Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / drivers / net / ethernet / mellanox / mlx4 / en_rx.c
1 /*
2 * Copyright (c) 2007 Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33
34 #include <net/busy_poll.h>
35 #include <linux/mlx4/cq.h>
36 #include <linux/slab.h>
37 #include <linux/mlx4/qp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rculist.h>
40 #include <linux/if_ether.h>
41 #include <linux/if_vlan.h>
42 #include <linux/vmalloc.h>
43 #include <linux/irq.h>
44
45 #if IS_ENABLED(CONFIG_IPV6)
46 #include <net/ip6_checksum.h>
47 #endif
48
49 #include "mlx4_en.h"
50
51 static int mlx4_alloc_pages(struct mlx4_en_priv *priv,
52 struct mlx4_en_rx_alloc *page_alloc,
53 const struct mlx4_en_frag_info *frag_info,
54 gfp_t _gfp)
55 {
56 int order;
57 struct page *page;
58 dma_addr_t dma;
59
60 for (order = MLX4_EN_ALLOC_PREFER_ORDER; ;) {
61 gfp_t gfp = _gfp;
62
63 if (order)
64 gfp |= __GFP_COMP | __GFP_NOWARN;
65 page = alloc_pages(gfp, order);
66 if (likely(page))
67 break;
68 if (--order < 0 ||
69 ((PAGE_SIZE << order) < frag_info->frag_size))
70 return -ENOMEM;
71 }
72 dma = dma_map_page(priv->ddev, page, 0, PAGE_SIZE << order,
73 PCI_DMA_FROMDEVICE);
74 if (dma_mapping_error(priv->ddev, dma)) {
75 put_page(page);
76 return -ENOMEM;
77 }
78 page_alloc->page_size = PAGE_SIZE << order;
79 page_alloc->page = page;
80 page_alloc->dma = dma;
81 page_alloc->page_offset = 0;
82 /* Not doing get_page() for each frag is a big win
83 * on asymetric workloads. Note we can not use atomic_set().
84 */
85 atomic_add(page_alloc->page_size / frag_info->frag_stride - 1,
86 &page->_count);
87 return 0;
88 }
89
90 static int mlx4_en_alloc_frags(struct mlx4_en_priv *priv,
91 struct mlx4_en_rx_desc *rx_desc,
92 struct mlx4_en_rx_alloc *frags,
93 struct mlx4_en_rx_alloc *ring_alloc,
94 gfp_t gfp)
95 {
96 struct mlx4_en_rx_alloc page_alloc[MLX4_EN_MAX_RX_FRAGS];
97 const struct mlx4_en_frag_info *frag_info;
98 struct page *page;
99 dma_addr_t dma;
100 int i;
101
102 for (i = 0; i < priv->num_frags; i++) {
103 frag_info = &priv->frag_info[i];
104 page_alloc[i] = ring_alloc[i];
105 page_alloc[i].page_offset += frag_info->frag_stride;
106
107 if (page_alloc[i].page_offset + frag_info->frag_stride <=
108 ring_alloc[i].page_size)
109 continue;
110
111 if (mlx4_alloc_pages(priv, &page_alloc[i], frag_info, gfp))
112 goto out;
113 }
114
115 for (i = 0; i < priv->num_frags; i++) {
116 frags[i] = ring_alloc[i];
117 dma = ring_alloc[i].dma + ring_alloc[i].page_offset;
118 ring_alloc[i] = page_alloc[i];
119 rx_desc->data[i].addr = cpu_to_be64(dma);
120 }
121
122 return 0;
123
124 out:
125 while (i--) {
126 if (page_alloc[i].page != ring_alloc[i].page) {
127 dma_unmap_page(priv->ddev, page_alloc[i].dma,
128 page_alloc[i].page_size, PCI_DMA_FROMDEVICE);
129 page = page_alloc[i].page;
130 atomic_set(&page->_count, 1);
131 put_page(page);
132 }
133 }
134 return -ENOMEM;
135 }
136
137 static void mlx4_en_free_frag(struct mlx4_en_priv *priv,
138 struct mlx4_en_rx_alloc *frags,
139 int i)
140 {
141 const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
142 u32 next_frag_end = frags[i].page_offset + 2 * frag_info->frag_stride;
143
144
145 if (next_frag_end > frags[i].page_size)
146 dma_unmap_page(priv->ddev, frags[i].dma, frags[i].page_size,
147 PCI_DMA_FROMDEVICE);
148
149 if (frags[i].page)
150 put_page(frags[i].page);
151 }
152
153 static int mlx4_en_init_allocator(struct mlx4_en_priv *priv,
154 struct mlx4_en_rx_ring *ring)
155 {
156 int i;
157 struct mlx4_en_rx_alloc *page_alloc;
158
159 for (i = 0; i < priv->num_frags; i++) {
160 const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
161
162 if (mlx4_alloc_pages(priv, &ring->page_alloc[i],
163 frag_info, GFP_KERNEL | __GFP_COLD))
164 goto out;
165
166 en_dbg(DRV, priv, " frag %d allocator: - size:%d frags:%d\n",
167 i, ring->page_alloc[i].page_size,
168 atomic_read(&ring->page_alloc[i].page->_count));
169 }
170 return 0;
171
172 out:
173 while (i--) {
174 struct page *page;
175
176 page_alloc = &ring->page_alloc[i];
177 dma_unmap_page(priv->ddev, page_alloc->dma,
178 page_alloc->page_size, PCI_DMA_FROMDEVICE);
179 page = page_alloc->page;
180 atomic_set(&page->_count, 1);
181 put_page(page);
182 page_alloc->page = NULL;
183 }
184 return -ENOMEM;
185 }
186
187 static void mlx4_en_destroy_allocator(struct mlx4_en_priv *priv,
188 struct mlx4_en_rx_ring *ring)
189 {
