Merge branch 'for-linus-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / drivers / net / ethernet / marvell / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/platform_device.h>
32 #include <linux/skbuff.h>
33 #include <net/hwbm.h>
34 #include "mvneta_bm.h"
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/tso.h>
38
39 /* Registers */
40 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
41 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
42 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
43 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
44 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
45 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
46 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
47 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
48 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
49 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
50 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
51 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
52 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
53 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
54 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
55 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
56 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
57 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
59 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
60 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
61 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
62 #define MVNETA_PORT_RX_RESET 0x1cc0
63 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
64 #define MVNETA_PHY_ADDR 0x2000
65 #define MVNETA_PHY_ADDR_MASK 0x1f
66 #define MVNETA_MBUS_RETRY 0x2010
67 #define MVNETA_UNIT_INTR_CAUSE 0x2080
68 #define MVNETA_UNIT_CONTROL 0x20B0
69 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
70 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
71 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
72 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
73 #define MVNETA_BASE_ADDR_ENABLE 0x2290
74 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
75 #define MVNETA_PORT_CONFIG 0x2400
76 #define MVNETA_UNI_PROMISC_MODE BIT(0)
77 #define MVNETA_DEF_RXQ(q) ((q) << 1)
78 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
79 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
80 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
81 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
82 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
83 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
84 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
85 MVNETA_DEF_RXQ_ARP(q) | \
86 MVNETA_DEF_RXQ_TCP(q) | \
87 MVNETA_DEF_RXQ_UDP(q) | \
88 MVNETA_DEF_RXQ_BPDU(q) | \
89 MVNETA_TX_UNSET_ERR_SUM | \
90 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
91 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
92 #define MVNETA_MAC_ADDR_LOW 0x2414
93 #define MVNETA_MAC_ADDR_HIGH 0x2418
94 #define MVNETA_SDMA_CONFIG 0x241c
95 #define MVNETA_SDMA_BRST_SIZE_16 4
96 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
97 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
98 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
99 #define MVNETA_DESC_SWAP BIT(6)
100 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
101 #define MVNETA_PORT_STATUS 0x2444
102 #define MVNETA_TX_IN_PRGRS BIT(1)
103 #define MVNETA_TX_FIFO_EMPTY BIT(8)
104 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
105 #define MVNETA_SERDES_CFG 0x24A0
106 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
107 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
108 #define MVNETA_TYPE_PRIO 0x24bc
109 #define MVNETA_FORCE_UNI BIT(21)
110 #define MVNETA_TXQ_CMD_1 0x24e4
111 #define MVNETA_TXQ_CMD 0x2448
112 #define MVNETA_TXQ_DISABLE_SHIFT 8
113 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
114 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
115 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
116 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
117 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
118 #define MVNETA_ACC_MODE 0x2500
119 #define MVNETA_BM_ADDRESS 0x2504
120 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
121 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
122 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
123 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
124 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
125 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
126
127 /* Exception Interrupt Port/Queue Cause register
128 *
129 * Their behavior depend of the mapping done using the PCPX2Q
130 * registers. For a given CPU if the bit associated to a queue is not
131 * set, then for the register a read from this CPU will always return
132 * 0 and a write won't do anything
133 */
134
135 #define MVNETA_INTR_NEW_CAUSE 0x25a0
136 #define MVNETA_INTR_NEW_MASK 0x25a4
137
138 /* bits 0..7 = TXQ SENT, one bit per queue.
139 * bits 8..15 = RXQ OCCUP, one bit per queue.
140 * bits 16..23 = RXQ FREE, one bit per queue.
141 * bit 29 = OLD_REG_SUM, see old reg ?
142 * bit 30 = TX_ERR_SUM, one bit for 4 ports
143 * bit 31 = MISC_SUM, one bit for 4 ports
144 */
145 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
146 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
147 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
148 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
149 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
150
151 #define MVNETA_INTR_OLD_CAUSE 0x25a8
152 #define MVNETA_INTR_OLD_MASK 0x25ac
153
154 /* Data Path Port/Queue Cause Register */
155 #define MVNETA_INTR_MISC_CAUSE 0x25b0
156 #define MVNETA_INTR_MISC_MASK 0x25b4
157
158 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
159 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
160 #define MVNETA_CAUSE_PTP BIT(4)
161
162 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
163 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
164 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
165 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
166 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
167 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
168 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
169 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
170
171 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
174
175 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
176 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
177 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
178
179 #define MVNETA_INTR_ENABLE 0x25b8
180 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
181 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
182
183 #define MVNETA_RXQ_CMD 0x2680
184 #define MVNETA_RXQ_DISABLE_SHIFT 8
185 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
186 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
187 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
188 #define MVNETA_GMAC_CTRL_0 0x2c00
189 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
190 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
191 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
192 #define MVNETA_GMAC_CTRL_2 0x2c08
193 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
194 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
195 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
196 #define MVNETA_GMAC2_PORT_RESET BIT(6)
197 #define MVNETA_GMAC_STATUS 0x2c10
198 #define MVNETA_GMAC_LINK_UP BIT(0)
199 #define MVNETA_GMAC_SPEED_1000 BIT(1)
200 #define MVNETA_GMAC_SPEED_100 BIT(2)
201 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
202 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
203 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
204 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
205 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
206 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
207 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
208 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
209 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
210 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
211 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
212 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
213 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
214 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
215 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
216 #define MVNETA_MIB_COUNTERS_BASE 0x3000
217 #define MVNETA_MIB_LATE_COLLISION 0x7c
218 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
219 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
220 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
221 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
222 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
223 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
224 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
225 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
226 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
227 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
228 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
229 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
230 #define MVNETA_PORT_TX_RESET 0x3cf0
231 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
232 #define MVNETA_TX_MTU 0x3e0c
233 #define MVNETA_TX_TOKEN_SIZE 0x3e14
234 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
235 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
236 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
237
238 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
239
240 /* Descriptor ring Macros */
241 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
242 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
243
244 /* Various constants */
245
246 /* Coalescing */
247 #define MVNETA_TXDONE_COAL_PKTS 1
248 #define MVNETA_RX_COAL_PKTS 32
249 #define MVNETA_RX_COAL_USEC 100
250
251 /* The two bytes Marvell header. Either contains a special value used
252 * by Marvell switches when a specific hardware mode is enabled (not
253 * supported by this driver) or is filled automatically by zeroes on
254 * the RX side. Those two bytes being at the front of the Ethernet
255 * header, they allow to have the IP header aligned on a 4 bytes
256 * boundary automatically: the hardware skips those two bytes on its
257 * own.
258 */
259 #define MVNETA_MH_SIZE 2
260
261 #define MVNETA_VLAN_TAG_LEN 4
262
263 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
264 #define MVNETA_TX_CSUM_DEF_SIZE 1600
265 #define MVNETA_TX_CSUM_MAX_SIZE 9800
266 #define MVNETA_ACC_MODE_EXT1 1
267 #define MVNETA_ACC_MODE_EXT2 2
268
269 #define MVNETA_MAX_DECODE_WIN 6
270
271 /* Timeout constants */
272 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
273 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
274 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
275
276 #define MVNETA_TX_MTU_MAX 0x3ffff
277
278 /* The RSS lookup table actually has 256 entries but we do not use
279 * them yet
280 */
281 #define MVNETA_RSS_LU_TABLE_SIZE 1
282
283 /* TSO header size */
284 #define TSO_HEADER_SIZE 128
285
286 /* Max number of Rx descriptors */
287 #define MVNETA_MAX_RXD 128
288
289 /* Max number of Tx descriptors */
290 #define MVNETA_MAX_TXD 532
291
292 /* Max number of allowed TCP segments for software TSO */
293 #define MVNETA_MAX_TSO_SEGS 100
294
295 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
296
297 /* descriptor aligned size */
298 #define MVNETA_DESC_ALIGNED_SIZE 32
299
300 #define MVNETA_RX_PKT_SIZE(mtu) \
301 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
302 ETH_HLEN + ETH_FCS_LEN, \
303 MVNETA_CPU_D_CACHE_LINE_SIZE)
304
305 #define IS_TSO_HEADER(txq, addr) \
306 ((addr >= txq->tso_hdrs_phys) && \
307 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
308
309 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
310 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
311
312 struct mvneta_statistic {
313 unsigned short offset;
314 unsigned short type;
315 const char name[ETH_GSTRING_LEN];
316 };
317
318 #define T_REG_32 32
319 #define T_REG_64 64
320
321 static const struct mvneta_statistic mvneta_statistics[] = {
322 { 0x3000, T_REG_64, "good_octets_received", },
323 { 0x3010, T_REG_32, "good_frames_received", },
324 { 0x3008, T_REG_32, "bad_octets_received", },
325 { 0x3014, T_REG_32, "bad_frames_received", },
326 { 0x3018, T_REG_32, "broadcast_frames_received", },
327 { 0x301c, T_REG_32, "multicast_frames_received", },
328 { 0x3050, T_REG_32, "unrec_mac_control_received", },
329 { 0x3058, T_REG_32, "good_fc_received", },
330 { 0x305c, T_REG_32, "bad_fc_received", },
331 { 0x3060, T_REG_32, "undersize_received", },
332 { 0x3064, T_REG_32, "fragments_received", },
333 { 0x3068, T_REG_32, "oversize_received", },
334 { 0x306c, T_REG_32, "jabber_received", },
335 { 0x3070, T_REG_32, "mac_receive_error", },
336 { 0x3074, T_REG_32, "bad_crc_event", },
337 { 0x3078, T_REG_32, "collision", },
338 { 0x307c, T_REG_32, "late_collision", },
339 { 0x2484, T_REG_32, "rx_discard", },
340 { 0x2488, T_REG_32, "rx_overrun", },
341 { 0x3020, T_REG_32, "frames_64_octets", },
342 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
343 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
344 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
345 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
346 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
347 { 0x3038, T_REG_64, "good_octets_sent", },
348 { 0x3040, T_REG_32, "good_frames_sent", },
349 { 0x3044, T_REG_32, "excessive_collision", },
350 { 0x3048, T_REG_32, "multicast_frames_sent", },
351 { 0x304c, T_REG_32, "broadcast_frames_sent", },
352 { 0x3054, T_REG_32, "fc_sent", },
353 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
354 };
355
356 struct mvneta_pcpu_stats {
357 struct u64_stats_sync syncp;
358 u64 rx_packets;
359 u64 rx_bytes;
360 u64 tx_packets;
361 u64 tx_bytes;
362 };
363
364 struct mvneta_pcpu_port {
365 /* Pointer to the shared port */
366 struct mvneta_port *pp;
367
368 /* Pointer to the CPU-local NAPI struct */
369 struct napi_struct napi;
370
371 /* Cause of the previous interrupt */
372 u32 cause_rx_tx;
373 };
374
375 struct mvneta_port {
376 u8 id;
377 struct mvneta_pcpu_port __percpu *ports;
378 struct mvneta_pcpu_stats __percpu *stats;
379
380 int pkt_size;
381 unsigned int frag_size;
382 void __iomem *base;
383 struct mvneta_rx_queue *rxqs;
384 struct mvneta_tx_queue *txqs;
385 struct net_device *dev;
386 struct notifier_block cpu_notifier;
387 int rxq_def;
388 /* Protect the access to the percpu interrupt registers,
389 * ensuring that the configuration remains coherent.
390 */
391 spinlock_t lock;
392 bool is_stopped;
393
394 /* Core clock */
395 struct clk *clk;
396 /* AXI clock */
397 struct clk *clk_bus;
398 u8 mcast_count[256];
399 u16 tx_ring_size;
400 u16 rx_ring_size;
401
402 struct mii_bus *mii_bus;
403 struct phy_device *phy_dev;
404 phy_interface_t phy_interface;
405 struct device_node *phy_node;
406 unsigned int link;
407 unsigned int duplex;
408 unsigned int speed;
409 unsigned int tx_csum_limit;
410 unsigned int use_inband_status:1;
411
412 struct mvneta_bm *bm_priv;
413 struct mvneta_bm_pool *pool_long;
414 struct mvneta_bm_pool *pool_short;
415 int bm_win_id;
416
417 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
418
419 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
420 };
421
422 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
423 * layout of the transmit and reception DMA descriptors, and their
424 * layout is therefore defined by the hardware design
425 */
426
427 #define MVNETA_TX_L3_OFF_SHIFT 0
428 #define MVNETA_TX_IP_HLEN_SHIFT 8
429 #define MVNETA_TX_L4_UDP BIT(16)
430 #define MVNETA_TX_L3_IP6 BIT(17)
431 #define MVNETA_TXD_IP_CSUM BIT(18)
432 #define MVNETA_TXD_Z_PAD BIT(19)
433 #define MVNETA_TXD_L_DESC BIT(20)
434 #define MVNETA_TXD_F_DESC BIT(21)
435 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
436 MVNETA_TXD_L_DESC | \
437 MVNETA_TXD_F_DESC)
438 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
439 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
440
441 #define MVNETA_RXD_ERR_CRC 0x0
442 #define MVNETA_RXD_BM_POOL_SHIFT 13
443 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
444 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
445 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
446 #define MVNETA_RXD_ERR_LEN BIT(18)
447 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
448 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
449 #define MVNETA_RXD_L3_IP4 BIT(25)
450 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
451 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
452
453 #if defined(__LITTLE_ENDIAN)
454 struct mvneta_tx_desc {
455 u32 command; /* Options used by HW for packet transmitting.*/
456 u16 reserverd1; /* csum_l4 (for future use) */
457 u16 data_size; /* Data size of transmitted packet in bytes */
458 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
459 u32 reserved2; /* hw_cmd - (for future use, PMT) */
460 u32 reserved3[4]; /* Reserved - (for future use) */
461 };
462
463 struct mvneta_rx_desc {
464 u32 status; /* Info about received packet */
465 u16 reserved1; /* pnc_info - (for future use, PnC) */
466 u16 data_size; /* Size of received packet in bytes */
467
468 u32 buf_phys_addr; /* Physical address of the buffer */
469 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
470
471 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
472 u16 reserved3; /* prefetch_cmd, for future use */
473 u16 reserved4; /* csum_l4 - (for future use, PnC) */
474
475 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
476 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
477 };
478 #else
479 struct mvneta_tx_desc {
480 u16 data_size; /* Data size of transmitted packet in bytes */
481 u16 reserverd1; /* csum_l4 (for future use) */
482 u32 command; /* Options used by HW for packet transmitting.*/
483 u32 reserved2; /* hw_cmd - (for future use, PMT) */
484 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
485 u32 reserved3[4]; /* Reserved - (for future use) */
486 };
487
488 struct mvneta_rx_desc {
489 u16 data_size; /* Size of received packet in bytes */
490 u16 reserved1; /* pnc_info - (for future use, PnC) */
491 u32 status; /* Info about received packet */
492
493 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
494 u32 buf_phys_addr; /* Physical address of the buffer */
495
496 u16 reserved4; /* csum_l4 - (for future use, PnC) */
497 u16 reserved3; /* prefetch_cmd, for future use */
498 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
499
500 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
501 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
502 };
503 #endif
504
505 struct mvneta_tx_queue {
506 /* Number of this TX queue, in the range 0-7 */
507 u8 id;
508
509 /* Number of TX DMA descriptors in the descriptor ring */
510 int size;
511
512 /* Number of currently used TX DMA descriptor in the
513 * descriptor ring
514 */
515 int count;
516 int tx_stop_threshold;
517 int tx_wake_threshold;
518
519 /* Array of transmitted skb */
520 struct sk_buff **tx_skb;
521
522 /* Index of last TX DMA descriptor that was inserted */
523 int txq_put_index;
524
525 /* Index of the TX DMA descriptor to be cleaned up */
526 int txq_get_index;
527
528 u32 done_pkts_coal;
529
530 /* Virtual address of the TX DMA descriptors array */
531 struct mvneta_tx_desc *descs;
532
533 /* DMA address of the TX DMA descriptors array */
534 dma_addr_t descs_phys;
535
536 /* Index of the last TX DMA descriptor */
537 int last_desc;
538
539 /* Index of the next TX DMA descriptor to process */
540 int next_desc_to_proc;
541
542 /* DMA buffers for TSO headers */
543 char *tso_hdrs;
544
545 /* DMA address of TSO headers */
546 dma_addr_t tso_hdrs_phys;
547
548 /* Affinity mask for CPUs*/
549 cpumask_t affinity_mask;
550 };
551
552 struct mvneta_rx_queue {
553 /* rx queue number, in the range 0-7 */
554 u8 id;
555
556 /* num of rx descriptors in the rx descriptor ring */
557 int size;
558
559 /* counter of times when mvneta_refill() failed */
560 int missed;
561
562 u32 pkts_coal;
563 u32 time_coal;
564
565 /* Virtual address of the RX DMA descriptors array */
566 struct mvneta_rx_desc *descs;
567
568 /* DMA address of the RX DMA descriptors array */
569 dma_addr_t descs_phys;
570
571 /* Index of the last RX DMA descriptor */
572 int last_desc;
573
574 /* Index of the next RX DMA descriptor to process */
575 int next_desc_to_proc;
576 };
577
578 /* The hardware supports eight (8) rx queues, but we are only allowing
579 * the first one to be used. Therefore, let's just allocate one queue.
