Merge remote-tracking branch 'sound-asoc/for-next'
[deliverable/linux.git] / drivers / net / ethernet / marvell / mvpp2.c
1 /*
2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3 *
4 * Copyright (C) 2014 Marvell
5 *
6 * Marcin Wojtas <mw@semihalf.com>
7 *
8 * This file is licensed under the terms of the GNU General Public
9 * License version 2. This program is licensed "as is" without any
10 * warranty of any kind, whether express or implied.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/platform_device.h>
17 #include <linux/skbuff.h>
18 #include <linux/inetdevice.h>
19 #include <linux/mbus.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/cpumask.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_mdio.h>
26 #include <linux/of_net.h>
27 #include <linux/of_address.h>
28 #include <linux/phy.h>
29 #include <linux/clk.h>
30 #include <linux/hrtimer.h>
31 #include <linux/ktime.h>
32 #include <uapi/linux/ppp_defs.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35
36 /* RX Fifo Registers */
37 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
38 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
39 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
40 #define MVPP2_RX_FIFO_INIT_REG 0x64
41
42 /* RX DMA Top Registers */
43 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
44 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
45 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
46 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
47 #define MVPP2_POOL_BUF_SIZE_OFFSET 5
48 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
49 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
50 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
51 #define MVPP2_RXQ_POOL_SHORT_OFFS 20
52 #define MVPP2_RXQ_POOL_SHORT_MASK 0x700000
53 #define MVPP2_RXQ_POOL_LONG_OFFS 24
54 #define MVPP2_RXQ_POOL_LONG_MASK 0x7000000
55 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
56 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
57 #define MVPP2_RXQ_DISABLE_MASK BIT(31)
58
59 /* Parser Registers */
60 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
61 #define MVPP2_PRS_PORT_LU_MAX 0xf
62 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
63 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
64 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
65 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
66 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
67 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
68 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
69 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
70 #define MVPP2_PRS_TCAM_IDX_REG 0x1100
71 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
72 #define MVPP2_PRS_TCAM_INV_MASK BIT(31)
73 #define MVPP2_PRS_SRAM_IDX_REG 0x1200
74 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
75 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230
76 #define MVPP2_PRS_TCAM_EN_MASK BIT(0)
77
78 /* Classifier Registers */
79 #define MVPP2_CLS_MODE_REG 0x1800
80 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
81 #define MVPP2_CLS_PORT_WAY_REG 0x1810
82 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
83 #define MVPP2_CLS_LKP_INDEX_REG 0x1814
84 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
85 #define MVPP2_CLS_LKP_TBL_REG 0x1818
86 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
87 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
88 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820
89 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824
90 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828
91 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c
92 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
93 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
94 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
95 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
96 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
97 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
98
99 /* Descriptor Manager Top Registers */
100 #define MVPP2_RXQ_NUM_REG 0x2040
101 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044
102 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048
103 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
104 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
105 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
106 #define MVPP2_RXQ_NUM_NEW_OFFSET 16
107 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
108 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
109 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
110 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
111 #define MVPP2_RXQ_THRESH_REG 0x204c
112 #define MVPP2_OCCUPIED_THRESH_OFFSET 0
113 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
114 #define MVPP2_RXQ_INDEX_REG 0x2050
115 #define MVPP2_TXQ_NUM_REG 0x2080
116 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084
117 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088
118 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
119 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
120 #define MVPP2_TXQ_THRESH_REG 0x2094
121 #define MVPP2_TRANSMITTED_THRESH_OFFSET 16
122 #define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000
123 #define MVPP2_TXQ_INDEX_REG 0x2098
124 #define MVPP2_TXQ_PREF_BUF_REG 0x209c
125 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
126 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
127 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
128 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
129 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
130 #define MVPP2_TXQ_PENDING_REG 0x20a0
131 #define MVPP2_TXQ_PENDING_MASK 0x3fff
132 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4
133 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
134 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16
135 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
136 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
137 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
138 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
139 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
140 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
141 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16
142 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
143 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
144 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
145 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
146 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
147 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
148
149 /* MBUS bridge registers */
150 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
151 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
152 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
153 #define MVPP2_BASE_ADDR_ENABLE 0x4060
154
155 /* Interrupt Cause and Mask registers */
156 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
157 #define MVPP2_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
158 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
159 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
160 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
161 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
162 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
163 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
164 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
165 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
166 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
167 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
168 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
169 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
170 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
171 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
172 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
173 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
174 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
175 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
176
177 /* Buffer Manager registers */
178 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
179 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
180 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
181 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0
182 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
183 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
184 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
185 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
186 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
187 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
188 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
189 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
190 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
191 #define MVPP2_BM_START_MASK BIT(0)
192 #define MVPP2_BM_STOP_MASK BIT(1)
193 #define MVPP2_BM_STATE_MASK BIT(4)
194 #define MVPP2_BM_LOW_THRESH_OFFS 8
195 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00
196 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
197 MVPP2_BM_LOW_THRESH_OFFS)
198 #define MVPP2_BM_HIGH_THRESH_OFFS 16
199 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
200 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
201 MVPP2_BM_HIGH_THRESH_OFFS)
202 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
203 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
204 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
205 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
206 #define MVPP2_BM_BPPE_FULL_MASK BIT(3)
207 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
208 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
209 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
210 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
211 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440
212 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
213 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
214 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
215 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
216 #define MVPP2_BM_VIRT_RLS_REG 0x64c0
217 #define MVPP2_BM_MC_RLS_REG 0x64c4
218 #define MVPP2_BM_MC_ID_MASK 0xfff
219 #define MVPP2_BM_FORCE_RELEASE_MASK BIT(12)
220
221 /* TX Scheduler registers */
222 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
223 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
224 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff
225 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8
226 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
227 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
228 #define MVPP2_TXP_SCHED_MTU_REG 0x801c
229 #define MVPP2_TXP_MTU_MAX 0x7FFFF
230 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020
231 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
232 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
233 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
234 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
235 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
236 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
237 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
238 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
239 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
240 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
241 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
242 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
243 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
244
245 /* TX general registers */
246 #define MVPP2_TX_SNOOP_REG 0x8800
247 #define MVPP2_TX_PORT_FLUSH_REG 0x8810
248 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
249
250 /* LMS registers */
251 #define MVPP2_SRC_ADDR_MIDDLE 0x24
252 #define MVPP2_SRC_ADDR_HIGH 0x28
253 #define MVPP2_PHY_AN_CFG0_REG 0x34
254 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
255 #define MVPP2_MIB_COUNTERS_BASE(port) (0x1000 + ((port) >> 1) * \
256 0x400 + (port) * 0x400)
257 #define MVPP2_MIB_LATE_COLLISION 0x7c
258 #define MVPP2_ISR_SUM_MASK_REG 0x220c
259 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
260 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
261
262 /* Per-port registers */
263 #define MVPP2_GMAC_CTRL_0_REG 0x0
264 #define MVPP2_GMAC_PORT_EN_MASK BIT(0)
265 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
266 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
267 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
268 #define MVPP2_GMAC_CTRL_1_REG 0x4
269 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
270 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
271 #define MVPP2_GMAC_PCS_LB_EN_BIT 6
272 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
273 #define MVPP2_GMAC_SA_LOW_OFFS 7
274 #define MVPP2_GMAC_CTRL_2_REG 0x8
275 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
276 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
277 #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
278 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
279 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc
280 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
281 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
282 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
283 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
284 #define MVPP2_GMAC_AN_SPEED_EN BIT(7)
285 #define MVPP2_GMAC_FC_ADV_EN BIT(9)
286 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
287 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
288 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
289 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
290 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
291 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
292 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
293
294 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
295
296 /* Descriptor ring Macros */
297 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
298 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
299
300 /* Various constants */
301
302 /* Coalescing */
303 #define MVPP2_TXDONE_COAL_PKTS_THRESH 15
304 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
305 #define MVPP2_RX_COAL_PKTS 32
306 #define MVPP2_RX_COAL_USEC 100
307
308 /* The two bytes Marvell header. Either contains a special value used
309 * by Marvell switches when a specific hardware mode is enabled (not
310 * supported by this driver) or is filled automatically by zeroes on
311 * the RX side. Those two bytes being at the front of the Ethernet
312 * header, they allow to have the IP header aligned on a 4 bytes
313 * boundary automatically: the hardware skips those two bytes on its
314 * own.
315 */
316 #define MVPP2_MH_SIZE 2
317 #define MVPP2_ETH_TYPE_LEN 2
318 #define MVPP2_PPPOE_HDR_SIZE 8
319 #define MVPP2_VLAN_TAG_LEN 4
320
321 /* Lbtd 802.3 type */
322 #define MVPP2_IP_LBDT_TYPE 0xfffa
323
324 #define MVPP2_TX_CSUM_MAX_SIZE 9800
325
326 /* Timeout constants */
327 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
328 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
329
330 #define MVPP2_TX_MTU_MAX 0x7ffff
331
332 /* Maximum number of T-CONTs of PON port */
333 #define MVPP2_MAX_TCONT 16
334
335 /* Maximum number of supported ports */
336 #define MVPP2_MAX_PORTS 4
337
338 /* Maximum number of TXQs used by single port */
339 #define MVPP2_MAX_TXQ 8
340
341 /* Maximum number of RXQs used by single port */
342 #define MVPP2_MAX_RXQ 8
343
344 /* Dfault number of RXQs in use */
345 #define MVPP2_DEFAULT_RXQ 4
346
347 /* Total number of RXQs available to all ports */
348 #define MVPP2_RXQ_TOTAL_NUM (MVPP2_MAX_PORTS * MVPP2_MAX_RXQ)
349
350 /* Max number of Rx descriptors */
351 #define MVPP2_MAX_RXD 128
352
353 /* Max number of Tx descriptors */
354 #define MVPP2_MAX_TXD 1024
355
356 /* Amount of Tx descriptors that can be reserved at once by CPU */
357 #define MVPP2_CPU_DESC_CHUNK 64
358
359 /* Max number of Tx descriptors in each aggregated queue */
360 #define MVPP2_AGGR_TXQ_SIZE 256
361
362 /* Descriptor aligned size */
363 #define MVPP2_DESC_ALIGNED_SIZE 32
364
365 /* Descriptor alignment mask */
366 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
367
368 /* RX FIFO constants */
369 #define MVPP2_RX_FIFO_PORT_DATA_SIZE 0x2000
370 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE 0x80
371 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
372
373 /* RX buffer constants */
374 #define MVPP2_SKB_SHINFO_SIZE \
375 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
376
377 #define MVPP2_RX_PKT_SIZE(mtu) \
378 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
379 ETH_HLEN + ETH_FCS_LEN, cache_line_size())
380
381 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
382 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
383 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
384 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
385
386 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
387
388 /* IPv6 max L3 address size */
389 #define MVPP2_MAX_L3_ADDR_SIZE 16
390
391 /* Port flags */
392 #define MVPP2_F_LOOPBACK BIT(0)
393
394 /* Marvell tag types */
395 enum mvpp2_tag_type {
396 MVPP2_TAG_TYPE_NONE = 0,
397 MVPP2_TAG_TYPE_MH = 1,
398 MVPP2_TAG_TYPE_DSA = 2,
399 MVPP2_TAG_TYPE_EDSA = 3,
400 MVPP2_TAG_TYPE_VLAN = 4,
401 MVPP2_TAG_TYPE_LAST = 5
402 };
403
404 /* Parser constants */
405 #define MVPP2_PRS_TCAM_SRAM_SIZE 256
406 #define MVPP2_PRS_TCAM_WORDS 6
407 #define MVPP2_PRS_SRAM_WORDS 4
408 #define MVPP2_PRS_FLOW_ID_SIZE 64
409 #define MVPP2_PRS_FLOW_ID_MASK 0x3f
410 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1
411 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
412 #define MVPP2_PRS_IPV4_HEAD 0x40
413 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
414 #define MVPP2_PRS_IPV4_MC 0xe0
415 #define MVPP2_PRS_IPV4_MC_MASK 0xf0
416 #define MVPP2_PRS_IPV4_BC_MASK 0xff
417 #define MVPP2_PRS_IPV4_IHL 0x5
418 #define MVPP2_PRS_IPV4_IHL_MASK 0xf
419 #define MVPP2_PRS_IPV6_MC 0xff
420 #define MVPP2_PRS_IPV6_MC_MASK 0xff
421 #define MVPP2_PRS_IPV6_HOP_MASK 0xff
422 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff
423 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
424 #define MVPP2_PRS_DBL_VLANS_MAX 100
425
426 /* Tcam structure:
427 * - lookup ID - 4 bits
428 * - port ID - 1 byte
429 * - additional information - 1 byte
430 * - header data - 8 bytes
431 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
432 */
433 #define MVPP2_PRS_AI_BITS 8
434 #define MVPP2_PRS_PORT_MASK 0xff
435 #define MVPP2_PRS_LU_MASK 0xf
436 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
437 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
438 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
439 (((offs) * 2) - ((offs) % 2) + 2)
440 #define MVPP2_PRS_TCAM_AI_BYTE 16
441 #define MVPP2_PRS_TCAM_PORT_BYTE 17
442 #define MVPP2_PRS_TCAM_LU_BYTE 20
443 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
444 #define MVPP2_PRS_TCAM_INV_WORD 5
445 /* Tcam entries ID */
446 #define MVPP2_PE_DROP_ALL 0
447 #define MVPP2_PE_FIRST_FREE_TID 1
448 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
449 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
450 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
451 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
452 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
453 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
454 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
455 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
456 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
457 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
458 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
459 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
460 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
461 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
462 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
463 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
464 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
465 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
466 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
467 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
468 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
469 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
470 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
471 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
472 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
473
474 /* Sram structure
475 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
476 */
477 #define MVPP2_PRS_SRAM_RI_OFFS 0
478 #define MVPP2_PRS_SRAM_RI_WORD 0
479 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
480 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
481 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
482 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64
483 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
484 #define MVPP2_PRS_SRAM_UDF_OFFS 73
485 #define MVPP2_PRS_SRAM_UDF_BITS 8
486 #define MVPP2_PRS_SRAM_UDF_MASK 0xff
487 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
488 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
489 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
490 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
491 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
492 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
493 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
494 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
495 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
496 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
497 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
498 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
499 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
500 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
501 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
502 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
503 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
504 #define MVPP2_PRS_SRAM_AI_OFFS 90
505 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
506 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
507 #define MVPP2_PRS_SRAM_AI_MASK 0xff
508 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
509 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
510 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110
511 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111
512
513 /* Sram result info bits assignment */
514 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1
515 #define MVPP2_PRS_RI_DSA_MASK 0x2
516 #define MVPP2_PRS_RI_VLAN_MASK 0xc
517 #define MVPP2_PRS_RI_VLAN_NONE ~(BIT(2) | BIT(3))
518 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
519 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
520 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
521 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
522 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
523 #define MVPP2_PRS_RI_L2_CAST_MASK 0x600
524 #define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10))
525 #define MVPP2_PRS_RI_L2_MCAST BIT(9)
526 #define MVPP2_PRS_RI_L2_BCAST BIT(10)
527 #define MVPP2_PRS_RI_PPPOE_MASK 0x800
528 #define MVPP2_PRS_RI_L3_PROTO_MASK 0x7000
529 #define MVPP2_PRS_RI_L3_UN ~(BIT(12) | BIT(13) | BIT(14))
530 #define MVPP2_PRS_RI_L3_IP4 BIT(12)
531 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
532 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
533 #define MVPP2_PRS_RI_L3_IP6 BIT(14)
534 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
535 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
536 #define MVPP2_PRS_RI_L3_ADDR_MASK 0x18000
537 #define MVPP2_PRS_RI_L3_UCAST ~(BIT(15) | BIT(16))
538 #define MVPP2_PRS_RI_L3_MCAST BIT(15)
539 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
540 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
541 #define MVPP2_PRS_RI_UDF3_MASK 0x300000
542 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
543 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
544 #define MVPP2_PRS_RI_L4_TCP BIT(22)
545 #define MVPP2_PRS_RI_L4_UDP BIT(23)
546 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
547 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000
548 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
549 #define MVPP2_PRS_RI_DROP_MASK 0x80000000
550
551 /* Sram additional info bits assignment */
552 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
553 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
554 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
555 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
556 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
557 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
558 #define MVPP2_PRS_SINGLE_VLAN_AI 0
559 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
560
561 /* DSA/EDSA type */
562 #define MVPP2_PRS_TAGGED true
563 #define MVPP2_PRS_UNTAGGED false
564 #define MVPP2_PRS_EDSA true
565 #define MVPP2_PRS_DSA false
566
567 /* MAC entries, shadow udf */
568 enum mvpp2_prs_udf {
569 MVPP2_PRS_UDF_MAC_DEF,
570 MVPP2_PRS_UDF_MAC_RANGE,
571 MVPP2_PRS_UDF_L2_DEF,
572 MVPP2_PRS_UDF_L2_DEF_COPY,
573 MVPP2_PRS_UDF_L2_USER,
574 };
575
576 /* Lookup ID */
577 enum mvpp2_prs_lookup {
578 MVPP2_PRS_LU_MH,
579 MVPP2_PRS_LU_MAC,
580 MVPP2_PRS_LU_DSA,
581 MVPP2_PRS_LU_VLAN,
582 MVPP2_PRS_LU_L2,
583 MVPP2_PRS_LU_PPPOE,
584 MVPP2_PRS_LU_IP4,
585 MVPP2_PRS_LU_IP6,
586 MVPP2_PRS_LU_FLOWS,
587 MVPP2_PRS_LU_LAST,
588 };
589
590 /* L3 cast enum */
591 enum mvpp2_prs_l3_cast {
592 MVPP2_PRS_L3_UNI_CAST,
593 MVPP2_PRS_L3_MULTI_CAST,
594 MVPP2_PRS_L3_BROAD_CAST
595 };
596
597 /* Classifier constants */
598 #define MVPP2_CLS_FLOWS_TBL_SIZE 512
599 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
600 #define MVPP2_CLS_LKP_TBL_SIZE 64
601
602 /* BM constants */
603 #define MVPP2_BM_POOLS_NUM 8
604 #define MVPP2_BM_LONG_BUF_NUM 1024
605 #define MVPP2_BM_SHORT_BUF_NUM 2048
606 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
607 #define MVPP2_BM_POOL_PTR_ALIGN 128
608 #define MVPP2_BM_SWF_LONG_POOL(port) ((port > 2) ? 2 : port)
609 #define MVPP2_BM_SWF_SHORT_POOL 3
610
611 /* BM cookie (32 bits) definition */
612 #define MVPP2_BM_COOKIE_POOL_OFFS 8
613 #define MVPP2_BM_COOKIE_CPU_OFFS 24
614
615 /* BM short pool packet size
616 * These value assure that for SWF the total number
617 * of bytes allocated for each buffer will be 512
618 */
619 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
620
621 enum mvpp2_bm_type {
622 MVPP2_BM_FREE,
623 MVPP2_BM_SWF_LONG,
624 MVPP2_BM_SWF_SHORT
625 };
626
627 /* Definitions */
628
629 /* Shared Packet Processor resources */
630 struct mvpp2 {
631 /* Shared registers' base addresses */
632 void __iomem *base;
633 void __iomem *lms_base;
634
635 /* Common clocks */
636 struct clk *pp_clk;
637 struct clk *gop_clk;
638
639 /* List of pointers to port structures */
640 struct mvpp2_port **port_list;
641
642 /* Aggregated TXQs */
643 struct mvpp2_tx_queue *aggr_txqs;
644
645 /* BM pools */
646 struct mvpp2_bm_pool *bm_pools;
647
648 /* PRS shadow table */
649 struct mvpp2_prs_shadow *prs_shadow;
650 /* PRS auxiliary table for double vlan entries control */
651 bool *prs_double_vlans;
652
653 /* Tclk value */
654 u32 tclk;
655 };
656
657 struct mvpp2_pcpu_stats {
658 struct u64_stats_sync syncp;
659 u64 rx_packets;
660 u64 rx_bytes;
661 u64 tx_packets;
662 u64 tx_bytes;
663 };
664
665 /* Per-CPU port control */
666 struct mvpp2_port_pcpu {
667 struct hrtimer tx_done_timer;
668 bool timer_scheduled;
669 /* Tasklet for egress finalization */
670 struct tasklet_struct tx_done_tasklet;
671 };
672
673 struct mvpp2_port {
674 u8 id;
675
676 int irq;
677
678 struct mvpp2 *priv;
679
680 /* Per-port registers' base address */
681 void __iomem *base;
682
683 struct mvpp2_rx_queue **rxqs;
684 struct mvpp2_tx_queue **txqs;
685 struct net_device *dev;
686
687 int pkt_size;
688
689 u32 pending_cause_rx;
690 struct napi_struct napi;
691
692 /* Per-CPU port control */
693 struct mvpp2_port_pcpu __percpu *pcpu;
694
695 /* Flags */
696 unsigned long flags;
697
698 u16 tx_ring_size;
699 u16 rx_ring_size;
700 struct mvpp2_pcpu_stats __percpu *stats;
701
702 phy_interface_t phy_interface;
703 struct device_node *phy_node;
704 unsigned int link;
705 unsigned int duplex;
706 unsigned int speed;
707