190 struct mlx4_en_rx_alloc *page_alloc;
191 int i;
192
193 for (i = 0; i < priv->num_frags; i++) {
194 const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
195
196 page_alloc = &ring->page_alloc[i];
197 en_dbg(DRV, priv, "Freeing allocator:%d count:%d\n",
198 i, page_count(page_alloc->page));
199
200 dma_unmap_page(priv->ddev, page_alloc->dma,
201 page_alloc->page_size, PCI_DMA_FROMDEVICE);
202 while (page_alloc->page_offset + frag_info->frag_stride <
203 page_alloc->page_size) {
204 put_page(page_alloc->page);
205 page_alloc->page_offset += frag_info->frag_stride;
206 }
207 page_alloc->page = NULL;
208 }
209 }
210
211 static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv,
212 struct mlx4_en_rx_ring *ring, int index)
213 {
214 struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index;
215 int possible_frags;
216 int i;
217
218 /* Set size and memtype fields */
219 for (i = 0; i < priv->num_frags; i++) {
220 rx_desc->data[i].byte_count =
221 cpu_to_be32(priv->frag_info[i].frag_size);
222 rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key);
223 }
224
225 /* If the number of used fragments does not fill up the ring stride,
226 * remaining (unused) fragments must be padded with null address/size
227 * and a special memory key */
228 possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE;
229 for (i = priv->num_frags; i < possible_frags; i++) {
230 rx_desc->data[i].byte_count = 0;
231 rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD);
232 rx_desc->data[i].addr = 0;
233 }
234 }
235
236 static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv,
237 struct mlx4_en_rx_ring *ring, int index,
238 gfp_t gfp)
239 {
240 struct mlx4_en_rx_desc *rx_desc = ring->buf + (index * ring->stride);
241 struct mlx4_en_rx_alloc *frags = ring->rx_info +
242 (index << priv->log_rx_info);
243
244 return mlx4_en_alloc_frags(priv, rx_desc, frags, ring->page_alloc, gfp);
245 }
246
247 static inline bool mlx4_en_is_ring_empty(struct mlx4_en_rx_ring *ring)
248 {
249 return ring->prod == ring->cons;
250 }
251
252 static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring)
253 {
254 *ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff);
255 }
256
257 static void mlx4_en_free_rx_desc(struct mlx4_en_priv *priv,
258 struct mlx4_en_rx_ring *ring,
259 int index)
260 {
261 struct mlx4_en_rx_alloc *frags;
262 int nr;
263
264 frags = ring->rx_info + (index << priv->log_rx_info);
265 for (nr = 0; nr < priv->num_frags; nr++) {
266 en_dbg(DRV, priv, "Freeing fragment:%d\n", nr);
267 mlx4_en_free_frag(priv, frags, nr);
268 }
269 }
270
271 static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv)
272 {
273 struct mlx4_en_rx_ring *ring;
274 int ring_ind;
275 int buf_ind;
276 int new_size;
277
278 for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) {
279 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
280 ring = priv->rx_ring[ring_ind];
281
282 if (mlx4_en_prepare_rx_desc(priv, ring,
283 ring->actual_size,
284 GFP_KERNEL | __GFP_COLD)) {
285 if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) {
286 en_err(priv, "Failed to allocate enough rx buffers\n");
287 return -ENOMEM;
288 } else {
289 new_size = rounddown_pow_of_two(ring->actual_size);
290 en_warn(priv, "Only %d buffers allocated reducing ring size to %d\n",
291 ring->actual_size, new_size);
292 goto reduce_rings;
293 }
294 }
295 ring->actual_size++;
296 ring->prod++;
297 }
298 }
299 return 0;
300
301 reduce_rings:
302 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
303 ring = priv->rx_ring[ring_ind];
304 while (ring->actual_size > new_size) {
305 ring->actual_size--;
306 ring->prod--;
307 mlx4_en_free_rx_desc(priv, ring, ring->actual_size);
308 }
309 }
310
311 return 0;
312 }
313
314 static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv,
315 struct mlx4_en_rx_ring *ring)
316 {
317 int index;
318
319 en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n",
320 ring->cons, ring->prod);
321
322 /* Unmap and free Rx buffers */
323 while (!mlx4_en_is_ring_empty(ring)) {
324 index = ring->cons & ring->size_mask;
325 en_dbg(DRV, priv, "Processing descriptor:%d\n", index);
326 mlx4_en_free_rx_desc(priv, ring, index);
327 ++ring->cons;
328 }
329 }
330
331 void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev)
332 {
333 int i;
334 int num_of_eqs;
335 int num_rx_rings;
336 struct mlx4_dev *dev = mdev->dev;
337