580 */
581 static int rxq_number = 8;
582 static int txq_number = 8;
583
584 static int rxq_def;
585
586 static int rx_copybreak __read_mostly = 256;
587
588 /* HW BM need that each port be identify by a unique ID */
589 static int global_port_id;
590
591 #define MVNETA_DRIVER_NAME "mvneta"
592 #define MVNETA_DRIVER_VERSION "1.0"
593
594 /* Utility/helper methods */
595
596 /* Write helper method */
597 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
598 {
599 writel(data, pp->base + offset);
600 }
601
602 /* Read helper method */
603 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
604 {
605 return readl(pp->base + offset);
606 }
607
608 /* Increment txq get counter */
609 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
610 {
611 txq->txq_get_index++;
612 if (txq->txq_get_index == txq->size)
613 txq->txq_get_index = 0;
614 }
615
616 /* Increment txq put counter */
617 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
618 {
619 txq->txq_put_index++;
620 if (txq->txq_put_index == txq->size)
621 txq->txq_put_index = 0;
622 }
623
624
625 /* Clear all MIB counters */
626 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
627 {
628 int i;
629 u32 dummy;
630
631 /* Perform dummy reads from MIB counters */
632 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
633 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
634 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
635 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
636 }
637
638 /* Get System Network Statistics */
639 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
640 struct rtnl_link_stats64 *stats)
641 {
642 struct mvneta_port *pp = netdev_priv(dev);
643 unsigned int start;
644 int cpu;
645
646 for_each_possible_cpu(cpu) {
647 struct mvneta_pcpu_stats *cpu_stats;
648 u64 rx_packets;
649 u64 rx_bytes;
650 u64 tx_packets;
651 u64 tx_bytes;
652
653 cpu_stats = per_cpu_ptr(pp->stats, cpu);
654 do {
655 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
656 rx_packets = cpu_stats->rx_packets;
657 rx_bytes = cpu_stats->rx_bytes;
658 tx_packets = cpu_stats->tx_packets;
659 tx_bytes = cpu_stats->tx_bytes;
660 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
661
662 stats->rx_packets += rx_packets;
663 stats->rx_bytes += rx_bytes;
664 stats->tx_packets += tx_packets;
665 stats->tx_bytes += tx_bytes;
666 }
667
668 stats->rx_errors = dev->stats.rx_errors;
669 stats->rx_dropped = dev->stats.rx_dropped;
670
671 stats->tx_dropped = dev->stats.tx_dropped;
672
673 return stats;
674 }
675
676 /* Rx descriptors helper methods */
677
678 /* Checks whether the RX descriptor having this status is both the first
679 * and the last descriptor for the RX packet. Each RX packet is currently
680 * received through a single RX descriptor, so not having each RX
681 * descriptor with its first and last bits set is an error
682 */
683 static int mvneta_rxq_desc_is_first_last(u32 status)
684 {
685 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
686 MVNETA_RXD_FIRST_LAST_DESC;
687 }
688
689 /* Add number of descriptors ready to receive new packets */
690 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
691 struct mvneta_rx_queue *rxq,
692 int ndescs)
693 {
694 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
695 * be added at once
696 */
697 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
698 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
699 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
700 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
701 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
702 }
703
704 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
705 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
706 }
707
708 /* Get number of RX descriptors occupied by received packets */
709 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
710 struct mvneta_rx_queue *rxq)
711 {
712 u32 val;
713
714 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
715 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
716 }
717
718 /* Update num of rx desc called upon return from rx path or
719 * from mvneta_rxq_drop_pkts().
720 */
721 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
722 struct mvneta_rx_queue *rxq,
723 int rx_done, int rx_filled)
724 {
725 u32 val;
726
727 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
728 val = rx_done |
729 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
730 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
731 return;
732 }
733
734 /* Only 255 descriptors can be added at once */
735 while ((rx_done > 0) || (rx_filled > 0)) {
736 if (rx_done <= 0xff) {
737 val = rx_done;
738 rx_done = 0;
739 } else {
740 val = 0xff;
741 rx_done -= 0xff;
742 }
743 if (rx_filled <= 0xff) {
744 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
745 rx_filled = 0;
746 } else {
747 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
748 rx_filled -= 0xff;
749 }
750 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
751 }
752 }
753
754 /* Get pointer to next RX descriptor to be processed by SW */
755 static struct mvneta_rx_desc *
756 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
757 {
758 int rx_desc = rxq->next_desc_to_proc;
759
760 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
761 prefetch(rxq->descs + rxq->next_desc_to_proc);
762 return rxq->descs + rx_desc;
763 }
764
765 /* Change maximum receive size of the port. */
766 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
767 {
768 u32 val;
769
770 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
771 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
772 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
773 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
774 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
775 }
776
777
778 /* Set rx queue offset */
779 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
780 struct mvneta_rx_queue *rxq,
781 int offset)
782 {
783 u32 val;
784
785 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
786 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
787
788 /* Offset is in */
789 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
790 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
791 }
792
793
794 /* Tx descriptors helper methods */
795
796 /* Update HW with number of TX descriptors to be sent */
797 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
798 struct mvneta_tx_queue *txq,
799 int pend_desc)
800 {
801 u32 val;
802
803 /* Only 255 descriptors can be added at once ; Assume caller
804 * process TX desriptors in quanta less than 256
805 */
806 val = pend_desc;
807 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
808 }
809
810 /* Get pointer to next TX descriptor to be processed (send) by HW */
811 static struct mvneta_tx_desc *
812 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
813 {
814 int tx_desc = txq->next_desc_to_proc;
815
816 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
817 return txq->descs + tx_desc;
818 }
819
820 /* Release the last allocated TX descriptor. Useful to handle DMA
821 * mapping failures in the TX path.
822 */
823 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
824 {
825 if (txq->next_desc_to_proc == 0)
826 txq->next_desc_to_proc = txq->last_desc - 1;
827 else
828 txq->next_desc_to_proc--;
829 }
830
831 /* Set rxq buf size */
832 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
833 struct mvneta_rx_queue *rxq,
834 int buf_size)
835 {
836 u32 val;
837
838 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
839
840 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
841 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
842
843 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
844 }
845
846 /* Disable buffer management (BM) */
847 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
848 struct mvneta_rx_queue *rxq)
849 {
850 u32 val;
851
852 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
853 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
854 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
855 }
856
857 /* Enable buffer management (BM) */
858 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
859 struct mvneta_rx_queue *rxq)
860 {
861 u32 val;
862
863 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
864 val |= MVNETA_RXQ_HW_BUF_ALLOC;
865 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
866 }
867
868 /* Notify HW about port's assignment of pool for bigger packets */
869 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
870 struct mvneta_rx_queue *rxq)
871 {
872 u32 val;
873
874 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
875 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
876 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
877
878 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
879 }
880
881 /* Notify HW about port's assignment of pool for smaller packets */
882 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
883 struct mvneta_rx_queue *rxq)
884 {
885 u32 val;
886
887 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
888 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
889 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
890
891 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
892 }
893
894 /* Set port's receive buffer size for assigned BM pool */
895 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
896 int buf_size,
897 u8 pool_id)
898 {
899 u32 val;
900
901 if (!IS_ALIGNED(buf_size, 8)) {
902 dev_warn(pp->dev->dev.parent,
903 "illegal buf_size value %d, round to %d\n",
904 buf_size, ALIGN(buf_size, 8));
905 buf_size = ALIGN(buf_size, 8);
906 }
907
908 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
909 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
910 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
911 }
912
913 /* Configure MBUS window in order to enable access BM internal SRAM */
914 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
915 u8 target, u8 attr)
916 {
917 u32 win_enable, win_protect;
918 int i;
919
920 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
921
922 if (pp->bm_win_id < 0) {
923 /* Find first not occupied window */
924 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
925 if (win_enable & (1 << i)) {
926 pp->bm_win_id = i;
927 break;
928 }
929 }
930 if (i == MVNETA_MAX_DECODE_WIN)
931 return -ENOMEM;
932 } else {
933 i = pp->bm_win_id;
934 }
935
936 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
937 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
938
939 if (i < 4)
940 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
941
942 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
943 (attr << 8) | target);
944
945 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
946
947 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
948 win_protect |= 3 << (2 * i);
949 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
950
951 win_enable &= ~(1 << i);
952 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
953
954 return 0;
955 }
956
957 /* Assign and initialize pools for port. In case of fail
958 * buffer manager will remain disabled for current port.