708 struct mvpp2_bm_pool *pool_long;
709 struct mvpp2_bm_pool *pool_short;
710
711 /* Index of first port's physical RXQ */
712 u8 first_rxq;
713 };
714
715 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
716 * layout of the transmit and reception DMA descriptors, and their
717 * layout is therefore defined by the hardware design
718 */
719
720 #define MVPP2_TXD_L3_OFF_SHIFT 0
721 #define MVPP2_TXD_IP_HLEN_SHIFT 8
722 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
723 #define MVPP2_TXD_L4_CSUM_NOT BIT(14)
724 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
725 #define MVPP2_TXD_PADDING_DISABLE BIT(23)
726 #define MVPP2_TXD_L4_UDP BIT(24)
727 #define MVPP2_TXD_L3_IP6 BIT(26)
728 #define MVPP2_TXD_L_DESC BIT(28)
729 #define MVPP2_TXD_F_DESC BIT(29)
730
731 #define MVPP2_RXD_ERR_SUMMARY BIT(15)
732 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
733 #define MVPP2_RXD_ERR_CRC 0x0
734 #define MVPP2_RXD_ERR_OVERRUN BIT(13)
735 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
736 #define MVPP2_RXD_BM_POOL_ID_OFFS 16
737 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
738 #define MVPP2_RXD_HWF_SYNC BIT(21)
739 #define MVPP2_RXD_L4_CSUM_OK BIT(22)
740 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
741 #define MVPP2_RXD_L4_TCP BIT(25)
742 #define MVPP2_RXD_L4_UDP BIT(26)
743 #define MVPP2_RXD_L3_IP4 BIT(28)
744 #define MVPP2_RXD_L3_IP6 BIT(30)
745 #define MVPP2_RXD_BUF_HDR BIT(31)
746
747 struct mvpp2_tx_desc {
748 u32 command; /* Options used by HW for packet transmitting.*/
749 u8 packet_offset; /* the offset from the buffer beginning */
750 u8 phys_txq; /* destination queue ID */
751 u16 data_size; /* data size of transmitted packet in bytes */
752 u32 buf_phys_addr; /* physical addr of transmitted buffer */
753 u32 buf_cookie; /* cookie for access to TX buffer in tx path */
754 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
755 u32 reserved2; /* reserved (for future use) */
756 };
757
758 struct mvpp2_rx_desc {
759 u32 status; /* info about received packet */
760 u16 reserved1; /* parser_info (for future use, PnC) */
761 u16 data_size; /* size of received packet in bytes */
762 u32 buf_phys_addr; /* physical address of the buffer */
763 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
764 u16 reserved2; /* gem_port_id (for future use, PON) */
765 u16 reserved3; /* csum_l4 (for future use, PnC) */
766 u8 reserved4; /* bm_qset (for future use, BM) */
767 u8 reserved5;
768 u16 reserved6; /* classify_info (for future use, PnC) */
769 u32 reserved7; /* flow_id (for future use, PnC) */
770 u32 reserved8;
771 };
772
773 /* Per-CPU Tx queue control */
774 struct mvpp2_txq_pcpu {
775 int cpu;
776
777 /* Number of Tx DMA descriptors in the descriptor ring */
778 int size;
779
780 /* Number of currently used Tx DMA descriptor in the
781 * descriptor ring
782 */
783 int count;
784
785 /* Number of Tx DMA descriptors reserved for each CPU */
786 int reserved_num;
787
788 /* Array of transmitted skb */
789 struct sk_buff **tx_skb;
790
791 /* Array of transmitted buffers' physical addresses */
792 dma_addr_t *tx_buffs;
793
794 /* Index of last TX DMA descriptor that was inserted */
795 int txq_put_index;
796
797 /* Index of the TX DMA descriptor to be cleaned up */
798 int txq_get_index;
799 };
800
801 struct mvpp2_tx_queue {
802 /* Physical number of this Tx queue */
803 u8 id;
804
805 /* Logical number of this Tx queue */
806 u8 log_id;
807
808 /* Number of Tx DMA descriptors in the descriptor ring */
809 int size;
810
811 /* Number of currently used Tx DMA descriptor in the descriptor ring */
812 int count;
813
814 /* Per-CPU control of physical Tx queues */
815 struct mvpp2_txq_pcpu __percpu *pcpu;
816
817 /* Array of transmitted skb */
818 struct sk_buff **tx_skb;
819
820 u32 done_pkts_coal;
821
822 /* Virtual address of thex Tx DMA descriptors array */
823 struct mvpp2_tx_desc *descs;
824
825 /* DMA address of the Tx DMA descriptors array */
826 dma_addr_t descs_phys;
827
828 /* Index of the last Tx DMA descriptor */
829 int last_desc;
830
831 /* Index of the next Tx DMA descriptor to process */
832 int next_desc_to_proc;
833 };
834
835 struct mvpp2_rx_queue {
836 /* RX queue number, in the range 0-31 for physical RXQs */
837 u8 id;
838
839 /* Num of rx descriptors in the rx descriptor ring */
840 int size;
841
842 u32 pkts_coal;
843 u32 time_coal;
844
845 /* Virtual address of the RX DMA descriptors array */
846 struct mvpp2_rx_desc *descs;
847
848 /* DMA address of the RX DMA descriptors array */
849 dma_addr_t descs_phys;
850
851 /* Index of the last RX DMA descriptor */
852 int last_desc;
853
854 /* Index of the next RX DMA descriptor to process */
855 int next_desc_to_proc;
856
857 /* ID of port to which physical RXQ is mapped */
858 int port;
859
860 /* Port's logic RXQ number to which physical RXQ is mapped */
861 int logic_rxq;
862 };
863
864 union mvpp2_prs_tcam_entry {
865 u32 word[MVPP2_PRS_TCAM_WORDS];
866 u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
867 };
868
869 union mvpp2_prs_sram_entry {
870 u32 word[MVPP2_PRS_SRAM_WORDS];
871 u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
872 };
873
874 struct mvpp2_prs_entry {
875 u32 index;
876 union mvpp2_prs_tcam_entry tcam;
877 union mvpp2_prs_sram_entry sram;
878 };
879
880 struct mvpp2_prs_shadow {
881 bool valid;
882 bool finish;
883
884 /* Lookup ID */
885 int lu;
886
887 /* User defined offset */
888 int udf;
889
890 /* Result info */
891 u32 ri;
892 u32 ri_mask;
893 };
894
895 struct mvpp2_cls_flow_entry {
896 u32 index;
897 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
898 };
899
900 struct mvpp2_cls_lookup_entry {
901 u32 lkpid;
902 u32 way;
903 u32 data;
904 };
905
906 struct mvpp2_bm_pool {
907 /* Pool number in the range 0-7 */
908 int id;
909 enum mvpp2_bm_type type;
910
911 /* Buffer Pointers Pool External (BPPE) size */
912 int size;
913 /* Number of buffers for this pool */
914 int buf_num;
915 /* Pool buffer size */
916 int buf_size;
917 /* Packet size */
918 int pkt_size;
919
920 /* BPPE virtual base address */
921 u32 *virt_addr;
922 /* BPPE physical base address */
923 dma_addr_t phys_addr;
924
925 /* Ports using BM pool */
926 u32 port_map;
927
928 /* Occupied buffers indicator */
929 atomic_t in_use;
930 int in_use_thresh;
931 };
932
933 struct mvpp2_buff_hdr {
934 u32 next_buff_phys_addr;
935 u32 next_buff_virt_addr;
936 u16 byte_count;
937 u16 info;
938 u8 reserved1; /* bm_qset (for future use, BM) */
939 };
940
941 /* Buffer header info bits */
942 #define MVPP2_B_HDR_INFO_MC_ID_MASK 0xfff
943 #define MVPP2_B_HDR_INFO_MC_ID(info) ((info) & MVPP2_B_HDR_INFO_MC_ID_MASK)
944 #define MVPP2_B_HDR_INFO_LAST_OFFS 12
945 #define MVPP2_B_HDR_INFO_LAST_MASK BIT(12)
946 #define MVPP2_B_HDR_INFO_IS_LAST(info) \
947 ((info & MVPP2_B_HDR_INFO_LAST_MASK) >> MVPP2_B_HDR_INFO_LAST_OFFS)
948
949 /* Static declaractions */
950
951 /* Number of RXQs used by single port */
952 static int rxq_number = MVPP2_DEFAULT_RXQ;
953 /* Number of TXQs used by single port */
954 static int txq_number = MVPP2_MAX_TXQ;
955
956 #define MVPP2_DRIVER_NAME "mvpp2"
957 #define MVPP2_DRIVER_VERSION "1.0"
958
959 /* Utility/helper methods */
960
961 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
962 {
963 writel(data, priv->base + offset);
964 }
965
966 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
967 {
968 return readl(priv->base + offset);
969 }
970
971 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
972 {
973 txq_pcpu->txq_get_index++;
974 if (txq_pcpu->txq_get_index == txq_pcpu->size)
975 txq_pcpu->txq_get_index = 0;
976 }
977
978 static void mvpp2_txq_inc_put(struct mvpp2_txq_pcpu *txq_pcpu,
979 struct sk_buff *skb,
980 struct mvpp2_tx_desc *tx_desc)
981 {
982 txq_pcpu->tx_skb[txq_pcpu->txq_put_index] = skb;
983 if (skb)
984 txq_pcpu->tx_buffs[txq_pcpu->txq_put_index] =
985 tx_desc->buf_phys_addr;
986 txq_pcpu->txq_put_index++;
987 if (txq_pcpu->txq_put_index == txq_pcpu->size)
988 txq_pcpu->txq_put_index = 0;
989 }
990
991 /* Get number of physical egress port */
992 static inline int mvpp2_egress_port(struct mvpp2_port *port)
993 {
994 return MVPP2_MAX_TCONT + port->id;
995 }
996
997 /* Get number of physical TXQ */
998 static inline int mvpp2_txq_phys(int port, int txq)
999 {
1000 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1001 }
1002
1003 /* Parser configuration routines */
1004
1005 /* Update parser tcam and sram hw entries */
1006 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1007 {
1008 int i;
1009
1010 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1011 return -EINVAL;
1012
1013 /* Clear entry invalidation bit */
1014 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1015
1016 /* Write tcam index - indirect access */
1017 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1018 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1019 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1020
1021 /* Write sram index - indirect access */
1022 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1023 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1024 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1025
1026 return 0;
1027 }
1028
1029 /* Read tcam entry from hw */
1030 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1031 {
1032 int i;
1033
1034 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1035 return -EINVAL;
1036
1037 /* Write tcam index - indirect access */
1038 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1039
1040 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1041 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1042 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1043 return MVPP2_PRS_TCAM_ENTRY_INVALID;
1044
1045 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1046 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1047
1048 /* Write sram index - indirect access */
1049 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1050 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1051 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1052
1053 return 0;
1054 }
1055
1056 /* Invalidate tcam hw entry */
1057 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1058 {
1059 /* Write index - indirect access */
1060 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1061 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1062 MVPP2_PRS_TCAM_INV_MASK);
1063 }
1064
1065 /* Enable shadow table entry and set its lookup ID */
1066 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1067 {
1068 priv->prs_shadow[index].valid = true;
1069 priv->prs_shadow[index].lu = lu;
1070 }
1071
1072 /* Update ri fields in shadow table entry */
1073 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1074 unsigned int ri, unsigned int ri_mask)
1075 {
1076 priv->prs_shadow[index].ri_mask = ri_mask;
1077 priv->prs_shadow[index].ri = ri;
1078 }
1079
1080 /* Update lookup field in tcam sw entry */
1081 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1082 {
1083 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1084
1085 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1086 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1087 }
1088
1089 /* Update mask for single port in tcam sw entry */
1090 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1091 unsigned int port, bool add)
1092 {
1093 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1094
1095 if (add)
1096 pe->tcam.byte[enable_off] &= ~(1 << port);
1097 else
1098 pe->tcam.byte[enable_off] |= 1 << port;
1099 }
1100
1101 /* Update port map in tcam sw entry */
1102 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1103 unsigned int ports)
1104 {
1105 unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1106 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1107
1108 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1109 pe->tcam.byte[enable_off] &= ~port_mask;
1110 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1111 }
1112
1113 /* Obtain port map from tcam sw entry */
1114 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1115 {
1116 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1117
1118 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1119 }
1120
1121 /* Set byte of data and its enable bits in tcam sw entry */
1122 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1123 unsigned int offs, unsigned char byte,
1124 unsigned char enable)
1125 {
1126 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1127 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1128 }
1129
1130 /* Get byte of data and its enable bits from tcam sw entry */
1131 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1132 unsigned int offs, unsigned char *byte,
1133 unsigned char *enable)
1134 {
1135 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1136 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1137 }
1138
1139 /* Compare tcam data bytes with a pattern */
1140 static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
1141 u16 data)
1142 {
1143 int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
1144 u16 tcam_data;
1145
1146 tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off];
1147 if (tcam_data != data)
1148 return false;
1149 return true;
1150 }
1151
1152 /* Update ai bits in tcam sw entry */
1153 static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
1154 unsigned int bits, unsigned int enable)
1155 {
1156 int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
1157
1158 for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
1159
1160 if (!(enable & BIT(i)))
1161 continue;
1162
1163 if (bits & BIT(i))
1164 pe->tcam.byte[ai_idx] |= 1 << i;
1165 else
1166 pe->tcam.byte[ai_idx] &= ~(1 << i);
1167 }
1168
1169 pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
1170 }
1171
1172 /* Get ai bits from tcam sw entry */
1173 static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
1174 {
1175 return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
1176 }
1177
1178 /* Set ethertype in tcam sw entry */
1179 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1180 unsigned short ethertype)
1181 {
1182 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1183 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1184 }
1185
1186 /* Set bits in sram sw entry */
1187 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1188 int val)
1189 {
1190 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1191 }
1192
1193 /* Clear bits in sram sw entry */
1194 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1195 int val)
1196 {
1197 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1198 }
1199
1200 /* Update ri bits in sram sw entry */
1201 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1202 unsigned int bits, unsigned int mask)
1203 {
1204 unsigned int i;
1205
1206 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1207 int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1208
1209 if (!(mask & BIT(i)))
1210 continue;
1211
1212 if (bits & BIT(i))
1213 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1214 else
1215 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1216
1217 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1218 }
1219 }
1220
1221 /* Obtain ri bits from sram sw entry */
1222 static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
1223 {
1224 return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
1225 }
1226
1227 /* Update ai bits in sram sw entry */
1228 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1229 unsigned int bits, unsigned int mask)
1230 {
1231 unsigned int i;
1232 int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1233
1234 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1235
1236 if (!(mask & BIT(i)))
1237 continue;
1238
1239 if (bits & BIT(i))
1240 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1241 else
1242 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1243
1244 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1245 }
1246 }
1247
1248 /* Read ai bits from sram sw entry */
1249 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1250 {
1251 u8 bits;
1252 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1253 int ai_en_off = ai_off + 1;
1254 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1255
1256 bits = (pe->sram.byte[ai_off] >> ai_shift) |
1257 (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1258
1259 return bits;
1260 }
1261
1262 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1263 * lookup interation
1264 */
1265 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1266 unsigned int lu)
1267 {
1268 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1269
1270 mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1271 MVPP2_PRS_SRAM_NEXT_LU_MASK);
1272 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1273 }
1274
1275 /* In the sram sw entry set sign and value of the next lookup offset
1276 * and the offset value generated to the classifier
1277 */
1278 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1279 unsigned int op)
1280 {
1281 /* Set sign */
1282 if (shift < 0) {
1283 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1284 shift = 0 - shift;
1285 } else {
1286 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1287 }
1288
1289 /* Set value */
1290 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1291 (unsigned char)shift;
1292
1293 /* Reset and set operation */
1294 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1295 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1296 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1297
1298 /* Set base offset as current */
1299 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1300 }
1301
1302 /* In the sram sw entry set sign and value of the user defined offset
1303 * generated to the classifier
1304 */
1305 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1306 unsigned int type, int offset,
1307 unsigned int op)
1308 {
1309 /* Set sign */
1310 if (offset < 0) {
1311 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1312 offset = 0 - offset;
1313 } else {
1314 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1315 }
1316
1317 /* Set value */
1318 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1319 MVPP2_PRS_SRAM_UDF_MASK);
1320 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1321 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1322 MVPP2_PRS_SRAM_UDF_BITS)] &=
1323 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1324 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1325 MVPP2_PRS_SRAM_UDF_BITS)] |=
1326 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1327
1328 /* Set offset type */
1329 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1330 MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1331 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1332
1333 /* Set offset operation */
1334 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1335 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1336 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1337
1338 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1339 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1340 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1341 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1342
1343 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1344 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1345 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1346
1347 /* Set base offset as current */
1348 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1349 }
1350
1351 /* Find parser flow entry */
1352 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1353 {
1354 struct mvpp2_prs_entry *pe;
1355 int tid;
1356
1357 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1358 if (!pe)
1359 return NULL;
1360 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1361
1362 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1363 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1364 u8 bits;
1365
1366 if (!priv->prs_shadow[tid].valid ||
1367 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1368 continue;
1369
1370 pe->index = tid;
1371 mvpp2_prs_hw_read(priv, pe);
1372 bits = mvpp2_prs_sram_ai_get(pe);
1373
1374 /* Sram store classification lookup ID in AI bits [5:0] */
1375 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1376 return pe;
1377 }
1378 kfree(pe);
1379
1380 return NULL;
1381 }
1382
1383 /* Return first free tcam index, seeking from start to end */
1384 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1385 unsigned char end)
1386 {
1387 int tid;
1388
1389 if (start > end)
1390 swap(start, end);
1391
1392 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1393 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1394
1395 for (tid = start; tid <= end; tid++) {
1396 if (!priv->prs_shadow[tid].valid)
1397 return tid;
1398 }
1399
1400 return -EINVAL;
1401 }
1402
1403 /* Enable/disable dropping all mac da's */
1404 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1405 {
1406 struct mvpp2_prs_entry pe;
1407
1408 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1409 /* Entry exist - update port only */
1410 pe.index = MVPP2_PE_DROP_ALL;
1411 mvpp2_prs_hw_read(priv, &pe);
1412 } else {
1413 /* Entry doesn't exist - create new */
1414 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1415 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1416 pe.index = MVPP2_PE_DROP_ALL;
1417
1418 /* Non-promiscuous mode for all ports - DROP unknown packets */
1419 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1420 MVPP2_PRS_RI_DROP_MASK);
1421
1422 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1423 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1424
1425 /* Update shadow table */
1426 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1427
1428 /* Mask all ports */
1429 mvpp2_prs_tcam_port_map_set(&pe, 0);
1430 }
1431
1432 /* Update port mask */
1433 mvpp2_prs_tcam_port_set(&pe, port, add);
1434
1435 mvpp2_prs_hw_write(priv, &pe);
1436 }
1437
1438 /* Set port to promiscuous mode */
1439 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1440 {
1441 struct mvpp2_prs_entry pe;
1442
1443 /* Promiscuous mode - Accept unknown packets */
1444
1445 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1446 /* Entry exist - update port only */
1447 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1448 mvpp2_prs_hw_read(priv, &pe);
1449 } else {
1450 /* Entry doesn't exist - create new */
1451 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1452 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1453 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1454
1455 /* Continue - set next lookup */
1456 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1457
1458 /* Set result info bits */
1459 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1460 MVPP2_PRS_RI_L2_CAST_MASK);
1461
1462 /* Shift to ethertype */
1463 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1464 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1465
1466 /* Mask all ports */
1467 mvpp2_prs_tcam_port_map_set(&pe, 0);
1468
1469 /* Update shadow table */
1470 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1471 }
1472
1473 /* Update port mask */
1474 mvpp2_prs_tcam_port_set(&pe, port, add);
1475
1476 mvpp2_prs_hw_write(priv, &pe);
1477 }
1478
1479 /* Accept multicast */
1480 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1481 bool add)
1482 {
1483 struct mvpp2_prs_entry pe;
1484 unsigned char da_mc;
1485
1486 /* Ethernet multicast address first byte is
1487 * 0x01 for IPv4 and 0x33 for IPv6
1488 */
1489 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1490
1491 if (priv->prs_shadow[index].valid) {
1492 /* Entry exist - update port only */
1493 pe.index = index;
1494 mvpp2_prs_hw_read(priv, &pe);
1495 } else {
1496 /* Entry doesn't exist - create new */
1497 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1498 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1499 pe.index = index;
1500
1501 /* Continue - set next lookup */
1502 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1503
1504 /* Set result info bits */
1505 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1506 MVPP2_PRS_RI_L2_CAST_MASK);
1507
1508 /* Update tcam entry data first byte */
1509 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1510
1511 /* Shift to ethertype */
1512 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1513 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1514
1515 /* Mask all ports */
1516 mvpp2_prs_tcam_port_map_set(&pe, 0);
1517
1518 /* Update shadow table */
1519 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1520 }
1521
1522 /* Update port mask */
1523 mvpp2_prs_tcam_port_set(&pe, port, add);
1524
1525 mvpp2_prs_hw_write(priv, &pe);
1526 }
1527
1528 /* Set entry for dsa packets */
1529 static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
1530 bool tagged, bool extend)
1531 {
1532 struct mvpp2_prs_entry pe;
1533 int tid, shift;
1534
1535 if (extend) {
1536 tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
1537 shift = 8;
1538 } else {
1539 tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
1540 shift = 4;
1541 }
1542
1543 if (priv->prs_shadow[tid].valid) {
1544 /* Entry exist - update port only */
1545 pe.index = tid;
1546 mvpp2_prs_hw_read(priv, &pe);
1547 } else {
1548 /* Entry doesn't exist - create new */
1549 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1550 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1551 pe.index = tid;
1552
1553 /* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
1554 mvpp2_prs_sram_shift_set(&pe, shift,
1555 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1556
1557 /* Update shadow table */
1558 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1559
1560 if (tagged) {
1561 /* Set tagged bit in DSA tag */
1562 mvpp2_prs_tcam_data_byte_set(&pe, 0,
1563 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1564 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1565 /* Clear all ai bits for next iteration */
1566 mvpp2_prs_sram_ai_update(&pe, 0,
1567 MVPP2_PRS_SRAM_AI_MASK);
1568 /* If packet is tagged continue check vlans */
1569 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1570 } else {
1571 /* Set result info bits to 'no vlans' */
1572 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1573 MVPP2_PRS_RI_VLAN_MASK);
1574 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1575 }
1576
1577 /* Mask all ports */
1578 mvpp2_prs_tcam_port_map_set(&pe, 0);
1579 }
1580
1581 /* Update port mask */
1582 mvpp2_prs_tcam_port_set(&pe, port, add);
1583
1584 mvpp2_prs_hw_write(priv, &pe);
1585 }
1586
1587 /* Set entry for dsa ethertype */
1588 static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
1589 bool add, bool tagged, bool extend)
1590 {
1591 struct mvpp2_prs_entry pe;
1592 int tid, shift, port_mask;
1593
1594 if (extend) {
1595 tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
1596 MVPP2_PE_ETYPE_EDSA_UNTAGGED;
1597 port_mask = 0;
1598 shift = 8;
1599 } else {
1600 tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
1601 MVPP2_PE_ETYPE_DSA_UNTAGGED;
1602 port_mask = MVPP2_PRS_PORT_MASK;
1603 shift = 4;
1604 }
1605
1606 if (priv->prs_shadow[tid].valid) {
1607 /* Entry exist - update port only */
1608 pe.index = tid;
1609 mvpp2_prs_hw_read(priv, &pe);
1610 } else {
1611 /* Entry doesn't exist - create new */
1612 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1613 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1614 pe.index = tid;
1615
1616 /* Set ethertype */
1617 mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
1618 mvpp2_prs_match_etype(&pe, 2, 0);
1619
1620 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
1621 MVPP2_PRS_RI_DSA_MASK);
1622 /* Shift ethertype + 2 byte reserved + tag*/
1623 mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
1624 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1625
1626 /* Update shadow table */
1627 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1628
1629 if (tagged) {
1630 /* Set tagged bit in DSA tag */
1631 mvpp2_prs_tcam_data_byte_set(&pe,
1632 MVPP2_ETH_TYPE_LEN + 2 + 3,
1633 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1634 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1635 /* Clear all ai bits for next iteration */
1636 mvpp2_prs_sram_ai_update(&pe, 0,
1637 MVPP2_PRS_SRAM_AI_MASK);
1638 /* If packet is tagged continue check vlans */
1639 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1640 } else {
1641 /* Set result info bits to 'no vlans' */
1642 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1643 MVPP2_PRS_RI_VLAN_MASK);
