Merge remote-tracking branch 'asoc/topic/tas5270' into asoc-next
[deliverable/linux.git] / drivers / net / ethernet / marvell / mvpp2.c
1 /*
2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3 *
4 * Copyright (C) 2014 Marvell
5 *
6 * Marcin Wojtas <mw@semihalf.com>
7 *
8 * This file is licensed under the terms of the GNU General Public
9 * License version 2. This program is licensed "as is" without any
10 * warranty of any kind, whether express or implied.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/platform_device.h>
17 #include <linux/skbuff.h>
18 #include <linux/inetdevice.h>
19 #include <linux/mbus.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/cpumask.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_mdio.h>
26 #include <linux/of_net.h>
27 #include <linux/of_address.h>
28 #include <linux/phy.h>
29 #include <linux/clk.h>
30 #include <linux/hrtimer.h>
31 #include <linux/ktime.h>
32 #include <uapi/linux/ppp_defs.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35
36 /* RX Fifo Registers */
37 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
38 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
39 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
40 #define MVPP2_RX_FIFO_INIT_REG 0x64
41
42 /* RX DMA Top Registers */
43 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
44 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
45 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
46 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
47 #define MVPP2_POOL_BUF_SIZE_OFFSET 5
48 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
49 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
50 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
51 #define MVPP2_RXQ_POOL_SHORT_OFFS 20
52 #define MVPP2_RXQ_POOL_SHORT_MASK 0x700000
53 #define MVPP2_RXQ_POOL_LONG_OFFS 24
54 #define MVPP2_RXQ_POOL_LONG_MASK 0x7000000
55 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
56 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
57 #define MVPP2_RXQ_DISABLE_MASK BIT(31)
58
59 /* Parser Registers */
60 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
61 #define MVPP2_PRS_PORT_LU_MAX 0xf
62 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
63 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
64 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
65 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
66 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
67 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
68 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
69 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
70 #define MVPP2_PRS_TCAM_IDX_REG 0x1100
71 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
72 #define MVPP2_PRS_TCAM_INV_MASK BIT(31)
73 #define MVPP2_PRS_SRAM_IDX_REG 0x1200
74 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
75 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230
76 #define MVPP2_PRS_TCAM_EN_MASK BIT(0)
77
78 /* Classifier Registers */
79 #define MVPP2_CLS_MODE_REG 0x1800
80 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
81 #define MVPP2_CLS_PORT_WAY_REG 0x1810
82 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
83 #define MVPP2_CLS_LKP_INDEX_REG 0x1814
84 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
85 #define MVPP2_CLS_LKP_TBL_REG 0x1818
86 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
87 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
88 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820
89 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824
90 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828
91 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c
92 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
93 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
94 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
95 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
96 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
97 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
98
99 /* Descriptor Manager Top Registers */
100 #define MVPP2_RXQ_NUM_REG 0x2040
101 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044
102 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048
103 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
104 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
105 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
106 #define MVPP2_RXQ_NUM_NEW_OFFSET 16
107 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
108 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
109 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
110 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
111 #define MVPP2_RXQ_THRESH_REG 0x204c
112 #define MVPP2_OCCUPIED_THRESH_OFFSET 0
113 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
114 #define MVPP2_RXQ_INDEX_REG 0x2050
115 #define MVPP2_TXQ_NUM_REG 0x2080
116 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084
117 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088
118 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
119 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
120 #define MVPP2_TXQ_THRESH_REG 0x2094
121 #define MVPP2_TRANSMITTED_THRESH_OFFSET 16
122 #define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000
123 #define MVPP2_TXQ_INDEX_REG 0x2098
124 #define MVPP2_TXQ_PREF_BUF_REG 0x209c
125 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
126 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
127 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
128 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
129 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
130 #define MVPP2_TXQ_PENDING_REG 0x20a0
131 #define MVPP2_TXQ_PENDING_MASK 0x3fff
132 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4
133 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
134 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16
135 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
136 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
137 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
138 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
139 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
140 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
141 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16
142 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
143 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
144 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
145 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
146 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
147 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
148
149 /* MBUS bridge registers */
150 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
151 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
152 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
153 #define MVPP2_BASE_ADDR_ENABLE 0x4060
154
155 /* Interrupt Cause and Mask registers */
156 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
157 #define MVPP2_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
158 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
159 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
160 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
161 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
162 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
163 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
164 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
165 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
166 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
167 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
168 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
169 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
170 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
171 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
172 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
173 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
174 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
175 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
176
177 /* Buffer Manager registers */
178 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
179 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
180 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
181 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0
182 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
183 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
184 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
185 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
186 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
187 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
188 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
189 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
190 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
191 #define MVPP2_BM_START_MASK BIT(0)
192 #define MVPP2_BM_STOP_MASK BIT(1)
193 #define MVPP2_BM_STATE_MASK BIT(4)
194 #define MVPP2_BM_LOW_THRESH_OFFS 8
195 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00
196 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
197 MVPP2_BM_LOW_THRESH_OFFS)
198 #define MVPP2_BM_HIGH_THRESH_OFFS 16
199 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
200 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
201 MVPP2_BM_HIGH_THRESH_OFFS)
202 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
203 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
204 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
205 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
206 #define MVPP2_BM_BPPE_FULL_MASK BIT(3)
207 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
208 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
209 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
210 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
211 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440
212 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
213 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
214 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
215 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
216 #define MVPP2_BM_VIRT_RLS_REG 0x64c0
217 #define MVPP2_BM_MC_RLS_REG 0x64c4
218 #define MVPP2_BM_MC_ID_MASK 0xfff
219 #define MVPP2_BM_FORCE_RELEASE_MASK BIT(12)
220
221 /* TX Scheduler registers */
222 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
223 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
224 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff
225 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8
226 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
227 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
228 #define MVPP2_TXP_SCHED_MTU_REG 0x801c
229 #define MVPP2_TXP_MTU_MAX 0x7FFFF
230 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020
231 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
232 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
233 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
234 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
235 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
236 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
237 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
238 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
239 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
240 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
241 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
242 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
243 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
244
245 /* TX general registers */
246 #define MVPP2_TX_SNOOP_REG 0x8800
247 #define MVPP2_TX_PORT_FLUSH_REG 0x8810
248 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
249
250 /* LMS registers */
251 #define MVPP2_SRC_ADDR_MIDDLE 0x24
252 #define MVPP2_SRC_ADDR_HIGH 0x28
253 #define MVPP2_PHY_AN_CFG0_REG 0x34
254 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
255 #define MVPP2_MIB_COUNTERS_BASE(port) (0x1000 + ((port) >> 1) * \
256 0x400 + (port) * 0x400)
257 #define MVPP2_MIB_LATE_COLLISION 0x7c
258 #define MVPP2_ISR_SUM_MASK_REG 0x220c
259 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
260 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
261
262 /* Per-port registers */
263 #define MVPP2_GMAC_CTRL_0_REG 0x0
264 #define MVPP2_GMAC_PORT_EN_MASK BIT(0)
265 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
266 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
267 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
268 #define MVPP2_GMAC_CTRL_1_REG 0x4
269 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
270 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
271 #define MVPP2_GMAC_PCS_LB_EN_BIT 6
272 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
273 #define MVPP2_GMAC_SA_LOW_OFFS 7
274 #define MVPP2_GMAC_CTRL_2_REG 0x8
275 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
276 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
277 #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
278 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
279 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc
280 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
281 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
282 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
283 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
284 #define MVPP2_GMAC_AN_SPEED_EN BIT(7)
285 #define MVPP2_GMAC_FC_ADV_EN BIT(9)
286 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
287 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
288 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
289 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
290 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
291 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
292 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
293
294 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
295
296 /* Descriptor ring Macros */
297 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
298 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
299
300 /* Various constants */
301
302 /* Coalescing */
303 #define MVPP2_TXDONE_COAL_PKTS_THRESH 15
304 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
305 #define MVPP2_RX_COAL_PKTS 32
306 #define MVPP2_RX_COAL_USEC 100
307
308 /* The two bytes Marvell header. Either contains a special value used
309 * by Marvell switches when a specific hardware mode is enabled (not
310 * supported by this driver) or is filled automatically by zeroes on
311 * the RX side. Those two bytes being at the front of the Ethernet
312 * header, they allow to have the IP header aligned on a 4 bytes
313 * boundary automatically: the hardware skips those two bytes on its
314 * own.
315 */
316 #define MVPP2_MH_SIZE 2
317 #define MVPP2_ETH_TYPE_LEN 2
318 #define MVPP2_PPPOE_HDR_SIZE 8
319 #define MVPP2_VLAN_TAG_LEN 4
320
321 /* Lbtd 802.3 type */
322 #define MVPP2_IP_LBDT_TYPE 0xfffa
323
324 #define MVPP2_TX_CSUM_MAX_SIZE 9800
325
326 /* Timeout constants */
327 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
328 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
329
330 #define MVPP2_TX_MTU_MAX 0x7ffff
331
332 /* Maximum number of T-CONTs of PON port */
333 #define MVPP2_MAX_TCONT 16
334
335 /* Maximum number of supported ports */
336 #define MVPP2_MAX_PORTS 4
337
338 /* Maximum number of TXQs used by single port */
339 #define MVPP2_MAX_TXQ 8
340
341 /* Maximum number of RXQs used by single port */
342 #define MVPP2_MAX_RXQ 8
343
344 /* Dfault number of RXQs in use */
345 #define MVPP2_DEFAULT_RXQ 4
346
347 /* Total number of RXQs available to all ports */
348 #define MVPP2_RXQ_TOTAL_NUM (MVPP2_MAX_PORTS * MVPP2_MAX_RXQ)
349
350 /* Max number of Rx descriptors */
351 #define MVPP2_MAX_RXD 128
352
353 /* Max number of Tx descriptors */
354 #define MVPP2_MAX_TXD 1024
355
356 /* Amount of Tx descriptors that can be reserved at once by CPU */
357 #define MVPP2_CPU_DESC_CHUNK 64
358
359 /* Max number of Tx descriptors in each aggregated queue */
360 #define MVPP2_AGGR_TXQ_SIZE 256
361
362 /* Descriptor aligned size */
363 #define MVPP2_DESC_ALIGNED_SIZE 32
364
365 /* Descriptor alignment mask */
366 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
367
368 /* RX FIFO constants */
369 #define MVPP2_RX_FIFO_PORT_DATA_SIZE 0x2000
370 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE 0x80
371 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
372
373 /* RX buffer constants */
374 #define MVPP2_SKB_SHINFO_SIZE \
375 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
376
377 #define MVPP2_RX_PKT_SIZE(mtu) \
378 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
379 ETH_HLEN + ETH_FCS_LEN, cache_line_size())
380
381 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
382 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
383 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
384 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
385
386 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
387
388 /* IPv6 max L3 address size */
389 #define MVPP2_MAX_L3_ADDR_SIZE 16
390
391 /* Port flags */
392 #define MVPP2_F_LOOPBACK BIT(0)
393
394 /* Marvell tag types */
395 enum mvpp2_tag_type {
396 MVPP2_TAG_TYPE_NONE = 0,
397 MVPP2_TAG_TYPE_MH = 1,
398 MVPP2_TAG_TYPE_DSA = 2,
399 MVPP2_TAG_TYPE_EDSA = 3,
400 MVPP2_TAG_TYPE_VLAN = 4,
401 MVPP2_TAG_TYPE_LAST = 5
402 };
403
404 /* Parser constants */
405 #define MVPP2_PRS_TCAM_SRAM_SIZE 256
406 #define MVPP2_PRS_TCAM_WORDS 6
407 #define MVPP2_PRS_SRAM_WORDS 4
408 #define MVPP2_PRS_FLOW_ID_SIZE 64
409 #define MVPP2_PRS_FLOW_ID_MASK 0x3f
410 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1
411 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
412 #define MVPP2_PRS_IPV4_HEAD 0x40
413 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
414 #define MVPP2_PRS_IPV4_MC 0xe0
415 #define MVPP2_PRS_IPV4_MC_MASK 0xf0
416 #define MVPP2_PRS_IPV4_BC_MASK 0xff
417 #define MVPP2_PRS_IPV4_IHL 0x5
418 #define MVPP2_PRS_IPV4_IHL_MASK 0xf
419 #define MVPP2_PRS_IPV6_MC 0xff
420 #define MVPP2_PRS_IPV6_MC_MASK 0xff
421 #define MVPP2_PRS_IPV6_HOP_MASK 0xff
422 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff
423 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
424 #define MVPP2_PRS_DBL_VLANS_MAX 100
425
426 /* Tcam structure:
427 * - lookup ID - 4 bits
428 * - port ID - 1 byte
429 * - additional information - 1 byte
430 * - header data - 8 bytes
431 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
432 */
433 #define MVPP2_PRS_AI_BITS 8
434 #define MVPP2_PRS_PORT_MASK 0xff
435 #define MVPP2_PRS_LU_MASK 0xf
436 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
437 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
438 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
439 (((offs) * 2) - ((offs) % 2) + 2)
440 #define MVPP2_PRS_TCAM_AI_BYTE 16
441 #define MVPP2_PRS_TCAM_PORT_BYTE 17
442 #define MVPP2_PRS_TCAM_LU_BYTE 20
443 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
444 #define MVPP2_PRS_TCAM_INV_WORD 5
445 /* Tcam entries ID */
446 #define MVPP2_PE_DROP_ALL 0
447 #define MVPP2_PE_FIRST_FREE_TID 1
448 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
449 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
450 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
451 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
452 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
453 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
454 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
455 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
456 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
457 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
458 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
459 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
460 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
461 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
462 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
463 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
464 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
465 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
466 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
467 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
468 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
469 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
470 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
471 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
472 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
473
474 /* Sram structure
475 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
476 */
477 #define MVPP2_PRS_SRAM_RI_OFFS 0
478 #define MVPP2_PRS_SRAM_RI_WORD 0
479 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
480 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
481 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
482 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64
483 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
484 #define MVPP2_PRS_SRAM_UDF_OFFS 73
485 #define MVPP2_PRS_SRAM_UDF_BITS 8
486 #define MVPP2_PRS_SRAM_UDF_MASK 0xff
487 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
488 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
489 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
490 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
491 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
492 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
493 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
494 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
495 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
496 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
497 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
498 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
499 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
500 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
501 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
502 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
503 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
504 #define MVPP2_PRS_SRAM_AI_OFFS 90
505 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
506 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
507 #define MVPP2_PRS_SRAM_AI_MASK 0xff
508 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
509 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
510 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110
511 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111
512
513 /* Sram result info bits assignment */
514 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1
515 #define MVPP2_PRS_RI_DSA_MASK 0x2
516 #define MVPP2_PRS_RI_VLAN_MASK 0xc
517 #define MVPP2_PRS_RI_VLAN_NONE ~(BIT(2) | BIT(3))
518 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
519 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
520 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
521 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
522 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
523 #define MVPP2_PRS_RI_L2_CAST_MASK 0x600
524 #define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10))
525 #define MVPP2_PRS_RI_L2_MCAST BIT(9)
526 #define MVPP2_PRS_RI_L2_BCAST BIT(10)
527 #define MVPP2_PRS_RI_PPPOE_MASK 0x800
528 #define MVPP2_PRS_RI_L3_PROTO_MASK 0x7000
529 #define MVPP2_PRS_RI_L3_UN ~(BIT(12) | BIT(13) | BIT(14))
530 #define MVPP2_PRS_RI_L3_IP4 BIT(12)
531 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
532 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
533 #define MVPP2_PRS_RI_L3_IP6 BIT(14)
534 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
535 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
536 #define MVPP2_PRS_RI_L3_ADDR_MASK 0x18000
537 #define MVPP2_PRS_RI_L3_UCAST ~(BIT(15) | BIT(16))
538 #define MVPP2_PRS_RI_L3_MCAST BIT(15)
539 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
540 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
541 #define MVPP2_PRS_RI_UDF3_MASK 0x300000
542 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
543 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
544 #define MVPP2_PRS_RI_L4_TCP BIT(22)
545 #define MVPP2_PRS_RI_L4_UDP BIT(23)
546 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
547 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000
548 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
549 #define MVPP2_PRS_RI_DROP_MASK 0x80000000
550
551 /* Sram additional info bits assignment */
552 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
553 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
554 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
555 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
556 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
557 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
558 #define MVPP2_PRS_SINGLE_VLAN_AI 0
559 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
560
561 /* DSA/EDSA type */
562 #define MVPP2_PRS_TAGGED true
563 #define MVPP2_PRS_UNTAGGED false
564 #define MVPP2_PRS_EDSA true
565 #define MVPP2_PRS_DSA false
566
567 /* MAC entries, shadow udf */
568 enum mvpp2_prs_udf {
569 MVPP2_PRS_UDF_MAC_DEF,
570 MVPP2_PRS_UDF_MAC_RANGE,
571 MVPP2_PRS_UDF_L2_DEF,
572 MVPP2_PRS_UDF_L2_DEF_COPY,
573 MVPP2_PRS_UDF_L2_USER,
574 };
575
576 /* Lookup ID */
577 enum mvpp2_prs_lookup {
578 MVPP2_PRS_LU_MH,
579 MVPP2_PRS_LU_MAC,
580 MVPP2_PRS_LU_DSA,
581 MVPP2_PRS_LU_VLAN,
582 MVPP2_PRS_LU_L2,
583 MVPP2_PRS_LU_PPPOE,
584 MVPP2_PRS_LU_IP4,
585 MVPP2_PRS_LU_IP6,
586 MVPP2_PRS_LU_FLOWS,
587 MVPP2_PRS_LU_LAST,
588 };
589
590 /* L3 cast enum */
591 enum mvpp2_prs_l3_cast {
592 MVPP2_PRS_L3_UNI_CAST,
593 MVPP2_PRS_L3_MULTI_CAST,
594 MVPP2_PRS_L3_BROAD_CAST
595 };
596
597 /* Classifier constants */
598 #define MVPP2_CLS_FLOWS_TBL_SIZE 512
599 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
600 #define MVPP2_CLS_LKP_TBL_SIZE 64
601
602 /* BM constants */
603 #define MVPP2_BM_POOLS_NUM 8
604 #define MVPP2_BM_LONG_BUF_NUM 1024
605 #define MVPP2_BM_SHORT_BUF_NUM 2048
606 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
607 #define MVPP2_BM_POOL_PTR_ALIGN 128
608 #define MVPP2_BM_SWF_LONG_POOL(port) ((port > 2) ? 2 : port)
609 #define MVPP2_BM_SWF_SHORT_POOL 3
610
611 /* BM cookie (32 bits) definition */
612 #define MVPP2_BM_COOKIE_POOL_OFFS 8
613 #define MVPP2_BM_COOKIE_CPU_OFFS 24
614
615 /* BM short pool packet size
616 * These value assure that for SWF the total number
617 * of bytes allocated for each buffer will be 512
618 */
619 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
620
621 enum mvpp2_bm_type {
622 MVPP2_BM_FREE,
623 MVPP2_BM_SWF_LONG,
624 MVPP2_BM_SWF_SHORT
625 };
626
627 /* Definitions */
628
629 /* Shared Packet Processor resources */
630 struct mvpp2 {
631 /* Shared registers' base addresses */
632 void __iomem *base;
633 void __iomem *lms_base;
634
635 /* Common clocks */
636 struct clk *pp_clk;
637 struct clk *gop_clk;
638
639 /* List of pointers to port structures */
640 struct mvpp2_port **port_list;
641
642 /* Aggregated TXQs */
643 struct mvpp2_tx_queue *aggr_txqs;
644
645 /* BM pools */
646 struct mvpp2_bm_pool *bm_pools;
647
648 /* PRS shadow table */
649 struct mvpp2_prs_shadow *prs_shadow;
650 /* PRS auxiliary table for double vlan entries control */
651 bool *prs_double_vlans;
652
653 /* Tclk value */
654 u32 tclk;
655 };
656
657 struct mvpp2_pcpu_stats {
658 struct u64_stats_sync syncp;
659 u64 rx_packets;
660 u64 rx_bytes;
661 u64 tx_packets;
662 u64 tx_bytes;
663 };
664
665 /* Per-CPU port control */
666 struct mvpp2_port_pcpu {
667 struct hrtimer tx_done_timer;
668 bool timer_scheduled;
669 /* Tasklet for egress finalization */
670 struct tasklet_struct tx_done_tasklet;
671 };
672
673 struct mvpp2_port {
674 u8 id;
675
676 int irq;
677
678 struct mvpp2 *priv;
679
680 /* Per-port registers' base address */
681 void __iomem *base;
682
683 struct mvpp2_rx_queue **rxqs;
684 struct mvpp2_tx_queue **txqs;
685 struct net_device *dev;
686
687 int pkt_size;
688
689 u32 pending_cause_rx;
690 struct napi_struct napi;
691
692 /* Per-CPU port control */
693 struct mvpp2_port_pcpu __percpu *pcpu;
694
695 /* Flags */
696 unsigned long flags;
697
698 u16 tx_ring_size;
699 u16 rx_ring_size;
700 struct mvpp2_pcpu_stats __percpu *stats;
701
702 struct phy_device *phy_dev;
703 phy_interface_t phy_interface;
704 struct device_node *phy_node;
705 unsigned int link;
706 unsigned int duplex;