959 */
960 static int mvneta_bm_port_init(struct platform_device *pdev,
961 struct mvneta_port *pp)
962 {
963 struct device_node *dn = pdev->dev.of_node;
964 u32 long_pool_id, short_pool_id, wsize;
965 u8 target, attr;
966 int err;
967
968 /* Get BM window information */
969 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
970 &target, &attr);
971 if (err < 0)
972 return err;
973
974 pp->bm_win_id = -1;
975
976 /* Open NETA -> BM window */
977 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
978 target, attr);
979 if (err < 0) {
980 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
981 return err;
982 }
983
984 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
985 netdev_info(pp->dev, "missing long pool id\n");
986 return -EINVAL;
987 }
988
989 /* Create port's long pool depending on mtu */
990 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
991 MVNETA_BM_LONG, pp->id,
992 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
993 if (!pp->pool_long) {
994 netdev_info(pp->dev, "fail to obtain long pool for port\n");
995 return -ENOMEM;
996 }
997
998 pp->pool_long->port_map |= 1 << pp->id;
999
1000 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1001 pp->pool_long->id);
1002
1003 /* If short pool id is not defined, assume using single pool */
1004 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1005 short_pool_id = long_pool_id;
1006
1007 /* Create port's short pool */
1008 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1009 MVNETA_BM_SHORT, pp->id,
1010 MVNETA_BM_SHORT_PKT_SIZE);
1011 if (!pp->pool_short) {
1012 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1013 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1014 return -ENOMEM;
1015 }
1016
1017 if (short_pool_id != long_pool_id) {
1018 pp->pool_short->port_map |= 1 << pp->id;
1019 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1020 pp->pool_short->id);
1021 }
1022
1023 return 0;
1024 }
1025
1026 /* Update settings of a pool for bigger packets */
1027 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1028 {
1029 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1030 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1031 int num;
1032
1033 /* Release all buffers from long pool */
1034 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1035 if (hwbm_pool->buf_num) {
1036 WARN(1, "cannot free all buffers in pool %d\n",
1037 bm_pool->id);
1038 goto bm_mtu_err;
1039 }
1040
1041 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1042 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1043 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1044 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1045
1046 /* Fill entire long pool */
1047 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1048 if (num != hwbm_pool->size) {
1049 WARN(1, "pool %d: %d of %d allocated\n",
1050 bm_pool->id, num, hwbm_pool->size);
1051 goto bm_mtu_err;
1052 }
1053 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1054
1055 return;
1056
1057 bm_mtu_err:
1058 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1059 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1060
1061 pp->bm_priv = NULL;
1062 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1063 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1064 }
1065
1066 /* Start the Ethernet port RX and TX activity */
1067 static void mvneta_port_up(struct mvneta_port *pp)
1068 {
1069 int queue;
1070 u32 q_map;
1071
1072 /* Enable all initialized TXs. */
1073 q_map = 0;
1074 for (queue = 0; queue < txq_number; queue++) {
1075 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1076 if (txq->descs != NULL)
1077 q_map |= (1 << queue);
1078 }
1079 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1080
1081 /* Enable all initialized RXQs. */
1082 for (queue = 0; queue < rxq_number; queue++) {
1083 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1084
1085 if (rxq->descs != NULL)
1086 q_map |= (1 << queue);
1087 }
1088 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1089 }
1090
1091 /* Stop the Ethernet port activity */
1092 static void mvneta_port_down(struct mvneta_port *pp)
1093 {
1094 u32 val;
1095 int count;
1096
1097 /* Stop Rx port activity. Check port Rx activity. */
1098 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1099
1100 /* Issue stop command for active channels only */
1101 if (val != 0)
1102 mvreg_write(pp, MVNETA_RXQ_CMD,
1103 val << MVNETA_RXQ_DISABLE_SHIFT);
1104
1105 /* Wait for all Rx activity to terminate. */
1106 count = 0;
1107 do {
1108 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1109 netdev_warn(pp->dev,
1110 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1111 val);
1112 break;
1113 }
1114 mdelay(1);
1115
1116 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1117 } while (val & MVNETA_RXQ_ENABLE_MASK);
1118
1119 /* Stop Tx port activity. Check port Tx activity. Issue stop
1120 * command for active channels only
1121 */
1122 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1123
1124 if (val != 0)
1125 mvreg_write(pp, MVNETA_TXQ_CMD,
1126 (val << MVNETA_TXQ_DISABLE_SHIFT));
1127
1128 /* Wait for all Tx activity to terminate. */
1129 count = 0;
1130 do {
1131 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1132 netdev_warn(pp->dev,
1133 "TIMEOUT for TX stopped status=0x%08x\n",
1134 val);
1135 break;
1136 }
1137 mdelay(1);
1138
1139 /* Check TX Command reg that all Txqs are stopped */
1140 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1141
1142 } while (val & MVNETA_TXQ_ENABLE_MASK);
1143
1144 /* Double check to verify that TX FIFO is empty */
1145 count = 0;
1146 do {
1147 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1148 netdev_warn(pp->dev,
1149 "TX FIFO empty timeout status=0x%08x\n",
1150 val);
1151 break;
1152 }
1153 mdelay(1);
1154
1155 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1156 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1157 (val & MVNETA_TX_IN_PRGRS));
1158
1159 udelay(200);
1160 }
1161
1162 /* Enable the port by setting the port enable bit of the MAC control register */
1163 static void mvneta_port_enable(struct mvneta_port *pp)
1164 {
1165 u32 val;
1166
1167 /* Enable port */
1168 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1169 val |= MVNETA_GMAC0_PORT_ENABLE;
1170 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1171 }
1172
1173 /* Disable the port and wait for about 200 usec before retuning */
1174 static void mvneta_port_disable(struct mvneta_port *pp)
1175 {
1176 u32 val;
1177
1178 /* Reset the Enable bit in the Serial Control Register */
1179 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1180 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1181 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1182
1183 udelay(200);
1184 }
1185
1186 /* Multicast tables methods */
1187
1188 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1189 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1190 {
1191 int offset;
1192 u32 val;
1193
1194 if (queue == -1) {
1195 val = 0;
1196 } else {
1197 val = 0x1 | (queue << 1);
1198 val |= (val << 24) | (val << 16) | (val << 8);
1199 }
1200
1201 for (offset = 0; offset <= 0xc; offset += 4)
1202 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1203 }
1204
1205 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1206 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1207 {
1208 int offset;
1209 u32 val;
1210
1211 if (queue == -1) {
1212 val = 0;
1213 } else {
1214 val = 0x1 | (queue << 1);
1215 val |= (val << 24) | (val << 16) | (val << 8);
1216 }
1217
1218 for (offset = 0; offset <= 0xfc; offset += 4)
1219 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1220
1221 }
1222
1223 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1224 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1225 {
1226 int offset;
1227 u32 val;
1228
1229 if (queue == -1) {
1230 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1231 val = 0;
1232 } else {
1233 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1234 val = 0x1 | (queue << 1);
1235 val |= (val << 24) | (val << 16) | (val << 8);
1236 }
1237
1238 for (offset = 0; offset <= 0xfc; offset += 4)
1239 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1240 }
1241
1242 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1243 {
1244 u32 val;
1245
1246 if (enable) {
1247 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1248 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1249 MVNETA_GMAC_FORCE_LINK_DOWN |
1250 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1251 val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1252 MVNETA_GMAC_AN_SPEED_EN |
1253 MVNETA_GMAC_AN_DUPLEX_EN;
1254 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1255
1256 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1257 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1258 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1259
1260 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1261 val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1262 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1263 } else {
1264 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1265 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1266 MVNETA_GMAC_AN_SPEED_EN |
1267 MVNETA_GMAC_AN_DUPLEX_EN);
1268 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1269
1270 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1271 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1272 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1273
1274 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1275 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1276 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1277 }
1278 }
1279
1280 static void mvneta_percpu_unmask_interrupt(void *arg)
1281 {
1282 struct mvneta_port *pp = arg;
1283
1284 /* All the queue are unmasked, but actually only the ones
1285 * mapped to this CPU will be unmasked
1286 */
1287 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1288 MVNETA_RX_INTR_MASK_ALL |
1289 MVNETA_TX_INTR_MASK_ALL |
1290 MVNETA_MISCINTR_INTR_MASK);
1291 }
1292
1293 static void mvneta_percpu_mask_interrupt(void *arg)
1294 {
1295 struct mvneta_port *pp = arg;
1296
1297 /* All the queue are masked, but actually only the ones
1298 * mapped to this CPU will be masked
1299 */
1300 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1301 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1302 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1303 }
1304
1305 static void mvneta_percpu_clear_intr_cause(void *arg)
1306 {
1307 struct mvneta_port *pp = arg;
1308
1309 /* All the queue are cleared, but actually only the ones
1310 * mapped to this CPU will be cleared
1311 */
1312 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1313 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1314 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1315 }
1316
1317 /* This method sets defaults to the NETA port:
1318 * Clears interrupt Cause and Mask registers.
1319 * Clears all MAC tables.
1320 * Sets defaults to all registers.
1321 * Resets RX and TX descriptor rings.
1322 * Resets PHY.
1323 * This method can be called after mvneta_port_down() to return the port
1324 * settings to defaults.
1325 */
1326 static void mvneta_defaults_set(struct mvneta_port *pp)
1327 {
1328 int cpu;
1329 int queue;
1330 u32 val;
1331 int max_cpu = num_present_cpus();
1332
1333 /* Clear all Cause registers */
1334 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1335
1336 /* Mask all interrupts */
1337 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1338 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1339
1340 /* Enable MBUS Retry bit16 */
1341 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1342
1343 /* Set CPU queue access map. CPUs are assigned to the RX and
1344 * TX queues modulo their number. If there is only one TX
1345 * queue then it is assigned to the CPU associated to the
1346 * default RX queue.
1347 */
1348 for_each_present_cpu(cpu) {
1349 int rxq_map = 0, txq_map = 0;
1350 int rxq, txq;
1351
1352 for (rxq = 0; rxq < rxq_number; rxq++)
1353 if ((rxq % max_cpu) == cpu)
1354 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1355
1356 for (txq = 0; txq < txq_number; txq++)
1357 if ((txq % max_cpu) == cpu)
1358 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1359
1360 /* With only one TX queue we configure a special case
1361 * which will allow to get all the irq on a single
1362 * CPU
1363 */
1364 if (txq_number == 1)
1365 txq_map = (cpu == pp->rxq_def) ?
1366 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1367
1368 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1369 }
1370
1371 /* Reset RX and TX DMAs */
1372 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1373 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1374
1375 /* Disable Legacy WRR, Disable EJP, Release from reset */
1376 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1377 for (queue = 0; queue < txq_number; queue++) {
1378 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1379 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1380 }
1381
1382 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1383 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1384
1385 /* Set Port Acceleration Mode */
1386 if (pp->bm_priv)
1387 /* HW buffer management + legacy parser */
1388 val = MVNETA_ACC_MODE_EXT2;
1389 else
1390 /* SW buffer management + legacy parser */
1391 val = MVNETA_ACC_MODE_EXT1;
1392 mvreg_write(pp, MVNETA_ACC_MODE, val);
1393
1394 if (pp->bm_priv)
1395 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1396
1397 /* Update val of portCfg register accordingly with all RxQueue types */
1398 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1399 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1400
1401 val = 0;
1402 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1403 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1404
1405 /* Build PORT_SDMA_CONFIG_REG */
1406 val = 0;
1407
1408 /* Default burst size */
1409 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1410 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1411 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1412
1413 #if defined(__BIG_ENDIAN)
1414 val |= MVNETA_DESC_SWAP;
1415 #endif
1416
1417 /* Assign port SDMA configuration */
1418 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1419
1420 /* Disable PHY polling in hardware, since we're using the
1421 * kernel phylib to do this.
1422 */
1423 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1424 val &= ~MVNETA_PHY_POLLING_ENABLE;
1425 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1426
1427 mvneta_set_autoneg(pp, pp->use_inband_status);
1428 mvneta_set_ucast_table(pp, -1);
1429 mvneta_set_special_mcast_table(pp, -1);
1430 mvneta_set_other_mcast_table(pp, -1);
1431
1432 /* Set port interrupt enable register - default enable all */
1433 mvreg_write(pp, MVNETA_INTR_ENABLE,
1434 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1435 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1436
1437 mvneta_mib_counters_clear(pp);
1438 }
1439
1440 /* Set max sizes for tx queues */
1441 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1442
1443 {
1444 u32 val, size, mtu;
1445 int queue;
1446
1447 mtu = max_tx_size * 8;
1448 if (mtu > MVNETA_TX_MTU_MAX)
1449 mtu = MVNETA_TX_MTU_MAX;
1450
1451 /* Set MTU */
1452 val = mvreg_read(pp, MVNETA_TX_MTU);
1453 val &= ~MVNETA_TX_MTU_MAX;
1454 val |= mtu;
1455 mvreg_write(pp, MVNETA_TX_MTU, val);
1456
1457 /* TX token size and all TXQs token size must be larger that MTU */
1458 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1459
1460 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1461 if (size < mtu) {
1462 size = mtu;
1463 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1464 val |= size;
1465 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1466 }
1467 for (queue = 0; queue < txq_number; queue++) {
1468 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1469
1470 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1471 if (size < mtu) {
1472 size = mtu;
1473 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1474 val |= size;
1475 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1476 }
1477 }
1478 }
1479
1480 /* Set unicast address */
1481 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1482 int queue)
1483 {
1484 unsigned int unicast_reg;
1485 unsigned int tbl_offset;
1486 unsigned int reg_offset;
1487
1488 /* Locate the Unicast table entry */
1489 last_nibble = (0xf & last_nibble);
1490
1491 /* offset from unicast tbl base */
1492 tbl_offset = (last_nibble / 4) * 4;
1493
1494 /* offset within the above reg */
1495 reg_offset = last_nibble % 4;
1496
1497 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1498
1499 if (queue == -1) {
1500 /* Clear accepts frame bit at specified unicast DA tbl entry */
1501 unicast_reg &= ~(0xff << (8 * reg_offset));
1502 } else {
1503 unicast_reg &= ~(0xff << (8 * reg_offset));
1504 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1505 }
1506
1507 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1508 }
1509
1510 /* Set mac address */
1511 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1512 int queue)
1513 {
1514 unsigned int mac_h;
1515 unsigned int mac_l;
1516
1517 if (queue != -1) {
1518 mac_l = (addr[4] << 8) | (addr[5]);
1519 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1520 (addr[2] << 8) | (addr[3] << 0);
1521
1522 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1523 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1524 }
1525
1526 /* Accept frames of this address */
1527 mvneta_set_ucast_addr(pp, addr[5], queue);
1528 }
1529
1530 /* Set the number of packets that will be received before RX interrupt
1531 * will be generated by HW.
1532 */
1533 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1534 struct mvneta_rx_queue *rxq, u32 value)
1535 {
1536 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1537 value | MVNETA_RXQ_NON_OCCUPIED(0));
1538 rxq->pkts_coal = value;
1539 }
1540
1541 /* Set the time delay in usec before RX interrupt will be generated by
1542 * HW.
1543 */
1544 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1545 struct mvneta_rx_queue *rxq, u32 value)
1546 {
1547 u32 val;
1548 unsigned long clk_rate;
1549
1550 clk_rate = clk_get_rate(pp->clk);
1551 val = (clk_rate / 1000000) * value;
1552
1553 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1554 rxq->time_coal = value;
1555 }
1556
1557 /* Set threshold for TX_DONE pkts coalescing */
1558 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1559 struct mvneta_tx_queue *txq, u32 value)
1560 {
1561 u32 val;
1562
1563 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1564
1565 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1566 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1567
1568 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1569
1570 txq->done_pkts_coal = value;
1571 }
1572
1573 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1574 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1575 u32 phys_addr, u32 cookie)
1576 {
1577 rx_desc->buf_cookie = cookie;
1578 rx_desc->buf_phys_addr = phys_addr;
1579 }
1580
1581 /* Decrement sent descriptors counter */
1582 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1583 struct mvneta_tx_queue *txq,
1584 int sent_desc)
1585 {
1586 u32 val;
1587
1588 /* Only 255 TX descriptors can be updated at once */
1589 while (sent_desc > 0xff) {
1590 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1591 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1592 sent_desc = sent_desc - 0xff;
1593 }
1594
1595 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1596 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1597 }
1598
1599 /* Get number of TX descriptors already sent by HW */
1600 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1601 struct mvneta_tx_queue *txq)
1602 {
1603 u32 val;
1604 int sent_desc;
1605
1606 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1607 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1608 MVNETA_TXQ_SENT_DESC_SHIFT;
1609
1610 return sent_desc;
1611 }
1612
1613 /* Get number of sent descriptors and decrement counter.
1614 * The number of sent descriptors is returned.
1615 */
1616 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1617 struct mvneta_tx_queue *txq)
1618 {
1619 int sent_desc;
1620
1621 /* Get number of sent descriptors */
1622 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1623
1624 /* Decrement sent descriptors counter */
1625 if (sent_desc)
1626 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1627
1628 return sent_desc;
1629 }
1630
1631 /* Set TXQ descriptors fields relevant for CSUM calculation */
1632 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1633 int ip_hdr_len, int l4_proto)
1634 {
1635 u32 command;
1636
1637 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1638 * G_L4_chk, L4_type; required only for checksum
1639 * calculation
1640 */
1641 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1642 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1643
1644 if (l3_proto == htons(ETH_P_IP))
1645 command |= MVNETA_TXD_IP_CSUM;
1646 else
1647 command |= MVNETA_TX_L3_IP6;
1648
1649 if (l4_proto == IPPROTO_TCP)
1650 command |= MVNETA_TX_L4_CSUM_FULL;
1651 else if (l4_proto == IPPROTO_UDP)
1652 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1653 else
1654 command |= MVNETA_TX_L4_CSUM_NOT;
1655
1656 return command;
1657 }
1658
1659
1660 /* Display more error info */
1661 static void mvneta_rx_error(struct mvneta_port *pp,
1662 struct mvneta_rx_desc *rx_desc)
1663 {
1664 u32 status = rx_desc->status;
1665
1666 if (!mvneta_rxq_desc_is_first_last(status)) {
1667 netdev_err(pp->dev,
1668 "bad rx status %08x (buffer oversize), size=%d\n",
1669 status, rx_desc->data_size);
1670 return;
1671 }
1672
1673 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1674 case MVNETA_RXD_ERR_CRC:
1675 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1676 status, rx_desc->data_size);
1677 break;
1678 case MVNETA_RXD_ERR_OVERRUN:
1679 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1680 status, rx_desc->data_size);
1681 break;
1682 case MVNETA_RXD_ERR_LEN:
1683 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1684 status, rx_desc->data_size);
1685 break;
1686 case MVNETA_RXD_ERR_RESOURCE:
1687 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1688 status, rx_desc->data_size);
1689 break;
1690 }
1691 }
1692
1693 /* Handle RX checksum offload based on the descriptor's status */
1694 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1695 struct sk_buff *skb)
1696 {
1697 if ((status & MVNETA_RXD_L3_IP4) &&
1698 (status & MVNETA_RXD_L4_CSUM_OK)) {
1699 skb->csum = 0;
1700 skb->ip_summed = CHECKSUM_UNNECESSARY;
1701 return;
1702 }
1703
1704 skb->ip_summed = CHECKSUM_NONE;
1705 }
1706
1707 /* Return tx queue pointer (find last set bit) according to <cause> returned
1708 * form tx_done reg. <cause> must not be null. The return value is always a
1709 * valid queue for matching the first one found in <cause>.