338 mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) {
339 num_of_eqs = max_t(int, MIN_RX_RINGS,
340 min_t(int,
341 mlx4_get_eqs_per_port(mdev->dev, i),
342 DEF_RX_RINGS));
343
344 num_rx_rings = mlx4_low_memory_profile() ? MIN_RX_RINGS :
345 min_t(int, num_of_eqs,
346 netif_get_num_default_rss_queues());
347 mdev->profile.prof[i].rx_ring_num =
348 rounddown_pow_of_two(num_rx_rings);
349 }
350 }
351
352 int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv,
353 struct mlx4_en_rx_ring **pring,
354 u32 size, u16 stride, int node)
355 {
356 struct mlx4_en_dev *mdev = priv->mdev;
357 struct mlx4_en_rx_ring *ring;
358 int err = -ENOMEM;
359 int tmp;
360
361 ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node);
362 if (!ring) {
363 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
364 if (!ring) {
365 en_err(priv, "Failed to allocate RX ring structure\n");
366 return -ENOMEM;
367 }
368 }
369
370 ring->prod = 0;
371 ring->cons = 0;
372 ring->size = size;
373 ring->size_mask = size - 1;
374 ring->stride = stride;
375 ring->log_stride = ffs(ring->stride) - 1;
376 ring->buf_size = ring->size * ring->stride + TXBB_SIZE;
377
378 tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS *
379 sizeof(struct mlx4_en_rx_alloc));
380 ring->rx_info = vmalloc_node(tmp, node);
381 if (!ring->rx_info) {
382 ring->rx_info = vmalloc(tmp);
383 if (!ring->rx_info) {
384 err = -ENOMEM;
385 goto err_ring;
386 }
387 }
388
389 en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n",
390 ring->rx_info, tmp);
391
392 /* Allocate HW buffers on provided NUMA node */
393 set_dev_node(&mdev->dev->persist->pdev->dev, node);
394 err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres,
395 ring->buf_size, 2 * PAGE_SIZE);
396 set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node);
397 if (err)
398 goto err_info;
399
400 err = mlx4_en_map_buffer(&ring->wqres.buf);
401 if (err) {
402 en_err(priv, "Failed to map RX buffer\n");
403 goto err_hwq;
404 }
405 ring->buf = ring->wqres.buf.direct.buf;
406
407 ring->hwtstamp_rx_filter = priv->hwtstamp_config.rx_filter;
408
409 *pring = ring;
410 return 0;
411
412 err_hwq:
413 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
414 err_info:
415 vfree(ring->rx_info);
416 ring->rx_info = NULL;
417 err_ring:
418 kfree(ring);
419 *pring = NULL;
420
421 return err;
422 }
423
424 int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv)
425 {
426 struct mlx4_en_rx_ring *ring;
427 int i;
428 int ring_ind;
429 int err;
430 int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) +
431 DS_SIZE * priv->num_frags);
432
433 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
434 ring = priv->rx_ring[ring_ind];
435
436 ring->prod = 0;
437 ring->cons = 0;
438 ring->actual_size = 0;
439 ring->cqn = priv->rx_cq[ring_ind]->mcq.cqn;
440
441 ring->stride = stride;
442 if (ring->stride <= TXBB_SIZE)
443 ring->buf += TXBB_SIZE;
444
445 ring->log_stride = ffs(ring->stride) - 1;
446 ring->buf_size = ring->size * ring->stride;
447
448 memset(ring->buf, 0, ring->buf_size);
449 mlx4_en_update_rx_prod_db(ring);
450
451 /* Initialize all descriptors */
452 for (i = 0; i < ring->size; i++)
453 mlx4_en_init_rx_desc(priv, ring, i);
454
455 /* Initialize page allocators */
456 err = mlx4_en_init_allocator(priv, ring);
457 if (err) {
458 en_err(priv, "Failed initializing ring allocator\n");
459 if (ring->stride <= TXBB_SIZE)
460 ring->buf -= TXBB_SIZE;
461 ring_ind--;
462 goto err_allocator;
463 }
464 }
465 err = mlx4_en_fill_rx_buffers(priv);
466 if (err)
467 goto err_buffers;
468
469 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
470 ring = priv->rx_ring[ring_ind];
471
472 ring->size_mask = ring->actual_size - 1;
473 mlx4_en_update_rx_prod_db(ring);
474 }
475
476 return 0;
477
478 err_buffers:
479 for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++)
480 mlx4_en_free_rx_buf(priv, priv->rx_ring[ring_ind]);
481
482 ring_ind = priv->rx_ring_num - 1;
483 err_allocator:
484 while (ring_ind >= 0) {
485 if (priv->rx_ring[ring_ind]->stride <= TXBB_SIZE)
486 priv->rx_ring[ring_ind]->buf -= TXBB_SIZE;
487 mlx4_en_destroy_allocator(priv, priv->rx_ring[ring_ind]);
488 ring_ind--;
489 }
490 return err;
491 }
492
493 /* We recover from out of memory by scheduling our napi poll
494 * function (mlx4_en_process_cq), which tries to allocate
495 * all missing RX buffers (call to mlx4_en_refill_rx_buffers).
