134 int count;
2135 struct mvneta_rx_queue *rxq;
2136 /* get rx queue number from cause_rx_tx */
2137 rxq = mvneta_rx_policy(pp, cause_rx_tx);
2138 if (!rxq)
2139 break;
2140
2141 /* process the packet in that rx queue */
2142 count = mvneta_rx(pp, budget, rxq);
2143 rx_done += count;
2144 budget -= count;
2145 if (budget > 0) {
2146 /* set off the rx bit of the
2147 * corresponding bit in the cause rx
2148 * tx register, so that next iteration
2149 * will find the next rx queue where
2150 * packets are received on
2151 */
2152 cause_rx_tx &= ~((1 << rxq->id) << 8);
2153 }
2154 }
2155 } else {
2156 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
2157 budget -= rx_done;
2158 }
2159
2160 if (budget > 0) {
2161 cause_rx_tx = 0;
2162 napi_complete(napi);
2163 local_irq_save(flags);
2164 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2165 MVNETA_RX_INTR_MASK(rxq_number) |
2166 MVNETA_TX_INTR_MASK(txq_number) |
2167 MVNETA_MISCINTR_INTR_MASK);
2168 local_irq_restore(flags);
2169 }
2170
2171 pp->cause_rx_tx = cause_rx_tx;
2172 return rx_done;
2173 }
2174
2175 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2176 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2177 int num)
2178 {
2179 int i;
2180
2181 for (i = 0; i < num; i++) {
2182 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2183 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2184 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
2185 __func__, rxq->id, i, num);
2186 break;
2187 }
2188 }
2189
2190 /* Add this number of RX descriptors as non occupied (ready to
2191 * get packets)
2192 */
2193 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2194
2195 return i;
2196 }
2197
2198 /* Free all packets pending transmit from all TXQs and reset TX port */
2199 static void mvneta_tx_reset(struct mvneta_port *pp)
2200 {
2201 int queue;
2202
2203 /* free the skb's in the tx ring */
2204 for (queue = 0; queue < txq_number; queue++)
2205 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2206
2207 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2208 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2209 }
2210
2211 static void mvneta_rx_reset(struct mvneta_port *pp)
2212 {
2213 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2214 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2215 }
2216
2217 /* Rx/Tx queue initialization/cleanup methods */
2218
2219 /* Create a specified RX queue */
2220 static int mvneta_rxq_init(struct mvneta_port *pp,
2221 struct mvneta_rx_queue *rxq)
2222
2223 {
2224 rxq->size = pp->rx_ring_size;
2225
2226 /* Allocate memory for RX descriptors */
2227 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2228 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2229 &rxq->descs_phys, GFP_KERNEL);
2230 if (rxq->descs == NULL)
2231 return -ENOMEM;
2232
2233 BUG_ON(rxq->descs !=
2234 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2235
2236 rxq->last_desc = rxq->size - 1;
2237
2238 /* Set Rx descriptors queue starting address */
2239 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2240 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2241
2242 /* Set Offset */
2243 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2244
2245 /* Set coalescing pkts and time */
2246 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2247 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2248
2249 /* Fill RXQ with buffers from RX pool */
2250 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2251 mvneta_rxq_bm_disable(pp, rxq);
2252 mvneta_rxq_fill(pp, rxq, rxq->size);
2253
2254 return 0;
2255 }
2256
2257 /* Cleanup Rx queue */
2258 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2259 struct mvneta_rx_queue *rxq)
2260 {
2261 mvneta_rxq_drop_pkts(pp, rxq);
2262
2263 if (rxq->descs)
2264 dma_free_coherent(pp->dev->dev.parent,
2265 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2266 rxq->descs,
2267 rxq->descs_phys);
2268
2269 rxq->descs = NULL;
2270 rxq->last_desc = 0;
2271 rxq->next_desc_to_proc = 0;
2272 rxq->descs_phys = 0;
2273 }
2274
2275 /* Create and initialize a tx queue */
2276 static int mvneta_txq_init(struct mvneta_port *pp,
2277 struct mvneta_tx_queue *txq)
2278 {
2279 txq->size = pp->tx_ring_size;
2280
2281 /* A queue must always have room for at least one skb.
