Merge branch 'topic/docs-next' into v4l_for_linus
[deliverable/linux.git] / drivers / net / ethernet / micrel / ks8851_mll.c
1 /**
2 * drivers/net/ethernet/micrel/ks8851_mll.c
3 * Copyright (c) 2009 Micrel Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19 /* Supports:
20 * KS8851 16bit MLL chip from Micrel Inc.
21 */
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/cache.h>
32 #include <linux/crc32.h>
33 #include <linux/mii.h>
34 #include <linux/platform_device.h>
35 #include <linux/delay.h>
36 #include <linux/slab.h>
37 #include <linux/ks8851_mll.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/of_net.h>
41
42 #define DRV_NAME "ks8851_mll"
43
44 static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
45 #define MAX_RECV_FRAMES 255
46 #define MAX_BUF_SIZE 2048
47 #define TX_BUF_SIZE 2000
48 #define RX_BUF_SIZE 2000
49
50 #define KS_CCR 0x08
51 #define CCR_EEPROM (1 << 9)
52 #define CCR_SPI (1 << 8)
53 #define CCR_8BIT (1 << 7)
54 #define CCR_16BIT (1 << 6)
55 #define CCR_32BIT (1 << 5)
56 #define CCR_SHARED (1 << 4)
57 #define CCR_32PIN (1 << 0)
58
59 /* MAC address registers */
60 #define KS_MARL 0x10
61 #define KS_MARM 0x12
62 #define KS_MARH 0x14
63
64 #define KS_OBCR 0x20
65 #define OBCR_ODS_16MA (1 << 6)
66
67 #define KS_EEPCR 0x22
68 #define EEPCR_EESA (1 << 4)
69 #define EEPCR_EESB (1 << 3)
70 #define EEPCR_EEDO (1 << 2)
71 #define EEPCR_EESCK (1 << 1)
72 #define EEPCR_EECS (1 << 0)
73
74 #define KS_MBIR 0x24
75 #define MBIR_TXMBF (1 << 12)
76 #define MBIR_TXMBFA (1 << 11)
77 #define MBIR_RXMBF (1 << 4)
78 #define MBIR_RXMBFA (1 << 3)
79
80 #define KS_GRR 0x26
81 #define GRR_QMU (1 << 1)
82 #define GRR_GSR (1 << 0)
83
84 #define KS_WFCR 0x2A
85 #define WFCR_MPRXE (1 << 7)
86 #define WFCR_WF3E (1 << 3)
87 #define WFCR_WF2E (1 << 2)
88 #define WFCR_WF1E (1 << 1)
89 #define WFCR_WF0E (1 << 0)
90
91 #define KS_WF0CRC0 0x30
92 #define KS_WF0CRC1 0x32
93 #define KS_WF0BM0 0x34
94 #define KS_WF0BM1 0x36
95 #define KS_WF0BM2 0x38
96 #define KS_WF0BM3 0x3A
97
98 #define KS_WF1CRC0 0x40
99 #define KS_WF1CRC1 0x42
100 #define KS_WF1BM0 0x44
101 #define KS_WF1BM1 0x46
102 #define KS_WF1BM2 0x48
103 #define KS_WF1BM3 0x4A
104
105 #define KS_WF2CRC0 0x50
106 #define KS_WF2CRC1 0x52
107 #define KS_WF2BM0 0x54
108 #define KS_WF2BM1 0x56
109 #define KS_WF2BM2 0x58
110 #define KS_WF2BM3 0x5A
111
112 #define KS_WF3CRC0 0x60
113 #define KS_WF3CRC1 0x62
114 #define KS_WF3BM0 0x64
115 #define KS_WF3BM1 0x66
116 #define KS_WF3BM2 0x68
117 #define KS_WF3BM3 0x6A
118
119 #define KS_TXCR 0x70
120 #define TXCR_TCGICMP (1 << 8)
121 #define TXCR_TCGUDP (1 << 7)
122 #define TXCR_TCGTCP (1 << 6)
123 #define TXCR_TCGIP (1 << 5)
124 #define TXCR_FTXQ (1 << 4)
125 #define TXCR_TXFCE (1 << 3)
126 #define TXCR_TXPE (1 << 2)
127 #define TXCR_TXCRC (1 << 1)
128 #define TXCR_TXE (1 << 0)
129
130 #define KS_TXSR 0x72
131 #define TXSR_TXLC (1 << 13)
132 #define TXSR_TXMC (1 << 12)
133 #define TXSR_TXFID_MASK (0x3f << 0)
134 #define TXSR_TXFID_SHIFT (0)
135 #define TXSR_TXFID_GET(_v) (((_v) >> 0) & 0x3f)
136
137
138 #define KS_RXCR1 0x74
139 #define RXCR1_FRXQ (1 << 15)
140 #define RXCR1_RXUDPFCC (1 << 14)
141 #define RXCR1_RXTCPFCC (1 << 13)
142 #define RXCR1_RXIPFCC (1 << 12)
143 #define RXCR1_RXPAFMA (1 << 11)
144 #define RXCR1_RXFCE (1 << 10)
145 #define RXCR1_RXEFE (1 << 9)
146 #define RXCR1_RXMAFMA (1 << 8)
147 #define RXCR1_RXBE (1 << 7)
148 #define RXCR1_RXME (1 << 6)
149 #define RXCR1_RXUE (1 << 5)
150 #define RXCR1_RXAE (1 << 4)
151 #define RXCR1_RXINVF (1 << 1)
152 #define RXCR1_RXE (1 << 0)
153 #define RXCR1_FILTER_MASK (RXCR1_RXINVF | RXCR1_RXAE | \
154 RXCR1_RXMAFMA | RXCR1_RXPAFMA)
155
156 #define KS_RXCR2 0x76
157 #define RXCR2_SRDBL_MASK (0x7 << 5)
158 #define RXCR2_SRDBL_SHIFT (5)
159 #define RXCR2_SRDBL_4B (0x0 << 5)
160 #define RXCR2_SRDBL_8B (0x1 << 5)
161 #define RXCR2_SRDBL_16B (0x2 << 5)
162 #define RXCR2_SRDBL_32B (0x3 << 5)
163 /* #define RXCR2_SRDBL_FRAME (0x4 << 5) */
164 #define RXCR2_IUFFP (1 << 4)
165 #define RXCR2_RXIUFCEZ (1 << 3)
166 #define RXCR2_UDPLFE (1 << 2)
167 #define RXCR2_RXICMPFCC (1 << 1)
168 #define RXCR2_RXSAF (1 << 0)
169
170 #define KS_TXMIR 0x78
171
172 #define KS_RXFHSR 0x7C
173 #define RXFSHR_RXFV (1 << 15)
174 #define RXFSHR_RXICMPFCS (1 << 13)
175 #define RXFSHR_RXIPFCS (1 << 12)
176 #define RXFSHR_RXTCPFCS (1 << 11)
177 #define RXFSHR_RXUDPFCS (1 << 10)
178 #define RXFSHR_RXBF (1 << 7)
179 #define RXFSHR_RXMF (1 << 6)
180 #define RXFSHR_RXUF (1 << 5)
181 #define RXFSHR_RXMR (1 << 4)
182 #define RXFSHR_RXFT (1 << 3)
183 #define RXFSHR_RXFTL (1 << 2)
184 #define RXFSHR_RXRF (1 << 1)
