Merge remote-tracking branches 'asoc/fix/email', 'asoc/fix/fsl-ssi', 'asoc/fix/pm...
[deliverable/linux.git] / drivers / net / ethernet / neterion / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
4 *
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
53 ************************************************************************/
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
82 #include <net/tcp.h>
83 #include <net/checksum.h>
84
85 #include <asm/div64.h>
86 #include <asm/irq.h>
87
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
91
92 #define DRV_VERSION "2.0.26.28"
93
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name[] = "Neterion";
96 static const char s2io_driver_version[] = DRV_VERSION;
97
98 static const int rxd_size[2] = {32, 48};
99 static const int rxd_count[2] = {127, 85};
100
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 {
103 int ret;
104
105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107
108 return ret;
109 }
110
111 /*
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
115 */
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
125 {
126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127 }
128
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
136 };
137
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139 {"tmac_frms"},
140 {"tmac_data_octets"},
141 {"tmac_drop_frms"},
142 {"tmac_mcst_frms"},
143 {"tmac_bcst_frms"},
144 {"tmac_pause_ctrl_frms"},
145 {"tmac_ttl_octets"},
146 {"tmac_ucst_frms"},
147 {"tmac_nucst_frms"},
148 {"tmac_any_err_frms"},
149 {"tmac_ttl_less_fb_octets"},
150 {"tmac_vld_ip_octets"},
151 {"tmac_vld_ip"},
152 {"tmac_drop_ip"},
153 {"tmac_icmp"},
154 {"tmac_rst_tcp"},
155 {"tmac_tcp"},
156 {"tmac_udp"},
157 {"rmac_vld_frms"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
160 {"rmac_drop_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
164 {"rmac_out_rng_len_err_frms"},
165 {"rmac_long_frms"},
166 {"rmac_pause_ctrl_frms"},
167 {"rmac_unsup_ctrl_frms"},
168 {"rmac_ttl_octets"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
171 {"rmac_discarded_frms"},
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
174 {"rmac_ttl_frms"},
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
177 {"rmac_frag_frms"},
178 {"rmac_jabber_frms"},
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
185 {"rmac_ip"},
186 {"rmac_ip_octets"},
187 {"rmac_hdr_err_ip"},
188 {"rmac_drop_ip"},
189 {"rmac_icmp"},
190 {"rmac_tcp"},
191 {"rmac_udp"},
192 {"rmac_err_drp_udp"},
193 {"rmac_xgmii_err_sym"},
194 {"rmac_frms_q0"},
195 {"rmac_frms_q1"},
196 {"rmac_frms_q2"},
197 {"rmac_frms_q3"},
198 {"rmac_frms_q4"},
199 {"rmac_frms_q5"},
200 {"rmac_frms_q6"},
201 {"rmac_frms_q7"},
202 {"rmac_full_q0"},
203 {"rmac_full_q1"},
204 {"rmac_full_q2"},
205 {"rmac_full_q3"},
206 {"rmac_full_q4"},
207 {"rmac_full_q5"},
208 {"rmac_full_q6"},
209 {"rmac_full_q7"},
210 {"rmac_pause_cnt"},
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
213 {"rmac_accepted_ip"},
214 {"rmac_err_tcp"},
215 {"rd_req_cnt"},
216 {"new_rd_req_cnt"},
217 {"new_rd_req_rtry_cnt"},
218 {"rd_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
220 {"wr_req_cnt"},
221 {"new_wr_req_cnt"},
222 {"new_wr_req_rtry_cnt"},
223 {"wr_rtry_cnt"},
224 {"wr_disc_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
226 {"txp_wr_cnt"},
227 {"txd_rd_cnt"},
228 {"txd_wr_cnt"},
229 {"rxd_rd_cnt"},
230 {"rxd_wr_cnt"},
231 {"txf_rd_cnt"},
232 {"rxf_wr_cnt"}
233 };
234
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
243 {"rmac_vlan_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
246 {"rmac_pf_discard"},
247 {"rmac_da_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
251 {"link_fault_cnt"}
252 };
253
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
258 {"parity_err_cnt"},
259 {"serious_err_cnt"},
260 {"soft_reset_cnt"},
261 {"fifo_full_cnt"},
262 {"ring_0_full_cnt"},
263 {"ring_1_full_cnt"},
264 {"ring_2_full_cnt"},
265 {"ring_3_full_cnt"},
266 {"ring_4_full_cnt"},
267 {"ring_5_full_cnt"},
268 {"ring_6_full_cnt"},
269 {"ring_7_full_cnt"},
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
290 {"mem_allocated"},
291 {"mem_freed"},
292 {"link_up_cnt"},
293 {"link_down_cnt"},
294 {"link_up_time"},
295 {"link_down_time"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
310 {"tda_err_cnt"},
311 {"pfc_err_cnt"},
312 {"pcc_err_cnt"},
313 {"tti_err_cnt"},
314 {"tpa_err_cnt"},
315 {"sm_err_cnt"},
316 {"lso_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
321 {"rc_err_cnt"},
322 {"prc_pcix_err_cnt"},
323 {"rpa_err_cnt"},
324 {"rda_err_cnt"},
325 {"rti_err_cnt"},
326 {"mc_err_cnt"}
327 };
328
329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
332
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338
339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
341
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
347
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350 {
351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357 }
358
359 /*
360 * Constants to be programmed into the Xena's registers, to configure
361 * the XAUI.
362 */
363
364 #define END_SIGN 0x0
365 static const u64 herc_act_dtx_cfg[] = {
366 /* Set address */
367 0x8000051536750000ULL, 0x80000515367500E0ULL,
368 /* Write data */
369 0x8000051536750004ULL, 0x80000515367500E4ULL,
370 /* Set address */
371 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
372 /* Write data */
373 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
374 /* Set address */
375 0x801205150D440000ULL, 0x801205150D4400E0ULL,
376 /* Write data */
377 0x801205150D440004ULL, 0x801205150D4400E4ULL,
378 /* Set address */
379 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
380 /* Write data */
381 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
382 /* Done */
383 END_SIGN
384 };
385
386 static const u64 xena_dtx_cfg[] = {
387 /* Set address */
388 0x8000051500000000ULL, 0x80000515000000E0ULL,
389 /* Write data */
390 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
391 /* Set address */
392 0x8001051500000000ULL, 0x80010515000000E0ULL,
393 /* Write data */
394 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
395 /* Set address */
396 0x8002051500000000ULL, 0x80020515000000E0ULL,
397 /* Write data */
398 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
399 END_SIGN
400 };
401
402 /*
403 * Constants for Fixing the MacAddress problem seen mostly on
404 * Alpha machines.
405 */
406 static const u64 fix_mac[] = {
407 0x0060000000000000ULL, 0x0060600000000000ULL,
408 0x0040600000000000ULL, 0x0000600000000000ULL,
409 0x0020600000000000ULL, 0x0060600000000000ULL,
410 0x0020600000000000ULL, 0x0060600000000000ULL,
411 0x0020600000000000ULL, 0x0060600000000000ULL,
412 0x0020600000000000ULL, 0x0060600000000000ULL,
413 0x0020600000000000ULL, 0x0060600000000000ULL,
414 0x0020600000000000ULL, 0x0060600000000000ULL,
415 0x0020600000000000ULL, 0x0060600000000000ULL,
416 0x0020600000000000ULL, 0x0060600000000000ULL,
417 0x0020600000000000ULL, 0x0060600000000000ULL,
418 0x0020600000000000ULL, 0x0060600000000000ULL,
419 0x0020600000000000ULL, 0x0000600000000000ULL,
420 0x0040600000000000ULL, 0x0060600000000000ULL,
421 END_SIGN
422 };
423
424 MODULE_LICENSE("GPL");
425 MODULE_VERSION(DRV_VERSION);
426
427
428 /* Module Loadable parameters. */
429 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
430 S2IO_PARM_INT(rx_ring_num, 1);
431 S2IO_PARM_INT(multiq, 0);
432 S2IO_PARM_INT(rx_ring_mode, 1);
433 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
434 S2IO_PARM_INT(rmac_pause_time, 0x100);
435 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
436 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
437 S2IO_PARM_INT(shared_splits, 0);
438 S2IO_PARM_INT(tmac_util_period, 5);
439 S2IO_PARM_INT(rmac_util_period, 5);
440 S2IO_PARM_INT(l3l4hdr_size, 128);
441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
442 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
443 /* Frequency of Rx desc syncs expressed as power of 2 */
444 S2IO_PARM_INT(rxsync_frequency, 3);
445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
446 S2IO_PARM_INT(intr_type, 2);
447 /* Large receive offload feature */
448
449 /* Max pkts to be aggregated by LRO at one time. If not specified,
450 * aggregation happens until we hit max IP pkt size(64K)
451 */
452 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
453 S2IO_PARM_INT(indicate_max_pkts, 0);
454
455 S2IO_PARM_INT(napi, 1);
456 S2IO_PARM_INT(ufo, 0);
457 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
458
459 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
460 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
461 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
462 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
463 static unsigned int rts_frm_len[MAX_RX_RINGS] =
464 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
465
466 module_param_array(tx_fifo_len, uint, NULL, 0);
467 module_param_array(rx_ring_sz, uint, NULL, 0);
468 module_param_array(rts_frm_len, uint, NULL, 0);
469
470 /*
471 * S2IO device table.
472 * This table lists all the devices that this driver supports.