1644 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1645 }
1646 /* Mask/unmask all ports, depending on dsa type */
1647 mvpp2_prs_tcam_port_map_set(&pe, port_mask);
1648 }
1649
1650 /* Update port mask */
1651 mvpp2_prs_tcam_port_set(&pe, port, add);
1652
1653 mvpp2_prs_hw_write(priv, &pe);
1654 }
1655
1656 /* Search for existing single/triple vlan entry */
1657 static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
1658 unsigned short tpid, int ai)
1659 {
1660 struct mvpp2_prs_entry *pe;
1661 int tid;
1662
1663 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1664 if (!pe)
1665 return NULL;
1666 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1667
1668 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
1669 for (tid = MVPP2_PE_FIRST_FREE_TID;
1670 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1671 unsigned int ri_bits, ai_bits;
1672 bool match;
1673
1674 if (!priv->prs_shadow[tid].valid ||
1675 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1676 continue;
1677
1678 pe->index = tid;
1679
1680 mvpp2_prs_hw_read(priv, pe);
1681 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
1682 if (!match)
1683 continue;
1684
1685 /* Get vlan type */
1686 ri_bits = mvpp2_prs_sram_ri_get(pe);
1687 ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1688
1689 /* Get current ai value from tcam */
1690 ai_bits = mvpp2_prs_tcam_ai_get(pe);
1691 /* Clear double vlan bit */
1692 ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
1693
1694 if (ai != ai_bits)
1695 continue;
1696
1697 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1698 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1699 return pe;
1700 }
1701 kfree(pe);
1702
1703 return NULL;
1704 }
1705
1706 /* Add/update single/triple vlan entry */
1707 static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
1708 unsigned int port_map)
1709 {
1710 struct mvpp2_prs_entry *pe;
1711 int tid_aux, tid;
1712 int ret = 0;
1713
1714 pe = mvpp2_prs_vlan_find(priv, tpid, ai);
1715
1716 if (!pe) {
1717 /* Create new tcam entry */
1718 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
1719 MVPP2_PE_FIRST_FREE_TID);
1720 if (tid < 0)
1721 return tid;
1722
1723 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1724 if (!pe)
1725 return -ENOMEM;
1726
1727 /* Get last double vlan tid */
1728 for (tid_aux = MVPP2_PE_LAST_FREE_TID;
1729 tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
1730 unsigned int ri_bits;
1731
1732 if (!priv->prs_shadow[tid_aux].valid ||
1733 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1734 continue;
1735
1736 pe->index = tid_aux;
1737 mvpp2_prs_hw_read(priv, pe);
1738 ri_bits = mvpp2_prs_sram_ri_get(pe);
1739 if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
1740 MVPP2_PRS_RI_VLAN_DOUBLE)
1741 break;
1742 }
1743
1744 if (tid <= tid_aux) {
1745 ret = -EINVAL;
1746 goto error;
1747 }
1748
1749 memset(pe, 0 , sizeof(struct mvpp2_prs_entry));
1750 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1751 pe->index = tid;
1752
1753 mvpp2_prs_match_etype(pe, 0, tpid);
1754
1755 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
1756 /* Shift 4 bytes - skip 1 vlan tag */
1757 mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
1758 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1759 /* Clear all ai bits for next iteration */
1760 mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);
1761
1762 if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
1763 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
1764 MVPP2_PRS_RI_VLAN_MASK);
1765 } else {
1766 ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
1767 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
1768 MVPP2_PRS_RI_VLAN_MASK);
1769 }
1770 mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);
1771
1772 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1773 }
1774 /* Update ports' mask */
1775 mvpp2_prs_tcam_port_map_set(pe, port_map);
1776
1777 mvpp2_prs_hw_write(priv, pe);
1778
1779 error:
1780 kfree(pe);
1781
1782 return ret;
1783 }
1784
1785 /* Get first free double vlan ai number */
1786 static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
1787 {
1788 int i;
1789
1790 for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
1791 if (!priv->prs_double_vlans[i])
1792 return i;
1793 }
1794
1795 return -EINVAL;
1796 }
1797
1798 /* Search for existing double vlan entry */
1799 static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
1800 unsigned short tpid1,
1801 unsigned short tpid2)
1802 {
1803 struct mvpp2_prs_entry *pe;
1804 int tid;
1805
1806 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1807 if (!pe)
1808 return NULL;
1809 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1810
1811 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
1812 for (tid = MVPP2_PE_FIRST_FREE_TID;
1813 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1814 unsigned int ri_mask;
1815 bool match;
1816
1817 if (!priv->prs_shadow[tid].valid ||
1818 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1819 continue;
1820
1821 pe->index = tid;
1822 mvpp2_prs_hw_read(priv, pe);
1823
1824 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
1825 && mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));
1826
1827 if (!match)
1828 continue;
1829
1830 ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
1831 if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
1832 return pe;
1833 }
1834 kfree(pe);
1835
1836 return NULL;
1837 }
1838
1839 /* Add or update double vlan entry */
1840 static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
1841 unsigned short tpid2,
1842 unsigned int port_map)
1843 {
1844 struct mvpp2_prs_entry *pe;
1845 int tid_aux, tid, ai, ret = 0;
1846
1847 pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
1848
1849 if (!pe) {
1850 /* Create new tcam entry */
1851 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1852 MVPP2_PE_LAST_FREE_TID);
1853 if (tid < 0)
1854 return tid;
1855
1856 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1857 if (!pe)
1858 return -ENOMEM;
1859
1860 /* Set ai value for new double vlan entry */
1861 ai = mvpp2_prs_double_vlan_ai_free_get(priv);
1862 if (ai < 0) {
1863 ret = ai;
1864 goto error;
1865 }
1866
1867 /* Get first single/triple vlan tid */
1868 for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
1869 tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
1870 unsigned int ri_bits;
1871
1872 if (!priv->prs_shadow[tid_aux].valid ||
1873 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1874 continue;
1875
1876 pe->index = tid_aux;
1877 mvpp2_prs_hw_read(priv, pe);
1878 ri_bits = mvpp2_prs_sram_ri_get(pe);
1879 ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1880 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1881 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1882 break;
1883 }
1884
1885 if (tid >= tid_aux) {
1886 ret = -ERANGE;
1887 goto error;
1888 }
1889
1890 memset(pe, 0, sizeof(struct mvpp2_prs_entry));
1891 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1892 pe->index = tid;
1893
1894 priv->prs_double_vlans[ai] = true;
1895
1896 mvpp2_prs_match_etype(pe, 0, tpid1);
1897 mvpp2_prs_match_etype(pe, 4, tpid2);
1898
1899 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
1900 /* Shift 8 bytes - skip 2 vlan tags */
1901 mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
1902 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1903 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
1904 MVPP2_PRS_RI_VLAN_MASK);
1905 mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
1906 MVPP2_PRS_SRAM_AI_MASK);
1907
1908 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1909 }
1910
1911 /* Update ports' mask */
1912 mvpp2_prs_tcam_port_map_set(pe, port_map);
1913 mvpp2_prs_hw_write(priv, pe);
1914
1915 error:
1916 kfree(pe);
1917 return ret;
1918 }
1919
1920 /* IPv4 header parsing for fragmentation and L4 offset */
1921 static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
1922 unsigned int ri, unsigned int ri_mask)
1923 {
1924 struct mvpp2_prs_entry pe;
1925 int tid;
1926
1927 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
1928 (proto != IPPROTO_IGMP))
1929 return -EINVAL;
1930
1931 /* Fragmented packet */
1932 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1933 MVPP2_PE_LAST_FREE_TID);
1934 if (tid < 0)
1935 return tid;
1936
1937 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1938 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1939 pe.index = tid;
1940
1941 /* Set next lu to IPv4 */
1942 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1943 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1944 /* Set L4 offset */
1945 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
1946 sizeof(struct iphdr) - 4,
1947 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1948 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
1949 MVPP2_PRS_IPV4_DIP_AI_BIT);
1950 mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK,
1951 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
1952
1953 mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
1954 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
1955 /* Unmask all ports */
1956 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1957
1958 /* Update shadow table and hw entry */
1959 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1960 mvpp2_prs_hw_write(priv, &pe);
1961
1962 /* Not fragmented packet */
1963 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1964 MVPP2_PE_LAST_FREE_TID);
1965 if (tid < 0)
1966 return tid;
1967
1968 pe.index = tid;
1969 /* Clear ri before updating */
1970 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1971 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1972 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
1973
1974 mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L);
1975 mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK);
1976
1977 /* Update shadow table and hw entry */
1978 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1979 mvpp2_prs_hw_write(priv, &pe);
1980
1981 return 0;
1982 }
1983
1984 /* IPv4 L3 multicast or broadcast */
1985 static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
1986 {
1987 struct mvpp2_prs_entry pe;
1988 int mask, tid;
1989
1990 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1991 MVPP2_PE_LAST_FREE_TID);
1992 if (tid < 0)
1993 return tid;
1994
1995 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1996 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1997 pe.index = tid;
1998
1999 switch (l3_cast) {
2000 case MVPP2_PRS_L3_MULTI_CAST:
2001 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
2002 MVPP2_PRS_IPV4_MC_MASK);
2003 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2004 MVPP2_PRS_RI_L3_ADDR_MASK);
2005 break;
2006 case MVPP2_PRS_L3_BROAD_CAST:
2007 mask = MVPP2_PRS_IPV4_BC_MASK;
2008 mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
2009 mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
2010 mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
2011 mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
2012 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
2013 MVPP2_PRS_RI_L3_ADDR_MASK);
2014 break;
2015 default:
2016 return -EINVAL;
2017 }
2018
2019 /* Finished: go to flowid generation */
2020 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2021 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2022
2023 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2024 MVPP2_PRS_IPV4_DIP_AI_BIT);
2025 /* Unmask all ports */
2026 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2027
2028 /* Update shadow table and hw entry */
2029 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2030 mvpp2_prs_hw_write(priv, &pe);
2031
2032 return 0;
2033 }
2034
2035 /* Set entries for protocols over IPv6 */
2036 static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
2037 unsigned int ri, unsigned int ri_mask)
2038 {
2039 struct mvpp2_prs_entry pe;
2040 int tid;
2041
2042 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
2043 (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
2044 return -EINVAL;
2045
2046 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2047 MVPP2_PE_LAST_FREE_TID);
2048 if (tid < 0)
2049 return tid;
2050
2051 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2052 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2053 pe.index = tid;
2054
2055 /* Finished: go to flowid generation */
2056 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2057 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2058 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
2059 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2060 sizeof(struct ipv6hdr) - 6,
2061 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2062
2063 mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
2064 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2065 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2066 /* Unmask all ports */
2067 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2068
2069 /* Write HW */
2070 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2071 mvpp2_prs_hw_write(priv, &pe);
2072
2073 return 0;
2074 }
2075
2076 /* IPv6 L3 multicast entry */
2077 static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
2078 {
2079 struct mvpp2_prs_entry pe;
2080 int tid;
2081
2082 if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
2083 return -EINVAL;
2084
2085 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2086 MVPP2_PE_LAST_FREE_TID);
2087 if (tid < 0)
2088 return tid;
2089
2090 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2091 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2092 pe.index = tid;
2093
2094 /* Finished: go to flowid generation */
2095 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2096 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2097 MVPP2_PRS_RI_L3_ADDR_MASK);
2098 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2099 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2100 /* Shift back to IPv6 NH */
2101 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2102
2103 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
2104 MVPP2_PRS_IPV6_MC_MASK);
2105 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2106 /* Unmask all ports */
2107 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2108
2109 /* Update shadow table and hw entry */
2110 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2111 mvpp2_prs_hw_write(priv, &pe);
2112
2113 return 0;
2114 }
2115
2116 /* Parser per-port initialization */
2117 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
2118 int lu_max, int offset)
2119 {
2120 u32 val;
2121
2122 /* Set lookup ID */
2123 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
2124 val &= ~MVPP2_PRS_PORT_LU_MASK(port);
2125 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
2126 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
2127
2128 /* Set maximum number of loops for packet received from port */
2129 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
2130 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
2131 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
2132 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
2133
2134 /* Set initial offset for packet header extraction for the first
2135 * searching loop
2136 */
2137 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
2138 val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
2139 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
2140 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
2141 }
2142
2143 /* Default flow entries initialization for all ports */
2144 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
2145 {
2146 struct mvpp2_prs_entry pe;
2147 int port;
2148
2149 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
2150 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2151 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2152 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
2153
2154 /* Mask all ports */
2155 mvpp2_prs_tcam_port_map_set(&pe, 0);
2156
2157 /* Set flow ID*/
2158 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
2159 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2160
2161 /* Update shadow table and hw entry */
2162 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
2163 mvpp2_prs_hw_write(priv, &pe);
2164 }
2165 }
2166
2167 /* Set default entry for Marvell Header field */
2168 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
2169 {
2170 struct mvpp2_prs_entry pe;
2171
2172 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2173
2174 pe.index = MVPP2_PE_MH_DEFAULT;
2175 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
2176 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
2177 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2178 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
2179
2180 /* Unmask all ports */
2181 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2182
2183 /* Update shadow table and hw entry */
2184 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
2185 mvpp2_prs_hw_write(priv, &pe);
2186 }
2187
2188 /* Set default entires (place holder) for promiscuous, non-promiscuous and
2189 * multicast MAC addresses
2190 */
2191 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
2192 {
2193 struct mvpp2_prs_entry pe;
2194
2195 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2196
2197 /* Non-promiscuous mode for all ports - DROP unknown packets */
2198 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
2199 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
2200
2201 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
2202 MVPP2_PRS_RI_DROP_MASK);
2203 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2204 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2205
2206 /* Unmask all ports */
2207 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2208
2209 /* Update shadow table and hw entry */
2210 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2211 mvpp2_prs_hw_write(priv, &pe);
2212
2213 /* place holders only - no ports */
2214 mvpp2_prs_mac_drop_all_set(priv, 0, false);
2215 mvpp2_prs_mac_promisc_set(priv, 0, false);
2216 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
2217 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
2218 }
2219
2220 /* Set default entries for various types of dsa packets */
2221 static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
2222 {
2223 struct mvpp2_prs_entry pe;
2224
2225 /* None tagged EDSA entry - place holder */
2226 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2227 MVPP2_PRS_EDSA);
2228
2229 /* Tagged EDSA entry - place holder */
2230 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2231
2232 /* None tagged DSA entry - place holder */
2233 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2234 MVPP2_PRS_DSA);
2235
2236 /* Tagged DSA entry - place holder */
2237 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2238
2239 /* None tagged EDSA ethertype entry - place holder*/
2240 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2241 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
2242
2243 /* Tagged EDSA ethertype entry - place holder*/
2244 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2245 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2246
2247 /* None tagged DSA ethertype entry */
2248 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2249 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
2250
2251 /* Tagged DSA ethertype entry */
2252 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2253 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2254
2255 /* Set default entry, in case DSA or EDSA tag not found */
2256 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2257 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
2258 pe.index = MVPP2_PE_DSA_DEFAULT;
2259 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2260
2261 /* Shift 0 bytes */
2262 mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2263 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2264
2265 /* Clear all sram ai bits for next iteration */
2266 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2267
2268 /* Unmask all ports */
2269 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2270
2271 mvpp2_prs_hw_write(priv, &pe);
2272 }
2273
2274 /* Match basic ethertypes */
2275 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2276 {
2277 struct mvpp2_prs_entry pe;
2278 int tid;
2279
2280 /* Ethertype: PPPoE */
2281 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2282 MVPP2_PE_LAST_FREE_TID);
2283 if (tid < 0)
2284 return tid;
2285
2286 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2287 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2288 pe.index = tid;
2289
2290 mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
2291
2292 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2293 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2294 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2295 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2296 MVPP2_PRS_RI_PPPOE_MASK);
2297
2298 /* Update shadow table and hw entry */
2299 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2300 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2301 priv->prs_shadow[pe.index].finish = false;
2302 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2303 MVPP2_PRS_RI_PPPOE_MASK);
2304 mvpp2_prs_hw_write(priv, &pe);
2305
2306 /* Ethertype: ARP */
2307 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2308 MVPP2_PE_LAST_FREE_TID);
2309 if (tid < 0)
2310 return tid;
2311
2312 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2313 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2314 pe.index = tid;
2315
2316 mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
2317
2318 /* Generate flow in the next iteration*/
2319 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2320 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2321 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2322 MVPP2_PRS_RI_L3_PROTO_MASK);
2323 /* Set L3 offset */
2324 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2325 MVPP2_ETH_TYPE_LEN,
2326 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2327
2328 /* Update shadow table and hw entry */
2329 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2330 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2331 priv->prs_shadow[pe.index].finish = true;
2332 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2333 MVPP2_PRS_RI_L3_PROTO_MASK);
2334 mvpp2_prs_hw_write(priv, &pe);
2335
2336 /* Ethertype: LBTD */
2337 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2338 MVPP2_PE_LAST_FREE_TID);
2339 if (tid < 0)
2340 return tid;
2341
2342 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2343 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2344 pe.index = tid;
2345
2346 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2347
2348 /* Generate flow in the next iteration*/
2349 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2350 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2351 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2352 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2353 MVPP2_PRS_RI_CPU_CODE_MASK |
2354 MVPP2_PRS_RI_UDF3_MASK);
2355 /* Set L3 offset */
2356 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2357 MVPP2_ETH_TYPE_LEN,
2358 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2359
2360 /* Update shadow table and hw entry */
2361 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2362 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2363 priv->prs_shadow[pe.index].finish = true;
2364 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2365 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2366 MVPP2_PRS_RI_CPU_CODE_MASK |
2367 MVPP2_PRS_RI_UDF3_MASK);
2368 mvpp2_prs_hw_write(priv, &pe);
2369
2370 /* Ethertype: IPv4 without options */
2371 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2372 MVPP2_PE_LAST_FREE_TID);
2373 if (tid < 0)
2374 return tid;
2375
2376 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2377 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2378 pe.index = tid;
2379
2380 mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
2381 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2382 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2383 MVPP2_PRS_IPV4_HEAD_MASK |
2384 MVPP2_PRS_IPV4_IHL_MASK);
2385
2386 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2387 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2388 MVPP2_PRS_RI_L3_PROTO_MASK);
2389 /* Skip eth_type + 4 bytes of IP header */
2390 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2391 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2392 /* Set L3 offset */
2393 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2394 MVPP2_ETH_TYPE_LEN,
2395 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2396
2397 /* Update shadow table and hw entry */
2398 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2399 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2400 priv->prs_shadow[pe.index].finish = false;
2401 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2402 MVPP2_PRS_RI_L3_PROTO_MASK);
2403 mvpp2_prs_hw_write(priv, &pe);
2404
2405 /* Ethertype: IPv4 with options */
2406 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2407 MVPP2_PE_LAST_FREE_TID);
2408 if (tid < 0)
2409 return tid;
2410
2411 pe.index = tid;
2412
2413 /* Clear tcam data before updating */
2414 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2415 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2416
2417 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2418 MVPP2_PRS_IPV4_HEAD,
2419 MVPP2_PRS_IPV4_HEAD_MASK);
2420
2421 /* Clear ri before updating */
2422 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2423 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2424 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2425 MVPP2_PRS_RI_L3_PROTO_MASK);
2426
2427 /* Update shadow table and hw entry */
2428 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2429 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2430 priv->prs_shadow[pe.index].finish = false;
2431 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2432 MVPP2_PRS_RI_L3_PROTO_MASK);
2433 mvpp2_prs_hw_write(priv, &pe);
2434
2435 /* Ethertype: IPv6 without options */
2436 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2437 MVPP2_PE_LAST_FREE_TID);
2438 if (tid < 0)
2439 return tid;
2440
2441 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2442 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2443 pe.index = tid;
2444
2445 mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
2446
2447 /* Skip DIP of IPV6 header */
2448 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2449 MVPP2_MAX_L3_ADDR_SIZE,
2450 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2451 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2452 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2453 MVPP2_PRS_RI_L3_PROTO_MASK);
2454 /* Set L3 offset */
2455 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2456 MVPP2_ETH_TYPE_LEN,
2457 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2458
2459 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2460 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2461 priv->prs_shadow[pe.index].finish = false;
2462 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2463 MVPP2_PRS_RI_L3_PROTO_MASK);
2464 mvpp2_prs_hw_write(priv, &pe);
2465
2466 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2467 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2468 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2469 pe.index = MVPP2_PE_ETH_TYPE_UN;
2470
2471 /* Unmask all ports */
2472 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2473
2474 /* Generate flow in the next iteration*/
2475 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2476 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2477 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2478 MVPP2_PRS_RI_L3_PROTO_MASK);
2479 /* Set L3 offset even it's unknown L3 */
2480 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2481 MVPP2_ETH_TYPE_LEN,
2482 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2483
2484 /* Update shadow table and hw entry */
2485 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2486 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2487 priv->prs_shadow[pe.index].finish = true;
2488 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2489 MVPP2_PRS_RI_L3_PROTO_MASK);
2490 mvpp2_prs_hw_write(priv, &pe);
2491
2492 return 0;
2493 }
2494
2495 /* Configure vlan entries and detect up to 2 successive VLAN tags.