2282 * Therefore, stop the queue when the free entries reaches
2283 * the maximum number of descriptors per skb.
2284 */
2285 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2286 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2287
2288
2289 /* Allocate memory for TX descriptors */
2290 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2291 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2292 &txq->descs_phys, GFP_KERNEL);
2293 if (txq->descs == NULL)
2294 return -ENOMEM;
2295
2296 /* Make sure descriptor address is cache line size aligned */
2297 BUG_ON(txq->descs !=
2298 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2299
2300 txq->last_desc = txq->size - 1;
2301
2302 /* Set maximum bandwidth for enabled TXQs */
2303 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2304 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2305
2306 /* Set Tx descriptors queue starting address */
2307 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2308 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2309
2310 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2311 if (txq->tx_skb == NULL) {
2312 dma_free_coherent(pp->dev->dev.parent,
2313 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2314 txq->descs, txq->descs_phys);
2315 return -ENOMEM;
2316 }
2317
2318 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2319 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2320 txq->size * TSO_HEADER_SIZE,
2321 &txq->tso_hdrs_phys, GFP_KERNEL);
2322 if (txq->tso_hdrs == NULL) {
2323 kfree(txq->tx_skb);
2324 dma_free_coherent(pp->dev->dev.parent,
2325 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2326 txq->descs, txq->descs_phys);
2327 return -ENOMEM;
2328 }
2329 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2330
2331 return 0;
2332 }
2333
2334 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2335 static void mvneta_txq_deinit(struct mvneta_port *pp,
2336 struct mvneta_tx_queue *txq)
2337 {
2338 kfree(txq->tx_skb);
2339
2340 if (txq->tso_hdrs)
2341 dma_free_coherent(pp->dev->dev.parent,
2342 txq->size * TSO_HEADER_SIZE,
2343 txq->tso_hdrs, txq->tso_hdrs_phys);
2344 if (txq->descs)
2345 dma_free_coherent(pp->dev->dev.parent,
2346 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2347 txq->descs, txq->descs_phys);
2348
2349 txq->descs = NULL;
2350 txq->last_desc = 0;
2351 txq->next_desc_to_proc = 0;
2352 txq->descs_phys = 0;
2353
2354 /* Set minimum bandwidth for disabled TXQs */
2355 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2356 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2357
2358 /* Set Tx descriptors queue starting address and size */
2359 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2360 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2361 }
2362
2363 /* Cleanup all Tx queues */
2364 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2365 {
2366 int queue;
2367
2368 for (queue = 0; queue < txq_number; queue++)
2369 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2370 }
2371
2372 /* Cleanup all Rx queues */
2373 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2374 {
2375 int queue;
2376
2377 for (queue = 0; queue < rxq_number; queue++)
2378 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2379 }
2380
2381
2382 /* Init all Rx queues */
2383 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2384 {
2385 int queue;
2386
2387 for (queue = 0; queue < rxq_number; queue++) {
2388 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2389 if (err) {
2390 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2391 __func__, queue);
2392 mvneta_cleanup_rxqs(pp);
2393 return err;
2394 }
2395 }
2396
2397 return 0;
2398 }
2399
2400 /* Init all tx queues */
2401 static int mvneta_setup_txqs(struct mvneta_port *pp)
2402 {
2403 int queue;
2404
2405 for (queue = 0; queue < txq_number; queue++) {
2406 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2407 if (err) {