473 */
474 static const struct pci_device_id s2io_tbl[] = {
475 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
476 PCI_ANY_ID, PCI_ANY_ID},
477 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
478 PCI_ANY_ID, PCI_ANY_ID},
479 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
480 PCI_ANY_ID, PCI_ANY_ID},
481 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
482 PCI_ANY_ID, PCI_ANY_ID},
483 {0,}
484 };
485
486 MODULE_DEVICE_TABLE(pci, s2io_tbl);
487
488 static const struct pci_error_handlers s2io_err_handler = {
489 .error_detected = s2io_io_error_detected,
490 .slot_reset = s2io_io_slot_reset,
491 .resume = s2io_io_resume,
492 };
493
494 static struct pci_driver s2io_driver = {
495 .name = "S2IO",
496 .id_table = s2io_tbl,
497 .probe = s2io_init_nic,
498 .remove = s2io_rem_nic,
499 .err_handler = &s2io_err_handler,
500 };
501
502 /* A simplifier macro used both by init and free shared_mem Fns(). */
503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
504
505 /* netqueue manipulation helper functions */
506 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
507 {
508 if (!sp->config.multiq) {
509 int i;
510
511 for (i = 0; i < sp->config.tx_fifo_num; i++)
512 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
513 }
514 netif_tx_stop_all_queues(sp->dev);
515 }
516
517 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
518 {
519 if (!sp->config.multiq)
520 sp->mac_control.fifos[fifo_no].queue_state =
521 FIFO_QUEUE_STOP;
522
523 netif_tx_stop_all_queues(sp->dev);
524 }
525
526 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
527 {
528 if (!sp->config.multiq) {
529 int i;
530
531 for (i = 0; i < sp->config.tx_fifo_num; i++)
532 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
533 }
534 netif_tx_start_all_queues(sp->dev);
535 }
536
537 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
538 {
539 if (!sp->config.multiq) {
540 int i;
541
542 for (i = 0; i < sp->config.tx_fifo_num; i++)
543 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
544 }
545 netif_tx_wake_all_queues(sp->dev);
546 }
547
548 static inline void s2io_wake_tx_queue(
549 struct fifo_info *fifo, int cnt, u8 multiq)
550 {
551
552 if (multiq) {
553 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
554 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
555 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
556 if (netif_queue_stopped(fifo->dev)) {
557 fifo->queue_state = FIFO_QUEUE_START;
558 netif_wake_queue(fifo->dev);
559 }
560 }
561 }
562
563 /**
564 * init_shared_mem - Allocation and Initialization of Memory
565 * @nic: Device private variable.
566 * Description: The function allocates all the memory areas shared
567 * between the NIC and the driver. This includes Tx descriptors,
568 * Rx descriptors and the statistics block.
569 */
570
571 static int init_shared_mem(struct s2io_nic *nic)
572 {
573 u32 size;
574 void *tmp_v_addr, *tmp_v_addr_next;
575 dma_addr_t tmp_p_addr, tmp_p_addr_next;
576 struct RxD_block *pre_rxd_blk = NULL;
577 int i, j, blk_cnt;
578 int lst_size, lst_per_page;
579 struct net_device *dev = nic->dev;
580 unsigned long tmp;
581 struct buffAdd *ba;
582 struct config_param *config = &nic->config;
583 struct mac_info *mac_control = &nic->mac_control;
584 unsigned long long mem_allocated = 0;
585
586 /* Allocation and initialization of TXDLs in FIFOs */
587 size = 0;
588 for (i = 0; i < config->tx_fifo_num; i++) {
589 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
590
591 size += tx_cfg->fifo_len;
592 }
593 if (size > MAX_AVAILABLE_TXDS) {
594 DBG_PRINT(ERR_DBG,
595 "Too many TxDs requested: %d, max supported: %d\n",
596 size, MAX_AVAILABLE_TXDS);
597 return -EINVAL;
598 }
599
600 size = 0;
601 for (i = 0; i < config->tx_fifo_num; i++) {
602 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
603
604 size = tx_cfg->fifo_len;
605 /*
606 * Legal values are from 2 to 8192
607 */
608 if (size < 2) {
609 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
610 "Valid lengths are 2 through 8192\n",
611 i, size);
612 return -EINVAL;
613 }
614 }
615
616 lst_size = (sizeof(struct TxD) * config->max_txds);
617 lst_per_page = PAGE_SIZE / lst_size;
618
619 for (i = 0; i < config->tx_fifo_num; i++) {
620 struct fifo_info *fifo = &mac_control->fifos[i];
621 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
622 int fifo_len = tx_cfg->fifo_len;
623 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
624
625 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
626 if (!fifo->list_info) {
627 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
628 return -ENOMEM;
629 }
630 mem_allocated += list_holder_size;
631 }
632 for (i = 0; i < config->tx_fifo_num; i++) {
633 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
634 lst_per_page);
635 struct fifo_info *fifo = &mac_control->fifos[i];
636 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
637
638 fifo->tx_curr_put_info.offset = 0;
639 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
640 fifo->tx_curr_get_info.offset = 0;
641 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
642 fifo->fifo_no = i;
643 fifo->nic = nic;
644 fifo->max_txds = MAX_SKB_FRAGS + 2;
645 fifo->dev = dev;
646
647 for (j = 0; j < page_num; j++) {
648 int k = 0;
649 dma_addr_t tmp_p;
650 void *tmp_v;
651 tmp_v = pci_alloc_consistent(nic->pdev,
652 PAGE_SIZE, &tmp_p);
653 if (!tmp_v) {
654 DBG_PRINT(INFO_DBG,
655 "pci_alloc_consistent failed for TxDL\n");
656 return -ENOMEM;
657 }
658 /* If we got a zero DMA address(can happen on
659 * certain platforms like PPC), reallocate.
660 * Store virtual address of page we don't want,
661 * to be freed later.
662 */
663 if (!tmp_p) {
664 mac_control->zerodma_virt_addr = tmp_v;
665 DBG_PRINT(INIT_DBG,
666 "%s: Zero DMA address for TxDL. "
667 "Virtual address %p\n",
668 dev->name, tmp_v);
669 tmp_v = pci_alloc_consistent(nic->pdev,
670 PAGE_SIZE, &tmp_p);
671 if (!tmp_v) {
672 DBG_PRINT(INFO_DBG,
673 "pci_alloc_consistent failed for TxDL\n");
674 return -ENOMEM;
675 }
676 mem_allocated += PAGE_SIZE;
677 }
678 while (k < lst_per_page) {
679 int l = (j * lst_per_page) + k;
680 if (l == tx_cfg->fifo_len)
681 break;
682 fifo->list_info[l].list_virt_addr =
683 tmp_v + (k * lst_size);
684 fifo->list_info[l].list_phy_addr =
685 tmp_p + (k * lst_size);
686 k++;
687 }
688 }
689 }
690
691 for (i = 0; i < config->tx_fifo_num; i++) {
692 struct fifo_info *fifo = &mac_control->fifos[i];
693 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
694
695 size = tx_cfg->fifo_len;
696 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
697 if (!fifo->ufo_in_band_v)
698 return -ENOMEM;
699 mem_allocated += (size * sizeof(u64));
700 }
701
702 /* Allocation and initialization of RXDs in Rings */
703 size = 0;
704 for (i = 0; i < config->rx_ring_num; i++) {
705 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
706 struct ring_info *ring = &mac_control->rings[i];
707
708 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
709 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
710 "multiple of RxDs per Block\n",
711 dev->name, i);
712 return FAILURE;
713 }
714 size += rx_cfg->num_rxd;
715 ring->block_count = rx_cfg->num_rxd /
716 (rxd_count[nic->rxd_mode] + 1);
717 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
718 }
719 if (nic->rxd_mode == RXD_MODE_1)
720 size = (size * (sizeof(struct RxD1)));
721 else
722 size = (size * (sizeof(struct RxD3)));
723
724 for (i = 0; i < config->rx_ring_num; i++) {
725 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
726 struct ring_info *ring = &mac_control->rings[i];
727
728 ring->rx_curr_get_info.block_index = 0;
729 ring->rx_curr_get_info.offset = 0;
730 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
731 ring->rx_curr_put_info.block_index = 0;
732 ring->rx_curr_put_info.offset = 0;
733 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
734 ring->nic = nic;
735 ring->ring_no = i;
736
737 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
738 /* Allocating all the Rx blocks */
739 for (j = 0; j < blk_cnt; j++) {
740 struct rx_block_info *rx_blocks;
741 int l;
742
743 rx_blocks = &ring->rx_blocks[j];
744 size = SIZE_OF_BLOCK; /* size is always page size */
745 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
746 &tmp_p_addr);
747 if (tmp_v_addr == NULL) {
748 /*
749 * In case of failure, free_shared_mem()
750 * is called, which should free any
751 * memory that was alloced till the
752 * failure happened.
753 */
754 rx_blocks->block_virt_addr = tmp_v_addr;
755 return -ENOMEM;
756 }
757 mem_allocated += size;
758 memset(tmp_v_addr, 0, size);
759
760 size = sizeof(struct rxd_info) *
761 rxd_count[nic->rxd_mode];
762 rx_blocks->block_virt_addr = tmp_v_addr;
763 rx_blocks->block_dma_addr = tmp_p_addr;
764 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
765 if (!rx_blocks->rxds)
766 return -ENOMEM;
767 mem_allocated += size;
768 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
769 rx_blocks->rxds[l].virt_addr =
770 rx_blocks->block_virt_addr +
771 (rxd_size[nic->rxd_mode] * l);
772 rx_blocks->rxds[l].dma_addr =
773 rx_blocks->block_dma_addr +
774 (rxd_size[nic->rxd_mode] * l);
775 }
776 }
777 /* Interlinking all Rx Blocks */
778 for (j = 0; j < blk_cnt; j++) {
779 int next = (j + 1) % blk_cnt;
780 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
781 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
782 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
783 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
784
785 pre_rxd_blk = tmp_v_addr;
786 pre_rxd_blk->reserved_2_pNext_RxD_block =
787 (unsigned long)tmp_v_addr_next;
788 pre_rxd_blk->pNext_RxD_Blk_physical =
789 (u64)tmp_p_addr_next;
790 }
791 }
792 if (nic->rxd_mode == RXD_MODE_3B) {
793 /*
794 * Allocation of Storages for buffer addresses in 2BUFF mode
795 * and the buffers as well.