496 */
497 void mlx4_en_recover_from_oom(struct mlx4_en_priv *priv)
498 {
499 int ring;
500
501 if (!priv->port_up)
502 return;
503
504 for (ring = 0; ring < priv->rx_ring_num; ring++) {
505 if (mlx4_en_is_ring_empty(priv->rx_ring[ring]))
506 napi_reschedule(&priv->rx_cq[ring]->napi);
507 }
508 }
509
510 void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv,
511 struct mlx4_en_rx_ring **pring,
512 u32 size, u16 stride)
513 {
514 struct mlx4_en_dev *mdev = priv->mdev;
515 struct mlx4_en_rx_ring *ring = *pring;
516
517 mlx4_en_unmap_buffer(&ring->wqres.buf);
518 mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * stride + TXBB_SIZE);
519 vfree(ring->rx_info);
520 ring->rx_info = NULL;
521 kfree(ring);
522 *pring = NULL;
523 #ifdef CONFIG_RFS_ACCEL
524 mlx4_en_cleanup_filters(priv);
525 #endif
526 }
527
528 void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv,
529 struct mlx4_en_rx_ring *ring)
530 {
531 mlx4_en_free_rx_buf(priv, ring);
532 if (ring->stride <= TXBB_SIZE)
533 ring->buf -= TXBB_SIZE;
534 mlx4_en_destroy_allocator(priv, ring);
535 }
536
537
538 static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv,
539 struct mlx4_en_rx_desc *rx_desc,
540 struct mlx4_en_rx_alloc *frags,
541 struct sk_buff *skb,
542 int length)
543 {
544 struct skb_frag_struct *skb_frags_rx = skb_shinfo(skb)->frags;
545 struct mlx4_en_frag_info *frag_info;
546 int nr;
547 dma_addr_t dma;
548
549 /* Collect used fragments while replacing them in the HW descriptors */
550 for (nr = 0; nr < priv->num_frags; nr++) {
551 frag_info = &priv->frag_info[nr];
552 if (length <= frag_info->frag_prefix_size)
553 break;
554 if (!frags[nr].page)
555 goto fail;
556
557 dma = be64_to_cpu(rx_desc->data[nr].addr);
558 dma_sync_single_for_cpu(priv->ddev, dma, frag_info->frag_size,
559 DMA_FROM_DEVICE);
560
561 /* Save page reference in skb */
562 __skb_frag_set_page(&skb_frags_rx[nr], frags[nr].page);
563 skb_frag_size_set(&skb_frags_rx[nr], frag_info->frag_size);
564 skb_frags_rx[nr].page_offset = frags[nr].page_offset;
565 skb->truesize += frag_info->frag_stride;
566 frags[nr].page = NULL;
567 }
568 /* Adjust size of last fragment to match actual length */
569 if (nr > 0)
570 skb_frag_size_set(&skb_frags_rx[nr - 1],
571 length - priv->frag_info[nr - 1].frag_prefix_size);
572 return nr;
573
574 fail:
575 while (nr > 0) {
576 nr--;
577 __skb_frag_unref(&skb_frags_rx[nr]);
578 }
579 return 0;
580 }
581
582
583 static struct sk_buff *mlx4_en_rx_skb(struct mlx4_en_priv *priv,
584 struct mlx4_en_rx_desc *rx_desc,
585 struct mlx4_en_rx_alloc *frags,
586 unsigned int length)
587 {
588 struct sk_buff *skb;
589 void *va;
590 int used_frags;
591 dma_addr_t dma;
592
593 skb = netdev_alloc_skb(priv->dev, SMALL_PACKET_SIZE + NET_IP_ALIGN);
594 if (!skb) {
595 en_dbg(RX_ERR, priv, "Failed allocating skb\n");
596 return NULL;
597 }
598 skb_reserve(skb, NET_IP_ALIGN);
599 skb->len = length;
600
601 /* Get pointer to first fragment so we could copy the headers into the
602 * (linear part of the) skb */
603 va = page_address(frags[0].page) + frags[0].page_offset;
604
605 if (length <= SMALL_PACKET_SIZE) {
606 /* We are copying all relevant data to the skb - temporarily
607 * sync buffers for the copy */
608 dma = be64_to_cpu(rx_desc->data[0].addr);
609 dma_sync_single_for_cpu(priv->ddev, dma, length,
610 DMA_FROM_DEVICE);
611 skb_copy_to_linear_data(skb, va, length);
612 skb->tail += length;
613 } else {
614 unsigned int pull_len;
615
616 /* Move relevant fragments to skb */
617 used_frags = mlx4_en_complete_rx_desc(priv, rx_desc, frags,
618 skb, length);
619 if (unlikely(!used_frags)) {
620 kfree_skb(skb);
621 return NULL;
622 }
623 skb_shinfo(skb)->nr_frags = used_frags;
624
625 pull_len = eth_get_headlen(va, SMALL_PACKET_SIZE);
626 /* Copy headers into the skb linear buffer */
627 memcpy(skb->data, va, pull_len);
628 skb->tail += pull_len;
629
630 /* Skip headers in first fragment */
631 skb_shinfo(skb)->frags[0].page_offset += pull_len;
632
633 /* Adjust size of first fragment */
634 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], pull_len);
635 skb->data_len = length - pull_len;
636 }
637 return skb;
638 }
639
640 static void validate_loopback(struct mlx4_en_priv *priv, struct sk_buff *skb)
641 {
642 int i;
643 int offset = ETH_HLEN;
644
645 for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++, offset++) {
646 if (*(skb->data + offset) != (unsigned char) (i & 0xff))
647 goto out_loopback;
648 }
649 /* Loopback found */
650 priv->loopback_ok = 1;
651
652 out_loopback:
653 dev_kfree_skb_any(skb);
654 }
655
656 static void mlx4_en_refill_rx_buffers(struct mlx4_en_priv *priv,
657 struct mlx4_en_rx_ring *ring)
658 {
659 int index = ring->prod & ring->size_mask;
660
661 while ((u32) (ring->prod - ring->cons) < ring->actual_size) {
662 if (mlx4_en_prepare_rx_desc(priv, ring, index,
663 GFP_ATOMIC | __GFP_COLD))
664 break;
665 ring->prod++;
666 index = ring->prod & ring->size_mask;
667 }
668 }
669
670 /* When hardware doesn't strip the vlan, we need to calculate the checksum
671 * over it and add it to the hardware's checksum calculation
672 */
673 static inline __wsum get_fixed_vlan_csum(__wsum hw_checksum,
674 struct vlan_hdr *vlanh)
675 {
676 return csum_add(hw_checksum, *(__wsum *)vlanh);
677 }
678
679 /* Although the stack expects checksum which doesn't include the pseudo
680 * header, the HW adds it. To address that, we are subtracting the pseudo
681 * header checksum from the checksum value provided by the HW.
682 */
683 static void get_fixed_ipv4_csum(__wsum hw_checksum, struct sk_buff *skb,
684 struct iphdr *iph)
685 {
686 __u16 length_for_csum = 0;
687 __wsum csum_pseudo_header = 0;
688
689 length_for_csum = (be16_to_cpu(iph->tot_len) - (iph->ihl << 2));
690 csum_pseudo_header = csum_tcpudp_nofold(iph->saddr, iph->daddr,
691 length_for_csum, iph->protocol, 0);
692 skb->csum = csum_sub(hw_checksum, csum_pseudo_header);
693 }
694
695 #if IS_ENABLED(CONFIG_IPV6)
696 /* In IPv6 packets, besides subtracting the pseudo header checksum,
697 * we also compute/add the IP header checksum which
698 * is not added by the HW.