707 unsigned int speed;
708
709 struct mvpp2_bm_pool *pool_long;
710 struct mvpp2_bm_pool *pool_short;
711
712 /* Index of first port's physical RXQ */
713 u8 first_rxq;
714 };
715
716 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
717 * layout of the transmit and reception DMA descriptors, and their
718 * layout is therefore defined by the hardware design
719 */
720
721 #define MVPP2_TXD_L3_OFF_SHIFT 0
722 #define MVPP2_TXD_IP_HLEN_SHIFT 8
723 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
724 #define MVPP2_TXD_L4_CSUM_NOT BIT(14)
725 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
726 #define MVPP2_TXD_PADDING_DISABLE BIT(23)
727 #define MVPP2_TXD_L4_UDP BIT(24)
728 #define MVPP2_TXD_L3_IP6 BIT(26)
729 #define MVPP2_TXD_L_DESC BIT(28)
730 #define MVPP2_TXD_F_DESC BIT(29)
731
732 #define MVPP2_RXD_ERR_SUMMARY BIT(15)
733 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
734 #define MVPP2_RXD_ERR_CRC 0x0
735 #define MVPP2_RXD_ERR_OVERRUN BIT(13)
736 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
737 #define MVPP2_RXD_BM_POOL_ID_OFFS 16
738 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
739 #define MVPP2_RXD_HWF_SYNC BIT(21)
740 #define MVPP2_RXD_L4_CSUM_OK BIT(22)
741 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
742 #define MVPP2_RXD_L4_TCP BIT(25)
743 #define MVPP2_RXD_L4_UDP BIT(26)
744 #define MVPP2_RXD_L3_IP4 BIT(28)
745 #define MVPP2_RXD_L3_IP6 BIT(30)
746 #define MVPP2_RXD_BUF_HDR BIT(31)
747
748 struct mvpp2_tx_desc {
749 u32 command; /* Options used by HW for packet transmitting.*/
750 u8 packet_offset; /* the offset from the buffer beginning */
751 u8 phys_txq; /* destination queue ID */
752 u16 data_size; /* data size of transmitted packet in bytes */
753 u32 buf_phys_addr; /* physical addr of transmitted buffer */
754 u32 buf_cookie; /* cookie for access to TX buffer in tx path */
755 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
756 u32 reserved2; /* reserved (for future use) */
757 };
758
759 struct mvpp2_rx_desc {
760 u32 status; /* info about received packet */
761 u16 reserved1; /* parser_info (for future use, PnC) */
762 u16 data_size; /* size of received packet in bytes */
763 u32 buf_phys_addr; /* physical address of the buffer */
764 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
765 u16 reserved2; /* gem_port_id (for future use, PON) */
766 u16 reserved3; /* csum_l4 (for future use, PnC) */
767 u8 reserved4; /* bm_qset (for future use, BM) */
768 u8 reserved5;
769 u16 reserved6; /* classify_info (for future use, PnC) */
770 u32 reserved7; /* flow_id (for future use, PnC) */
771 u32 reserved8;
772 };
773
774 /* Per-CPU Tx queue control */
775 struct mvpp2_txq_pcpu {
776 int cpu;
777
778 /* Number of Tx DMA descriptors in the descriptor ring */
779 int size;
780
781 /* Number of currently used Tx DMA descriptor in the
782 * descriptor ring
783 */
784 int count;
785
786 /* Number of Tx DMA descriptors reserved for each CPU */
787 int reserved_num;
788
789 /* Array of transmitted skb */
790 struct sk_buff **tx_skb;
791
792 /* Array of transmitted buffers' physical addresses */
793 dma_addr_t *tx_buffs;
794
795 /* Index of last TX DMA descriptor that was inserted */
796 int txq_put_index;
797
798 /* Index of the TX DMA descriptor to be cleaned up */
799 int txq_get_index;
800 };
801
802 struct mvpp2_tx_queue {
803 /* Physical number of this Tx queue */
804 u8 id;
805
806 /* Logical number of this Tx queue */
807 u8 log_id;
808
809 /* Number of Tx DMA descriptors in the descriptor ring */
810 int size;
811
812 /* Number of currently used Tx DMA descriptor in the descriptor ring */
813 int count;
814
815 /* Per-CPU control of physical Tx queues */
816 struct mvpp2_txq_pcpu __percpu *pcpu;
817
818 /* Array of transmitted skb */
819 struct sk_buff **tx_skb;
820
821 u32 done_pkts_coal;
822
823 /* Virtual address of thex Tx DMA descriptors array */
824 struct mvpp2_tx_desc *descs;
825
826 /* DMA address of the Tx DMA descriptors array */
827 dma_addr_t descs_phys;
828
829 /* Index of the last Tx DMA descriptor */
830 int last_desc;
831
832 /* Index of the next Tx DMA descriptor to process */
833 int next_desc_to_proc;
834 };
835
836 struct mvpp2_rx_queue {
837 /* RX queue number, in the range 0-31 for physical RXQs */
838 u8 id;
839
840 /* Num of rx descriptors in the rx descriptor ring */
841 int size;
842
843 u32 pkts_coal;
844 u32 time_coal;
845
846 /* Virtual address of the RX DMA descriptors array */
847 struct mvpp2_rx_desc *descs;
848
849 /* DMA address of the RX DMA descriptors array */
850 dma_addr_t descs_phys;
851
852 /* Index of the last RX DMA descriptor */
853 int last_desc;
854
855 /* Index of the next RX DMA descriptor to process */
856 int next_desc_to_proc;
857
858 /* ID of port to which physical RXQ is mapped */
859 int port;
860
861 /* Port's logic RXQ number to which physical RXQ is mapped */
862 int logic_rxq;
863 };
864
865 union mvpp2_prs_tcam_entry {
866 u32 word[MVPP2_PRS_TCAM_WORDS];
867 u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
868 };
869
870 union mvpp2_prs_sram_entry {
871 u32 word[MVPP2_PRS_SRAM_WORDS];
872 u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
873 };
874
875 struct mvpp2_prs_entry {
876 u32 index;
877 union mvpp2_prs_tcam_entry tcam;
878 union mvpp2_prs_sram_entry sram;
879 };
880
881 struct mvpp2_prs_shadow {
882 bool valid;
883 bool finish;
884
885 /* Lookup ID */
886 int lu;
887
888 /* User defined offset */
889 int udf;
890
891 /* Result info */
892 u32 ri;
893 u32 ri_mask;
894 };
895
896 struct mvpp2_cls_flow_entry {
897 u32 index;
898 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
899 };
900
901 struct mvpp2_cls_lookup_entry {
902 u32 lkpid;
903 u32 way;
904 u32 data;
905 };
906
907 struct mvpp2_bm_pool {
908 /* Pool number in the range 0-7 */
909 int id;
910 enum mvpp2_bm_type type;
911
912 /* Buffer Pointers Pool External (BPPE) size */
913 int size;
914 /* Number of buffers for this pool */
915 int buf_num;
916 /* Pool buffer size */
917 int buf_size;
918 /* Packet size */
919 int pkt_size;
920
921 /* BPPE virtual base address */
922 u32 *virt_addr;
923 /* BPPE physical base address */
924 dma_addr_t phys_addr;
925
926 /* Ports using BM pool */
927 u32 port_map;
928
929 /* Occupied buffers indicator */
930 atomic_t in_use;
931 int in_use_thresh;
932 };
933
934 struct mvpp2_buff_hdr {
935 u32 next_buff_phys_addr;
936 u32 next_buff_virt_addr;
937 u16 byte_count;
938 u16 info;
939 u8 reserved1; /* bm_qset (for future use, BM) */
940 };
941
942 /* Buffer header info bits */
943 #define MVPP2_B_HDR_INFO_MC_ID_MASK 0xfff
944 #define MVPP2_B_HDR_INFO_MC_ID(info) ((info) & MVPP2_B_HDR_INFO_MC_ID_MASK)
945 #define MVPP2_B_HDR_INFO_LAST_OFFS 12
946 #define MVPP2_B_HDR_INFO_LAST_MASK BIT(12)
947 #define MVPP2_B_HDR_INFO_IS_LAST(info) \
948 ((info & MVPP2_B_HDR_INFO_LAST_MASK) >> MVPP2_B_HDR_INFO_LAST_OFFS)
949
950 /* Static declaractions */
951
952 /* Number of RXQs used by single port */
953 static int rxq_number = MVPP2_DEFAULT_RXQ;
954 /* Number of TXQs used by single port */
955 static int txq_number = MVPP2_MAX_TXQ;
956
957 #define MVPP2_DRIVER_NAME "mvpp2"
958 #define MVPP2_DRIVER_VERSION "1.0"
959
960 /* Utility/helper methods */
961
962 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
963 {
964 writel(data, priv->base + offset);
965 }
966
967 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
968 {
969 return readl(priv->base + offset);
970 }
971
972 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
973 {
974 txq_pcpu->txq_get_index++;
975 if (txq_pcpu->txq_get_index == txq_pcpu->size)
976 txq_pcpu->txq_get_index = 0;
977 }
978
979 static void mvpp2_txq_inc_put(struct mvpp2_txq_pcpu *txq_pcpu,
980 struct sk_buff *skb,
981 struct mvpp2_tx_desc *tx_desc)
982 {
983 txq_pcpu->tx_skb[txq_pcpu->txq_put_index] = skb;
984 if (skb)
985 txq_pcpu->tx_buffs[txq_pcpu->txq_put_index] =
986 tx_desc->buf_phys_addr;
987 txq_pcpu->txq_put_index++;
988 if (txq_pcpu->txq_put_index == txq_pcpu->size)
989 txq_pcpu->txq_put_index = 0;
990 }
991
992 /* Get number of physical egress port */
993 static inline int mvpp2_egress_port(struct mvpp2_port *port)
994 {
995 return MVPP2_MAX_TCONT + port->id;
996 }
997
998 /* Get number of physical TXQ */
999 static inline int mvpp2_txq_phys(int port, int txq)
1000 {
1001 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1002 }
1003
1004 /* Parser configuration routines */
1005
1006 /* Update parser tcam and sram hw entries */
1007 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1008 {
1009 int i;
1010
1011 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1012 return -EINVAL;
1013
1014 /* Clear entry invalidation bit */
1015 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1016
1017 /* Write tcam index - indirect access */
1018 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1019 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1020 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1021
1022 /* Write sram index - indirect access */
1023 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1024 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1025 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1026
1027 return 0;
1028 }
1029
1030 /* Read tcam entry from hw */
1031 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1032 {
1033 int i;
1034
1035 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1036 return -EINVAL;
1037
1038 /* Write tcam index - indirect access */
1039 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1040
1041 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1042 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1043 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1044 return MVPP2_PRS_TCAM_ENTRY_INVALID;
1045
1046 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1047 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1048
1049 /* Write sram index - indirect access */
1050 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1051 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1052 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1053
1054 return 0;
1055 }
1056
1057 /* Invalidate tcam hw entry */
1058 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1059 {
1060 /* Write index - indirect access */
1061 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1062 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1063 MVPP2_PRS_TCAM_INV_MASK);
1064 }
1065
1066 /* Enable shadow table entry and set its lookup ID */
1067 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1068 {
1069 priv->prs_shadow[index].valid = true;
1070 priv->prs_shadow[index].lu = lu;
1071 }
1072
1073 /* Update ri fields in shadow table entry */
1074 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1075 unsigned int ri, unsigned int ri_mask)
1076 {
1077 priv->prs_shadow[index].ri_mask = ri_mask;
1078 priv->prs_shadow[index].ri = ri;
1079 }
1080
1081 /* Update lookup field in tcam sw entry */
1082 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1083 {
1084 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1085
1086 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1087 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1088 }
1089
1090 /* Update mask for single port in tcam sw entry */
1091 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1092 unsigned int port, bool add)
1093 {
1094 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1095
1096 if (add)
1097 pe->tcam.byte[enable_off] &= ~(1 << port);
1098 else
1099 pe->tcam.byte[enable_off] |= 1 << port;
1100 }
1101
1102 /* Update port map in tcam sw entry */
1103 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1104 unsigned int ports)
1105 {
1106 unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1107 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1108
1109 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1110 pe->tcam.byte[enable_off] &= ~port_mask;
1111 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1112 }
1113
1114 /* Obtain port map from tcam sw entry */
1115 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1116 {
1117 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1118
1119 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1120 }
1121
1122 /* Set byte of data and its enable bits in tcam sw entry */
1123 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1124 unsigned int offs, unsigned char byte,
1125 unsigned char enable)
1126 {
1127 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1128 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1129 }
1130
1131 /* Get byte of data and its enable bits from tcam sw entry */
1132 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1133 unsigned int offs, unsigned char *byte,
1134 unsigned char *enable)
1135 {
1136 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1137 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1138 }
1139
1140 /* Compare tcam data bytes with a pattern */
1141 static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
1142 u16 data)
1143 {
1144 int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
1145 u16 tcam_data;
1146
1147 tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off];
1148 if (tcam_data != data)
1149 return false;
1150 return true;
1151 }
1152
1153 /* Update ai bits in tcam sw entry */
1154 static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
1155 unsigned int bits, unsigned int enable)
1156 {
1157 int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
1158
1159 for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
1160
1161 if (!(enable & BIT(i)))
1162 continue;
1163
1164 if (bits & BIT(i))
1165 pe->tcam.byte[ai_idx] |= 1 << i;
1166 else
1167 pe->tcam.byte[ai_idx] &= ~(1 << i);
1168 }
1169
1170 pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
1171 }
1172
1173 /* Get ai bits from tcam sw entry */
1174 static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
1175 {
1176 return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
1177 }
1178
1179 /* Set ethertype in tcam sw entry */
1180 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1181 unsigned short ethertype)
1182 {
1183 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1184 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1185 }
1186
1187 /* Set bits in sram sw entry */
1188 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1189 int val)
1190 {
1191 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1192 }
1193
1194 /* Clear bits in sram sw entry */
1195 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1196 int val)
1197 {
1198 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1199 }
1200
1201 /* Update ri bits in sram sw entry */
1202 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1203 unsigned int bits, unsigned int mask)
1204 {
1205 unsigned int i;
1206
1207 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1208 int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1209
1210 if (!(mask & BIT(i)))
1211 continue;
1212
1213 if (bits & BIT(i))
1214 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1215 else
1216 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1217
1218 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1219 }
1220 }
1221
1222 /* Obtain ri bits from sram sw entry */
1223 static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
1224 {
1225 return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
1226 }
1227
1228 /* Update ai bits in sram sw entry */
1229 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1230 unsigned int bits, unsigned int mask)
1231 {
1232 unsigned int i;
1233 int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1234
1235 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1236
1237 if (!(mask & BIT(i)))
1238 continue;
1239
1240 if (bits & BIT(i))
1241 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1242 else
1243 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1244
1245 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1246 }
1247 }
1248
1249 /* Read ai bits from sram sw entry */
1250 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1251 {
1252 u8 bits;
1253 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1254 int ai_en_off = ai_off + 1;
1255 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1256
1257 bits = (pe->sram.byte[ai_off] >> ai_shift) |
1258 (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1259
1260 return bits;
1261 }
1262
1263 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1264 * lookup interation
1265 */
1266 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1267 unsigned int lu)
1268 {
1269 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1270
1271 mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1272 MVPP2_PRS_SRAM_NEXT_LU_MASK);
1273 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1274 }
1275
1276 /* In the sram sw entry set sign and value of the next lookup offset
1277 * and the offset value generated to the classifier
1278 */
1279 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1280 unsigned int op)
1281 {
1282 /* Set sign */
1283 if (shift < 0) {
1284 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1285 shift = 0 - shift;
1286 } else {
1287 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1288 }
1289
1290 /* Set value */
1291 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1292 (unsigned char)shift;
1293
1294 /* Reset and set operation */
1295 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1296 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1297 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1298
1299 /* Set base offset as current */
1300 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1301 }
1302
1303 /* In the sram sw entry set sign and value of the user defined offset
1304 * generated to the classifier
1305 */
1306 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1307 unsigned int type, int offset,
1308 unsigned int op)
1309 {
1310 /* Set sign */
1311 if (offset < 0) {
1312 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1313 offset = 0 - offset;
1314 } else {
1315 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1316 }
1317
1318 /* Set value */
1319 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1320 MVPP2_PRS_SRAM_UDF_MASK);
1321 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1322 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1323 MVPP2_PRS_SRAM_UDF_BITS)] &=
1324 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1325 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1326 MVPP2_PRS_SRAM_UDF_BITS)] |=
1327 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1328
1329 /* Set offset type */
1330 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1331 MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1332 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1333
1334 /* Set offset operation */
1335 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1336 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1337 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1338
1339 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1340 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1341 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1342 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1343
1344 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1345 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1346 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1347
1348 /* Set base offset as current */
1349 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1350 }
1351
1352 /* Find parser flow entry */
1353 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1354 {
1355 struct mvpp2_prs_entry *pe;
1356 int tid;
1357
1358 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1359 if (!pe)
1360 return NULL;
1361 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1362
1363 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1364 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1365 u8 bits;
1366
1367 if (!priv->prs_shadow[tid].valid ||
1368 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1369 continue;
1370
1371 pe->index = tid;
1372 mvpp2_prs_hw_read(priv, pe);
1373 bits = mvpp2_prs_sram_ai_get(pe);
1374
1375 /* Sram store classification lookup ID in AI bits [5:0] */
1376 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1377 return pe;
1378 }
1379 kfree(pe);
1380
1381 return NULL;
1382 }
1383
1384 /* Return first free tcam index, seeking from start to end */
1385 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1386 unsigned char end)
1387 {
1388 int tid;
1389
1390 if (start > end)
1391 swap(start, end);
1392
1393 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1394 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1395
1396 for (tid = start; tid <= end; tid++) {
1397 if (!priv->prs_shadow[tid].valid)
1398 return tid;
1399 }
1400
1401 return -EINVAL;
1402 }
1403
1404 /* Enable/disable dropping all mac da's */
1405 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1406 {
1407 struct mvpp2_prs_entry pe;
1408
1409 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1410 /* Entry exist - update port only */
1411 pe.index = MVPP2_PE_DROP_ALL;
1412 mvpp2_prs_hw_read(priv, &pe);
1413 } else {
1414 /* Entry doesn't exist - create new */
1415 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1416 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1417 pe.index = MVPP2_PE_DROP_ALL;
1418
1419 /* Non-promiscuous mode for all ports - DROP unknown packets */
1420 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1421 MVPP2_PRS_RI_DROP_MASK);
1422
1423 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1424 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1425
1426 /* Update shadow table */
1427 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1428
1429 /* Mask all ports */
1430 mvpp2_prs_tcam_port_map_set(&pe, 0);
1431 }
1432
1433 /* Update port mask */
1434 mvpp2_prs_tcam_port_set(&pe, port, add);
1435
1436 mvpp2_prs_hw_write(priv, &pe);
1437 }
1438
1439 /* Set port to promiscuous mode */
1440 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1441 {
1442 struct mvpp2_prs_entry pe;
1443
1444 /* Promiscuous mode - Accept unknown packets */
1445
1446 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1447 /* Entry exist - update port only */
1448 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1449 mvpp2_prs_hw_read(priv, &pe);
1450 } else {
1451 /* Entry doesn't exist - create new */
1452 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1453 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1454 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1455
1456 /* Continue - set next lookup */
1457 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1458
1459 /* Set result info bits */
1460 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1461 MVPP2_PRS_RI_L2_CAST_MASK);
1462
1463 /* Shift to ethertype */
1464 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1465 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1466
1467 /* Mask all ports */
1468 mvpp2_prs_tcam_port_map_set(&pe, 0);
1469
1470 /* Update shadow table */
1471 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1472 }
1473
1474 /* Update port mask */
1475 mvpp2_prs_tcam_port_set(&pe, port, add);
1476
1477 mvpp2_prs_hw_write(priv, &pe);
1478 }
1479
1480 /* Accept multicast */
1481 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1482 bool add)
1483 {
1484 struct mvpp2_prs_entry pe;
1485 unsigned char da_mc;
1486
1487 /* Ethernet multicast address first byte is
1488 * 0x01 for IPv4 and 0x33 for IPv6
1489 */
1490 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1491
1492 if (priv->prs_shadow[index].valid) {
1493 /* Entry exist - update port only */
1494 pe.index = index;
1495 mvpp2_prs_hw_read(priv, &pe);
1496 } else {
1497 /* Entry doesn't exist - create new */
1498 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1499 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1500 pe.index = index;
1501
1502 /* Continue - set next lookup */
1503 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1504
1505 /* Set result info bits */
1506 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1507 MVPP2_PRS_RI_L2_CAST_MASK);
1508
1509 /* Update tcam entry data first byte */
1510 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1511
1512 /* Shift to ethertype */
1513 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1514 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1515
1516 /* Mask all ports */
1517 mvpp2_prs_tcam_port_map_set(&pe, 0);
1518
1519 /* Update shadow table */
1520 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1521 }
1522
1523 /* Update port mask */
1524 mvpp2_prs_tcam_port_set(&pe, port, add);
1525
1526 mvpp2_prs_hw_write(priv, &pe);
1527 }
1528
1529 /* Set entry for dsa packets */
1530 static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
1531 bool tagged, bool extend)
1532 {
1533 struct mvpp2_prs_entry pe;
1534 int tid, shift;
1535
1536 if (extend) {
1537 tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
1538 shift = 8;
1539 } else {
1540 tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
1541 shift = 4;
1542 }
1543
1544 if (priv->prs_shadow[tid].valid) {
1545 /* Entry exist - update port only */
1546 pe.index = tid;
1547 mvpp2_prs_hw_read(priv, &pe);
1548 } else {
1549 /* Entry doesn't exist - create new */
1550 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1551 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1552 pe.index = tid;
1553
1554 /* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
1555 mvpp2_prs_sram_shift_set(&pe, shift,
1556 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1557
1558 /* Update shadow table */
1559 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1560
1561 if (tagged) {
1562 /* Set tagged bit in DSA tag */
1563 mvpp2_prs_tcam_data_byte_set(&pe, 0,
1564 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1565 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1566 /* Clear all ai bits for next iteration */
1567 mvpp2_prs_sram_ai_update(&pe, 0,
1568 MVPP2_PRS_SRAM_AI_MASK);
1569 /* If packet is tagged continue check vlans */
1570 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1571 } else {
1572 /* Set result info bits to 'no vlans' */
1573 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1574 MVPP2_PRS_RI_VLAN_MASK);
1575 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1576 }
1577
1578 /* Mask all ports */
1579 mvpp2_prs_tcam_port_map_set(&pe, 0);
1580 }
1581
1582 /* Update port mask */
1583 mvpp2_prs_tcam_port_set(&pe, port, add);
1584
1585 mvpp2_prs_hw_write(priv, &pe);
1586 }
1587
1588 /* Set entry for dsa ethertype */
1589 static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
1590 bool add, bool tagged, bool extend)
1591 {
1592 struct mvpp2_prs_entry pe;
1593 int tid, shift, port_mask;
1594
1595 if (extend) {
1596 tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
1597 MVPP2_PE_ETYPE_EDSA_UNTAGGED;
1598 port_mask = 0;
1599 shift = 8;
1600 } else {
1601 tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
1602 MVPP2_PE_ETYPE_DSA_UNTAGGED;
1603 port_mask = MVPP2_PRS_PORT_MASK;
1604 shift = 4;
1605 }
1606
1607 if (priv->prs_shadow[tid].valid) {
1608 /* Entry exist - update port only */
1609 pe.index = tid;
1610 mvpp2_prs_hw_read(priv, &pe);
1611 } else {
1612 /* Entry doesn't exist - create new */
1613 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1614 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1615 pe.index = tid;
1616
1617 /* Set ethertype */
1618 mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
1619 mvpp2_prs_match_etype(&pe, 2, 0);
1620
1621 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
1622 MVPP2_PRS_RI_DSA_MASK);
1623 /* Shift ethertype + 2 byte reserved + tag*/
1624 mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
1625 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1626
1627 /* Update shadow table */
1628 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1629
1630 if (tagged) {
1631 /* Set tagged bit in DSA tag */
1632 mvpp2_prs_tcam_data_byte_set(&pe,
1633 MVPP2_ETH_TYPE_LEN + 2 + 3,
1634 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1635 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1636 /* Clear all ai bits for next iteration */
1637 mvpp2_prs_sram_ai_update(&pe, 0,
1638 MVPP2_PRS_SRAM_AI_MASK);
1639 /* If packet is tagged continue check vlans */
1640 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1641 } else {
1642 /* Set result info bits to 'no vlans' */
1643 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1644 MVPP2_PRS_RI_VLAN_MASK);