796 */
797 for (i = 0; i < config->rx_ring_num; i++) {
798 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
799 struct ring_info *ring = &mac_control->rings[i];
800
801 blk_cnt = rx_cfg->num_rxd /
802 (rxd_count[nic->rxd_mode] + 1);
803 size = sizeof(struct buffAdd *) * blk_cnt;
804 ring->ba = kmalloc(size, GFP_KERNEL);
805 if (!ring->ba)
806 return -ENOMEM;
807 mem_allocated += size;
808 for (j = 0; j < blk_cnt; j++) {
809 int k = 0;
810
811 size = sizeof(struct buffAdd) *
812 (rxd_count[nic->rxd_mode] + 1);
813 ring->ba[j] = kmalloc(size, GFP_KERNEL);
814 if (!ring->ba[j])
815 return -ENOMEM;
816 mem_allocated += size;
817 while (k != rxd_count[nic->rxd_mode]) {
818 ba = &ring->ba[j][k];
819 size = BUF0_LEN + ALIGN_SIZE;
820 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
821 if (!ba->ba_0_org)
822 return -ENOMEM;
823 mem_allocated += size;
824 tmp = (unsigned long)ba->ba_0_org;
825 tmp += ALIGN_SIZE;
826 tmp &= ~((unsigned long)ALIGN_SIZE);
827 ba->ba_0 = (void *)tmp;
828
829 size = BUF1_LEN + ALIGN_SIZE;
830 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
831 if (!ba->ba_1_org)
832 return -ENOMEM;
833 mem_allocated += size;
834 tmp = (unsigned long)ba->ba_1_org;
835 tmp += ALIGN_SIZE;
836 tmp &= ~((unsigned long)ALIGN_SIZE);
837 ba->ba_1 = (void *)tmp;
838 k++;
839 }
840 }
841 }
842 }
843
844 /* Allocation and initialization of Statistics block */
845 size = sizeof(struct stat_block);
846 mac_control->stats_mem =
847 pci_alloc_consistent(nic->pdev, size,
848 &mac_control->stats_mem_phy);
849
850 if (!mac_control->stats_mem) {
851 /*
852 * In case of failure, free_shared_mem() is called, which
853 * should free any memory that was alloced till the
854 * failure happened.
855 */
856 return -ENOMEM;
857 }
858 mem_allocated += size;
859 mac_control->stats_mem_sz = size;
860
861 tmp_v_addr = mac_control->stats_mem;
862 mac_control->stats_info = tmp_v_addr;
863 memset(tmp_v_addr, 0, size);
864 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
865 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
866 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
867 return SUCCESS;
868 }
869
870 /**
871 * free_shared_mem - Free the allocated Memory
872 * @nic: Device private variable.
873 * Description: This function is to free all memory locations allocated by
874 * the init_shared_mem() function and return it to the kernel.
875 */
876
877 static void free_shared_mem(struct s2io_nic *nic)
878 {
879 int i, j, blk_cnt, size;
880 void *tmp_v_addr;
881 dma_addr_t tmp_p_addr;
882 int lst_size, lst_per_page;
883 struct net_device *dev;
884 int page_num = 0;
885 struct config_param *config;
886 struct mac_info *mac_control;
887 struct stat_block *stats;
888 struct swStat *swstats;
889
890 if (!nic)
891 return;
892
893 dev = nic->dev;
894
895 config = &nic->config;
896 mac_control = &nic->mac_control;
897 stats = mac_control->stats_info;
898 swstats = &stats->sw_stat;
899
900 lst_size = sizeof(struct TxD) * config->max_txds;
901 lst_per_page = PAGE_SIZE / lst_size;
902
903 for (i = 0; i < config->tx_fifo_num; i++) {
904 struct fifo_info *fifo = &mac_control->fifos[i];
905 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
906
907 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
908 for (j = 0; j < page_num; j++) {
909 int mem_blks = (j * lst_per_page);
910 struct list_info_hold *fli;
911
912 if (!fifo->list_info)
913 return;
914
915 fli = &fifo->list_info[mem_blks];
916 if (!fli->list_virt_addr)
917 break;
918 pci_free_consistent(nic->pdev, PAGE_SIZE,
919 fli->list_virt_addr,
920 fli->list_phy_addr);
921 swstats->mem_freed += PAGE_SIZE;
922 }
923 /* If we got a zero DMA address during allocation,
924 * free the page now
925 */
926 if (mac_control->zerodma_virt_addr) {
927 pci_free_consistent(nic->pdev, PAGE_SIZE,
928 mac_control->zerodma_virt_addr,
929 (dma_addr_t)0);
930 DBG_PRINT(INIT_DBG,
931 "%s: Freeing TxDL with zero DMA address. "
932 "Virtual address %p\n",
933 dev->name, mac_control->zerodma_virt_addr);
934 swstats->mem_freed += PAGE_SIZE;
935 }
936 kfree(fifo->list_info);
937 swstats->mem_freed += tx_cfg->fifo_len *
938 sizeof(struct list_info_hold);
939 }
940
941 size = SIZE_OF_BLOCK;
942 for (i = 0; i < config->rx_ring_num; i++) {
943 struct ring_info *ring = &mac_control->rings[i];
944
945 blk_cnt = ring->block_count;
946 for (j = 0; j < blk_cnt; j++) {
947 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
948 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
949 if (tmp_v_addr == NULL)
950 break;
951 pci_free_consistent(nic->pdev, size,
952 tmp_v_addr, tmp_p_addr);
953 swstats->mem_freed += size;
954 kfree(ring->rx_blocks[j].rxds);
955 swstats->mem_freed += sizeof(struct rxd_info) *
956 rxd_count[nic->rxd_mode];
957 }
958 }
959
960 if (nic->rxd_mode == RXD_MODE_3B) {
961 /* Freeing buffer storage addresses in 2BUFF mode. */
962 for (i = 0; i < config->rx_ring_num; i++) {
963 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
964 struct ring_info *ring = &mac_control->rings[i];
965
966 blk_cnt = rx_cfg->num_rxd /
967 (rxd_count[nic->rxd_mode] + 1);
968 for (j = 0; j < blk_cnt; j++) {
969 int k = 0;
970 if (!ring->ba[j])
971 continue;
972 while (k != rxd_count[nic->rxd_mode]) {
973 struct buffAdd *ba = &ring->ba[j][k];
974 kfree(ba->ba_0_org);
975 swstats->mem_freed +=
976 BUF0_LEN + ALIGN_SIZE;
977 kfree(ba->ba_1_org);
978 swstats->mem_freed +=
979 BUF1_LEN + ALIGN_SIZE;
980 k++;
981 }
982 kfree(ring->ba[j]);
983 swstats->mem_freed += sizeof(struct buffAdd) *
984 (rxd_count[nic->rxd_mode] + 1);
985 }
986 kfree(ring->ba);
987 swstats->mem_freed += sizeof(struct buffAdd *) *
988 blk_cnt;
989 }
990 }
991
992 for (i = 0; i < nic->config.tx_fifo_num; i++) {
993 struct fifo_info *fifo = &mac_control->fifos[i];
994 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
995
996 if (fifo->ufo_in_band_v) {
997 swstats->mem_freed += tx_cfg->fifo_len *
998 sizeof(u64);
999 kfree(fifo->ufo_in_band_v);
1000 }
1001 }
1002
1003 if (mac_control->stats_mem) {
1004 swstats->mem_freed += mac_control->stats_mem_sz;
1005 pci_free_consistent(nic->pdev,
1006 mac_control->stats_mem_sz,
1007 mac_control->stats_mem,
1008 mac_control->stats_mem_phy);
1009 }
1010 }
1011
1012 /**
1013 * s2io_verify_pci_mode -
1014 */
1015
1016 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1017 {
1018 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1019 register u64 val64 = 0;
1020 int mode;
1021
1022 val64 = readq(&bar0->pci_mode);
1023 mode = (u8)GET_PCI_MODE(val64);
1024
1025 if (val64 & PCI_MODE_UNKNOWN_MODE)
1026 return -1; /* Unknown PCI mode */
1027 return mode;
1028 }
1029
1030 #define NEC_VENID 0x1033
1031 #define NEC_DEVID 0x0125
1032 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1033 {
1034 struct pci_dev *tdev = NULL;
1035 for_each_pci_dev(tdev) {
1036 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1037 if (tdev->bus == s2io_pdev->bus->parent) {
1038 pci_dev_put(tdev);
1039 return 1;
1040 }
1041 }
1042 }
1043 return 0;
1044 }
1045
1046 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1047 /**
1048 * s2io_print_pci_mode -
1049 */
1050 static int s2io_print_pci_mode(struct s2io_nic *nic)
1051 {
1052 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1053 register u64 val64 = 0;
1054 int mode;
1055 struct config_param *config = &nic->config;
1056 const char *pcimode;
1057
1058 val64 = readq(&bar0->pci_mode);
1059 mode = (u8)GET_PCI_MODE(val64);
1060
1061 if (val64 & PCI_MODE_UNKNOWN_MODE)
1062 return -1; /* Unknown PCI mode */
1063
1064 config->bus_speed = bus_speed[mode];
1065
1066 if (s2io_on_nec_bridge(nic->pdev)) {
1067 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1068 nic->dev->name);
1069 return mode;
1070 }
1071
1072 switch (mode) {
1073 case PCI_MODE_PCI_33:
1074 pcimode = "33MHz PCI bus";
1075 break;
1076 case PCI_MODE_PCI_66:
1077 pcimode = "66MHz PCI bus";
1078 break;
1079 case PCI_MODE_PCIX_M1_66:
1080 pcimode = "66MHz PCIX(M1) bus";
1081 break;
1082 case PCI_MODE_PCIX_M1_100:
1083 pcimode = "100MHz PCIX(M1) bus";
1084 break;
1085 case PCI_MODE_PCIX_M1_133:
1086 pcimode = "133MHz PCIX(M1) bus";
1087 break;
1088 case PCI_MODE_PCIX_M2_66:
1089 pcimode = "133MHz PCIX(M2) bus";
1090 break;
1091 case PCI_MODE_PCIX_M2_100:
1092 pcimode = "200MHz PCIX(M2) bus";
1093 break;
1094 case PCI_MODE_PCIX_M2_133:
1095 pcimode = "266MHz PCIX(M2) bus";
1096 break;
1097 default:
1098 pcimode = "unsupported bus!";
1099 mode = -1;
1100 }
1101
1102 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1103 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1104
1105 return mode;
1106 }
1107
1108 /**
1109 * init_tti - Initialization transmit traffic interrupt scheme
1110 * @nic: device private variable
1111 * @link: link status (UP/DOWN) used to enable/disable continuous
1112 * transmit interrupts
1113 * Description: The function configures transmit traffic interrupts
1114 * Return Value: SUCCESS on success and
1115 * '-1' on failure
1116 */
1117
1118 static int init_tti(struct s2io_nic *nic, int link)
1119 {
1120 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1121 register u64 val64 = 0;
1122 int i;
1123 struct config_param *config = &nic->config;
1124
1125 for (i = 0; i < config->tx_fifo_num; i++) {
1126 /*
1127 * TTI Initialization. Default Tx timer gets us about
1128 * 250 interrupts per sec. Continuous interrupts are enabled
1129 * by default.