185 #define RXFSHR_RXCE (1 << 0)
186 #define RXFSHR_ERR (RXFSHR_RXCE | RXFSHR_RXRF |\
187 RXFSHR_RXFTL | RXFSHR_RXMR |\
188 RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
189 RXFSHR_RXTCPFCS)
190 #define KS_RXFHBCR 0x7E
191 #define RXFHBCR_CNT_MASK 0x0FFF
192
193 #define KS_TXQCR 0x80
194 #define TXQCR_AETFE (1 << 2)
195 #define TXQCR_TXQMAM (1 << 1)
196 #define TXQCR_METFE (1 << 0)
197
198 #define KS_RXQCR 0x82
199 #define RXQCR_RXDTTS (1 << 12)
200 #define RXQCR_RXDBCTS (1 << 11)
201 #define RXQCR_RXFCTS (1 << 10)
202 #define RXQCR_RXIPHTOE (1 << 9)
203 #define RXQCR_RXDTTE (1 << 7)
204 #define RXQCR_RXDBCTE (1 << 6)
205 #define RXQCR_RXFCTE (1 << 5)
206 #define RXQCR_ADRFE (1 << 4)
207 #define RXQCR_SDA (1 << 3)
208 #define RXQCR_RRXEF (1 << 0)
209 #define RXQCR_CMD_CNTL (RXQCR_RXFCTE|RXQCR_ADRFE)
210
211 #define KS_TXFDPR 0x84
212 #define TXFDPR_TXFPAI (1 << 14)
213 #define TXFDPR_TXFP_MASK (0x7ff << 0)
214 #define TXFDPR_TXFP_SHIFT (0)
215
216 #define KS_RXFDPR 0x86
217 #define RXFDPR_RXFPAI (1 << 14)
218
219 #define KS_RXDTTR 0x8C
220 #define KS_RXDBCTR 0x8E
221
222 #define KS_IER 0x90
223 #define KS_ISR 0x92
224 #define IRQ_LCI (1 << 15)
225 #define IRQ_TXI (1 << 14)
226 #define IRQ_RXI (1 << 13)
227 #define IRQ_RXOI (1 << 11)
228 #define IRQ_TXPSI (1 << 9)
229 #define IRQ_RXPSI (1 << 8)
230 #define IRQ_TXSAI (1 << 6)
231 #define IRQ_RXWFDI (1 << 5)
232 #define IRQ_RXMPDI (1 << 4)
233 #define IRQ_LDI (1 << 3)
234 #define IRQ_EDI (1 << 2)
235 #define IRQ_SPIBEI (1 << 1)
236 #define IRQ_DEDI (1 << 0)
237
238 #define KS_RXFCTR 0x9C
239 #define RXFCTR_THRESHOLD_MASK 0x00FF
240
241 #define KS_RXFC 0x9D
242 #define RXFCTR_RXFC_MASK (0xff << 8)
243 #define RXFCTR_RXFC_SHIFT (8)
244 #define RXFCTR_RXFC_GET(_v) (((_v) >> 8) & 0xff)
245 #define RXFCTR_RXFCT_MASK (0xff << 0)
246 #define RXFCTR_RXFCT_SHIFT (0)
247
248 #define KS_TXNTFSR 0x9E
249
250 #define KS_MAHTR0 0xA0
251 #define KS_MAHTR1 0xA2
252 #define KS_MAHTR2 0xA4
253 #define KS_MAHTR3 0xA6
254
255 #define KS_FCLWR 0xB0
256 #define KS_FCHWR 0xB2
257 #define KS_FCOWR 0xB4
258
259 #define KS_CIDER 0xC0
260 #define CIDER_ID 0x8870
261 #define CIDER_REV_MASK (0x7 << 1)
262 #define CIDER_REV_SHIFT (1)
263 #define CIDER_REV_GET(_v) (((_v) >> 1) & 0x7)
264
265 #define KS_CGCR 0xC6
266 #define KS_IACR 0xC8
267 #define IACR_RDEN (1 << 12)
268 #define IACR_TSEL_MASK (0x3 << 10)
269 #define IACR_TSEL_SHIFT (10)
270 #define IACR_TSEL_MIB (0x3 << 10)
271 #define IACR_ADDR_MASK (0x1f << 0)
272 #define IACR_ADDR_SHIFT (0)
273
274 #define KS_IADLR 0xD0
275 #define KS_IAHDR 0xD2
276
277 #define KS_PMECR 0xD4
278 #define PMECR_PME_DELAY (1 << 14)
279 #define PMECR_PME_POL (1 << 12)
280 #define PMECR_WOL_WAKEUP (1 << 11)
281 #define PMECR_WOL_MAGICPKT (1 << 10)
282 #define PMECR_WOL_LINKUP (1 << 9)
283 #define PMECR_WOL_ENERGY (1 << 8)
284 #define PMECR_AUTO_WAKE_EN (1 << 7)
285 #define PMECR_WAKEUP_NORMAL (1 << 6)
286 #define PMECR_WKEVT_MASK (0xf << 2)
287 #define PMECR_WKEVT_SHIFT (2)
288 #define PMECR_WKEVT_GET(_v) (((_v) >> 2) & 0xf)
289 #define PMECR_WKEVT_ENERGY (0x1 << 2)
290 #define PMECR_WKEVT_LINK (0x2 << 2)
291 #define PMECR_WKEVT_MAGICPKT (0x4 << 2)
292 #define PMECR_WKEVT_FRAME (0x8 << 2)
293 #define PMECR_PM_MASK (0x3 << 0)
294 #define PMECR_PM_SHIFT (0)
295 #define PMECR_PM_NORMAL (0x0 << 0)
296 #define PMECR_PM_ENERGY (0x1 << 0)
297 #define PMECR_PM_SOFTDOWN (0x2 << 0)
298 #define PMECR_PM_POWERSAVE (0x3 << 0)
299
300 /* Standard MII PHY data */
301 #define KS_P1MBCR 0xE4
302 #define P1MBCR_FORCE_FDX (1 << 8)
303
304 #define KS_P1MBSR 0xE6
305 #define P1MBSR_AN_COMPLETE (1 << 5)
306 #define P1MBSR_AN_CAPABLE (1 << 3)
307 #define P1MBSR_LINK_UP (1 << 2)
308
309 #define KS_PHY1ILR 0xE8
310 #define KS_PHY1IHR 0xEA
311 #define KS_P1ANAR 0xEC
312 #define KS_P1ANLPR 0xEE
313
314 #define KS_P1SCLMD 0xF4
315 #define P1SCLMD_LEDOFF (1 << 15)
316 #define P1SCLMD_TXIDS (1 << 14)
317 #define P1SCLMD_RESTARTAN (1 << 13)
318 #define P1SCLMD_DISAUTOMDIX (1 << 10)
319 #define P1SCLMD_FORCEMDIX (1 << 9)
320 #define P1SCLMD_AUTONEGEN (1 << 7)
321 #define P1SCLMD_FORCE100 (1 << 6)
322 #define P1SCLMD_FORCEFDX (1 << 5)
323 #define P1SCLMD_ADV_FLOW (1 << 4)
324 #define P1SCLMD_ADV_100BT_FDX (1 << 3)
325 #define P1SCLMD_ADV_100BT_HDX (1 << 2)
326 #define P1SCLMD_ADV_10BT_FDX (1 << 1)
327 #define P1SCLMD_ADV_10BT_HDX (1 << 0)
328
329 #define KS_P1CR 0xF6
330 #define P1CR_HP_MDIX (1 << 15)
331 #define P1CR_REV_POL (1 << 13)
332 #define P1CR_OP_100M (1 << 10)
333 #define P1CR_OP_FDX (1 << 9)
334 #define P1CR_OP_MDI (1 << 7)
335 #define P1CR_AN_DONE (1 << 6)
336 #define P1CR_LINK_GOOD (1 << 5)
337 #define P1CR_PNTR_FLOW (1 << 4)