1645 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1646 }
1647 /* Mask/unmask all ports, depending on dsa type */
1648 mvpp2_prs_tcam_port_map_set(&pe, port_mask);
1649 }
1650
1651 /* Update port mask */
1652 mvpp2_prs_tcam_port_set(&pe, port, add);
1653
1654 mvpp2_prs_hw_write(priv, &pe);
1655 }
1656
1657 /* Search for existing single/triple vlan entry */
1658 static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
1659 unsigned short tpid, int ai)
1660 {
1661 struct mvpp2_prs_entry *pe;
1662 int tid;
1663
1664 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1665 if (!pe)
1666 return NULL;
1667 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1668
1669 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
1670 for (tid = MVPP2_PE_FIRST_FREE_TID;
1671 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1672 unsigned int ri_bits, ai_bits;
1673 bool match;
1674
1675 if (!priv->prs_shadow[tid].valid ||
1676 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1677 continue;
1678
1679 pe->index = tid;
1680
1681 mvpp2_prs_hw_read(priv, pe);
1682 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
1683 if (!match)
1684 continue;
1685
1686 /* Get vlan type */
1687 ri_bits = mvpp2_prs_sram_ri_get(pe);
1688 ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1689
1690 /* Get current ai value from tcam */
1691 ai_bits = mvpp2_prs_tcam_ai_get(pe);
1692 /* Clear double vlan bit */
1693 ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
1694
1695 if (ai != ai_bits)
1696 continue;
1697
1698 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1699 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1700 return pe;
1701 }
1702 kfree(pe);
1703
1704 return NULL;
1705 }
1706
1707 /* Add/update single/triple vlan entry */
1708 static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
1709 unsigned int port_map)
1710 {
1711 struct mvpp2_prs_entry *pe;
1712 int tid_aux, tid;
1713 int ret = 0;
1714
1715 pe = mvpp2_prs_vlan_find(priv, tpid, ai);
1716
1717 if (!pe) {
1718 /* Create new tcam entry */
1719 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
1720 MVPP2_PE_FIRST_FREE_TID);
1721 if (tid < 0)
1722 return tid;
1723
1724 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1725 if (!pe)
1726 return -ENOMEM;
1727
1728 /* Get last double vlan tid */
1729 for (tid_aux = MVPP2_PE_LAST_FREE_TID;
1730 tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
1731 unsigned int ri_bits;
1732
1733 if (!priv->prs_shadow[tid_aux].valid ||
1734 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1735 continue;
1736
1737 pe->index = tid_aux;
1738 mvpp2_prs_hw_read(priv, pe);
1739 ri_bits = mvpp2_prs_sram_ri_get(pe);
1740 if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
1741 MVPP2_PRS_RI_VLAN_DOUBLE)
1742 break;
1743 }
1744
1745 if (tid <= tid_aux) {
1746 ret = -EINVAL;
1747 goto error;
1748 }
1749
1750 memset(pe, 0 , sizeof(struct mvpp2_prs_entry));
1751 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1752 pe->index = tid;
1753
1754 mvpp2_prs_match_etype(pe, 0, tpid);
1755
1756 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
1757 /* Shift 4 bytes - skip 1 vlan tag */
1758 mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
1759 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1760 /* Clear all ai bits for next iteration */
1761 mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);
1762
1763 if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
1764 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
1765 MVPP2_PRS_RI_VLAN_MASK);
1766 } else {
1767 ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
1768 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
1769 MVPP2_PRS_RI_VLAN_MASK);
1770 }
1771 mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);
1772
1773 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1774 }
1775 /* Update ports' mask */
1776 mvpp2_prs_tcam_port_map_set(pe, port_map);
1777
1778 mvpp2_prs_hw_write(priv, pe);
1779
1780 error:
1781 kfree(pe);
1782
1783 return ret;
1784 }
1785
1786 /* Get first free double vlan ai number */
1787 static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
1788 {
1789 int i;
1790
1791 for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
1792 if (!priv->prs_double_vlans[i])
1793 return i;
1794 }
1795
1796 return -EINVAL;
1797 }
1798
1799 /* Search for existing double vlan entry */
1800 static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
1801 unsigned short tpid1,
1802 unsigned short tpid2)
1803 {
1804 struct mvpp2_prs_entry *pe;
1805 int tid;
1806
1807 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1808 if (!pe)
1809 return NULL;
1810 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1811
1812 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
1813 for (tid = MVPP2_PE_FIRST_FREE_TID;
1814 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1815 unsigned int ri_mask;
1816 bool match;
1817
1818 if (!priv->prs_shadow[tid].valid ||
1819 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1820 continue;
1821
1822 pe->index = tid;
1823 mvpp2_prs_hw_read(priv, pe);
1824
1825 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
1826 && mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));
1827
1828 if (!match)
1829 continue;
1830
1831 ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
1832 if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
1833 return pe;
1834 }
1835 kfree(pe);
1836
1837 return NULL;
1838 }
1839
1840 /* Add or update double vlan entry */
1841 static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
1842 unsigned short tpid2,
1843 unsigned int port_map)
1844 {
1845 struct mvpp2_prs_entry *pe;
1846 int tid_aux, tid, ai, ret = 0;
1847
1848 pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
1849
1850 if (!pe) {
1851 /* Create new tcam entry */
1852 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1853 MVPP2_PE_LAST_FREE_TID);
1854 if (tid < 0)
1855 return tid;
1856
1857 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1858 if (!pe)
1859 return -ENOMEM;
1860
1861 /* Set ai value for new double vlan entry */
1862 ai = mvpp2_prs_double_vlan_ai_free_get(priv);
1863 if (ai < 0) {
1864 ret = ai;
1865 goto error;
1866 }
1867
1868 /* Get first single/triple vlan tid */
1869 for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
1870 tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
1871 unsigned int ri_bits;
1872
1873 if (!priv->prs_shadow[tid_aux].valid ||
1874 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1875 continue;
1876
1877 pe->index = tid_aux;
1878 mvpp2_prs_hw_read(priv, pe);
1879 ri_bits = mvpp2_prs_sram_ri_get(pe);
1880 ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1881 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1882 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1883 break;
1884 }
1885
1886 if (tid >= tid_aux) {
1887 ret = -ERANGE;
1888 goto error;
1889 }
1890
1891 memset(pe, 0, sizeof(struct mvpp2_prs_entry));
1892 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1893 pe->index = tid;
1894
1895 priv->prs_double_vlans[ai] = true;
1896
1897 mvpp2_prs_match_etype(pe, 0, tpid1);
1898 mvpp2_prs_match_etype(pe, 4, tpid2);
1899
1900 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
1901 /* Shift 8 bytes - skip 2 vlan tags */
1902 mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
1903 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1904 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
1905 MVPP2_PRS_RI_VLAN_MASK);
1906 mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
1907 MVPP2_PRS_SRAM_AI_MASK);
1908
1909 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1910 }
1911
1912 /* Update ports' mask */
1913 mvpp2_prs_tcam_port_map_set(pe, port_map);
1914 mvpp2_prs_hw_write(priv, pe);
1915
1916 error:
1917 kfree(pe);
1918 return ret;
1919 }
1920
1921 /* IPv4 header parsing for fragmentation and L4 offset */
1922 static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
1923 unsigned int ri, unsigned int ri_mask)
1924 {
1925 struct mvpp2_prs_entry pe;
1926 int tid;
1927
1928 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
1929 (proto != IPPROTO_IGMP))
1930 return -EINVAL;
1931
1932 /* Fragmented packet */
1933 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1934 MVPP2_PE_LAST_FREE_TID);
1935 if (tid < 0)
1936 return tid;
1937
1938 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1939 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1940 pe.index = tid;
1941
1942 /* Set next lu to IPv4 */
1943 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1944 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1945 /* Set L4 offset */
1946 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
1947 sizeof(struct iphdr) - 4,
1948 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1949 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
1950 MVPP2_PRS_IPV4_DIP_AI_BIT);
1951 mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK,
1952 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
1953
1954 mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
1955 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
1956 /* Unmask all ports */
1957 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1958
1959 /* Update shadow table and hw entry */
1960 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1961 mvpp2_prs_hw_write(priv, &pe);
1962
1963 /* Not fragmented packet */
1964 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1965 MVPP2_PE_LAST_FREE_TID);
1966 if (tid < 0)
1967 return tid;
1968
1969 pe.index = tid;
1970 /* Clear ri before updating */
1971 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1972 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1973 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
1974
1975 mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L);
1976 mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK);
1977
1978 /* Update shadow table and hw entry */
1979 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1980 mvpp2_prs_hw_write(priv, &pe);
1981
1982 return 0;
1983 }
1984
1985 /* IPv4 L3 multicast or broadcast */
1986 static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
1987 {
1988 struct mvpp2_prs_entry pe;
1989 int mask, tid;
1990
1991 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1992 MVPP2_PE_LAST_FREE_TID);
1993 if (tid < 0)
1994 return tid;
1995
1996 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1997 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1998 pe.index = tid;
1999
2000 switch (l3_cast) {
2001 case MVPP2_PRS_L3_MULTI_CAST:
2002 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
2003 MVPP2_PRS_IPV4_MC_MASK);
2004 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2005 MVPP2_PRS_RI_L3_ADDR_MASK);
2006 break;
2007 case MVPP2_PRS_L3_BROAD_CAST:
2008 mask = MVPP2_PRS_IPV4_BC_MASK;
2009 mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
2010 mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
2011 mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
2012 mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
2013 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
2014 MVPP2_PRS_RI_L3_ADDR_MASK);
2015 break;
2016 default:
2017 return -EINVAL;
2018 }
2019
2020 /* Finished: go to flowid generation */
2021 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2022 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2023
2024 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2025 MVPP2_PRS_IPV4_DIP_AI_BIT);
2026 /* Unmask all ports */
2027 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2028
2029 /* Update shadow table and hw entry */
2030 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2031 mvpp2_prs_hw_write(priv, &pe);
2032
2033 return 0;
2034 }
2035
2036 /* Set entries for protocols over IPv6 */
2037 static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
2038 unsigned int ri, unsigned int ri_mask)
2039 {
2040 struct mvpp2_prs_entry pe;
2041 int tid;
2042
2043 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
2044 (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
2045 return -EINVAL;
2046
2047 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2048 MVPP2_PE_LAST_FREE_TID);
2049 if (tid < 0)
2050 return tid;
2051
2052 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2053 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2054 pe.index = tid;
2055
2056 /* Finished: go to flowid generation */
2057 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2058 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2059 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
2060 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2061 sizeof(struct ipv6hdr) - 6,
2062 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2063
2064 mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
2065 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2066 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2067 /* Unmask all ports */
2068 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2069
2070 /* Write HW */
2071 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2072 mvpp2_prs_hw_write(priv, &pe);
2073
2074 return 0;
2075 }
2076
2077 /* IPv6 L3 multicast entry */
2078 static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
2079 {
2080 struct mvpp2_prs_entry pe;
2081 int tid;
2082
2083 if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
2084 return -EINVAL;
2085
2086 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2087 MVPP2_PE_LAST_FREE_TID);
2088 if (tid < 0)
2089 return tid;
2090
2091 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2092 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2093 pe.index = tid;
2094
2095 /* Finished: go to flowid generation */
2096 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2097 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2098 MVPP2_PRS_RI_L3_ADDR_MASK);
2099 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2100 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2101 /* Shift back to IPv6 NH */
2102 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2103
2104 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
2105 MVPP2_PRS_IPV6_MC_MASK);
2106 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2107 /* Unmask all ports */
2108 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2109
2110 /* Update shadow table and hw entry */
2111 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2112 mvpp2_prs_hw_write(priv, &pe);
2113
2114 return 0;
2115 }
2116
2117 /* Parser per-port initialization */
2118 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
2119 int lu_max, int offset)
2120 {
2121 u32 val;
2122
2123 /* Set lookup ID */
2124 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
2125 val &= ~MVPP2_PRS_PORT_LU_MASK(port);
2126 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
2127 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
2128
2129 /* Set maximum number of loops for packet received from port */
2130 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
2131 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
2132 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
2133 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
2134
2135 /* Set initial offset for packet header extraction for the first
2136 * searching loop
2137 */
2138 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
2139 val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
2140 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
2141 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
2142 }
2143
2144 /* Default flow entries initialization for all ports */
2145 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
2146 {
2147 struct mvpp2_prs_entry pe;
2148 int port;
2149
2150 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
2151 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2152 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2153 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
2154
2155 /* Mask all ports */
2156 mvpp2_prs_tcam_port_map_set(&pe, 0);
2157
2158 /* Set flow ID*/
2159 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
2160 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2161
2162 /* Update shadow table and hw entry */
2163 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
2164 mvpp2_prs_hw_write(priv, &pe);
2165 }
2166 }
2167
2168 /* Set default entry for Marvell Header field */
2169 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
2170 {
2171 struct mvpp2_prs_entry pe;
2172
2173 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2174
2175 pe.index = MVPP2_PE_MH_DEFAULT;
2176 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
2177 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
2178 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2179 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
2180
2181 /* Unmask all ports */
2182 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2183
2184 /* Update shadow table and hw entry */
2185 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
2186 mvpp2_prs_hw_write(priv, &pe);
2187 }
2188
2189 /* Set default entires (place holder) for promiscuous, non-promiscuous and
2190 * multicast MAC addresses
2191 */
2192 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
2193 {
2194 struct mvpp2_prs_entry pe;
2195
2196 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2197
2198 /* Non-promiscuous mode for all ports - DROP unknown packets */
2199 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
2200 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
2201
2202 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
2203 MVPP2_PRS_RI_DROP_MASK);
2204 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2205 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2206
2207 /* Unmask all ports */
2208 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2209
2210 /* Update shadow table and hw entry */
2211 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2212 mvpp2_prs_hw_write(priv, &pe);
2213
2214 /* place holders only - no ports */
2215 mvpp2_prs_mac_drop_all_set(priv, 0, false);
2216 mvpp2_prs_mac_promisc_set(priv, 0, false);
2217 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
2218 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
2219 }
2220
2221 /* Set default entries for various types of dsa packets */
2222 static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
2223 {
2224 struct mvpp2_prs_entry pe;
2225
2226 /* None tagged EDSA entry - place holder */
2227 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2228 MVPP2_PRS_EDSA);
2229
2230 /* Tagged EDSA entry - place holder */
2231 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2232
2233 /* None tagged DSA entry - place holder */
2234 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2235 MVPP2_PRS_DSA);
2236
2237 /* Tagged DSA entry - place holder */
2238 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2239
2240 /* None tagged EDSA ethertype entry - place holder*/
2241 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2242 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
2243
2244 /* Tagged EDSA ethertype entry - place holder*/
2245 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2246 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2247
2248 /* None tagged DSA ethertype entry */
2249 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2250 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
2251
2252 /* Tagged DSA ethertype entry */
2253 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2254 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2255
2256 /* Set default entry, in case DSA or EDSA tag not found */
2257 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2258 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
2259 pe.index = MVPP2_PE_DSA_DEFAULT;
2260 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2261
2262 /* Shift 0 bytes */
2263 mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2264 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2265
2266 /* Clear all sram ai bits for next iteration */
2267 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2268
2269 /* Unmask all ports */
2270 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2271
2272 mvpp2_prs_hw_write(priv, &pe);
2273 }
2274
2275 /* Match basic ethertypes */
2276 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2277 {
2278 struct mvpp2_prs_entry pe;
2279 int tid;
2280
2281 /* Ethertype: PPPoE */
2282 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2283 MVPP2_PE_LAST_FREE_TID);
2284 if (tid < 0)
2285 return tid;
2286
2287 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2288 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2289 pe.index = tid;
2290
2291 mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
2292
2293 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2294 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2295 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2296 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2297 MVPP2_PRS_RI_PPPOE_MASK);
2298
2299 /* Update shadow table and hw entry */
2300 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2301 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2302 priv->prs_shadow[pe.index].finish = false;
2303 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2304 MVPP2_PRS_RI_PPPOE_MASK);
2305 mvpp2_prs_hw_write(priv, &pe);
2306
2307 /* Ethertype: ARP */
2308 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2309 MVPP2_PE_LAST_FREE_TID);
2310 if (tid < 0)
2311 return tid;
2312
2313 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2314 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2315 pe.index = tid;
2316
2317 mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
2318
2319 /* Generate flow in the next iteration*/
2320 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2321 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2322 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2323 MVPP2_PRS_RI_L3_PROTO_MASK);
2324 /* Set L3 offset */
2325 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2326 MVPP2_ETH_TYPE_LEN,
2327 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2328
2329 /* Update shadow table and hw entry */
2330 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2331 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2332 priv->prs_shadow[pe.index].finish = true;
2333 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2334 MVPP2_PRS_RI_L3_PROTO_MASK);
2335 mvpp2_prs_hw_write(priv, &pe);
2336
2337 /* Ethertype: LBTD */
2338 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2339 MVPP2_PE_LAST_FREE_TID);
2340 if (tid < 0)
2341 return tid;
2342
2343 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2344 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2345 pe.index = tid;
2346
2347 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2348
2349 /* Generate flow in the next iteration*/
2350 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2351 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2352 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2353 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2354 MVPP2_PRS_RI_CPU_CODE_MASK |
2355 MVPP2_PRS_RI_UDF3_MASK);
2356 /* Set L3 offset */
2357 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2358 MVPP2_ETH_TYPE_LEN,
2359 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2360
2361 /* Update shadow table and hw entry */
2362 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2363 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2364 priv->prs_shadow[pe.index].finish = true;
2365 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2366 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2367 MVPP2_PRS_RI_CPU_CODE_MASK |
2368 MVPP2_PRS_RI_UDF3_MASK);
2369 mvpp2_prs_hw_write(priv, &pe);
2370
2371 /* Ethertype: IPv4 without options */
2372 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2373 MVPP2_PE_LAST_FREE_TID);
2374 if (tid < 0)
2375 return tid;
2376
2377 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2378 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2379 pe.index = tid;
2380
2381 mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
2382 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2383 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2384 MVPP2_PRS_IPV4_HEAD_MASK |
2385 MVPP2_PRS_IPV4_IHL_MASK);
2386
2387 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2388 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2389 MVPP2_PRS_RI_L3_PROTO_MASK);
2390 /* Skip eth_type + 4 bytes of IP header */
2391 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2392 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2393 /* Set L3 offset */
2394 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2395 MVPP2_ETH_TYPE_LEN,
2396 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2397
2398 /* Update shadow table and hw entry */
2399 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2400 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2401 priv->prs_shadow[pe.index].finish = false;
2402 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2403 MVPP2_PRS_RI_L3_PROTO_MASK);
2404 mvpp2_prs_hw_write(priv, &pe);
2405
2406 /* Ethertype: IPv4 with options */
2407 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2408 MVPP2_PE_LAST_FREE_TID);
2409 if (tid < 0)
2410 return tid;
2411
2412 pe.index = tid;
2413
2414 /* Clear tcam data before updating */
2415 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2416 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2417
2418 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2419 MVPP2_PRS_IPV4_HEAD,
2420 MVPP2_PRS_IPV4_HEAD_MASK);
2421
2422 /* Clear ri before updating */
2423 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2424 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2425 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2426 MVPP2_PRS_RI_L3_PROTO_MASK);
2427
2428 /* Update shadow table and hw entry */
2429 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2430 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2431 priv->prs_shadow[pe.index].finish = false;
2432 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2433 MVPP2_PRS_RI_L3_PROTO_MASK);
2434 mvpp2_prs_hw_write(priv, &pe);
2435
2436 /* Ethertype: IPv6 without options */
2437 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2438 MVPP2_PE_LAST_FREE_TID);
2439 if (tid < 0)
2440 return tid;
2441
2442 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2443 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2444 pe.index = tid;
2445
2446 mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
2447
2448 /* Skip DIP of IPV6 header */
2449 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2450 MVPP2_MAX_L3_ADDR_SIZE,
2451 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2452 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2453 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2454 MVPP2_PRS_RI_L3_PROTO_MASK);
2455 /* Set L3 offset */
2456 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2457 MVPP2_ETH_TYPE_LEN,
2458 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2459
2460 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2461 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2462 priv->prs_shadow[pe.index].finish = false;
2463 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2464 MVPP2_PRS_RI_L3_PROTO_MASK);
2465 mvpp2_prs_hw_write(priv, &pe);
2466
2467 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2468 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2469 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2470 pe.index = MVPP2_PE_ETH_TYPE_UN;
2471
2472 /* Unmask all ports */
2473 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2474
2475 /* Generate flow in the next iteration*/
2476 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2477 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2478 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2479 MVPP2_PRS_RI_L3_PROTO_MASK);
2480 /* Set L3 offset even it's unknown L3 */
2481 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2482 MVPP2_ETH_TYPE_LEN,
2483 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2484
2485 /* Update shadow table and hw entry */
2486 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2487 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2488 priv->prs_shadow[pe.index].finish = true;
2489 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2490 MVPP2_PRS_RI_L3_PROTO_MASK);
2491 mvpp2_prs_hw_write(priv, &pe);
2492
2493 return 0;
2494 }
2495
2496 /* Configure vlan entries and detect up to 2 successive VLAN tags.