1130 */
1131 if (nic->device_type == XFRAME_II_DEVICE) {
1132 int count = (nic->config.bus_speed * 125)/2;
1133 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1134 } else
1135 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1136
1137 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1138 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1139 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1140 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1141 if (i == 0)
1142 if (use_continuous_tx_intrs && (link == LINK_UP))
1143 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1144 writeq(val64, &bar0->tti_data1_mem);
1145
1146 if (nic->config.intr_type == MSI_X) {
1147 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1148 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1149 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1150 TTI_DATA2_MEM_TX_UFC_D(0x300);
1151 } else {
1152 if ((nic->config.tx_steering_type ==
1153 TX_DEFAULT_STEERING) &&
1154 (config->tx_fifo_num > 1) &&
1155 (i >= nic->udp_fifo_idx) &&
1156 (i < (nic->udp_fifo_idx +
1157 nic->total_udp_fifos)))
1158 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1159 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1160 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1161 TTI_DATA2_MEM_TX_UFC_D(0x120);
1162 else
1163 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1164 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1165 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1166 TTI_DATA2_MEM_TX_UFC_D(0x80);
1167 }
1168
1169 writeq(val64, &bar0->tti_data2_mem);
1170
1171 val64 = TTI_CMD_MEM_WE |
1172 TTI_CMD_MEM_STROBE_NEW_CMD |
1173 TTI_CMD_MEM_OFFSET(i);
1174 writeq(val64, &bar0->tti_command_mem);
1175
1176 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1177 TTI_CMD_MEM_STROBE_NEW_CMD,
1178 S2IO_BIT_RESET) != SUCCESS)
1179 return FAILURE;
1180 }
1181
1182 return SUCCESS;
1183 }
1184
1185 /**
1186 * init_nic - Initialization of hardware
1187 * @nic: device private variable
1188 * Description: The function sequentially configures every block
1189 * of the H/W from their reset values.
1190 * Return Value: SUCCESS on success and
1191 * '-1' on failure (endian settings incorrect).
1192 */
1193
1194 static int init_nic(struct s2io_nic *nic)
1195 {
1196 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1197 struct net_device *dev = nic->dev;
1198 register u64 val64 = 0;
1199 void __iomem *add;
1200 u32 time;
1201 int i, j;
1202 int dtx_cnt = 0;
1203 unsigned long long mem_share;
1204 int mem_size;
1205 struct config_param *config = &nic->config;
1206 struct mac_info *mac_control = &nic->mac_control;
1207
1208 /* to set the swapper controle on the card */
1209 if (s2io_set_swapper(nic)) {
1210 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1211 return -EIO;
1212 }
1213
1214 /*
1215 * Herc requires EOI to be removed from reset before XGXS, so..
1216 */
1217 if (nic->device_type & XFRAME_II_DEVICE) {
1218 val64 = 0xA500000000ULL;
1219 writeq(val64, &bar0->sw_reset);
1220 msleep(500);
1221 val64 = readq(&bar0->sw_reset);
1222 }
1223
1224 /* Remove XGXS from reset state */
1225 val64 = 0;
1226 writeq(val64, &bar0->sw_reset);
1227 msleep(500);
1228 val64 = readq(&bar0->sw_reset);
1229
1230 /* Ensure that it's safe to access registers by checking
1231 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1232 */
1233 if (nic->device_type == XFRAME_II_DEVICE) {
1234 for (i = 0; i < 50; i++) {
1235 val64 = readq(&bar0->adapter_status);
1236 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1237 break;
1238 msleep(10);
1239 }
1240 if (i == 50)
1241 return -ENODEV;
1242 }
1243
1244 /* Enable Receiving broadcasts */
1245 add = &bar0->mac_cfg;
1246 val64 = readq(&bar0->mac_cfg);
1247 val64 |= MAC_RMAC_BCAST_ENABLE;
1248 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1249 writel((u32)val64, add);
1250 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1251 writel((u32) (val64 >> 32), (add + 4));
1252
1253 /* Read registers in all blocks */
1254 val64 = readq(&bar0->mac_int_mask);
1255 val64 = readq(&bar0->mc_int_mask);
1256 val64 = readq(&bar0->xgxs_int_mask);
1257
1258 /* Set MTU */
1259 val64 = dev->mtu;
1260 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1261
1262 if (nic->device_type & XFRAME_II_DEVICE) {
1263 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1264 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1265 &bar0->dtx_control, UF);
1266 if (dtx_cnt & 0x1)
1267 msleep(1); /* Necessary!! */
1268 dtx_cnt++;
1269 }
1270 } else {
1271 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1272 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1273 &bar0->dtx_control, UF);
1274 val64 = readq(&bar0->dtx_control);
1275 dtx_cnt++;
1276 }
1277 }
1278
1279 /* Tx DMA Initialization */
1280 val64 = 0;
1281 writeq(val64, &bar0->tx_fifo_partition_0);
1282 writeq(val64, &bar0->tx_fifo_partition_1);
1283 writeq(val64, &bar0->tx_fifo_partition_2);
1284 writeq(val64, &bar0->tx_fifo_partition_3);
1285
1286 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1287 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1288
1289 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1290 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1291
1292 if (i == (config->tx_fifo_num - 1)) {
1293 if (i % 2 == 0)
1294 i++;
1295 }
1296
1297 switch (i) {
1298 case 1:
1299 writeq(val64, &bar0->tx_fifo_partition_0);
1300 val64 = 0;
1301 j = 0;
1302 break;
1303 case 3:
1304 writeq(val64, &bar0->tx_fifo_partition_1);
1305 val64 = 0;
1306 j = 0;
1307 break;
1308 case 5:
1309 writeq(val64, &bar0->tx_fifo_partition_2);
1310 val64 = 0;
1311 j = 0;
1312 break;
1313 case 7:
1314 writeq(val64, &bar0->tx_fifo_partition_3);
1315 val64 = 0;
1316 j = 0;
1317 break;
1318 default:
1319 j++;
1320 break;
1321 }
1322 }
1323
1324 /*
1325 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1326 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1327 */
1328 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1329 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1330
1331 val64 = readq(&bar0->tx_fifo_partition_0);
1332 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1333 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1334
1335 /*
1336 * Initialization of Tx_PA_CONFIG register to ignore packet
1337 * integrity checking.
1338 */
1339 val64 = readq(&bar0->tx_pa_cfg);
1340 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1341 TX_PA_CFG_IGNORE_SNAP_OUI |
1342 TX_PA_CFG_IGNORE_LLC_CTRL |
1343 TX_PA_CFG_IGNORE_L2_ERR;
1344 writeq(val64, &bar0->tx_pa_cfg);
1345
1346 /* Rx DMA initialization. */
1347 val64 = 0;
1348 for (i = 0; i < config->rx_ring_num; i++) {
1349 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1350
1351 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1352 }
1353 writeq(val64, &bar0->rx_queue_priority);
1354
1355 /*
1356 * Allocating equal share of memory to all the
1357 * configured Rings.