699 */
700 static int get_fixed_ipv6_csum(__wsum hw_checksum, struct sk_buff *skb,
701 struct ipv6hdr *ipv6h)
702 {
703 __wsum csum_pseudo_hdr = 0;
704
705 if (ipv6h->nexthdr == IPPROTO_FRAGMENT || ipv6h->nexthdr == IPPROTO_HOPOPTS)
706 return -1;
707 hw_checksum = csum_add(hw_checksum, (__force __wsum)(ipv6h->nexthdr << 8));
708
709 csum_pseudo_hdr = csum_partial(&ipv6h->saddr,
710 sizeof(ipv6h->saddr) + sizeof(ipv6h->daddr), 0);
711 csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ipv6h->payload_len);
712 csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ntohs(ipv6h->nexthdr));
713
714 skb->csum = csum_sub(hw_checksum, csum_pseudo_hdr);
715 skb->csum = csum_add(skb->csum, csum_partial(ipv6h, sizeof(struct ipv6hdr), 0));
716 return 0;
717 }
718 #endif
719 static int check_csum(struct mlx4_cqe *cqe, struct sk_buff *skb, void *va,
720 netdev_features_t dev_features)
721 {
722 __wsum hw_checksum = 0;
723
724 void *hdr = (u8 *)va + sizeof(struct ethhdr);
725
726 hw_checksum = csum_unfold((__force __sum16)cqe->checksum);
727
728 if (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK) &&
729 !(dev_features & NETIF_F_HW_VLAN_CTAG_RX)) {
730 hw_checksum = get_fixed_vlan_csum(hw_checksum, hdr);
731 hdr += sizeof(struct vlan_hdr);
732 }
733
734 if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4))
735 get_fixed_ipv4_csum(hw_checksum, skb, hdr);
736 #if IS_ENABLED(CONFIG_IPV6)
737 else if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV6))
738 if (get_fixed_ipv6_csum(hw_checksum, skb, hdr))
739 return -1;
740 #endif
741 return 0;
742 }
743
744 int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget)
745 {
746 struct mlx4_en_priv *priv = netdev_priv(dev);
747 struct mlx4_en_dev *mdev = priv->mdev;
748 struct mlx4_cqe *cqe;
749 struct mlx4_en_rx_ring *ring = priv->rx_ring[cq->ring];
750 struct mlx4_en_rx_alloc *frags;
751 struct mlx4_en_rx_desc *rx_desc;
752 struct sk_buff *skb;
753 int index;
754 int nr;
755 unsigned int length;
756 int polled = 0;
757 int ip_summed;
758 int factor = priv->cqe_factor;
759 u64 timestamp;
760 bool l2_tunnel;
761
762 if (!priv->port_up)
763 return 0;
764
765 if (budget <= 0)
766 return polled;
767
768 /* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx
769 * descriptor offset can be deduced from the CQE index instead of
770 * reading 'cqe->index' */
771 index = cq->mcq.cons_index & ring->size_mask;
772 cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor;
773
774 /* Process all completed CQEs */
775 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
776 cq->mcq.cons_index & cq->size)) {
777
778 frags = ring->rx_info + (index << priv->log_rx_info);
779 rx_desc = ring->buf + (index << ring->log_stride);
780
781 /*
782 * make sure we read the CQE after we read the ownership bit
783 */
784 dma_rmb();
785
786 /* Drop packet on bad receive or bad checksum */
787 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
788 MLX4_CQE_OPCODE_ERROR)) {
789 en_err(priv, "CQE completed in error - vendor syndrom:%d syndrom:%d\n",
790 ((struct mlx4_err_cqe *)cqe)->vendor_err_syndrome,
791 ((struct mlx4_err_cqe *)cqe)->syndrome);
792 goto next;
793 }
794 if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) {
795 en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n");
796 goto next;
797 }
798
799 /* Check if we need to drop the packet if SRIOV is not enabled
800 * and not performing the selftest or flb disabled
801 */
802 if (priv->flags & MLX4_EN_FLAG_RX_FILTER_NEEDED) {
803 struct ethhdr *ethh;
804 dma_addr_t dma;
805 /* Get pointer to first fragment since we haven't
806 * skb yet and cast it to ethhdr struct
807 */
808 dma = be64_to_cpu(rx_desc->data[0].addr);
809 dma_sync_single_for_cpu(priv->ddev, dma, sizeof(*ethh),
810 DMA_FROM_DEVICE);
811 ethh = (struct ethhdr *)(page_address(frags[0].page) +
812 frags[0].page_offset);
813
814 if (is_multicast_ether_addr(ethh->h_dest)) {
815 struct mlx4_mac_entry *entry;
816 struct hlist_head *bucket;
817 unsigned int mac_hash;
818
819 /* Drop the packet, since HW loopback-ed it */
820 mac_hash = ethh->h_source[MLX4_EN_MAC_HASH_IDX];
821 bucket = &priv->mac_hash[mac_hash];
822 rcu_read_lock();
823 hlist_for_each_entry_rcu(entry, bucket, hlist) {
824 if (ether_addr_equal_64bits(entry->mac,
825 ethh->h_source)) {
826 rcu_read_unlock();
827 goto next;
828 }
829 }
830 rcu_read_unlock();
831 }
832 }
833
834 /*
835 * Packet is OK - process it.