2497 * Possible options:
2498 * 0x8100, 0x88A8
2499 * 0x8100, 0x8100
2500 * 0x8100
2501 * 0x88A8
2502 */
2503 static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
2504 {
2505 struct mvpp2_prs_entry pe;
2506 int err;
2507
2508 priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
2509 MVPP2_PRS_DBL_VLANS_MAX,
2510 GFP_KERNEL);
2511 if (!priv->prs_double_vlans)
2512 return -ENOMEM;
2513
2514 /* Double VLAN: 0x8100, 0x88A8 */
2515 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
2516 MVPP2_PRS_PORT_MASK);
2517 if (err)
2518 return err;
2519
2520 /* Double VLAN: 0x8100, 0x8100 */
2521 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
2522 MVPP2_PRS_PORT_MASK);
2523 if (err)
2524 return err;
2525
2526 /* Single VLAN: 0x88a8 */
2527 err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
2528 MVPP2_PRS_PORT_MASK);
2529 if (err)
2530 return err;
2531
2532 /* Single VLAN: 0x8100 */
2533 err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
2534 MVPP2_PRS_PORT_MASK);
2535 if (err)
2536 return err;
2537
2538 /* Set default double vlan entry */
2539 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2540 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2541 pe.index = MVPP2_PE_VLAN_DBL;
2542
2543 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2544 /* Clear ai for next iterations */
2545 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2546 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
2547 MVPP2_PRS_RI_VLAN_MASK);
2548
2549 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
2550 MVPP2_PRS_DBL_VLAN_AI_BIT);
2551 /* Unmask all ports */
2552 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2553
2554 /* Update shadow table and hw entry */
2555 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2556 mvpp2_prs_hw_write(priv, &pe);
2557
2558 /* Set default vlan none entry */
2559 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2560 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2561 pe.index = MVPP2_PE_VLAN_NONE;
2562
2563 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2564 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
2565 MVPP2_PRS_RI_VLAN_MASK);
2566
2567 /* Unmask all ports */
2568 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2569
2570 /* Update shadow table and hw entry */
2571 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2572 mvpp2_prs_hw_write(priv, &pe);
2573
2574 return 0;
2575 }
2576
2577 /* Set entries for PPPoE ethertype */
2578 static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
2579 {
2580 struct mvpp2_prs_entry pe;
2581 int tid;
2582
2583 /* IPv4 over PPPoE with options */
2584 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2585 MVPP2_PE_LAST_FREE_TID);
2586 if (tid < 0)
2587 return tid;
2588
2589 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2590 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2591 pe.index = tid;
2592
2593 mvpp2_prs_match_etype(&pe, 0, PPP_IP);
2594
2595 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2596 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2597 MVPP2_PRS_RI_L3_PROTO_MASK);
2598 /* Skip eth_type + 4 bytes of IP header */
2599 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2600 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2601 /* Set L3 offset */
2602 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2603 MVPP2_ETH_TYPE_LEN,
2604 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2605
2606 /* Update shadow table and hw entry */
2607 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2608 mvpp2_prs_hw_write(priv, &pe);
2609
2610 /* IPv4 over PPPoE without options */
2611 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2612 MVPP2_PE_LAST_FREE_TID);
2613 if (tid < 0)
2614 return tid;
2615
2616 pe.index = tid;
2617
2618 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2619 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2620 MVPP2_PRS_IPV4_HEAD_MASK |
2621 MVPP2_PRS_IPV4_IHL_MASK);
2622
2623 /* Clear ri before updating */
2624 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2625 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2626 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2627 MVPP2_PRS_RI_L3_PROTO_MASK);
2628
2629 /* Update shadow table and hw entry */
2630 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2631 mvpp2_prs_hw_write(priv, &pe);
2632
2633 /* IPv6 over PPPoE */
2634 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2635 MVPP2_PE_LAST_FREE_TID);
2636 if (tid < 0)
2637 return tid;
2638
2639 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2640 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2641 pe.index = tid;
2642
2643 mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
2644
2645 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2646 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2647 MVPP2_PRS_RI_L3_PROTO_MASK);
2648 /* Skip eth_type + 4 bytes of IPv6 header */
2649 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2650 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2651 /* Set L3 offset */
2652 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2653 MVPP2_ETH_TYPE_LEN,
2654 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2655
2656 /* Update shadow table and hw entry */
2657 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2658 mvpp2_prs_hw_write(priv, &pe);
2659
2660 /* Non-IP over PPPoE */
2661 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2662 MVPP2_PE_LAST_FREE_TID);
2663 if (tid < 0)
2664 return tid;
2665
2666 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2667 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2668 pe.index = tid;
2669
2670 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2671 MVPP2_PRS_RI_L3_PROTO_MASK);
2672
2673 /* Finished: go to flowid generation */
2674 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2675 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2676 /* Set L3 offset even if it's unknown L3 */
2677 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2678 MVPP2_ETH_TYPE_LEN,
2679 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2680
2681 /* Update shadow table and hw entry */
2682 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2683 mvpp2_prs_hw_write(priv, &pe);
2684
2685 return 0;
2686 }
2687
2688 /* Initialize entries for IPv4 */
2689 static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
2690 {
2691 struct mvpp2_prs_entry pe;
2692 int err;
2693
2694 /* Set entries for TCP, UDP and IGMP over IPv4 */
2695 err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
2696 MVPP2_PRS_RI_L4_PROTO_MASK);
2697 if (err)
2698 return err;
2699
2700 err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
2701 MVPP2_PRS_RI_L4_PROTO_MASK);
2702 if (err)
2703 return err;
2704
2705 err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
2706 MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2707 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2708 MVPP2_PRS_RI_CPU_CODE_MASK |
2709 MVPP2_PRS_RI_UDF3_MASK);
2710 if (err)
2711 return err;
2712
2713 /* IPv4 Broadcast */
2714 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
2715 if (err)
2716 return err;
2717
2718 /* IPv4 Multicast */
2719 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2720 if (err)
2721 return err;
2722
2723 /* Default IPv4 entry for unknown protocols */
2724 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2725 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2726 pe.index = MVPP2_PE_IP4_PROTO_UN;
2727
2728 /* Set next lu to IPv4 */
2729 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2730 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2731 /* Set L4 offset */
2732 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2733 sizeof(struct iphdr) - 4,
2734 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2735 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2736 MVPP2_PRS_IPV4_DIP_AI_BIT);
2737 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2738 MVPP2_PRS_RI_L4_PROTO_MASK);
2739
2740 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
2741 /* Unmask all ports */
2742 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2743
2744 /* Update shadow table and hw entry */
2745 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2746 mvpp2_prs_hw_write(priv, &pe);
2747
2748 /* Default IPv4 entry for unicast address */
2749 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2750 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2751 pe.index = MVPP2_PE_IP4_ADDR_UN;
2752
2753 /* Finished: go to flowid generation */
2754 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2755 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2756 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2757 MVPP2_PRS_RI_L3_ADDR_MASK);
2758
2759 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2760 MVPP2_PRS_IPV4_DIP_AI_BIT);
2761 /* Unmask all ports */
2762 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2763
2764 /* Update shadow table and hw entry */
2765 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2766 mvpp2_prs_hw_write(priv, &pe);
2767
2768 return 0;
2769 }
2770
2771 /* Initialize entries for IPv6 */
2772 static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
2773 {
2774 struct mvpp2_prs_entry pe;
2775 int tid, err;
2776
2777 /* Set entries for TCP, UDP and ICMP over IPv6 */
2778 err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
2779 MVPP2_PRS_RI_L4_TCP,
2780 MVPP2_PRS_RI_L4_PROTO_MASK);
2781 if (err)
2782 return err;
2783
2784 err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
2785 MVPP2_PRS_RI_L4_UDP,
2786 MVPP2_PRS_RI_L4_PROTO_MASK);
2787 if (err)
2788 return err;
2789
2790 err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
2791 MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2792 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2793 MVPP2_PRS_RI_CPU_CODE_MASK |
2794 MVPP2_PRS_RI_UDF3_MASK);
2795 if (err)
2796 return err;
2797
2798 /* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
2799 /* Result Info: UDF7=1, DS lite */
2800 err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
2801 MVPP2_PRS_RI_UDF7_IP6_LITE,
2802 MVPP2_PRS_RI_UDF7_MASK);
2803 if (err)
2804 return err;
2805
2806 /* IPv6 multicast */
2807 err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2808 if (err)
2809 return err;
2810
2811 /* Entry for checking hop limit */
2812 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2813 MVPP2_PE_LAST_FREE_TID);
2814 if (tid < 0)
2815 return tid;
2816
2817 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2818 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2819 pe.index = tid;
2820
2821 /* Finished: go to flowid generation */
2822 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2823 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2824 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
2825 MVPP2_PRS_RI_DROP_MASK,
2826 MVPP2_PRS_RI_L3_PROTO_MASK |
2827 MVPP2_PRS_RI_DROP_MASK);
2828
2829 mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
2830 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2831 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2832
2833 /* Update shadow table and hw entry */
2834 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2835 mvpp2_prs_hw_write(priv, &pe);
2836
2837 /* Default IPv6 entry for unknown protocols */
2838 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2839 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2840 pe.index = MVPP2_PE_IP6_PROTO_UN;
2841
2842 /* Finished: go to flowid generation */
2843 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2844 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2845 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2846 MVPP2_PRS_RI_L4_PROTO_MASK);
2847 /* Set L4 offset relatively to our current place */
2848 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2849 sizeof(struct ipv6hdr) - 4,
2850 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2851
2852 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2853 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2854 /* Unmask all ports */
2855 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2856
2857 /* Update shadow table and hw entry */
2858 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2859 mvpp2_prs_hw_write(priv, &pe);
2860
2861 /* Default IPv6 entry for unknown ext protocols */
2862 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2863 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2864 pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
2865
2866 /* Finished: go to flowid generation */
2867 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2868 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2869 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2870 MVPP2_PRS_RI_L4_PROTO_MASK);
2871
2872 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
2873 MVPP2_PRS_IPV6_EXT_AI_BIT);
2874 /* Unmask all ports */
2875 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2876
2877 /* Update shadow table and hw entry */
2878 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2879 mvpp2_prs_hw_write(priv, &pe);
2880
2881 /* Default IPv6 entry for unicast address */
2882 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2883 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2884 pe.index = MVPP2_PE_IP6_ADDR_UN;
2885
2886 /* Finished: go to IPv6 again */
2887 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2888 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2889 MVPP2_PRS_RI_L3_ADDR_MASK);
2890 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2891 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2892 /* Shift back to IPV6 NH */
2893 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2894
2895 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2896 /* Unmask all ports */
2897 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2898
2899 /* Update shadow table and hw entry */
2900 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2901 mvpp2_prs_hw_write(priv, &pe);
2902
2903 return 0;
2904 }
2905
2906 /* Parser default initialization */
2907 static int mvpp2_prs_default_init(struct platform_device *pdev,
2908 struct mvpp2 *priv)
2909 {
2910 int err, index, i;
2911
2912 /* Enable tcam table */
2913 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2914
2915 /* Clear all tcam and sram entries */
2916 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2917 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2918 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2919 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2920
2921 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2922 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2923 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2924 }
2925
2926 /* Invalidate all tcam entries */
2927 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2928 mvpp2_prs_hw_inv(priv, index);
2929
2930 priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2931 sizeof(struct mvpp2_prs_shadow),
2932 GFP_KERNEL);
2933 if (!priv->prs_shadow)
2934 return -ENOMEM;
2935
2936 /* Always start from lookup = 0 */
2937 for (index = 0; index < MVPP2_MAX_PORTS; index++)
2938 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2939 MVPP2_PRS_PORT_LU_MAX, 0);
2940
2941 mvpp2_prs_def_flow_init(priv);
2942
2943 mvpp2_prs_mh_init(priv);
2944
2945 mvpp2_prs_mac_init(priv);
2946
2947 mvpp2_prs_dsa_init(priv);
2948
2949 err = mvpp2_prs_etype_init(priv);
2950 if (err)
2951 return err;
2952
2953 err = mvpp2_prs_vlan_init(pdev, priv);
2954 if (err)
2955 return err;
2956
2957 err = mvpp2_prs_pppoe_init(priv);
2958 if (err)
2959 return err;
2960
2961 err = mvpp2_prs_ip6_init(priv);
2962 if (err)
2963 return err;
2964
2965 err = mvpp2_prs_ip4_init(priv);
2966 if (err)
2967 return err;
2968
2969 return 0;
2970 }
2971
2972 /* Compare MAC DA with tcam entry data */
2973 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2974 const u8 *da, unsigned char *mask)
2975 {
2976 unsigned char tcam_byte, tcam_mask;
2977 int index;
2978
2979 for (index = 0; index < ETH_ALEN; index++) {
2980 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2981 if (tcam_mask != mask[index])
2982 return false;
2983
2984 if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2985 return false;
2986 }
2987
2988 return true;
2989 }
2990
2991 /* Find tcam entry with matched pair <MAC DA, port> */
2992 static struct mvpp2_prs_entry *
2993 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2994 unsigned char *mask, int udf_type)
2995 {
2996 struct mvpp2_prs_entry *pe;
2997 int tid;
2998
2999 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3000 if (!pe)
3001 return NULL;
3002 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3003
3004 /* Go through the all entires with MVPP2_PRS_LU_MAC */
3005 for (tid = MVPP2_PE_FIRST_FREE_TID;
3006 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3007 unsigned int entry_pmap;
3008
3009 if (!priv->prs_shadow[tid].valid ||
3010 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3011 (priv->prs_shadow[tid].udf != udf_type))
3012 continue;
3013
3014 pe->index = tid;
3015 mvpp2_prs_hw_read(priv, pe);
3016 entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
3017
3018 if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
3019 entry_pmap == pmap)
3020 return pe;
3021 }
3022 kfree(pe);
3023
3024 return NULL;
3025 }
3026
3027 /* Update parser's mac da entry */
3028 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
3029 const u8 *da, bool add)
3030 {
3031 struct mvpp2_prs_entry *pe;
3032 unsigned int pmap, len, ri;
3033 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3034 int tid;
3035
3036 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
3037 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
3038 MVPP2_PRS_UDF_MAC_DEF);
3039
3040 /* No such entry */
3041 if (!pe) {
3042 if (!add)
3043 return 0;
3044
3045 /* Create new TCAM entry */
3046 /* Find first range mac entry*/
3047 for (tid = MVPP2_PE_FIRST_FREE_TID;
3048 tid <= MVPP2_PE_LAST_FREE_TID; tid++)
3049 if (priv->prs_shadow[tid].valid &&
3050 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
3051 (priv->prs_shadow[tid].udf ==
3052 MVPP2_PRS_UDF_MAC_RANGE))
3053 break;
3054
3055 /* Go through the all entries from first to last */
3056 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3057 tid - 1);
3058 if (tid < 0)
3059 return tid;
3060
3061 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3062 if (!pe)
3063 return -ENOMEM;
3064 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3065 pe->index = tid;
3066
3067 /* Mask all ports */
3068 mvpp2_prs_tcam_port_map_set(pe, 0);
3069 }
3070
3071 /* Update port mask */
3072 mvpp2_prs_tcam_port_set(pe, port, add);
3073
3074 /* Invalidate the entry if no ports are left enabled */
3075 pmap = mvpp2_prs_tcam_port_map_get(pe);
3076 if (pmap == 0) {
3077 if (add) {
3078 kfree(pe);
3079 return -EINVAL;
3080 }
3081 mvpp2_prs_hw_inv(priv, pe->index);
3082 priv->prs_shadow[pe->index].valid = false;
3083 kfree(pe);
3084 return 0;
3085 }
3086
3087 /* Continue - set next lookup */
3088 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
3089
3090 /* Set match on DA */
3091 len = ETH_ALEN;
3092 while (len--)
3093 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
3094
3095 /* Set result info bits */
3096 if (is_broadcast_ether_addr(da))
3097 ri = MVPP2_PRS_RI_L2_BCAST;
3098 else if (is_multicast_ether_addr(da))
3099 ri = MVPP2_PRS_RI_L2_MCAST;
3100 else
3101 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
3102
3103 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3104 MVPP2_PRS_RI_MAC_ME_MASK);
3105 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3106 MVPP2_PRS_RI_MAC_ME_MASK);
3107
3108 /* Shift to ethertype */
3109 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
3110 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3111
3112 /* Update shadow table and hw entry */
3113 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
3114 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
3115 mvpp2_prs_hw_write(priv, pe);
3116
3117 kfree(pe);
3118
3119 return 0;
3120 }
3121
3122 static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
3123 {
3124 struct mvpp2_port *port = netdev_priv(dev);
3125 int err;
3126
3127 /* Remove old parser entry */
3128 err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
3129 false);
3130 if (err)
3131 return err;
3132
3133 /* Add new parser entry */
3134 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
3135 if (err)
3136 return err;
3137
3138 /* Set addr in the device */
3139 ether_addr_copy(dev->dev_addr, da);
3140
3141 return 0;
3142 }
3143
3144 /* Delete all port's multicast simple (not range) entries */
3145 static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
3146 {
3147 struct mvpp2_prs_entry pe;
3148 int index, tid;
3149
3150 for (tid = MVPP2_PE_FIRST_FREE_TID;
3151 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3152 unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
3153
3154 if (!priv->prs_shadow[tid].valid ||
3155 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3156 (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
3157 continue;
3158
3159 /* Only simple mac entries */
3160 pe.index = tid;
3161 mvpp2_prs_hw_read(priv, &pe);
3162
3163 /* Read mac addr from entry */
3164 for (index = 0; index < ETH_ALEN; index++)
3165 mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
3166 &da_mask[index]);
3167
3168 if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
3169 /* Delete this entry */
3170 mvpp2_prs_mac_da_accept(priv, port, da, false);
3171 }
3172 }
3173
3174 static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
3175 {
3176 switch (type) {
3177 case MVPP2_TAG_TYPE_EDSA:
3178 /* Add port to EDSA entries */
3179 mvpp2_prs_dsa_tag_set(priv, port, true,
3180 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3181 mvpp2_prs_dsa_tag_set(priv, port, true,
3182 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3183 /* Remove port from DSA entries */
3184 mvpp2_prs_dsa_tag_set(priv, port, false,
3185 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3186 mvpp2_prs_dsa_tag_set(priv, port, false,
3187 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3188 break;
3189
3190 case MVPP2_TAG_TYPE_DSA:
3191 /* Add port to DSA entries */
3192 mvpp2_prs_dsa_tag_set(priv, port, true,
3193 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3194 mvpp2_prs_dsa_tag_set(priv, port, true,
3195 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3196 /* Remove port from EDSA entries */
3197 mvpp2_prs_dsa_tag_set(priv, port, false,
3198 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3199 mvpp2_prs_dsa_tag_set(priv, port, false,
3200 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3201 break;
3202
3203 case MVPP2_TAG_TYPE_MH:
3204 case MVPP2_TAG_TYPE_NONE:
3205 /* Remove port form EDSA and DSA entries */
3206 mvpp2_prs_dsa_tag_set(priv, port, false,
3207 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3208 mvpp2_prs_dsa_tag_set(priv, port, false,
3209 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3210 mvpp2_prs_dsa_tag_set(priv, port, false,
3211 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3212 mvpp2_prs_dsa_tag_set(priv, port, false,
3213 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3214 break;
3215
3216 default:
3217 if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
3218 return -EINVAL;
3219 }
3220
3221 return 0;
3222 }
3223
3224 /* Set prs flow for the port */
3225 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
3226 {
3227 struct mvpp2_prs_entry *pe;
3228 int tid;
3229
3230 pe = mvpp2_prs_flow_find(port->priv, port->id);
3231
3232 /* Such entry not exist */
3233 if (!pe) {
3234 /* Go through the all entires from last to first */
3235 tid = mvpp2_prs_tcam_first_free(port->priv,
3236 MVPP2_PE_LAST_FREE_TID,
3237 MVPP2_PE_FIRST_FREE_TID);
3238 if (tid < 0)
3239 return tid;
3240
3241 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3242 if (!pe)
3243 return -ENOMEM;
3244
3245 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
3246 pe->index = tid;
3247
3248 /* Set flow ID*/
3249 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
3250 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
3251
3252 /* Update shadow table */
3253 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
3254 }
3255
3256 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
3257 mvpp2_prs_hw_write(port->priv, pe);
3258 kfree(pe);
3259
3260 return 0;
3261 }
3262
3263 /* Classifier configuration routines */
3264
3265 /* Update classification flow table registers */
3266 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
3267 struct mvpp2_cls_flow_entry *fe)
3268 {
3269 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
3270 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
3271 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
3272 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
3273 }
3274
3275 /* Update classification lookup table register */
3276 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
3277 struct mvpp2_cls_lookup_entry *le)
3278 {
3279 u32 val;
3280
3281 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
3282 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
3283 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
3284 }
3285
3286 /* Classifier default initialization */
3287 static void mvpp2_cls_init(struct mvpp2 *priv)
3288 {
3289 struct mvpp2_cls_lookup_entry le;
3290 struct mvpp2_cls_flow_entry fe;
3291 int index;
3292
3293 /* Enable classifier */
3294 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
3295
3296 /* Clear classifier flow table */
3297 memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
3298 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
3299 fe.index = index;
3300 mvpp2_cls_flow_write(priv, &fe);
3301 }
3302
3303 /* Clear classifier lookup table */
3304 le.data = 0;
3305 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
3306 le.lkpid = index;
3307 le.way = 0;
3308 mvpp2_cls_lookup_write(priv, &le);
3309
3310 le.way = 1;
3311 mvpp2_cls_lookup_write(priv, &le);
3312 }
3313 }
3314
3315 static void mvpp2_cls_port_config(struct mvpp2_port *port)
3316 {
3317 struct mvpp2_cls_lookup_entry le;
3318 u32 val;
3319
3320 /* Set way for the port */
3321 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
3322 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
3323 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
3324
3325 /* Pick the entry to be accessed in lookup ID decoding table
3326 * according to the way and lkpid.