1358 */
1359 val64 = 0;
1360 if (nic->device_type & XFRAME_II_DEVICE)
1361 mem_size = 32;
1362 else
1363 mem_size = 64;
1364
1365 for (i = 0; i < config->rx_ring_num; i++) {
1366 switch (i) {
1367 case 0:
1368 mem_share = (mem_size / config->rx_ring_num +
1369 mem_size % config->rx_ring_num);
1370 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1371 continue;
1372 case 1:
1373 mem_share = (mem_size / config->rx_ring_num);
1374 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1375 continue;
1376 case 2:
1377 mem_share = (mem_size / config->rx_ring_num);
1378 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1379 continue;
1380 case 3:
1381 mem_share = (mem_size / config->rx_ring_num);
1382 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1383 continue;
1384 case 4:
1385 mem_share = (mem_size / config->rx_ring_num);
1386 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1387 continue;
1388 case 5:
1389 mem_share = (mem_size / config->rx_ring_num);
1390 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1391 continue;
1392 case 6:
1393 mem_share = (mem_size / config->rx_ring_num);
1394 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1395 continue;
1396 case 7:
1397 mem_share = (mem_size / config->rx_ring_num);
1398 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1399 continue;
1400 }
1401 }
1402 writeq(val64, &bar0->rx_queue_cfg);
1403
1404 /*
1405 * Filling Tx round robin registers
1406 * as per the number of FIFOs for equal scheduling priority
1407 */
1408 switch (config->tx_fifo_num) {
1409 case 1:
1410 val64 = 0x0;
1411 writeq(val64, &bar0->tx_w_round_robin_0);
1412 writeq(val64, &bar0->tx_w_round_robin_1);
1413 writeq(val64, &bar0->tx_w_round_robin_2);
1414 writeq(val64, &bar0->tx_w_round_robin_3);
1415 writeq(val64, &bar0->tx_w_round_robin_4);
1416 break;
1417 case 2:
1418 val64 = 0x0001000100010001ULL;
1419 writeq(val64, &bar0->tx_w_round_robin_0);
1420 writeq(val64, &bar0->tx_w_round_robin_1);
1421 writeq(val64, &bar0->tx_w_round_robin_2);
1422 writeq(val64, &bar0->tx_w_round_robin_3);
1423 val64 = 0x0001000100000000ULL;
1424 writeq(val64, &bar0->tx_w_round_robin_4);
1425 break;
1426 case 3:
1427 val64 = 0x0001020001020001ULL;
1428 writeq(val64, &bar0->tx_w_round_robin_0);
1429 val64 = 0x0200010200010200ULL;
1430 writeq(val64, &bar0->tx_w_round_robin_1);
1431 val64 = 0x0102000102000102ULL;
1432 writeq(val64, &bar0->tx_w_round_robin_2);
1433 val64 = 0x0001020001020001ULL;
1434 writeq(val64, &bar0->tx_w_round_robin_3);
1435 val64 = 0x0200010200000000ULL;
1436 writeq(val64, &bar0->tx_w_round_robin_4);
1437 break;
1438 case 4:
1439 val64 = 0x0001020300010203ULL;
1440 writeq(val64, &bar0->tx_w_round_robin_0);
1441 writeq(val64, &bar0->tx_w_round_robin_1);
1442 writeq(val64, &bar0->tx_w_round_robin_2);
1443 writeq(val64, &bar0->tx_w_round_robin_3);
1444 val64 = 0x0001020300000000ULL;
1445 writeq(val64, &bar0->tx_w_round_robin_4);
1446 break;
1447 case 5:
1448 val64 = 0x0001020304000102ULL;
1449 writeq(val64, &bar0->tx_w_round_robin_0);
1450 val64 = 0x0304000102030400ULL;
1451 writeq(val64, &bar0->tx_w_round_robin_1);
1452 val64 = 0x0102030400010203ULL;
1453 writeq(val64, &bar0->tx_w_round_robin_2);
1454 val64 = 0x0400010203040001ULL;
1455 writeq(val64, &bar0->tx_w_round_robin_3);
1456 val64 = 0x0203040000000000ULL;
1457 writeq(val64, &bar0->tx_w_round_robin_4);
1458 break;
1459 case 6:
1460 val64 = 0x0001020304050001ULL;
1461 writeq(val64, &bar0->tx_w_round_robin_0);
1462 val64 = 0x0203040500010203ULL;
1463 writeq(val64, &bar0->tx_w_round_robin_1);
1464 val64 = 0x0405000102030405ULL;
1465 writeq(val64, &bar0->tx_w_round_robin_2);
1466 val64 = 0x0001020304050001ULL;
1467 writeq(val64, &bar0->tx_w_round_robin_3);
1468 val64 = 0x0203040500000000ULL;
1469 writeq(val64, &bar0->tx_w_round_robin_4);
1470 break;
1471 case 7:
1472 val64 = 0x0001020304050600ULL;
1473 writeq(val64, &bar0->tx_w_round_robin_0);
1474 val64 = 0x0102030405060001ULL;
1475 writeq(val64, &bar0->tx_w_round_robin_1);
1476 val64 = 0x0203040506000102ULL;
1477 writeq(val64, &bar0->tx_w_round_robin_2);
1478 val64 = 0x0304050600010203ULL;
1479 writeq(val64, &bar0->tx_w_round_robin_3);
1480 val64 = 0x0405060000000000ULL;
1481 writeq(val64, &bar0->tx_w_round_robin_4);
1482 break;
1483 case 8:
1484 val64 = 0x0001020304050607ULL;
1485 writeq(val64, &bar0->tx_w_round_robin_0);
1486 writeq(val64, &bar0->tx_w_round_robin_1);
1487 writeq(val64, &bar0->tx_w_round_robin_2);
1488 writeq(val64, &bar0->tx_w_round_robin_3);
1489 val64 = 0x0001020300000000ULL;
1490 writeq(val64, &bar0->tx_w_round_robin_4);
1491 break;
1492 }
1493
1494 /* Enable all configured Tx FIFO partitions */
1495 val64 = readq(&bar0->tx_fifo_partition_0);
1496 val64 |= (TX_FIFO_PARTITION_EN);
1497 writeq(val64, &bar0->tx_fifo_partition_0);
1498
1499 /* Filling the Rx round robin registers as per the
1500 * number of Rings and steering based on QoS with
1501 * equal priority.
1502 */
1503 switch (config->rx_ring_num) {
1504 case 1:
1505 val64 = 0x0;
1506 writeq(val64, &bar0->rx_w_round_robin_0);
1507 writeq(val64, &bar0->rx_w_round_robin_1);
1508 writeq(val64, &bar0->rx_w_round_robin_2);
1509 writeq(val64, &bar0->rx_w_round_robin_3);
1510 writeq(val64, &bar0->rx_w_round_robin_4);
1511
1512 val64 = 0x8080808080808080ULL;
1513 writeq(val64, &bar0->rts_qos_steering);
1514 break;
1515 case 2:
1516 val64 = 0x0001000100010001ULL;
1517 writeq(val64, &bar0->rx_w_round_robin_0);
1518 writeq(val64, &bar0->rx_w_round_robin_1);
1519 writeq(val64, &bar0->rx_w_round_robin_2);
1520 writeq(val64, &bar0->rx_w_round_robin_3);
1521 val64 = 0x0001000100000000ULL;
1522 writeq(val64, &bar0->rx_w_round_robin_4);
1523
1524 val64 = 0x8080808040404040ULL;
1525 writeq(val64, &bar0->rts_qos_steering);
1526 break;
1527 case 3:
1528 val64 = 0x0001020001020001ULL;
1529 writeq(val64, &bar0->rx_w_round_robin_0);
1530 val64 = 0x0200010200010200ULL;
1531 writeq(val64, &bar0->rx_w_round_robin_1);
1532 val64 = 0x0102000102000102ULL;
1533 writeq(val64, &bar0->rx_w_round_robin_2);
1534 val64 = 0x0001020001020001ULL;
1535 writeq(val64, &bar0->rx_w_round_robin_3);
1536 val64 = 0x0200010200000000ULL;
1537 writeq(val64, &bar0->rx_w_round_robin_4);
1538
1539 val64 = 0x8080804040402020ULL;
1540 writeq(val64, &bar0->rts_qos_steering);
1541 break;
1542 case 4:
1543 val64 = 0x0001020300010203ULL;
1544 writeq(val64, &bar0->rx_w_round_robin_0);
1545 writeq(val64, &bar0->rx_w_round_robin_1);
1546 writeq(val64, &bar0->rx_w_round_robin_2);
1547 writeq(val64, &bar0->rx_w_round_robin_3);
1548 val64 = 0x0001020300000000ULL;
1549 writeq(val64, &bar0->rx_w_round_robin_4);
1550
1551 val64 = 0x8080404020201010ULL;
1552 writeq(val64, &bar0->rts_qos_steering);
1553 break;
1554 case 5:
1555 val64 = 0x0001020304000102ULL;
1556 writeq(val64, &bar0->rx_w_round_robin_0);
1557 val64 = 0x0304000102030400ULL;
1558 writeq(val64, &bar0->rx_w_round_robin_1);
1559 val64 = 0x0102030400010203ULL;
1560 writeq(val64, &bar0->rx_w_round_robin_2);
1561 val64 = 0x0400010203040001ULL;
1562 writeq(val64, &bar0->rx_w_round_robin_3);
1563 val64 = 0x0203040000000000ULL;
1564 writeq(val64, &bar0->rx_w_round_robin_4);
1565
1566 val64 = 0x8080404020201008ULL;
1567 writeq(val64, &bar0->rts_qos_steering);
1568 break;
1569 case 6:
1570 val64 = 0x0001020304050001ULL;
1571 writeq(val64, &bar0->rx_w_round_robin_0);
1572 val64 = 0x0203040500010203ULL;
1573 writeq(val64, &bar0->rx_w_round_robin_1);
1574 val64 = 0x0405000102030405ULL;
1575 writeq(val64, &bar0->rx_w_round_robin_2);
1576 val64 = 0x0001020304050001ULL;
1577 writeq(val64, &bar0->rx_w_round_robin_3);
1578 val64 = 0x0203040500000000ULL;
1579 writeq(val64, &bar0->rx_w_round_robin_4);
1580
1581 val64 = 0x8080404020100804ULL;
1582 writeq(val64, &bar0->rts_qos_steering);
1583 break;
1584 case 7:
1585 val64 = 0x0001020304050600ULL;
1586 writeq(val64, &bar0->rx_w_round_robin_0);
1587 val64 = 0x0102030405060001ULL;
1588 writeq(val64, &bar0->rx_w_round_robin_1);
1589 val64 = 0x0203040506000102ULL;
1590 writeq(val64, &bar0->rx_w_round_robin_2);
1591 val64 = 0x0304050600010203ULL;
1592 writeq(val64, &bar0->rx_w_round_robin_3);
1593 val64 = 0x0405060000000000ULL;
1594 writeq(val64, &bar0->rx_w_round_robin_4);
1595
1596 val64 = 0x8080402010080402ULL;
1597 writeq(val64, &bar0->rts_qos_steering);
1598 break;
1599 case 8:
1600 val64 = 0x0001020304050607ULL;
1601 writeq(val64, &bar0->rx_w_round_robin_0);
1602 writeq(val64, &bar0->rx_w_round_robin_1);
1603 writeq(val64, &bar0->rx_w_round_robin_2);
1604 writeq(val64, &bar0->rx_w_round_robin_3);
1605 val64 = 0x0001020300000000ULL;
1606 writeq(val64, &bar0->rx_w_round_robin_4);
1607
1608 val64 = 0x8040201008040201ULL;
1609 writeq(val64, &bar0->rts_qos_steering);
1610 break;
1611 }
1612
1613 /* UDP Fix */
1614 val64 = 0;
1615 for (i = 0; i < 8; i++)
1616 writeq(val64, &bar0->rts_frm_len_n[i]);
1617
1618 /* Set the default rts frame length for the rings configured */
1619 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1620 for (i = 0 ; i < config->rx_ring_num ; i++)
1621 writeq(val64, &bar0->rts_frm_len_n[i]);
1622
1623 /* Set the frame length for the configured rings
1624 * desired by the user
1625 */
1626 for (i = 0; i < config->rx_ring_num; i++) {
1627 /* If rts_frm_len[i] == 0 then it is assumed that user not
1628 * specified frame length steering.