338 #define P1CR_PNTR_100BT_FDX (1 << 3)
339 #define P1CR_PNTR_100BT_HDX (1 << 2)
340 #define P1CR_PNTR_10BT_FDX (1 << 1)
341 #define P1CR_PNTR_10BT_HDX (1 << 0)
342
343 /* TX Frame control */
344
345 #define TXFR_TXIC (1 << 15)
346 #define TXFR_TXFID_MASK (0x3f << 0)
347 #define TXFR_TXFID_SHIFT (0)
348
349 #define KS_P1SR 0xF8
350 #define P1SR_HP_MDIX (1 << 15)
351 #define P1SR_REV_POL (1 << 13)
352 #define P1SR_OP_100M (1 << 10)
353 #define P1SR_OP_FDX (1 << 9)
354 #define P1SR_OP_MDI (1 << 7)
355 #define P1SR_AN_DONE (1 << 6)
356 #define P1SR_LINK_GOOD (1 << 5)
357 #define P1SR_PNTR_FLOW (1 << 4)
358 #define P1SR_PNTR_100BT_FDX (1 << 3)
359 #define P1SR_PNTR_100BT_HDX (1 << 2)
360 #define P1SR_PNTR_10BT_FDX (1 << 1)
361 #define P1SR_PNTR_10BT_HDX (1 << 0)
362
363 #define ENUM_BUS_NONE 0
364 #define ENUM_BUS_8BIT 1
365 #define ENUM_BUS_16BIT 2
366 #define ENUM_BUS_32BIT 3
367
368 #define MAX_MCAST_LST 32
369 #define HW_MCAST_SIZE 8
370
371 /**
372 * union ks_tx_hdr - tx header data
373 * @txb: The header as bytes
374 * @txw: The header as 16bit, little-endian words
375 *
376 * A dual representation of the tx header data to allow
377 * access to individual bytes, and to allow 16bit accesses
378 * with 16bit alignment.
379 */
380 union ks_tx_hdr {
381 u8 txb[4];
382 __le16 txw[2];
383 };
384
385 /**
386 * struct ks_net - KS8851 driver private data
387 * @net_device : The network device we're bound to
388 * @hw_addr : start address of data register.
389 * @hw_addr_cmd : start address of command register.
390 * @txh : temporaly buffer to save status/length.
391 * @lock : Lock to ensure that the device is not accessed when busy.
392 * @pdev : Pointer to platform device.
393 * @mii : The MII state information for the mii calls.
394 * @frame_head_info : frame header information for multi-pkt rx.
395 * @statelock : Lock on this structure for tx list.
396 * @msg_enable : The message flags controlling driver output (see ethtool).
397 * @frame_cnt : number of frames received.
398 * @bus_width : i/o bus width.
399 * @rc_rxqcr : Cached copy of KS_RXQCR.
400 * @rc_txcr : Cached copy of KS_TXCR.
401 * @rc_ier : Cached copy of KS_IER.
402 * @sharedbus : Multipex(addr and data bus) mode indicator.
403 * @cmd_reg_cache : command register cached.
404 * @cmd_reg_cache_int : command register cached. Used in the irq handler.
405 * @promiscuous : promiscuous mode indicator.
406 * @all_mcast : mutlicast indicator.
407 * @mcast_lst_size : size of multicast list.
408 * @mcast_lst : multicast list.
409 * @mcast_bits : multicast enabed.
410 * @mac_addr : MAC address assigned to this device.
411 * @fid : frame id.
412 * @extra_byte : number of extra byte prepended rx pkt.
413 * @enabled : indicator this device works.
414 *
415 * The @lock ensures that the chip is protected when certain operations are
416 * in progress. When the read or write packet transfer is in progress, most
417 * of the chip registers are not accessible until the transfer is finished and
418 * the DMA has been de-asserted.
419 *
420 * The @statelock is used to protect information in the structure which may
421 * need to be accessed via several sources, such as the network driver layer
422 * or one of the work queues.
423 *
424 */
425
426 /* Receive multiplex framer header info */
427 struct type_frame_head {
428 u16 sts; /* Frame status */
429 u16 len; /* Byte count */
430 };
431
432 struct ks_net {
433 struct net_device *netdev;
434 void __iomem *hw_addr;
435 void __iomem *hw_addr_cmd;
436 union ks_tx_hdr txh ____cacheline_aligned;
437 struct mutex lock; /* spinlock to be interrupt safe */
438 struct platform_device *pdev;
439 struct mii_if_info mii;
440 struct type_frame_head *frame_head_info;
441 spinlock_t statelock;
442 u32 msg_enable;
443 u32 frame_cnt;
444 int bus_width;
445
446 u16 rc_rxqcr;
447 u16 rc_txcr;
448 u16 rc_ier;
449 u16 sharedbus;
450 u16 cmd_reg_cache;
451 u16 cmd_reg_cache_int;
452 u16 promiscuous;
453 u16 all_mcast;
454 u16 mcast_lst_size;
455 u8 mcast_lst[MAX_MCAST_LST][ETH_ALEN];
456 u8 mcast_bits[HW_MCAST_SIZE];
457 u8 mac_addr[6];
458 u8 fid;
459 u8 extra_byte;
460 u8 enabled;
461 };
462
463 static int msg_enable;
464
465 #define BE3 0x8000 /* Byte Enable 3 */
466 #define BE2 0x4000 /* Byte Enable 2 */
467 #define BE1 0x2000 /* Byte Enable 1 */
468 #define BE0 0x1000 /* Byte Enable 0 */
469
470 /* register read/write calls.
471 *
472 * All these calls issue transactions to access the chip's registers. They
473 * all require that the necessary lock is held to prevent accesses when the
474 * chip is busy transferring packet data (RX/TX FIFO accesses).
