2c03b55204838e5e1f87bbcfceaca0ad4cdc6b86
[deliverable/linux.git] / drivers / net / ethernet / mellanox / mlx4 / en_tx.c
1 /*
2 * Copyright (c) 2007 Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33
34 #include <asm/page.h>
35 #include <linux/mlx4/cq.h>
36 #include <linux/slab.h>
37 #include <linux/mlx4/qp.h>
38 #include <linux/skbuff.h>
39 #include <linux/if_vlan.h>
40 #include <linux/prefetch.h>
41 #include <linux/vmalloc.h>
42 #include <linux/tcp.h>
43 #include <linux/ip.h>
44 #include <linux/moduleparam.h>
45
46 #include "mlx4_en.h"
47
48 int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
49 struct mlx4_en_tx_ring **pring, int qpn, u32 size,
50 u16 stride, int node, int queue_index)
51 {
52 struct mlx4_en_dev *mdev = priv->mdev;
53 struct mlx4_en_tx_ring *ring;
54 int tmp;
55 int err;
56
57 ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node);
58 if (!ring) {
59 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
60 if (!ring) {
61 en_err(priv, "Failed allocating TX ring\n");
62 return -ENOMEM;
63 }
64 }
65
66 ring->size = size;
67 ring->size_mask = size - 1;
68 ring->stride = stride;
69 ring->inline_thold = priv->prof->inline_thold;
70
71 tmp = size * sizeof(struct mlx4_en_tx_info);
72 ring->tx_info = kmalloc_node(tmp, GFP_KERNEL | __GFP_NOWARN, node);
73 if (!ring->tx_info) {
74 ring->tx_info = vmalloc(tmp);
75 if (!ring->tx_info) {
76 err = -ENOMEM;
77 goto err_ring;
78 }
79 }
80
81 en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
82 ring->tx_info, tmp);
83
84 ring->bounce_buf = kmalloc_node(MAX_DESC_SIZE, GFP_KERNEL, node);
85 if (!ring->bounce_buf) {
86 ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL);
87 if (!ring->bounce_buf) {
88 err = -ENOMEM;
89 goto err_info;
90 }
91 }
92 ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE);
93
94 /* Allocate HW buffers on provided NUMA node */
95 set_dev_node(&mdev->dev->pdev->dev, node);
96 err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size,
97 2 * PAGE_SIZE);
98 set_dev_node(&mdev->dev->pdev->dev, mdev->dev->numa_node);
99 if (err) {
100 en_err(priv, "Failed allocating hwq resources\n");
101 goto err_bounce;
102 }
103
104 err = mlx4_en_map_buffer(&ring->wqres.buf);
105 if (err) {
106 en_err(priv, "Failed to map TX buffer\n");
107 goto err_hwq_res;
108 }
109
110 ring->buf = ring->wqres.buf.direct.buf;
111
112 en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d buf_size:%d dma:%llx\n",
113 ring, ring->buf, ring->size, ring->buf_size,
114 (unsigned long long) ring->wqres.buf.direct.map);
115
116 ring->qpn = qpn;
117 err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp, GFP_KERNEL);
118 if (err) {
119 en_err(priv, "Failed allocating qp %d\n", ring->qpn);
120 goto err_map;
121 }
122 ring->qp.event = mlx4_en_sqp_event;
123
124 err = mlx4_bf_alloc(mdev->dev, &ring->bf, node);
125 if (err) {
126 en_dbg(DRV, priv, "working without blueflame (%d)\n", err);
127 ring->bf.uar = &mdev->priv_uar;
128 ring->bf.uar->map = mdev->uar_map;
129 ring->bf_enabled = false;
130 ring->bf_alloced = false;
131 priv->pflags &= ~MLX4_EN_PRIV_FLAGS_BLUEFLAME;
132 } else {
133 ring->bf_alloced = true;
134 ring->bf_enabled = !!(priv->pflags &
135 MLX4_EN_PRIV_FLAGS_BLUEFLAME);
136 }
137
138 ring->hwtstamp_tx_type = priv->hwtstamp_config.tx_type;
139 ring->queue_index = queue_index;
140
141 if (queue_index < priv->num_tx_rings_p_up && cpu_online(queue_index))