2496 * Possible options:
2497 * 0x8100, 0x88A8
2498 * 0x8100, 0x8100
2499 * 0x8100
2500 * 0x88A8
2501 */
2502 static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
2503 {
2504 struct mvpp2_prs_entry pe;
2505 int err;
2506
2507 priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
2508 MVPP2_PRS_DBL_VLANS_MAX,
2509 GFP_KERNEL);
2510 if (!priv->prs_double_vlans)
2511 return -ENOMEM;
2512
2513 /* Double VLAN: 0x8100, 0x88A8 */
2514 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
2515 MVPP2_PRS_PORT_MASK);
2516 if (err)
2517 return err;
2518
2519 /* Double VLAN: 0x8100, 0x8100 */
2520 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
2521 MVPP2_PRS_PORT_MASK);
2522 if (err)
2523 return err;
2524
2525 /* Single VLAN: 0x88a8 */
2526 err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
2527 MVPP2_PRS_PORT_MASK);
2528 if (err)
2529 return err;
2530
2531 /* Single VLAN: 0x8100 */
2532 err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
2533 MVPP2_PRS_PORT_MASK);
2534 if (err)
2535 return err;
2536
2537 /* Set default double vlan entry */
2538 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2539 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2540 pe.index = MVPP2_PE_VLAN_DBL;
2541
2542 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2543 /* Clear ai for next iterations */
2544 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2545 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
2546 MVPP2_PRS_RI_VLAN_MASK);
2547
2548 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
2549 MVPP2_PRS_DBL_VLAN_AI_BIT);
2550 /* Unmask all ports */
2551 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2552
2553 /* Update shadow table and hw entry */
2554 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2555 mvpp2_prs_hw_write(priv, &pe);
2556
2557 /* Set default vlan none entry */
2558 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2559 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2560 pe.index = MVPP2_PE_VLAN_NONE;
2561
2562 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2563 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
2564 MVPP2_PRS_RI_VLAN_MASK);
2565
2566 /* Unmask all ports */
2567 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2568
2569 /* Update shadow table and hw entry */
2570 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2571 mvpp2_prs_hw_write(priv, &pe);
2572
2573 return 0;
2574 }
2575
2576 /* Set entries for PPPoE ethertype */
2577 static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
2578 {
2579 struct mvpp2_prs_entry pe;
2580 int tid;
2581
2582 /* IPv4 over PPPoE with options */
2583 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2584 MVPP2_PE_LAST_FREE_TID);
2585 if (tid < 0)
2586 return tid;
2587
2588 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2589 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2590 pe.index = tid;
2591
2592 mvpp2_prs_match_etype(&pe, 0, PPP_IP);
2593
2594 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2595 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2596 MVPP2_PRS_RI_L3_PROTO_MASK);
2597 /* Skip eth_type + 4 bytes of IP header */
2598 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2599 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2600 /* Set L3 offset */
2601 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2602 MVPP2_ETH_TYPE_LEN,
2603 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2604
2605 /* Update shadow table and hw entry */
2606 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2607 mvpp2_prs_hw_write(priv, &pe);
2608
2609 /* IPv4 over PPPoE without options */
2610 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2611 MVPP2_PE_LAST_FREE_TID);
2612 if (tid < 0)
2613 return tid;
2614
2615 pe.index = tid;
2616
2617 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2618 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2619 MVPP2_PRS_IPV4_HEAD_MASK |
2620 MVPP2_PRS_IPV4_IHL_MASK);
2621
2622 /* Clear ri before updating */
2623 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2624 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2625 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2626 MVPP2_PRS_RI_L3_PROTO_MASK);
2627
2628 /* Update shadow table and hw entry */
2629 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2630 mvpp2_prs_hw_write(priv, &pe);
2631
2632 /* IPv6 over PPPoE */
2633 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2634 MVPP2_PE_LAST_FREE_TID);
2635 if (tid < 0)
2636 return tid;
2637
2638 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2639 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2640 pe.index = tid;
2641
2642 mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
2643
2644 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2645 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2646 MVPP2_PRS_RI_L3_PROTO_MASK);
2647 /* Skip eth_type + 4 bytes of IPv6 header */
2648 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2649 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2650 /* Set L3 offset */
2651 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2652 MVPP2_ETH_TYPE_LEN,
2653 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2654
2655 /* Update shadow table and hw entry */
2656 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2657 mvpp2_prs_hw_write(priv, &pe);
2658
2659 /* Non-IP over PPPoE */
2660 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2661 MVPP2_PE_LAST_FREE_TID);
2662 if (tid < 0)
2663 return tid;
2664
2665 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2666 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2667 pe.index = tid;
2668
2669 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2670 MVPP2_PRS_RI_L3_PROTO_MASK);
2671
2672 /* Finished: go to flowid generation */
2673 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2674 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2675 /* Set L3 offset even if it's unknown L3 */
2676 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2677 MVPP2_ETH_TYPE_LEN,
2678 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2679
2680 /* Update shadow table and hw entry */
2681 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2682 mvpp2_prs_hw_write(priv, &pe);
2683
2684 return 0;
2685 }
2686
2687 /* Initialize entries for IPv4 */
2688 static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
2689 {
2690 struct mvpp2_prs_entry pe;
2691 int err;
2692
2693 /* Set entries for TCP, UDP and IGMP over IPv4 */
2694 err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
2695 MVPP2_PRS_RI_L4_PROTO_MASK);
2696 if (err)
2697 return err;
2698
2699 err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
2700 MVPP2_PRS_RI_L4_PROTO_MASK);
2701 if (err)
2702 return err;
2703
2704 err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
2705 MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2706 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2707 MVPP2_PRS_RI_CPU_CODE_MASK |
2708 MVPP2_PRS_RI_UDF3_MASK);
2709 if (err)
2710 return err;
2711
2712 /* IPv4 Broadcast */
2713 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
2714 if (err)
2715 return err;
2716
2717 /* IPv4 Multicast */
2718 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2719 if (err)
2720 return err;
2721
2722 /* Default IPv4 entry for unknown protocols */
2723 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2724 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2725 pe.index = MVPP2_PE_IP4_PROTO_UN;
2726
2727 /* Set next lu to IPv4 */
2728 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2729 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2730 /* Set L4 offset */
2731 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2732 sizeof(struct iphdr) - 4,
2733 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2734 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2735 MVPP2_PRS_IPV4_DIP_AI_BIT);
2736 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2737 MVPP2_PRS_RI_L4_PROTO_MASK);
2738
2739 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
2740 /* Unmask all ports */
2741 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2742
2743 /* Update shadow table and hw entry */
2744 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2745 mvpp2_prs_hw_write(priv, &pe);
2746
2747 /* Default IPv4 entry for unicast address */
2748 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2749 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2750 pe.index = MVPP2_PE_IP4_ADDR_UN;
2751
2752 /* Finished: go to flowid generation */
2753 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2754 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2755 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2756 MVPP2_PRS_RI_L3_ADDR_MASK);
2757
2758 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2759 MVPP2_PRS_IPV4_DIP_AI_BIT);
2760 /* Unmask all ports */
2761 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2762
2763 /* Update shadow table and hw entry */
2764 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2765 mvpp2_prs_hw_write(priv, &pe);
2766
2767 return 0;
2768 }
2769
2770 /* Initialize entries for IPv6 */
2771 static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
2772 {
2773 struct mvpp2_prs_entry pe;
2774 int tid, err;
2775
2776 /* Set entries for TCP, UDP and ICMP over IPv6 */
2777 err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
2778 MVPP2_PRS_RI_L4_TCP,
2779 MVPP2_PRS_RI_L4_PROTO_MASK);
2780 if (err)
2781 return err;
2782
2783 err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
2784 MVPP2_PRS_RI_L4_UDP,
2785 MVPP2_PRS_RI_L4_PROTO_MASK);
2786 if (err)
2787 return err;
2788
2789 err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
2790 MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2791 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2792 MVPP2_PRS_RI_CPU_CODE_MASK |
2793 MVPP2_PRS_RI_UDF3_MASK);
2794 if (err)
2795 return err;
2796
2797 /* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
2798 /* Result Info: UDF7=1, DS lite */
2799 err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
2800 MVPP2_PRS_RI_UDF7_IP6_LITE,
2801 MVPP2_PRS_RI_UDF7_MASK);
2802 if (err)
2803 return err;
2804
2805 /* IPv6 multicast */
2806 err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2807 if (err)
2808 return err;
2809
2810 /* Entry for checking hop limit */
2811 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2812 MVPP2_PE_LAST_FREE_TID);
2813 if (tid < 0)
2814 return tid;
2815
2816 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2817 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2818 pe.index = tid;
2819
2820 /* Finished: go to flowid generation */
2821 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2822 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2823 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
2824 MVPP2_PRS_RI_DROP_MASK,
2825 MVPP2_PRS_RI_L3_PROTO_MASK |
2826 MVPP2_PRS_RI_DROP_MASK);
2827
2828 mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
2829 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2830 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2831
2832 /* Update shadow table and hw entry */
2833 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2834 mvpp2_prs_hw_write(priv, &pe);
2835
2836 /* Default IPv6 entry for unknown protocols */
2837 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2838 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2839 pe.index = MVPP2_PE_IP6_PROTO_UN;
2840
2841 /* Finished: go to flowid generation */
2842 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2843 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2844 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2845 MVPP2_PRS_RI_L4_PROTO_MASK);
2846 /* Set L4 offset relatively to our current place */
2847 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2848 sizeof(struct ipv6hdr) - 4,
2849 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2850
2851 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2852 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2853 /* Unmask all ports */
2854 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2855
2856 /* Update shadow table and hw entry */
2857 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2858 mvpp2_prs_hw_write(priv, &pe);
2859
2860 /* Default IPv6 entry for unknown ext protocols */
2861 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2862 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2863 pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
2864
2865 /* Finished: go to flowid generation */
2866 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2867 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2868 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2869 MVPP2_PRS_RI_L4_PROTO_MASK);
2870
2871 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
2872 MVPP2_PRS_IPV6_EXT_AI_BIT);
2873 /* Unmask all ports */
2874 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2875
2876 /* Update shadow table and hw entry */
2877 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2878 mvpp2_prs_hw_write(priv, &pe);
2879
2880 /* Default IPv6 entry for unicast address */
2881 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2882 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2883 pe.index = MVPP2_PE_IP6_ADDR_UN;
2884
2885 /* Finished: go to IPv6 again */
2886 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2887 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2888 MVPP2_PRS_RI_L3_ADDR_MASK);
2889 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2890 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2891 /* Shift back to IPV6 NH */
2892 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2893
2894 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2895 /* Unmask all ports */
2896 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2897
2898 /* Update shadow table and hw entry */
2899 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2900 mvpp2_prs_hw_write(priv, &pe);
2901
2902 return 0;
2903 }
2904
2905 /* Parser default initialization */
2906 static int mvpp2_prs_default_init(struct platform_device *pdev,
2907 struct mvpp2 *priv)
2908 {
2909 int err, index, i;
2910
2911 /* Enable tcam table */
2912 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2913
2914 /* Clear all tcam and sram entries */
2915 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2916 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2917 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2918 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2919
2920 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2921 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2922 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2923 }
2924
2925 /* Invalidate all tcam entries */
2926 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2927 mvpp2_prs_hw_inv(priv, index);
2928
2929 priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2930 sizeof(struct mvpp2_prs_shadow),
2931 GFP_KERNEL);
2932 if (!priv->prs_shadow)
2933 return -ENOMEM;
2934
2935 /* Always start from lookup = 0 */
2936 for (index = 0; index < MVPP2_MAX_PORTS; index++)
2937 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2938 MVPP2_PRS_PORT_LU_MAX, 0);
2939
2940 mvpp2_prs_def_flow_init(priv);
2941
2942 mvpp2_prs_mh_init(priv);
2943
2944 mvpp2_prs_mac_init(priv);
2945
2946 mvpp2_prs_dsa_init(priv);
2947
2948 err = mvpp2_prs_etype_init(priv);
2949 if (err)
2950 return err;
2951
2952 err = mvpp2_prs_vlan_init(pdev, priv);
2953 if (err)
2954 return err;
2955
2956 err = mvpp2_prs_pppoe_init(priv);
2957 if (err)
2958 return err;
2959
2960 err = mvpp2_prs_ip6_init(priv);
2961 if (err)
2962 return err;
2963
2964 err = mvpp2_prs_ip4_init(priv);
2965 if (err)
2966 return err;
2967
2968 return 0;
2969 }
2970
2971 /* Compare MAC DA with tcam entry data */
2972 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2973 const u8 *da, unsigned char *mask)
2974 {
2975 unsigned char tcam_byte, tcam_mask;
2976 int index;
2977
2978 for (index = 0; index < ETH_ALEN; index++) {
2979 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2980 if (tcam_mask != mask[index])
2981 return false;
2982
2983 if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2984 return false;
2985 }
2986
2987 return true;
2988 }
2989
2990 /* Find tcam entry with matched pair <MAC DA, port> */
2991 static struct mvpp2_prs_entry *
2992 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2993 unsigned char *mask, int udf_type)
2994 {
2995 struct mvpp2_prs_entry *pe;
2996 int tid;
2997
2998 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2999 if (!pe)
3000 return NULL;
3001 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3002
3003 /* Go through the all entires with MVPP2_PRS_LU_MAC */
3004 for (tid = MVPP2_PE_FIRST_FREE_TID;
3005 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3006 unsigned int entry_pmap;
3007
3008 if (!priv->prs_shadow[tid].valid ||
3009 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3010 (priv->prs_shadow[tid].udf != udf_type))
3011 continue;
3012
3013 pe->index = tid;
3014 mvpp2_prs_hw_read(priv, pe);
3015 entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
3016
3017 if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
3018 entry_pmap == pmap)
3019 return pe;
3020 }
3021 kfree(pe);
3022
3023 return NULL;
3024 }
3025
3026 /* Update parser's mac da entry */
3027 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
3028 const u8 *da, bool add)
3029 {
3030 struct mvpp2_prs_entry *pe;
3031 unsigned int pmap, len, ri;
3032 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3033 int tid;
3034
3035 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
3036 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
3037 MVPP2_PRS_UDF_MAC_DEF);
3038
3039 /* No such entry */
3040 if (!pe) {
3041 if (!add)
3042 return 0;
3043
3044 /* Create new TCAM entry */
3045 /* Find first range mac entry*/
3046 for (tid = MVPP2_PE_FIRST_FREE_TID;
3047 tid <= MVPP2_PE_LAST_FREE_TID; tid++)
3048 if (priv->prs_shadow[tid].valid &&
3049 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
3050 (priv->prs_shadow[tid].udf ==
3051 MVPP2_PRS_UDF_MAC_RANGE))
3052 break;
3053
3054 /* Go through the all entries from first to last */
3055 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3056 tid - 1);
3057 if (tid < 0)
3058 return tid;
3059
3060 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3061 if (!pe)
3062 return -ENOMEM;
3063 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3064 pe->index = tid;
3065
3066 /* Mask all ports */
3067 mvpp2_prs_tcam_port_map_set(pe, 0);
3068 }
3069
3070 /* Update port mask */
3071 mvpp2_prs_tcam_port_set(pe, port, add);
3072
3073 /* Invalidate the entry if no ports are left enabled */
3074 pmap = mvpp2_prs_tcam_port_map_get(pe);
3075 if (pmap == 0) {
3076 if (add) {
3077 kfree(pe);
3078 return -EINVAL;
3079 }
3080 mvpp2_prs_hw_inv(priv, pe->index);
3081 priv->prs_shadow[pe->index].valid = false;
3082 kfree(pe);
3083 return 0;
3084 }
3085
3086 /* Continue - set next lookup */
3087 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
3088
3089 /* Set match on DA */
3090 len = ETH_ALEN;
3091 while (len--)
3092 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
3093
3094 /* Set result info bits */
3095 if (is_broadcast_ether_addr(da))
3096 ri = MVPP2_PRS_RI_L2_BCAST;
3097 else if (is_multicast_ether_addr(da))
3098 ri = MVPP2_PRS_RI_L2_MCAST;
3099 else
3100 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
3101
3102 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3103 MVPP2_PRS_RI_MAC_ME_MASK);
3104 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3105 MVPP2_PRS_RI_MAC_ME_MASK);
3106
3107 /* Shift to ethertype */
3108 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
3109 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3110
3111 /* Update shadow table and hw entry */
3112 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
3113 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
3114 mvpp2_prs_hw_write(priv, pe);
3115
3116 kfree(pe);
3117
3118 return 0;
3119 }
3120
3121 static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
3122 {
3123 struct mvpp2_port *port = netdev_priv(dev);
3124 int err;
3125
3126 /* Remove old parser entry */
3127 err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
3128 false);
3129 if (err)
3130 return err;
3131
3132 /* Add new parser entry */
3133 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
3134 if (err)
3135 return err;
3136
3137 /* Set addr in the device */
3138 ether_addr_copy(dev->dev_addr, da);
3139
3140 return 0;
3141 }
3142
3143 /* Delete all port's multicast simple (not range) entries */
3144 static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
3145 {
3146 struct mvpp2_prs_entry pe;
3147 int index, tid;
3148
3149 for (tid = MVPP2_PE_FIRST_FREE_TID;
3150 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3151 unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
3152
3153 if (!priv->prs_shadow[tid].valid ||
3154 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3155 (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
3156 continue;
3157
3158 /* Only simple mac entries */
3159 pe.index = tid;
3160 mvpp2_prs_hw_read(priv, &pe);
3161
3162 /* Read mac addr from entry */
3163 for (index = 0; index < ETH_ALEN; index++)
3164 mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
3165 &da_mask[index]);
3166
3167 if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
3168 /* Delete this entry */
3169 mvpp2_prs_mac_da_accept(priv, port, da, false);
3170 }
3171 }
3172
3173 static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
3174 {
3175 switch (type) {
3176 case MVPP2_TAG_TYPE_EDSA:
3177 /* Add port to EDSA entries */
3178 mvpp2_prs_dsa_tag_set(priv, port, true,
3179 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3180 mvpp2_prs_dsa_tag_set(priv, port, true,
3181 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3182 /* Remove port from DSA entries */
3183 mvpp2_prs_dsa_tag_set(priv, port, false,
3184 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3185 mvpp2_prs_dsa_tag_set(priv, port, false,
3186 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3187 break;
3188
3189 case MVPP2_TAG_TYPE_DSA:
3190 /* Add port to DSA entries */
3191 mvpp2_prs_dsa_tag_set(priv, port, true,
3192 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3193 mvpp2_prs_dsa_tag_set(priv, port, true,
3194 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3195 /* Remove port from EDSA entries */
3196 mvpp2_prs_dsa_tag_set(priv, port, false,
3197 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3198 mvpp2_prs_dsa_tag_set(priv, port, false,
3199 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3200 break;
3201
3202 case MVPP2_TAG_TYPE_MH:
3203 case MVPP2_TAG_TYPE_NONE:
3204 /* Remove port form EDSA and DSA entries */
3205 mvpp2_prs_dsa_tag_set(priv, port, false,
3206 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3207 mvpp2_prs_dsa_tag_set(priv, port, false,
3208 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3209 mvpp2_prs_dsa_tag_set(priv, port, false,
3210 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3211 mvpp2_prs_dsa_tag_set(priv, port, false,
3212 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3213 break;
3214
3215 default:
3216 if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
3217 return -EINVAL;
3218 }
3219
3220 return 0;
3221 }
3222
3223 /* Set prs flow for the port */
3224 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
3225 {
3226 struct mvpp2_prs_entry *pe;
3227 int tid;
3228
3229 pe = mvpp2_prs_flow_find(port->priv, port->id);
3230
3231 /* Such entry not exist */
3232 if (!pe) {
3233 /* Go through the all entires from last to first */
3234 tid = mvpp2_prs_tcam_first_free(port->priv,
3235 MVPP2_PE_LAST_FREE_TID,
3236 MVPP2_PE_FIRST_FREE_TID);
3237 if (tid < 0)
3238 return tid;
3239
3240 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3241 if (!pe)
3242 return -ENOMEM;
3243
3244 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
3245 pe->index = tid;
3246
3247 /* Set flow ID*/
3248 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
3249 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
3250
3251 /* Update shadow table */
3252 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
3253 }
3254
3255 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
3256 mvpp2_prs_hw_write(port->priv, pe);
3257 kfree(pe);
3258
3259 return 0;
3260 }
3261
3262 /* Classifier configuration routines */
3263
3264 /* Update classification flow table registers */
3265 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
3266 struct mvpp2_cls_flow_entry *fe)
3267 {
3268 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
3269 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
3270 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
3271 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
3272 }
3273
3274 /* Update classification lookup table register */
3275 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
3276 struct mvpp2_cls_lookup_entry *le)
3277 {
3278 u32 val;
3279
3280 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
3281 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
3282 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
3283 }
3284
3285 /* Classifier default initialization */
3286 static void mvpp2_cls_init(struct mvpp2 *priv)
3287 {
3288 struct mvpp2_cls_lookup_entry le;
3289 struct mvpp2_cls_flow_entry fe;
3290 int index;
3291
3292 /* Enable classifier */
3293 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
3294
3295 /* Clear classifier flow table */
3296 memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
3297 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
3298 fe.index = index;
3299 mvpp2_cls_flow_write(priv, &fe);
3300 }
3301
3302 /* Clear classifier lookup table */
3303 le.data = 0;
3304 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
3305 le.lkpid = index;
3306 le.way = 0;
3307 mvpp2_cls_lookup_write(priv, &le);
3308
3309 le.way = 1;
3310 mvpp2_cls_lookup_write(priv, &le);
3311 }
3312 }
3313
3314 static void mvpp2_cls_port_config(struct mvpp2_port *port)
3315 {
3316 struct mvpp2_cls_lookup_entry le;
3317 u32 val;
3318
3319 /* Set way for the port */
3320 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
3321 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
3322 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
3323
3324 /* Pick the entry to be accessed in lookup ID decoding table
3325 * according to the way and lkpid.