1629 * If the user provides the frame length then program
1630 * the rts_frm_len register for those values or else
1631 * leave it as it is.
1632 */
1633 if (rts_frm_len[i] != 0) {
1634 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1635 &bar0->rts_frm_len_n[i]);
1636 }
1637 }
1638
1639 /* Disable differentiated services steering logic */
1640 for (i = 0; i < 64; i++) {
1641 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1642 DBG_PRINT(ERR_DBG,
1643 "%s: rts_ds_steer failed on codepoint %d\n",
1644 dev->name, i);
1645 return -ENODEV;
1646 }
1647 }
1648
1649 /* Program statistics memory */
1650 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1651
1652 if (nic->device_type == XFRAME_II_DEVICE) {
1653 val64 = STAT_BC(0x320);
1654 writeq(val64, &bar0->stat_byte_cnt);
1655 }
1656
1657 /*
1658 * Initializing the sampling rate for the device to calculate the
1659 * bandwidth utilization.
1660 */
1661 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1662 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1663 writeq(val64, &bar0->mac_link_util);
1664
1665 /*
1666 * Initializing the Transmit and Receive Traffic Interrupt
1667 * Scheme.
1668 */
1669
1670 /* Initialize TTI */
1671 if (SUCCESS != init_tti(nic, nic->last_link_state))
1672 return -ENODEV;
1673
1674 /* RTI Initialization */
1675 if (nic->device_type == XFRAME_II_DEVICE) {
1676 /*
1677 * Programmed to generate Apprx 500 Intrs per
1678 * second
1679 */
1680 int count = (nic->config.bus_speed * 125)/4;
1681 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1682 } else
1683 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1684 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1685 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1686 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1687 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1688
1689 writeq(val64, &bar0->rti_data1_mem);
1690
1691 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1692 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1693 if (nic->config.intr_type == MSI_X)
1694 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1695 RTI_DATA2_MEM_RX_UFC_D(0x40));
1696 else
1697 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1698 RTI_DATA2_MEM_RX_UFC_D(0x80));
1699 writeq(val64, &bar0->rti_data2_mem);
1700
1701 for (i = 0; i < config->rx_ring_num; i++) {
1702 val64 = RTI_CMD_MEM_WE |
1703 RTI_CMD_MEM_STROBE_NEW_CMD |
1704 RTI_CMD_MEM_OFFSET(i);
1705 writeq(val64, &bar0->rti_command_mem);
1706
1707 /*
1708 * Once the operation completes, the Strobe bit of the
1709 * command register will be reset. We poll for this
1710 * particular condition. We wait for a maximum of 500ms
1711 * for the operation to complete, if it's not complete
1712 * by then we return error.
1713 */
1714 time = 0;
1715 while (true) {
1716 val64 = readq(&bar0->rti_command_mem);
1717 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1718 break;
1719
1720 if (time > 10) {
1721 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1722 dev->name);
1723 return -ENODEV;
1724 }
1725 time++;
1726 msleep(50);
1727 }
1728 }
1729
1730 /*
1731 * Initializing proper values as Pause threshold into all
1732 * the 8 Queues on Rx side.
1733 */
1734 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1735 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1736
1737 /* Disable RMAC PAD STRIPPING */
1738 add = &bar0->mac_cfg;
1739 val64 = readq(&bar0->mac_cfg);
1740 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1741 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1742 writel((u32) (val64), add);
1743 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1744 writel((u32) (val64 >> 32), (add + 4));
1745 val64 = readq(&bar0->mac_cfg);
1746
1747 /* Enable FCS stripping by adapter */
1748 add = &bar0->mac_cfg;
1749 val64 = readq(&bar0->mac_cfg);
1750 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1751 if (nic->device_type == XFRAME_II_DEVICE)
1752 writeq(val64, &bar0->mac_cfg);
1753 else {
1754 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1755 writel((u32) (val64), add);
1756 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1757 writel((u32) (val64 >> 32), (add + 4));
1758 }
1759
1760 /*
1761 * Set the time value to be inserted in the pause frame
1762 * generated by xena.
1763 */
1764 val64 = readq(&bar0->rmac_pause_cfg);
1765 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1766 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1767 writeq(val64, &bar0->rmac_pause_cfg);
1768
1769 /*
1770 * Set the Threshold Limit for Generating the pause frame
1771 * If the amount of data in any Queue exceeds ratio of
1772 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1773 * pause frame is generated
1774 */
1775 val64 = 0;
1776 for (i = 0; i < 4; i++) {
1777 val64 |= (((u64)0xFF00 |
1778 nic->mac_control.mc_pause_threshold_q0q3)
1779 << (i * 2 * 8));
1780 }
1781 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1782
1783 val64 = 0;
1784 for (i = 0; i < 4; i++) {
1785 val64 |= (((u64)0xFF00 |
1786 nic->mac_control.mc_pause_threshold_q4q7)
1787 << (i * 2 * 8));
1788 }
1789 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1790
1791 /*
1792 * TxDMA will stop Read request if the number of read split has
1793 * exceeded the limit pointed by shared_splits
1794 */
1795 val64 = readq(&bar0->pic_control);
1796 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1797 writeq(val64, &bar0->pic_control);
1798
1799 if (nic->config.bus_speed == 266) {
1800 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1801 writeq(0x0, &bar0->read_retry_delay);
1802 writeq(0x0, &bar0->write_retry_delay);
1803 }
1804
1805 /*
1806 * Programming the Herc to split every write transaction
1807 * that does not start on an ADB to reduce disconnects.
1808 */
1809 if (nic->device_type == XFRAME_II_DEVICE) {
1810 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1811 MISC_LINK_STABILITY_PRD(3);
1812 writeq(val64, &bar0->misc_control);
1813 val64 = readq(&bar0->pic_control2);
1814 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1815 writeq(val64, &bar0->pic_control2);
1816 }
1817 if (strstr(nic->product_name, "CX4")) {
1818 val64 = TMAC_AVG_IPG(0x17);
1819 writeq(val64, &bar0->tmac_avg_ipg);
1820 }
1821
1822 return SUCCESS;
1823 }
1824 #define LINK_UP_DOWN_INTERRUPT 1
1825 #define MAC_RMAC_ERR_TIMER 2
1826
1827 static int s2io_link_fault_indication(struct s2io_nic *nic)
1828 {
1829 if (nic->device_type == XFRAME_II_DEVICE)
1830 return LINK_UP_DOWN_INTERRUPT;
1831 else
1832 return MAC_RMAC_ERR_TIMER;
1833 }
1834
1835 /**
1836 * do_s2io_write_bits - update alarm bits in alarm register
1837 * @value: alarm bits
1838 * @flag: interrupt status
1839 * @addr: address value
1840 * Description: update alarm bits in alarm register
1841 * Return Value:
1842 * NONE.