142 cpumask_set_cpu(queue_index, &ring->affinity_mask);
143
144 *pring = ring;
145 return 0;
146
147 err_map:
148 mlx4_en_unmap_buffer(&ring->wqres.buf);
149 err_hwq_res:
150 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
151 err_bounce:
152 kfree(ring->bounce_buf);
153 ring->bounce_buf = NULL;
154 err_info:
155 kvfree(ring->tx_info);
156 ring->tx_info = NULL;
157 err_ring:
158 kfree(ring);
159 *pring = NULL;
160 return err;
161 }
162
163 void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
164 struct mlx4_en_tx_ring **pring)
165 {
166 struct mlx4_en_dev *mdev = priv->mdev;
167 struct mlx4_en_tx_ring *ring = *pring;
168 en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
169
170 if (ring->bf_alloced)
171 mlx4_bf_free(mdev->dev, &ring->bf);
172 mlx4_qp_remove(mdev->dev, &ring->qp);
173 mlx4_qp_free(mdev->dev, &ring->qp);
174 mlx4_en_unmap_buffer(&ring->wqres.buf);
175 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
176 kfree(ring->bounce_buf);
177 ring->bounce_buf = NULL;
178 kvfree(ring->tx_info);
179 ring->tx_info = NULL;
180 kfree(ring);
181 *pring = NULL;
182 }
183
184 int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
185 struct mlx4_en_tx_ring *ring,
186 int cq, int user_prio)
187 {
188 struct mlx4_en_dev *mdev = priv->mdev;
189 int err;
190
191 ring->cqn = cq;
192 ring->prod = 0;
193 ring->cons = 0xffffffff;
194 ring->last_nr_txbb = 1;
195 memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info));
196 memset(ring->buf, 0, ring->buf_size);
197
198 ring->qp_state = MLX4_QP_STATE_RST;
199 ring->doorbell_qpn = cpu_to_be32(ring->qp.qpn << 8);
200 ring->mr_key = cpu_to_be32(mdev->mr.key);
201
202 mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn,
203 ring->cqn, user_prio, &ring->context);
204 if (ring->bf_alloced)
205 ring->context.usr_page = cpu_to_be32(ring->bf.uar->index);
206
207 err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context,
208 &ring->qp, &ring->qp_state);
209 if (!user_prio && cpu_online(ring->queue_index))
210 netif_set_xps_queue(priv->dev, &ring->affinity_mask,
211 ring->queue_index);
212
213 return err;
214 }
215
216 void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
217 struct mlx4_en_tx_ring *ring)
218 {
219 struct mlx4_en_dev *mdev = priv->mdev;
220
221 mlx4_qp_modify(mdev->dev, NULL, ring->qp_state,
222 MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp);
223 }
224
225 static void mlx4_en_stamp_wqe(struct mlx4_en_priv *priv,
226 struct mlx4_en_tx_ring *ring, int index,
227 u8 owner)
228 {
229 __be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT));
230 struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE;
231 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
232 void *end = ring->buf + ring->buf_size;
233 __be32 *ptr = (__be32 *)tx_desc;
234 int i;
235
236 /* Optimize the common case when there are no wraparounds */
237 if (likely((void *)tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) {
238 /* Stamp the freed descriptor */
239 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE;
240 i += STAMP_STRIDE) {
241 *ptr = stamp;
242 ptr += STAMP_DWORDS;
243 }
244 } else {
245 /* Stamp the freed descriptor */
246 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE;
247 i += STAMP_STRIDE) {
248 *ptr = stamp;
249 ptr += STAMP_DWORDS;
250 if ((void *)ptr >= end) {
251 ptr = ring->buf;
252 stamp ^= cpu_to_be32(0x80000000);
253 }
254 }
255 }
256 }
257
258