475 */
476
477 /**
478 * ks_rdreg8 - read 8 bit register from device
479 * @ks : The chip information
480 * @offset: The register address
481 *
482 * Read a 8bit register from the chip, returning the result
483 */
484 static u8 ks_rdreg8(struct ks_net *ks, int offset)
485 {
486 u16 data;
487 u8 shift_bit = offset & 0x03;
488 u8 shift_data = (offset & 1) << 3;
489 ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
490 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
491 data = ioread16(ks->hw_addr);
492 return (u8)(data >> shift_data);
493 }
494
495 /**
496 * ks_rdreg16 - read 16 bit register from device
497 * @ks : The chip information
498 * @offset: The register address
499 *
500 * Read a 16bit register from the chip, returning the result
501 */
502
503 static u16 ks_rdreg16(struct ks_net *ks, int offset)
504 {
505 ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
506 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
507 return ioread16(ks->hw_addr);
508 }
509
510 /**
511 * ks_wrreg8 - write 8bit register value to chip
512 * @ks: The chip information
513 * @offset: The register address
514 * @value: The value to write
515 *
516 */
517 static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
518 {
519 u8 shift_bit = (offset & 0x03);
520 u16 value_write = (u16)(value << ((offset & 1) << 3));
521 ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
522 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
523 iowrite16(value_write, ks->hw_addr);
524 }
525
526 /**
527 * ks_wrreg16 - write 16bit register value to chip
528 * @ks: The chip information
529 * @offset: The register address
530 * @value: The value to write
531 *
532 */
533
534 static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
535 {
536 ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
537 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
538 iowrite16(value, ks->hw_addr);
539 }
540
541 /**
542 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
543 * @ks: The chip state
544 * @wptr: buffer address to save data
545 * @len: length in byte to read
546 *
547 */
548 static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
549 {
550 len >>= 1;
551 while (len--)
552 *wptr++ = (u16)ioread16(ks->hw_addr);
553 }
554
555 /**
556 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
557 * @ks: The chip information
558 * @wptr: buffer address
559 * @len: length in byte to write
560 *
561 */
562 static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
563 {
564 len >>= 1;
565 while (len--)
566 iowrite16(*wptr++, ks->hw_addr);
567 }
568
569 static void ks_disable_int(struct ks_net *ks)
570 {
571 ks_wrreg16(ks, KS_IER, 0x0000);
572 } /* ks_disable_int */
573
574 static void ks_enable_int(struct ks_net *ks)
575 {
576 ks_wrreg16(ks, KS_IER, ks->rc_ier);
577 } /* ks_enable_int */
578
579 /**
580 * ks_tx_fifo_space - return the available hardware buffer size.
581 * @ks: The chip information
582 *
583 */
584 static inline u16 ks_tx_fifo_space(struct ks_net *ks)
585 {
586 return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
587 }
588
589 /**
590 * ks_save_cmd_reg - save the command register from the cache.
591 * @ks: The chip information
592 *
593 */
594 static inline void ks_save_cmd_reg(struct ks_net *ks)
595 {
596 /*ks8851 MLL has a bug to read back the command register.
597 * So rely on software to save the content of command register.
598 */
599 ks->cmd_reg_cache_int = ks->cmd_reg_cache;
600 }
601
602 /**
603 * ks_restore_cmd_reg - restore the command register from the cache and
604 * write to hardware register.
605 * @ks: The chip information
606 *
607 */
608 static inline void ks_restore_cmd_reg(struct ks_net *ks)
609 {
610 ks->cmd_reg_cache = ks->cmd_reg_cache_int;
611 iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
612 }
613
614 /**
615 * ks_set_powermode - set power mode of the device
616 * @ks: The chip information
617 * @pwrmode: The power mode value to write to KS_PMECR.
618 *
619 * Change the power mode of the chip.
620 */
621 static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
622 {
623 unsigned pmecr;
624
625 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
626
627 ks_rdreg16(ks, KS_GRR);
628 pmecr = ks_rdreg16(ks, KS_PMECR);
629 pmecr &= ~PMECR_PM_MASK;
630 pmecr |= pwrmode;
631
632 ks_wrreg16(ks, KS_PMECR, pmecr);
633 }
634
635 /**
636 * ks_read_config - read chip configuration of bus width.
637 * @ks: The chip information
638 *
639 */
640 static void ks_read_config(struct ks_net *ks)
641 {
642 u16 reg_data = 0;
643
644 /* Regardless of bus width, 8 bit read should always work.*/
645 reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
646 reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
647
648 /* addr/data bus are multiplexed */
649 ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
650
651 /* There are garbage data when reading data from QMU,
652 depending on bus-width.
653 */
654
655 if (reg_data & CCR_8BIT) {
656 ks->bus_width = ENUM_BUS_8BIT;
657 ks->extra_byte = 1;
658 } else if (reg_data & CCR_16BIT) {
659 ks->bus_width = ENUM_BUS_16BIT;
660 ks->extra_byte = 2;
661 } else {
662 ks->bus_width = ENUM_BUS_32BIT;
663 ks->extra_byte = 4;
664 }
665 }
666
667 /**
668 * ks_soft_reset - issue one of the soft reset to the device
669 * @ks: The device state.
670 * @op: The bit(s) to set in the GRR
671 *
672 * Issue the relevant soft-reset command to the device's GRR register
673 * specified by @op.
674 *
675 * Note, the delays are in there as a caution to ensure that the reset
676 * has time to take effect and then complete. Since the datasheet does
677 * not currently specify the exact sequence, we have chosen something
678 * that seems to work with our device.
679 */
680 static void ks_soft_reset(struct ks_net *ks, unsigned op)
681 {
682 /* Disable interrupt first */
683 ks_wrreg16(ks, KS_IER, 0x0000);
684 ks_wrreg16(ks, KS_GRR, op);
685 mdelay(10); /* wait a short time to effect reset */
686 ks_wrreg16(ks, KS_GRR, 0);
687 mdelay(1); /* wait for condition to clear */
688 }
689
690
691 static void ks_enable_qmu(struct ks_net *ks)
692 {
693 u16 w;
694
695 w = ks_rdreg16(ks, KS_TXCR);
696 /* Enables QMU Transmit (TXCR). */
697 ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
698
699 /*
700 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
701 * Enable
702 */
703
704 w = ks_rdreg16(ks, KS_RXQCR);
705 ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
706
707 /* Enables QMU Receive (RXCR1). */
708 w = ks_rdreg16(ks, KS_RXCR1);
709 ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
710 ks->enabled = true;
711 } /* ks_enable_qmu */
712
713 static void ks_disable_qmu(struct ks_net *ks)
714 {
715 u16 w;
716
717 w = ks_rdreg16(ks, KS_TXCR);
718
719 /* Disables QMU Transmit (TXCR). */
720 w &= ~TXCR_TXE;
721 ks_wrreg16(ks, KS_TXCR, w);
722
723 /* Disables QMU Receive (RXCR1). */
724 w = ks_rdreg16(ks, KS_RXCR1);
725 w &= ~RXCR1_RXE ;
726 ks_wrreg16(ks, KS_RXCR1, w);
727
728 ks->enabled = false;
729
730 } /* ks_disable_qmu */
731
732 /**
733 * ks_read_qmu - read 1 pkt data from the QMU.
734 * @ks: The chip information
735 * @buf: buffer address to save 1 pkt
736 * @len: Pkt length
737 * Here is the sequence to read 1 pkt:
738 * 1. set sudo DMA mode
739 * 2. read prepend data
740 * 3. read pkt data
741 * 4. reset sudo DMA Mode
742 */
743 static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
744 {
745 u32 r = ks->extra_byte & 0x1 ;
746 u32 w = ks->extra_byte - r;
747
748 /* 1. set sudo DMA mode */
749 ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
750 ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
751
752 /* 2. read prepend data */
753 /**
754 * read 4 + extra bytes and discard them.
755 * extra bytes for dummy, 2 for status, 2 for len
756 */
757
758 /* use likely(r) for 8 bit access for performance */
759 if (unlikely(r))
760 ioread8(ks->hw_addr);
761 ks_inblk(ks, buf, w + 2 + 2);
762
763 /* 3. read pkt data */
764 ks_inblk(ks, buf, ALIGN(len, 4));
765
766 /* 4. reset sudo DMA Mode */
767 ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
768 }
769
770 /**
771 * ks_rcv - read multiple pkts data from the QMU.
772 * @ks: The chip information
773 * @netdev: The network device being opened.
774 *
775 * Read all of header information before reading pkt content.
776 * It is not allowed only port of pkts in QMU after issuing
777 * interrupt ack.