3327 */
3328 le.lkpid = port->id;
3329 le.way = 0;
3330 le.data = 0;
3331
3332 /* Set initial CPU queue for receiving packets */
3333 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
3334 le.data |= port->first_rxq;
3335
3336 /* Disable classification engines */
3337 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
3338
3339 /* Update lookup ID table entry */
3340 mvpp2_cls_lookup_write(port->priv, &le);
3341 }
3342
3343 /* Set CPU queue number for oversize packets */
3344 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
3345 {
3346 u32 val;
3347
3348 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
3349 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
3350
3351 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
3352 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
3353
3354 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
3355 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
3356 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
3357 }
3358
3359 /* Buffer Manager configuration routines */
3360
3361 /* Create pool */
3362 static int mvpp2_bm_pool_create(struct platform_device *pdev,
3363 struct mvpp2 *priv,
3364 struct mvpp2_bm_pool *bm_pool, int size)
3365 {
3366 int size_bytes;
3367 u32 val;
3368
3369 size_bytes = sizeof(u32) * size;
3370 bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, size_bytes,
3371 &bm_pool->phys_addr,
3372 GFP_KERNEL);
3373 if (!bm_pool->virt_addr)
3374 return -ENOMEM;
3375
3376 if (!IS_ALIGNED((u32)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) {
3377 dma_free_coherent(&pdev->dev, size_bytes, bm_pool->virt_addr,
3378 bm_pool->phys_addr);
3379 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
3380 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
3381 return -ENOMEM;
3382 }
3383
3384 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
3385 bm_pool->phys_addr);
3386 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
3387
3388 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3389 val |= MVPP2_BM_START_MASK;
3390 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3391
3392 bm_pool->type = MVPP2_BM_FREE;
3393 bm_pool->size = size;
3394 bm_pool->pkt_size = 0;
3395 bm_pool->buf_num = 0;
3396 atomic_set(&bm_pool->in_use, 0);
3397
3398 return 0;
3399 }
3400
3401 /* Set pool buffer size */
3402 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
3403 struct mvpp2_bm_pool *bm_pool,
3404 int buf_size)
3405 {
3406 u32 val;
3407
3408 bm_pool->buf_size = buf_size;
3409
3410 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
3411 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
3412 }
3413
3414 /* Free all buffers from the pool */
3415 static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
3416 struct mvpp2_bm_pool *bm_pool)
3417 {
3418 int i;
3419
3420 for (i = 0; i < bm_pool->buf_num; i++) {
3421 dma_addr_t buf_phys_addr;
3422 u32 vaddr;
3423
3424 /* Get buffer virtual address (indirect access) */
3425 buf_phys_addr = mvpp2_read(priv,
3426 MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
3427 vaddr = mvpp2_read(priv, MVPP2_BM_VIRT_ALLOC_REG);
3428
3429 dma_unmap_single(dev, buf_phys_addr,
3430 bm_pool->buf_size, DMA_FROM_DEVICE);
3431
3432 if (!vaddr)
3433 break;
3434 dev_kfree_skb_any((struct sk_buff *)vaddr);
3435 }
3436
3437 /* Update BM driver with number of buffers removed from pool */
3438 bm_pool->buf_num -= i;
3439 }
3440
3441 /* Cleanup pool */
3442 static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
3443 struct mvpp2 *priv,
3444 struct mvpp2_bm_pool *bm_pool)
3445 {
3446 u32 val;
3447
3448 mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool);
3449 if (bm_pool->buf_num) {
3450 WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
3451 return 0;
3452 }
3453
3454 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3455 val |= MVPP2_BM_STOP_MASK;
3456 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3457
3458 dma_free_coherent(&pdev->dev, sizeof(u32) * bm_pool->size,
3459 bm_pool->virt_addr,
3460 bm_pool->phys_addr);
3461 return 0;
3462 }
3463
3464 static int mvpp2_bm_pools_init(struct platform_device *pdev,
3465 struct mvpp2 *priv)
3466 {
3467 int i, err, size;
3468 struct mvpp2_bm_pool *bm_pool;
3469
3470 /* Create all pools with maximum size */
3471 size = MVPP2_BM_POOL_SIZE_MAX;
3472 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3473 bm_pool = &priv->bm_pools[i];
3474 bm_pool->id = i;
3475 err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
3476 if (err)
3477 goto err_unroll_pools;
3478 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
3479 }
3480 return 0;
3481
3482 err_unroll_pools:
3483 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
3484 for (i = i - 1; i >= 0; i--)
3485 mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
3486 return err;
3487 }
3488
3489 static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
3490 {
3491 int i, err;
3492
3493 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3494 /* Mask BM all interrupts */
3495 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
3496 /* Clear BM cause register */
3497 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
3498 }
3499
3500 /* Allocate and initialize BM pools */
3501 priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
3502 sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
3503 if (!priv->bm_pools)
3504 return -ENOMEM;
3505
3506 err = mvpp2_bm_pools_init(pdev, priv);
3507 if (err < 0)
3508 return err;
3509 return 0;
3510 }
3511
3512 /* Attach long pool to rxq */
3513 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
3514 int lrxq, int long_pool)
3515 {
3516 u32 val;
3517 int prxq;
3518
3519 /* Get queue physical ID */
3520 prxq = port->rxqs[lrxq]->id;
3521
3522 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3523 val &= ~MVPP2_RXQ_POOL_LONG_MASK;
3524 val |= ((long_pool << MVPP2_RXQ_POOL_LONG_OFFS) &
3525 MVPP2_RXQ_POOL_LONG_MASK);
3526
3527 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3528 }
3529
3530 /* Attach short pool to rxq */
3531 static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
3532 int lrxq, int short_pool)
3533 {
3534 u32 val;
3535 int prxq;
3536
3537 /* Get queue physical ID */
3538 prxq = port->rxqs[lrxq]->id;
3539
3540 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3541 val &= ~MVPP2_RXQ_POOL_SHORT_MASK;
3542 val |= ((short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) &
3543 MVPP2_RXQ_POOL_SHORT_MASK);
3544
3545 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3546 }
3547
3548 /* Allocate skb for BM pool */
3549 static struct sk_buff *mvpp2_skb_alloc(struct mvpp2_port *port,
3550 struct mvpp2_bm_pool *bm_pool,
3551 dma_addr_t *buf_phys_addr,
3552 gfp_t gfp_mask)
3553 {
3554 struct sk_buff *skb;
3555 dma_addr_t phys_addr;
3556
3557 skb = __dev_alloc_skb(bm_pool->pkt_size, gfp_mask);
3558 if (!skb)
3559 return NULL;
3560
3561 phys_addr = dma_map_single(port->dev->dev.parent, skb->head,
3562 MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
3563 DMA_FROM_DEVICE);
3564 if (unlikely(dma_mapping_error(port->dev->dev.parent, phys_addr))) {
3565 dev_kfree_skb_any(skb);
3566 return NULL;
3567 }
3568 *buf_phys_addr = phys_addr;
3569
3570 return skb;
3571 }
3572
3573 /* Set pool number in a BM cookie */
3574 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
3575 {
3576 u32 bm;
3577
3578 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
3579 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
3580
3581 return bm;
3582 }
3583
3584 /* Get pool number from a BM cookie */
3585 static inline int mvpp2_bm_cookie_pool_get(u32 cookie)
3586 {
3587 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
3588 }
3589
3590 /* Release buffer to BM */
3591 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
3592 u32 buf_phys_addr, u32 buf_virt_addr)
3593 {
3594 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_virt_addr);
3595 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_phys_addr);
3596 }
3597
3598 /* Release multicast buffer */
3599 static void mvpp2_bm_pool_mc_put(struct mvpp2_port *port, int pool,
3600 u32 buf_phys_addr, u32 buf_virt_addr,
3601 int mc_id)
3602 {
3603 u32 val = 0;
3604
3605 val |= (mc_id & MVPP2_BM_MC_ID_MASK);
3606 mvpp2_write(port->priv, MVPP2_BM_MC_RLS_REG, val);
3607
3608 mvpp2_bm_pool_put(port, pool,
3609 buf_phys_addr | MVPP2_BM_PHY_RLS_MC_BUFF_MASK,
3610 buf_virt_addr);
3611 }
3612
3613 /* Refill BM pool */
3614 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
3615 u32 phys_addr, u32 cookie)
3616 {
3617 int pool = mvpp2_bm_cookie_pool_get(bm);
3618
3619 mvpp2_bm_pool_put(port, pool, phys_addr, cookie);
3620 }
3621
3622 /* Allocate buffers for the pool */
3623 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
3624 struct mvpp2_bm_pool *bm_pool, int buf_num)
3625 {
3626 struct sk_buff *skb;
3627 int i, buf_size, total_size;
3628 u32 bm;
3629 dma_addr_t phys_addr;
3630
3631 buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
3632 total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
3633
3634 if (buf_num < 0 ||
3635 (buf_num + bm_pool->buf_num > bm_pool->size)) {
3636 netdev_err(port->dev,
3637 "cannot allocate %d buffers for pool %d\n",
3638 buf_num, bm_pool->id);
3639 return 0;
3640 }
3641
3642 bm = mvpp2_bm_cookie_pool_set(0, bm_pool->id);
3643 for (i = 0; i < buf_num; i++) {
3644 skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_KERNEL);
3645 if (!skb)
3646 break;
3647
3648 mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
3649 }
3650
3651 /* Update BM driver with number of buffers added to pool */
3652 bm_pool->buf_num += i;
3653 bm_pool->in_use_thresh = bm_pool->buf_num / 4;
3654
3655 netdev_dbg(port->dev,
3656 "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
3657 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3658 bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
3659
3660 netdev_dbg(port->dev,
3661 "%s pool %d: %d of %d buffers added\n",
3662 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3663 bm_pool->id, i, buf_num);
3664 return i;
3665 }
3666
3667 /* Notify the driver that BM pool is being used as specific type and return the
3668 * pool pointer on success
3669 */
3670 static struct mvpp2_bm_pool *
3671 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
3672 int pkt_size)
3673 {
3674 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
3675 int num;
3676
3677 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
3678 netdev_err(port->dev, "mixing pool types is forbidden\n");
3679 return NULL;
3680 }
3681
3682 if (new_pool->type == MVPP2_BM_FREE)
3683 new_pool->type = type;
3684
3685 /* Allocate buffers in case BM pool is used as long pool, but packet
3686 * size doesn't match MTU or BM pool hasn't being used yet
3687 */
3688 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
3689 (new_pool->pkt_size == 0)) {
3690 int pkts_num;
3691
3692 /* Set default buffer number or free all the buffers in case
3693 * the pool is not empty
3694 */
3695 pkts_num = new_pool->buf_num;
3696 if (pkts_num == 0)
3697 pkts_num = type == MVPP2_BM_SWF_LONG ?
3698 MVPP2_BM_LONG_BUF_NUM :
3699 MVPP2_BM_SHORT_BUF_NUM;
3700 else
3701 mvpp2_bm_bufs_free(port->dev->dev.parent,
3702 port->priv, new_pool);
3703
3704 new_pool->pkt_size = pkt_size;
3705
3706 /* Allocate buffers for this pool */
3707 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
3708 if (num != pkts_num) {
3709 WARN(1, "pool %d: %d of %d allocated\n",
3710 new_pool->id, num, pkts_num);
3711 return NULL;
3712 }
3713 }
3714
3715 mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
3716 MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
3717
3718 return new_pool;
3719 }
3720
3721 /* Initialize pools for swf */
3722 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
3723 {
3724 int rxq;
3725
3726 if (!port->pool_long) {
3727 port->pool_long =
3728 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
3729 MVPP2_BM_SWF_LONG,
3730 port->pkt_size);
3731 if (!port->pool_long)
3732 return -ENOMEM;
3733
3734 port->pool_long->port_map |= (1 << port->id);
3735
3736 for (rxq = 0; rxq < rxq_number; rxq++)
3737 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
3738 }
3739
3740 if (!port->pool_short) {
3741 port->pool_short =
3742 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
3743 MVPP2_BM_SWF_SHORT,
3744 MVPP2_BM_SHORT_PKT_SIZE);
3745 if (!port->pool_short)
3746 return -ENOMEM;
3747
3748 port->pool_short->port_map |= (1 << port->id);
3749
3750 for (rxq = 0; rxq < rxq_number; rxq++)
3751 mvpp2_rxq_short_pool_set(port, rxq,
3752 port->pool_short->id);
3753 }
3754
3755 return 0;
3756 }
3757
3758 static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
3759 {
3760 struct mvpp2_port *port = netdev_priv(dev);
3761 struct mvpp2_bm_pool *port_pool = port->pool_long;
3762 int num, pkts_num = port_pool->buf_num;
3763 int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
3764
3765 /* Update BM pool with new buffer size */
3766 mvpp2_bm_bufs_free(dev->dev.parent, port->priv, port_pool);
3767 if (port_pool->buf_num) {
3768 WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
3769 return -EIO;
3770 }
3771
3772 port_pool->pkt_size = pkt_size;
3773 num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
3774 if (num != pkts_num) {
3775 WARN(1, "pool %d: %d of %d allocated\n",
3776 port_pool->id, num, pkts_num);
3777 return -EIO;
3778 }
3779
3780 mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
3781 MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
3782 dev->mtu = mtu;
3783 netdev_update_features(dev);
3784 return 0;
3785 }
3786
3787 static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
3788 {
3789 int cpu, cpu_mask = 0;
3790
3791 for_each_present_cpu(cpu)
3792 cpu_mask |= 1 << cpu;
3793 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3794 MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask));
3795 }
3796
3797 static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
3798 {
3799 int cpu, cpu_mask = 0;
3800
3801 for_each_present_cpu(cpu)
3802 cpu_mask |= 1 << cpu;
3803 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3804 MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask));
3805 }
3806
3807 /* Mask the current CPU's Rx/Tx interrupts */
3808 static void mvpp2_interrupts_mask(void *arg)
3809 {
3810 struct mvpp2_port *port = arg;
3811
3812 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
3813 }
3814
3815 /* Unmask the current CPU's Rx/Tx interrupts */
3816 static void mvpp2_interrupts_unmask(void *arg)
3817 {
3818 struct mvpp2_port *port = arg;
3819
3820 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id),
3821 (MVPP2_CAUSE_MISC_SUM_MASK |
3822 MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK));
3823 }
3824
3825 /* Port configuration routines */
3826
3827 static void mvpp2_port_mii_set(struct mvpp2_port *port)
3828 {
3829 u32 val;
3830
3831 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3832
3833 switch (port->phy_interface) {
3834 case PHY_INTERFACE_MODE_SGMII:
3835 val |= MVPP2_GMAC_INBAND_AN_MASK;
3836 break;
3837 case PHY_INTERFACE_MODE_RGMII:
3838 val |= MVPP2_GMAC_PORT_RGMII_MASK;
3839 default:
3840 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3841 }
3842
3843 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3844 }
3845
3846 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
3847 {
3848 u32 val;
3849
3850 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3851 val |= MVPP2_GMAC_FC_ADV_EN;
3852 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3853 }
3854
3855 static void mvpp2_port_enable(struct mvpp2_port *port)
3856 {
3857 u32 val;
3858
3859 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3860 val |= MVPP2_GMAC_PORT_EN_MASK;
3861 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
3862 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3863 }
3864
3865 static void mvpp2_port_disable(struct mvpp2_port *port)
3866 {
3867 u32 val;
3868
3869 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3870 val &= ~(MVPP2_GMAC_PORT_EN_MASK);
3871 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3872 }
3873
3874 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
3875 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
3876 {
3877 u32 val;
3878
3879 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
3880 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3881 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3882 }
3883
3884 /* Configure loopback port */
3885 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
3886 {
3887 u32 val;
3888
3889 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3890
3891 if (port->speed == 1000)
3892 val |= MVPP2_GMAC_GMII_LB_EN_MASK;
3893 else
3894 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
3895
3896 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
3897 val |= MVPP2_GMAC_PCS_LB_EN_MASK;
3898 else
3899 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
3900
3901 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3902 }
3903
3904 static void mvpp2_port_reset(struct mvpp2_port *port)
3905 {
3906 u32 val;
3907
3908 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3909 ~MVPP2_GMAC_PORT_RESET_MASK;
3910 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3911
3912 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3913 MVPP2_GMAC_PORT_RESET_MASK)
3914 continue;
3915 }
3916
3917 /* Change maximum receive size of the port */
3918 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
3919 {
3920 u32 val;
3921
3922 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3923 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3924 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
3925 MVPP2_GMAC_MAX_RX_SIZE_OFFS);
3926 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3927 }
3928
3929 /* Set defaults to the MVPP2 port */
3930 static void mvpp2_defaults_set(struct mvpp2_port *port)
3931 {
3932 int tx_port_num, val, queue, ptxq, lrxq;
3933
3934 /* Configure port to loopback if needed */
3935 if (port->flags & MVPP2_F_LOOPBACK)
3936 mvpp2_port_loopback_set(port);
3937
3938 /* Update TX FIFO MIN Threshold */
3939 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3940 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3941 /* Min. TX threshold must be less than minimal packet length */
3942 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3943 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3944
3945 /* Disable Legacy WRR, Disable EJP, Release from reset */
3946 tx_port_num = mvpp2_egress_port(port);
3947 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3948 tx_port_num);
3949 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3950
3951 /* Close bandwidth for all queues */
3952 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3953 ptxq = mvpp2_txq_phys(port->id, queue);
3954 mvpp2_write(port->priv,
3955 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3956 }
3957
3958 /* Set refill period to 1 usec, refill tokens
3959 * and bucket size to maximum
3960 */
3961 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
3962 port->priv->tclk / USEC_PER_SEC);
3963 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3964 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3965 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3966 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3967 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3968 val = MVPP2_TXP_TOKEN_SIZE_MAX;
3969 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3970
3971 /* Set MaximumLowLatencyPacketSize value to 256 */
3972 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3973 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3974 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3975
3976 /* Enable Rx cache snoop */
3977 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3978 queue = port->rxqs[lrxq]->id;
3979 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3980 val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3981 MVPP2_SNOOP_BUF_HDR_MASK;
3982 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3983 }
3984
3985 /* At default, mask all interrupts to all present cpus */
3986 mvpp2_interrupts_disable(port);
3987 }
3988
3989 /* Enable/disable receiving packets */
3990 static void mvpp2_ingress_enable(struct mvpp2_port *port)
3991 {
3992 u32 val;
3993 int lrxq, queue;
3994
3995 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3996 queue = port->rxqs[lrxq]->id;
3997 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3998 val &= ~MVPP2_RXQ_DISABLE_MASK;
3999 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4000 }
4001 }
4002
4003 static void mvpp2_ingress_disable(struct mvpp2_port *port)
4004 {
4005 u32 val;
4006 int lrxq, queue;
4007
4008 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
4009 queue = port->rxqs[lrxq]->id;
4010 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
4011 val |= MVPP2_RXQ_DISABLE_MASK;
4012 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4013 }
4014 }
4015
4016 /* Enable transmit via physical egress queue
4017 * - HW starts take descriptors from DRAM
4018 */
4019 static void mvpp2_egress_enable(struct mvpp2_port *port)
4020 {
4021 u32 qmap;
4022 int queue;
4023 int tx_port_num = mvpp2_egress_port(port);
4024
4025 /* Enable all initialized TXs. */
4026 qmap = 0;
4027 for (queue = 0; queue < txq_number; queue++) {
4028 struct mvpp2_tx_queue *txq = port->txqs[queue];
4029
4030 if (txq->descs != NULL)
4031 qmap |= (1 << queue);
4032 }
4033
4034 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4035 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
4036 }
4037
4038 /* Disable transmit via physical egress queue
4039 * - HW doesn't take descriptors from DRAM
4040 */
4041 static void mvpp2_egress_disable(struct mvpp2_port *port)
4042 {
4043 u32 reg_data;
4044 int delay;
4045 int tx_port_num = mvpp2_egress_port(port);
4046
4047 /* Issue stop command for active channels only */
4048 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4049 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
4050 MVPP2_TXP_SCHED_ENQ_MASK;
4051 if (reg_data != 0)
4052 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
4053 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
4054
4055 /* Wait for all Tx activity to terminate. */
4056 delay = 0;
4057 do {
4058 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
4059 netdev_warn(port->dev,
4060 "Tx stop timed out, status=0x%08x\n",
4061 reg_data);
4062 break;
4063 }
4064 mdelay(1);
4065 delay++;
4066
4067 /* Check port TX Command register that all
4068 * Tx queues are stopped
4069 */
4070 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
4071 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
4072 }
4073
4074 /* Rx descriptors helper methods */
4075
4076 /* Get number of Rx descriptors occupied by received packets */
4077 static inline int
4078 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
4079 {
4080 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
4081
4082 return val & MVPP2_RXQ_OCCUPIED_MASK;
4083 }
4084
4085 /* Update Rx queue status with the number of occupied and available
4086 * Rx descriptor slots.
4087 */
4088 static inline void
4089 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
4090 int used_count, int free_count)
4091 {
4092 /* Decrement the number of used descriptors and increment count
4093 * increment the number of free descriptors.
4094 */
4095 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
4096
4097 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
4098 }
4099
4100 /* Get pointer to next RX descriptor to be processed by SW */
4101 static inline struct mvpp2_rx_desc *
4102 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
4103 {
4104 int rx_desc = rxq->next_desc_to_proc;
4105
4106 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
4107 prefetch(rxq->descs + rxq->next_desc_to_proc);
4108 return rxq->descs + rx_desc;
4109 }
4110
4111 /* Set rx queue offset */
4112 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
4113 int prxq, int offset)
4114 {
4115 u32 val;
4116
4117 /* Convert offset from bytes to units of 32 bytes */
4118 offset = offset >> 5;
4119
4120 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
4121 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
4122
4123 /* Offset is in */
4124 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
4125 MVPP2_RXQ_PACKET_OFFSET_MASK);
4126
4127 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
4128 }
4129
4130 /* Obtain BM cookie information from descriptor */
4131 static u32 mvpp2_bm_cookie_build(struct mvpp2_rx_desc *rx_desc)
4132 {
4133 int pool = (rx_desc->status & MVPP2_RXD_BM_POOL_ID_MASK) >>
4134 MVPP2_RXD_BM_POOL_ID_OFFS;
4135 int cpu = smp_processor_id();
4136
4137 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
4138 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
4139 }
4140
4141 /* Tx descriptors helper methods */
4142
4143 /* Get number of Tx descriptors waiting to be transmitted by HW */
4144 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
4145 struct mvpp2_tx_queue *txq)
4146 {
4147 u32 val;
4148
4149 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4150 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4151
4152 return val & MVPP2_TXQ_PENDING_MASK;
4153 }
4154
4155 /* Get pointer to next Tx descriptor to be processed (send) by HW */
4156 static struct mvpp2_tx_desc *
4157 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
4158 {
4159 int tx_desc = txq->next_desc_to_proc;
4160
4161 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
4162 return txq->descs + tx_desc;
4163 }
4164
4165 /* Update HW with number of aggregated Tx descriptors to be sent */
4166 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
4167 {
4168 /* aggregated access - relevant TXQ number is written in TX desc */
4169 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
4170 }
4171
4172
4173 /* Check if there are enough free descriptors in aggregated txq.
4174 * If not, update the number of occupied descriptors and repeat the check.
4175 */
4176 static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
4177 struct mvpp2_tx_queue *aggr_txq, int num)
4178 {
4179 if ((aggr_txq->count + num) > aggr_txq->size) {
4180 /* Update number of occupied aggregated Tx descriptors */
4181 int cpu = smp_processor_id();
4182 u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));
4183
4184 aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
4185 }
4186
4187 if ((aggr_txq->count + num) > aggr_txq->size)
4188 return -ENOMEM;
4189
4190 return 0;
4191 }
4192
4193 /* Reserved Tx descriptors allocation request */
4194 static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
4195 struct mvpp2_tx_queue *txq, int num)
4196 {
4197 u32 val;
4198
4199 val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
4200 mvpp2_write(priv, MVPP2_TXQ_RSVD_REQ_REG, val);
4201
4202 val = mvpp2_read(priv, MVPP2_TXQ_RSVD_RSLT_REG);
4203
4204 return val & MVPP2_TXQ_RSVD_RSLT_MASK;
4205 }
4206
4207 /* Check if there are enough reserved descriptors for transmission.
4208 * If not, request chunk of reserved descriptors and check again.
4209 */
4210 static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
4211 struct mvpp2_tx_queue *txq,
4212 struct mvpp2_txq_pcpu *txq_pcpu,
4213 int num)
4214 {
4215 int req, cpu, desc_count;
4216
4217 if (txq_pcpu->reserved_num >= num)
4218 return 0;
4219
4220 /* Not enough descriptors reserved! Update the reserved descriptor
4221 * count and check again.
4222 */
4223
4224 desc_count = 0;
4225 /* Compute total of used descriptors */
4226 for_each_present_cpu(cpu) {
4227 struct mvpp2_txq_pcpu *txq_pcpu_aux;
4228
4229 txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
4230 desc_count += txq_pcpu_aux->count;
4231 desc_count += txq_pcpu_aux->reserved_num;
4232 }
4233
4234 req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
4235 desc_count += req;
4236
4237 if (desc_count >
4238 (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
4239 return -ENOMEM;
4240
4241 txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
4242
4243 /* OK, the descriptor cound has been updated: check again. */
4244 if (txq_pcpu->reserved_num < num)
4245 return -ENOMEM;
4246 return 0;
4247 }
4248
4249 /* Release the last allocated Tx descriptor. Useful to handle DMA
4250 * mapping failures in the Tx path.
4251 */
4252 static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
4253 {
4254 if (txq->next_desc_to_proc == 0)
4255 txq->next_desc_to_proc = txq->last_desc - 1;
4256 else
4257 txq->next_desc_to_proc--;
4258 }
4259
4260 /* Set Tx descriptors fields relevant for CSUM calculation */
4261 static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
4262 int ip_hdr_len, int l4_proto)
4263 {
4264 u32 command;
4265
4266 /* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
4267 * G_L4_chk, L4_type required only for checksum calculation
4268 */
4269 command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
4270 command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
4271 command |= MVPP2_TXD_IP_CSUM_DISABLE;
4272
4273 if (l3_proto == swab16(ETH_P_IP)) {
4274 command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */
4275 command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */
4276 } else {
4277 command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */
4278 }
4279
4280 if (l4_proto == IPPROTO_TCP) {
4281 command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */
4282 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
4283 } else if (l4_proto == IPPROTO_UDP) {
4284 command |= MVPP2_TXD_L4_UDP; /* enable UDP */
4285 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
4286 } else {
4287 command |= MVPP2_TXD_L4_CSUM_NOT;
4288 }
4289
4290 return command;
4291 }
4292
4293 /* Get number of sent descriptors and decrement counter.
4294 * The number of sent descriptors is returned.