259 static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
260 struct mlx4_en_tx_ring *ring,
261 int index, u8 owner, u64 timestamp)
262 {
263 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
264 struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE;
265 struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset;
266 void *end = ring->buf + ring->buf_size;
267 struct sk_buff *skb = tx_info->skb;
268 int nr_maps = tx_info->nr_maps;
269 int i;
270
271 /* We do not touch skb here, so prefetch skb->users location
272 * to speedup consume_skb()
273 */
274 prefetchw(&skb->users);
275
276 if (unlikely(timestamp)) {
277 struct skb_shared_hwtstamps hwts;
278
279 mlx4_en_fill_hwtstamps(priv->mdev, &hwts, timestamp);
280 skb_tstamp_tx(skb, &hwts);
281 }
282
283 /* Optimize the common case when there are no wraparounds */
284 if (likely((void *) tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) {
285 if (!tx_info->inl) {
286 if (tx_info->linear)
287 dma_unmap_single(priv->ddev,
288 tx_info->map0_dma,
289 tx_info->map0_byte_count,
290 PCI_DMA_TODEVICE);
291 else
292 dma_unmap_page(priv->ddev,
293 tx_info->map0_dma,
294 tx_info->map0_byte_count,
295 PCI_DMA_TODEVICE);
296 for (i = 1; i < nr_maps; i++) {
297 data++;
298 dma_unmap_page(priv->ddev,
299 (dma_addr_t)be64_to_cpu(data->addr),
300 be32_to_cpu(data->byte_count),
301 PCI_DMA_TODEVICE);
302 }
303 }
304 } else {
305 if (!tx_info->inl) {
306 if ((void *) data >= end) {
307 data = ring->buf + ((void *)data - end);
308 }
309
310 if (tx_info->linear)
311 dma_unmap_single(priv->ddev,
312 tx_info->map0_dma,
313 tx_info->map0_byte_count,
314 PCI_DMA_TODEVICE);
315 else
316 dma_unmap_page(priv->ddev,
317 tx_info->map0_dma,
318 tx_info->map0_byte_count,
319 PCI_DMA_TODEVICE);
320 for (i = 1; i < nr_maps; i++) {
321 data++;
322 /* Check for wraparound before unmapping */
323 if ((void *) data >= end)
324 data = ring->buf;
325 dma_unmap_page(priv->ddev,
326 (dma_addr_t)be64_to_cpu(data->addr),
327 be32_to_cpu(data->byte_count),
328 PCI_DMA_TODEVICE);
329 }
330 }
331 }
332 dev_consume_skb_any(skb);
333 return tx_info->nr_txbb;
334 }
335
336
337 int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
338 {
339 struct mlx4_en_priv *priv = netdev_priv(dev);
340 int cnt = 0;
341
342 /* Skip last polled descriptor */
343 ring->cons += ring->last_nr_txbb;
344 en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
345 ring->cons, ring->prod);
346
347 if ((u32) (ring->prod - ring->cons) > ring->size) {
348 if (netif_msg_tx_err(priv))
349 en_warn(priv, "Tx consumer passed producer!\n");
350 return 0;
351 }
352
353 while (ring->cons != ring->prod) {
354 ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring,
355 ring->cons & ring->size_mask,
356 !!(ring->cons & ring->size), 0);
357 ring->cons += ring->last_nr_txbb;
358 cnt++;
359 }
360
361 netdev_tx_reset_queue(ring->tx_queue);
362
363 if (cnt)
364 en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
365
366 return cnt;
367 }
368
369 static bool mlx4_en_process_tx_cq(struct net_device *dev,
370 struct mlx4_en_cq *cq)
371 {
372 struct mlx4_en_priv *priv = netdev_priv(dev);
373 struct mlx4_cq *mcq = &cq->mcq;
374 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
375 struct mlx4_cqe *cqe;
376 u16 index;
377 u16 new_index, ring_index, stamp_index;
378 u32 txbbs_skipped = 0;
379 u32 txbbs_stamp = 0;
380 u32 cons_index = mcq->cons_index;
381 int size = cq->size;