778 */
779 static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
780 {
781 u32 i;
782 struct type_frame_head *frame_hdr = ks->frame_head_info;
783 struct sk_buff *skb;
784
785 ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
786
787 /* read all header information */
788 for (i = 0; i < ks->frame_cnt; i++) {
789 /* Checking Received packet status */
790 frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
791 /* Get packet len from hardware */
792 frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
793 frame_hdr++;
794 }
795
796 frame_hdr = ks->frame_head_info;
797 while (ks->frame_cnt--) {
798 if (unlikely(!(frame_hdr->sts & RXFSHR_RXFV) ||
799 frame_hdr->len >= RX_BUF_SIZE ||
800 frame_hdr->len <= 0)) {
801
802 /* discard an invalid packet */
803 ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
804 netdev->stats.rx_dropped++;
805 if (!(frame_hdr->sts & RXFSHR_RXFV))
806 netdev->stats.rx_frame_errors++;
807 else
808 netdev->stats.rx_length_errors++;
809 frame_hdr++;
810 continue;
811 }
812
813 skb = netdev_alloc_skb(netdev, frame_hdr->len + 16);
814 if (likely(skb)) {
815 skb_reserve(skb, 2);
816 /* read data block including CRC 4 bytes */
817 ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
818 skb_put(skb, frame_hdr->len - 4);
819 skb->protocol = eth_type_trans(skb, netdev);
820 netif_rx(skb);
821 /* exclude CRC size */
822 netdev->stats.rx_bytes += frame_hdr->len - 4;
823 netdev->stats.rx_packets++;
824 } else {
825 ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
826 netdev->stats.rx_dropped++;
827 }
828 frame_hdr++;
829 }
830 }
831
832 /**
833 * ks_update_link_status - link status update.
834 * @netdev: The network device being opened.
835 * @ks: The chip information
836 *
837 */
838
839 static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
840 {
841 /* check the status of the link */
842 u32 link_up_status;
843 if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
844 netif_carrier_on(netdev);
845 link_up_status = true;
846 } else {
847 netif_carrier_off(netdev);
848 link_up_status = false;
849 }
850 netif_dbg(ks, link, ks->netdev,
851 "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
852 }
853
854 /**
855 * ks_irq - device interrupt handler
856 * @irq: Interrupt number passed from the IRQ handler.
857 * @pw: The private word passed to register_irq(), our struct ks_net.
858 *
859 * This is the handler invoked to find out what happened
860 *
861 * Read the interrupt status, work out what needs to be done and then clear
862 * any of the interrupts that are not needed.
863 */
864
865 static irqreturn_t ks_irq(int irq, void *pw)
866 {
867 struct net_device *netdev = pw;
868 struct ks_net *ks = netdev_priv(netdev);
869 u16 status;
870
871 /*this should be the first in IRQ handler */
872 ks_save_cmd_reg(ks);
873
874 status = ks_rdreg16(ks, KS_ISR);
875 if (unlikely(!status)) {
876 ks_restore_cmd_reg(ks);
877 return IRQ_NONE;
878 }
879
880 ks_wrreg16(ks, KS_ISR, status);
881
882 if (likely(status & IRQ_RXI))
883 ks_rcv(ks, netdev);
884
885 if (unlikely(status & IRQ_LCI))
886 ks_update_link_status(netdev, ks);
887
888 if (unlikely(status & IRQ_TXI))
889 netif_wake_queue(netdev);
890
891 if (unlikely(status & IRQ_LDI)) {
892
893 u16 pmecr = ks_rdreg16(ks, KS_PMECR);
894 pmecr &= ~PMECR_WKEVT_MASK;
895 ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
896 }
897
898 if (unlikely(status & IRQ_RXOI))
899 ks->netdev->stats.rx_over_errors++;
900 /* this should be the last in IRQ handler*/
901 ks_restore_cmd_reg(ks);
902 return IRQ_HANDLED;
903 }
904
905
906 /**
907 * ks_net_open - open network device
908 * @netdev: The network device being opened.
909 *
910 * Called when the network device is marked active, such as a user executing
911 * 'ifconfig up' on the device.
912 */
913 static int ks_net_open(struct net_device *netdev)
914 {
915 struct ks_net *ks = netdev_priv(netdev);
916 int err;
917
918 #define KS_INT_FLAGS IRQF_TRIGGER_LOW
919 /* lock the card, even if we may not actually do anything
920 * else at the moment.
921 */
922
923 netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
924
925 /* reset the HW */
926 err = request_irq(netdev->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
927
928 if (err) {
929 pr_err("Failed to request IRQ: %d: %d\n", netdev->irq, err);
930 return err;
931 }
932
933 /* wake up powermode to normal mode */
934 ks_set_powermode(ks, PMECR_PM_NORMAL);
935 mdelay(1); /* wait for normal mode to take effect */
936
937 ks_wrreg16(ks, KS_ISR, 0xffff);
938 ks_enable_int(ks);
939 ks_enable_qmu(ks);
940 netif_start_queue(ks->netdev);
941
942 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
943
944 return 0;
945 }
946
947 /**
948 * ks_net_stop - close network device
949 * @netdev: The device being closed.
950 *
951 * Called to close down a network device which has been active. Cancell any
952 * work, shutdown the RX and TX process and then place the chip into a low
953 * power state whilst it is not being used.
954 */
955 static int ks_net_stop(struct net_device *netdev)
956 {
957 struct ks_net *ks = netdev_priv(netdev);
958
959 netif_info(ks, ifdown, netdev, "shutting down\n");
960
961 netif_stop_queue(netdev);
962
963 mutex_lock(&ks->lock);
964
965 /* turn off the IRQs and ack any outstanding */
966 ks_wrreg16(ks, KS_IER, 0x0000);
967 ks_wrreg16(ks, KS_ISR, 0xffff);
968
969 /* shutdown RX/TX QMU */
970 ks_disable_qmu(ks);
971
972 /* set powermode to soft power down to save power */
973 ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
974 free_irq(netdev->irq, netdev);
975 mutex_unlock(&ks->lock);
976 return 0;
977 }
978
979
980 /**
981 * ks_write_qmu - write 1 pkt data to the QMU.
982 * @ks: The chip information
983 * @pdata: buffer address to save 1 pkt
984 * @len: Pkt length in byte
985 * Here is the sequence to write 1 pkt:
986 * 1. set sudo DMA mode
987 * 2. write status/length
988 * 3. write pkt data
989 * 4. reset sudo DMA Mode
990 * 5. reset sudo DMA mode
991 * 6. Wait until pkt is out
992 */
993 static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
994 {
995 /* start header at txb[0] to align txw entries */
996 ks->txh.txw[0] = 0;
997 ks->txh.txw[1] = cpu_to_le16(len);
998
999 /* 1. set sudo-DMA mode */
1000 ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
1001 /* 2. write status/lenth info */
1002 ks_outblk(ks, ks->txh.txw, 4);
1003 /* 3. write pkt data */
1004 ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
1005 /* 4. reset sudo-DMA mode */
1006 ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
1007 /* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
1008 ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
1009 /* 6. wait until TXQCR_METFE is auto-cleared */
1010 while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
1011 ;
1012 }
1013
1014 /**
1015 * ks_start_xmit - transmit packet
1016 * @skb : The buffer to transmit
1017 * @netdev : The device used to transmit the packet.
1018 *
1019 * Called by the network layer to transmit the @skb.
1020 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
1021 * So while tx is in-progress, prevent IRQ interrupt from happenning.