4295 * Per-CPU access
4296 */
4297 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
4298 struct mvpp2_tx_queue *txq)
4299 {
4300 u32 val;
4301
4302 /* Reading status reg resets transmitted descriptor counter */
4303 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
4304
4305 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
4306 MVPP2_TRANSMITTED_COUNT_OFFSET;
4307 }
4308
4309 static void mvpp2_txq_sent_counter_clear(void *arg)
4310 {
4311 struct mvpp2_port *port = arg;
4312 int queue;
4313
4314 for (queue = 0; queue < txq_number; queue++) {
4315 int id = port->txqs[queue]->id;
4316
4317 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
4318 }
4319 }
4320
4321 /* Set max sizes for Tx queues */
4322 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
4323 {
4324 u32 val, size, mtu;
4325 int txq, tx_port_num;
4326
4327 mtu = port->pkt_size * 8;
4328 if (mtu > MVPP2_TXP_MTU_MAX)
4329 mtu = MVPP2_TXP_MTU_MAX;
4330
4331 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
4332 mtu = 3 * mtu;
4333
4334 /* Indirect access to registers */
4335 tx_port_num = mvpp2_egress_port(port);
4336 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4337
4338 /* Set MTU */
4339 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
4340 val &= ~MVPP2_TXP_MTU_MAX;
4341 val |= mtu;
4342 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4343
4344 /* TXP token size and all TXQs token size must be larger that MTU */
4345 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4346 size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4347 if (size < mtu) {
4348 size = mtu;
4349 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4350 val |= size;
4351 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4352 }
4353
4354 for (txq = 0; txq < txq_number; txq++) {
4355 val = mvpp2_read(port->priv,
4356 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4357 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4358
4359 if (size < mtu) {
4360 size = mtu;
4361 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4362 val |= size;
4363 mvpp2_write(port->priv,
4364 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4365 val);
4366 }
4367 }
4368 }
4369
4370 /* Set the number of packets that will be received before Rx interrupt
4371 * will be generated by HW.
4372 */
4373 static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
4374 struct mvpp2_rx_queue *rxq, u32 pkts)
4375 {
4376 u32 val;
4377
4378 val = (pkts & MVPP2_OCCUPIED_THRESH_MASK);
4379 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4380 mvpp2_write(port->priv, MVPP2_RXQ_THRESH_REG, val);
4381
4382 rxq->pkts_coal = pkts;
4383 }
4384
4385 /* Set the time delay in usec before Rx interrupt */
4386 static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
4387 struct mvpp2_rx_queue *rxq, u32 usec)
4388 {
4389 u32 val;
4390
4391 val = (port->priv->tclk / USEC_PER_SEC) * usec;
4392 mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
4393
4394 rxq->time_coal = usec;
4395 }
4396
4397 /* Free Tx queue skbuffs */
4398 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4399 struct mvpp2_tx_queue *txq,
4400 struct mvpp2_txq_pcpu *txq_pcpu, int num)
4401 {
4402 int i;
4403
4404 for (i = 0; i < num; i++) {
4405 dma_addr_t buf_phys_addr =
4406 txq_pcpu->tx_buffs[txq_pcpu->txq_get_index];
4407 struct sk_buff *skb = txq_pcpu->tx_skb[txq_pcpu->txq_get_index];
4408
4409 mvpp2_txq_inc_get(txq_pcpu);
4410
4411 dma_unmap_single(port->dev->dev.parent, buf_phys_addr,
4412 skb_headlen(skb), DMA_TO_DEVICE);
4413 if (!skb)
4414 continue;
4415 dev_kfree_skb_any(skb);
4416 }
4417 }
4418
4419 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4420 u32 cause)
4421 {
4422 int queue = fls(cause) - 1;
4423
4424 return port->rxqs[queue];
4425 }
4426
4427 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4428 u32 cause)
4429 {
4430 int queue = fls(cause) - 1;
4431
4432 return port->txqs[queue];
4433 }
4434
4435 /* Handle end of transmission */
4436 static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
4437 struct mvpp2_txq_pcpu *txq_pcpu)
4438 {
4439 struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
4440 int tx_done;
4441
4442 if (txq_pcpu->cpu != smp_processor_id())
4443 netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
4444
4445 tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4446 if (!tx_done)
4447 return;
4448 mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
4449
4450 txq_pcpu->count -= tx_done;
4451
4452 if (netif_tx_queue_stopped(nq))
4453 if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1)
4454 netif_tx_wake_queue(nq);
4455 }
4456
4457 static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause)
4458 {
4459 struct mvpp2_tx_queue *txq;
4460 struct mvpp2_txq_pcpu *txq_pcpu;
4461 unsigned int tx_todo = 0;
4462
4463 while (cause) {
4464 txq = mvpp2_get_tx_queue(port, cause);
4465 if (!txq)
4466 break;
4467
4468 txq_pcpu = this_cpu_ptr(txq->pcpu);
4469
4470 if (txq_pcpu->count) {
4471 mvpp2_txq_done(port, txq, txq_pcpu);
4472 tx_todo += txq_pcpu->count;
4473 }
4474
4475 cause &= ~(1 << txq->log_id);
4476 }
4477 return tx_todo;
4478 }
4479
4480 /* Rx/Tx queue initialization/cleanup methods */
4481
4482 /* Allocate and initialize descriptors for aggr TXQ */
4483 static int mvpp2_aggr_txq_init(struct platform_device *pdev,
4484 struct mvpp2_tx_queue *aggr_txq,
4485 int desc_num, int cpu,
4486 struct mvpp2 *priv)
4487 {
4488 /* Allocate memory for TX descriptors */
4489 aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
4490 desc_num * MVPP2_DESC_ALIGNED_SIZE,
4491 &aggr_txq->descs_phys, GFP_KERNEL);
4492 if (!aggr_txq->descs)
4493 return -ENOMEM;
4494
4495 aggr_txq->last_desc = aggr_txq->size - 1;
4496
4497 /* Aggr TXQ no reset WA */
4498 aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4499 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4500
4501 /* Set Tx descriptors queue starting address */
4502 /* indirect access */
4503 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu),
4504 aggr_txq->descs_phys);
4505 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4506
4507 return 0;
4508 }
4509
4510 /* Create a specified Rx queue */
4511 static int mvpp2_rxq_init(struct mvpp2_port *port,
4512 struct mvpp2_rx_queue *rxq)
4513
4514 {
4515 rxq->size = port->rx_ring_size;
4516
4517 /* Allocate memory for RX descriptors */
4518 rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
4519 rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4520 &rxq->descs_phys, GFP_KERNEL);
4521 if (!rxq->descs)
4522 return -ENOMEM;
4523
4524 rxq->last_desc = rxq->size - 1;
4525
4526 /* Zero occupied and non-occupied counters - direct access */
4527 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4528
4529 /* Set Rx descriptors queue starting address - indirect access */
4530 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4531 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq->descs_phys);
4532 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4533 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4534
4535 /* Set Offset */
4536 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4537
4538 /* Set coalescing pkts and time */
4539 mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
4540 mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
4541
4542 /* Add number of descriptors ready for receiving packets */
4543 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4544
4545 return 0;
4546 }
4547
4548 /* Push packets received by the RXQ to BM pool */
4549 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4550 struct mvpp2_rx_queue *rxq)
4551 {
4552 int rx_received, i;
4553
4554 rx_received = mvpp2_rxq_received(port, rxq->id);
4555 if (!rx_received)
4556 return;
4557
4558 for (i = 0; i < rx_received; i++) {
4559 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4560 u32 bm = mvpp2_bm_cookie_build(rx_desc);
4561
4562 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
4563 rx_desc->buf_cookie);
4564 }
4565 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4566 }
4567
4568 /* Cleanup Rx queue */
4569 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4570 struct mvpp2_rx_queue *rxq)
4571 {
4572 mvpp2_rxq_drop_pkts(port, rxq);
4573
4574 if (rxq->descs)
4575 dma_free_coherent(port->dev->dev.parent,
4576 rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4577 rxq->descs,
4578 rxq->descs_phys);
4579
4580 rxq->descs = NULL;
4581 rxq->last_desc = 0;
4582 rxq->next_desc_to_proc = 0;
4583 rxq->descs_phys = 0;
4584
4585 /* Clear Rx descriptors queue starting address and size;
4586 * free descriptor number
4587 */
4588 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4589 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4590 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4591 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4592 }
4593
4594 /* Create and initialize a Tx queue */
4595 static int mvpp2_txq_init(struct mvpp2_port *port,
4596 struct mvpp2_tx_queue *txq)
4597 {
4598 u32 val;
4599 int cpu, desc, desc_per_txq, tx_port_num;
4600 struct mvpp2_txq_pcpu *txq_pcpu;
4601
4602 txq->size = port->tx_ring_size;
4603
4604 /* Allocate memory for Tx descriptors */
4605 txq->descs = dma_alloc_coherent(port->dev->dev.parent,
4606 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4607 &txq->descs_phys, GFP_KERNEL);
4608 if (!txq->descs)
4609 return -ENOMEM;
4610
4611 txq->last_desc = txq->size - 1;
4612
4613 /* Set Tx descriptors queue starting address - indirect access */
4614 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4615 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_phys);
4616 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4617 MVPP2_TXQ_DESC_SIZE_MASK);
4618 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4619 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4620 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4621 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4622 val &= ~MVPP2_TXQ_PENDING_MASK;
4623 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4624
4625 /* Calculate base address in prefetch buffer. We reserve 16 descriptors
4626 * for each existing TXQ.
4627 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4628 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4629 */
4630 desc_per_txq = 16;
4631 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4632 (txq->log_id * desc_per_txq);
4633
4634 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4635 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4636 MVPP2_PREF_BUF_THRESH(desc_per_txq/2));
4637
4638 /* WRR / EJP configuration - indirect access */
4639 tx_port_num = mvpp2_egress_port(port);
4640 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4641
4642 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4643 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4644 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4645 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4646 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4647
4648 val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4649 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4650 val);
4651
4652 for_each_present_cpu(cpu) {
4653 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4654 txq_pcpu->size = txq->size;
4655 txq_pcpu->tx_skb = kmalloc(txq_pcpu->size *
4656 sizeof(*txq_pcpu->tx_skb),
4657 GFP_KERNEL);
4658 if (!txq_pcpu->tx_skb)
4659 goto error;
4660
4661 txq_pcpu->tx_buffs = kmalloc(txq_pcpu->size *
4662 sizeof(dma_addr_t), GFP_KERNEL);
4663 if (!txq_pcpu->tx_buffs)
4664 goto error;
4665
4666 txq_pcpu->count = 0;
4667 txq_pcpu->reserved_num = 0;
4668 txq_pcpu->txq_put_index = 0;
4669 txq_pcpu->txq_get_index = 0;
4670 }
4671
4672 return 0;
4673
4674 error:
4675 for_each_present_cpu(cpu) {
4676 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4677 kfree(txq_pcpu->tx_skb);
4678 kfree(txq_pcpu->tx_buffs);
4679 }
4680
4681 dma_free_coherent(port->dev->dev.parent,
4682 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4683 txq->descs, txq->descs_phys);
4684
4685 return -ENOMEM;
4686 }
4687
4688 /* Free allocated TXQ resources */
4689 static void mvpp2_txq_deinit(struct mvpp2_port *port,
4690 struct mvpp2_tx_queue *txq)
4691 {
4692 struct mvpp2_txq_pcpu *txq_pcpu;
4693 int cpu;
4694
4695 for_each_present_cpu(cpu) {
4696 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4697 kfree(txq_pcpu->tx_skb);
4698 kfree(txq_pcpu->tx_buffs);
4699 }
4700
4701 if (txq->descs)
4702 dma_free_coherent(port->dev->dev.parent,
4703 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4704 txq->descs, txq->descs_phys);
4705
4706 txq->descs = NULL;
4707 txq->last_desc = 0;
4708 txq->next_desc_to_proc = 0;
4709 txq->descs_phys = 0;
4710
4711 /* Set minimum bandwidth for disabled TXQs */
4712 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4713
4714 /* Set Tx descriptors queue starting address and size */
4715 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4716 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4717 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4718 }
4719
4720 /* Cleanup Tx ports */
4721 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4722 {
4723 struct mvpp2_txq_pcpu *txq_pcpu;
4724 int delay, pending, cpu;
4725 u32 val;
4726
4727 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4728 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4729 val |= MVPP2_TXQ_DRAIN_EN_MASK;
4730 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4731
4732 /* The napi queue has been stopped so wait for all packets
4733 * to be transmitted.
4734 */
4735 delay = 0;
4736 do {
4737 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4738 netdev_warn(port->dev,
4739 "port %d: cleaning queue %d timed out\n",
4740 port->id, txq->log_id);
4741 break;
4742 }
4743 mdelay(1);
4744 delay++;
4745
4746 pending = mvpp2_txq_pend_desc_num_get(port, txq);
4747 } while (pending);
4748
4749 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4750 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4751
4752 for_each_present_cpu(cpu) {
4753 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4754
4755 /* Release all packets */
4756 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4757
4758 /* Reset queue */
4759 txq_pcpu->count = 0;
4760 txq_pcpu->txq_put_index = 0;
4761 txq_pcpu->txq_get_index = 0;
4762 }
4763 }
4764
4765 /* Cleanup all Tx queues */
4766 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4767 {
4768 struct mvpp2_tx_queue *txq;
4769 int queue;
4770 u32 val;
4771
4772 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4773
4774 /* Reset Tx ports and delete Tx queues */
4775 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4776 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4777
4778 for (queue = 0; queue < txq_number; queue++) {
4779 txq = port->txqs[queue];
4780 mvpp2_txq_clean(port, txq);
4781 mvpp2_txq_deinit(port, txq);
4782 }
4783
4784 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4785
4786 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4787 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4788 }
4789
4790 /* Cleanup all Rx queues */
4791 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4792 {
4793 int queue;
4794
4795 for (queue = 0; queue < rxq_number; queue++)
4796 mvpp2_rxq_deinit(port, port->rxqs[queue]);
4797 }
4798
4799 /* Init all Rx queues for port */
4800 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4801 {
4802 int queue, err;
4803
4804 for (queue = 0; queue < rxq_number; queue++) {
4805 err = mvpp2_rxq_init(port, port->rxqs[queue]);
4806 if (err)
4807 goto err_cleanup;
4808 }
4809 return 0;
4810
4811 err_cleanup:
4812 mvpp2_cleanup_rxqs(port);
4813 return err;
4814 }
4815
4816 /* Init all tx queues for port */
4817 static int mvpp2_setup_txqs(struct mvpp2_port *port)
4818 {
4819 struct mvpp2_tx_queue *txq;
4820 int queue, err;
4821
4822 for (queue = 0; queue < txq_number; queue++) {
4823 txq = port->txqs[queue];
4824 err = mvpp2_txq_init(port, txq);
4825 if (err)
4826 goto err_cleanup;
4827 }
4828
4829 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4830 return 0;
4831
4832 err_cleanup:
4833 mvpp2_cleanup_txqs(port);
4834 return err;
4835 }
4836
4837 /* The callback for per-port interrupt */
4838 static irqreturn_t mvpp2_isr(int irq, void *dev_id)
4839 {
4840 struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
4841
4842 mvpp2_interrupts_disable(port);
4843
4844 napi_schedule(&port->napi);
4845
4846 return IRQ_HANDLED;
4847 }
4848
4849 /* Adjust link */
4850 static void mvpp2_link_event(struct net_device *dev)
4851 {
4852 struct mvpp2_port *port = netdev_priv(dev);
4853 struct phy_device *phydev = port->phy_dev;
4854 int status_change = 0;
4855 u32 val;
4856
4857 if (phydev->link) {
4858 if ((port->speed != phydev->speed) ||
4859 (port->duplex != phydev->duplex)) {
4860 u32 val;
4861
4862 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4863 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4864 MVPP2_GMAC_CONFIG_GMII_SPEED |
4865 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4866 MVPP2_GMAC_AN_SPEED_EN |
4867 MVPP2_GMAC_AN_DUPLEX_EN);
4868
4869 if (phydev->duplex)
4870 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4871
4872 if (phydev->speed == SPEED_1000)
4873 val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4874 else if (phydev->speed == SPEED_100)
4875 val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4876
4877 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4878
4879 port->duplex = phydev->duplex;
4880 port->speed = phydev->speed;
4881 }
4882 }
4883
4884 if (phydev->link != port->link) {
4885 if (!phydev->link) {
4886 port->duplex = -1;
4887 port->speed = 0;
4888 }
4889
4890 port->link = phydev->link;
4891 status_change = 1;
4892 }
4893
4894 if (status_change) {
4895 if (phydev->link) {
4896 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4897 val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4898 MVPP2_GMAC_FORCE_LINK_DOWN);
4899 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4900 mvpp2_egress_enable(port);
4901 mvpp2_ingress_enable(port);
4902 } else {
4903 mvpp2_ingress_disable(port);
4904 mvpp2_egress_disable(port);
4905 }
4906 phy_print_status(phydev);
4907 }
4908 }
4909
4910 static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
4911 {
4912 ktime_t interval;
4913
4914 if (!port_pcpu->timer_scheduled) {
4915 port_pcpu->timer_scheduled = true;
4916 interval = ktime_set(0, MVPP2_TXDONE_HRTIMER_PERIOD_NS);
4917 hrtimer_start(&port_pcpu->tx_done_timer, interval,
4918 HRTIMER_MODE_REL_PINNED);
4919 }
4920 }
4921
4922 static void mvpp2_tx_proc_cb(unsigned long data)
4923 {
4924 struct net_device *dev = (struct net_device *)data;
4925 struct mvpp2_port *port = netdev_priv(dev);
4926 struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
4927 unsigned int tx_todo, cause;
4928
4929 if (!netif_running(dev))
4930 return;
4931 port_pcpu->timer_scheduled = false;
4932
4933 /* Process all the Tx queues */
4934 cause = (1 << txq_number) - 1;
4935 tx_todo = mvpp2_tx_done(port, cause);
4936
4937 /* Set the timer in case not all the packets were processed */
4938 if (tx_todo)
4939 mvpp2_timer_set(port_pcpu);
4940 }
4941
4942 static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
4943 {
4944 struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
4945 struct mvpp2_port_pcpu,
4946 tx_done_timer);
4947
4948 tasklet_schedule(&port_pcpu->tx_done_tasklet);
4949
4950 return HRTIMER_NORESTART;
4951 }
4952
4953 /* Main RX/TX processing routines */
4954
4955 /* Display more error info */
4956 static void mvpp2_rx_error(struct mvpp2_port *port,
4957 struct mvpp2_rx_desc *rx_desc)
4958 {
4959 u32 status = rx_desc->status;
4960
4961 switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4962 case MVPP2_RXD_ERR_CRC:
4963 netdev_err(port->dev, "bad rx status %08x (crc error), size=%d\n",
4964 status, rx_desc->data_size);
4965 break;
4966 case MVPP2_RXD_ERR_OVERRUN:
4967 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%d\n",
4968 status, rx_desc->data_size);
4969 break;
4970 case MVPP2_RXD_ERR_RESOURCE:
4971 netdev_err(port->dev, "bad rx status %08x (resource error), size=%d\n",
4972 status, rx_desc->data_size);
4973 break;
4974 }
4975 }
4976
4977 /* Handle RX checksum offload */
4978 static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
4979 struct sk_buff *skb)
4980 {
4981 if (((status & MVPP2_RXD_L3_IP4) &&
4982 !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
4983 (status & MVPP2_RXD_L3_IP6))
4984 if (((status & MVPP2_RXD_L4_UDP) ||
4985 (status & MVPP2_RXD_L4_TCP)) &&
4986 (status & MVPP2_RXD_L4_CSUM_OK)) {
4987 skb->csum = 0;
4988 skb->ip_summed = CHECKSUM_UNNECESSARY;
4989 return;
4990 }
4991
4992 skb->ip_summed = CHECKSUM_NONE;
4993 }
4994
4995 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
4996 static int mvpp2_rx_refill(struct mvpp2_port *port,
4997 struct mvpp2_bm_pool *bm_pool,
4998 u32 bm, int is_recycle)
4999 {
5000 struct sk_buff *skb;
5001 dma_addr_t phys_addr;
5002
5003 if (is_recycle &&
5004 (atomic_read(&bm_pool->in_use) < bm_pool->in_use_thresh))
5005 return 0;
5006
5007 /* No recycle or too many buffers are in use, so allocate a new skb */
5008 skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_ATOMIC);
5009 if (!skb)
5010 return -ENOMEM;
5011
5012 mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
5013 atomic_dec(&bm_pool->in_use);
5014 return 0;
5015 }
5016
5017 /* Handle tx checksum */
5018 static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
5019 {
5020 if (skb->ip_summed == CHECKSUM_PARTIAL) {
5021 int ip_hdr_len = 0;
5022 u8 l4_proto;
5023
5024 if (skb->protocol == htons(ETH_P_IP)) {
5025 struct iphdr *ip4h = ip_hdr(skb);
5026
5027 /* Calculate IPv4 checksum and L4 checksum */
5028 ip_hdr_len = ip4h->ihl;
5029 l4_proto = ip4h->protocol;
5030 } else if (skb->protocol == htons(ETH_P_IPV6)) {
5031 struct ipv6hdr *ip6h = ipv6_hdr(skb);
5032
5033 /* Read l4_protocol from one of IPv6 extra headers */
5034 if (skb_network_header_len(skb) > 0)
5035 ip_hdr_len = (skb_network_header_len(skb) >> 2);
5036 l4_proto = ip6h->nexthdr;
5037 } else {
5038 return MVPP2_TXD_L4_CSUM_NOT;
5039 }
5040
5041 return mvpp2_txq_desc_csum(skb_network_offset(skb),
5042 skb->protocol, ip_hdr_len, l4_proto);
5043 }
5044
5045 return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
5046 }
5047
5048 static void mvpp2_buff_hdr_rx(struct mvpp2_port *port,
5049 struct mvpp2_rx_desc *rx_desc)
5050 {
5051 struct mvpp2_buff_hdr *buff_hdr;
5052 struct sk_buff *skb;
5053 u32 rx_status = rx_desc->status;
5054 u32 buff_phys_addr;
5055 u32 buff_virt_addr;
5056 u32 buff_phys_addr_next;
5057 u32 buff_virt_addr_next;
5058 int mc_id;
5059 int pool_id;
5060
5061 pool_id = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
5062 MVPP2_RXD_BM_POOL_ID_OFFS;
5063 buff_phys_addr = rx_desc->buf_phys_addr;
5064 buff_virt_addr = rx_desc->buf_cookie;
5065
5066 do {
5067 skb = (struct sk_buff *)buff_virt_addr;
5068 buff_hdr = (struct mvpp2_buff_hdr *)skb->head;
5069
5070 mc_id = MVPP2_B_HDR_INFO_MC_ID(buff_hdr->info);
5071
5072 buff_phys_addr_next = buff_hdr->next_buff_phys_addr;
5073 buff_virt_addr_next = buff_hdr->next_buff_virt_addr;
5074
5075 /* Release buffer */
5076 mvpp2_bm_pool_mc_put(port, pool_id, buff_phys_addr,
5077 buff_virt_addr, mc_id);
5078
5079 buff_phys_addr = buff_phys_addr_next;
5080 buff_virt_addr = buff_virt_addr_next;
5081
5082 } while (!MVPP2_B_HDR_INFO_IS_LAST(buff_hdr->info));
5083 }
5084
5085 /* Main rx processing */
5086 static int mvpp2_rx(struct mvpp2_port *port, int rx_todo,
5087 struct mvpp2_rx_queue *rxq)
5088 {
5089 struct net_device *dev = port->dev;
5090 int rx_received;
5091 int rx_done = 0;
5092 u32 rcvd_pkts = 0;
5093 u32 rcvd_bytes = 0;
5094
5095 /* Get number of received packets and clamp the to-do */
5096 rx_received = mvpp2_rxq_received(port, rxq->id);
5097 if (rx_todo > rx_received)
5098 rx_todo = rx_received;
5099
5100 while (rx_done < rx_todo) {
5101 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
5102 struct mvpp2_bm_pool *bm_pool;
5103 struct sk_buff *skb;
5104 dma_addr_t phys_addr;
5105 u32 bm, rx_status;
5106 int pool, rx_bytes, err;
5107
5108 rx_done++;
5109 rx_status = rx_desc->status;
5110 rx_bytes = rx_desc->data_size - MVPP2_MH_SIZE;
5111 phys_addr = rx_desc->buf_phys_addr;
5112
5113 bm = mvpp2_bm_cookie_build(rx_desc);
5114 pool = mvpp2_bm_cookie_pool_get(bm);
5115 bm_pool = &port->priv->bm_pools[pool];
5116 /* Check if buffer header is used */
5117 if (rx_status & MVPP2_RXD_BUF_HDR) {
5118 mvpp2_buff_hdr_rx(port, rx_desc);
5119 continue;
5120 }
5121
5122 /* In case of an error, release the requested buffer pointer
5123 * to the Buffer Manager. This request process is controlled
5124 * by the hardware, and the information about the buffer is
5125 * comprised by the RX descriptor.