1710 */
1711 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1712 u32 cause)
1713 {
1714 int queue = fls(cause) - 1;
1715
1716 return &pp->txqs[queue];
1717 }
1718
1719 /* Free tx queue skbuffs */
1720 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1721 struct mvneta_tx_queue *txq, int num)
1722 {
1723 int i;
1724
1725 for (i = 0; i < num; i++) {
1726 struct mvneta_tx_desc *tx_desc = txq->descs +
1727 txq->txq_get_index;
1728 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1729
1730 mvneta_txq_inc_get(txq);
1731
1732 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1733 dma_unmap_single(pp->dev->dev.parent,
1734 tx_desc->buf_phys_addr,
1735 tx_desc->data_size, DMA_TO_DEVICE);
1736 if (!skb)
1737 continue;
1738 dev_kfree_skb_any(skb);
1739 }
1740 }
1741
1742 /* Handle end of transmission */
1743 static void mvneta_txq_done(struct mvneta_port *pp,
1744 struct mvneta_tx_queue *txq)
1745 {
1746 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1747 int tx_done;
1748
1749 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1750 if (!tx_done)
1751 return;
1752
1753 mvneta_txq_bufs_free(pp, txq, tx_done);
1754
1755 txq->count -= tx_done;
1756
1757 if (netif_tx_queue_stopped(nq)) {
1758 if (txq->count <= txq->tx_wake_threshold)
1759 netif_tx_wake_queue(nq);
1760 }
1761 }
1762
1763 void *mvneta_frag_alloc(unsigned int frag_size)
1764 {
1765 if (likely(frag_size <= PAGE_SIZE))
1766 return netdev_alloc_frag(frag_size);
1767 else
1768 return kmalloc(frag_size, GFP_ATOMIC);
1769 }
1770 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1771
1772 void mvneta_frag_free(unsigned int frag_size, void *data)
1773 {
1774 if (likely(frag_size <= PAGE_SIZE))
1775 skb_free_frag(data);
1776 else
1777 kfree(data);
1778 }
1779 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1780
1781 /* Refill processing for SW buffer management */
1782 static int mvneta_rx_refill(struct mvneta_port *pp,
1783 struct mvneta_rx_desc *rx_desc)
1784
1785 {
1786 dma_addr_t phys_addr;
1787 void *data;
1788
1789 data = mvneta_frag_alloc(pp->frag_size);
1790 if (!data)
1791 return -ENOMEM;
1792
1793 phys_addr = dma_map_single(pp->dev->dev.parent, data,
1794 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1795 DMA_FROM_DEVICE);
1796 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1797 mvneta_frag_free(pp->frag_size, data);
1798 return -ENOMEM;
1799 }
1800
1801 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1802 return 0;
1803 }
1804
1805 /* Handle tx checksum */
1806 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1807 {
1808 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1809 int ip_hdr_len = 0;
1810 __be16 l3_proto = vlan_get_protocol(skb);
1811 u8 l4_proto;
1812
1813 if (l3_proto == htons(ETH_P_IP)) {
1814 struct iphdr *ip4h = ip_hdr(skb);
1815
1816 /* Calculate IPv4 checksum and L4 checksum */
1817 ip_hdr_len = ip4h->ihl;
1818 l4_proto = ip4h->protocol;
1819 } else if (l3_proto == htons(ETH_P_IPV6)) {
1820 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1821
1822 /* Read l4_protocol from one of IPv6 extra headers */
1823 if (skb_network_header_len(skb) > 0)
1824 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1825 l4_proto = ip6h->nexthdr;
1826 } else
1827 return MVNETA_TX_L4_CSUM_NOT;
1828
1829 return mvneta_txq_desc_csum(skb_network_offset(skb),
1830 l3_proto, ip_hdr_len, l4_proto);
1831 }
1832
1833 return MVNETA_TX_L4_CSUM_NOT;
1834 }
1835
1836 /* Drop packets received by the RXQ and free buffers */
1837 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1838 struct mvneta_rx_queue *rxq)
1839 {
1840 int rx_done, i;
1841
1842 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1843 if (rx_done)
1844 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1845
1846 if (pp->bm_priv) {
1847 for (i = 0; i < rx_done; i++) {
1848 struct mvneta_rx_desc *rx_desc =
1849 mvneta_rxq_next_desc_get(rxq);
1850 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1851 struct mvneta_bm_pool *bm_pool;
1852
1853 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1854 /* Return dropped buffer to the pool */
1855 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1856 rx_desc->buf_phys_addr);
1857 }
1858 return;
1859 }
1860
1861 for (i = 0; i < rxq->size; i++) {
1862 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1863 void *data = (void *)rx_desc->buf_cookie;
1864
1865 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1866 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1867 mvneta_frag_free(pp->frag_size, data);
1868 }
1869 }
1870
1871 /* Main rx processing when using software buffer management */
1872 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1873 struct mvneta_rx_queue *rxq)
1874 {
1875 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1876 struct net_device *dev = pp->dev;
1877 int rx_done;
1878 u32 rcvd_pkts = 0;
1879 u32 rcvd_bytes = 0;
1880
1881 /* Get number of received packets */
1882 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1883
1884 if (rx_todo > rx_done)
1885 rx_todo = rx_done;
1886
1887 rx_done = 0;
1888
1889 /* Fairness NAPI loop */
1890 while (rx_done < rx_todo) {
1891 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1892 struct sk_buff *skb;
1893 unsigned char *data;
1894 dma_addr_t phys_addr;
1895 u32 rx_status, frag_size;
1896 int rx_bytes, err;
1897
1898 rx_done++;
1899 rx_status = rx_desc->status;
1900 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1901 data = (unsigned char *)rx_desc->buf_cookie;
1902 phys_addr = rx_desc->buf_phys_addr;
1903
1904 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1905 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1906 err_drop_frame:
1907 dev->stats.rx_errors++;
1908 mvneta_rx_error(pp, rx_desc);
1909 /* leave the descriptor untouched */
1910 continue;
1911 }
1912
1913 if (rx_bytes <= rx_copybreak) {
1914 /* better copy a small frame and not unmap the DMA region */
1915 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1916 if (unlikely(!skb))
1917 goto err_drop_frame;
1918
1919 dma_sync_single_range_for_cpu(dev->dev.parent,
1920 rx_desc->buf_phys_addr,
1921 MVNETA_MH_SIZE + NET_SKB_PAD,
1922 rx_bytes,
1923 DMA_FROM_DEVICE);
1924 memcpy(skb_put(skb, rx_bytes),
1925 data + MVNETA_MH_SIZE + NET_SKB_PAD,
1926 rx_bytes);
1927
1928 skb->protocol = eth_type_trans(skb, dev);
1929 mvneta_rx_csum(pp, rx_status, skb);
1930 napi_gro_receive(&port->napi, skb);
1931
1932 rcvd_pkts++;
1933 rcvd_bytes += rx_bytes;
1934
1935 /* leave the descriptor and buffer untouched */
1936 continue;
1937 }
1938
1939 /* Refill processing */
1940 err = mvneta_rx_refill(pp, rx_desc);
1941 if (err) {
1942 netdev_err(dev, "Linux processing - Can't refill\n");
1943 rxq->missed++;
1944 goto err_drop_frame;
1945 }
1946
1947 frag_size = pp->frag_size;
1948
1949 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1950
1951 /* After refill old buffer has to be unmapped regardless
1952 * the skb is successfully built or not.
1953 */
1954 dma_unmap_single(dev->dev.parent, phys_addr,
1955 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1956 DMA_FROM_DEVICE);
1957
1958 if (!skb)
1959 goto err_drop_frame;
1960
1961 rcvd_pkts++;
1962 rcvd_bytes += rx_bytes;
1963
1964 /* Linux processing */
1965 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1966 skb_put(skb, rx_bytes);
1967
1968 skb->protocol = eth_type_trans(skb, dev);
1969
1970 mvneta_rx_csum(pp, rx_status, skb);
1971
1972 napi_gro_receive(&port->napi, skb);
1973 }
1974
1975 if (rcvd_pkts) {
1976 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1977
1978 u64_stats_update_begin(&stats->syncp);
1979 stats->rx_packets += rcvd_pkts;
1980 stats->rx_bytes += rcvd_bytes;
1981 u64_stats_update_end(&stats->syncp);
1982 }
1983
1984 /* Update rxq management counters */
1985 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1986
1987 return rx_done;
1988 }
1989
1990 /* Main rx processing when using hardware buffer management */
1991 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
1992 struct mvneta_rx_queue *rxq)
1993 {
1994 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1995 struct net_device *dev = pp->dev;
1996 int rx_done;
1997 u32 rcvd_pkts = 0;
1998 u32 rcvd_bytes = 0;
1999
2000 /* Get number of received packets */
2001 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2002
2003 if (rx_todo > rx_done)
2004 rx_todo = rx_done;
2005
2006 rx_done = 0;
2007
2008 /* Fairness NAPI loop */
2009 while (rx_done < rx_todo) {
2010 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2011 struct mvneta_bm_pool *bm_pool = NULL;
2012 struct sk_buff *skb;
2013 unsigned char *data;
2014 dma_addr_t phys_addr;
2015 u32 rx_status, frag_size;
2016 int rx_bytes, err;
2017 u8 pool_id;
2018
2019 rx_done++;
2020 rx_status = rx_desc->status;
2021 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2022 data = (unsigned char *)rx_desc->buf_cookie;
2023 phys_addr = rx_desc->buf_phys_addr;
2024 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2025 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2026
2027 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2028 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2029 err_drop_frame_ret_pool:
2030 /* Return the buffer to the pool */
2031 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2032 rx_desc->buf_phys_addr);
2033 err_drop_frame:
2034 dev->stats.rx_errors++;
2035 mvneta_rx_error(pp, rx_desc);
2036 /* leave the descriptor untouched */
2037 continue;
2038 }
2039
2040 if (rx_bytes <= rx_copybreak) {
2041 /* better copy a small frame and not unmap the DMA region */
2042 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2043 if (unlikely(!skb))
2044 goto err_drop_frame_ret_pool;
2045
2046 dma_sync_single_range_for_cpu(dev->dev.parent,
2047 rx_desc->buf_phys_addr,
2048 MVNETA_MH_SIZE + NET_SKB_PAD,
2049 rx_bytes,
2050 DMA_FROM_DEVICE);
2051 memcpy(skb_put(skb, rx_bytes),
2052 data + MVNETA_MH_SIZE + NET_SKB_PAD,
2053 rx_bytes);
2054
2055 skb->protocol = eth_type_trans(skb, dev);
2056 mvneta_rx_csum(pp, rx_status, skb);
2057 napi_gro_receive(&port->napi, skb);
2058
2059 rcvd_pkts++;
2060 rcvd_bytes += rx_bytes;
2061
2062 /* Return the buffer to the pool */
2063 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2064 rx_desc->buf_phys_addr);
2065
2066 /* leave the descriptor and buffer untouched */
2067 continue;
2068 }
2069
2070 /* Refill processing */
2071 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2072 if (err) {
2073 netdev_err(dev, "Linux processing - Can't refill\n");
2074 rxq->missed++;
2075 goto err_drop_frame_ret_pool;
2076 }
2077
2078 frag_size = bm_pool->hwbm_pool.frag_size;
2079
2080 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2081
2082 /* After refill old buffer has to be unmapped regardless
2083 * the skb is successfully built or not.
2084 */
2085 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2086 bm_pool->buf_size, DMA_FROM_DEVICE);
2087 if (!skb)
2088 goto err_drop_frame;
2089
2090 rcvd_pkts++;
2091 rcvd_bytes += rx_bytes;
2092
2093 /* Linux processing */
2094 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2095 skb_put(skb, rx_bytes);
2096
2097 skb->protocol = eth_type_trans(skb, dev);
2098
2099 mvneta_rx_csum(pp, rx_status, skb);
2100
2101 napi_gro_receive(&port->napi, skb);
2102 }
2103
2104 if (rcvd_pkts) {
2105 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2106
2107 u64_stats_update_begin(&stats->syncp);
2108 stats->rx_packets += rcvd_pkts;
2109 stats->rx_bytes += rcvd_bytes;
2110 u64_stats_update_end(&stats->syncp);
2111 }
2112
2113 /* Update rxq management counters */
2114 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2115
2116 return rx_done;
2117 }
2118
2119 static inline void
2120 mvneta_tso_put_hdr(struct sk_buff *skb,
2121 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2122 {
2123 struct mvneta_tx_desc *tx_desc;
2124 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2125
2126 txq->tx_skb[txq->txq_put_index] = NULL;
2127 tx_desc = mvneta_txq_next_desc_get(txq);
2128 tx_desc->data_size = hdr_len;
2129 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2130 tx_desc->command |= MVNETA_TXD_F_DESC;
2131 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2132 txq->txq_put_index * TSO_HEADER_SIZE;
2133 mvneta_txq_inc_put(txq);
2134 }
2135
2136 static inline int
2137 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2138 struct sk_buff *skb, char *data, int size,
2139 bool last_tcp, bool is_last)
2140 {
2141 struct mvneta_tx_desc *tx_desc;
2142
2143 tx_desc = mvneta_txq_next_desc_get(txq);
2144 tx_desc->data_size = size;
2145 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2146 size, DMA_TO_DEVICE);
2147 if (unlikely(dma_mapping_error(dev->dev.parent,
2148 tx_desc->buf_phys_addr))) {
2149 mvneta_txq_desc_put(txq);
2150 return -ENOMEM;
2151 }
2152
2153 tx_desc->command = 0;
2154 txq->tx_skb[txq->txq_put_index] = NULL;
2155
2156 if (last_tcp) {
2157 /* last descriptor in the TCP packet */
2158 tx_desc->command = MVNETA_TXD_L_DESC;
2159
2160 /* last descriptor in SKB */
2161 if (is_last)
2162 txq->tx_skb[txq->txq_put_index] = skb;
2163 }
2164 mvneta_txq_inc_put(txq);
2165 return 0;
2166 }
2167
2168 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2169 struct mvneta_tx_queue *txq)
2170 {
2171 int total_len, data_left;
2172 int desc_count = 0;
2173 struct mvneta_port *pp = netdev_priv(dev);
2174 struct tso_t tso;
2175 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2176 int i;
2177
2178 /* Count needed descriptors */
2179 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2180 return 0;
2181
2182 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2183 pr_info("*** Is this even possible???!?!?\n");
2184 return 0;
2185 }
2186
2187 /* Initialize the TSO handler, and prepare the first payload */
2188 tso_start(skb, &tso);
2189
2190 total_len = skb->len - hdr_len;
2191 while (total_len > 0) {
2192 char *hdr;
2193
2194 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2195 total_len -= data_left;
2196 desc_count++;
2197
2198 /* prepare packet headers: MAC + IP + TCP */
2199 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2200 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2201
2202 mvneta_tso_put_hdr(skb, pp, txq);
2203
2204 while (data_left > 0) {
2205 int size;
2206 desc_count++;
2207
2208 size = min_t(int, tso.size, data_left);
2209
2210 if (mvneta_tso_put_data(dev, txq, skb,
2211 tso.data, size,
2212 size == data_left,
2213 total_len == 0))
2214 goto err_release;
2215 data_left -= size;
2216
2217 tso_build_data(skb, &tso, size);
2218 }
2219 }
2220
2221 return desc_count;
2222
2223 err_release:
2224 /* Release all used data descriptors; header descriptors must not
2225 * be DMA-unmapped.