1022 */
1023 static int ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1024 {
1025 int retv = NETDEV_TX_OK;
1026 struct ks_net *ks = netdev_priv(netdev);
1027
1028 disable_irq(netdev->irq);
1029 ks_disable_int(ks);
1030 spin_lock(&ks->statelock);
1031
1032 /* Extra space are required:
1033 * 4 byte for alignment, 4 for status/length, 4 for CRC
1034 */
1035
1036 if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
1037 ks_write_qmu(ks, skb->data, skb->len);
1038 /* add tx statistics */
1039 netdev->stats.tx_bytes += skb->len;
1040 netdev->stats.tx_packets++;
1041 dev_kfree_skb(skb);
1042 } else
1043 retv = NETDEV_TX_BUSY;
1044 spin_unlock(&ks->statelock);
1045 ks_enable_int(ks);
1046 enable_irq(netdev->irq);
1047 return retv;
1048 }
1049
1050 /**
1051 * ks_start_rx - ready to serve pkts
1052 * @ks : The chip information
1053 *
1054 */
1055 static void ks_start_rx(struct ks_net *ks)
1056 {
1057 u16 cntl;
1058
1059 /* Enables QMU Receive (RXCR1). */
1060 cntl = ks_rdreg16(ks, KS_RXCR1);
1061 cntl |= RXCR1_RXE ;
1062 ks_wrreg16(ks, KS_RXCR1, cntl);
1063 } /* ks_start_rx */
1064
1065 /**
1066 * ks_stop_rx - stop to serve pkts
1067 * @ks : The chip information
1068 *
1069 */
1070 static void ks_stop_rx(struct ks_net *ks)
1071 {
1072 u16 cntl;
1073
1074 /* Disables QMU Receive (RXCR1). */
1075 cntl = ks_rdreg16(ks, KS_RXCR1);
1076 cntl &= ~RXCR1_RXE ;
1077 ks_wrreg16(ks, KS_RXCR1, cntl);
1078
1079 } /* ks_stop_rx */
1080
1081 static unsigned long const ethernet_polynomial = 0x04c11db7U;
1082
1083 static unsigned long ether_gen_crc(int length, u8 *data)
1084 {
1085 long crc = -1;
1086 while (--length >= 0) {
1087 u8 current_octet = *data++;
1088 int bit;
1089
1090 for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
1091 crc = (crc << 1) ^
1092 ((crc < 0) ^ (current_octet & 1) ?
1093 ethernet_polynomial : 0);
1094 }
1095 }
1096 return (unsigned long)crc;
1097 } /* ether_gen_crc */
1098
1099 /**
1100 * ks_set_grpaddr - set multicast information
1101 * @ks : The chip information
1102 */
1103
1104 static void ks_set_grpaddr(struct ks_net *ks)
1105 {
1106 u8 i;
1107 u32 index, position, value;
1108
1109 memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
1110
1111 for (i = 0; i < ks->mcast_lst_size; i++) {
1112 position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
1113 index = position >> 3;
1114 value = 1 << (position & 7);
1115 ks->mcast_bits[index] |= (u8)value;
1116 }
1117
1118 for (i = 0; i < HW_MCAST_SIZE; i++) {
1119 if (i & 1) {
1120 ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
1121 (ks->mcast_bits[i] << 8) |
1122 ks->mcast_bits[i - 1]);
1123 }
1124 }
1125 } /* ks_set_grpaddr */
1126
1127 /**
1128 * ks_clear_mcast - clear multicast information
1129 *
1130 * @ks : The chip information
1131 * This routine removes all mcast addresses set in the hardware.
1132 */
1133
1134 static void ks_clear_mcast(struct ks_net *ks)
1135 {
1136 u16 i, mcast_size;
1137 for (i = 0; i < HW_MCAST_SIZE; i++)
1138 ks->mcast_bits[i] = 0;
1139
1140 mcast_size = HW_MCAST_SIZE >> 2;
1141 for (i = 0; i < mcast_size; i++)
1142 ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
1143 }
1144
1145 static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
1146 {
1147 u16 cntl;
1148 ks->promiscuous = promiscuous_mode;
1149 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1150 cntl = ks_rdreg16(ks, KS_RXCR1);
1151
1152 cntl &= ~RXCR1_FILTER_MASK;
1153 if (promiscuous_mode)
1154 /* Enable Promiscuous mode */
1155 cntl |= RXCR1_RXAE | RXCR1_RXINVF;
1156 else
1157 /* Disable Promiscuous mode (default normal mode) */
1158 cntl |= RXCR1_RXPAFMA;
1159
1160 ks_wrreg16(ks, KS_RXCR1, cntl);
1161
1162 if (ks->enabled)
1163 ks_start_rx(ks);
1164
1165 } /* ks_set_promis */
1166
1167 static void ks_set_mcast(struct ks_net *ks, u16 mcast)
1168 {
1169 u16 cntl;
1170
1171 ks->all_mcast = mcast;
1172 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1173 cntl = ks_rdreg16(ks, KS_RXCR1);
1174 cntl &= ~RXCR1_FILTER_MASK;
1175 if (mcast)
1176 /* Enable "Perfect with Multicast address passed mode" */
1177 cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1178 else
1179 /**
1180 * Disable "Perfect with Multicast address passed
1181 * mode" (normal mode).
1182 */
1183 cntl |= RXCR1_RXPAFMA;
1184
1185 ks_wrreg16(ks, KS_RXCR1, cntl);
1186
1187 if (ks->enabled)
1188 ks_start_rx(ks);
1189 } /* ks_set_mcast */
1190
1191 static void ks_set_rx_mode(struct net_device *netdev)
1192 {
1193 struct ks_net *ks = netdev_priv(netdev);
1194 struct netdev_hw_addr *ha;
1195
1196 /* Turn on/off promiscuous mode. */
1197 if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
1198 ks_set_promis(ks,
1199 (u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
1200 /* Turn on/off all mcast mode. */
1201 else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
1202 ks_set_mcast(ks,
1203 (u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
1204 else
1205 ks_set_promis(ks, false);
1206
1207 if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
1208 if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
1209 int i = 0;
1210
1211 netdev_for_each_mc_addr(ha, netdev) {
1212 if (i >= MAX_MCAST_LST)
1213 break;
1214 memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
1215 }
1216 ks->mcast_lst_size = (u8)i;
1217 ks_set_grpaddr(ks);
1218 } else {
1219 /**
1220 * List too big to support so
1221 * turn on all mcast mode.