5126 */
5127 if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5128 err_drop_frame:
5129 dev->stats.rx_errors++;
5130 mvpp2_rx_error(port, rx_desc);
5131 /* Return the buffer to the pool */
5132 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
5133 rx_desc->buf_cookie);
5134 continue;
5135 }
5136
5137 skb = (struct sk_buff *)rx_desc->buf_cookie;
5138
5139 err = mvpp2_rx_refill(port, bm_pool, bm, 0);
5140 if (err) {
5141 netdev_err(port->dev, "failed to refill BM pools\n");
5142 goto err_drop_frame;
5143 }
5144
5145 dma_unmap_single(dev->dev.parent, phys_addr,
5146 bm_pool->buf_size, DMA_FROM_DEVICE);
5147
5148 rcvd_pkts++;
5149 rcvd_bytes += rx_bytes;
5150 atomic_inc(&bm_pool->in_use);
5151
5152 skb_reserve(skb, MVPP2_MH_SIZE);
5153 skb_put(skb, rx_bytes);
5154 skb->protocol = eth_type_trans(skb, dev);
5155 mvpp2_rx_csum(port, rx_status, skb);
5156
5157 napi_gro_receive(&port->napi, skb);
5158 }
5159
5160 if (rcvd_pkts) {
5161 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5162
5163 u64_stats_update_begin(&stats->syncp);
5164 stats->rx_packets += rcvd_pkts;
5165 stats->rx_bytes += rcvd_bytes;
5166 u64_stats_update_end(&stats->syncp);
5167 }
5168
5169 /* Update Rx queue management counters */
5170 wmb();
5171 mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
5172
5173 return rx_todo;
5174 }
5175
5176 static inline void
5177 tx_desc_unmap_put(struct device *dev, struct mvpp2_tx_queue *txq,
5178 struct mvpp2_tx_desc *desc)
5179 {
5180 dma_unmap_single(dev, desc->buf_phys_addr,
5181 desc->data_size, DMA_TO_DEVICE);
5182 mvpp2_txq_desc_put(txq);
5183 }
5184
5185 /* Handle tx fragmentation processing */
5186 static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
5187 struct mvpp2_tx_queue *aggr_txq,
5188 struct mvpp2_tx_queue *txq)
5189 {
5190 struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
5191 struct mvpp2_tx_desc *tx_desc;
5192 int i;
5193 dma_addr_t buf_phys_addr;
5194
5195 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5196 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5197 void *addr = page_address(frag->page.p) + frag->page_offset;
5198
5199 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5200 tx_desc->phys_txq = txq->id;
5201 tx_desc->data_size = frag->size;
5202
5203 buf_phys_addr = dma_map_single(port->dev->dev.parent, addr,
5204 tx_desc->data_size,
5205 DMA_TO_DEVICE);
5206 if (dma_mapping_error(port->dev->dev.parent, buf_phys_addr)) {
5207 mvpp2_txq_desc_put(txq);
5208 goto error;
5209 }
5210
5211 tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5212 tx_desc->buf_phys_addr = buf_phys_addr & (~MVPP2_TX_DESC_ALIGN);
5213
5214 if (i == (skb_shinfo(skb)->nr_frags - 1)) {
5215 /* Last descriptor */
5216 tx_desc->command = MVPP2_TXD_L_DESC;
5217 mvpp2_txq_inc_put(txq_pcpu, skb, tx_desc);
5218 } else {
5219 /* Descriptor in the middle: Not First, Not Last */
5220 tx_desc->command = 0;
5221 mvpp2_txq_inc_put(txq_pcpu, NULL, tx_desc);
5222 }
5223 }
5224
5225 return 0;
5226
5227 error:
5228 /* Release all descriptors that were used to map fragments of
5229 * this packet, as well as the corresponding DMA mappings
5230 */
5231 for (i = i - 1; i >= 0; i--) {
5232 tx_desc = txq->descs + i;
5233 tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5234 }
5235
5236 return -ENOMEM;
5237 }
5238
5239 /* Main tx processing */
5240 static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
5241 {
5242 struct mvpp2_port *port = netdev_priv(dev);
5243 struct mvpp2_tx_queue *txq, *aggr_txq;
5244 struct mvpp2_txq_pcpu *txq_pcpu;
5245 struct mvpp2_tx_desc *tx_desc;
5246 dma_addr_t buf_phys_addr;
5247 int frags = 0;
5248 u16 txq_id;
5249 u32 tx_cmd;
5250
5251 txq_id = skb_get_queue_mapping(skb);
5252 txq = port->txqs[txq_id];
5253 txq_pcpu = this_cpu_ptr(txq->pcpu);
5254 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5255
5256 frags = skb_shinfo(skb)->nr_frags + 1;
5257
5258 /* Check number of available descriptors */
5259 if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
5260 mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
5261 txq_pcpu, frags)) {
5262 frags = 0;
5263 goto out;
5264 }
5265
5266 /* Get a descriptor for the first part of the packet */
5267 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5268 tx_desc->phys_txq = txq->id;
5269 tx_desc->data_size = skb_headlen(skb);
5270
5271 buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
5272 tx_desc->data_size, DMA_TO_DEVICE);
5273 if (unlikely(dma_mapping_error(dev->dev.parent, buf_phys_addr))) {
5274 mvpp2_txq_desc_put(txq);
5275 frags = 0;
5276 goto out;
5277 }
5278 tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5279 tx_desc->buf_phys_addr = buf_phys_addr & ~MVPP2_TX_DESC_ALIGN;
5280
5281 tx_cmd = mvpp2_skb_tx_csum(port, skb);
5282
5283 if (frags == 1) {
5284 /* First and Last descriptor */
5285 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
5286 tx_desc->command = tx_cmd;
5287 mvpp2_txq_inc_put(txq_pcpu, skb, tx_desc);
5288 } else {
5289 /* First but not Last */
5290 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
5291 tx_desc->command = tx_cmd;
5292 mvpp2_txq_inc_put(txq_pcpu, NULL, tx_desc);
5293
5294 /* Continue with other skb fragments */
5295 if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
5296 tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5297 frags = 0;
5298 goto out;
5299 }
5300 }
5301
5302 txq_pcpu->reserved_num -= frags;
5303 txq_pcpu->count += frags;
5304 aggr_txq->count += frags;
5305
5306 /* Enable transmit */
5307 wmb();
5308 mvpp2_aggr_txq_pend_desc_add(port, frags);
5309
5310 if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) {
5311 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
5312
5313 netif_tx_stop_queue(nq);
5314 }
5315 out:
5316 if (frags > 0) {
5317 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5318
5319 u64_stats_update_begin(&stats->syncp);
5320 stats->tx_packets++;
5321 stats->tx_bytes += skb->len;
5322 u64_stats_update_end(&stats->syncp);
5323 } else {
5324 dev->stats.tx_dropped++;
5325 dev_kfree_skb_any(skb);
5326 }
5327
5328 /* Finalize TX processing */
5329 if (txq_pcpu->count >= txq->done_pkts_coal)
5330 mvpp2_txq_done(port, txq, txq_pcpu);
5331
5332 /* Set the timer in case not all frags were processed */
5333 if (txq_pcpu->count <= frags && txq_pcpu->count > 0) {
5334 struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
5335
5336 mvpp2_timer_set(port_pcpu);
5337 }
5338
5339 return NETDEV_TX_OK;
5340 }
5341
5342 static inline void mvpp2_cause_error(struct net_device *dev, int cause)
5343 {
5344 if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
5345 netdev_err(dev, "FCS error\n");
5346 if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
5347 netdev_err(dev, "rx fifo overrun error\n");
5348 if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
5349 netdev_err(dev, "tx fifo underrun error\n");
5350 }
5351
5352 static int mvpp2_poll(struct napi_struct *napi, int budget)
5353 {
5354 u32 cause_rx_tx, cause_rx, cause_misc;
5355 int rx_done = 0;
5356 struct mvpp2_port *port = netdev_priv(napi->dev);
5357
5358 /* Rx/Tx cause register
5359 *
5360 * Bits 0-15: each bit indicates received packets on the Rx queue
5361 * (bit 0 is for Rx queue 0).
5362 *
5363 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
5364 * (bit 16 is for Tx queue 0).
5365 *
5366 * Each CPU has its own Rx/Tx cause register
5367 */
5368 cause_rx_tx = mvpp2_read(port->priv,
5369 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5370 cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5371 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
5372
5373 if (cause_misc) {
5374 mvpp2_cause_error(port->dev, cause_misc);
5375
5376 /* Clear the cause register */
5377 mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
5378 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
5379 cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
5380 }
5381
5382 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
5383
5384 /* Process RX packets */
5385 cause_rx |= port->pending_cause_rx;
5386 while (cause_rx && budget > 0) {
5387 int count;
5388 struct mvpp2_rx_queue *rxq;
5389
5390 rxq = mvpp2_get_rx_queue(port, cause_rx);
5391 if (!rxq)
5392 break;
5393
5394 count = mvpp2_rx(port, budget, rxq);
5395 rx_done += count;
5396 budget -= count;
5397 if (budget > 0) {
5398 /* Clear the bit associated to this Rx queue
5399 * so that next iteration will continue from
5400 * the next Rx queue.
5401 */
5402 cause_rx &= ~(1 << rxq->logic_rxq);
5403 }
5404 }
5405
5406 if (budget > 0) {
5407 cause_rx = 0;
5408 napi_complete(napi);
5409
5410 mvpp2_interrupts_enable(port);
5411 }
5412 port->pending_cause_rx = cause_rx;
5413 return rx_done;
5414 }
5415
5416 /* Set hw internals when starting port */
5417 static void mvpp2_start_dev(struct mvpp2_port *port)
5418 {
5419 mvpp2_gmac_max_rx_size_set(port);
5420 mvpp2_txp_max_tx_size_set(port);
5421
5422 napi_enable(&port->napi);
5423
5424 /* Enable interrupts on all CPUs */
5425 mvpp2_interrupts_enable(port);
5426
5427 mvpp2_port_enable(port);
5428 phy_start(port->phy_dev);
5429 netif_tx_start_all_queues(port->dev);
5430 }
5431
5432 /* Set hw internals when stopping port */
5433 static void mvpp2_stop_dev(struct mvpp2_port *port)
5434 {
5435 /* Stop new packets from arriving to RXQs */
5436 mvpp2_ingress_disable(port);
5437
5438 mdelay(10);
5439
5440 /* Disable interrupts on all CPUs */
5441 mvpp2_interrupts_disable(port);
5442
5443 napi_disable(&port->napi);
5444
5445 netif_carrier_off(port->dev);
5446 netif_tx_stop_all_queues(port->dev);
5447
5448 mvpp2_egress_disable(port);
5449 mvpp2_port_disable(port);
5450 phy_stop(port->phy_dev);
5451 }
5452
5453 /* Return positive if MTU is valid */
5454 static inline int mvpp2_check_mtu_valid(struct net_device *dev, int mtu)
5455 {
5456 if (mtu < 68) {
5457 netdev_err(dev, "cannot change mtu to less than 68\n");
5458 return -EINVAL;
5459 }
5460
5461 /* 9676 == 9700 - 20 and rounding to 8 */
5462 if (mtu > 9676) {
5463 netdev_info(dev, "illegal MTU value %d, round to 9676\n", mtu);
5464 mtu = 9676;
5465 }
5466
5467 if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
5468 netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
5469 ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
5470 mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
5471 }
5472
5473 return mtu;
5474 }
5475
5476 static int mvpp2_check_ringparam_valid(struct net_device *dev,
5477 struct ethtool_ringparam *ring)
5478 {
5479 u16 new_rx_pending = ring->rx_pending;
5480 u16 new_tx_pending = ring->tx_pending;
5481
5482 if (ring->rx_pending == 0 || ring->tx_pending == 0)
5483 return -EINVAL;
5484
5485 if (ring->rx_pending > MVPP2_MAX_RXD)
5486 new_rx_pending = MVPP2_MAX_RXD;
5487 else if (!IS_ALIGNED(ring->rx_pending, 16))
5488 new_rx_pending = ALIGN(ring->rx_pending, 16);
5489
5490 if (ring->tx_pending > MVPP2_MAX_TXD)
5491 new_tx_pending = MVPP2_MAX_TXD;
5492 else if (!IS_ALIGNED(ring->tx_pending, 32))
5493 new_tx_pending = ALIGN(ring->tx_pending, 32);
5494
5495 if (ring->rx_pending != new_rx_pending) {
5496 netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
5497 ring->rx_pending, new_rx_pending);
5498 ring->rx_pending = new_rx_pending;
5499 }
5500
5501 if (ring->tx_pending != new_tx_pending) {
5502 netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
5503 ring->tx_pending, new_tx_pending);
5504 ring->tx_pending = new_tx_pending;
5505 }
5506
5507 return 0;
5508 }
5509
5510 static void mvpp2_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
5511 {
5512 u32 mac_addr_l, mac_addr_m, mac_addr_h;
5513
5514 mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
5515 mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
5516 mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
5517 addr[0] = (mac_addr_h >> 24) & 0xFF;
5518 addr[1] = (mac_addr_h >> 16) & 0xFF;
5519 addr[2] = (mac_addr_h >> 8) & 0xFF;
5520 addr[3] = mac_addr_h & 0xFF;
5521 addr[4] = mac_addr_m & 0xFF;
5522 addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
5523 }
5524
5525 static int mvpp2_phy_connect(struct mvpp2_port *port)
5526 {
5527 struct phy_device *phy_dev;
5528
5529 phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
5530 port->phy_interface);
5531 if (!phy_dev) {
5532 netdev_err(port->dev, "cannot connect to phy\n");
5533 return -ENODEV;
5534 }
5535 phy_dev->supported &= PHY_GBIT_FEATURES;
5536 phy_dev->advertising = phy_dev->supported;
5537
5538 port->phy_dev = phy_dev;
5539 port->link = 0;
5540 port->duplex = 0;
5541 port->speed = 0;
5542
5543 return 0;
5544 }
5545
5546 static void mvpp2_phy_disconnect(struct mvpp2_port *port)
5547 {
5548 phy_disconnect(port->phy_dev);
5549 port->phy_dev = NULL;
5550 }
5551
5552 static int mvpp2_open(struct net_device *dev)
5553 {
5554 struct mvpp2_port *port = netdev_priv(dev);
5555 unsigned char mac_bcast[ETH_ALEN] = {
5556 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5557 int err;
5558
5559 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
5560 if (err) {
5561 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
5562 return err;
5563 }
5564 err = mvpp2_prs_mac_da_accept(port->priv, port->id,
5565 dev->dev_addr, true);
5566 if (err) {
5567 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
5568 return err;
5569 }
5570 err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
5571 if (err) {
5572 netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
5573 return err;
5574 }
5575 err = mvpp2_prs_def_flow(port);
5576 if (err) {
5577 netdev_err(dev, "mvpp2_prs_def_flow failed\n");
5578 return err;
5579 }
5580
5581 /* Allocate the Rx/Tx queues */
5582 err = mvpp2_setup_rxqs(port);
5583 if (err) {
5584 netdev_err(port->dev, "cannot allocate Rx queues\n");
5585 return err;
5586 }
5587
5588 err = mvpp2_setup_txqs(port);
5589 if (err) {
5590 netdev_err(port->dev, "cannot allocate Tx queues\n");
5591 goto err_cleanup_rxqs;
5592 }
5593
5594 err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port);
5595 if (err) {
5596 netdev_err(port->dev, "cannot request IRQ %d\n", port->irq);
5597 goto err_cleanup_txqs;
5598 }
5599
5600 /* In default link is down */
5601 netif_carrier_off(port->dev);
5602
5603 err = mvpp2_phy_connect(port);
5604 if (err < 0)
5605 goto err_free_irq;
5606
5607 /* Unmask interrupts on all CPUs */
5608 on_each_cpu(mvpp2_interrupts_unmask, port, 1);
5609
5610 mvpp2_start_dev(port);
5611
5612 return 0;
5613
5614 err_free_irq:
5615 free_irq(port->irq, port);
5616 err_cleanup_txqs:
5617 mvpp2_cleanup_txqs(port);
5618 err_cleanup_rxqs:
5619 mvpp2_cleanup_rxqs(port);
5620 return err;
5621 }
5622
5623 static int mvpp2_stop(struct net_device *dev)
5624 {
5625 struct mvpp2_port *port = netdev_priv(dev);
5626 struct mvpp2_port_pcpu *port_pcpu;
5627 int cpu;
5628
5629 mvpp2_stop_dev(port);
5630 mvpp2_phy_disconnect(port);
5631
5632 /* Mask interrupts on all CPUs */
5633 on_each_cpu(mvpp2_interrupts_mask, port, 1);
5634
5635 free_irq(port->irq, port);
5636 for_each_present_cpu(cpu) {
5637 port_pcpu = per_cpu_ptr(port->pcpu, cpu);
5638
5639 hrtimer_cancel(&port_pcpu->tx_done_timer);
5640 port_pcpu->timer_scheduled = false;
5641 tasklet_kill(&port_pcpu->tx_done_tasklet);
5642 }
5643 mvpp2_cleanup_rxqs(port);
5644 mvpp2_cleanup_txqs(port);
5645
5646 return 0;
5647 }
5648
5649 static void mvpp2_set_rx_mode(struct net_device *dev)
5650 {
5651 struct mvpp2_port *port = netdev_priv(dev);
5652 struct mvpp2 *priv = port->priv;
5653 struct netdev_hw_addr *ha;
5654 int id = port->id;
5655 bool allmulti = dev->flags & IFF_ALLMULTI;
5656
5657 mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
5658 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
5659 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);
5660
5661 /* Remove all port->id's mcast enries */
5662 mvpp2_prs_mcast_del_all(priv, id);
5663
5664 if (allmulti && !netdev_mc_empty(dev)) {
5665 netdev_for_each_mc_addr(ha, dev)
5666 mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
5667 }
5668 }
5669
5670 static int mvpp2_set_mac_address(struct net_device *dev, void *p)
5671 {
5672 struct mvpp2_port *port = netdev_priv(dev);
5673 const struct sockaddr *addr = p;
5674 int err;
5675
5676 if (!is_valid_ether_addr(addr->sa_data)) {
5677 err = -EADDRNOTAVAIL;
5678 goto error;
5679 }
5680
5681 if (!netif_running(dev)) {
5682 err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5683 if (!err)
5684 return 0;
5685 /* Reconfigure parser to accept the original MAC address */
5686 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5687 if (err)
5688 goto error;
5689 }
5690
5691 mvpp2_stop_dev(port);
5692
5693 err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5694 if (!err)
5695 goto out_start;
5696
5697 /* Reconfigure parser accept the original MAC address */
5698 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5699 if (err)
5700 goto error;
5701 out_start:
5702 mvpp2_start_dev(port);
5703 mvpp2_egress_enable(port);
5704 mvpp2_ingress_enable(port);
5705 return 0;
5706
5707 error:
5708 netdev_err(dev, "fail to change MAC address\n");
5709 return err;
5710 }
5711
5712 static int mvpp2_change_mtu(struct net_device *dev, int mtu)
5713 {
5714 struct mvpp2_port *port = netdev_priv(dev);
5715 int err;
5716
5717 mtu = mvpp2_check_mtu_valid(dev, mtu);
5718 if (mtu < 0) {
5719 err = mtu;
5720 goto error;
5721 }
5722
5723 if (!netif_running(dev)) {
5724 err = mvpp2_bm_update_mtu(dev, mtu);
5725 if (!err) {
5726 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
5727 return 0;
5728 }
5729
5730 /* Reconfigure BM to the original MTU */
5731 err = mvpp2_bm_update_mtu(dev, dev->mtu);
5732 if (err)
5733 goto error;
5734 }
5735
5736 mvpp2_stop_dev(port);
5737
5738 err = mvpp2_bm_update_mtu(dev, mtu);
5739 if (!err) {
5740 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
5741 goto out_start;
5742 }
5743
5744 /* Reconfigure BM to the original MTU */
5745 err = mvpp2_bm_update_mtu(dev, dev->mtu);
5746 if (err)
5747 goto error;
5748
5749 out_start:
5750 mvpp2_start_dev(port);
5751 mvpp2_egress_enable(port);
5752 mvpp2_ingress_enable(port);
5753
5754 return 0;
5755
5756 error:
5757 netdev_err(dev, "fail to change MTU\n");
5758 return err;
5759 }
5760
5761 static struct rtnl_link_stats64 *
5762 mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5763 {
5764 struct mvpp2_port *port = netdev_priv(dev);
5765 unsigned int start;
5766 int cpu;
5767
5768 for_each_possible_cpu(cpu) {
5769 struct mvpp2_pcpu_stats *cpu_stats;
5770 u64 rx_packets;
5771 u64 rx_bytes;
5772 u64 tx_packets;
5773 u64 tx_bytes;
5774
5775 cpu_stats = per_cpu_ptr(port->stats, cpu);
5776 do {
5777 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
5778 rx_packets = cpu_stats->rx_packets;
5779 rx_bytes = cpu_stats->rx_bytes;
5780 tx_packets = cpu_stats->tx_packets;
5781 tx_bytes = cpu_stats->tx_bytes;
5782 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
5783
5784 stats->rx_packets += rx_packets;
5785 stats->rx_bytes += rx_bytes;
5786 stats->tx_packets += tx_packets;
5787 stats->tx_bytes += tx_bytes;
5788 }
5789
5790 stats->rx_errors = dev->stats.rx_errors;
5791 stats->rx_dropped = dev->stats.rx_dropped;
5792 stats->tx_dropped = dev->stats.tx_dropped;
5793
5794 return stats;
5795 }
5796
5797 static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5798 {
5799 struct mvpp2_port *port = netdev_priv(dev);
5800 int ret;
5801
5802 if (!port->phy_dev)
5803 return -ENOTSUPP;
5804
5805 ret = phy_mii_ioctl(port->phy_dev, ifr, cmd);
5806 if (!ret)
5807 mvpp2_link_event(dev);
5808
5809 return ret;
5810 }
5811
5812 /* Ethtool methods */
5813
5814 /* Get settings (phy address, speed) for ethtools */
5815 static int mvpp2_ethtool_get_settings(struct net_device *dev,
5816 struct ethtool_cmd *cmd)
5817 {
5818 struct mvpp2_port *port = netdev_priv(dev);
5819
5820 if (!port->phy_dev)
5821 return -ENODEV;
5822 return phy_ethtool_gset(port->phy_dev, cmd);
5823 }
5824
5825 /* Set settings (phy address, speed) for ethtools */
5826 static int mvpp2_ethtool_set_settings(struct net_device *dev,
5827 struct ethtool_cmd *cmd)
5828 {
5829 struct mvpp2_port *port = netdev_priv(dev);
5830
5831 if (!port->phy_dev)
5832 return -ENODEV;
5833 return phy_ethtool_sset(port->phy_dev, cmd);
5834 }
5835
5836 /* Set interrupt coalescing for ethtools */
5837 static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
5838 struct ethtool_coalesce *c)
5839 {
5840 struct mvpp2_port *port = netdev_priv(dev);
5841 int queue;
5842
5843 for (queue = 0; queue < rxq_number; queue++) {
5844 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
5845
5846 rxq->time_coal = c->rx_coalesce_usecs;
5847 rxq->pkts_coal = c->rx_max_coalesced_frames;
5848 mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
5849 mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
5850 }
5851
5852 for (queue = 0; queue < txq_number; queue++) {
5853 struct mvpp2_tx_queue *txq = port->txqs[queue];
5854
5855 txq->done_pkts_coal = c->tx_max_coalesced_frames;
5856 }
5857
5858 return 0;
5859 }
5860
5861 /* get coalescing for ethtools */
5862 static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
5863 struct ethtool_coalesce *c)
5864 {
5865 struct mvpp2_port *port = netdev_priv(dev);
5866
5867 c->rx_coalesce_usecs = port->rxqs[0]->time_coal;
5868 c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal;
5869 c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal;
5870 return 0;
5871 }
5872
5873 static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
5874 struct ethtool_drvinfo *drvinfo)
5875 {
5876 strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
5877 sizeof(drvinfo->driver));
5878 strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
5879 sizeof(drvinfo->version));
5880 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
5881 sizeof(drvinfo->bus_info));
5882 }
5883
5884 static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
5885 struct ethtool_ringparam *ring)
5886 {
5887 struct mvpp2_port *port = netdev_priv(dev);
5888
5889 ring->rx_max_pending = MVPP2_MAX_RXD;
5890 ring->tx_max_pending = MVPP2_MAX_TXD;
5891 ring->rx_pending = port->rx_ring_size;
5892 ring->tx_pending = port->tx_ring_size;
5893 }
5894
5895 static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
5896 struct ethtool_ringparam *ring)
5897 {
5898 struct mvpp2_port *port = netdev_priv(dev);
5899 u16 prev_rx_ring_size = port->rx_ring_size;
5900 u16 prev_tx_ring_size = port->tx_ring_size;
5901 int err;
5902
5903 err = mvpp2_check_ringparam_valid(dev, ring);
5904 if (err)
5905 return err;
5906
5907 if (!netif_running(dev)) {
5908 port->rx_ring_size = ring->rx_pending;
5909 port->tx_ring_size = ring->tx_pending;
5910 return 0;
5911 }
5912
5913 /* The interface is running, so we have to force a
5914 * reallocation of the queues
5915 */
5916 mvpp2_stop_dev(port);
5917 mvpp2_cleanup_rxqs(port);
5918 mvpp2_cleanup_txqs(port);
5919
5920 port->rx_ring_size = ring->rx_pending;
5921 port->tx_ring_size = ring->tx_pending;
5922
5923 err = mvpp2_setup_rxqs(port);
5924 if (err) {
5925 /* Reallocate Rx queues with the original ring size */
5926 port->rx_ring_size = prev_rx_ring_size;
5927 ring->rx_pending = prev_rx_ring_size;
5928 err = mvpp2_setup_rxqs(port);
5929 if (err)
5930 goto err_out;
5931 }
5932 err = mvpp2_setup_txqs(port);
5933 if (err) {
5934 /* Reallocate Tx queues with the original ring size */
5935 port->tx_ring_size = prev_tx_ring_size;
5936 ring->tx_pending = prev_tx_ring_size;
5937 err = mvpp2_setup_txqs(port);
5938 if (err)
5939 goto err_clean_rxqs;
5940 }
5941
5942 mvpp2_start_dev(port);
5943 mvpp2_egress_enable(port);
5944 mvpp2_ingress_enable(port);
5945
5946 return 0;
5947
5948 err_clean_rxqs:
5949 mvpp2_cleanup_rxqs(port);
5950 err_out:
5951 netdev_err(dev, "fail to change ring parameters");
5952 return err;
5953 }
5954
5955 /* Device ops */
5956
5957 static const struct net_device_ops mvpp2_netdev_ops = {
5958 .ndo_open = mvpp2_open,
5959 .ndo_stop = mvpp2_stop,
5960 .ndo_start_xmit = mvpp2_tx,
5961 .ndo_set_rx_mode = mvpp2_set_rx_mode,
5962 .ndo_set_mac_address = mvpp2_set_mac_address,
5963 .ndo_change_mtu = mvpp2_change_mtu,
5964 .ndo_get_stats64 = mvpp2_get_stats64,
5965 .ndo_do_ioctl = mvpp2_ioctl,
5966 };
5967
5968 static const struct ethtool_ops mvpp2_eth_tool_ops = {
5969 .get_link = ethtool_op_get_link,
5970 .get_settings = mvpp2_ethtool_get_settings,
5971 .set_settings = mvpp2_ethtool_set_settings,
5972 .set_coalesce = mvpp2_ethtool_set_coalesce,
5973 .get_coalesce = mvpp2_ethtool_get_coalesce,
5974 .get_drvinfo = mvpp2_ethtool_get_drvinfo,
5975 .get_ringparam = mvpp2_ethtool_get_ringparam,
5976 .set_ringparam = mvpp2_ethtool_set_ringparam,
5977 };
5978
5979 /* Driver initialization */
5980
5981 static void mvpp2_port_power_up(struct mvpp2_port *port)
5982 {
5983 mvpp2_port_mii_set(port);
5984 mvpp2_port_periodic_xon_disable(port);
5985 mvpp2_port_fc_adv_enable(port);
5986 mvpp2_port_reset(port);
5987 }
5988
5989 /* Initialize port HW */
5990 static int mvpp2_port_init(struct mvpp2_port *port)
5991 {
5992 struct device *dev = port->dev->dev.parent;
5993 struct mvpp2 *priv = port->priv;
5994 struct mvpp2_txq_pcpu *txq_pcpu;
5995 int queue, cpu, err;
5996
5997 if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM)
5998 return -EINVAL;
5999
6000 /* Disable port */
6001 mvpp2_egress_disable(port);
6002 mvpp2_port_disable(port);
6003
6004 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
6005 GFP_KERNEL);
6006 if (!port->txqs)
6007 return -ENOMEM;
6008
6009 /* Associate physical Tx queues to this port and initialize.