2226 */
2227 for (i = desc_count - 1; i >= 0; i--) {
2228 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2229 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2230 dma_unmap_single(pp->dev->dev.parent,
2231 tx_desc->buf_phys_addr,
2232 tx_desc->data_size,
2233 DMA_TO_DEVICE);
2234 mvneta_txq_desc_put(txq);
2235 }
2236 return 0;
2237 }
2238
2239 /* Handle tx fragmentation processing */
2240 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2241 struct mvneta_tx_queue *txq)
2242 {
2243 struct mvneta_tx_desc *tx_desc;
2244 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2245
2246 for (i = 0; i < nr_frags; i++) {
2247 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2248 void *addr = page_address(frag->page.p) + frag->page_offset;
2249
2250 tx_desc = mvneta_txq_next_desc_get(txq);
2251 tx_desc->data_size = frag->size;
2252
2253 tx_desc->buf_phys_addr =
2254 dma_map_single(pp->dev->dev.parent, addr,
2255 tx_desc->data_size, DMA_TO_DEVICE);
2256
2257 if (dma_mapping_error(pp->dev->dev.parent,
2258 tx_desc->buf_phys_addr)) {
2259 mvneta_txq_desc_put(txq);
2260 goto error;
2261 }
2262
2263 if (i == nr_frags - 1) {
2264 /* Last descriptor */
2265 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2266 txq->tx_skb[txq->txq_put_index] = skb;
2267 } else {
2268 /* Descriptor in the middle: Not First, Not Last */
2269 tx_desc->command = 0;
2270 txq->tx_skb[txq->txq_put_index] = NULL;
2271 }
2272 mvneta_txq_inc_put(txq);
2273 }
2274
2275 return 0;
2276
2277 error:
2278 /* Release all descriptors that were used to map fragments of
2279 * this packet, as well as the corresponding DMA mappings
2280 */
2281 for (i = i - 1; i >= 0; i--) {
2282 tx_desc = txq->descs + i;
2283 dma_unmap_single(pp->dev->dev.parent,
2284 tx_desc->buf_phys_addr,
2285 tx_desc->data_size,
2286 DMA_TO_DEVICE);
2287 mvneta_txq_desc_put(txq);
2288 }
2289
2290 return -ENOMEM;
2291 }
2292
2293 /* Main tx processing */
2294 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2295 {
2296 struct mvneta_port *pp = netdev_priv(dev);
2297 u16 txq_id = skb_get_queue_mapping(skb);
2298 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2299 struct mvneta_tx_desc *tx_desc;
2300 int len = skb->len;
2301 int frags = 0;
2302 u32 tx_cmd;
2303
2304 if (!netif_running(dev))
2305 goto out;
2306
2307 if (skb_is_gso(skb)) {
2308 frags = mvneta_tx_tso(skb, dev, txq);
2309 goto out;
2310 }
2311
2312 frags = skb_shinfo(skb)->nr_frags + 1;
2313
2314 /* Get a descriptor for the first part of the packet */
2315 tx_desc = mvneta_txq_next_desc_get(txq);
2316
2317 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2318
2319 tx_desc->data_size = skb_headlen(skb);
2320
2321 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2322 tx_desc->data_size,
2323 DMA_TO_DEVICE);
2324 if (unlikely(dma_mapping_error(dev->dev.parent,
2325 tx_desc->buf_phys_addr))) {
2326 mvneta_txq_desc_put(txq);
2327 frags = 0;
2328 goto out;
2329 }
2330
2331 if (frags == 1) {
2332 /* First and Last descriptor */
2333 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2334 tx_desc->command = tx_cmd;
2335 txq->tx_skb[txq->txq_put_index] = skb;
2336 mvneta_txq_inc_put(txq);
2337 } else {
2338 /* First but not Last */
2339 tx_cmd |= MVNETA_TXD_F_DESC;
2340 txq->tx_skb[txq->txq_put_index] = NULL;
2341 mvneta_txq_inc_put(txq);
2342 tx_desc->command = tx_cmd;
2343 /* Continue with other skb fragments */
2344 if (mvneta_tx_frag_process(pp, skb, txq)) {
2345 dma_unmap_single(dev->dev.parent,
2346 tx_desc->buf_phys_addr,
2347 tx_desc->data_size,
2348 DMA_TO_DEVICE);
2349 mvneta_txq_desc_put(txq);
2350 frags = 0;
2351 goto out;
2352 }
2353 }
2354
2355 out:
2356 if (frags > 0) {
2357 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2358 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2359
2360 txq->count += frags;
2361 mvneta_txq_pend_desc_add(pp, txq, frags);
2362
2363 if (txq->count >= txq->tx_stop_threshold)
2364 netif_tx_stop_queue(nq);
2365
2366 u64_stats_update_begin(&stats->syncp);
2367 stats->tx_packets++;
2368 stats->tx_bytes += len;
2369 u64_stats_update_end(&stats->syncp);
2370 } else {
2371 dev->stats.tx_dropped++;
2372 dev_kfree_skb_any(skb);
2373 }
2374
2375 return NETDEV_TX_OK;
2376 }
2377
2378
2379 /* Free tx resources, when resetting a port */
2380 static void mvneta_txq_done_force(struct mvneta_port *pp,
2381 struct mvneta_tx_queue *txq)
2382
2383 {
2384 int tx_done = txq->count;
2385
2386 mvneta_txq_bufs_free(pp, txq, tx_done);
2387
2388 /* reset txq */
2389 txq->count = 0;
2390 txq->txq_put_index = 0;
2391 txq->txq_get_index = 0;
2392 }
2393
2394 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2395 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2396 */
2397 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2398 {
2399 struct mvneta_tx_queue *txq;
2400 struct netdev_queue *nq;
2401
2402 while (cause_tx_done) {
2403 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2404
2405 nq = netdev_get_tx_queue(pp->dev, txq->id);
2406 __netif_tx_lock(nq, smp_processor_id());
2407
2408 if (txq->count)
2409 mvneta_txq_done(pp, txq);
2410
2411 __netif_tx_unlock(nq);
2412 cause_tx_done &= ~((1 << txq->id));
2413 }
2414 }
2415
2416 /* Compute crc8 of the specified address, using a unique algorithm ,
2417 * according to hw spec, different than generic crc8 algorithm
2418 */
2419 static int mvneta_addr_crc(unsigned char *addr)
2420 {
2421 int crc = 0;
2422 int i;
2423
2424 for (i = 0; i < ETH_ALEN; i++) {
2425 int j;
2426
2427 crc = (crc ^ addr[i]) << 8;
2428 for (j = 7; j >= 0; j--) {
2429 if (crc & (0x100 << j))
2430 crc ^= 0x107 << j;
2431 }
2432 }
2433
2434 return crc;
2435 }
2436
2437 /* This method controls the net device special MAC multicast support.
2438 * The Special Multicast Table for MAC addresses supports MAC of the form
2439 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2440 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2441 * Table entries in the DA-Filter table. This method set the Special
2442 * Multicast Table appropriate entry.
2443 */
2444 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2445 unsigned char last_byte,
2446 int queue)
2447 {
2448 unsigned int smc_table_reg;
2449 unsigned int tbl_offset;
2450 unsigned int reg_offset;
2451
2452 /* Register offset from SMC table base */
2453 tbl_offset = (last_byte / 4);
2454 /* Entry offset within the above reg */
2455 reg_offset = last_byte % 4;
2456
2457 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2458 + tbl_offset * 4));
2459
2460 if (queue == -1)
2461 smc_table_reg &= ~(0xff << (8 * reg_offset));
2462 else {
2463 smc_table_reg &= ~(0xff << (8 * reg_offset));
2464 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2465 }
2466
2467 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2468 smc_table_reg);
2469 }
2470
2471 /* This method controls the network device Other MAC multicast support.
2472 * The Other Multicast Table is used for multicast of another type.
2473 * A CRC-8 is used as an index to the Other Multicast Table entries
2474 * in the DA-Filter table.
2475 * The method gets the CRC-8 value from the calling routine and
2476 * sets the Other Multicast Table appropriate entry according to the
2477 * specified CRC-8 .
2478 */
2479 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2480 unsigned char crc8,
2481 int queue)
2482 {
2483 unsigned int omc_table_reg;
2484 unsigned int tbl_offset;
2485 unsigned int reg_offset;
2486
2487 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2488 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2489
2490 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2491
2492 if (queue == -1) {
2493 /* Clear accepts frame bit at specified Other DA table entry */
2494 omc_table_reg &= ~(0xff << (8 * reg_offset));
2495 } else {
2496 omc_table_reg &= ~(0xff << (8 * reg_offset));
2497 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2498 }
2499
2500 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2501 }
2502
2503 /* The network device supports multicast using two tables:
2504 * 1) Special Multicast Table for MAC addresses of the form
2505 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2506 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2507 * Table entries in the DA-Filter table.
2508 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2509 * is used as an index to the Other Multicast Table entries in the
2510 * DA-Filter table.
2511 */
2512 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2513 int queue)
2514 {
2515 unsigned char crc_result = 0;
2516
2517 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2518 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2519 return 0;
2520 }
2521
2522 crc_result = mvneta_addr_crc(p_addr);
2523 if (queue == -1) {
2524 if (pp->mcast_count[crc_result] == 0) {
2525 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2526 crc_result);
2527 return -EINVAL;
2528 }
2529
2530 pp->mcast_count[crc_result]--;
2531 if (pp->mcast_count[crc_result] != 0) {
2532 netdev_info(pp->dev,
2533 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2534 pp->mcast_count[crc_result], crc_result);
2535 return -EINVAL;
2536 }
2537 } else
2538 pp->mcast_count[crc_result]++;
2539
2540 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2541
2542 return 0;
2543 }
2544
2545 /* Configure Fitering mode of Ethernet port */
2546 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2547 int is_promisc)
2548 {
2549 u32 port_cfg_reg, val;
2550
2551 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2552
2553 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2554
2555 /* Set / Clear UPM bit in port configuration register */
2556 if (is_promisc) {
2557 /* Accept all Unicast addresses */
2558 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2559 val |= MVNETA_FORCE_UNI;
2560 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2561 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2562 } else {
2563 /* Reject all Unicast addresses */
2564 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2565 val &= ~MVNETA_FORCE_UNI;
2566 }
2567
2568 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2569 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2570 }
2571
2572 /* register unicast and multicast addresses */
2573 static void mvneta_set_rx_mode(struct net_device *dev)
2574 {
2575 struct mvneta_port *pp = netdev_priv(dev);
2576 struct netdev_hw_addr *ha;
2577
2578 if (dev->flags & IFF_PROMISC) {
2579 /* Accept all: Multicast + Unicast */
2580 mvneta_rx_unicast_promisc_set(pp, 1);
2581 mvneta_set_ucast_table(pp, pp->rxq_def);
2582 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2583 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2584 } else {
2585 /* Accept single Unicast */
2586 mvneta_rx_unicast_promisc_set(pp, 0);
2587 mvneta_set_ucast_table(pp, -1);
2588 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2589
2590 if (dev->flags & IFF_ALLMULTI) {
2591 /* Accept all multicast */
2592 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2593 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2594 } else {
2595 /* Accept only initialized multicast */
2596 mvneta_set_special_mcast_table(pp, -1);
2597 mvneta_set_other_mcast_table(pp, -1);
2598
2599 if (!netdev_mc_empty(dev)) {
2600 netdev_for_each_mc_addr(ha, dev) {
2601 mvneta_mcast_addr_set(pp, ha->addr,
2602 pp->rxq_def);
2603 }
2604 }
2605 }
2606 }
2607 }
2608
2609 /* Interrupt handling - the callback for request_irq() */
2610 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2611 {
2612 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2613
2614 disable_percpu_irq(port->pp->dev->irq);
2615 napi_schedule(&port->napi);
2616
2617 return IRQ_HANDLED;
2618 }
2619
2620 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2621 struct phy_device *phy)
2622 {
2623 struct fixed_phy_status status;
2624 struct fixed_phy_status changed = {};
2625 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2626
2627 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2628 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2629 status.speed = SPEED_1000;
2630 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2631 status.speed = SPEED_100;
2632 else
2633 status.speed = SPEED_10;
2634 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2635 changed.link = 1;
2636 changed.speed = 1;
2637 changed.duplex = 1;
2638 fixed_phy_update_state(phy, &status, &changed);
2639 return 0;
2640 }
2641
2642 /* NAPI handler
2643 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2644 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2645 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2646 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2647 * Each CPU has its own causeRxTx register
2648 */
2649 static int mvneta_poll(struct napi_struct *napi, int budget)
2650 {
2651 int rx_done = 0;
2652 u32 cause_rx_tx;
2653 int rx_queue;
2654 struct mvneta_port *pp = netdev_priv(napi->dev);
2655 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2656
2657 if (!netif_running(pp->dev)) {
2658 napi_complete(&port->napi);
2659 return rx_done;
2660 }
2661
2662 /* Read cause register */
2663 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2664 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2665 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2666
2667 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2668 if (pp->use_inband_status && (cause_misc &
2669 (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2670 MVNETA_CAUSE_LINK_CHANGE |
2671 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2672 mvneta_fixed_link_update(pp, pp->phy_dev);
2673 }
2674 }
2675
2676 /* Release Tx descriptors */
2677 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2678 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2679 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2680 }
2681
2682 /* For the case where the last mvneta_poll did not process all
2683 * RX packets
2684 */
2685 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2686
2687 cause_rx_tx |= port->cause_rx_tx;
2688
2689 if (rx_queue) {
2690 rx_queue = rx_queue - 1;
2691 if (pp->bm_priv)
2692 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2693 else
2694 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2695 }
2696
2697 budget -= rx_done;
2698
2699 if (budget > 0) {
2700 cause_rx_tx = 0;
2701 napi_complete(&port->napi);
2702 enable_percpu_irq(pp->dev->irq, 0);
2703 }
2704
2705 port->cause_rx_tx = cause_rx_tx;
2706 return rx_done;
2707 }
2708
2709 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2710 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2711 int num)
2712 {
2713 int i;
2714
2715 for (i = 0; i < num; i++) {
2716 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2717 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2718 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
2719 __func__, rxq->id, i, num);
2720 break;
2721 }
2722 }
2723
2724 /* Add this number of RX descriptors as non occupied (ready to
2725 * get packets)
2726 */
2727 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2728
2729 return i;
2730 }
2731
2732 /* Free all packets pending transmit from all TXQs and reset TX port */
2733 static void mvneta_tx_reset(struct mvneta_port *pp)
2734 {
2735 int queue;
2736
2737 /* free the skb's in the tx ring */
2738 for (queue = 0; queue < txq_number; queue++)
2739 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2740
2741 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2742 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2743 }
2744
2745 static void mvneta_rx_reset(struct mvneta_port *pp)
2746 {
2747 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2748 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2749 }
2750
2751 /* Rx/Tx queue initialization/cleanup methods */
2752
2753 /* Create a specified RX queue */
2754 static int mvneta_rxq_init(struct mvneta_port *pp,
2755 struct mvneta_rx_queue *rxq)
2756
2757 {
2758 rxq->size = pp->rx_ring_size;
2759
2760 /* Allocate memory for RX descriptors */
2761 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2762 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2763 &rxq->descs_phys, GFP_KERNEL);
2764 if (rxq->descs == NULL)
2765 return -ENOMEM;
2766
2767 BUG_ON(rxq->descs !=
2768 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2769
2770 rxq->last_desc = rxq->size - 1;
2771
2772 /* Set Rx descriptors queue starting address */
2773 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2774 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2775
2776 /* Set Offset */
2777 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2778
2779 /* Set coalescing pkts and time */
2780 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2781 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2782
2783 if (!pp->bm_priv) {
2784 /* Fill RXQ with buffers from RX pool */
2785 mvneta_rxq_buf_size_set(pp, rxq,
2786 MVNETA_RX_BUF_SIZE(pp->pkt_size));
2787 mvneta_rxq_bm_disable(pp, rxq);
2788 } else {
2789 mvneta_rxq_bm_enable(pp, rxq);
2790 mvneta_rxq_long_pool_set(pp, rxq);
2791 mvneta_rxq_short_pool_set(pp, rxq);
2792 }
2793
2794 mvneta_rxq_fill(pp, rxq, rxq->size);
2795
2796 return 0;
2797 }
2798
2799 /* Cleanup Rx queue */
2800 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2801 struct mvneta_rx_queue *rxq)
2802 {
2803 mvneta_rxq_drop_pkts(pp, rxq);
2804
2805 if (rxq->descs)
2806 dma_free_coherent(pp->dev->dev.parent,
2807 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2808 rxq->descs,
2809 rxq->descs_phys);
2810
2811 rxq->descs = NULL;
2812 rxq->last_desc = 0;
2813 rxq->next_desc_to_proc = 0;
2814 rxq->descs_phys = 0;
2815 }
2816
2817 /* Create and initialize a tx queue */
2818 static int mvneta_txq_init(struct mvneta_port *pp,
2819 struct mvneta_tx_queue *txq)
2820 {
2821 int cpu;
2822
2823 txq->size = pp->tx_ring_size;
2824
2825 /* A queue must always have room for at least one skb.