382 u32 size_mask = ring->size_mask;
383 struct mlx4_cqe *buf = cq->buf;
384 u32 packets = 0;
385 u32 bytes = 0;
386 int factor = priv->cqe_factor;
387 u64 timestamp = 0;
388 int done = 0;
389 int budget = priv->tx_work_limit;
390 u32 last_nr_txbb;
391 u32 ring_cons;
392
393 if (!priv->port_up)
394 return true;
395
396 prefetchw(&ring->tx_queue->dql.limit);
397 index = cons_index & size_mask;
398 cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor;
399 last_nr_txbb = ACCESS_ONCE(ring->last_nr_txbb);
400 ring_cons = ACCESS_ONCE(ring->cons);
401 ring_index = ring_cons & size_mask;
402 stamp_index = ring_index;
403
404 /* Process all completed CQEs */
405 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
406 cons_index & size) && (done < budget)) {
407 /*
408 * make sure we read the CQE after we read the
409 * ownership bit
410 */
411 rmb();
412
413 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
414 MLX4_CQE_OPCODE_ERROR)) {
415 struct mlx4_err_cqe *cqe_err = (struct mlx4_err_cqe *)cqe;
416
417 en_err(priv, "CQE error - vendor syndrome: 0x%x syndrome: 0x%x\n",
418 cqe_err->vendor_err_syndrome,
419 cqe_err->syndrome);
420 }
421
422 /* Skip over last polled CQE */
423 new_index = be16_to_cpu(cqe->wqe_index) & size_mask;
424
425 do {
426 txbbs_skipped += last_nr_txbb;
427 ring_index = (ring_index + last_nr_txbb) & size_mask;
428 if (ring->tx_info[ring_index].ts_requested)
429 timestamp = mlx4_en_get_cqe_ts(cqe);
430
431 /* free next descriptor */
432 last_nr_txbb = mlx4_en_free_tx_desc(
433 priv, ring, ring_index,
434 !!((ring_cons + txbbs_skipped) &
435 ring->size), timestamp);
436
437 mlx4_en_stamp_wqe(priv, ring, stamp_index,
438 !!((ring_cons + txbbs_stamp) &
439 ring->size));
440 stamp_index = ring_index;
441 txbbs_stamp = txbbs_skipped;
442 packets++;
443 bytes += ring->tx_info[ring_index].nr_bytes;
444 } while ((++done < budget) && (ring_index != new_index));
445
446 ++cons_index;
447 index = cons_index & size_mask;
448 cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor;
449 }
450
451
452 /*
453 * To prevent CQ overflow we first update CQ consumer and only then
454 * the ring consumer.
455 */
456 mcq->cons_index = cons_index;
457 mlx4_cq_set_ci(mcq);
458 wmb();
459
460 /* we want to dirty this cache line once */
461 ACCESS_ONCE(ring->last_nr_txbb) = last_nr_txbb;
462 ACCESS_ONCE(ring->cons) = ring_cons + txbbs_skipped;
463
464 netdev_tx_completed_queue(ring->tx_queue, packets, bytes);
465
466 /*
467 * Wakeup Tx queue if this stopped, and at least 1 packet
468 * was completed
469 */
470 if (netif_tx_queue_stopped(ring->tx_queue) && txbbs_skipped > 0) {
471 netif_tx_wake_queue(ring->tx_queue);
472 ring->wake_queue++;
473 }
474 return done < budget;
475 }
476
477 void mlx4_en_tx_irq(struct mlx4_cq *mcq)
478 {
479 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
480 struct mlx4_en_priv *priv = netdev_priv(cq->dev);
481
482 if (priv->port_up)
483 napi_schedule(&cq->napi);
484 else
485 mlx4_en_arm_cq(priv, cq);
486 }
487
488 /* TX CQ polling - called by NAPI */
489 int mlx4_en_poll_tx_cq(struct napi_struct *napi, int budget)
490 {
491 struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi);
492 struct net_device *dev = cq->dev;
493 struct mlx4_en_priv *priv = netdev_priv(dev);
494 int clean_complete;
495
496 clean_complete = mlx4_en_process_tx_cq(dev, cq);
497 if (!clean_complete)
498 return budget;
499
500 napi_complete(napi);