1843 */
1844 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1845 {
1846 u64 temp64;
1847
1848 temp64 = readq(addr);
1849
1850 if (flag == ENABLE_INTRS)
1851 temp64 &= ~((u64)value);
1852 else
1853 temp64 |= ((u64)value);
1854 writeq(temp64, addr);
1855 }
1856
1857 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1858 {
1859 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1860 register u64 gen_int_mask = 0;
1861 u64 interruptible;
1862
1863 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1864 if (mask & TX_DMA_INTR) {
1865 gen_int_mask |= TXDMA_INT_M;
1866
1867 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1868 TXDMA_PCC_INT | TXDMA_TTI_INT |
1869 TXDMA_LSO_INT | TXDMA_TPA_INT |
1870 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1871
1872 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1873 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1874 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1875 &bar0->pfc_err_mask);
1876
1877 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1878 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1879 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1880
1881 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1882 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1883 PCC_N_SERR | PCC_6_COF_OV_ERR |
1884 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1885 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1886 PCC_TXB_ECC_SG_ERR,
1887 flag, &bar0->pcc_err_mask);
1888
1889 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1890 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1891
1892 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1893 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1894 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1895 flag, &bar0->lso_err_mask);
1896
1897 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1898 flag, &bar0->tpa_err_mask);
1899
1900 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1901 }
1902
1903 if (mask & TX_MAC_INTR) {
1904 gen_int_mask |= TXMAC_INT_M;
1905 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1906 &bar0->mac_int_mask);
1907 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1908 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1909 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1910 flag, &bar0->mac_tmac_err_mask);
1911 }
1912
1913 if (mask & TX_XGXS_INTR) {
1914 gen_int_mask |= TXXGXS_INT_M;
1915 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1916 &bar0->xgxs_int_mask);
1917 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1918 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1919 flag, &bar0->xgxs_txgxs_err_mask);
1920 }
1921
1922 if (mask & RX_DMA_INTR) {
1923 gen_int_mask |= RXDMA_INT_M;
1924 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1925 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1926 flag, &bar0->rxdma_int_mask);
1927 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1928 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1929 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1930 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1931 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1932 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1933 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1934 &bar0->prc_pcix_err_mask);
1935 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1936 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1937 &bar0->rpa_err_mask);
1938 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1939 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1940 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1941 RDA_FRM_ECC_SG_ERR |
1942 RDA_MISC_ERR|RDA_PCIX_ERR,
1943 flag, &bar0->rda_err_mask);
1944 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1945 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1946 flag, &bar0->rti_err_mask);
1947 }
1948
1949 if (mask & RX_MAC_INTR) {
1950 gen_int_mask |= RXMAC_INT_M;
1951 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1952 &bar0->mac_int_mask);
1953 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1954 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1955 RMAC_DOUBLE_ECC_ERR);
1956 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1957 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1958 do_s2io_write_bits(interruptible,
1959 flag, &bar0->mac_rmac_err_mask);
1960 }
1961
1962 if (mask & RX_XGXS_INTR) {
1963 gen_int_mask |= RXXGXS_INT_M;
1964 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1965 &bar0->xgxs_int_mask);
1966 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1967 &bar0->xgxs_rxgxs_err_mask);
1968 }
1969
1970 if (mask & MC_INTR) {
1971 gen_int_mask |= MC_INT_M;
1972 do_s2io_write_bits(MC_INT_MASK_MC_INT,
1973 flag, &bar0->mc_int_mask);
1974 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1975 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1976 &bar0->mc_err_mask);
1977 }
1978 nic->general_int_mask = gen_int_mask;
1979
1980 /* Remove this line when alarm interrupts are enabled */
1981 nic->general_int_mask = 0;
1982 }
1983
1984 /**
1985 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1986 * @nic: device private variable,
1987 * @mask: A mask indicating which Intr block must be modified and,
1988 * @flag: A flag indicating whether to enable or disable the Intrs.
1989 * Description: This function will either disable or enable the interrupts
1990 * depending on the flag argument. The mask argument can be used to
1991 * enable/disable any Intr block.
1992 * Return Value: NONE.
1993 */
1994
1995 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1996 {
1997 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1998 register u64 temp64 = 0, intr_mask = 0;
1999
2000 intr_mask = nic->general_int_mask;
2001
2002 /* Top level interrupt classification */
2003 /* PIC Interrupts */
2004 if (mask & TX_PIC_INTR) {
2005 /* Enable PIC Intrs in the general intr mask register */
2006 intr_mask |= TXPIC_INT_M;
2007 if (flag == ENABLE_INTRS) {
2008 /*
2009 * If Hercules adapter enable GPIO otherwise
2010 * disable all PCIX, Flash, MDIO, IIC and GPIO
2011 * interrupts for now.
2012 * TODO
2013 */
2014 if (s2io_link_fault_indication(nic) ==
2015 LINK_UP_DOWN_INTERRUPT) {
2016 do_s2io_write_bits(PIC_INT_GPIO, flag,
2017 &bar0->pic_int_mask);
2018 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2019 &bar0->gpio_int_mask);
2020 } else
2021 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2022 } else if (flag == DISABLE_INTRS) {
2023 /*
2024 * Disable PIC Intrs in the general
2025 * intr mask register
2026 */
2027 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2028 }
2029 }
2030
2031 /* Tx traffic interrupts */
2032 if (mask & TX_TRAFFIC_INTR) {
2033 intr_mask |= TXTRAFFIC_INT_M;
2034 if (flag == ENABLE_INTRS) {
2035 /*
2036 * Enable all the Tx side interrupts
2037 * writing 0 Enables all 64 TX interrupt levels
2038 */
2039 writeq(0x0, &bar0->tx_traffic_mask);
2040 } else if (flag == DISABLE_INTRS) {
2041 /*
2042 * Disable Tx Traffic Intrs in the general intr mask
2043 * register.
2044 */
2045 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2046 }
2047 }
2048
2049 /* Rx traffic interrupts */
2050 if (mask & RX_TRAFFIC_INTR) {
2051 intr_mask |= RXTRAFFIC_INT_M;
2052 if (flag == ENABLE_INTRS) {
2053 /* writing 0 Enables all 8 RX interrupt levels */
2054 writeq(0x0, &bar0->rx_traffic_mask);
2055 } else if (flag == DISABLE_INTRS) {
2056 /*
2057 * Disable Rx Traffic Intrs in the general intr mask
2058 * register.
2059 */
2060 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2061 }
2062 }
2063
2064 temp64 = readq(&bar0->general_int_mask);
2065 if (flag == ENABLE_INTRS)
2066 temp64 &= ~((u64)intr_mask);
2067 else
2068 temp64 = DISABLE_ALL_INTRS;
2069 writeq(temp64, &bar0->general_int_mask);
2070
2071 nic->general_int_mask = readq(&bar0->general_int_mask);
2072 }
2073
2074 /**
2075 * verify_pcc_quiescent- Checks for PCC quiescent state
2076 * Return: 1 If PCC is quiescence
2077 * 0 If PCC is not quiescence
2078 */
2079 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2080 {
2081 int ret = 0, herc;
2082 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2083 u64 val64 = readq(&bar0->adapter_status);
2084
2085 herc = (sp->device_type == XFRAME_II_DEVICE);
2086
2087 if (flag == false) {
2088 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2089 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2090 ret = 1;
2091 } else {
2092 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2093 ret = 1;
2094 }
2095 } else {
2096 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2097 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2098 ADAPTER_STATUS_RMAC_PCC_IDLE))
2099 ret = 1;
2100 } else {
2101 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2102 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2103 ret = 1;
2104 }
2105 }
2106
2107 return ret;
2108 }
2109 /**
2110 * verify_xena_quiescence - Checks whether the H/W is ready
2111 * Description: Returns whether the H/W is ready to go or not. Depending
2112 * on whether adapter enable bit was written or not the comparison
2113 * differs and the calling function passes the input argument flag to
2114 * indicate this.
2115 * Return: 1 If xena is quiescence
2116 * 0 If Xena is not quiescence
2117 */
2118
2119 static int verify_xena_quiescence(struct s2io_nic *sp)
2120 {
2121 int mode;
2122 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2123 u64 val64 = readq(&bar0->adapter_status);
2124 mode = s2io_verify_pci_mode(sp);
2125
2126 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2127 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2128 return 0;
2129 }
2130 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2131 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2132 return 0;
2133 }
2134 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2135 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2136 return 0;
2137 }
2138 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2139 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2140 return 0;
2141 }
2142 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2143 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2144 return 0;
2145 }
2146 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2147 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2148 return 0;
2149 }
2150 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2151 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2152 return 0;
2153 }
2154 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2155 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2156 return 0;
2157 }
2158
2159 /*
2160 * In PCI 33 mode, the P_PLL is not used, and therefore,
2161 * the the P_PLL_LOCK bit in the adapter_status register will
2162 * not be asserted.
2163 */
2164 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2165 sp->device_type == XFRAME_II_DEVICE &&
2166 mode != PCI_MODE_PCI_33) {
2167 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2168 return 0;
2169 }
2170 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2171 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2172 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2173 return 0;
2174 }
2175 return 1;
2176 }
2177
2178 /**
2179 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2180 * @sp: Pointer to device specifc structure
2181 * Description :
2182 * New procedure to clear mac address reading problems on Alpha platforms
2183 *
2184 */
2185
2186 static void fix_mac_address(struct s2io_nic *sp)
2187 {
2188 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2189 int i = 0;
2190
2191 while (fix_mac[i] != END_SIGN) {
2192 writeq(fix_mac[i++], &bar0->gpio_control);
2193 udelay(10);
2194 (void) readq(&bar0->gpio_control);
2195 }
2196 }
2197
2198 /**
2199 * start_nic - Turns the device on
2200 * @nic : device private variable.
2201 * Description:
2202 * This function actually turns the device on. Before this function is
2203 * called,all Registers are configured from their reset states
2204 * and shared memory is allocated but the NIC is still quiescent. On
2205 * calling this function, the device interrupts are cleared and the NIC is
2206 * literally switched on by writing into the adapter control register.
2207 * Return Value:
2208 * SUCCESS on success and -1 on failure.