2826 * Therefore, stop the queue when the free entries reaches
2827 * the maximum number of descriptors per skb.
2828 */
2829 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2830 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2831
2832
2833 /* Allocate memory for TX descriptors */
2834 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2835 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2836 &txq->descs_phys, GFP_KERNEL);
2837 if (txq->descs == NULL)
2838 return -ENOMEM;
2839
2840 /* Make sure descriptor address is cache line size aligned */
2841 BUG_ON(txq->descs !=
2842 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2843
2844 txq->last_desc = txq->size - 1;
2845
2846 /* Set maximum bandwidth for enabled TXQs */
2847 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2848 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2849
2850 /* Set Tx descriptors queue starting address */
2851 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2852 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2853
2854 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2855 if (txq->tx_skb == NULL) {
2856 dma_free_coherent(pp->dev->dev.parent,
2857 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2858 txq->descs, txq->descs_phys);
2859 return -ENOMEM;
2860 }
2861
2862 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2863 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2864 txq->size * TSO_HEADER_SIZE,
2865 &txq->tso_hdrs_phys, GFP_KERNEL);
2866 if (txq->tso_hdrs == NULL) {
2867 kfree(txq->tx_skb);
2868 dma_free_coherent(pp->dev->dev.parent,
2869 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2870 txq->descs, txq->descs_phys);
2871 return -ENOMEM;
2872 }
2873 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2874
2875 /* Setup XPS mapping */
2876 if (txq_number > 1)
2877 cpu = txq->id % num_present_cpus();
2878 else
2879 cpu = pp->rxq_def % num_present_cpus();
2880 cpumask_set_cpu(cpu, &txq->affinity_mask);
2881 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2882
2883 return 0;
2884 }
2885
2886 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2887 static void mvneta_txq_deinit(struct mvneta_port *pp,
2888 struct mvneta_tx_queue *txq)
2889 {
2890 kfree(txq->tx_skb);
2891
2892 if (txq->tso_hdrs)
2893 dma_free_coherent(pp->dev->dev.parent,
2894 txq->size * TSO_HEADER_SIZE,
2895 txq->tso_hdrs, txq->tso_hdrs_phys);
2896 if (txq->descs)
2897 dma_free_coherent(pp->dev->dev.parent,
2898 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2899 txq->descs, txq->descs_phys);
2900
2901 txq->descs = NULL;
2902 txq->last_desc = 0;
2903 txq->next_desc_to_proc = 0;
2904 txq->descs_phys = 0;
2905
2906 /* Set minimum bandwidth for disabled TXQs */
2907 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2908 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2909
2910 /* Set Tx descriptors queue starting address and size */
2911 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2912 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2913 }
2914
2915 /* Cleanup all Tx queues */
2916 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2917 {
2918 int queue;
2919
2920 for (queue = 0; queue < txq_number; queue++)
2921 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2922 }
2923
2924 /* Cleanup all Rx queues */
2925 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2926 {
2927 int queue;
2928
2929 for (queue = 0; queue < txq_number; queue++)
2930 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2931 }
2932
2933
2934 /* Init all Rx queues */
2935 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2936 {
2937 int queue;
2938
2939 for (queue = 0; queue < rxq_number; queue++) {
2940 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2941
2942 if (err) {
2943 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2944 __func__, queue);
2945 mvneta_cleanup_rxqs(pp);
2946 return err;
2947 }
2948 }
2949
2950 return 0;
2951 }
2952
2953 /* Init all tx queues */
2954 static int mvneta_setup_txqs(struct mvneta_port *pp)
2955 {
2956 int queue;
2957
2958 for (queue = 0; queue < txq_number; queue++) {
2959 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2960 if (err) {
2961 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2962 __func__, queue);
2963 mvneta_cleanup_txqs(pp);
2964 return err;
2965 }
2966 }
2967
2968 return 0;
2969 }
2970
2971 static void mvneta_start_dev(struct mvneta_port *pp)
2972 {
2973 int cpu;
2974
2975 mvneta_max_rx_size_set(pp, pp->pkt_size);
2976 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2977
2978 /* start the Rx/Tx activity */
2979 mvneta_port_enable(pp);
2980
2981 /* Enable polling on the port */
2982 for_each_online_cpu(cpu) {
2983 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2984
2985 napi_enable(&port->napi);
2986 }
2987
2988 /* Unmask interrupts. It has to be done from each CPU */
2989 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
2990
2991 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2992 MVNETA_CAUSE_PHY_STATUS_CHANGE |
2993 MVNETA_CAUSE_LINK_CHANGE |
2994 MVNETA_CAUSE_PSC_SYNC_CHANGE);
2995
2996 phy_start(pp->phy_dev);
2997 netif_tx_start_all_queues(pp->dev);
2998 }
2999
3000 static void mvneta_stop_dev(struct mvneta_port *pp)
3001 {
3002 unsigned int cpu;
3003
3004 phy_stop(pp->phy_dev);
3005
3006 for_each_online_cpu(cpu) {
3007 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3008
3009 napi_disable(&port->napi);
3010 }
3011
3012 netif_carrier_off(pp->dev);
3013
3014 mvneta_port_down(pp);
3015 netif_tx_stop_all_queues(pp->dev);
3016
3017 /* Stop the port activity */
3018 mvneta_port_disable(pp);
3019
3020 /* Clear all ethernet port interrupts */
3021 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3022
3023 /* Mask all ethernet port interrupts */
3024 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3025
3026 mvneta_tx_reset(pp);
3027 mvneta_rx_reset(pp);
3028 }
3029
3030 /* Return positive if MTU is valid */
3031 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
3032 {
3033 if (mtu < 68) {
3034 netdev_err(dev, "cannot change mtu to less than 68\n");
3035 return -EINVAL;
3036 }
3037
3038 /* 9676 == 9700 - 20 and rounding to 8 */
3039 if (mtu > 9676) {
3040 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
3041 mtu = 9676;
3042 }
3043
3044 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3045 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3046 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3047 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3048 }
3049
3050 return mtu;
3051 }
3052
3053 /* Change the device mtu */
3054 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3055 {
3056 struct mvneta_port *pp = netdev_priv(dev);
3057 int ret;
3058
3059 mtu = mvneta_check_mtu_valid(dev, mtu);
3060 if (mtu < 0)
3061 return -EINVAL;
3062
3063 dev->mtu = mtu;
3064
3065 if (!netif_running(dev)) {
3066 if (pp->bm_priv)
3067 mvneta_bm_update_mtu(pp, mtu);
3068
3069 netdev_update_features(dev);
3070 return 0;
3071 }
3072
3073 /* The interface is running, so we have to force a
3074 * reallocation of the queues
3075 */
3076 mvneta_stop_dev(pp);
3077
3078 mvneta_cleanup_txqs(pp);
3079 mvneta_cleanup_rxqs(pp);
3080
3081 if (pp->bm_priv)
3082 mvneta_bm_update_mtu(pp, mtu);
3083
3084 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3085 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3086 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3087
3088 ret = mvneta_setup_rxqs(pp);
3089 if (ret) {
3090 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3091 return ret;
3092 }
3093
3094 ret = mvneta_setup_txqs(pp);
3095 if (ret) {
3096 netdev_err(dev, "unable to setup txqs after MTU change\n");
3097 return ret;
3098 }
3099
3100 mvneta_start_dev(pp);
3101 mvneta_port_up(pp);
3102
3103 netdev_update_features(dev);
3104
3105 return 0;
3106 }
3107
3108 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3109 netdev_features_t features)
3110 {
3111 struct mvneta_port *pp = netdev_priv(dev);
3112
3113 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3114 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3115 netdev_info(dev,
3116 "Disable IP checksum for MTU greater than %dB\n",
3117 pp->tx_csum_limit);
3118 }
3119
3120 return features;
3121 }
3122
3123 /* Get mac address */
3124 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3125 {
3126 u32 mac_addr_l, mac_addr_h;
3127
3128 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3129 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3130 addr[0] = (mac_addr_h >> 24) & 0xFF;
3131 addr[1] = (mac_addr_h >> 16) & 0xFF;
3132 addr[2] = (mac_addr_h >> 8) & 0xFF;
3133 addr[3] = mac_addr_h & 0xFF;
3134 addr[4] = (mac_addr_l >> 8) & 0xFF;
3135 addr[5] = mac_addr_l & 0xFF;
3136 }
3137
3138 /* Handle setting mac address */
3139 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3140 {
3141 struct mvneta_port *pp = netdev_priv(dev);
3142 struct sockaddr *sockaddr = addr;
3143 int ret;
3144
3145 ret = eth_prepare_mac_addr_change(dev, addr);
3146 if (ret < 0)
3147 return ret;
3148 /* Remove previous address table entry */
3149 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3150
3151 /* Set new addr in hw */
3152 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3153
3154 eth_commit_mac_addr_change(dev, addr);
3155 return 0;
3156 }
3157
3158 static void mvneta_adjust_link(struct net_device *ndev)
3159 {
3160 struct mvneta_port *pp = netdev_priv(ndev);
3161 struct phy_device *phydev = pp->phy_dev;
3162 int status_change = 0;
3163
3164 if (phydev->link) {
3165 if ((pp->speed != phydev->speed) ||
3166 (pp->duplex != phydev->duplex)) {
3167 u32 val;
3168
3169 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3170 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3171 MVNETA_GMAC_CONFIG_GMII_SPEED |
3172 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3173
3174 if (phydev->duplex)
3175 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3176
3177 if (phydev->speed == SPEED_1000)
3178 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3179 else if (phydev->speed == SPEED_100)
3180 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3181
3182 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3183
3184 pp->duplex = phydev->duplex;
3185 pp->speed = phydev->speed;
3186 }
3187 }
3188
3189 if (phydev->link != pp->link) {
3190 if (!phydev->link) {
3191 pp->duplex = -1;
3192 pp->speed = 0;
3193 }
3194
3195 pp->link = phydev->link;
3196 status_change = 1;
3197 }
3198
3199 if (status_change) {
3200 if (phydev->link) {
3201 if (!pp->use_inband_status) {
3202 u32 val = mvreg_read(pp,
3203 MVNETA_GMAC_AUTONEG_CONFIG);
3204 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3205 val |= MVNETA_GMAC_FORCE_LINK_PASS;
3206 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3207 val);
3208 }
3209 mvneta_port_up(pp);
3210 } else {
3211 if (!pp->use_inband_status) {
3212 u32 val = mvreg_read(pp,
3213 MVNETA_GMAC_AUTONEG_CONFIG);
3214 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3215 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3216 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3217 val);
3218 }
3219 mvneta_port_down(pp);
3220 }
3221 phy_print_status(phydev);
3222 }
3223 }
3224
3225 static int mvneta_mdio_probe(struct mvneta_port *pp)
3226 {
3227 struct phy_device *phy_dev;
3228
3229 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3230 pp->phy_interface);
3231 if (!phy_dev) {
3232 netdev_err(pp->dev, "could not find the PHY\n");
3233 return -ENODEV;
3234 }
3235
3236 phy_dev->supported &= PHY_GBIT_FEATURES;
3237 phy_dev->advertising = phy_dev->supported;
3238
3239 pp->phy_dev = phy_dev;
3240 pp->link = 0;
3241 pp->duplex = 0;
3242 pp->speed = 0;
3243
3244 return 0;
3245 }
3246
3247 static void mvneta_mdio_remove(struct mvneta_port *pp)
3248 {
3249 phy_disconnect(pp->phy_dev);
3250 pp->phy_dev = NULL;
3251 }
3252
3253 static void mvneta_percpu_enable(void *arg)
3254 {
3255 struct mvneta_port *pp = arg;
3256
3257 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3258 }
3259
3260 static void mvneta_percpu_disable(void *arg)
3261 {
3262 struct mvneta_port *pp = arg;
3263
3264 disable_percpu_irq(pp->dev->irq);
3265 }
3266
3267 /* Electing a CPU must be done in an atomic way: it should be done
3268 * after or before the removal/insertion of a CPU and this function is
3269 * not reentrant.