501 mlx4_en_arm_cq(priv, cq);
502
503 return 0;
504 }
505
506 static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv,
507 struct mlx4_en_tx_ring *ring,
508 u32 index,
509 unsigned int desc_size)
510 {
511 u32 copy = (ring->size - index) * TXBB_SIZE;
512 int i;
513
514 for (i = desc_size - copy - 4; i >= 0; i -= 4) {
515 if ((i & (TXBB_SIZE - 1)) == 0)
516 wmb();
517
518 *((u32 *) (ring->buf + i)) =
519 *((u32 *) (ring->bounce_buf + copy + i));
520 }
521
522 for (i = copy - 4; i >= 4 ; i -= 4) {
523 if ((i & (TXBB_SIZE - 1)) == 0)
524 wmb();
525
526 *((u32 *) (ring->buf + index * TXBB_SIZE + i)) =
527 *((u32 *) (ring->bounce_buf + i));
528 }
529
530 /* Return real descriptor location */
531 return ring->buf + index * TXBB_SIZE;
532 }
533
534 static bool is_inline(int inline_thold, const struct sk_buff *skb,
535 const struct skb_shared_info *shinfo,
536 void **pfrag)
537 {
538 void *ptr;
539
540 if (inline_thold && !skb_is_gso(skb) && skb->len <= inline_thold) {
541 if (shinfo->nr_frags == 1) {
542 ptr = skb_frag_address_safe(&shinfo->frags[0]);
543 if (unlikely(!ptr))
544 return 0;
545
546 if (pfrag)
547 *pfrag = ptr;
548
549 return 1;
550 } else if (unlikely(shinfo->nr_frags))
551 return 0;
552 else
553 return 1;
554 }
555
556 return 0;
557 }
558
559 static int inline_size(const struct sk_buff *skb)
560 {
561 if (skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg)
562 <= MLX4_INLINE_ALIGN)
563 return ALIGN(skb->len + CTRL_SIZE +
564 sizeof(struct mlx4_wqe_inline_seg), 16);
565 else
566 return ALIGN(skb->len + CTRL_SIZE + 2 *
567 sizeof(struct mlx4_wqe_inline_seg), 16);
568 }
569
570 static int get_real_size(const struct sk_buff *skb,
571 const struct skb_shared_info *shinfo,
572 struct net_device *dev,
573 int *lso_header_size)
574 {
575 struct mlx4_en_priv *priv = netdev_priv(dev);
576 int real_size;
577
578 if (shinfo->gso_size) {
579 if (skb->encapsulation)
580 *lso_header_size = (skb_inner_transport_header(skb) - skb->data) + inner_tcp_hdrlen(skb);
581 else
582 *lso_header_size = skb_transport_offset(skb) + tcp_hdrlen(skb);
583 real_size = CTRL_SIZE + shinfo->nr_frags * DS_SIZE +
584 ALIGN(*lso_header_size + 4, DS_SIZE);
585 if (unlikely(*lso_header_size != skb_headlen(skb))) {
586 /* We add a segment for the skb linear buffer only if
587 * it contains data */
588 if (*lso_header_size < skb_headlen(skb))
589 real_size += DS_SIZE;
590 else {
591 if (netif_msg_tx_err(priv))
592 en_warn(priv, "Non-linear headers\n");
593 return 0;
594 }
595 }
596 } else {
597 *lso_header_size = 0;
598 if (!is_inline(priv->prof->inline_thold, skb, shinfo, NULL))
599 real_size = CTRL_SIZE + (shinfo->nr_frags + 1) * DS_SIZE;
600 else
601 real_size = inline_size(skb);
602 }
603
604 return real_size;
605 }
606
607 static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc,
608 const struct sk_buff *skb,
609 const struct skb_shared_info *shinfo,
610 int real_size, u16 *vlan_tag,
611 int tx_ind, void *fragptr)
612 {
613 struct mlx4_wqe_inline_seg *inl = &tx_desc->inl;
614 int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof *inl;
615 unsigned int hlen = skb_headlen(skb);
616
617 if (skb->len <= spc) {
618 if (likely(skb->len >= MIN_PKT_LEN)) {
619 inl->byte_count = cpu_to_be32(1 << 31 | skb->len);
620 } else {
621 inl->byte_count = cpu_to_be32(1 << 31 | MIN_PKT_LEN);
622 memset(((void *)(inl + 1)) + skb->len, 0,
623 MIN_PKT_LEN - skb->len);