2408 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2409 __func__, queue);
2410 mvneta_cleanup_txqs(pp);
2411 return err;
2412 }
2413 }
2414
2415 return 0;
2416 }
2417
2418 static void mvneta_start_dev(struct mvneta_port *pp)
2419 {
2420 mvneta_max_rx_size_set(pp, pp->pkt_size);
2421 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2422
2423 /* start the Rx/Tx activity */
2424 mvneta_port_enable(pp);
2425
2426 /* Enable polling on the port */
2427 napi_enable(&pp->napi);
2428
2429 /* Unmask interrupts */
2430 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2431 MVNETA_RX_INTR_MASK(rxq_number) |
2432 MVNETA_TX_INTR_MASK(txq_number) |
2433 MVNETA_MISCINTR_INTR_MASK);
2434 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2435 MVNETA_CAUSE_PHY_STATUS_CHANGE |
2436 MVNETA_CAUSE_LINK_CHANGE |
2437 MVNETA_CAUSE_PSC_SYNC_CHANGE);
2438
2439 phy_start(pp->phy_dev);
2440 netif_tx_start_all_queues(pp->dev);
2441 }
2442
2443 static void mvneta_stop_dev(struct mvneta_port *pp)
2444 {
2445 phy_stop(pp->phy_dev);
2446
2447 napi_disable(&pp->napi);
2448
2449 netif_carrier_off(pp->dev);
2450
2451 mvneta_port_down(pp);
2452 netif_tx_stop_all_queues(pp->dev);
2453
2454 /* Stop the port activity */
2455 mvneta_port_disable(pp);
2456
2457 /* Clear all ethernet port interrupts */
2458 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2459 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2460
2461 /* Mask all ethernet port interrupts */
2462 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2463 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2464 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2465
2466 mvneta_tx_reset(pp);
2467 mvneta_rx_reset(pp);
2468 }
2469
2470 /* Return positive if MTU is valid */
2471 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2472 {
2473 if (mtu < 68) {
2474 netdev_err(dev, "cannot change mtu to less than 68\n");
2475 return -EINVAL;
2476 }
2477
2478 /* 9676 == 9700 - 20 and rounding to 8 */
2479 if (mtu > 9676) {
2480 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2481 mtu = 9676;
2482 }
2483
2484 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2485 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2486 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2487 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2488 }
2489
2490 return mtu;
2491 }
2492
2493 /* Change the device mtu */
2494 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2495 {
2496 struct mvneta_port *pp = netdev_priv(dev);
2497 int ret;
2498
2499 mtu = mvneta_check_mtu_valid(dev, mtu);
2500 if (mtu < 0)
2501 return -EINVAL;
2502
2503 dev->mtu = mtu;
2504
2505 if (!netif_running(dev))
2506 return 0;
2507
2508 /* The interface is running, so we have to force a
2509 * reallocation of the queues
2510 */
2511 mvneta_stop_dev(pp);
2512
2513 mvneta_cleanup_txqs(pp);
2514 mvneta_cleanup_rxqs(pp);
2515
2516 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
2517 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2518 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2519
2520 ret = mvneta_setup_rxqs(pp);
2521 if (ret) {
2522 netdev_err(dev, "unable to setup rxqs after MTU change\n");
2523 return ret;
2524 }
2525
2526 ret = mvneta_setup_txqs(pp);
2527 if (ret) {
2528 netdev_err(dev, "unable to setup txqs after MTU change\n");
2529 return ret;
2530 }
2531
2532 mvneta_start_dev(pp);
2533 mvneta_port_up(pp);
2534
2535 return 0;
2536 }
2537
2538 /* Get mac address */
2539 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2540 {
2541 u32 mac_addr_l, mac_addr_h;
2542
2543 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2544 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2545 addr[0] = (mac_addr_h >> 24) & 0xFF;
2546 addr[1] = (mac_addr_h >> 16) & 0xFF;
2547 addr[2] = (mac_addr_h >> 8) & 0xFF;
2548 addr[3] = mac_addr_h & 0xFF;