836 */
837 length = be32_to_cpu(cqe->byte_cnt);
838 length -= ring->fcs_del;
839 ring->bytes += length;
840 ring->packets++;
841 l2_tunnel = (dev->hw_enc_features & NETIF_F_RXCSUM) &&
842 (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_L2_TUNNEL));
843
844 if (likely(dev->features & NETIF_F_RXCSUM)) {
845 if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_TCP |
846 MLX4_CQE_STATUS_UDP)) {
847 if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) &&
848 cqe->checksum == cpu_to_be16(0xffff)) {
849 ip_summed = CHECKSUM_UNNECESSARY;
850 ring->csum_ok++;
851 } else {
852 ip_summed = CHECKSUM_NONE;
853 ring->csum_none++;
854 }
855 } else {
856 if (priv->flags & MLX4_EN_FLAG_RX_CSUM_NON_TCP_UDP &&
857 (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4 |
858 MLX4_CQE_STATUS_IPV6))) {
859 ip_summed = CHECKSUM_COMPLETE;
860 ring->csum_complete++;
861 } else {
862 ip_summed = CHECKSUM_NONE;
863 ring->csum_none++;
864 }
865 }
866 } else {
867 ip_summed = CHECKSUM_NONE;
868 ring->csum_none++;
869 }
870
871 /* This packet is eligible for GRO if it is:
872 * - DIX Ethernet (type interpretation)
873 * - TCP/IP (v4)
874 * - without IP options
875 * - not an IP fragment
876 * - no LLS polling in progress
877 */
878 if (!mlx4_en_cq_busy_polling(cq) &&
879 (dev->features & NETIF_F_GRO)) {
880 struct sk_buff *gro_skb = napi_get_frags(&cq->napi);
881 if (!gro_skb)
882 goto next;
883
884 nr = mlx4_en_complete_rx_desc(priv,
885 rx_desc, frags, gro_skb,
886 length);
887 if (!nr)
888 goto next;
889
890 if (ip_summed == CHECKSUM_COMPLETE) {
891 void *va = skb_frag_address(skb_shinfo(gro_skb)->frags);
892 if (check_csum(cqe, gro_skb, va,
893 dev->features)) {
894 ip_summed = CHECKSUM_NONE;
895 ring->csum_none++;
896 ring->csum_complete--;
897 }
898 }
899
900 skb_shinfo(gro_skb)->nr_frags = nr;
901 gro_skb->len = length;
902 gro_skb->data_len = length;
903 gro_skb->ip_summed = ip_summed;
904
905 if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY)
906 gro_skb->csum_level = 1;
907
908 if ((cqe->vlan_my_qpn &
909 cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK)) &&
910 (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
911 u16 vid = be16_to_cpu(cqe->sl_vid);
912
913 __vlan_hwaccel_put_tag(gro_skb, htons(ETH_P_8021Q), vid);
914 } else if ((be32_to_cpu(cqe->vlan_my_qpn) &
915 MLX4_CQE_SVLAN_PRESENT_MASK) &&
916 (dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
917 __vlan_hwaccel_put_tag(gro_skb,
918 htons(ETH_P_8021AD),
919 be16_to_cpu(cqe->sl_vid));
920 }
921
922 if (dev->features & NETIF_F_RXHASH)
923 skb_set_hash(gro_skb,
924 be32_to_cpu(cqe->immed_rss_invalid),
925 (ip_summed == CHECKSUM_UNNECESSARY) ?
926 PKT_HASH_TYPE_L4 :
927 PKT_HASH_TYPE_L3);
928
929 skb_record_rx_queue(gro_skb, cq->ring);
930 skb_mark_napi_id(gro_skb, &cq->napi);
931
932 if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) {
933 timestamp = mlx4_en_get_cqe_ts(cqe);
934 mlx4_en_fill_hwtstamps(mdev,
935 skb_hwtstamps(gro_skb),
936 timestamp);
937 }
938
939 napi_gro_frags(&cq->napi);
940 goto next;
941 }
942
943 /* GRO not possible, complete processing here */
944 skb = mlx4_en_rx_skb(priv, rx_desc, frags, length);
945 if (!skb) {
946 priv->stats.rx_dropped++;
947 goto next;
948 }
949
950 if (unlikely(priv->validate_loopback)) {
951 validate_loopback(priv, skb);
952 goto next;
953 }
954
955 if (ip_summed == CHECKSUM_COMPLETE) {
956 if (check_csum(cqe, skb, skb->data, dev->features)) {
957 ip_summed = CHECKSUM_NONE;
958 ring->csum_complete--;
959 ring->csum_none++;
960 }
961 }
962
963 skb->ip_summed = ip_summed;
964 skb->protocol = eth_type_trans(skb, dev);
965 skb_record_rx_queue(skb, cq->ring);
966
967 if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY)
968 skb->csum_level = 1;
969
970 if (dev->features & NETIF_F_RXHASH)
971 skb_set_hash(skb,
972 be32_to_cpu(cqe->immed_rss_invalid),
973 (ip_summed == CHECKSUM_UNNECESSARY) ?