3270 */
3271 static void mvneta_percpu_elect(struct mvneta_port *pp)
3272 {
3273 int elected_cpu = 0, max_cpu, cpu, i = 0;
3274
3275 /* Use the cpu associated to the rxq when it is online, in all
3276 * the other cases, use the cpu 0 which can't be offline.
3277 */
3278 if (cpu_online(pp->rxq_def))
3279 elected_cpu = pp->rxq_def;
3280
3281 max_cpu = num_present_cpus();
3282
3283 for_each_online_cpu(cpu) {
3284 int rxq_map = 0, txq_map = 0;
3285 int rxq;
3286
3287 for (rxq = 0; rxq < rxq_number; rxq++)
3288 if ((rxq % max_cpu) == cpu)
3289 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3290
3291 if (cpu == elected_cpu)
3292 /* Map the default receive queue queue to the
3293 * elected CPU
3294 */
3295 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3296
3297 /* We update the TX queue map only if we have one
3298 * queue. In this case we associate the TX queue to
3299 * the CPU bound to the default RX queue
3300 */
3301 if (txq_number == 1)
3302 txq_map = (cpu == elected_cpu) ?
3303 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3304 else
3305 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3306 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3307
3308 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3309
3310 /* Update the interrupt mask on each CPU according the
3311 * new mapping
3312 */
3313 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3314 pp, true);
3315 i++;
3316
3317 }
3318 };
3319
3320 static int mvneta_percpu_notifier(struct notifier_block *nfb,
3321 unsigned long action, void *hcpu)
3322 {
3323 struct mvneta_port *pp = container_of(nfb, struct mvneta_port,
3324 cpu_notifier);
3325 int cpu = (unsigned long)hcpu, other_cpu;
3326 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3327
3328 switch (action) {
3329 case CPU_ONLINE:
3330 case CPU_ONLINE_FROZEN:
3331 case CPU_DOWN_FAILED:
3332 case CPU_DOWN_FAILED_FROZEN:
3333 spin_lock(&pp->lock);
3334 /* Configuring the driver for a new CPU while the
3335 * driver is stopping is racy, so just avoid it.
3336 */
3337 if (pp->is_stopped) {
3338 spin_unlock(&pp->lock);
3339 break;
3340 }
3341 netif_tx_stop_all_queues(pp->dev);
3342
3343 /* We have to synchronise on tha napi of each CPU
3344 * except the one just being waked up
3345 */
3346 for_each_online_cpu(other_cpu) {
3347 if (other_cpu != cpu) {
3348 struct mvneta_pcpu_port *other_port =
3349 per_cpu_ptr(pp->ports, other_cpu);
3350
3351 napi_synchronize(&other_port->napi);
3352 }
3353 }
3354
3355 /* Mask all ethernet port interrupts */
3356 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3357 napi_enable(&port->napi);
3358
3359
3360 /* Enable per-CPU interrupts on the CPU that is
3361 * brought up.
3362 */
3363 smp_call_function_single(cpu, mvneta_percpu_enable,
3364 pp, true);
3365
3366 /* Enable per-CPU interrupt on the one CPU we care
3367 * about.
3368 */
3369 mvneta_percpu_elect(pp);
3370
3371 /* Unmask all ethernet port interrupts */
3372 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3373 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3374 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3375 MVNETA_CAUSE_LINK_CHANGE |
3376 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3377 netif_tx_start_all_queues(pp->dev);
3378 spin_unlock(&pp->lock);
3379 break;
3380 case CPU_DOWN_PREPARE:
3381 case CPU_DOWN_PREPARE_FROZEN:
3382 netif_tx_stop_all_queues(pp->dev);
3383 /* Thanks to this lock we are sure that any pending
3384 * cpu election is done
3385 */
3386 spin_lock(&pp->lock);
3387 /* Mask all ethernet port interrupts */
3388 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3389 spin_unlock(&pp->lock);
3390
3391 napi_synchronize(&port->napi);
3392 napi_disable(&port->napi);
3393 /* Disable per-CPU interrupts on the CPU that is
3394 * brought down.
3395 */
3396 smp_call_function_single(cpu, mvneta_percpu_disable,
3397 pp, true);
3398
3399 break;
3400 case CPU_DEAD:
3401 case CPU_DEAD_FROZEN:
3402 /* Check if a new CPU must be elected now this on is down */
3403 spin_lock(&pp->lock);
3404 mvneta_percpu_elect(pp);
3405 spin_unlock(&pp->lock);
3406 /* Unmask all ethernet port interrupts */
3407 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3408 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3409 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3410 MVNETA_CAUSE_LINK_CHANGE |
3411 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3412 netif_tx_start_all_queues(pp->dev);
3413 break;
3414 }
3415
3416 return NOTIFY_OK;
3417 }
3418
3419 static int mvneta_open(struct net_device *dev)
3420 {
3421 struct mvneta_port *pp = netdev_priv(dev);
3422 int ret;
3423
3424 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3425 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3426 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3427
3428 ret = mvneta_setup_rxqs(pp);
3429 if (ret)
3430 return ret;
3431
3432 ret = mvneta_setup_txqs(pp);
3433 if (ret)
3434 goto err_cleanup_rxqs;
3435
3436 /* Connect to port interrupt line */
3437 ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
3438 MVNETA_DRIVER_NAME, pp->ports);
3439 if (ret) {
3440 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3441 goto err_cleanup_txqs;
3442 }
3443
3444 /* Enable per-CPU interrupt on all the CPU to handle our RX
3445 * queue interrupts
3446 */
3447 on_each_cpu(mvneta_percpu_enable, pp, true);
3448
3449 pp->is_stopped = false;
3450 /* Register a CPU notifier to handle the case where our CPU
3451 * might be taken offline.
3452 */
3453 register_cpu_notifier(&pp->cpu_notifier);
3454
3455 /* In default link is down */
3456 netif_carrier_off(pp->dev);
3457
3458 ret = mvneta_mdio_probe(pp);
3459 if (ret < 0) {
3460 netdev_err(dev, "cannot probe MDIO bus\n");
3461 goto err_free_irq;
3462 }
3463
3464 mvneta_start_dev(pp);
3465
3466 return 0;
3467
3468 err_free_irq:
3469 free_percpu_irq(pp->dev->irq, pp->ports);
3470 err_cleanup_txqs:
3471 mvneta_cleanup_txqs(pp);
3472 err_cleanup_rxqs:
3473 mvneta_cleanup_rxqs(pp);
3474 return ret;
3475 }
3476
3477 /* Stop the port, free port interrupt line */
3478 static int mvneta_stop(struct net_device *dev)
3479 {
3480 struct mvneta_port *pp = netdev_priv(dev);
3481
3482 /* Inform that we are stopping so we don't want to setup the
3483 * driver for new CPUs in the notifiers. The code of the
3484 * notifier for CPU online is protected by the same spinlock,
3485 * so when we get the lock, the notifer work is done.
3486 */
3487 spin_lock(&pp->lock);
3488 pp->is_stopped = true;
3489 spin_unlock(&pp->lock);
3490
3491 mvneta_stop_dev(pp);
3492 mvneta_mdio_remove(pp);
3493 unregister_cpu_notifier(&pp->cpu_notifier);
3494 on_each_cpu(mvneta_percpu_disable, pp, true);
3495 free_percpu_irq(dev->irq, pp->ports);
3496 mvneta_cleanup_rxqs(pp);
3497 mvneta_cleanup_txqs(pp);
3498
3499 return 0;
3500 }
3501
3502 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3503 {
3504 struct mvneta_port *pp = netdev_priv(dev);
3505
3506 if (!pp->phy_dev)
3507 return -ENOTSUPP;
3508
3509 return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
3510 }
3511
3512 /* Ethtool methods */
3513
3514 /* Get settings (phy address, speed) for ethtools */
3515 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3516 {
3517 struct mvneta_port *pp = netdev_priv(dev);
3518
3519 if (!pp->phy_dev)
3520 return -ENODEV;
3521
3522 return phy_ethtool_gset(pp->phy_dev, cmd);
3523 }
3524
3525 /* Set settings (phy address, speed) for ethtools */
3526 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3527 {
3528 struct mvneta_port *pp = netdev_priv(dev);
3529 struct phy_device *phydev = pp->phy_dev;
3530
3531 if (!phydev)
3532 return -ENODEV;
3533
3534 if ((cmd->autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3535 u32 val;
3536
3537 mvneta_set_autoneg(pp, cmd->autoneg == AUTONEG_ENABLE);
3538
3539 if (cmd->autoneg == AUTONEG_DISABLE) {
3540 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3541 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3542 MVNETA_GMAC_CONFIG_GMII_SPEED |
3543 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3544
3545 if (phydev->duplex)
3546 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3547
3548 if (phydev->speed == SPEED_1000)
3549 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3550 else if (phydev->speed == SPEED_100)
3551 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3552
3553 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3554 }
3555
3556 pp->use_inband_status = (cmd->autoneg == AUTONEG_ENABLE);
3557 netdev_info(pp->dev, "autoneg status set to %i\n",
3558 pp->use_inband_status);
3559
3560 if (netif_running(dev)) {
3561 mvneta_port_down(pp);
3562 mvneta_port_up(pp);
3563 }
3564 }
3565
3566 return phy_ethtool_sset(pp->phy_dev, cmd);
3567 }
3568
3569 /* Set interrupt coalescing for ethtools */
3570 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3571 struct ethtool_coalesce *c)
3572 {
3573 struct mvneta_port *pp = netdev_priv(dev);
3574 int queue;
3575
3576 for (queue = 0; queue < rxq_number; queue++) {
3577 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3578 rxq->time_coal = c->rx_coalesce_usecs;
3579 rxq->pkts_coal = c->rx_max_coalesced_frames;
3580 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3581 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3582 }
3583
3584 for (queue = 0; queue < txq_number; queue++) {
3585 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3586 txq->done_pkts_coal = c->tx_max_coalesced_frames;
3587 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3588 }
3589
3590 return 0;
3591 }
3592
3593 /* get coalescing for ethtools */
3594 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3595 struct ethtool_coalesce *c)
3596 {
3597 struct mvneta_port *pp = netdev_priv(dev);
3598
3599 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
3600 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
3601
3602 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
3603 return 0;
3604 }
3605
3606
3607 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3608 struct ethtool_drvinfo *drvinfo)
3609 {
3610 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3611 sizeof(drvinfo->driver));
3612 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3613 sizeof(drvinfo->version));
3614 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3615 sizeof(drvinfo->bus_info));
3616 }
3617
3618
3619 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3620 struct ethtool_ringparam *ring)
3621 {
3622 struct mvneta_port *pp = netdev_priv(netdev);
3623
3624 ring->rx_max_pending = MVNETA_MAX_RXD;
3625 ring->tx_max_pending = MVNETA_MAX_TXD;
3626 ring->rx_pending = pp->rx_ring_size;
3627 ring->tx_pending = pp->tx_ring_size;
3628 }
3629
3630 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3631 struct ethtool_ringparam *ring)
3632 {
3633 struct mvneta_port *pp = netdev_priv(dev);
3634
3635 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3636 return -EINVAL;
3637 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3638 ring->rx_pending : MVNETA_MAX_RXD;
3639
3640 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3641 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3642 if (pp->tx_ring_size != ring->tx_pending)
3643 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3644 pp->tx_ring_size, ring->tx_pending);
3645
3646 if (netif_running(dev)) {
3647 mvneta_stop(dev);
3648 if (mvneta_open(dev)) {
3649 netdev_err(dev,
3650 "error on opening device after ring param change\n");
3651 return -ENOMEM;
3652 }
3653 }
3654
3655 return 0;
3656 }
3657
3658 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3659 u8 *data)
3660 {
3661 if (sset == ETH_SS_STATS) {
3662 int i;
3663
3664 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3665 memcpy(data + i * ETH_GSTRING_LEN,
3666 mvneta_statistics[i].name, ETH_GSTRING_LEN);
3667 }
3668 }
3669
3670 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3671 {
3672 const struct mvneta_statistic *s;
3673 void __iomem *base = pp->base;
3674 u32 high, low, val;
3675 u64 val64;
3676 int i;
3677
3678 for (i = 0, s = mvneta_statistics;
3679 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3680 s++, i++) {
3681 switch (s->type) {
3682 case T_REG_32:
3683 val = readl_relaxed(base + s->offset);
3684 pp->ethtool_stats[i] += val;
3685 break;
3686 case T_REG_64:
3687 /* Docs say to read low 32-bit then high */
3688 low = readl_relaxed(base + s->offset);
3689 high = readl_relaxed(base + s->offset + 4);
3690 val64 = (u64)high << 32 | low;
3691 pp->ethtool_stats[i] += val64;
3692 break;
3693 }
3694 }
3695 }
3696
3697 static void mvneta_ethtool_get_stats(struct net_device *dev,
3698 struct ethtool_stats *stats, u64 *data)
3699 {
3700 struct mvneta_port *pp = netdev_priv(dev);
3701 int i;
3702
3703 mvneta_ethtool_update_stats(pp);
3704
3705 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3706 *data++ = pp->ethtool_stats[i];
3707 }
3708
3709 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3710 {
3711 if (sset == ETH_SS_STATS)
3712 return ARRAY_SIZE(mvneta_statistics);
3713 return -EOPNOTSUPP;
3714 }
3715
3716 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3717 {
3718 return MVNETA_RSS_LU_TABLE_SIZE;
3719 }
3720
3721 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3722 struct ethtool_rxnfc *info,
3723 u32 *rules __always_unused)
3724 {
3725 switch (info->cmd) {
3726 case ETHTOOL_GRXRINGS:
3727 info->data = rxq_number;
3728 return 0;
3729 case ETHTOOL_GRXFH:
3730 return -EOPNOTSUPP;
3731 default:
3732 return -EOPNOTSUPP;
3733 }
3734 }
3735
3736 static int mvneta_config_rss(struct mvneta_port *pp)
3737 {
3738 int cpu;
3739 u32 val;
3740
3741 netif_tx_stop_all_queues(pp->dev);
3742
3743 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3744
3745 /* We have to synchronise on the napi of each CPU */
3746 for_each_online_cpu(cpu) {
3747 struct mvneta_pcpu_port *pcpu_port =
3748 per_cpu_ptr(pp->ports, cpu);
3749
3750 napi_synchronize(&pcpu_port->napi);
3751 napi_disable(&pcpu_port->napi);
3752 }
3753
3754 pp->rxq_def = pp->indir[0];
3755
3756 /* Update unicast mapping */
3757 mvneta_set_rx_mode(pp->dev);
3758