2549 addr[4] = (mac_addr_l >> 8) & 0xFF;
2550 addr[5] = mac_addr_l & 0xFF;
2551 }
2552
2553 /* Handle setting mac address */
2554 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2555 {
2556 struct mvneta_port *pp = netdev_priv(dev);
2557 struct sockaddr *sockaddr = addr;
2558 int ret;
2559
2560 ret = eth_prepare_mac_addr_change(dev, addr);
2561 if (ret < 0)
2562 return ret;
2563 /* Remove previous address table entry */
2564 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2565
2566 /* Set new addr in hw */
2567 mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
2568
2569 eth_commit_mac_addr_change(dev, addr);
2570 return 0;
2571 }
2572
2573 static void mvneta_adjust_link(struct net_device *ndev)
2574 {
2575 struct mvneta_port *pp = netdev_priv(ndev);
2576 struct phy_device *phydev = pp->phy_dev;
2577 int status_change = 0;
2578
2579 if (phydev->link) {
2580 if ((pp->speed != phydev->speed) ||
2581 (pp->duplex != phydev->duplex)) {
2582 u32 val;
2583
2584 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2585 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2586 MVNETA_GMAC_CONFIG_GMII_SPEED |
2587 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2588
2589 if (phydev->duplex)
2590 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2591
2592 if (phydev->speed == SPEED_1000)
2593 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2594 else if (phydev->speed == SPEED_100)
2595 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2596
2597 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2598
2599 pp->duplex = phydev->duplex;
2600 pp->speed = phydev->speed;
2601 }
2602 }
2603
2604 if (phydev->link != pp->link) {
2605 if (!phydev->link) {
2606 pp->duplex = -1;
2607 pp->speed = 0;
2608 }
2609
2610 pp->link = phydev->link;
2611 status_change = 1;
2612 }
2613
2614 if (status_change) {
2615 if (phydev->link) {
2616 if (!pp->use_inband_status) {
2617 u32 val = mvreg_read(pp,
2618 MVNETA_GMAC_AUTONEG_CONFIG);
2619 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
2620 val |= MVNETA_GMAC_FORCE_LINK_PASS;
2621 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2622 val);
2623 }
2624 mvneta_port_up(pp);
2625 } else {
2626 if (!pp->use_inband_status) {
2627 u32 val = mvreg_read(pp,
2628 MVNETA_GMAC_AUTONEG_CONFIG);
2629 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
2630 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
2631 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2632 val);
2633 }
2634 mvneta_port_down(pp);
2635 }
2636 phy_print_status(phydev);
2637 }
2638 }
2639
2640 static int mvneta_mdio_probe(struct mvneta_port *pp)
2641 {
2642 struct phy_device *phy_dev;
2643
2644 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2645 pp->phy_interface);
2646 if (!phy_dev) {
2647 netdev_err(pp->dev, "could not find the PHY\n");
2648 return -ENODEV;
2649 }
2650
2651 phy_dev->supported &= PHY_GBIT_FEATURES;
2652 phy_dev->advertising = phy_dev->supported;
2653
2654 pp->phy_dev = phy_dev;
2655 pp->link = 0;
2656 pp->duplex = 0;
2657 pp->speed = 0;
2658
2659 return 0;
2660 }
2661
2662 static void mvneta_mdio_remove(struct mvneta_port *pp)
2663 {
2664 phy_disconnect(pp->phy_dev);
2665 pp->phy_dev = NULL;
2666 }
2667
2668 static int mvneta_open(struct net_device *dev)
2669 {
2670 struct mvneta_port *pp = netdev_priv(dev);
2671 int ret;
2672
2673 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2674 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2675 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2676
2677 ret = mvneta_setup_rxqs(pp);
2678 if (ret)
2679 return ret;
2680
2681 ret = mvneta_setup_txqs(pp);
2682 if (ret)
2683 goto err_cleanup_rxqs;
2684
2685 /* Connect to port interrupt line */
2686 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2687 MVNETA_DRIVER_NAME, pp);
2688 if (ret) {
2689 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2690 goto err_cleanup_txqs;