1222 */
1223 ks->mcast_lst_size = MAX_MCAST_LST;
1224 ks_set_mcast(ks, true);
1225 }
1226 } else {
1227 ks->mcast_lst_size = 0;
1228 ks_clear_mcast(ks);
1229 }
1230 } /* ks_set_rx_mode */
1231
1232 static void ks_set_mac(struct ks_net *ks, u8 *data)
1233 {
1234 u16 *pw = (u16 *)data;
1235 u16 w, u;
1236
1237 ks_stop_rx(ks); /* Stop receiving for reconfiguration */
1238
1239 u = *pw++;
1240 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1241 ks_wrreg16(ks, KS_MARH, w);
1242
1243 u = *pw++;
1244 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1245 ks_wrreg16(ks, KS_MARM, w);
1246
1247 u = *pw;
1248 w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1249 ks_wrreg16(ks, KS_MARL, w);
1250
1251 memcpy(ks->mac_addr, data, ETH_ALEN);
1252
1253 if (ks->enabled)
1254 ks_start_rx(ks);
1255 }
1256
1257 static int ks_set_mac_address(struct net_device *netdev, void *paddr)
1258 {
1259 struct ks_net *ks = netdev_priv(netdev);
1260 struct sockaddr *addr = paddr;
1261 u8 *da;
1262
1263 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1264
1265 da = (u8 *)netdev->dev_addr;
1266
1267 ks_set_mac(ks, da);
1268 return 0;
1269 }
1270
1271 static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1272 {
1273 struct ks_net *ks = netdev_priv(netdev);
1274
1275 if (!netif_running(netdev))
1276 return -EINVAL;
1277
1278 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1279 }
1280
1281 static const struct net_device_ops ks_netdev_ops = {
1282 .ndo_open = ks_net_open,
1283 .ndo_stop = ks_net_stop,
1284 .ndo_do_ioctl = ks_net_ioctl,
1285 .ndo_start_xmit = ks_start_xmit,
1286 .ndo_set_mac_address = ks_set_mac_address,
1287 .ndo_set_rx_mode = ks_set_rx_mode,
1288 .ndo_change_mtu = eth_change_mtu,
1289 .ndo_validate_addr = eth_validate_addr,
1290 };
1291
1292 /* ethtool support */
1293
1294 static void ks_get_drvinfo(struct net_device *netdev,
1295 struct ethtool_drvinfo *di)
1296 {
1297 strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
1298 strlcpy(di->version, "1.00", sizeof(di->version));
1299 strlcpy(di->bus_info, dev_name(netdev->dev.parent),
1300 sizeof(di->bus_info));
1301 }
1302
1303 static u32 ks_get_msglevel(struct net_device *netdev)
1304 {
1305 struct ks_net *ks = netdev_priv(netdev);
1306 return ks->msg_enable;
1307 }
1308
1309 static void ks_set_msglevel(struct net_device *netdev, u32 to)
1310 {
1311 struct ks_net *ks = netdev_priv(netdev);
1312 ks->msg_enable = to;
1313 }
1314
1315 static int ks_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1316 {
1317 struct ks_net *ks = netdev_priv(netdev);
1318 return mii_ethtool_gset(&ks->mii, cmd);
1319 }
1320
1321 static int ks_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1322 {
1323 struct ks_net *ks = netdev_priv(netdev);
1324 return mii_ethtool_sset(&ks->mii, cmd);
1325 }
1326
1327 static u32 ks_get_link(struct net_device *netdev)
1328 {
1329 struct ks_net *ks = netdev_priv(netdev);
1330 return mii_link_ok(&ks->mii);
1331 }
1332
1333 static int ks_nway_reset(struct net_device *netdev)
1334 {
1335 struct ks_net *ks = netdev_priv(netdev);
1336 return mii_nway_restart(&ks->mii);
1337 }
1338
1339 static const struct ethtool_ops ks_ethtool_ops = {
1340 .get_drvinfo = ks_get_drvinfo,
1341 .get_msglevel = ks_get_msglevel,
1342 .set_msglevel = ks_set_msglevel,
1343 .get_settings = ks_get_settings,
1344 .set_settings = ks_set_settings,
1345 .get_link = ks_get_link,
1346 .nway_reset = ks_nway_reset,
1347 };
1348
1349 /* MII interface controls */
1350
1351 /**
1352 * ks_phy_reg - convert MII register into a KS8851 register
1353 * @reg: MII register number.
1354 *
1355 * Return the KS8851 register number for the corresponding MII PHY register
1356 * if possible. Return zero if the MII register has no direct mapping to the
1357 * KS8851 register set.
1358 */
1359 static int ks_phy_reg(int reg)
1360 {
1361 switch (reg) {
1362 case MII_BMCR:
1363 return KS_P1MBCR;
1364 case MII_BMSR:
1365 return KS_P1MBSR;
1366 case MII_PHYSID1:
1367 return KS_PHY1ILR;
1368 case MII_PHYSID2:
1369 return KS_PHY1IHR;
1370 case MII_ADVERTISE:
1371 return KS_P1ANAR;
1372 case MII_LPA:
1373 return KS_P1ANLPR;
1374 }
1375
1376 return 0x0;
1377 }
1378
1379 /**
1380 * ks_phy_read - MII interface PHY register read.
1381 * @netdev: The network device the PHY is on.
1382 * @phy_addr: Address of PHY (ignored as we only have one)
1383 * @reg: The register to read.
1384 *
1385 * This call reads data from the PHY register specified in @reg. Since the
1386 * device does not support all the MII registers, the non-existent values
1387 * are always returned as zero.
1388 *
1389 * We return zero for unsupported registers as the MII code does not check
1390 * the value returned for any error status, and simply returns it to the
1391 * caller. The mii-tool that the driver was tested with takes any -ve error
1392 * as real PHY capabilities, thus displaying incorrect data to the user.
1393 */
1394 static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
1395 {
1396 struct ks_net *ks = netdev_priv(netdev);
1397 int ksreg;
1398 int result;
1399
1400 ksreg = ks_phy_reg(reg);
1401 if (!ksreg)
1402 return 0x0; /* no error return allowed, so use zero */
1403
1404 mutex_lock(&ks->lock);
1405 result = ks_rdreg16(ks, ksreg);
1406 mutex_unlock(&ks->lock);
1407
1408 return result;
1409 }
1410
1411 static void ks_phy_write(struct net_device *netdev,
1412 int phy, int reg, int value)
1413 {
1414 struct ks_net *ks = netdev_priv(netdev);
1415 int ksreg;
1416
1417 ksreg = ks_phy_reg(reg);
1418 if (ksreg) {
1419 mutex_lock(&ks->lock);
1420 ks_wrreg16(ks, ksreg, value);
1421 mutex_unlock(&ks->lock);
1422 }
1423 }
1424
1425 /**
1426 * ks_read_selftest - read the selftest memory info.
1427 * @ks: The device state
1428 *
1429 * Read and check the TX/RX memory selftest information.
1430 */
1431 static int ks_read_selftest(struct ks_net *ks)
1432 {
1433 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1434 int ret = 0;
1435 unsigned rd;
1436
1437 rd = ks_rdreg16(ks, KS_MBIR);
1438
1439 if ((rd & both_done) != both_done) {
1440 netdev_warn(ks->netdev, "Memory selftest not finished\n");
1441 return 0;
1442 }
1443
1444 if (rd & MBIR_TXMBFA) {
1445 netdev_err(ks->netdev, "TX memory selftest fails\n");
1446 ret |= 1;
1447 }
1448
1449 if (rd & MBIR_RXMBFA) {
1450 netdev_err(ks->netdev, "RX memory selftest fails\n");
1451 ret |= 2;
1452 }
1453
1454 netdev_info(ks->netdev, "the selftest passes\n");
1455 return ret;
1456 }
1457
1458 static void ks_setup(struct ks_net *ks)
1459 {
1460 u16 w;
1461
1462 /**
1463 * Configure QMU Transmit
1464 */
1465
1466 /* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1467 ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
1468
1469 /* Setup Receive Frame Data Pointer Auto-Increment */
1470 ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
1471
1472 /* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1473 ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
1474
1475 /* Setup RxQ Command Control (RXQCR) */
1476 ks->rc_rxqcr = RXQCR_CMD_CNTL;
1477 ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
1478
1479 /**
1480 * set the force mode to half duplex, default is full duplex
1481 * because if the auto-negotiation fails, most switch uses
1482 * half-duplex.