624 }
625 skb_copy_from_linear_data(skb, inl + 1, hlen);
626 if (shinfo->nr_frags)
627 memcpy(((void *)(inl + 1)) + hlen, fragptr,
628 skb_frag_size(&shinfo->frags[0]));
629
630 } else {
631 inl->byte_count = cpu_to_be32(1 << 31 | spc);
632 if (hlen <= spc) {
633 skb_copy_from_linear_data(skb, inl + 1, hlen);
634 if (hlen < spc) {
635 memcpy(((void *)(inl + 1)) + hlen,
636 fragptr, spc - hlen);
637 fragptr += spc - hlen;
638 }
639 inl = (void *) (inl + 1) + spc;
640 memcpy(((void *)(inl + 1)), fragptr, skb->len - spc);
641 } else {
642 skb_copy_from_linear_data(skb, inl + 1, spc);
643 inl = (void *) (inl + 1) + spc;
644 skb_copy_from_linear_data_offset(skb, spc, inl + 1,
645 hlen - spc);
646 if (shinfo->nr_frags)
647 memcpy(((void *)(inl + 1)) + hlen - spc,
648 fragptr,
649 skb_frag_size(&shinfo->frags[0]));
650 }
651
652 wmb();
653 inl->byte_count = cpu_to_be32(1 << 31 | (skb->len - spc));
654 }
655 }
656
657 u16 mlx4_en_select_queue(struct net_device *dev, struct sk_buff *skb,
658 void *accel_priv, select_queue_fallback_t fallback)
659 {
660 struct mlx4_en_priv *priv = netdev_priv(dev);
661 u16 rings_p_up = priv->num_tx_rings_p_up;
662 u8 up = 0;
663
664 if (dev->num_tc)
665 return skb_tx_hash(dev, skb);
666
667 if (vlan_tx_tag_present(skb))
668 up = vlan_tx_tag_get(skb) >> VLAN_PRIO_SHIFT;
669
670 return fallback(dev, skb) % rings_p_up + up * rings_p_up;
671 }
672
673 static void mlx4_bf_copy(void __iomem *dst, const void *src,
674 unsigned int bytecnt)
675 {
676 __iowrite64_copy(dst, src, bytecnt / 8);
677 }
678
679 netdev_tx_t mlx4_en_xmit(struct sk_buff *skb, struct net_device *dev)
680 {
681 struct skb_shared_info *shinfo = skb_shinfo(skb);
682 struct mlx4_en_priv *priv = netdev_priv(dev);
683 struct device *ddev = priv->ddev;
684 struct mlx4_en_tx_ring *ring;
685 struct mlx4_en_tx_desc *tx_desc;
686 struct mlx4_wqe_data_seg *data;
687 struct mlx4_en_tx_info *tx_info;
688 int tx_ind = 0;
689 int nr_txbb;
690 int desc_size;
691 int real_size;
692 u32 index, bf_index;
693 __be32 op_own;
694 u16 vlan_tag = 0;
695 int i_frag;
696 int lso_header_size;
697 void *fragptr;
698 bool bounce = false;
699 bool send_doorbell;
700 u32 ring_cons;
701
702 if (!priv->port_up)
703 goto tx_drop;
704
705 tx_ind = skb_get_queue_mapping(skb);
706 ring = priv->tx_ring[tx_ind];
707
708 /* fetch ring->cons far ahead before needing it to avoid stall */
709 ring_cons = ACCESS_ONCE(ring->cons);
710
711 real_size = get_real_size(skb, shinfo, dev, &lso_header_size);
712 if (unlikely(!real_size))
713 goto tx_drop;
714
715 /* Align descriptor to TXBB size */
716 desc_size = ALIGN(real_size, TXBB_SIZE);
717 nr_txbb = desc_size / TXBB_SIZE;
718 if (unlikely(nr_txbb > MAX_DESC_TXBBS)) {
719 if (netif_msg_tx_err(priv))
720 en_warn(priv, "Oversized header or SG list\n");
721 goto tx_drop;
722 }
723
724 if (vlan_tx_tag_present(skb))
725 vlan_tag = vlan_tx_tag_get(skb);
726
727 /* Check available TXBBs And 2K spare for prefetch */
728 if (unlikely(((int)(ring->prod - ring_cons)) >
729 ring->size - HEADROOM - MAX_DESC_TXBBS)) {
730 /* every full Tx ring stops queue */
731 netif_tx_stop_queue(ring->tx_queue);
732 ring->queue_stopped++;
733
734 /* If queue was emptied after the if, and before the
735 * stop_queue - need to wake the queue, or else it will remain
736 * stopped forever.
737 * Need a memory barrier to make sure ring->cons was not
738 * updated before queue was stopped.