2691 }
2692
2693 /* In default link is down */
2694 netif_carrier_off(pp->dev);
2695
2696 ret = mvneta_mdio_probe(pp);
2697 if (ret < 0) {
2698 netdev_err(dev, "cannot probe MDIO bus\n");
2699 goto err_free_irq;
2700 }
2701
2702 mvneta_start_dev(pp);
2703
2704 return 0;
2705
2706 err_free_irq:
2707 free_irq(pp->dev->irq, pp);
2708 err_cleanup_txqs:
2709 mvneta_cleanup_txqs(pp);
2710 err_cleanup_rxqs:
2711 mvneta_cleanup_rxqs(pp);
2712 return ret;
2713 }
2714
2715 /* Stop the port, free port interrupt line */
2716 static int mvneta_stop(struct net_device *dev)
2717 {
2718 struct mvneta_port *pp = netdev_priv(dev);
2719
2720 mvneta_stop_dev(pp);
2721 mvneta_mdio_remove(pp);
2722 free_irq(dev->irq, pp);
2723 mvneta_cleanup_rxqs(pp);
2724 mvneta_cleanup_txqs(pp);
2725
2726 return 0;
2727 }
2728
2729 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2730 {
2731 struct mvneta_port *pp = netdev_priv(dev);
2732
2733 if (!pp->phy_dev)
2734 return -ENOTSUPP;
2735
2736 return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2737 }
2738
2739 /* Ethtool methods */
2740
2741 /* Get settings (phy address, speed) for ethtools */
2742 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2743 {
2744 struct mvneta_port *pp = netdev_priv(dev);
2745
2746 if (!pp->phy_dev)
2747 return -ENODEV;
2748
2749 return phy_ethtool_gset(pp->phy_dev, cmd);
2750 }
2751
2752 /* Set settings (phy address, speed) for ethtools */
2753 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2754 {
2755 struct mvneta_port *pp = netdev_priv(dev);
2756
2757 if (!pp->phy_dev)
2758 return -ENODEV;
2759
2760 return phy_ethtool_sset(pp->phy_dev, cmd);
2761 }
2762
2763 /* Set interrupt coalescing for ethtools */
2764 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2765 struct ethtool_coalesce *c)
2766 {
2767 struct mvneta_port *pp = netdev_priv(dev);
2768 int queue;
2769
2770 for (queue = 0; queue < rxq_number; queue++) {
2771 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2772 rxq->time_coal = c->rx_coalesce_usecs;
2773 rxq->pkts_coal = c->rx_max_coalesced_frames;
2774 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2775 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2776 }
2777
2778 for (queue = 0; queue < txq_number; queue++) {
2779 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2780 txq->done_pkts_coal = c->tx_max_coalesced_frames;
2781 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2782 }
2783
2784 return 0;
2785 }
2786
2787 /* get coalescing for ethtools */
2788 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2789 struct ethtool_coalesce *c)
2790 {
2791 struct mvneta_port *pp = netdev_priv(dev);
2792
2793 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
2794 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
2795
2796 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
2797 return 0;
2798 }
2799
2800
2801 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2802 struct ethtool_drvinfo *drvinfo)
2803 {
2804 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2805 sizeof(drvinfo->driver));
2806 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2807 sizeof(drvinfo->version));
2808 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2809 sizeof(drvinfo->bus_info));
2810 }
2811
2812
2813 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2814 struct ethtool_ringparam *ring)
2815 {
2816 struct mvneta_port *pp = netdev_priv(netdev);
2817
2818 ring->rx_max_pending = MVNETA_MAX_RXD;
2819 ring->tx_max_pending = MVNETA_MAX_TXD;
2820 ring->rx_pending = pp->rx_ring_size;
2821 ring->tx_pending = pp->tx_ring_size;
2822 }
2823
2824 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2825 struct ethtool_ringparam *ring)
2826 {
2827 struct mvneta_port *pp = netdev_priv(dev);
2828
2829 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2830 return -EINVAL;