3326 */
3327 le.lkpid = port->id;
3328 le.way = 0;
3329 le.data = 0;
3330
3331 /* Set initial CPU queue for receiving packets */
3332 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
3333 le.data |= port->first_rxq;
3334
3335 /* Disable classification engines */
3336 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
3337
3338 /* Update lookup ID table entry */
3339 mvpp2_cls_lookup_write(port->priv, &le);
3340 }
3341
3342 /* Set CPU queue number for oversize packets */
3343 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
3344 {
3345 u32 val;
3346
3347 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
3348 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
3349
3350 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
3351 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
3352
3353 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
3354 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
3355 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
3356 }
3357
3358 /* Buffer Manager configuration routines */
3359
3360 /* Create pool */
3361 static int mvpp2_bm_pool_create(struct platform_device *pdev,
3362 struct mvpp2 *priv,
3363 struct mvpp2_bm_pool *bm_pool, int size)
3364 {
3365 int size_bytes;
3366 u32 val;
3367
3368 size_bytes = sizeof(u32) * size;
3369 bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, size_bytes,
3370 &bm_pool->phys_addr,
3371 GFP_KERNEL);
3372 if (!bm_pool->virt_addr)
3373 return -ENOMEM;
3374
3375 if (!IS_ALIGNED((u32)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) {
3376 dma_free_coherent(&pdev->dev, size_bytes, bm_pool->virt_addr,
3377 bm_pool->phys_addr);
3378 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
3379 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
3380 return -ENOMEM;
3381 }
3382
3383 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
3384 bm_pool->phys_addr);
3385 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
3386
3387 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3388 val |= MVPP2_BM_START_MASK;
3389 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3390
3391 bm_pool->type = MVPP2_BM_FREE;
3392 bm_pool->size = size;
3393 bm_pool->pkt_size = 0;
3394 bm_pool->buf_num = 0;
3395 atomic_set(&bm_pool->in_use, 0);
3396
3397 return 0;
3398 }
3399
3400 /* Set pool buffer size */
3401 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
3402 struct mvpp2_bm_pool *bm_pool,
3403 int buf_size)
3404 {
3405 u32 val;
3406
3407 bm_pool->buf_size = buf_size;
3408
3409 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
3410 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
3411 }
3412
3413 /* Free all buffers from the pool */
3414 static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
3415 struct mvpp2_bm_pool *bm_pool)
3416 {
3417 int i;
3418
3419 for (i = 0; i < bm_pool->buf_num; i++) {
3420 dma_addr_t buf_phys_addr;
3421 u32 vaddr;
3422
3423 /* Get buffer virtual address (indirect access) */
3424 buf_phys_addr = mvpp2_read(priv,
3425 MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
3426 vaddr = mvpp2_read(priv, MVPP2_BM_VIRT_ALLOC_REG);
3427
3428 dma_unmap_single(dev, buf_phys_addr,
3429 bm_pool->buf_size, DMA_FROM_DEVICE);
3430
3431 if (!vaddr)
3432 break;
3433 dev_kfree_skb_any((struct sk_buff *)vaddr);
3434 }
3435
3436 /* Update BM driver with number of buffers removed from pool */
3437 bm_pool->buf_num -= i;
3438 }
3439
3440 /* Cleanup pool */
3441 static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
3442 struct mvpp2 *priv,
3443 struct mvpp2_bm_pool *bm_pool)
3444 {
3445 u32 val;
3446
3447 mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool);
3448 if (bm_pool->buf_num) {
3449 WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
3450 return 0;
3451 }
3452
3453 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3454 val |= MVPP2_BM_STOP_MASK;
3455 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3456
3457 dma_free_coherent(&pdev->dev, sizeof(u32) * bm_pool->size,
3458 bm_pool->virt_addr,
3459 bm_pool->phys_addr);
3460 return 0;
3461 }
3462
3463 static int mvpp2_bm_pools_init(struct platform_device *pdev,
3464 struct mvpp2 *priv)
3465 {
3466 int i, err, size;
3467 struct mvpp2_bm_pool *bm_pool;
3468
3469 /* Create all pools with maximum size */
3470 size = MVPP2_BM_POOL_SIZE_MAX;
3471 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3472 bm_pool = &priv->bm_pools[i];
3473 bm_pool->id = i;
3474 err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
3475 if (err)
3476 goto err_unroll_pools;
3477 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
3478 }
3479 return 0;
3480
3481 err_unroll_pools:
3482 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
3483 for (i = i - 1; i >= 0; i--)
3484 mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
3485 return err;
3486 }
3487
3488 static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
3489 {
3490 int i, err;
3491
3492 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3493 /* Mask BM all interrupts */
3494 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
3495 /* Clear BM cause register */
3496 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
3497 }
3498
3499 /* Allocate and initialize BM pools */
3500 priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
3501 sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
3502 if (!priv->bm_pools)
3503 return -ENOMEM;
3504
3505 err = mvpp2_bm_pools_init(pdev, priv);
3506 if (err < 0)
3507 return err;
3508 return 0;
3509 }
3510
3511 /* Attach long pool to rxq */
3512 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
3513 int lrxq, int long_pool)
3514 {
3515 u32 val;
3516 int prxq;
3517
3518 /* Get queue physical ID */
3519 prxq = port->rxqs[lrxq]->id;
3520
3521 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3522 val &= ~MVPP2_RXQ_POOL_LONG_MASK;
3523 val |= ((long_pool << MVPP2_RXQ_POOL_LONG_OFFS) &
3524 MVPP2_RXQ_POOL_LONG_MASK);
3525
3526 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3527 }
3528
3529 /* Attach short pool to rxq */
3530 static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
3531 int lrxq, int short_pool)
3532 {
3533 u32 val;
3534 int prxq;
3535
3536 /* Get queue physical ID */
3537 prxq = port->rxqs[lrxq]->id;
3538
3539 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3540 val &= ~MVPP2_RXQ_POOL_SHORT_MASK;
3541 val |= ((short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) &
3542 MVPP2_RXQ_POOL_SHORT_MASK);
3543
3544 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3545 }
3546
3547 /* Allocate skb for BM pool */
3548 static struct sk_buff *mvpp2_skb_alloc(struct mvpp2_port *port,
3549 struct mvpp2_bm_pool *bm_pool,
3550 dma_addr_t *buf_phys_addr,
3551 gfp_t gfp_mask)
3552 {
3553 struct sk_buff *skb;
3554 dma_addr_t phys_addr;
3555
3556 skb = __dev_alloc_skb(bm_pool->pkt_size, gfp_mask);
3557 if (!skb)
3558 return NULL;
3559
3560 phys_addr = dma_map_single(port->dev->dev.parent, skb->head,
3561 MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
3562 DMA_FROM_DEVICE);
3563 if (unlikely(dma_mapping_error(port->dev->dev.parent, phys_addr))) {
3564 dev_kfree_skb_any(skb);
3565 return NULL;
3566 }
3567 *buf_phys_addr = phys_addr;
3568
3569 return skb;
3570 }
3571
3572 /* Set pool number in a BM cookie */
3573 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
3574 {
3575 u32 bm;
3576
3577 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
3578 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
3579
3580 return bm;
3581 }
3582
3583 /* Get pool number from a BM cookie */
3584 static inline int mvpp2_bm_cookie_pool_get(u32 cookie)
3585 {
3586 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
3587 }
3588
3589 /* Release buffer to BM */
3590 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
3591 u32 buf_phys_addr, u32 buf_virt_addr)
3592 {
3593 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_virt_addr);
3594 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_phys_addr);
3595 }
3596
3597 /* Release multicast buffer */
3598 static void mvpp2_bm_pool_mc_put(struct mvpp2_port *port, int pool,
3599 u32 buf_phys_addr, u32 buf_virt_addr,
3600 int mc_id)
3601 {
3602 u32 val = 0;
3603
3604 val |= (mc_id & MVPP2_BM_MC_ID_MASK);
3605 mvpp2_write(port->priv, MVPP2_BM_MC_RLS_REG, val);
3606
3607 mvpp2_bm_pool_put(port, pool,
3608 buf_phys_addr | MVPP2_BM_PHY_RLS_MC_BUFF_MASK,
3609 buf_virt_addr);
3610 }
3611
3612 /* Refill BM pool */
3613 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
3614 u32 phys_addr, u32 cookie)
3615 {
3616 int pool = mvpp2_bm_cookie_pool_get(bm);
3617
3618 mvpp2_bm_pool_put(port, pool, phys_addr, cookie);
3619 }
3620
3621 /* Allocate buffers for the pool */
3622 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
3623 struct mvpp2_bm_pool *bm_pool, int buf_num)
3624 {
3625 struct sk_buff *skb;
3626 int i, buf_size, total_size;
3627 u32 bm;
3628 dma_addr_t phys_addr;
3629
3630 buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
3631 total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
3632
3633 if (buf_num < 0 ||
3634 (buf_num + bm_pool->buf_num > bm_pool->size)) {
3635 netdev_err(port->dev,
3636 "cannot allocate %d buffers for pool %d\n",
3637 buf_num, bm_pool->id);
3638 return 0;
3639 }
3640
3641 bm = mvpp2_bm_cookie_pool_set(0, bm_pool->id);
3642 for (i = 0; i < buf_num; i++) {
3643 skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_KERNEL);
3644 if (!skb)
3645 break;
3646
3647 mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
3648 }
3649
3650 /* Update BM driver with number of buffers added to pool */
3651 bm_pool->buf_num += i;
3652 bm_pool->in_use_thresh = bm_pool->buf_num / 4;
3653
3654 netdev_dbg(port->dev,
3655 "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
3656 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3657 bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
3658
3659 netdev_dbg(port->dev,
3660 "%s pool %d: %d of %d buffers added\n",
3661 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3662 bm_pool->id, i, buf_num);
3663 return i;
3664 }
3665
3666 /* Notify the driver that BM pool is being used as specific type and return the
3667 * pool pointer on success
3668 */
3669 static struct mvpp2_bm_pool *
3670 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
3671 int pkt_size)
3672 {
3673 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
3674 int num;
3675
3676 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
3677 netdev_err(port->dev, "mixing pool types is forbidden\n");
3678 return NULL;
3679 }
3680
3681 if (new_pool->type == MVPP2_BM_FREE)
3682 new_pool->type = type;
3683
3684 /* Allocate buffers in case BM pool is used as long pool, but packet
3685 * size doesn't match MTU or BM pool hasn't being used yet
3686 */
3687 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
3688 (new_pool->pkt_size == 0)) {
3689 int pkts_num;
3690
3691 /* Set default buffer number or free all the buffers in case
3692 * the pool is not empty
3693 */
3694 pkts_num = new_pool->buf_num;
3695 if (pkts_num == 0)
3696 pkts_num = type == MVPP2_BM_SWF_LONG ?
3697 MVPP2_BM_LONG_BUF_NUM :
3698 MVPP2_BM_SHORT_BUF_NUM;
3699 else
3700 mvpp2_bm_bufs_free(port->dev->dev.parent,
3701 port->priv, new_pool);
3702
3703 new_pool->pkt_size = pkt_size;
3704
3705 /* Allocate buffers for this pool */
3706 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
3707 if (num != pkts_num) {
3708 WARN(1, "pool %d: %d of %d allocated\n",
3709 new_pool->id, num, pkts_num);
3710 return NULL;
3711 }
3712 }
3713
3714 mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
3715 MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
3716
3717 return new_pool;
3718 }
3719
3720 /* Initialize pools for swf */
3721 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
3722 {
3723 int rxq;
3724
3725 if (!port->pool_long) {
3726 port->pool_long =
3727 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
3728 MVPP2_BM_SWF_LONG,
3729 port->pkt_size);
3730 if (!port->pool_long)
3731 return -ENOMEM;
3732
3733 port->pool_long->port_map |= (1 << port->id);
3734
3735 for (rxq = 0; rxq < rxq_number; rxq++)
3736 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
3737 }
3738
3739 if (!port->pool_short) {
3740 port->pool_short =
3741 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
3742 MVPP2_BM_SWF_SHORT,
3743 MVPP2_BM_SHORT_PKT_SIZE);
3744 if (!port->pool_short)
3745 return -ENOMEM;
3746
3747 port->pool_short->port_map |= (1 << port->id);
3748
3749 for (rxq = 0; rxq < rxq_number; rxq++)
3750 mvpp2_rxq_short_pool_set(port, rxq,
3751 port->pool_short->id);
3752 }
3753
3754 return 0;
3755 }
3756
3757 static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
3758 {
3759 struct mvpp2_port *port = netdev_priv(dev);
3760 struct mvpp2_bm_pool *port_pool = port->pool_long;
3761 int num, pkts_num = port_pool->buf_num;
3762 int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
3763
3764 /* Update BM pool with new buffer size */
3765 mvpp2_bm_bufs_free(dev->dev.parent, port->priv, port_pool);
3766 if (port_pool->buf_num) {
3767 WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
3768 return -EIO;
3769 }
3770
3771 port_pool->pkt_size = pkt_size;
3772 num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
3773 if (num != pkts_num) {
3774 WARN(1, "pool %d: %d of %d allocated\n",
3775 port_pool->id, num, pkts_num);
3776 return -EIO;
3777 }
3778
3779 mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
3780 MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
3781 dev->mtu = mtu;
3782 netdev_update_features(dev);
3783 return 0;
3784 }
3785
3786 static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
3787 {
3788 int cpu, cpu_mask = 0;
3789
3790 for_each_present_cpu(cpu)
3791 cpu_mask |= 1 << cpu;
3792 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3793 MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask));
3794 }
3795
3796 static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
3797 {
3798 int cpu, cpu_mask = 0;
3799
3800 for_each_present_cpu(cpu)
3801 cpu_mask |= 1 << cpu;
3802 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3803 MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask));
3804 }
3805
3806 /* Mask the current CPU's Rx/Tx interrupts */
3807 static void mvpp2_interrupts_mask(void *arg)
3808 {
3809 struct mvpp2_port *port = arg;
3810
3811 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
3812 }
3813
3814 /* Unmask the current CPU's Rx/Tx interrupts */
3815 static void mvpp2_interrupts_unmask(void *arg)
3816 {
3817 struct mvpp2_port *port = arg;
3818
3819 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id),
3820 (MVPP2_CAUSE_MISC_SUM_MASK |
3821 MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK));
3822 }
3823
3824 /* Port configuration routines */
3825
3826 static void mvpp2_port_mii_set(struct mvpp2_port *port)
3827 {
3828 u32 val;
3829
3830 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3831
3832 switch (port->phy_interface) {
3833 case PHY_INTERFACE_MODE_SGMII:
3834 val |= MVPP2_GMAC_INBAND_AN_MASK;
3835 break;
3836 case PHY_INTERFACE_MODE_RGMII:
3837 val |= MVPP2_GMAC_PORT_RGMII_MASK;
3838 default:
3839 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3840 }
3841
3842 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3843 }
3844
3845 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
3846 {
3847 u32 val;
3848
3849 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3850 val |= MVPP2_GMAC_FC_ADV_EN;
3851 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3852 }
3853
3854 static void mvpp2_port_enable(struct mvpp2_port *port)
3855 {
3856 u32 val;
3857
3858 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3859 val |= MVPP2_GMAC_PORT_EN_MASK;
3860 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
3861 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3862 }
3863
3864 static void mvpp2_port_disable(struct mvpp2_port *port)
3865 {
3866 u32 val;
3867
3868 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3869 val &= ~(MVPP2_GMAC_PORT_EN_MASK);
3870 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3871 }
3872
3873 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
3874 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
3875 {
3876 u32 val;
3877
3878 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
3879 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3880 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3881 }
3882
3883 /* Configure loopback port */
3884 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
3885 {
3886 u32 val;
3887
3888 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3889
3890 if (port->speed == 1000)
3891 val |= MVPP2_GMAC_GMII_LB_EN_MASK;
3892 else
3893 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
3894
3895 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
3896 val |= MVPP2_GMAC_PCS_LB_EN_MASK;
3897 else
3898 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
3899
3900 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3901 }
3902
3903 static void mvpp2_port_reset(struct mvpp2_port *port)
3904 {
3905 u32 val;
3906
3907 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3908 ~MVPP2_GMAC_PORT_RESET_MASK;
3909 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3910
3911 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3912 MVPP2_GMAC_PORT_RESET_MASK)
3913 continue;
3914 }
3915
3916 /* Change maximum receive size of the port */
3917 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
3918 {
3919 u32 val;
3920
3921 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3922 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3923 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
3924 MVPP2_GMAC_MAX_RX_SIZE_OFFS);
3925 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3926 }
3927
3928 /* Set defaults to the MVPP2 port */
3929 static void mvpp2_defaults_set(struct mvpp2_port *port)
3930 {
3931 int tx_port_num, val, queue, ptxq, lrxq;
3932
3933 /* Configure port to loopback if needed */
3934 if (port->flags & MVPP2_F_LOOPBACK)
3935 mvpp2_port_loopback_set(port);
3936
3937 /* Update TX FIFO MIN Threshold */
3938 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3939 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3940 /* Min. TX threshold must be less than minimal packet length */
3941 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3942 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3943
3944 /* Disable Legacy WRR, Disable EJP, Release from reset */
3945 tx_port_num = mvpp2_egress_port(port);
3946 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3947 tx_port_num);
3948 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3949
3950 /* Close bandwidth for all queues */
3951 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3952 ptxq = mvpp2_txq_phys(port->id, queue);
3953 mvpp2_write(port->priv,
3954 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3955 }
3956
3957 /* Set refill period to 1 usec, refill tokens
3958 * and bucket size to maximum
3959 */
3960 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
3961 port->priv->tclk / USEC_PER_SEC);
3962 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3963 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3964 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3965 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3966 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3967 val = MVPP2_TXP_TOKEN_SIZE_MAX;
3968 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3969
3970 /* Set MaximumLowLatencyPacketSize value to 256 */
3971 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3972 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3973 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3974
3975 /* Enable Rx cache snoop */
3976 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3977 queue = port->rxqs[lrxq]->id;
3978 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3979 val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3980 MVPP2_SNOOP_BUF_HDR_MASK;
3981 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3982 }
3983
3984 /* At default, mask all interrupts to all present cpus */
3985 mvpp2_interrupts_disable(port);
3986 }
3987
3988 /* Enable/disable receiving packets */
3989 static void mvpp2_ingress_enable(struct mvpp2_port *port)
3990 {
3991 u32 val;
3992 int lrxq, queue;
3993
3994 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3995 queue = port->rxqs[lrxq]->id;
3996 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3997 val &= ~MVPP2_RXQ_DISABLE_MASK;
3998 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3999 }
4000 }
4001
4002 static void mvpp2_ingress_disable(struct mvpp2_port *port)
4003 {
4004 u32 val;
4005 int lrxq, queue;
4006
4007 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
4008 queue = port->rxqs[lrxq]->id;
4009 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
4010 val |= MVPP2_RXQ_DISABLE_MASK;
4011 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4012 }
4013 }
4014
4015 /* Enable transmit via physical egress queue
4016 * - HW starts take descriptors from DRAM
4017 */
4018 static void mvpp2_egress_enable(struct mvpp2_port *port)
4019 {
4020 u32 qmap;
4021 int queue;
4022 int tx_port_num = mvpp2_egress_port(port);
4023
4024 /* Enable all initialized TXs. */
4025 qmap = 0;
4026 for (queue = 0; queue < txq_number; queue++) {
4027 struct mvpp2_tx_queue *txq = port->txqs[queue];
4028
4029 if (txq->descs != NULL)
4030 qmap |= (1 << queue);
4031 }
4032
4033 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4034 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
4035 }
4036
4037 /* Disable transmit via physical egress queue
4038 * - HW doesn't take descriptors from DRAM
4039 */
4040 static void mvpp2_egress_disable(struct mvpp2_port *port)
4041 {
4042 u32 reg_data;
4043 int delay;
4044 int tx_port_num = mvpp2_egress_port(port);
4045
4046 /* Issue stop command for active channels only */
4047 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4048 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
4049 MVPP2_TXP_SCHED_ENQ_MASK;
4050 if (reg_data != 0)
4051 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
4052 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
4053
4054 /* Wait for all Tx activity to terminate. */
4055 delay = 0;
4056 do {
4057 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
4058 netdev_warn(port->dev,
4059 "Tx stop timed out, status=0x%08x\n",
4060 reg_data);
4061 break;
4062 }
4063 mdelay(1);
4064 delay++;
4065
4066 /* Check port TX Command register that all
4067 * Tx queues are stopped
4068 */
4069 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
4070 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
4071 }
4072
4073 /* Rx descriptors helper methods */
4074
4075 /* Get number of Rx descriptors occupied by received packets */
4076 static inline int
4077 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
4078 {
4079 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
4080
4081 return val & MVPP2_RXQ_OCCUPIED_MASK;
4082 }
4083
4084 /* Update Rx queue status with the number of occupied and available
4085 * Rx descriptor slots.
4086 */
4087 static inline void
4088 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
4089 int used_count, int free_count)
4090 {
4091 /* Decrement the number of used descriptors and increment count
4092 * increment the number of free descriptors.
4093 */
4094 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
4095
4096 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
4097 }
4098
4099 /* Get pointer to next RX descriptor to be processed by SW */
4100 static inline struct mvpp2_rx_desc *
4101 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
4102 {
4103 int rx_desc = rxq->next_desc_to_proc;
4104
4105 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
4106 prefetch(rxq->descs + rxq->next_desc_to_proc);
4107 return rxq->descs + rx_desc;
4108 }
4109
4110 /* Set rx queue offset */
4111 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
4112 int prxq, int offset)
4113 {
4114 u32 val;
4115
4116 /* Convert offset from bytes to units of 32 bytes */
4117 offset = offset >> 5;
4118
4119 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
4120 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
4121
4122 /* Offset is in */
4123 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
4124 MVPP2_RXQ_PACKET_OFFSET_MASK);
4125
4126 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
4127 }
4128
4129 /* Obtain BM cookie information from descriptor */
4130 static u32 mvpp2_bm_cookie_build(struct mvpp2_rx_desc *rx_desc)
4131 {
4132 int pool = (rx_desc->status & MVPP2_RXD_BM_POOL_ID_MASK) >>
4133 MVPP2_RXD_BM_POOL_ID_OFFS;
4134 int cpu = smp_processor_id();
4135
4136 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
4137 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
4138 }
4139
4140 /* Tx descriptors helper methods */
4141
4142 /* Get number of Tx descriptors waiting to be transmitted by HW */
4143 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
4144 struct mvpp2_tx_queue *txq)
4145 {
4146 u32 val;
4147
4148 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4149 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4150
4151 return val & MVPP2_TXQ_PENDING_MASK;
4152 }
4153
4154 /* Get pointer to next Tx descriptor to be processed (send) by HW */
4155 static struct mvpp2_tx_desc *
4156 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
4157 {
4158 int tx_desc = txq->next_desc_to_proc;
4159
4160 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
4161 return txq->descs + tx_desc;
4162 }
4163
4164 /* Update HW with number of aggregated Tx descriptors to be sent */
4165 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
4166 {
4167 /* aggregated access - relevant TXQ number is written in TX desc */
4168 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
4169 }
4170
4171
4172 /* Check if there are enough free descriptors in aggregated txq.
4173 * If not, update the number of occupied descriptors and repeat the check.
4174 */
4175 static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
4176 struct mvpp2_tx_queue *aggr_txq, int num)
4177 {
4178 if ((aggr_txq->count + num) > aggr_txq->size) {
4179 /* Update number of occupied aggregated Tx descriptors */
4180 int cpu = smp_processor_id();
4181 u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));
4182
4183 aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
4184 }
4185
4186 if ((aggr_txq->count + num) > aggr_txq->size)
4187 return -ENOMEM;
4188
4189 return 0;
4190 }
4191
4192 /* Reserved Tx descriptors allocation request */
4193 static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
4194 struct mvpp2_tx_queue *txq, int num)
4195 {
4196 u32 val;
4197
4198 val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
4199 mvpp2_write(priv, MVPP2_TXQ_RSVD_REQ_REG, val);
4200
4201 val = mvpp2_read(priv, MVPP2_TXQ_RSVD_RSLT_REG);
4202
4203 return val & MVPP2_TXQ_RSVD_RSLT_MASK;
4204 }
4205
4206 /* Check if there are enough reserved descriptors for transmission.
4207 * If not, request chunk of reserved descriptors and check again.
4208 */
4209 static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
4210 struct mvpp2_tx_queue *txq,
4211 struct mvpp2_txq_pcpu *txq_pcpu,
4212 int num)
4213 {
4214 int req, cpu, desc_count;
4215
4216 if (txq_pcpu->reserved_num >= num)
4217 return 0;
4218
4219 /* Not enough descriptors reserved! Update the reserved descriptor
4220 * count and check again.
4221 */
4222
4223 desc_count = 0;
4224 /* Compute total of used descriptors */
4225 for_each_present_cpu(cpu) {
4226 struct mvpp2_txq_pcpu *txq_pcpu_aux;
4227
4228 txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
4229 desc_count += txq_pcpu_aux->count;
4230 desc_count += txq_pcpu_aux->reserved_num;
4231 }
4232
4233 req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
4234 desc_count += req;
4235
4236 if (desc_count >
4237 (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
4238 return -ENOMEM;
4239
4240 txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
4241
4242 /* OK, the descriptor cound has been updated: check again. */
4243 if (txq_pcpu->reserved_num < num)
4244 return -ENOMEM;
4245 return 0;
4246 }
4247
4248 /* Release the last allocated Tx descriptor. Useful to handle DMA
4249 * mapping failures in the Tx path.
4250 */
4251 static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
4252 {
4253 if (txq->next_desc_to_proc == 0)
4254 txq->next_desc_to_proc = txq->last_desc - 1;
4255 else
4256 txq->next_desc_to_proc--;
4257 }
4258
4259 /* Set Tx descriptors fields relevant for CSUM calculation */
4260 static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
4261 int ip_hdr_len, int l4_proto)
4262 {
4263 u32 command;
4264
4265 /* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
4266 * G_L4_chk, L4_type required only for checksum calculation
4267 */
4268 command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
4269 command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
4270 command |= MVPP2_TXD_IP_CSUM_DISABLE;
4271
4272 if (l3_proto == swab16(ETH_P_IP)) {
4273 command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */
4274 command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */
4275 } else {
4276 command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */
4277 }
4278
4279 if (l4_proto == IPPROTO_TCP) {
4280 command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */
4281 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
4282 } else if (l4_proto == IPPROTO_UDP) {
4283 command |= MVPP2_TXD_L4_UDP; /* enable UDP */
4284 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
4285 } else {
4286 command |= MVPP2_TXD_L4_CSUM_NOT;
4287 }
4288
4289 return command;
4290 }
4291
4292 /* Get number of sent descriptors and decrement counter.
4293 * The number of sent descriptors is returned.