739 */
740 wmb();
741
742 ring_cons = ACCESS_ONCE(ring->cons);
743 if (unlikely(((int)(ring->prod - ring_cons)) <=
744 ring->size - HEADROOM - MAX_DESC_TXBBS)) {
745 netif_tx_wake_queue(ring->tx_queue);
746 ring->wake_queue++;
747 } else {
748 return NETDEV_TX_BUSY;
749 }
750 }
751
752 prefetchw(&ring->tx_queue->dql);
753
754 /* Track current inflight packets for performance analysis */
755 AVG_PERF_COUNTER(priv->pstats.inflight_avg,
756 (u32)(ring->prod - ring_cons - 1));
757
758 /* Packet is good - grab an index and transmit it */
759 index = ring->prod & ring->size_mask;
760 bf_index = ring->prod;
761
762 /* See if we have enough space for whole descriptor TXBB for setting
763 * SW ownership on next descriptor; if not, use a bounce buffer. */
764 if (likely(index + nr_txbb <= ring->size))
765 tx_desc = ring->buf + index * TXBB_SIZE;
766 else {
767 tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf;
768 bounce = true;
769 }
770
771 /* Save skb in tx_info ring */
772 tx_info = &ring->tx_info[index];
773 tx_info->skb = skb;
774 tx_info->nr_txbb = nr_txbb;
775
776 data = &tx_desc->data;
777 if (lso_header_size)
778 data = ((void *)&tx_desc->lso + ALIGN(lso_header_size + 4,
779 DS_SIZE));
780
781 /* valid only for none inline segments */
782 tx_info->data_offset = (void *)data - (void *)tx_desc;
783
784 tx_info->linear = (lso_header_size < skb_headlen(skb) &&
785 !is_inline(ring->inline_thold, skb, shinfo, NULL)) ? 1 : 0;
786
787 tx_info->nr_maps = shinfo->nr_frags + tx_info->linear;
788 data += tx_info->nr_maps - 1;
789
790 if (is_inline(ring->inline_thold, skb, shinfo, &fragptr)) {
791 tx_info->inl = 1;
792 } else {
793 dma_addr_t dma = 0;
794 u32 byte_count = 0;
795
796 /* Map fragments if any */
797 for (i_frag = shinfo->nr_frags - 1; i_frag >= 0; i_frag--) {
798 const struct skb_frag_struct *frag;
799
800 frag = &shinfo->frags[i_frag];
801 byte_count = skb_frag_size(frag);
802 dma = skb_frag_dma_map(ddev, frag,
803 0, byte_count,
804 DMA_TO_DEVICE);
805 if (dma_mapping_error(ddev, dma))
806 goto tx_drop_unmap;
807
808 data->addr = cpu_to_be64(dma);
809 data->lkey = ring->mr_key;
810 wmb();
811 data->byte_count = cpu_to_be32(byte_count);
812 --data;
813 }
814
815 /* Map linear part if needed */
816 if (tx_info->linear) {
817 byte_count = skb_headlen(skb) - lso_header_size;
818
819 dma = dma_map_single(ddev, skb->data +
820 lso_header_size, byte_count,
821 PCI_DMA_TODEVICE);
822 if (dma_mapping_error(ddev, dma))
823 goto tx_drop_unmap;
824
825 data->addr = cpu_to_be64(dma);
826 data->lkey = ring->mr_key;
827 wmb();
828 data->byte_count = cpu_to_be32(byte_count);
829 }
830 tx_info->inl = 0;
831 /* tx completion can avoid cache line miss for common cases */
832 tx_info->map0_dma = dma;
833 tx_info->map0_byte_count = byte_count;
834 }
835
836 /*
837 * For timestamping add flag to skb_shinfo and
838 * set flag for further reference
839 */
840 tx_info->ts_requested = 0;
841 if (unlikely(ring->hwtstamp_tx_type == HWTSTAMP_TX_ON &&
842 shinfo->tx_flags & SKBTX_HW_TSTAMP)) {
843 shinfo->tx_flags |= SKBTX_IN_PROGRESS;
844 tx_info->ts_requested = 1;
845 }
846
847 /* Prepare ctrl segement apart opcode+ownership, which depends on
848 * whether LSO is used */
849 tx_desc->ctrl.srcrb_flags = priv->ctrl_flags;
850 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
851 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM |
852 MLX4_WQE_CTRL_TCP_UDP_CSUM);
853 ring->tx_csum++;
854 }
855
856 if (priv->flags & MLX4_EN_FLAG_ENABLE_HW_LOOPBACK) {
857 struct ethhdr *ethh;
858
859 /* Copy dst mac address to wqe. This allows loopback in eSwitch,
860 * so that VFs and PF can communicate with each other
861 */
862 ethh = (struct ethhdr *)skb->data;
863 tx_desc->ctrl.srcrb_flags16[0] = get_unaligned((__be16 *)ethh->h_dest);
864 tx_desc->ctrl.imm = get_unaligned((__be32 *)(ethh->h_dest + 2));
865 }
866
867 /* Handle LSO (TSO) packets */
868 if (lso_header_size) {
869 int i;
870
871 /* Mark opcode as LSO */
872 op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) |
873 ((ring->prod & ring->size) ?