2831 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2832 ring->rx_pending : MVNETA_MAX_RXD;
2833
2834 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
2835 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
2836 if (pp->tx_ring_size != ring->tx_pending)
2837 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
2838 pp->tx_ring_size, ring->tx_pending);
2839
2840 if (netif_running(dev)) {
2841 mvneta_stop(dev);
2842 if (mvneta_open(dev)) {
2843 netdev_err(dev,
2844 "error on opening device after ring param change\n");
2845 return -ENOMEM;
2846 }
2847 }
2848
2849 return 0;
2850 }
2851
2852 static const struct net_device_ops mvneta_netdev_ops = {
2853 .ndo_open = mvneta_open,
2854 .ndo_stop = mvneta_stop,
2855 .ndo_start_xmit = mvneta_tx,
2856 .ndo_set_rx_mode = mvneta_set_rx_mode,
2857 .ndo_set_mac_address = mvneta_set_mac_addr,
2858 .ndo_change_mtu = mvneta_change_mtu,
2859 .ndo_get_stats64 = mvneta_get_stats64,
2860 .ndo_do_ioctl = mvneta_ioctl,
2861 };
2862
2863 const struct ethtool_ops mvneta_eth_tool_ops = {
2864 .get_link = ethtool_op_get_link,
2865 .get_settings = mvneta_ethtool_get_settings,
2866 .set_settings = mvneta_ethtool_set_settings,
2867 .set_coalesce = mvneta_ethtool_set_coalesce,
2868 .get_coalesce = mvneta_ethtool_get_coalesce,
2869 .get_drvinfo = mvneta_ethtool_get_drvinfo,
2870 .get_ringparam = mvneta_ethtool_get_ringparam,
2871 .set_ringparam = mvneta_ethtool_set_ringparam,
2872 };
2873
2874 /* Initialize hw */
2875 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
2876 {
2877 int queue;
2878
2879 /* Disable port */
2880 mvneta_port_disable(pp);
2881
2882 /* Set port default values */
2883 mvneta_defaults_set(pp);
2884
2885 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
2886 GFP_KERNEL);
2887 if (!pp->txqs)
2888 return -ENOMEM;
2889
2890 /* Initialize TX descriptor rings */
2891 for (queue = 0; queue < txq_number; queue++) {
2892 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2893 txq->id = queue;
2894 txq->size = pp->tx_ring_size;
2895 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2896 }
2897
2898 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
2899 GFP_KERNEL);
2900 if (!pp->rxqs)
2901 return -ENOMEM;
2902
2903 /* Create Rx descriptor rings */
2904 for (queue = 0; queue < rxq_number; queue++) {
2905 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2906 rxq->id = queue;
2907 rxq->size = pp->rx_ring_size;
2908 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2909 rxq->time_coal = MVNETA_RX_COAL_USEC;
2910 }
2911
2912 return 0;
2913 }
2914
2915 /* platform glue : initialize decoding windows */
2916 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2917 const struct mbus_dram_target_info *dram)
2918 {
2919 u32 win_enable;
2920 u32 win_protect;
2921 int i;
2922
2923 for (i = 0; i < 6; i++) {
2924 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2925 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2926
2927 if (i < 4)
2928 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2929 }
2930
2931 win_enable = 0x3f;
2932 win_protect = 0;
2933
2934 for (i = 0; i < dram->num_cs; i++) {
2935 const struct mbus_dram_window *cs = dram->cs + i;
2936 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2937 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2938
2939 mvreg_write(pp, MVNETA_WIN_SIZE(i),
2940 (cs->size - 1) & 0xffff0000);
2941
2942 win_enable &= ~(1 << i);
2943 win_protect |= 3 << (2 * i);
2944 }
2945
2946 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2947 }
2948
2949 /* Power up the port */
2950 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2951 {
2952 u32 ctrl;
2953
2954 /* MAC Cause register should be cleared */
2955 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2956
2957 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2958
2959 /* Even though it might look weird, when we're configured in
2960 * SGMII or QSGMII mode, the RGMII bit needs to be set.