3759 /* Update val of portCfg register accordingly with all RxQueue types */
3760 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3761 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3762
3763 /* Update the elected CPU matching the new rxq_def */
3764 spin_lock(&pp->lock);
3765 mvneta_percpu_elect(pp);
3766 spin_unlock(&pp->lock);
3767
3768 /* We have to synchronise on the napi of each CPU */
3769 for_each_online_cpu(cpu) {
3770 struct mvneta_pcpu_port *pcpu_port =
3771 per_cpu_ptr(pp->ports, cpu);
3772
3773 napi_enable(&pcpu_port->napi);
3774 }
3775
3776 netif_tx_start_all_queues(pp->dev);
3777
3778 return 0;
3779 }
3780
3781 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3782 const u8 *key, const u8 hfunc)
3783 {
3784 struct mvneta_port *pp = netdev_priv(dev);
3785 /* We require at least one supported parameter to be changed
3786 * and no change in any of the unsupported parameters
3787 */
3788 if (key ||
3789 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3790 return -EOPNOTSUPP;
3791
3792 if (!indir)
3793 return 0;
3794
3795 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3796
3797 return mvneta_config_rss(pp);
3798 }
3799
3800 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3801 u8 *hfunc)
3802 {
3803 struct mvneta_port *pp = netdev_priv(dev);
3804
3805 if (hfunc)
3806 *hfunc = ETH_RSS_HASH_TOP;
3807
3808 if (!indir)
3809 return 0;
3810
3811 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3812
3813 return 0;
3814 }
3815
3816 static const struct net_device_ops mvneta_netdev_ops = {
3817 .ndo_open = mvneta_open,
3818 .ndo_stop = mvneta_stop,
3819 .ndo_start_xmit = mvneta_tx,
3820 .ndo_set_rx_mode = mvneta_set_rx_mode,
3821 .ndo_set_mac_address = mvneta_set_mac_addr,
3822 .ndo_change_mtu = mvneta_change_mtu,
3823 .ndo_fix_features = mvneta_fix_features,
3824 .ndo_get_stats64 = mvneta_get_stats64,
3825 .ndo_do_ioctl = mvneta_ioctl,
3826 };
3827
3828 const struct ethtool_ops mvneta_eth_tool_ops = {
3829 .get_link = ethtool_op_get_link,
3830 .get_settings = mvneta_ethtool_get_settings,
3831 .set_settings = mvneta_ethtool_set_settings,
3832 .set_coalesce = mvneta_ethtool_set_coalesce,
3833 .get_coalesce = mvneta_ethtool_get_coalesce,
3834 .get_drvinfo = mvneta_ethtool_get_drvinfo,
3835 .get_ringparam = mvneta_ethtool_get_ringparam,
3836 .set_ringparam = mvneta_ethtool_set_ringparam,
3837 .get_strings = mvneta_ethtool_get_strings,
3838 .get_ethtool_stats = mvneta_ethtool_get_stats,
3839 .get_sset_count = mvneta_ethtool_get_sset_count,
3840 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3841 .get_rxnfc = mvneta_ethtool_get_rxnfc,
3842 .get_rxfh = mvneta_ethtool_get_rxfh,
3843 .set_rxfh = mvneta_ethtool_set_rxfh,
3844 };
3845
3846 /* Initialize hw */
3847 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3848 {
3849 int queue;
3850
3851 /* Disable port */
3852 mvneta_port_disable(pp);
3853
3854 /* Set port default values */
3855 mvneta_defaults_set(pp);
3856
3857 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3858 GFP_KERNEL);
3859 if (!pp->txqs)
3860 return -ENOMEM;
3861
3862 /* Initialize TX descriptor rings */
3863 for (queue = 0; queue < txq_number; queue++) {
3864 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3865 txq->id = queue;
3866 txq->size = pp->tx_ring_size;
3867 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3868 }
3869
3870 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3871 GFP_KERNEL);
3872 if (!pp->rxqs)
3873 return -ENOMEM;
3874
3875 /* Create Rx descriptor rings */
3876 for (queue = 0; queue < rxq_number; queue++) {
3877 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3878 rxq->id = queue;
3879 rxq->size = pp->rx_ring_size;
3880 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3881 rxq->time_coal = MVNETA_RX_COAL_USEC;
3882 }
3883
3884 return 0;
3885 }
3886
3887 /* platform glue : initialize decoding windows */
3888 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3889 const struct mbus_dram_target_info *dram)
3890 {
3891 u32 win_enable;
3892 u32 win_protect;
3893 int i;
3894
3895 for (i = 0; i < 6; i++) {
3896 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3897 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3898
3899 if (i < 4)
3900 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3901 }
3902
3903 win_enable = 0x3f;
3904 win_protect = 0;
3905
3906 for (i = 0; i < dram->num_cs; i++) {
3907 const struct mbus_dram_window *cs = dram->cs + i;
3908 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3909 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3910
3911 mvreg_write(pp, MVNETA_WIN_SIZE(i),
3912 (cs->size - 1) & 0xffff0000);
3913
3914 win_enable &= ~(1 << i);
3915 win_protect |= 3 << (2 * i);
3916 }
3917
3918 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3919 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3920 }
3921
3922 /* Power up the port */
3923 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3924 {
3925 u32 ctrl;
3926
3927 /* MAC Cause register should be cleared */
3928 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3929
3930 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3931
3932 /* Even though it might look weird, when we're configured in
3933 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3934 */
3935 switch(phy_mode) {
3936 case PHY_INTERFACE_MODE_QSGMII:
3937 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3938 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3939 break;
3940 case PHY_INTERFACE_MODE_SGMII:
3941 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3942 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3943 break;
3944 case PHY_INTERFACE_MODE_RGMII:
3945 case PHY_INTERFACE_MODE_RGMII_ID:
3946 ctrl |= MVNETA_GMAC2_PORT_RGMII;
3947 break;
3948 default:
3949 return -EINVAL;
3950 }
3951
3952 /* Cancel Port Reset */
3953 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3954 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3955
3956 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3957 MVNETA_GMAC2_PORT_RESET) != 0)
3958 continue;
3959
3960 return 0;
3961 }
3962
3963 /* Device initialization routine */
3964 static int mvneta_probe(struct platform_device *pdev)
3965 {
3966 const struct mbus_dram_target_info *dram_target_info;
3967 struct resource *res;
3968 struct device_node *dn = pdev->dev.of_node;
3969 struct device_node *phy_node;
3970 struct device_node *bm_node;
3971 struct mvneta_port *pp;
3972 struct net_device *dev;
3973 const char *dt_mac_addr;
3974 char hw_mac_addr[ETH_ALEN];
3975 const char *mac_from;
3976 const char *managed;
3977 int tx_csum_limit;
3978 int phy_mode;
3979 int err;
3980 int cpu;
3981
3982 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3983 if (!dev)
3984 return -ENOMEM;
3985
3986 dev->irq = irq_of_parse_and_map(dn, 0);
3987 if (dev->irq == 0) {
3988 err = -EINVAL;
3989 goto err_free_netdev;
3990 }
3991
3992 phy_node = of_parse_phandle(dn, "phy", 0);
3993 if (!phy_node) {
3994 if (!of_phy_is_fixed_link(dn)) {
3995 dev_err(&pdev->dev, "no PHY specified\n");
3996 err = -ENODEV;
3997 goto err_free_irq;
3998 }
3999
4000 err = of_phy_register_fixed_link(dn);
4001 if (err < 0) {
4002 dev_err(&pdev->dev, "cannot register fixed PHY\n");
4003 goto err_free_irq;
4004 }
4005
4006 /* In the case of a fixed PHY, the DT node associated
4007 * to the PHY is the Ethernet MAC DT node.
4008 */
4009 phy_node = of_node_get(dn);
4010 }
4011
4012 phy_mode = of_get_phy_mode(dn);
4013 if (phy_mode < 0) {
4014 dev_err(&pdev->dev, "incorrect phy-mode\n");
4015 err = -EINVAL;
4016 goto err_put_phy_node;
4017 }
4018
4019 dev->tx_queue_len = MVNETA_MAX_TXD;
4020 dev->watchdog_timeo = 5 * HZ;
4021 dev->netdev_ops = &mvneta_netdev_ops;
4022
4023 dev->ethtool_ops = &mvneta_eth_tool_ops;
4024
4025 pp = netdev_priv(dev);
4026 spin_lock_init(&pp->lock);
4027 pp->phy_node = phy_node;
4028 pp->phy_interface = phy_mode;
4029
4030 err = of_property_read_string(dn, "managed", &managed);
4031 pp->use_inband_status = (err == 0 &&
4032 strcmp(managed, "in-band-status") == 0);
4033 pp->cpu_notifier.notifier_call = mvneta_percpu_notifier;
4034
4035 pp->rxq_def = rxq_def;
4036
4037 pp->indir[0] = rxq_def;
4038
4039 pp->clk = devm_clk_get(&pdev->dev, "core");
4040 if (IS_ERR(pp->clk))
4041 pp->clk = devm_clk_get(&pdev->dev, NULL);
4042 if (IS_ERR(pp->clk)) {
4043 err = PTR_ERR(pp->clk);
4044 goto err_put_phy_node;
4045 }
4046
4047 clk_prepare_enable(pp->clk);
4048
4049 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4050 if (!IS_ERR(pp->clk_bus))
4051 clk_prepare_enable(pp->clk_bus);
4052
4053 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4054 pp->base = devm_ioremap_resource(&pdev->dev, res);
4055 if (IS_ERR(pp->base)) {
4056 err = PTR_ERR(pp->base);
4057 goto err_clk;
4058 }
4059
4060 /* Alloc per-cpu port structure */
4061 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4062 if (!pp->ports) {
4063 err = -ENOMEM;
4064 goto err_clk;
4065 }
4066
4067 /* Alloc per-cpu stats */
4068 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4069 if (!pp->stats) {
4070 err = -ENOMEM;
4071 goto err_free_ports;
4072 }
4073
4074 dt_mac_addr = of_get_mac_address(dn);
4075 if (dt_mac_addr) {
4076 mac_from = "device tree";
4077 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4078 } else {
4079 mvneta_get_mac_addr(pp, hw_mac_addr);
4080 if (is_valid_ether_addr(hw_mac_addr)) {
4081 mac_from = "hardware";
4082 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4083 } else {
4084 mac_from = "random";
4085 eth_hw_addr_random(dev);
4086 }
4087 }
4088
4089 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4090 if (tx_csum_limit < 0 ||
4091 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4092 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4093 dev_info(&pdev->dev,
4094 "Wrong TX csum limit in DT, set to %dB\n",
4095 MVNETA_TX_CSUM_DEF_SIZE);
4096 }
4097 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4098 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4099 } else {
4100 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4101 }
4102
4103 pp->tx_csum_limit = tx_csum_limit;
4104
4105 dram_target_info = mv_mbus_dram_info();
4106 if (dram_target_info)
4107 mvneta_conf_mbus_windows(pp, dram_target_info);
4108
4109 pp->tx_ring_size = MVNETA_MAX_TXD;
4110 pp->rx_ring_size = MVNETA_MAX_RXD;
4111
4112 pp->dev = dev;
4113 SET_NETDEV_DEV(dev, &pdev->dev);
4114
4115 pp->id = global_port_id++;
4116
4117 /* Obtain access to BM resources if enabled and already initialized */
4118 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4119 if (bm_node && bm_node->data) {
4120 pp->bm_priv = bm_node->data;
4121 err = mvneta_bm_port_init(pdev, pp);
4122 if (err < 0) {
4123 dev_info(&pdev->dev, "use SW buffer management\n");
4124 pp->bm_priv = NULL;
4125 }
4126 }
4127
4128 err = mvneta_init(&pdev->dev, pp);
4129 if (err < 0)
4130 goto err_netdev;
4131
4132 err = mvneta_port_power_up(pp, phy_mode);
4133 if (err < 0) {
4134 dev_err(&pdev->dev, "can't power up port\n");
4135 goto err_netdev;
4136 }
4137
4138 for_each_present_cpu(cpu) {
4139 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4140
4141 netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4142 port->pp = pp;
4143 }
4144
4145 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4146 dev->hw_features |= dev->features;
4147 dev->vlan_features |= dev->features;
4148 dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE;
4149 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4150
4151 err = register_netdev(dev);
4152 if (err < 0) {
4153 dev_err(&pdev->dev, "failed to register\n");
4154 goto err_free_stats;
4155 }
4156
4157 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4158 dev->dev_addr);
4159
4160 platform_set_drvdata(pdev, pp->dev);
4161
4162 if (pp->use_inband_status) {
4163 struct phy_device *phy = of_phy_find_device(dn);
4164
4165 mvneta_fixed_link_update(pp, phy);
4166
4167 put_device(&phy->mdio.dev);
4168 }
4169
4170 return 0;
4171
4172 err_netdev:
4173 unregister_netdev(dev);
4174 if (pp->bm_priv) {
4175 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4176 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4177 1 << pp->id);
4178 }
4179 err_free_stats:
4180 free_percpu(pp->stats);
4181 err_free_ports:
4182 free_percpu(pp->ports);
4183 err_clk:
4184 clk_disable_unprepare(pp->clk_bus);
4185 clk_disable_unprepare(pp->clk);
4186 err_put_phy_node:
4187 of_node_put(phy_node);
4188 err_free_irq:
4189 irq_dispose_mapping(dev->irq);
4190 err_free_netdev:
4191 free_netdev(dev);
4192 return err;
4193 }
4194
4195 /* Device removal routine */
4196 static int mvneta_remove(struct platform_device *pdev)
4197 {
4198 struct net_device *dev = platform_get_drvdata(pdev);
4199 struct mvneta_port *pp = netdev_priv(dev);
4200
4201 unregister_netdev(dev);
4202 clk_disable_unprepare(pp->clk_bus);
4203 clk_disable_unprepare(pp->clk);
4204 free_percpu(pp->ports);
4205 free_percpu(pp->stats);
4206 irq_dispose_mapping(dev->irq);
4207 of_node_put(pp->phy_node);
4208 free_netdev(dev);
4209
4210 if (pp->bm_priv) {
4211 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4212 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4213 1 << pp->id);
4214 }
4215
4216 return 0;
4217 }
4218
4219 static const struct of_device_id mvneta_match[] = {
4220 { .compatible = "marvell,armada-370-neta" },
4221 { .compatible = "marvell,armada-xp-neta" },
4222 { }
4223 };
4224 MODULE_DEVICE_TABLE(of, mvneta_match);
4225
4226 static struct platform_driver mvneta_driver = {
4227 .probe = mvneta_probe,
4228 .remove = mvneta_remove,
4229 .driver = {
4230 .name = MVNETA_DRIVER_NAME,
4231 .of_match_table = mvneta_match,
4232 },
4233 };
4234
4235 module_platform_driver(mvneta_driver);
4236
4237 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4238 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4239 MODULE_LICENSE("GPL");
4240
4241 module_param(rxq_number, int, S_IRUGO);
4242 module_param(txq_number, int, S_IRUGO);
4243
4244 module_param(rxq_def, int, S_IRUGO);
4245 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
This page took 0.114931 seconds and 6 git commands to generate.