4294 * Per-CPU access
4295 */
4296 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
4297 struct mvpp2_tx_queue *txq)
4298 {
4299 u32 val;
4300
4301 /* Reading status reg resets transmitted descriptor counter */
4302 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
4303
4304 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
4305 MVPP2_TRANSMITTED_COUNT_OFFSET;
4306 }
4307
4308 static void mvpp2_txq_sent_counter_clear(void *arg)
4309 {
4310 struct mvpp2_port *port = arg;
4311 int queue;
4312
4313 for (queue = 0; queue < txq_number; queue++) {
4314 int id = port->txqs[queue]->id;
4315
4316 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
4317 }
4318 }
4319
4320 /* Set max sizes for Tx queues */
4321 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
4322 {
4323 u32 val, size, mtu;
4324 int txq, tx_port_num;
4325
4326 mtu = port->pkt_size * 8;
4327 if (mtu > MVPP2_TXP_MTU_MAX)
4328 mtu = MVPP2_TXP_MTU_MAX;
4329
4330 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
4331 mtu = 3 * mtu;
4332
4333 /* Indirect access to registers */
4334 tx_port_num = mvpp2_egress_port(port);
4335 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4336
4337 /* Set MTU */
4338 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
4339 val &= ~MVPP2_TXP_MTU_MAX;
4340 val |= mtu;
4341 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4342
4343 /* TXP token size and all TXQs token size must be larger that MTU */
4344 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4345 size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4346 if (size < mtu) {
4347 size = mtu;
4348 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4349 val |= size;
4350 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4351 }
4352
4353 for (txq = 0; txq < txq_number; txq++) {
4354 val = mvpp2_read(port->priv,
4355 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4356 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4357
4358 if (size < mtu) {
4359 size = mtu;
4360 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4361 val |= size;
4362 mvpp2_write(port->priv,
4363 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4364 val);
4365 }
4366 }
4367 }
4368
4369 /* Set the number of packets that will be received before Rx interrupt
4370 * will be generated by HW.
4371 */
4372 static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
4373 struct mvpp2_rx_queue *rxq, u32 pkts)
4374 {
4375 u32 val;
4376
4377 val = (pkts & MVPP2_OCCUPIED_THRESH_MASK);
4378 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4379 mvpp2_write(port->priv, MVPP2_RXQ_THRESH_REG, val);
4380
4381 rxq->pkts_coal = pkts;
4382 }
4383
4384 /* Set the time delay in usec before Rx interrupt */
4385 static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
4386 struct mvpp2_rx_queue *rxq, u32 usec)
4387 {
4388 u32 val;
4389
4390 val = (port->priv->tclk / USEC_PER_SEC) * usec;
4391 mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
4392
4393 rxq->time_coal = usec;
4394 }
4395
4396 /* Free Tx queue skbuffs */
4397 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4398 struct mvpp2_tx_queue *txq,
4399 struct mvpp2_txq_pcpu *txq_pcpu, int num)
4400 {
4401 int i;
4402
4403 for (i = 0; i < num; i++) {
4404 dma_addr_t buf_phys_addr =
4405 txq_pcpu->tx_buffs[txq_pcpu->txq_get_index];
4406 struct sk_buff *skb = txq_pcpu->tx_skb[txq_pcpu->txq_get_index];
4407
4408 mvpp2_txq_inc_get(txq_pcpu);
4409
4410 dma_unmap_single(port->dev->dev.parent, buf_phys_addr,
4411 skb_headlen(skb), DMA_TO_DEVICE);
4412 if (!skb)
4413 continue;
4414 dev_kfree_skb_any(skb);
4415 }
4416 }
4417
4418 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4419 u32 cause)
4420 {
4421 int queue = fls(cause) - 1;
4422
4423 return port->rxqs[queue];
4424 }
4425
4426 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4427 u32 cause)
4428 {
4429 int queue = fls(cause) - 1;
4430
4431 return port->txqs[queue];
4432 }
4433
4434 /* Handle end of transmission */
4435 static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
4436 struct mvpp2_txq_pcpu *txq_pcpu)
4437 {
4438 struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
4439 int tx_done;
4440
4441 if (txq_pcpu->cpu != smp_processor_id())
4442 netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
4443
4444 tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4445 if (!tx_done)
4446 return;
4447 mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
4448
4449 txq_pcpu->count -= tx_done;
4450
4451 if (netif_tx_queue_stopped(nq))
4452 if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1)
4453 netif_tx_wake_queue(nq);
4454 }
4455
4456 static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause)
4457 {
4458 struct mvpp2_tx_queue *txq;
4459 struct mvpp2_txq_pcpu *txq_pcpu;
4460 unsigned int tx_todo = 0;
4461
4462 while (cause) {
4463 txq = mvpp2_get_tx_queue(port, cause);
4464 if (!txq)
4465 break;
4466
4467 txq_pcpu = this_cpu_ptr(txq->pcpu);
4468
4469 if (txq_pcpu->count) {
4470 mvpp2_txq_done(port, txq, txq_pcpu);
4471 tx_todo += txq_pcpu->count;
4472 }
4473
4474 cause &= ~(1 << txq->log_id);
4475 }
4476 return tx_todo;
4477 }
4478
4479 /* Rx/Tx queue initialization/cleanup methods */
4480
4481 /* Allocate and initialize descriptors for aggr TXQ */
4482 static int mvpp2_aggr_txq_init(struct platform_device *pdev,
4483 struct mvpp2_tx_queue *aggr_txq,
4484 int desc_num, int cpu,
4485 struct mvpp2 *priv)
4486 {
4487 /* Allocate memory for TX descriptors */
4488 aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
4489 desc_num * MVPP2_DESC_ALIGNED_SIZE,
4490 &aggr_txq->descs_phys, GFP_KERNEL);
4491 if (!aggr_txq->descs)
4492 return -ENOMEM;
4493
4494 aggr_txq->last_desc = aggr_txq->size - 1;
4495
4496 /* Aggr TXQ no reset WA */
4497 aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4498 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4499
4500 /* Set Tx descriptors queue starting address */
4501 /* indirect access */
4502 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu),
4503 aggr_txq->descs_phys);
4504 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4505
4506 return 0;
4507 }
4508
4509 /* Create a specified Rx queue */
4510 static int mvpp2_rxq_init(struct mvpp2_port *port,
4511 struct mvpp2_rx_queue *rxq)
4512
4513 {
4514 rxq->size = port->rx_ring_size;
4515
4516 /* Allocate memory for RX descriptors */
4517 rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
4518 rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4519 &rxq->descs_phys, GFP_KERNEL);
4520 if (!rxq->descs)
4521 return -ENOMEM;
4522
4523 rxq->last_desc = rxq->size - 1;
4524
4525 /* Zero occupied and non-occupied counters - direct access */
4526 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4527
4528 /* Set Rx descriptors queue starting address - indirect access */
4529 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4530 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq->descs_phys);
4531 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4532 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4533
4534 /* Set Offset */
4535 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4536
4537 /* Set coalescing pkts and time */
4538 mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
4539 mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
4540
4541 /* Add number of descriptors ready for receiving packets */
4542 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4543
4544 return 0;
4545 }
4546
4547 /* Push packets received by the RXQ to BM pool */
4548 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4549 struct mvpp2_rx_queue *rxq)
4550 {
4551 int rx_received, i;
4552
4553 rx_received = mvpp2_rxq_received(port, rxq->id);
4554 if (!rx_received)
4555 return;
4556
4557 for (i = 0; i < rx_received; i++) {
4558 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4559 u32 bm = mvpp2_bm_cookie_build(rx_desc);
4560
4561 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
4562 rx_desc->buf_cookie);
4563 }
4564 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4565 }
4566
4567 /* Cleanup Rx queue */
4568 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4569 struct mvpp2_rx_queue *rxq)
4570 {
4571 mvpp2_rxq_drop_pkts(port, rxq);
4572
4573 if (rxq->descs)
4574 dma_free_coherent(port->dev->dev.parent,
4575 rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4576 rxq->descs,
4577 rxq->descs_phys);
4578
4579 rxq->descs = NULL;
4580 rxq->last_desc = 0;
4581 rxq->next_desc_to_proc = 0;
4582 rxq->descs_phys = 0;
4583
4584 /* Clear Rx descriptors queue starting address and size;
4585 * free descriptor number
4586 */
4587 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4588 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4589 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4590 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4591 }
4592
4593 /* Create and initialize a Tx queue */
4594 static int mvpp2_txq_init(struct mvpp2_port *port,
4595 struct mvpp2_tx_queue *txq)
4596 {
4597 u32 val;
4598 int cpu, desc, desc_per_txq, tx_port_num;
4599 struct mvpp2_txq_pcpu *txq_pcpu;
4600
4601 txq->size = port->tx_ring_size;
4602
4603 /* Allocate memory for Tx descriptors */
4604 txq->descs = dma_alloc_coherent(port->dev->dev.parent,
4605 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4606 &txq->descs_phys, GFP_KERNEL);
4607 if (!txq->descs)
4608 return -ENOMEM;
4609
4610 txq->last_desc = txq->size - 1;
4611
4612 /* Set Tx descriptors queue starting address - indirect access */
4613 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4614 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_phys);
4615 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4616 MVPP2_TXQ_DESC_SIZE_MASK);
4617 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4618 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4619 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4620 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4621 val &= ~MVPP2_TXQ_PENDING_MASK;
4622 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4623
4624 /* Calculate base address in prefetch buffer. We reserve 16 descriptors
4625 * for each existing TXQ.
4626 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4627 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4628 */
4629 desc_per_txq = 16;
4630 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4631 (txq->log_id * desc_per_txq);
4632
4633 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4634 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4635 MVPP2_PREF_BUF_THRESH(desc_per_txq/2));
4636
4637 /* WRR / EJP configuration - indirect access */
4638 tx_port_num = mvpp2_egress_port(port);
4639 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4640
4641 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4642 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4643 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4644 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4645 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4646
4647 val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4648 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4649 val);
4650
4651 for_each_present_cpu(cpu) {
4652 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4653 txq_pcpu->size = txq->size;
4654 txq_pcpu->tx_skb = kmalloc(txq_pcpu->size *
4655 sizeof(*txq_pcpu->tx_skb),
4656 GFP_KERNEL);
4657 if (!txq_pcpu->tx_skb)
4658 goto error;
4659
4660 txq_pcpu->tx_buffs = kmalloc(txq_pcpu->size *
4661 sizeof(dma_addr_t), GFP_KERNEL);
4662 if (!txq_pcpu->tx_buffs)
4663 goto error;
4664
4665 txq_pcpu->count = 0;
4666 txq_pcpu->reserved_num = 0;
4667 txq_pcpu->txq_put_index = 0;
4668 txq_pcpu->txq_get_index = 0;
4669 }
4670
4671 return 0;
4672
4673 error:
4674 for_each_present_cpu(cpu) {
4675 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4676 kfree(txq_pcpu->tx_skb);
4677 kfree(txq_pcpu->tx_buffs);
4678 }
4679
4680 dma_free_coherent(port->dev->dev.parent,
4681 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4682 txq->descs, txq->descs_phys);
4683
4684 return -ENOMEM;
4685 }
4686
4687 /* Free allocated TXQ resources */
4688 static void mvpp2_txq_deinit(struct mvpp2_port *port,
4689 struct mvpp2_tx_queue *txq)
4690 {
4691 struct mvpp2_txq_pcpu *txq_pcpu;
4692 int cpu;
4693
4694 for_each_present_cpu(cpu) {
4695 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4696 kfree(txq_pcpu->tx_skb);
4697 kfree(txq_pcpu->tx_buffs);
4698 }
4699
4700 if (txq->descs)
4701 dma_free_coherent(port->dev->dev.parent,
4702 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4703 txq->descs, txq->descs_phys);
4704
4705 txq->descs = NULL;
4706 txq->last_desc = 0;
4707 txq->next_desc_to_proc = 0;
4708 txq->descs_phys = 0;
4709
4710 /* Set minimum bandwidth for disabled TXQs */
4711 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4712
4713 /* Set Tx descriptors queue starting address and size */
4714 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4715 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4716 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4717 }
4718
4719 /* Cleanup Tx ports */
4720 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4721 {
4722 struct mvpp2_txq_pcpu *txq_pcpu;
4723 int delay, pending, cpu;
4724 u32 val;
4725
4726 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4727 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4728 val |= MVPP2_TXQ_DRAIN_EN_MASK;
4729 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4730
4731 /* The napi queue has been stopped so wait for all packets
4732 * to be transmitted.
4733 */
4734 delay = 0;
4735 do {
4736 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4737 netdev_warn(port->dev,
4738 "port %d: cleaning queue %d timed out\n",
4739 port->id, txq->log_id);
4740 break;
4741 }
4742 mdelay(1);
4743 delay++;
4744
4745 pending = mvpp2_txq_pend_desc_num_get(port, txq);
4746 } while (pending);
4747
4748 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4749 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4750
4751 for_each_present_cpu(cpu) {
4752 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4753
4754 /* Release all packets */
4755 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4756
4757 /* Reset queue */
4758 txq_pcpu->count = 0;
4759 txq_pcpu->txq_put_index = 0;
4760 txq_pcpu->txq_get_index = 0;
4761 }
4762 }
4763
4764 /* Cleanup all Tx queues */
4765 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4766 {
4767 struct mvpp2_tx_queue *txq;
4768 int queue;
4769 u32 val;
4770
4771 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4772
4773 /* Reset Tx ports and delete Tx queues */
4774 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4775 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4776
4777 for (queue = 0; queue < txq_number; queue++) {
4778 txq = port->txqs[queue];
4779 mvpp2_txq_clean(port, txq);
4780 mvpp2_txq_deinit(port, txq);
4781 }
4782
4783 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4784
4785 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4786 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4787 }
4788
4789 /* Cleanup all Rx queues */
4790 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4791 {
4792 int queue;
4793
4794 for (queue = 0; queue < rxq_number; queue++)
4795 mvpp2_rxq_deinit(port, port->rxqs[queue]);
4796 }
4797
4798 /* Init all Rx queues for port */
4799 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4800 {
4801 int queue, err;
4802
4803 for (queue = 0; queue < rxq_number; queue++) {
4804 err = mvpp2_rxq_init(port, port->rxqs[queue]);
4805 if (err)
4806 goto err_cleanup;
4807 }
4808 return 0;
4809
4810 err_cleanup:
4811 mvpp2_cleanup_rxqs(port);
4812 return err;
4813 }
4814
4815 /* Init all tx queues for port */
4816 static int mvpp2_setup_txqs(struct mvpp2_port *port)
4817 {
4818 struct mvpp2_tx_queue *txq;
4819 int queue, err;
4820
4821 for (queue = 0; queue < txq_number; queue++) {
4822 txq = port->txqs[queue];
4823 err = mvpp2_txq_init(port, txq);
4824 if (err)
4825 goto err_cleanup;
4826 }
4827
4828 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4829 return 0;
4830
4831 err_cleanup:
4832 mvpp2_cleanup_txqs(port);
4833 return err;
4834 }
4835
4836 /* The callback for per-port interrupt */
4837 static irqreturn_t mvpp2_isr(int irq, void *dev_id)
4838 {
4839 struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
4840
4841 mvpp2_interrupts_disable(port);
4842
4843 napi_schedule(&port->napi);
4844
4845 return IRQ_HANDLED;
4846 }
4847
4848 /* Adjust link */
4849 static void mvpp2_link_event(struct net_device *dev)
4850 {
4851 struct mvpp2_port *port = netdev_priv(dev);
4852 struct phy_device *phydev = dev->phydev;
4853 int status_change = 0;
4854 u32 val;
4855
4856 if (phydev->link) {
4857 if ((port->speed != phydev->speed) ||
4858 (port->duplex != phydev->duplex)) {
4859 u32 val;
4860
4861 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4862 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4863 MVPP2_GMAC_CONFIG_GMII_SPEED |
4864 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4865 MVPP2_GMAC_AN_SPEED_EN |
4866 MVPP2_GMAC_AN_DUPLEX_EN);
4867
4868 if (phydev->duplex)
4869 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4870
4871 if (phydev->speed == SPEED_1000)
4872 val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4873 else if (phydev->speed == SPEED_100)
4874 val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4875
4876 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4877
4878 port->duplex = phydev->duplex;
4879 port->speed = phydev->speed;
4880 }
4881 }
4882
4883 if (phydev->link != port->link) {
4884 if (!phydev->link) {
4885 port->duplex = -1;
4886 port->speed = 0;
4887 }
4888
4889 port->link = phydev->link;
4890 status_change = 1;
4891 }
4892
4893 if (status_change) {
4894 if (phydev->link) {
4895 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4896 val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4897 MVPP2_GMAC_FORCE_LINK_DOWN);
4898 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4899 mvpp2_egress_enable(port);
4900 mvpp2_ingress_enable(port);
4901 } else {
4902 mvpp2_ingress_disable(port);
4903 mvpp2_egress_disable(port);
4904 }
4905 phy_print_status(phydev);
4906 }
4907 }
4908
4909 static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
4910 {
4911 ktime_t interval;
4912
4913 if (!port_pcpu->timer_scheduled) {
4914 port_pcpu->timer_scheduled = true;
4915 interval = ktime_set(0, MVPP2_TXDONE_HRTIMER_PERIOD_NS);
4916 hrtimer_start(&port_pcpu->tx_done_timer, interval,
4917 HRTIMER_MODE_REL_PINNED);
4918 }
4919 }
4920
4921 static void mvpp2_tx_proc_cb(unsigned long data)
4922 {
4923 struct net_device *dev = (struct net_device *)data;
4924 struct mvpp2_port *port = netdev_priv(dev);
4925 struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
4926 unsigned int tx_todo, cause;
4927
4928 if (!netif_running(dev))
4929 return;
4930 port_pcpu->timer_scheduled = false;
4931
4932 /* Process all the Tx queues */
4933 cause = (1 << txq_number) - 1;
4934 tx_todo = mvpp2_tx_done(port, cause);
4935
4936 /* Set the timer in case not all the packets were processed */
4937 if (tx_todo)
4938 mvpp2_timer_set(port_pcpu);
4939 }
4940
4941 static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
4942 {
4943 struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
4944 struct mvpp2_port_pcpu,
4945 tx_done_timer);
4946
4947 tasklet_schedule(&port_pcpu->tx_done_tasklet);
4948
4949 return HRTIMER_NORESTART;
4950 }
4951
4952 /* Main RX/TX processing routines */
4953
4954 /* Display more error info */
4955 static void mvpp2_rx_error(struct mvpp2_port *port,
4956 struct mvpp2_rx_desc *rx_desc)
4957 {
4958 u32 status = rx_desc->status;
4959
4960 switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4961 case MVPP2_RXD_ERR_CRC:
4962 netdev_err(port->dev, "bad rx status %08x (crc error), size=%d\n",
4963 status, rx_desc->data_size);
4964 break;
4965 case MVPP2_RXD_ERR_OVERRUN:
4966 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%d\n",
4967 status, rx_desc->data_size);
4968 break;
4969 case MVPP2_RXD_ERR_RESOURCE:
4970 netdev_err(port->dev, "bad rx status %08x (resource error), size=%d\n",
4971 status, rx_desc->data_size);
4972 break;
4973 }
4974 }
4975
4976 /* Handle RX checksum offload */
4977 static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
4978 struct sk_buff *skb)
4979 {
4980 if (((status & MVPP2_RXD_L3_IP4) &&
4981 !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
4982 (status & MVPP2_RXD_L3_IP6))
4983 if (((status & MVPP2_RXD_L4_UDP) ||
4984 (status & MVPP2_RXD_L4_TCP)) &&
4985 (status & MVPP2_RXD_L4_CSUM_OK)) {
4986 skb->csum = 0;
4987 skb->ip_summed = CHECKSUM_UNNECESSARY;
4988 return;
4989 }
4990
4991 skb->ip_summed = CHECKSUM_NONE;
4992 }
4993
4994 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
4995 static int mvpp2_rx_refill(struct mvpp2_port *port,
4996 struct mvpp2_bm_pool *bm_pool,
4997 u32 bm, int is_recycle)
4998 {
4999 struct sk_buff *skb;
5000 dma_addr_t phys_addr;
5001
5002 if (is_recycle &&
5003 (atomic_read(&bm_pool->in_use) < bm_pool->in_use_thresh))
5004 return 0;
5005
5006 /* No recycle or too many buffers are in use, so allocate a new skb */
5007 skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_ATOMIC);
5008 if (!skb)
5009 return -ENOMEM;
5010
5011 mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
5012 atomic_dec(&bm_pool->in_use);
5013 return 0;
5014 }
5015
5016 /* Handle tx checksum */
5017 static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
5018 {
5019 if (skb->ip_summed == CHECKSUM_PARTIAL) {
5020 int ip_hdr_len = 0;
5021 u8 l4_proto;
5022
5023 if (skb->protocol == htons(ETH_P_IP)) {
5024 struct iphdr *ip4h = ip_hdr(skb);
5025
5026 /* Calculate IPv4 checksum and L4 checksum */
5027 ip_hdr_len = ip4h->ihl;
5028 l4_proto = ip4h->protocol;
5029 } else if (skb->protocol == htons(ETH_P_IPV6)) {
5030 struct ipv6hdr *ip6h = ipv6_hdr(skb);
5031
5032 /* Read l4_protocol from one of IPv6 extra headers */
5033 if (skb_network_header_len(skb) > 0)
5034 ip_hdr_len = (skb_network_header_len(skb) >> 2);
5035 l4_proto = ip6h->nexthdr;
5036 } else {
5037 return MVPP2_TXD_L4_CSUM_NOT;
5038 }
5039
5040 return mvpp2_txq_desc_csum(skb_network_offset(skb),
5041 skb->protocol, ip_hdr_len, l4_proto);
5042 }
5043
5044 return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
5045 }
5046
5047 static void mvpp2_buff_hdr_rx(struct mvpp2_port *port,
5048 struct mvpp2_rx_desc *rx_desc)
5049 {
5050 struct mvpp2_buff_hdr *buff_hdr;
5051 struct sk_buff *skb;
5052 u32 rx_status = rx_desc->status;
5053 u32 buff_phys_addr;
5054 u32 buff_virt_addr;
5055 u32 buff_phys_addr_next;
5056 u32 buff_virt_addr_next;
5057 int mc_id;
5058 int pool_id;
5059
5060 pool_id = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
5061 MVPP2_RXD_BM_POOL_ID_OFFS;
5062 buff_phys_addr = rx_desc->buf_phys_addr;
5063 buff_virt_addr = rx_desc->buf_cookie;
5064
5065 do {
5066 skb = (struct sk_buff *)buff_virt_addr;
5067 buff_hdr = (struct mvpp2_buff_hdr *)skb->head;
5068
5069 mc_id = MVPP2_B_HDR_INFO_MC_ID(buff_hdr->info);
5070
5071 buff_phys_addr_next = buff_hdr->next_buff_phys_addr;
5072 buff_virt_addr_next = buff_hdr->next_buff_virt_addr;
5073
5074 /* Release buffer */
5075 mvpp2_bm_pool_mc_put(port, pool_id, buff_phys_addr,
5076 buff_virt_addr, mc_id);
5077
5078 buff_phys_addr = buff_phys_addr_next;
5079 buff_virt_addr = buff_virt_addr_next;
5080
5081 } while (!MVPP2_B_HDR_INFO_IS_LAST(buff_hdr->info));
5082 }
5083
5084 /* Main rx processing */
5085 static int mvpp2_rx(struct mvpp2_port *port, int rx_todo,
5086 struct mvpp2_rx_queue *rxq)
5087 {
5088 struct net_device *dev = port->dev;
5089 int rx_received;
5090 int rx_done = 0;
5091 u32 rcvd_pkts = 0;
5092 u32 rcvd_bytes = 0;
5093
5094 /* Get number of received packets and clamp the to-do */
5095 rx_received = mvpp2_rxq_received(port, rxq->id);
5096 if (rx_todo > rx_received)
5097 rx_todo = rx_received;
5098
5099 while (rx_done < rx_todo) {
5100 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
5101 struct mvpp2_bm_pool *bm_pool;
5102 struct sk_buff *skb;
5103 dma_addr_t phys_addr;
5104 u32 bm, rx_status;
5105 int pool, rx_bytes, err;
5106
5107 rx_done++;
5108 rx_status = rx_desc->status;
5109 rx_bytes = rx_desc->data_size - MVPP2_MH_SIZE;
5110 phys_addr = rx_desc->buf_phys_addr;
5111
5112 bm = mvpp2_bm_cookie_build(rx_desc);
5113 pool = mvpp2_bm_cookie_pool_get(bm);
5114 bm_pool = &port->priv->bm_pools[pool];
5115 /* Check if buffer header is used */
5116 if (rx_status & MVPP2_RXD_BUF_HDR) {
5117 mvpp2_buff_hdr_rx(port, rx_desc);
5118 continue;
5119 }
5120
5121 /* In case of an error, release the requested buffer pointer
5122 * to the Buffer Manager. This request process is controlled
5123 * by the hardware, and the information about the buffer is
5124 * comprised by the RX descriptor.