874 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
875
876 /* Fill in the LSO prefix */
877 tx_desc->lso.mss_hdr_size = cpu_to_be32(
878 shinfo->gso_size << 16 | lso_header_size);
879
880 /* Copy headers;
881 * note that we already verified that it is linear */
882 memcpy(tx_desc->lso.header, skb->data, lso_header_size);
883
884 ring->tso_packets++;
885
886 i = ((skb->len - lso_header_size) / shinfo->gso_size) +
887 !!((skb->len - lso_header_size) % shinfo->gso_size);
888 tx_info->nr_bytes = skb->len + (i - 1) * lso_header_size;
889 ring->packets += i;
890 } else {
891 /* Normal (Non LSO) packet */
892 op_own = cpu_to_be32(MLX4_OPCODE_SEND) |
893 ((ring->prod & ring->size) ?
894 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
895 tx_info->nr_bytes = max_t(unsigned int, skb->len, ETH_ZLEN);
896 ring->packets++;
897 }
898 ring->bytes += tx_info->nr_bytes;
899 netdev_tx_sent_queue(ring->tx_queue, tx_info->nr_bytes);
900 AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, skb->len);
901
902 if (tx_info->inl) {
903 build_inline_wqe(tx_desc, skb, shinfo, real_size, &vlan_tag,
904 tx_ind, fragptr);
905 tx_info->inl = 1;
906 }
907
908 if (skb->encapsulation) {
909 struct iphdr *ipv4 = (struct iphdr *)skb_inner_network_header(skb);
910 if (ipv4->protocol == IPPROTO_TCP || ipv4->protocol == IPPROTO_UDP)
911 op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP | MLX4_WQE_CTRL_ILP);
912 else
913 op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP);
914 }
915
916 ring->prod += nr_txbb;
917
918 /* If we used a bounce buffer then copy descriptor back into place */
919 if (unlikely(bounce))
920 tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size);
921
922 skb_tx_timestamp(skb);
923
924 send_doorbell = !skb->xmit_more || netif_xmit_stopped(ring->tx_queue);
925
926 real_size = (real_size / 16) & 0x3f;
927
928 if (ring->bf_enabled && desc_size <= MAX_BF && !bounce &&
929 !vlan_tx_tag_present(skb) && send_doorbell) {
930 tx_desc->ctrl.bf_qpn = ring->doorbell_qpn |
931 cpu_to_be32(real_size);
932
933 op_own |= htonl((bf_index & 0xffff) << 8);
934 /* Ensure new descriptor hits memory
935 * before setting ownership of this descriptor to HW
936 */
937 wmb();
938 tx_desc->ctrl.owner_opcode = op_own;
939
940 wmb();
941
942 mlx4_bf_copy(ring->bf.reg + ring->bf.offset, &tx_desc->ctrl,
943 desc_size);
944
945 wmb();
946
947 ring->bf.offset ^= ring->bf.buf_size;
948 } else {
949 tx_desc->ctrl.vlan_tag = cpu_to_be16(vlan_tag);
950 tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN *
951 !!vlan_tx_tag_present(skb);
952 tx_desc->ctrl.fence_size = real_size;
953
954 /* Ensure new descriptor hits memory
955 * before setting ownership of this descriptor to HW
956 */
957 wmb();
958 tx_desc->ctrl.owner_opcode = op_own;
959 if (send_doorbell) {
960 wmb();
961 iowrite32(ring->doorbell_qpn,
962 ring->bf.uar->map + MLX4_SEND_DOORBELL);
963 } else {
964 ring->xmit_more++;
965 }
966 }
967
968 return NETDEV_TX_OK;
969
970 tx_drop_unmap:
971 en_err(priv, "DMA mapping error\n");
972
973 while (++i_frag < shinfo->nr_frags) {
974 ++data;
975 dma_unmap_page(ddev, (dma_addr_t) be64_to_cpu(data->addr),
976 be32_to_cpu(data->byte_count),
977 PCI_DMA_TODEVICE);
978 }
979
980 tx_drop:
981 dev_kfree_skb_any(skb);
982 priv->stats.tx_dropped++;
983 return NETDEV_TX_OK;
984 }
985
This page took 0.049589 seconds and 4 git commands to generate.