2961 */
2962 switch(phy_mode) {
2963 case PHY_INTERFACE_MODE_QSGMII:
2964 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
2965 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2966 break;
2967 case PHY_INTERFACE_MODE_SGMII:
2968 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
2969 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2970 break;
2971 case PHY_INTERFACE_MODE_RGMII:
2972 case PHY_INTERFACE_MODE_RGMII_ID:
2973 ctrl |= MVNETA_GMAC2_PORT_RGMII;
2974 break;
2975 default:
2976 return -EINVAL;
2977 }
2978
2979 if (pp->use_inband_status)
2980 ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE;
2981
2982 /* Cancel Port Reset */
2983 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
2984 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
2985
2986 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2987 MVNETA_GMAC2_PORT_RESET) != 0)
2988 continue;
2989
2990 return 0;
2991 }
2992
2993 /* Device initialization routine */
2994 static int mvneta_probe(struct platform_device *pdev)
2995 {
2996 const struct mbus_dram_target_info *dram_target_info;
2997 struct resource *res;
2998 struct device_node *dn = pdev->dev.of_node;
2999 struct device_node *phy_node;
3000 struct mvneta_port *pp;
3001 struct net_device *dev;
3002 const char *dt_mac_addr;
3003 char hw_mac_addr[ETH_ALEN];
3004 const char *mac_from;
3005 int phy_mode;
3006 int fixed_phy = 0;
3007 int err;
3008
3009 /* Our multiqueue support is not complete, so for now, only
3010 * allow the usage of the first RX queue
3011 */
3012 if (rxq_def != 0) {
3013 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
3014 return -EINVAL;
3015 }
3016
3017 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3018 if (!dev)
3019 return -ENOMEM;
3020
3021 dev->irq = irq_of_parse_and_map(dn, 0);
3022 if (dev->irq == 0) {
3023 err = -EINVAL;
3024 goto err_free_netdev;
3025 }
3026
3027 phy_node = of_parse_phandle(dn, "phy", 0);
3028 if (!phy_node) {
3029 if (!of_phy_is_fixed_link(dn)) {
3030 dev_err(&pdev->dev, "no PHY specified\n");
3031 err = -ENODEV;
3032 goto err_free_irq;
3033 }
3034
3035 err = of_phy_register_fixed_link(dn);
3036 if (err < 0) {
3037 dev_err(&pdev->dev, "cannot register fixed PHY\n");
3038 goto err_free_irq;
3039 }
3040 fixed_phy = 1;
3041
3042 /* In the case of a fixed PHY, the DT node associated
3043 * to the PHY is the Ethernet MAC DT node.
3044 */
3045 phy_node = of_node_get(dn);
3046 }
3047
3048 phy_mode = of_get_phy_mode(dn);
3049 if (phy_mode < 0) {
3050 dev_err(&pdev->dev, "incorrect phy-mode\n");
3051 err = -EINVAL;
3052 goto err_put_phy_node;
3053 }
3054
3055 dev->tx_queue_len = MVNETA_MAX_TXD;
3056 dev->watchdog_timeo = 5 * HZ;
3057 dev->netdev_ops = &mvneta_netdev_ops;
3058
3059 dev->ethtool_ops = &mvneta_eth_tool_ops;
3060
3061 pp = netdev_priv(dev);
3062 pp->phy_node = phy_node;
3063 pp->phy_interface = phy_mode;
3064 pp->use_inband_status = (phy_mode == PHY_INTERFACE_MODE_SGMII) &&
3065 fixed_phy;
3066
3067 pp->clk = devm_clk_get(&pdev->dev, NULL);
3068 if (IS_ERR(pp->clk)) {
3069 err = PTR_ERR(pp->clk);
3070 goto err_put_phy_node;
3071 }
3072
3073 clk_prepare_enable(pp->clk);
3074
3075 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3076 pp->base = devm_ioremap_resource(&pdev->dev, res);
3077 if (IS_ERR(pp->base)) {
3078 err = PTR_ERR(pp->base);
3079 goto err_clk;
3080 }
3081
3082 /* Alloc per-cpu stats */