5125 */
5126 if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5127 err_drop_frame:
5128 dev->stats.rx_errors++;
5129 mvpp2_rx_error(port, rx_desc);
5130 /* Return the buffer to the pool */
5131 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
5132 rx_desc->buf_cookie);
5133 continue;
5134 }
5135
5136 skb = (struct sk_buff *)rx_desc->buf_cookie;
5137
5138 err = mvpp2_rx_refill(port, bm_pool, bm, 0);
5139 if (err) {
5140 netdev_err(port->dev, "failed to refill BM pools\n");
5141 goto err_drop_frame;
5142 }
5143
5144 dma_unmap_single(dev->dev.parent, phys_addr,
5145 bm_pool->buf_size, DMA_FROM_DEVICE);
5146
5147 rcvd_pkts++;
5148 rcvd_bytes += rx_bytes;
5149 atomic_inc(&bm_pool->in_use);
5150
5151 skb_reserve(skb, MVPP2_MH_SIZE);
5152 skb_put(skb, rx_bytes);
5153 skb->protocol = eth_type_trans(skb, dev);
5154 mvpp2_rx_csum(port, rx_status, skb);
5155
5156 napi_gro_receive(&port->napi, skb);
5157 }
5158
5159 if (rcvd_pkts) {
5160 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5161
5162 u64_stats_update_begin(&stats->syncp);
5163 stats->rx_packets += rcvd_pkts;
5164 stats->rx_bytes += rcvd_bytes;
5165 u64_stats_update_end(&stats->syncp);
5166 }
5167
5168 /* Update Rx queue management counters */
5169 wmb();
5170 mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
5171
5172 return rx_todo;
5173 }
5174
5175 static inline void
5176 tx_desc_unmap_put(struct device *dev, struct mvpp2_tx_queue *txq,
5177 struct mvpp2_tx_desc *desc)
5178 {
5179 dma_unmap_single(dev, desc->buf_phys_addr,
5180 desc->data_size, DMA_TO_DEVICE);
5181 mvpp2_txq_desc_put(txq);
5182 }
5183
5184 /* Handle tx fragmentation processing */
5185 static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
5186 struct mvpp2_tx_queue *aggr_txq,
5187 struct mvpp2_tx_queue *txq)
5188 {
5189 struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
5190 struct mvpp2_tx_desc *tx_desc;
5191 int i;
5192 dma_addr_t buf_phys_addr;
5193
5194 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5195 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5196 void *addr = page_address(frag->page.p) + frag->page_offset;
5197
5198 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5199 tx_desc->phys_txq = txq->id;
5200 tx_desc->data_size = frag->size;
5201
5202 buf_phys_addr = dma_map_single(port->dev->dev.parent, addr,
5203 tx_desc->data_size,
5204 DMA_TO_DEVICE);
5205 if (dma_mapping_error(port->dev->dev.parent, buf_phys_addr)) {
5206 mvpp2_txq_desc_put(txq);
5207 goto error;
5208 }
5209
5210 tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5211 tx_desc->buf_phys_addr = buf_phys_addr & (~MVPP2_TX_DESC_ALIGN);
5212
5213 if (i == (skb_shinfo(skb)->nr_frags - 1)) {
5214 /* Last descriptor */
5215 tx_desc->command = MVPP2_TXD_L_DESC;
5216 mvpp2_txq_inc_put(txq_pcpu, skb, tx_desc);
5217 } else {
5218 /* Descriptor in the middle: Not First, Not Last */
5219 tx_desc->command = 0;
5220 mvpp2_txq_inc_put(txq_pcpu, NULL, tx_desc);
5221 }
5222 }
5223
5224 return 0;
5225
5226 error:
5227 /* Release all descriptors that were used to map fragments of
5228 * this packet, as well as the corresponding DMA mappings
5229 */
5230 for (i = i - 1; i >= 0; i--) {
5231 tx_desc = txq->descs + i;
5232 tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5233 }
5234
5235 return -ENOMEM;
5236 }
5237
5238 /* Main tx processing */
5239 static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
5240 {
5241 struct mvpp2_port *port = netdev_priv(dev);
5242 struct mvpp2_tx_queue *txq, *aggr_txq;
5243 struct mvpp2_txq_pcpu *txq_pcpu;
5244 struct mvpp2_tx_desc *tx_desc;
5245 dma_addr_t buf_phys_addr;
5246 int frags = 0;
5247 u16 txq_id;
5248 u32 tx_cmd;
5249
5250 txq_id = skb_get_queue_mapping(skb);
5251 txq = port->txqs[txq_id];
5252 txq_pcpu = this_cpu_ptr(txq->pcpu);
5253 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5254
5255 frags = skb_shinfo(skb)->nr_frags + 1;
5256
5257 /* Check number of available descriptors */
5258 if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
5259 mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
5260 txq_pcpu, frags)) {
5261 frags = 0;
5262 goto out;
5263 }
5264
5265 /* Get a descriptor for the first part of the packet */
5266 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5267 tx_desc->phys_txq = txq->id;
5268 tx_desc->data_size = skb_headlen(skb);
5269
5270 buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
5271 tx_desc->data_size, DMA_TO_DEVICE);
5272 if (unlikely(dma_mapping_error(dev->dev.parent, buf_phys_addr))) {
5273 mvpp2_txq_desc_put(txq);
5274 frags = 0;
5275 goto out;
5276 }
5277 tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5278 tx_desc->buf_phys_addr = buf_phys_addr & ~MVPP2_TX_DESC_ALIGN;
5279
5280 tx_cmd = mvpp2_skb_tx_csum(port, skb);
5281
5282 if (frags == 1) {
5283 /* First and Last descriptor */
5284 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
5285 tx_desc->command = tx_cmd;
5286 mvpp2_txq_inc_put(txq_pcpu, skb, tx_desc);
5287 } else {
5288 /* First but not Last */
5289 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
5290 tx_desc->command = tx_cmd;
5291 mvpp2_txq_inc_put(txq_pcpu, NULL, tx_desc);
5292
5293 /* Continue with other skb fragments */
5294 if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
5295 tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5296 frags = 0;
5297 goto out;
5298 }
5299 }
5300
5301 txq_pcpu->reserved_num -= frags;
5302 txq_pcpu->count += frags;
5303 aggr_txq->count += frags;
5304
5305 /* Enable transmit */
5306 wmb();
5307 mvpp2_aggr_txq_pend_desc_add(port, frags);
5308
5309 if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) {
5310 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
5311
5312 netif_tx_stop_queue(nq);
5313 }
5314 out:
5315 if (frags > 0) {
5316 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5317
5318 u64_stats_update_begin(&stats->syncp);
5319 stats->tx_packets++;
5320 stats->tx_bytes += skb->len;
5321 u64_stats_update_end(&stats->syncp);
5322 } else {
5323 dev->stats.tx_dropped++;
5324 dev_kfree_skb_any(skb);
5325 }
5326
5327 /* Finalize TX processing */
5328 if (txq_pcpu->count >= txq->done_pkts_coal)
5329 mvpp2_txq_done(port, txq, txq_pcpu);
5330
5331 /* Set the timer in case not all frags were processed */
5332 if (txq_pcpu->count <= frags && txq_pcpu->count > 0) {
5333 struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
5334
5335 mvpp2_timer_set(port_pcpu);
5336 }
5337
5338 return NETDEV_TX_OK;
5339 }
5340
5341 static inline void mvpp2_cause_error(struct net_device *dev, int cause)
5342 {
5343 if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
5344 netdev_err(dev, "FCS error\n");
5345 if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
5346 netdev_err(dev, "rx fifo overrun error\n");
5347 if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
5348 netdev_err(dev, "tx fifo underrun error\n");
5349 }
5350
5351 static int mvpp2_poll(struct napi_struct *napi, int budget)
5352 {
5353 u32 cause_rx_tx, cause_rx, cause_misc;
5354 int rx_done = 0;
5355 struct mvpp2_port *port = netdev_priv(napi->dev);
5356
5357 /* Rx/Tx cause register
5358 *
5359 * Bits 0-15: each bit indicates received packets on the Rx queue
5360 * (bit 0 is for Rx queue 0).
5361 *
5362 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
5363 * (bit 16 is for Tx queue 0).
5364 *
5365 * Each CPU has its own Rx/Tx cause register
5366 */
5367 cause_rx_tx = mvpp2_read(port->priv,
5368 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5369 cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5370 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
5371
5372 if (cause_misc) {
5373 mvpp2_cause_error(port->dev, cause_misc);
5374
5375 /* Clear the cause register */
5376 mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
5377 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
5378 cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
5379 }
5380
5381 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
5382
5383 /* Process RX packets */
5384 cause_rx |= port->pending_cause_rx;
5385 while (cause_rx && budget > 0) {
5386 int count;
5387 struct mvpp2_rx_queue *rxq;
5388
5389 rxq = mvpp2_get_rx_queue(port, cause_rx);
5390 if (!rxq)
5391 break;
5392
5393 count = mvpp2_rx(port, budget, rxq);
5394 rx_done += count;
5395 budget -= count;
5396 if (budget > 0) {
5397 /* Clear the bit associated to this Rx queue
5398 * so that next iteration will continue from
5399 * the next Rx queue.
5400 */
5401 cause_rx &= ~(1 << rxq->logic_rxq);
5402 }
5403 }
5404
5405 if (budget > 0) {
5406 cause_rx = 0;
5407 napi_complete(napi);
5408
5409 mvpp2_interrupts_enable(port);
5410 }
5411 port->pending_cause_rx = cause_rx;
5412 return rx_done;
5413 }
5414
5415 /* Set hw internals when starting port */
5416 static void mvpp2_start_dev(struct mvpp2_port *port)
5417 {
5418 struct net_device *ndev = port->dev;
5419
5420 mvpp2_gmac_max_rx_size_set(port);
5421 mvpp2_txp_max_tx_size_set(port);
5422
5423 napi_enable(&port->napi);
5424
5425 /* Enable interrupts on all CPUs */
5426 mvpp2_interrupts_enable(port);
5427
5428 mvpp2_port_enable(port);
5429 phy_start(ndev->phydev);
5430 netif_tx_start_all_queues(port->dev);
5431 }
5432
5433 /* Set hw internals when stopping port */
5434 static void mvpp2_stop_dev(struct mvpp2_port *port)
5435 {
5436 struct net_device *ndev = port->dev;
5437
5438 /* Stop new packets from arriving to RXQs */
5439 mvpp2_ingress_disable(port);
5440
5441 mdelay(10);
5442
5443 /* Disable interrupts on all CPUs */
5444 mvpp2_interrupts_disable(port);
5445
5446 napi_disable(&port->napi);
5447
5448 netif_carrier_off(port->dev);
5449 netif_tx_stop_all_queues(port->dev);
5450
5451 mvpp2_egress_disable(port);
5452 mvpp2_port_disable(port);
5453 phy_stop(ndev->phydev);
5454 }
5455
5456 /* Return positive if MTU is valid */
5457 static inline int mvpp2_check_mtu_valid(struct net_device *dev, int mtu)
5458 {
5459 if (mtu < 68) {
5460 netdev_err(dev, "cannot change mtu to less than 68\n");
5461 return -EINVAL;
5462 }
5463
5464 /* 9676 == 9700 - 20 and rounding to 8 */
5465 if (mtu > 9676) {
5466 netdev_info(dev, "illegal MTU value %d, round to 9676\n", mtu);
5467 mtu = 9676;
5468 }
5469
5470 if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
5471 netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
5472 ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
5473 mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
5474 }
5475
5476 return mtu;
5477 }
5478
5479 static int mvpp2_check_ringparam_valid(struct net_device *dev,
5480 struct ethtool_ringparam *ring)
5481 {
5482 u16 new_rx_pending = ring->rx_pending;
5483 u16 new_tx_pending = ring->tx_pending;
5484
5485 if (ring->rx_pending == 0 || ring->tx_pending == 0)
5486 return -EINVAL;
5487
5488 if (ring->rx_pending > MVPP2_MAX_RXD)
5489 new_rx_pending = MVPP2_MAX_RXD;
5490 else if (!IS_ALIGNED(ring->rx_pending, 16))
5491 new_rx_pending = ALIGN(ring->rx_pending, 16);
5492
5493 if (ring->tx_pending > MVPP2_MAX_TXD)
5494 new_tx_pending = MVPP2_MAX_TXD;
5495 else if (!IS_ALIGNED(ring->tx_pending, 32))
5496 new_tx_pending = ALIGN(ring->tx_pending, 32);
5497
5498 if (ring->rx_pending != new_rx_pending) {
5499 netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
5500 ring->rx_pending, new_rx_pending);
5501 ring->rx_pending = new_rx_pending;
5502 }
5503
5504 if (ring->tx_pending != new_tx_pending) {
5505 netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
5506 ring->tx_pending, new_tx_pending);
5507 ring->tx_pending = new_tx_pending;
5508 }
5509
5510 return 0;
5511 }
5512
5513 static void mvpp2_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
5514 {
5515 u32 mac_addr_l, mac_addr_m, mac_addr_h;
5516
5517 mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
5518 mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
5519 mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
5520 addr[0] = (mac_addr_h >> 24) & 0xFF;
5521 addr[1] = (mac_addr_h >> 16) & 0xFF;
5522 addr[2] = (mac_addr_h >> 8) & 0xFF;
5523 addr[3] = mac_addr_h & 0xFF;
5524 addr[4] = mac_addr_m & 0xFF;
5525 addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
5526 }
5527
5528 static int mvpp2_phy_connect(struct mvpp2_port *port)
5529 {
5530 struct phy_device *phy_dev;
5531
5532 phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
5533 port->phy_interface);
5534 if (!phy_dev) {
5535 netdev_err(port->dev, "cannot connect to phy\n");
5536 return -ENODEV;
5537 }
5538 phy_dev->supported &= PHY_GBIT_FEATURES;
5539 phy_dev->advertising = phy_dev->supported;
5540
5541 port->link = 0;
5542 port->duplex = 0;
5543 port->speed = 0;
5544
5545 return 0;
5546 }
5547
5548 static void mvpp2_phy_disconnect(struct mvpp2_port *port)
5549 {
5550 struct net_device *ndev = port->dev;
5551
5552 phy_disconnect(ndev->phydev);
5553 }
5554
5555 static int mvpp2_open(struct net_device *dev)
5556 {
5557 struct mvpp2_port *port = netdev_priv(dev);
5558 unsigned char mac_bcast[ETH_ALEN] = {
5559 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5560 int err;
5561
5562 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
5563 if (err) {
5564 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
5565 return err;
5566 }
5567 err = mvpp2_prs_mac_da_accept(port->priv, port->id,
5568 dev->dev_addr, true);
5569 if (err) {
5570 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
5571 return err;
5572 }
5573 err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
5574 if (err) {
5575 netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
5576 return err;
5577 }
5578 err = mvpp2_prs_def_flow(port);
5579 if (err) {
5580 netdev_err(dev, "mvpp2_prs_def_flow failed\n");
5581 return err;
5582 }
5583
5584 /* Allocate the Rx/Tx queues */
5585 err = mvpp2_setup_rxqs(port);
5586 if (err) {
5587 netdev_err(port->dev, "cannot allocate Rx queues\n");
5588 return err;
5589 }
5590
5591 err = mvpp2_setup_txqs(port);
5592 if (err) {
5593 netdev_err(port->dev, "cannot allocate Tx queues\n");
5594 goto err_cleanup_rxqs;
5595 }
5596
5597 err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port);
5598 if (err) {
5599 netdev_err(port->dev, "cannot request IRQ %d\n", port->irq);
5600 goto err_cleanup_txqs;
5601 }
5602
5603 /* In default link is down */
5604 netif_carrier_off(port->dev);
5605
5606 err = mvpp2_phy_connect(port);
5607 if (err < 0)
5608 goto err_free_irq;
5609
5610 /* Unmask interrupts on all CPUs */
5611 on_each_cpu(mvpp2_interrupts_unmask, port, 1);
5612
5613 mvpp2_start_dev(port);
5614
5615 return 0;
5616
5617 err_free_irq:
5618 free_irq(port->irq, port);
5619 err_cleanup_txqs:
5620 mvpp2_cleanup_txqs(port);
5621 err_cleanup_rxqs:
5622 mvpp2_cleanup_rxqs(port);
5623 return err;
5624 }
5625
5626 static int mvpp2_stop(struct net_device *dev)
5627 {
5628 struct mvpp2_port *port = netdev_priv(dev);
5629 struct mvpp2_port_pcpu *port_pcpu;
5630 int cpu;
5631
5632 mvpp2_stop_dev(port);
5633 mvpp2_phy_disconnect(port);
5634
5635 /* Mask interrupts on all CPUs */
5636 on_each_cpu(mvpp2_interrupts_mask, port, 1);
5637
5638 free_irq(port->irq, port);
5639 for_each_present_cpu(cpu) {
5640 port_pcpu = per_cpu_ptr(port->pcpu, cpu);
5641
5642 hrtimer_cancel(&port_pcpu->tx_done_timer);
5643 port_pcpu->timer_scheduled = false;
5644 tasklet_kill(&port_pcpu->tx_done_tasklet);
5645 }
5646 mvpp2_cleanup_rxqs(port);
5647 mvpp2_cleanup_txqs(port);
5648
5649 return 0;
5650 }
5651
5652 static void mvpp2_set_rx_mode(struct net_device *dev)
5653 {
5654 struct mvpp2_port *port = netdev_priv(dev);
5655 struct mvpp2 *priv = port->priv;
5656 struct netdev_hw_addr *ha;
5657 int id = port->id;
5658 bool allmulti = dev->flags & IFF_ALLMULTI;
5659
5660 mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
5661 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
5662 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);
5663
5664 /* Remove all port->id's mcast enries */
5665 mvpp2_prs_mcast_del_all(priv, id);
5666
5667 if (allmulti && !netdev_mc_empty(dev)) {
5668 netdev_for_each_mc_addr(ha, dev)
5669 mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
5670 }
5671 }
5672
5673 static int mvpp2_set_mac_address(struct net_device *dev, void *p)
5674 {
5675 struct mvpp2_port *port = netdev_priv(dev);
5676 const struct sockaddr *addr = p;
5677 int err;
5678
5679 if (!is_valid_ether_addr(addr->sa_data)) {
5680 err = -EADDRNOTAVAIL;
5681 goto error;
5682 }
5683
5684 if (!netif_running(dev)) {
5685 err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5686 if (!err)
5687 return 0;
5688 /* Reconfigure parser to accept the original MAC address */
5689 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5690 if (err)
5691 goto error;
5692 }
5693
5694 mvpp2_stop_dev(port);
5695
5696 err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5697 if (!err)
5698 goto out_start;
5699
5700 /* Reconfigure parser accept the original MAC address */
5701 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5702 if (err)
5703 goto error;
5704 out_start:
5705 mvpp2_start_dev(port);
5706 mvpp2_egress_enable(port);
5707 mvpp2_ingress_enable(port);
5708 return 0;
5709
5710 error:
5711 netdev_err(dev, "fail to change MAC address\n");
5712 return err;
5713 }
5714
5715 static int mvpp2_change_mtu(struct net_device *dev, int mtu)
5716 {
5717 struct mvpp2_port *port = netdev_priv(dev);
5718 int err;
5719
5720 mtu = mvpp2_check_mtu_valid(dev, mtu);
5721 if (mtu < 0) {
5722 err = mtu;
5723 goto error;
5724 }
5725
5726 if (!netif_running(dev)) {
5727 err = mvpp2_bm_update_mtu(dev, mtu);
5728 if (!err) {
5729 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
5730 return 0;
5731 }
5732
5733 /* Reconfigure BM to the original MTU */
5734 err = mvpp2_bm_update_mtu(dev, dev->mtu);
5735 if (err)
5736 goto error;
5737 }
5738
5739 mvpp2_stop_dev(port);
5740
5741 err = mvpp2_bm_update_mtu(dev, mtu);
5742 if (!err) {
5743 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
5744 goto out_start;
5745 }
5746
5747 /* Reconfigure BM to the original MTU */
5748 err = mvpp2_bm_update_mtu(dev, dev->mtu);
5749 if (err)
5750 goto error;
5751
5752 out_start:
5753 mvpp2_start_dev(port);
5754 mvpp2_egress_enable(port);
5755 mvpp2_ingress_enable(port);
5756
5757 return 0;
5758
5759 error:
5760 netdev_err(dev, "fail to change MTU\n");
5761 return err;
5762 }
5763
5764 static struct rtnl_link_stats64 *
5765 mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5766 {
5767 struct mvpp2_port *port = netdev_priv(dev);
5768 unsigned int start;
5769 int cpu;
5770
5771 for_each_possible_cpu(cpu) {
5772 struct mvpp2_pcpu_stats *cpu_stats;
5773 u64 rx_packets;
5774 u64 rx_bytes;
5775 u64 tx_packets;
5776 u64 tx_bytes;
5777
5778 cpu_stats = per_cpu_ptr(port->stats, cpu);
5779 do {
5780 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
5781 rx_packets = cpu_stats->rx_packets;
5782 rx_bytes = cpu_stats->rx_bytes;
5783 tx_packets = cpu_stats->tx_packets;
5784 tx_bytes = cpu_stats->tx_bytes;
5785 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
5786
5787 stats->rx_packets += rx_packets;
5788 stats->rx_bytes += rx_bytes;
5789 stats->tx_packets += tx_packets;
5790 stats->tx_bytes += tx_bytes;
5791 }
5792
5793 stats->rx_errors = dev->stats.rx_errors;
5794 stats->rx_dropped = dev->stats.rx_dropped;
5795 stats->tx_dropped = dev->stats.tx_dropped;
5796
5797 return stats;
5798 }
5799
5800 static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5801 {
5802 int ret;
5803
5804 if (!dev->phydev)
5805 return -ENOTSUPP;
5806
5807 ret = phy_mii_ioctl(dev->phydev, ifr, cmd);
5808 if (!ret)
5809 mvpp2_link_event(dev);
5810
5811 return ret;
5812 }
5813
5814 /* Ethtool methods */
5815
5816 /* Set interrupt coalescing for ethtools */
5817 static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
5818 struct ethtool_coalesce *c)
5819 {
5820 struct mvpp2_port *port = netdev_priv(dev);
5821 int queue;
5822
5823 for (queue = 0; queue < rxq_number; queue++) {
5824 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
5825
5826 rxq->time_coal = c->rx_coalesce_usecs;
5827 rxq->pkts_coal = c->rx_max_coalesced_frames;
5828 mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
5829 mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
5830 }
5831
5832 for (queue = 0; queue < txq_number; queue++) {
5833 struct mvpp2_tx_queue *txq = port->txqs[queue];
5834
5835 txq->done_pkts_coal = c->tx_max_coalesced_frames;
5836 }
5837
5838 return 0;
5839 }
5840
5841 /* get coalescing for ethtools */
5842 static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
5843 struct ethtool_coalesce *c)
5844 {
5845 struct mvpp2_port *port = netdev_priv(dev);
5846
5847 c->rx_coalesce_usecs = port->rxqs[0]->time_coal;
5848 c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal;
5849 c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal;
5850 return 0;
5851 }
5852
5853 static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
5854 struct ethtool_drvinfo *drvinfo)
5855 {
5856 strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
5857 sizeof(drvinfo->driver));
5858 strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
5859 sizeof(drvinfo->version));
5860 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
5861 sizeof(drvinfo->bus_info));
5862 }
5863
5864 static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
5865 struct ethtool_ringparam *ring)
5866 {
5867 struct mvpp2_port *port = netdev_priv(dev);
5868
5869 ring->rx_max_pending = MVPP2_MAX_RXD;
5870 ring->tx_max_pending = MVPP2_MAX_TXD;
5871 ring->rx_pending = port->rx_ring_size;
5872 ring->tx_pending = port->tx_ring_size;
5873 }
5874
5875 static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
5876 struct ethtool_ringparam *ring)
5877 {
5878 struct mvpp2_port *port = netdev_priv(dev);
5879 u16 prev_rx_ring_size = port->rx_ring_size;
5880 u16 prev_tx_ring_size = port->tx_ring_size;
5881 int err;
5882
5883 err = mvpp2_check_ringparam_valid(dev, ring);
5884 if (err)
5885 return err;
5886
5887 if (!netif_running(dev)) {
5888 port->rx_ring_size = ring->rx_pending;
5889 port->tx_ring_size = ring->tx_pending;
5890 return 0;
5891 }
5892
5893 /* The interface is running, so we have to force a
5894 * reallocation of the queues
5895 */
5896 mvpp2_stop_dev(port);
5897 mvpp2_cleanup_rxqs(port);
5898 mvpp2_cleanup_txqs(port);
5899
5900 port->rx_ring_size = ring->rx_pending;
5901 port->tx_ring_size = ring->tx_pending;
5902
5903 err = mvpp2_setup_rxqs(port);
5904 if (err) {
5905 /* Reallocate Rx queues with the original ring size */
5906 port->rx_ring_size = prev_rx_ring_size;
5907 ring->rx_pending = prev_rx_ring_size;
5908 err = mvpp2_setup_rxqs(port);
5909 if (err)
5910 goto err_out;
5911 }
5912 err = mvpp2_setup_txqs(port);
5913 if (err) {
5914 /* Reallocate Tx queues with the original ring size */
5915 port->tx_ring_size = prev_tx_ring_size;
5916 ring->tx_pending = prev_tx_ring_size;
5917 err = mvpp2_setup_txqs(port);
5918 if (err)
5919 goto err_clean_rxqs;
5920 }
5921
5922 mvpp2_start_dev(port);
5923 mvpp2_egress_enable(port);
5924 mvpp2_ingress_enable(port);
5925
5926 return 0;
5927
5928 err_clean_rxqs:
5929 mvpp2_cleanup_rxqs(port);
5930 err_out:
5931 netdev_err(dev, "fail to change ring parameters");
5932 return err;
5933 }
5934
5935 /* Device ops */
5936
5937 static const struct net_device_ops mvpp2_netdev_ops = {
5938 .ndo_open = mvpp2_open,
5939 .ndo_stop = mvpp2_stop,
5940 .ndo_start_xmit = mvpp2_tx,
5941 .ndo_set_rx_mode = mvpp2_set_rx_mode,
5942 .ndo_set_mac_address = mvpp2_set_mac_address,
5943 .ndo_change_mtu = mvpp2_change_mtu,
5944 .ndo_get_stats64 = mvpp2_get_stats64,
5945 .ndo_do_ioctl = mvpp2_ioctl,
5946 };
5947
5948 static const struct ethtool_ops mvpp2_eth_tool_ops = {
5949 .get_link = ethtool_op_get_link,
5950 .set_coalesce = mvpp2_ethtool_set_coalesce,
5951 .get_coalesce = mvpp2_ethtool_get_coalesce,
5952 .get_drvinfo = mvpp2_ethtool_get_drvinfo,
5953 .get_ringparam = mvpp2_ethtool_get_ringparam,
5954 .set_ringparam = mvpp2_ethtool_set_ringparam,
5955 .get_link_ksettings = phy_ethtool_get_link_ksettings,
5956 .set_link_ksettings = phy_ethtool_set_link_ksettings,
5957 };
5958
5959 /* Driver initialization */
5960
5961 static void mvpp2_port_power_up(struct mvpp2_port *port)
5962 {
5963 mvpp2_port_mii_set(port);
5964 mvpp2_port_periodic_xon_disable(port);
5965 mvpp2_port_fc_adv_enable(port);
5966 mvpp2_port_reset(port);
5967 }
5968
5969 /* Initialize port HW */
5970 static int mvpp2_port_init(struct mvpp2_port *port)
5971 {
5972 struct device *dev = port->dev->dev.parent;
5973 struct mvpp2 *priv = port->priv;
5974 struct mvpp2_txq_pcpu *txq_pcpu;
5975 int queue, cpu, err;
5976
5977 if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM)
5978 return -EINVAL;
5979
5980 /* Disable port */
5981 mvpp2_egress_disable(port);
5982 mvpp2_port_disable(port);
5983
5984 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
5985 GFP_KERNEL);
5986 if (!port->txqs)
5987 return -ENOMEM;
5988
5989 /* Associate physical Tx queues to this port and initialize.