1483 */
1484
1485 w = ks_rdreg16(ks, KS_P1MBCR);
1486 w &= ~P1MBCR_FORCE_FDX;
1487 ks_wrreg16(ks, KS_P1MBCR, w);
1488
1489 w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
1490 ks_wrreg16(ks, KS_TXCR, w);
1491
1492 w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
1493
1494 if (ks->promiscuous) /* bPromiscuous */
1495 w |= (RXCR1_RXAE | RXCR1_RXINVF);
1496 else if (ks->all_mcast) /* Multicast address passed mode */
1497 w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1498 else /* Normal mode */
1499 w |= RXCR1_RXPAFMA;
1500
1501 ks_wrreg16(ks, KS_RXCR1, w);
1502 } /*ks_setup */
1503
1504
1505 static void ks_setup_int(struct ks_net *ks)
1506 {
1507 ks->rc_ier = 0x00;
1508 /* Clear the interrupts status of the hardware. */
1509 ks_wrreg16(ks, KS_ISR, 0xffff);
1510
1511 /* Enables the interrupts of the hardware. */
1512 ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
1513 } /* ks_setup_int */
1514
1515 static int ks_hw_init(struct ks_net *ks)
1516 {
1517 #define MHEADER_SIZE (sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1518 ks->promiscuous = 0;
1519 ks->all_mcast = 0;
1520 ks->mcast_lst_size = 0;
1521
1522 ks->frame_head_info = devm_kmalloc(&ks->pdev->dev, MHEADER_SIZE,
1523 GFP_KERNEL);
1524 if (!ks->frame_head_info)
1525 return false;
1526
1527 ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
1528 return true;
1529 }
1530
1531 #if defined(CONFIG_OF)
1532 static const struct of_device_id ks8851_ml_dt_ids[] = {
1533 { .compatible = "micrel,ks8851-mll" },
1534 { /* sentinel */ }
1535 };
1536 MODULE_DEVICE_TABLE(of, ks8851_ml_dt_ids);
1537 #endif
1538
1539 static int ks8851_probe(struct platform_device *pdev)
1540 {
1541 int err;
1542 struct resource *io_d, *io_c;
1543 struct net_device *netdev;
1544 struct ks_net *ks;
1545 u16 id, data;
1546 const char *mac;
1547
1548 netdev = alloc_etherdev(sizeof(struct ks_net));
1549 if (!netdev)
1550 return -ENOMEM;
1551
1552 SET_NETDEV_DEV(netdev, &pdev->dev);
1553
1554 ks = netdev_priv(netdev);
1555 ks->netdev = netdev;
1556
1557 io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1558 ks->hw_addr = devm_ioremap_resource(&pdev->dev, io_d);
1559 if (IS_ERR(ks->hw_addr)) {
1560 err = PTR_ERR(ks->hw_addr);
1561 goto err_free;
1562 }
1563
1564 io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1565 ks->hw_addr_cmd = devm_ioremap_resource(&pdev->dev, io_c);
1566 if (IS_ERR(ks->hw_addr_cmd)) {
1567 err = PTR_ERR(ks->hw_addr_cmd);
1568 goto err_free;
1569 }
1570
1571 netdev->irq = platform_get_irq(pdev, 0);
1572
1573 if ((int)netdev->irq < 0) {
1574 err = netdev->irq;
1575 goto err_free;
1576 }
1577
1578 ks->pdev = pdev;
1579
1580 mutex_init(&ks->lock);
1581 spin_lock_init(&ks->statelock);
1582
1583 netdev->netdev_ops = &ks_netdev_ops;
1584 netdev->ethtool_ops = &ks_ethtool_ops;
1585
1586 /* setup mii state */
1587 ks->mii.dev = netdev;
1588 ks->mii.phy_id = 1,
1589 ks->mii.phy_id_mask = 1;
1590 ks->mii.reg_num_mask = 0xf;
1591 ks->mii.mdio_read = ks_phy_read;
1592 ks->mii.mdio_write = ks_phy_write;
1593
1594 netdev_info(netdev, "message enable is %d\n", msg_enable);
1595 /* set the default message enable */
1596 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1597 NETIF_MSG_PROBE |
1598 NETIF_MSG_LINK));
1599 ks_read_config(ks);
1600
1601 /* simple check for a valid chip being connected to the bus */
1602 if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1603 netdev_err(netdev, "failed to read device ID\n");
1604 err = -ENODEV;
1605 goto err_free;
1606 }
1607
1608 if (ks_read_selftest(ks)) {
1609 netdev_err(netdev, "failed to read device ID\n");
1610 err = -ENODEV;
1611 goto err_free;
1612 }
1613
1614 err = register_netdev(netdev);
1615 if (err)
1616 goto err_free;
1617
1618 platform_set_drvdata(pdev, netdev);
1619
1620 ks_soft_reset(ks, GRR_GSR);
1621 ks_hw_init(ks);
1622 ks_disable_qmu(ks);
1623 ks_setup(ks);
1624 ks_setup_int(ks);
1625
1626 data = ks_rdreg16(ks, KS_OBCR);
1627 ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
1628
1629 /* overwriting the default MAC address */
1630 if (pdev->dev.of_node) {
1631 mac = of_get_mac_address(pdev->dev.of_node);
1632 if (mac)
1633 memcpy(ks->mac_addr, mac, ETH_ALEN);
1634 } else {
1635 struct ks8851_mll_platform_data *pdata;
1636
1637 pdata = dev_get_platdata(&pdev->dev);
1638 if (!pdata) {
1639 netdev_err(netdev, "No platform data\n");
1640 err = -ENODEV;
1641 goto err_pdata;
1642 }
1643 memcpy(ks->mac_addr, pdata->mac_addr, ETH_ALEN);
1644 }
1645 if (!is_valid_ether_addr(ks->mac_addr)) {
1646 /* Use random MAC address if none passed */
1647 eth_random_addr(ks->mac_addr);
1648 netdev_info(netdev, "Using random mac address\n");
1649 }
1650 netdev_info(netdev, "Mac address is: %pM\n", ks->mac_addr);
1651
1652 memcpy(netdev->dev_addr, ks->mac_addr, ETH_ALEN);
1653
1654 ks_set_mac(ks, netdev->dev_addr);
1655
1656 id = ks_rdreg16(ks, KS_CIDER);
1657
1658 netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1659 (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
1660 return 0;
1661
1662 err_pdata:
1663 unregister_netdev(netdev);
1664 err_free:
1665 free_netdev(netdev);
1666 return err;
1667 }
1668
1669 static int ks8851_remove(struct platform_device *pdev)
1670 {
1671 struct net_device *netdev = platform_get_drvdata(pdev);
1672
1673 unregister_netdev(netdev);
1674 free_netdev(netdev);
1675 return 0;
1676
1677 }
1678
1679 static struct platform_driver ks8851_platform_driver = {
1680 .driver = {
1681 .name = DRV_NAME,
1682 .of_match_table = of_match_ptr(ks8851_ml_dt_ids),
1683 },
1684 .probe = ks8851_probe,
1685 .remove = ks8851_remove,
1686 };
1687
1688 module_platform_driver(ks8851_platform_driver);
1689
1690 MODULE_DESCRIPTION("KS8851 MLL Network driver");
1691 MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1692 MODULE_LICENSE("GPL");
1693 module_param_named(message, msg_enable, int, 0);
1694 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1695
This page took 0.088586 seconds and 5 git commands to generate.