974 PKT_HASH_TYPE_L4 :
975 PKT_HASH_TYPE_L3);
976
977 if ((be32_to_cpu(cqe->vlan_my_qpn) &
978 MLX4_CQE_CVLAN_PRESENT_MASK) &&
979 (dev->features & NETIF_F_HW_VLAN_CTAG_RX))
980 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(cqe->sl_vid));
981 else if ((be32_to_cpu(cqe->vlan_my_qpn) &
982 MLX4_CQE_SVLAN_PRESENT_MASK) &&
983 (dev->features & NETIF_F_HW_VLAN_STAG_RX))
984 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD),
985 be16_to_cpu(cqe->sl_vid));
986
987 if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) {
988 timestamp = mlx4_en_get_cqe_ts(cqe);
989 mlx4_en_fill_hwtstamps(mdev, skb_hwtstamps(skb),
990 timestamp);
991 }
992
993 skb_mark_napi_id(skb, &cq->napi);
994
995 if (!mlx4_en_cq_busy_polling(cq))
996 napi_gro_receive(&cq->napi, skb);
997 else
998 netif_receive_skb(skb);
999
1000 next:
1001 for (nr = 0; nr < priv->num_frags; nr++)
1002 mlx4_en_free_frag(priv, frags, nr);
1003
1004 ++cq->mcq.cons_index;
1005 index = (cq->mcq.cons_index) & ring->size_mask;
1006 cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor;
1007 if (++polled == budget)
1008 goto out;
1009 }
1010
1011 out:
1012 AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled);
1013 mlx4_cq_set_ci(&cq->mcq);
1014 wmb(); /* ensure HW sees CQ consumer before we post new buffers */
1015 ring->cons = cq->mcq.cons_index;
1016 mlx4_en_refill_rx_buffers(priv, ring);
1017 mlx4_en_update_rx_prod_db(ring);
1018 return polled;
1019 }
1020
1021
1022 void mlx4_en_rx_irq(struct mlx4_cq *mcq)
1023 {
1024 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
1025 struct mlx4_en_priv *priv = netdev_priv(cq->dev);
1026
1027 if (likely(priv->port_up))
1028 napi_schedule_irqoff(&cq->napi);
1029 else
1030 mlx4_en_arm_cq(priv, cq);
1031 }
1032
1033 /* Rx CQ polling - called by NAPI */
1034 int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget)
1035 {
1036 struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi);
1037 struct net_device *dev = cq->dev;
1038 struct mlx4_en_priv *priv = netdev_priv(dev);
1039 int done;
1040
1041 if (!mlx4_en_cq_lock_napi(cq))
1042 return budget;
1043
1044 done = mlx4_en_process_rx_cq(dev, cq, budget);
1045
1046 mlx4_en_cq_unlock_napi(cq);
1047
1048 /* If we used up all the quota - we're probably not done yet... */
1049 if (done == budget) {
1050 int cpu_curr;
1051 const struct cpumask *aff;
1052
1053 INC_PERF_COUNTER(priv->pstats.napi_quota);
1054
1055 cpu_curr = smp_processor_id();
1056 aff = irq_desc_get_irq_data(cq->irq_desc)->affinity;
1057
1058 if (likely(cpumask_test_cpu(cpu_curr, aff)))
1059 return budget;
1060
1061 /* Current cpu is not according to smp_irq_affinity -
1062 * probably affinity changed. need to stop this NAPI
1063 * poll, and restart it on the right CPU
1064 */
1065 done = 0;
1066 }
1067 /* Done for now */
1068 napi_complete_done(napi, done);
1069 mlx4_en_arm_cq(priv, cq);
1070 return done;
1071 }
1072
1073 static const int frag_sizes[] = {
1074 FRAG_SZ0,
1075 FRAG_SZ1,
1076 FRAG_SZ2,
1077 FRAG_SZ3
1078 };
1079
1080 void mlx4_en_calc_rx_buf(struct net_device *dev)
1081 {
1082 struct mlx4_en_priv *priv = netdev_priv(dev);
1083 /* VLAN_HLEN is added twice,to support skb vlan tagged with multiple
1084 * headers. (For example: ETH_P_8021Q and ETH_P_8021AD).
1085 */
1086 int eff_mtu = dev->mtu + ETH_HLEN + (2 * VLAN_HLEN);
1087 int buf_size = 0;
1088 int i = 0;
1089
1090 while (buf_size < eff_mtu) {
1091 priv->frag_info[i].frag_size =
1092 (eff_mtu > buf_size + frag_sizes[i]) ?
1093 frag_sizes[i] : eff_mtu - buf_size;
1094 priv->frag_info[i].frag_prefix_size = buf_size;
1095 priv->frag_info[i].frag_stride =
1096 ALIGN(priv->frag_info[i].frag_size,
1097 SMP_CACHE_BYTES);
1098 buf_size += priv->frag_info[i].frag_size;
1099 i++;
1100 }
1101
1102 priv->num_frags = i;
1103 priv->rx_skb_size = eff_mtu;
1104 priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct mlx4_en_rx_alloc));
1105
1106 en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d num_frags:%d):\n",
1107 eff_mtu, priv->num_frags);
1108 for (i = 0; i < priv->num_frags; i++) {
1109 en_err(priv,
1110 " frag:%d - size:%d prefix:%d stride:%d\n",
1111 i,
1112 priv->frag_info[i].frag_size,
1113 priv->frag_info[i].frag_prefix_size,
1114 priv->frag_info[i].frag_stride);
1115 }
1116 }
1117
1118 /* RSS related functions */
1119
1120 static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn,
1121 struct mlx4_en_rx_ring *ring,
1122 enum mlx4_qp_state *state,
1123 struct mlx4_qp *qp)
1124 {
1125 struct mlx4_en_dev *mdev = priv->mdev;
1126 struct mlx4_qp_context *context;
1127 int err = 0;
1128
1129 context = kmalloc(sizeof(*context), GFP_KERNEL);
1130 if (!context)
1131 return -ENOMEM;
1132
1133 err = mlx4_qp_alloc(mdev->dev, qpn, qp, GFP_KERNEL);
1134 if (err) {
1135 en_err(priv, "Failed to allocate qp #%x\n", qpn);
1136 goto out;
1137 }
1138 qp->event = mlx4_en_sqp_event;
1139
1140 memset(context, 0, sizeof *context);
1141 mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0,
1142 qpn, ring->cqn, -1, context);
1143 context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma);
1144
1145 /* Cancel FCS removal if FW allows */
1146 if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) {
1147 context->param3 |= cpu_to_be32(1 << 29);
1148 if (priv->dev->features & NETIF_F_RXFCS)
1149 ring->fcs_del = 0;
1150 else
1151 ring->fcs_del = ETH_FCS_LEN;
1152 } else
1153 ring->fcs_del = 0;
1154
1155 err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state);
1156 if (err) {
1157 mlx4_qp_remove(mdev->dev, qp);