5990 * The mapping is predefined.
5991 */
5992 for (queue = 0; queue < txq_number; queue++) {
5993 int queue_phy_id = mvpp2_txq_phys(port->id, queue);
5994 struct mvpp2_tx_queue *txq;
5995
5996 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
5997 if (!txq)
5998 return -ENOMEM;
5999
6000 txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
6001 if (!txq->pcpu) {
6002 err = -ENOMEM;
6003 goto err_free_percpu;
6004 }
6005
6006 txq->id = queue_phy_id;
6007 txq->log_id = queue;
6008 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
6009 for_each_present_cpu(cpu) {
6010 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
6011 txq_pcpu->cpu = cpu;
6012 }
6013
6014 port->txqs[queue] = txq;
6015 }
6016
6017 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
6018 GFP_KERNEL);
6019 if (!port->rxqs) {
6020 err = -ENOMEM;
6021 goto err_free_percpu;
6022 }
6023
6024 /* Allocate and initialize Rx queue for this port */
6025 for (queue = 0; queue < rxq_number; queue++) {
6026 struct mvpp2_rx_queue *rxq;
6027
6028 /* Map physical Rx queue to port's logical Rx queue */
6029 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
6030 if (!rxq) {
6031 err = -ENOMEM;
6032 goto err_free_percpu;
6033 }
6034 /* Map this Rx queue to a physical queue */
6035 rxq->id = port->first_rxq + queue;
6036 rxq->port = port->id;
6037 rxq->logic_rxq = queue;
6038
6039 port->rxqs[queue] = rxq;
6040 }
6041
6042 /* Configure Rx queue group interrupt for this port */
6043 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), rxq_number);
6044
6045 /* Create Rx descriptor rings */
6046 for (queue = 0; queue < rxq_number; queue++) {
6047 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
6048
6049 rxq->size = port->rx_ring_size;
6050 rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
6051 rxq->time_coal = MVPP2_RX_COAL_USEC;
6052 }
6053
6054 mvpp2_ingress_disable(port);
6055
6056 /* Port default configuration */
6057 mvpp2_defaults_set(port);
6058
6059 /* Port's classifier configuration */
6060 mvpp2_cls_oversize_rxq_set(port);
6061 mvpp2_cls_port_config(port);
6062
6063 /* Provide an initial Rx packet size */
6064 port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
6065
6066 /* Initialize pools for swf */
6067 err = mvpp2_swf_bm_pool_init(port);
6068 if (err)
6069 goto err_free_percpu;
6070
6071 return 0;
6072
6073 err_free_percpu:
6074 for (queue = 0; queue < txq_number; queue++) {
6075 if (!port->txqs[queue])
6076 continue;
6077 free_percpu(port->txqs[queue]->pcpu);
6078 }
6079 return err;
6080 }
6081
6082 /* Ports initialization */
6083 static int mvpp2_port_probe(struct platform_device *pdev,
6084 struct device_node *port_node,
6085 struct mvpp2 *priv,
6086 int *next_first_rxq)
6087 {
6088 struct device_node *phy_node;
6089 struct mvpp2_port *port;
6090 struct mvpp2_port_pcpu *port_pcpu;
6091 struct net_device *dev;
6092 struct resource *res;
6093 const char *dt_mac_addr;
6094 const char *mac_from;
6095 char hw_mac_addr[ETH_ALEN];
6096 u32 id;
6097 int features;
6098 int phy_mode;
6099 int priv_common_regs_num = 2;
6100 int err, i, cpu;
6101
6102 dev = alloc_etherdev_mqs(sizeof(struct mvpp2_port), txq_number,
6103 rxq_number);
6104 if (!dev)
6105 return -ENOMEM;
6106
6107 phy_node = of_parse_phandle(port_node, "phy", 0);
6108 if (!phy_node) {
6109 dev_err(&pdev->dev, "missing phy\n");
6110 err = -ENODEV;
6111 goto err_free_netdev;
6112 }
6113
6114 phy_mode = of_get_phy_mode(port_node);
6115 if (phy_mode < 0) {
6116 dev_err(&pdev->dev, "incorrect phy mode\n");
6117 err = phy_mode;
6118 goto err_free_netdev;
6119 }
6120
6121 if (of_property_read_u32(port_node, "port-id", &id)) {
6122 err = -EINVAL;
6123 dev_err(&pdev->dev, "missing port-id value\n");
6124 goto err_free_netdev;
6125 }
6126
6127 dev->tx_queue_len = MVPP2_MAX_TXD;
6128 dev->watchdog_timeo = 5 * HZ;
6129 dev->netdev_ops = &mvpp2_netdev_ops;
6130 dev->ethtool_ops = &mvpp2_eth_tool_ops;
6131
6132 port = netdev_priv(dev);
6133
6134 port->irq = irq_of_parse_and_map(port_node, 0);
6135 if (port->irq <= 0) {
6136 err = -EINVAL;
6137 goto err_free_netdev;
6138 }
6139
6140 if (of_property_read_bool(port_node, "marvell,loopback"))
6141 port->flags |= MVPP2_F_LOOPBACK;
6142
6143 port->priv = priv;
6144 port->id = id;
6145 port->first_rxq = *next_first_rxq;
6146 port->phy_node = phy_node;
6147 port->phy_interface = phy_mode;
6148
6149 res = platform_get_resource(pdev, IORESOURCE_MEM,
6150 priv_common_regs_num + id);
6151 port->base = devm_ioremap_resource(&pdev->dev, res);
6152 if (IS_ERR(port->base)) {
6153 err = PTR_ERR(port->base);
6154 goto err_free_irq;
6155 }
6156
6157 /* Alloc per-cpu stats */
6158 port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
6159 if (!port->stats) {
6160 err = -ENOMEM;
6161 goto err_free_irq;
6162 }
6163
6164 dt_mac_addr = of_get_mac_address(port_node);
6165 if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
6166 mac_from = "device tree";
6167 ether_addr_copy(dev->dev_addr, dt_mac_addr);
6168 } else {
6169 mvpp2_get_mac_address(port, hw_mac_addr);
6170 if (is_valid_ether_addr(hw_mac_addr)) {
6171 mac_from = "hardware";
6172 ether_addr_copy(dev->dev_addr, hw_mac_addr);
6173 } else {
6174 mac_from = "random";
6175 eth_hw_addr_random(dev);
6176 }
6177 }
6178
6179 port->tx_ring_size = MVPP2_MAX_TXD;
6180 port->rx_ring_size = MVPP2_MAX_RXD;
6181 port->dev = dev;
6182 SET_NETDEV_DEV(dev, &pdev->dev);
6183
6184 err = mvpp2_port_init(port);
6185 if (err < 0) {
6186 dev_err(&pdev->dev, "failed to init port %d\n", id);
6187 goto err_free_stats;
6188 }
6189 mvpp2_port_power_up(port);
6190
6191 port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
6192 if (!port->pcpu) {
6193 err = -ENOMEM;
6194 goto err_free_txq_pcpu;
6195 }
6196
6197 for_each_present_cpu(cpu) {
6198 port_pcpu = per_cpu_ptr(port->pcpu, cpu);
6199
6200 hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
6201 HRTIMER_MODE_REL_PINNED);
6202 port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
6203 port_pcpu->timer_scheduled = false;
6204
6205 tasklet_init(&port_pcpu->tx_done_tasklet, mvpp2_tx_proc_cb,
6206 (unsigned long)dev);
6207 }
6208
6209 netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT);
6210 features = NETIF_F_SG | NETIF_F_IP_CSUM;
6211 dev->features = features | NETIF_F_RXCSUM;
6212 dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
6213 dev->vlan_features |= features;
6214
6215 err = register_netdev(dev);
6216 if (err < 0) {
6217 dev_err(&pdev->dev, "failed to register netdev\n");
6218 goto err_free_port_pcpu;
6219 }
6220 netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
6221
6222 /* Increment the first Rx queue number to be used by the next port */
6223 *next_first_rxq += rxq_number;
6224 priv->port_list[id] = port;
6225 return 0;
6226
6227 err_free_port_pcpu:
6228 free_percpu(port->pcpu);
6229 err_free_txq_pcpu:
6230 for (i = 0; i < txq_number; i++)
6231 free_percpu(port->txqs[i]->pcpu);
6232 err_free_stats:
6233 free_percpu(port->stats);
6234 err_free_irq:
6235 irq_dispose_mapping(port->irq);
6236 err_free_netdev:
6237 of_node_put(phy_node);
6238 free_netdev(dev);
6239 return err;
6240 }
6241
6242 /* Ports removal routine */
6243 static void mvpp2_port_remove(struct mvpp2_port *port)
6244 {
6245 int i;
6246
6247 unregister_netdev(port->dev);
6248 of_node_put(port->phy_node);
6249 free_percpu(port->pcpu);
6250 free_percpu(port->stats);
6251 for (i = 0; i < txq_number; i++)
6252 free_percpu(port->txqs[i]->pcpu);
6253 irq_dispose_mapping(port->irq);
6254 free_netdev(port->dev);
6255 }
6256
6257 /* Initialize decoding windows */
6258 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
6259 struct mvpp2 *priv)
6260 {
6261 u32 win_enable;
6262 int i;
6263
6264 for (i = 0; i < 6; i++) {
6265 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
6266 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
6267
6268 if (i < 4)
6269 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
6270 }
6271
6272 win_enable = 0;
6273
6274 for (i = 0; i < dram->num_cs; i++) {
6275 const struct mbus_dram_window *cs = dram->cs + i;
6276
6277 mvpp2_write(priv, MVPP2_WIN_BASE(i),
6278 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
6279 dram->mbus_dram_target_id);
6280
6281 mvpp2_write(priv, MVPP2_WIN_SIZE(i),
6282 (cs->size - 1) & 0xffff0000);
6283
6284 win_enable |= (1 << i);
6285 }
6286
6287 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
6288 }
6289
6290 /* Initialize Rx FIFO's */
6291 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
6292 {
6293 int port;
6294
6295 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
6296 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
6297 MVPP2_RX_FIFO_PORT_DATA_SIZE);
6298 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
6299 MVPP2_RX_FIFO_PORT_ATTR_SIZE);
6300 }
6301
6302 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
6303 MVPP2_RX_FIFO_PORT_MIN_PKT);
6304 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
6305 }
6306
6307 /* Initialize network controller common part HW */
6308 static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
6309 {
6310 const struct mbus_dram_target_info *dram_target_info;
6311 int err, i;
6312 u32 val;
6313
6314 /* Checks for hardware constraints */
6315 if (rxq_number % 4 || (rxq_number > MVPP2_MAX_RXQ) ||
6316 (txq_number > MVPP2_MAX_TXQ)) {
6317 dev_err(&pdev->dev, "invalid queue size parameter\n");
6318 return -EINVAL;
6319 }
6320
6321 /* MBUS windows configuration */
6322 dram_target_info = mv_mbus_dram_info();
6323 if (dram_target_info)
6324 mvpp2_conf_mbus_windows(dram_target_info, priv);
6325
6326 /* Disable HW PHY polling */
6327 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6328 val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
6329 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6330
6331 /* Allocate and initialize aggregated TXQs */
6332 priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
6333 sizeof(struct mvpp2_tx_queue),
6334 GFP_KERNEL);
6335 if (!priv->aggr_txqs)
6336 return -ENOMEM;
6337
6338 for_each_present_cpu(i) {
6339 priv->aggr_txqs[i].id = i;
6340 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
6341 err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i],
6342 MVPP2_AGGR_TXQ_SIZE, i, priv);
6343 if (err < 0)
6344 return err;
6345 }
6346
6347 /* Rx Fifo Init */
6348 mvpp2_rx_fifo_init(priv);
6349
6350 /* Reset Rx queue group interrupt configuration */
6351 for (i = 0; i < MVPP2_MAX_PORTS; i++)
6352 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i), rxq_number);
6353
6354 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
6355 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
6356
6357 /* Allow cache snoop when transmiting packets */
6358 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
6359
6360 /* Buffer Manager initialization */
6361 err = mvpp2_bm_init(pdev, priv);
6362 if (err < 0)
6363 return err;
6364
6365 /* Parser default initialization */
6366 err = mvpp2_prs_default_init(pdev, priv);
6367 if (err < 0)
6368 return err;
6369
6370 /* Classifier default initialization */
6371 mvpp2_cls_init(priv);
6372
6373 return 0;
6374 }
6375
6376 static int mvpp2_probe(struct platform_device *pdev)
6377 {
6378 struct device_node *dn = pdev->dev.of_node;
6379 struct device_node *port_node;
6380 struct mvpp2 *priv;
6381 struct resource *res;
6382 int port_count, first_rxq;
6383 int err;
6384
6385 priv = devm_kzalloc(&pdev->dev, sizeof(struct mvpp2), GFP_KERNEL);
6386 if (!priv)
6387 return -ENOMEM;
6388
6389 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
6390 priv->base = devm_ioremap_resource(&pdev->dev, res);
6391 if (IS_ERR(priv->base))
6392 return PTR_ERR(priv->base);
6393
6394 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
6395 priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
6396 if (IS_ERR(priv->lms_base))
6397 return PTR_ERR(priv->lms_base);
6398
6399 priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
6400 if (IS_ERR(priv->pp_clk))
6401 return PTR_ERR(priv->pp_clk);
6402 err = clk_prepare_enable(priv->pp_clk);
6403 if (err < 0)
6404 return err;
6405
6406 priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
6407 if (IS_ERR(priv->gop_clk)) {
6408 err = PTR_ERR(priv->gop_clk);
6409 goto err_pp_clk;
6410 }
6411 err = clk_prepare_enable(priv->gop_clk);
6412 if (err < 0)
6413 goto err_pp_clk;
6414
6415 /* Get system's tclk rate */
6416 priv->tclk = clk_get_rate(priv->pp_clk);
6417
6418 /* Initialize network controller */
6419 err = mvpp2_init(pdev, priv);
6420 if (err < 0) {
6421 dev_err(&pdev->dev, "failed to initialize controller\n");
6422 goto err_gop_clk;
6423 }
6424
6425 port_count = of_get_available_child_count(dn);
6426 if (port_count == 0) {
6427 dev_err(&pdev->dev, "no ports enabled\n");
6428 err = -ENODEV;
6429 goto err_gop_clk;
6430 }
6431
6432 priv->port_list = devm_kcalloc(&pdev->dev, port_count,
6433 sizeof(struct mvpp2_port *),
6434 GFP_KERNEL);
6435 if (!priv->port_list) {
6436 err = -ENOMEM;
6437 goto err_gop_clk;
6438 }
6439
6440 /* Initialize ports */
6441 first_rxq = 0;
6442 for_each_available_child_of_node(dn, port_node) {
6443 err = mvpp2_port_probe(pdev, port_node, priv, &first_rxq);
6444 if (err < 0)
6445 goto err_gop_clk;
6446 }
6447
6448 platform_set_drvdata(pdev, priv);
6449 return 0;
6450
6451 err_gop_clk:
6452 clk_disable_unprepare(priv->gop_clk);
6453 err_pp_clk:
6454 clk_disable_unprepare(priv->pp_clk);
6455 return err;
6456 }
6457
6458 static int mvpp2_remove(struct platform_device *pdev)
6459 {
6460 struct mvpp2 *priv = platform_get_drvdata(pdev);
6461 struct device_node *dn = pdev->dev.of_node;
6462 struct device_node *port_node;
6463 int i = 0;
6464
6465 for_each_available_child_of_node(dn, port_node) {
6466 if (priv->port_list[i])
6467 mvpp2_port_remove(priv->port_list[i]);
6468 i++;
6469 }
6470
6471 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
6472 struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
6473
6474 mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
6475 }
6476
6477 for_each_present_cpu(i) {
6478 struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
6479
6480 dma_free_coherent(&pdev->dev,
6481 MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
6482 aggr_txq->descs,
6483 aggr_txq->descs_phys);
6484 }
6485
6486 clk_disable_unprepare(priv->pp_clk);
6487 clk_disable_unprepare(priv->gop_clk);
6488
6489 return 0;
6490 }
6491
6492 static const struct of_device_id mvpp2_match[] = {
6493 { .compatible = "marvell,armada-375-pp2" },
6494 { }
6495 };
6496 MODULE_DEVICE_TABLE(of, mvpp2_match);
6497
6498 static struct platform_driver mvpp2_driver = {
6499 .probe = mvpp2_probe,
6500 .remove = mvpp2_remove,
6501 .driver = {
6502 .name = MVPP2_DRIVER_NAME,
6503 .of_match_table = mvpp2_match,
6504 },
6505 };
6506
6507 module_platform_driver(mvpp2_driver);
6508
6509 MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
6510 MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
6511 MODULE_LICENSE("GPL v2");
This page took 0.505688 seconds and 5 git commands to generate.