6010 * The mapping is predefined.
6011 */
6012 for (queue = 0; queue < txq_number; queue++) {
6013 int queue_phy_id = mvpp2_txq_phys(port->id, queue);
6014 struct mvpp2_tx_queue *txq;
6015
6016 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
6017 if (!txq)
6018 return -ENOMEM;
6019
6020 txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
6021 if (!txq->pcpu) {
6022 err = -ENOMEM;
6023 goto err_free_percpu;
6024 }
6025
6026 txq->id = queue_phy_id;
6027 txq->log_id = queue;
6028 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
6029 for_each_present_cpu(cpu) {
6030 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
6031 txq_pcpu->cpu = cpu;
6032 }
6033
6034 port->txqs[queue] = txq;
6035 }
6036
6037 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
6038 GFP_KERNEL);
6039 if (!port->rxqs) {
6040 err = -ENOMEM;
6041 goto err_free_percpu;
6042 }
6043
6044 /* Allocate and initialize Rx queue for this port */
6045 for (queue = 0; queue < rxq_number; queue++) {
6046 struct mvpp2_rx_queue *rxq;
6047
6048 /* Map physical Rx queue to port's logical Rx queue */
6049 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
6050 if (!rxq) {
6051 err = -ENOMEM;
6052 goto err_free_percpu;
6053 }
6054 /* Map this Rx queue to a physical queue */
6055 rxq->id = port->first_rxq + queue;
6056 rxq->port = port->id;
6057 rxq->logic_rxq = queue;
6058
6059 port->rxqs[queue] = rxq;
6060 }
6061
6062 /* Configure Rx queue group interrupt for this port */
6063 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), rxq_number);
6064
6065 /* Create Rx descriptor rings */
6066 for (queue = 0; queue < rxq_number; queue++) {
6067 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
6068
6069 rxq->size = port->rx_ring_size;
6070 rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
6071 rxq->time_coal = MVPP2_RX_COAL_USEC;
6072 }
6073
6074 mvpp2_ingress_disable(port);
6075
6076 /* Port default configuration */
6077 mvpp2_defaults_set(port);
6078
6079 /* Port's classifier configuration */
6080 mvpp2_cls_oversize_rxq_set(port);
6081 mvpp2_cls_port_config(port);
6082
6083 /* Provide an initial Rx packet size */
6084 port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
6085
6086 /* Initialize pools for swf */
6087 err = mvpp2_swf_bm_pool_init(port);
6088 if (err)
6089 goto err_free_percpu;
6090
6091 return 0;
6092
6093 err_free_percpu:
6094 for (queue = 0; queue < txq_number; queue++) {
6095 if (!port->txqs[queue])
6096 continue;
6097 free_percpu(port->txqs[queue]->pcpu);
6098 }
6099 return err;
6100 }
6101
6102 /* Ports initialization */
6103 static int mvpp2_port_probe(struct platform_device *pdev,
6104 struct device_node *port_node,
6105 struct mvpp2 *priv,
6106 int *next_first_rxq)
6107 {
6108 struct device_node *phy_node;
6109 struct mvpp2_port *port;
6110 struct mvpp2_port_pcpu *port_pcpu;
6111 struct net_device *dev;
6112 struct resource *res;
6113 const char *dt_mac_addr;
6114 const char *mac_from;
6115 char hw_mac_addr[ETH_ALEN];
6116 u32 id;
6117 int features;
6118 int phy_mode;
6119 int priv_common_regs_num = 2;
6120 int err, i, cpu;
6121
6122 dev = alloc_etherdev_mqs(sizeof(struct mvpp2_port), txq_number,
6123 rxq_number);
6124 if (!dev)
6125 return -ENOMEM;
6126
6127 phy_node = of_parse_phandle(port_node, "phy", 0);
6128 if (!phy_node) {
6129 dev_err(&pdev->dev, "missing phy\n");
6130 err = -ENODEV;
6131 goto err_free_netdev;
6132 }
6133
6134 phy_mode = of_get_phy_mode(port_node);
6135 if (phy_mode < 0) {
6136 dev_err(&pdev->dev, "incorrect phy mode\n");
6137 err = phy_mode;
6138 goto err_free_netdev;
6139 }
6140
6141 if (of_property_read_u32(port_node, "port-id", &id)) {
6142 err = -EINVAL;
6143 dev_err(&pdev->dev, "missing port-id value\n");
6144 goto err_free_netdev;
6145 }
6146
6147 dev->tx_queue_len = MVPP2_MAX_TXD;
6148 dev->watchdog_timeo = 5 * HZ;
6149 dev->netdev_ops = &mvpp2_netdev_ops;
6150 dev->ethtool_ops = &mvpp2_eth_tool_ops;
6151
6152 port = netdev_priv(dev);
6153
6154 port->irq = irq_of_parse_and_map(port_node, 0);
6155 if (port->irq <= 0) {
6156 err = -EINVAL;
6157 goto err_free_netdev;
6158 }
6159
6160 if (of_property_read_bool(port_node, "marvell,loopback"))
6161 port->flags |= MVPP2_F_LOOPBACK;
6162
6163 port->priv = priv;
6164 port->id = id;
6165 port->first_rxq = *next_first_rxq;
6166 port->phy_node = phy_node;
6167 port->phy_interface = phy_mode;
6168
6169 res = platform_get_resource(pdev, IORESOURCE_MEM,
6170 priv_common_regs_num + id);
6171 port->base = devm_ioremap_resource(&pdev->dev, res);
6172 if (IS_ERR(port->base)) {
6173 err = PTR_ERR(port->base);
6174 goto err_free_irq;
6175 }
6176
6177 /* Alloc per-cpu stats */
6178 port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
6179 if (!port->stats) {
6180 err = -ENOMEM;
6181 goto err_free_irq;
6182 }
6183
6184 dt_mac_addr = of_get_mac_address(port_node);
6185 if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
6186 mac_from = "device tree";
6187 ether_addr_copy(dev->dev_addr, dt_mac_addr);
6188 } else {
6189 mvpp2_get_mac_address(port, hw_mac_addr);
6190 if (is_valid_ether_addr(hw_mac_addr)) {
6191 mac_from = "hardware";
6192 ether_addr_copy(dev->dev_addr, hw_mac_addr);
6193 } else {
6194 mac_from = "random";
6195 eth_hw_addr_random(dev);
6196 }
6197 }
6198
6199 port->tx_ring_size = MVPP2_MAX_TXD;
6200 port->rx_ring_size = MVPP2_MAX_RXD;
6201 port->dev = dev;
6202 SET_NETDEV_DEV(dev, &pdev->dev);
6203
6204 err = mvpp2_port_init(port);
6205 if (err < 0) {
6206 dev_err(&pdev->dev, "failed to init port %d\n", id);
6207 goto err_free_stats;
6208 }
6209 mvpp2_port_power_up(port);
6210
6211 port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
6212 if (!port->pcpu) {
6213 err = -ENOMEM;
6214 goto err_free_txq_pcpu;
6215 }
6216
6217 for_each_present_cpu(cpu) {
6218 port_pcpu = per_cpu_ptr(port->pcpu, cpu);
6219
6220 hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
6221 HRTIMER_MODE_REL_PINNED);
6222 port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
6223 port_pcpu->timer_scheduled = false;
6224
6225 tasklet_init(&port_pcpu->tx_done_tasklet, mvpp2_tx_proc_cb,
6226 (unsigned long)dev);
6227 }
6228
6229 netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT);
6230 features = NETIF_F_SG | NETIF_F_IP_CSUM;
6231 dev->features = features | NETIF_F_RXCSUM;
6232 dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
6233 dev->vlan_features |= features;
6234
6235 err = register_netdev(dev);
6236 if (err < 0) {
6237 dev_err(&pdev->dev, "failed to register netdev\n");
6238 goto err_free_port_pcpu;
6239 }
6240 netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
6241
6242 /* Increment the first Rx queue number to be used by the next port */
6243 *next_first_rxq += rxq_number;
6244 priv->port_list[id] = port;
6245 return 0;
6246
6247 err_free_port_pcpu:
6248 free_percpu(port->pcpu);
6249 err_free_txq_pcpu:
6250 for (i = 0; i < txq_number; i++)
6251 free_percpu(port->txqs[i]->pcpu);
6252 err_free_stats:
6253 free_percpu(port->stats);
6254 err_free_irq:
6255 irq_dispose_mapping(port->irq);
6256 err_free_netdev:
6257 free_netdev(dev);
6258 return err;
6259 }
6260
6261 /* Ports removal routine */
6262 static void mvpp2_port_remove(struct mvpp2_port *port)
6263 {
6264 int i;
6265
6266 unregister_netdev(port->dev);
6267 free_percpu(port->pcpu);
6268 free_percpu(port->stats);
6269 for (i = 0; i < txq_number; i++)
6270 free_percpu(port->txqs[i]->pcpu);
6271 irq_dispose_mapping(port->irq);
6272 free_netdev(port->dev);
6273 }
6274
6275 /* Initialize decoding windows */
6276 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
6277 struct mvpp2 *priv)
6278 {
6279 u32 win_enable;
6280 int i;
6281
6282 for (i = 0; i < 6; i++) {
6283 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
6284 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
6285
6286 if (i < 4)
6287 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
6288 }
6289
6290 win_enable = 0;
6291
6292 for (i = 0; i < dram->num_cs; i++) {
6293 const struct mbus_dram_window *cs = dram->cs + i;
6294
6295 mvpp2_write(priv, MVPP2_WIN_BASE(i),
6296 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
6297 dram->mbus_dram_target_id);
6298
6299 mvpp2_write(priv, MVPP2_WIN_SIZE(i),
6300 (cs->size - 1) & 0xffff0000);
6301
6302 win_enable |= (1 << i);
6303 }
6304
6305 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
6306 }
6307
6308 /* Initialize Rx FIFO's */
6309 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
6310 {
6311 int port;
6312
6313 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
6314 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
6315 MVPP2_RX_FIFO_PORT_DATA_SIZE);
6316 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
6317 MVPP2_RX_FIFO_PORT_ATTR_SIZE);
6318 }
6319
6320 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
6321 MVPP2_RX_FIFO_PORT_MIN_PKT);
6322 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
6323 }
6324
6325 /* Initialize network controller common part HW */
6326 static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
6327 {
6328 const struct mbus_dram_target_info *dram_target_info;
6329 int err, i;
6330 u32 val;
6331
6332 /* Checks for hardware constraints */
6333 if (rxq_number % 4 || (rxq_number > MVPP2_MAX_RXQ) ||
6334 (txq_number > MVPP2_MAX_TXQ)) {
6335 dev_err(&pdev->dev, "invalid queue size parameter\n");
6336 return -EINVAL;
6337 }
6338
6339 /* MBUS windows configuration */
6340 dram_target_info = mv_mbus_dram_info();
6341 if (dram_target_info)
6342 mvpp2_conf_mbus_windows(dram_target_info, priv);
6343
6344 /* Disable HW PHY polling */
6345 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6346 val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
6347 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6348
6349 /* Allocate and initialize aggregated TXQs */
6350 priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
6351 sizeof(struct mvpp2_tx_queue),
6352 GFP_KERNEL);
6353 if (!priv->aggr_txqs)
6354 return -ENOMEM;
6355
6356 for_each_present_cpu(i) {
6357 priv->aggr_txqs[i].id = i;
6358 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
6359 err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i],
6360 MVPP2_AGGR_TXQ_SIZE, i, priv);
6361 if (err < 0)
6362 return err;
6363 }
6364
6365 /* Rx Fifo Init */
6366 mvpp2_rx_fifo_init(priv);
6367
6368 /* Reset Rx queue group interrupt configuration */
6369 for (i = 0; i < MVPP2_MAX_PORTS; i++)
6370 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i), rxq_number);
6371
6372 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
6373 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
6374
6375 /* Allow cache snoop when transmiting packets */
6376 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
6377
6378 /* Buffer Manager initialization */
6379 err = mvpp2_bm_init(pdev, priv);
6380 if (err < 0)
6381 return err;
6382
6383 /* Parser default initialization */
6384 err = mvpp2_prs_default_init(pdev, priv);
6385 if (err < 0)
6386 return err;
6387
6388 /* Classifier default initialization */
6389 mvpp2_cls_init(priv);
6390
6391 return 0;
6392 }
6393
6394 static int mvpp2_probe(struct platform_device *pdev)
6395 {
6396 struct device_node *dn = pdev->dev.of_node;
6397 struct device_node *port_node;
6398 struct mvpp2 *priv;
6399 struct resource *res;
6400 int port_count, first_rxq;
6401 int err;
6402
6403 priv = devm_kzalloc(&pdev->dev, sizeof(struct mvpp2), GFP_KERNEL);
6404 if (!priv)
6405 return -ENOMEM;
6406
6407 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
6408 priv->base = devm_ioremap_resource(&pdev->dev, res);
6409 if (IS_ERR(priv->base))
6410 return PTR_ERR(priv->base);
6411
6412 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
6413 priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
6414 if (IS_ERR(priv->lms_base))
6415 return PTR_ERR(priv->lms_base);
6416
6417 priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
6418 if (IS_ERR(priv->pp_clk))
6419 return PTR_ERR(priv->pp_clk);
6420 err = clk_prepare_enable(priv->pp_clk);
6421 if (err < 0)
6422 return err;
6423
6424 priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
6425 if (IS_ERR(priv->gop_clk)) {
6426 err = PTR_ERR(priv->gop_clk);
6427 goto err_pp_clk;
6428 }
6429 err = clk_prepare_enable(priv->gop_clk);
6430 if (err < 0)
6431 goto err_pp_clk;
6432
6433 /* Get system's tclk rate */
6434 priv->tclk = clk_get_rate(priv->pp_clk);
6435
6436 /* Initialize network controller */
6437 err = mvpp2_init(pdev, priv);
6438 if (err < 0) {
6439 dev_err(&pdev->dev, "failed to initialize controller\n");
6440 goto err_gop_clk;
6441 }
6442
6443 port_count = of_get_available_child_count(dn);
6444 if (port_count == 0) {
6445 dev_err(&pdev->dev, "no ports enabled\n");
6446 err = -ENODEV;
6447 goto err_gop_clk;
6448 }
6449
6450 priv->port_list = devm_kcalloc(&pdev->dev, port_count,
6451 sizeof(struct mvpp2_port *),
6452 GFP_KERNEL);
6453 if (!priv->port_list) {
6454 err = -ENOMEM;
6455 goto err_gop_clk;
6456 }
6457
6458 /* Initialize ports */
6459 first_rxq = 0;
6460 for_each_available_child_of_node(dn, port_node) {
6461 err = mvpp2_port_probe(pdev, port_node, priv, &first_rxq);
6462 if (err < 0)
6463 goto err_gop_clk;
6464 }
6465
6466 platform_set_drvdata(pdev, priv);
6467 return 0;
6468
6469 err_gop_clk:
6470 clk_disable_unprepare(priv->gop_clk);
6471 err_pp_clk:
6472 clk_disable_unprepare(priv->pp_clk);
6473 return err;
6474 }
6475
6476 static int mvpp2_remove(struct platform_device *pdev)
6477 {
6478 struct mvpp2 *priv = platform_get_drvdata(pdev);
6479 struct device_node *dn = pdev->dev.of_node;
6480 struct device_node *port_node;
6481 int i = 0;
6482
6483 for_each_available_child_of_node(dn, port_node) {
6484 if (priv->port_list[i])
6485 mvpp2_port_remove(priv->port_list[i]);
6486 i++;
6487 }
6488
6489 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
6490 struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
6491
6492 mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
6493 }
6494
6495 for_each_present_cpu(i) {
6496 struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
6497
6498 dma_free_coherent(&pdev->dev,
6499 MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
6500 aggr_txq->descs,
6501 aggr_txq->descs_phys);
6502 }
6503
6504 clk_disable_unprepare(priv->pp_clk);
6505 clk_disable_unprepare(priv->gop_clk);
6506
6507 return 0;
6508 }
6509
6510 static const struct of_device_id mvpp2_match[] = {
6511 { .compatible = "marvell,armada-375-pp2" },
6512 { }
6513 };
6514 MODULE_DEVICE_TABLE(of, mvpp2_match);
6515
6516 static struct platform_driver mvpp2_driver = {
6517 .probe = mvpp2_probe,
6518 .remove = mvpp2_remove,
6519 .driver = {
6520 .name = MVPP2_DRIVER_NAME,
6521 .of_match_table = mvpp2_match,
6522 },
6523 };
6524
6525 module_platform_driver(mvpp2_driver);
6526
6527 MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
6528 MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
6529 MODULE_LICENSE("GPL v2");
This page took 0.218889 seconds and 5 git commands to generate.