1158 mlx4_qp_free(mdev->dev, qp);
1159 }
1160 mlx4_en_update_rx_prod_db(ring);
1161 out:
1162 kfree(context);
1163 return err;
1164 }
1165
1166 int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv)
1167 {
1168 int err;
1169 u32 qpn;
1170
1171 err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn,
1172 MLX4_RESERVE_A0_QP);
1173 if (err) {
1174 en_err(priv, "Failed reserving drop qpn\n");
1175 return err;
1176 }
1177 err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp, GFP_KERNEL);
1178 if (err) {
1179 en_err(priv, "Failed allocating drop qp\n");
1180 mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
1181 return err;
1182 }
1183
1184 return 0;
1185 }
1186
1187 void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv)
1188 {
1189 u32 qpn;
1190
1191 qpn = priv->drop_qp.qpn;
1192 mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp);
1193 mlx4_qp_free(priv->mdev->dev, &priv->drop_qp);
1194 mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
1195 }
1196
1197 /* Allocate rx qp's and configure them according to rss map */
1198 int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv)
1199 {
1200 struct mlx4_en_dev *mdev = priv->mdev;
1201 struct mlx4_en_rss_map *rss_map = &priv->rss_map;
1202 struct mlx4_qp_context context;
1203 struct mlx4_rss_context *rss_context;
1204 int rss_rings;
1205 void *ptr;
1206 u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 |
1207 MLX4_RSS_TCP_IPV6);
1208 int i, qpn;
1209 int err = 0;
1210 int good_qps = 0;
1211
1212 en_dbg(DRV, priv, "Configuring rss steering\n");
1213 err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num,
1214 priv->rx_ring_num,
1215 &rss_map->base_qpn, 0);
1216 if (err) {
1217 en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num);
1218 return err;
1219 }
1220
1221 for (i = 0; i < priv->rx_ring_num; i++) {
1222 qpn = rss_map->base_qpn + i;
1223 err = mlx4_en_config_rss_qp(priv, qpn, priv->rx_ring[i],
1224 &rss_map->state[i],
1225 &rss_map->qps[i]);
1226 if (err)
1227 goto rss_err;
1228
1229 ++good_qps;
1230 }
1231
1232 /* Configure RSS indirection qp */
1233 err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp, GFP_KERNEL);
1234 if (err) {
1235 en_err(priv, "Failed to allocate RSS indirection QP\n");
1236 goto rss_err;
1237 }
1238 rss_map->indir_qp.event = mlx4_en_sqp_event;
1239 mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn,
1240 priv->rx_ring[0]->cqn, -1, &context);
1241
1242 if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num)
1243 rss_rings = priv->rx_ring_num;
1244 else
1245 rss_rings = priv->prof->rss_rings;
1246
1247 ptr = ((void *) &context) + offsetof(struct mlx4_qp_context, pri_path)
1248 + MLX4_RSS_OFFSET_IN_QPC_PRI_PATH;
1249 rss_context = ptr;
1250 rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 |
1251 (rss_map->base_qpn));
1252 rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn);
1253 if (priv->mdev->profile.udp_rss) {
1254 rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6;
1255 rss_context->base_qpn_udp = rss_context->default_qpn;
1256 }
1257
1258 if (mdev->dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) {
1259 en_info(priv, "Setting RSS context tunnel type to RSS on inner headers\n");
1260 rss_mask |= MLX4_RSS_BY_INNER_HEADERS;
1261 }
1262
1263 rss_context->flags = rss_mask;
1264 rss_context->hash_fn = MLX4_RSS_HASH_TOP;
1265 if (priv->rss_hash_fn == ETH_RSS_HASH_XOR) {
1266 rss_context->hash_fn = MLX4_RSS_HASH_XOR;
1267 } else if (priv->rss_hash_fn == ETH_RSS_HASH_TOP) {
1268 rss_context->hash_fn = MLX4_RSS_HASH_TOP;
1269 memcpy(rss_context->rss_key, priv->rss_key,
1270 MLX4_EN_RSS_KEY_SIZE);
1271 netdev_rss_key_fill(rss_context->rss_key,
1272 MLX4_EN_RSS_KEY_SIZE);
1273 } else {
1274 en_err(priv, "Unknown RSS hash function requested\n");
1275 err = -EINVAL;
1276 goto indir_err;
1277 }
1278 err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context,
1279 &rss_map->indir_qp, &rss_map->indir_state);
1280 if (err)
1281 goto indir_err;
1282
1283 return 0;
1284
1285 indir_err:
1286 mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
1287 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
1288 mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
1289 mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
1290 rss_err:
1291 for (i = 0; i < good_qps; i++) {
1292 mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
1293 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
1294 mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
1295 mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
1296 }
1297 mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
1298 return err;
1299 }
1300
1301 void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv)
1302 {
1303 struct mlx4_en_dev *mdev = priv->mdev;
1304 struct mlx4_en_rss_map *rss_map = &priv->rss_map;
1305 int i;
1306
1307 mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
1308 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
1309 mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
1310 mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
1311
1312 for (i = 0; i < priv->rx_ring_num; i++) {
1313 mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
1314 MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
1315 mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
1316 mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
1317 }
1318 mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
1319 }
This page took 0.09801 seconds and 5 git commands to generate.