3083 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
3084 if (!pp->stats) {
3085 err = -ENOMEM;
3086 goto err_clk;
3087 }
3088
3089 dt_mac_addr = of_get_mac_address(dn);
3090 if (dt_mac_addr) {
3091 mac_from = "device tree";
3092 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
3093 } else {
3094 mvneta_get_mac_addr(pp, hw_mac_addr);
3095 if (is_valid_ether_addr(hw_mac_addr)) {
3096 mac_from = "hardware";
3097 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
3098 } else {
3099 mac_from = "random";
3100 eth_hw_addr_random(dev);
3101 }
3102 }
3103
3104 pp->tx_ring_size = MVNETA_MAX_TXD;
3105 pp->rx_ring_size = MVNETA_MAX_RXD;
3106
3107 pp->dev = dev;
3108 SET_NETDEV_DEV(dev, &pdev->dev);
3109
3110 err = mvneta_init(&pdev->dev, pp);
3111 if (err < 0)
3112 goto err_free_stats;
3113
3114 err = mvneta_port_power_up(pp, phy_mode);
3115 if (err < 0) {
3116 dev_err(&pdev->dev, "can't power up port\n");
3117 goto err_free_stats;
3118 }
3119
3120 dram_target_info = mv_mbus_dram_info();
3121 if (dram_target_info)
3122 mvneta_conf_mbus_windows(pp, dram_target_info);
3123
3124 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
3125
3126 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3127 dev->hw_features |= dev->features;
3128 dev->vlan_features |= dev->features;
3129 dev->priv_flags |= IFF_UNICAST_FLT;
3130 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
3131
3132 err = register_netdev(dev);
3133 if (err < 0) {
3134 dev_err(&pdev->dev, "failed to register\n");
3135 goto err_free_stats;
3136 }
3137
3138 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
3139 dev->dev_addr);
3140
3141 platform_set_drvdata(pdev, pp->dev);
3142
3143 if (pp->use_inband_status) {
3144 struct phy_device *phy = of_phy_find_device(dn);
3145
3146 mvneta_fixed_link_update(pp, phy);
3147 }
3148
3149 return 0;
3150
3151 err_free_stats:
3152 free_percpu(pp->stats);
3153 err_clk:
3154 clk_disable_unprepare(pp->clk);
3155 err_put_phy_node:
3156 of_node_put(phy_node);
3157 err_free_irq:
3158 irq_dispose_mapping(dev->irq);
3159 err_free_netdev:
3160 free_netdev(dev);
3161 return err;
3162 }
3163
3164 /* Device removal routine */
3165 static int mvneta_remove(struct platform_device *pdev)
3166 {
3167 struct net_device *dev = platform_get_drvdata(pdev);
3168 struct mvneta_port *pp = netdev_priv(dev);
3169
3170 unregister_netdev(dev);
3171 clk_disable_unprepare(pp->clk);
3172 free_percpu(pp->stats);
3173 irq_dispose_mapping(dev->irq);
3174 of_node_put(pp->phy_node);
3175 free_netdev(dev);
3176
3177 return 0;
3178 }
3179
3180 static const struct of_device_id mvneta_match[] = {
3181 { .compatible = "marvell,armada-370-neta" },
3182 { }
3183 };
3184 MODULE_DEVICE_TABLE(of, mvneta_match);
3185
3186 static struct platform_driver mvneta_driver = {
3187 .probe = mvneta_probe,
3188 .remove = mvneta_remove,
3189 .driver = {
3190 .name = MVNETA_DRIVER_NAME,
3191 .of_match_table = mvneta_match,
3192 },
3193 };
3194
3195 module_platform_driver(mvneta_driver);
3196
3197 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3198 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3199 MODULE_LICENSE("GPL");
3200
3201 module_param(rxq_number, int, S_IRUGO);
3202 module_param(txq_number, int, S_IRUGO);
3203
3204 module_param(rxq_def, int, S_IRUGO);
3205 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
This page took 0.146967 seconds and 5 git commands to generate.