2209 */
2210
2211 static int start_nic(struct s2io_nic *nic)
2212 {
2213 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2214 struct net_device *dev = nic->dev;
2215 register u64 val64 = 0;
2216 u16 subid, i;
2217 struct config_param *config = &nic->config;
2218 struct mac_info *mac_control = &nic->mac_control;
2219
2220 /* PRC Initialization and configuration */
2221 for (i = 0; i < config->rx_ring_num; i++) {
2222 struct ring_info *ring = &mac_control->rings[i];
2223
2224 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2225 &bar0->prc_rxd0_n[i]);
2226
2227 val64 = readq(&bar0->prc_ctrl_n[i]);
2228 if (nic->rxd_mode == RXD_MODE_1)
2229 val64 |= PRC_CTRL_RC_ENABLED;
2230 else
2231 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2232 if (nic->device_type == XFRAME_II_DEVICE)
2233 val64 |= PRC_CTRL_GROUP_READS;
2234 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2235 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2236 writeq(val64, &bar0->prc_ctrl_n[i]);
2237 }
2238
2239 if (nic->rxd_mode == RXD_MODE_3B) {
2240 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2241 val64 = readq(&bar0->rx_pa_cfg);
2242 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2243 writeq(val64, &bar0->rx_pa_cfg);
2244 }
2245
2246 if (vlan_tag_strip == 0) {
2247 val64 = readq(&bar0->rx_pa_cfg);
2248 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2249 writeq(val64, &bar0->rx_pa_cfg);
2250 nic->vlan_strip_flag = 0;
2251 }
2252
2253 /*
2254 * Enabling MC-RLDRAM. After enabling the device, we timeout
2255 * for around 100ms, which is approximately the time required
2256 * for the device to be ready for operation.
2257 */
2258 val64 = readq(&bar0->mc_rldram_mrs);
2259 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2260 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2261 val64 = readq(&bar0->mc_rldram_mrs);
2262
2263 msleep(100); /* Delay by around 100 ms. */
2264
2265 /* Enabling ECC Protection. */
2266 val64 = readq(&bar0->adapter_control);
2267 val64 &= ~ADAPTER_ECC_EN;
2268 writeq(val64, &bar0->adapter_control);
2269
2270 /*
2271 * Verify if the device is ready to be enabled, if so enable
2272 * it.
2273 */
2274 val64 = readq(&bar0->adapter_status);
2275 if (!verify_xena_quiescence(nic)) {
2276 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2277 "Adapter status reads: 0x%llx\n",
2278 dev->name, (unsigned long long)val64);
2279 return FAILURE;
2280 }
2281
2282 /*
2283 * With some switches, link might be already up at this point.
2284 * Because of this weird behavior, when we enable laser,
2285 * we may not get link. We need to handle this. We cannot
2286 * figure out which switch is misbehaving. So we are forced to
2287 * make a global change.
2288 */
2289
2290 /* Enabling Laser. */
2291 val64 = readq(&bar0->adapter_control);
2292 val64 |= ADAPTER_EOI_TX_ON;
2293 writeq(val64, &bar0->adapter_control);
2294
2295 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2296 /*
2297 * Dont see link state interrupts initially on some switches,
2298 * so directly scheduling the link state task here.
2299 */
2300 schedule_work(&nic->set_link_task);
2301 }
2302 /* SXE-002: Initialize link and activity LED */
2303 subid = nic->pdev->subsystem_device;
2304 if (((subid & 0xFF) >= 0x07) &&
2305 (nic->device_type == XFRAME_I_DEVICE)) {
2306 val64 = readq(&bar0->gpio_control);
2307 val64 |= 0x0000800000000000ULL;
2308 writeq(val64, &bar0->gpio_control);
2309 val64 = 0x0411040400000000ULL;
2310 writeq(val64, (void __iomem *)bar0 + 0x2700);
2311 }
2312
2313 return SUCCESS;
2314 }
2315 /**
2316 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2317 */
2318 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2319 struct TxD *txdlp, int get_off)
2320 {
2321 struct s2io_nic *nic = fifo_data->nic;
2322 struct sk_buff *skb;
2323 struct TxD *txds;
2324 u16 j, frg_cnt;
2325
2326 txds = txdlp;
2327 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2328 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2329 sizeof(u64), PCI_DMA_TODEVICE);
2330 txds++;
2331 }
2332
2333 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2334 if (!skb) {
2335 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2336 return NULL;
2337 }
2338 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2339 skb_headlen(skb), PCI_DMA_TODEVICE);
2340 frg_cnt = skb_shinfo(skb)->nr_frags;
2341 if (frg_cnt) {
2342 txds++;
2343 for (j = 0; j < frg_cnt; j++, txds++) {
2344 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2345 if (!txds->Buffer_Pointer)
2346 break;
2347 pci_unmap_page(nic->pdev,
2348 (dma_addr_t)txds->Buffer_Pointer,
2349 skb_frag_size(frag), PCI_DMA_TODEVICE);
2350 }
2351 }
2352 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2353 return skb;
2354 }
2355
2356 /**
2357 * free_tx_buffers - Free all queued Tx buffers
2358 * @nic : device private variable.
2359 * Description:
2360 * Free all queued Tx buffers.
2361 * Return Value: void
2362 */
2363
2364 static void free_tx_buffers(struct s2io_nic *nic)
2365 {
2366 struct net_device *dev = nic->dev;
2367 struct sk_buff *skb;
2368 struct TxD *txdp;
2369 int i, j;
2370 int cnt = 0;
2371 struct config_param *config = &nic->config;
2372 struct mac_info *mac_control = &nic->mac_control;
2373 struct stat_block *stats = mac_control->stats_info;
2374 struct swStat *swstats = &stats->sw_stat;
2375
2376 for (i = 0; i < config->tx_fifo_num; i++) {
2377 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2378 struct fifo_info *fifo = &mac_control->fifos[i];
2379 unsigned long flags;
2380
2381 spin_lock_irqsave(&fifo->tx_lock, flags);
2382 for (j = 0; j < tx_cfg->fifo_len; j++) {
2383 txdp = fifo->list_info[j].list_virt_addr;
2384 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2385 if (skb) {
2386 swstats->mem_freed += skb->truesize;
2387 dev_kfree_skb(skb);
2388 cnt++;
2389 }
2390 }
2391 DBG_PRINT(INTR_DBG,
2392 "%s: forcibly freeing %d skbs on FIFO%d\n",
2393 dev->name, cnt, i);
2394 fifo->tx_curr_get_info.offset = 0;
2395 fifo->tx_curr_put_info.offset = 0;
2396 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2397 }
2398 }
2399
2400 /**
2401 * stop_nic - To stop the nic
2402 * @nic ; device private variable.
2403 * Description:
2404 * This function does exactly the opposite of what the start_nic()
2405 * function does. This function is called to stop the device.
2406 * Return Value:
2407 * void.
2408 */
2409
2410 static void stop_nic(struct s2io_nic *nic)
2411 {
2412 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2413 register u64 val64 = 0;
2414 u16 interruptible;
2415
2416 /* Disable all interrupts */
2417 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2418 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2419 interruptible |= TX_PIC_INTR;
2420 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2421
2422 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2423 val64 = readq(&bar0->adapter_control);
2424 val64 &= ~(ADAPTER_CNTL_EN);
2425 writeq(val64, &bar0->adapter_control);
2426 }
2427
2428 /**
2429 * fill_rx_buffers - Allocates the Rx side skbs
2430 * @ring_info: per ring structure
2431 * @from_card_up: If this is true, we will map the buffer to get
2432 * the dma address for buf0 and buf1 to give it to the card.
2433 * Else we will sync the already mapped buffer to give it to the card.
2434 * Description:
2435 * The function allocates Rx side skbs and puts the physical
2436 * address of these buffers into the RxD buffer pointers, so that the NIC
2437 * can DMA the received frame into these locations.
2438 * The NIC supports 3 receive modes, viz
2439 * 1. single buffer,
2440 * 2. three buffer and
2441 * 3. Five buffer modes.
2442 * Each mode defines how many fragments the received frame will be split
2443 * up into by the NIC. The frame is split into L3 header, L4 Header,
2444 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2445 * is split into 3 fragments. As of now only single buffer mode is
2446 * supported.
2447 * Return Value:
2448 * SUCCESS on success or an appropriate -ve value on failure.
2449 */
2450 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2451 int from_card_up)
2452 {
2453 struct sk_buff *skb;
2454 struct RxD_t *rxdp;
2455 int off, size, block_no, block_no1;
2456 u32 alloc_tab = 0;
2457 u32 alloc_cnt;
2458 u64 tmp;
2459 struct buffAdd *ba;
2460 struct RxD_t *first_rxdp = NULL;
2461 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2462 int rxd_index = 0;
2463 struct RxD1 *rxdp1;
2464 struct RxD3 *rxdp3;
2465 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2466
2467 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2468
2469 block_no1 = ring->rx_curr_get_info.block_index;
2470 while (alloc_tab < alloc_cnt) {
2471 block_no = ring->rx_curr_put_info.block_index;
2472
2473 off = ring->rx_curr_put_info.offset;
2474
2475 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2476
2477 rxd_index = off + 1;
2478 if (block_no)
2479 rxd_index += (block_no * ring->rxd_count);
2480
2481 if ((block_no == block_no1) &&
2482 (off == ring->rx_curr_get_info.offset) &&
2483 (rxdp->Host_Control)) {
2484 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2485 ring->dev->name);
2486 goto end;
2487 }
2488 if (off && (off == ring->rxd_count)) {
2489 ring->rx_curr_put_info.block_index++;
2490 if (ring->rx_curr_put_info.block_index ==
2491 ring->block_count)
2492 ring->rx_curr_put_info.block_index = 0;
2493 block_no = ring->rx_curr_put_info.block_index;
2494 off = 0;
2495 ring->rx_curr_put_info.offset = off;
2496 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2497 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2498 ring->dev->name, rxdp);
2499
2500 }
2501
2502 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2503 ((ring->rxd_mode == RXD_MODE_3B) &&
2504 (rxdp->Control_2 & s2BIT(0)))) {
2505 ring->rx_curr_put_info.offset = off;
2506 goto end;
2507 }
2508 /* calculate size of skb based on ring mode */
2509 size = ring->mtu +
2510 HEADER_ETHERNET_II_802_3_SIZE +
2511 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2512 if (ring->rxd_mode == RXD_MODE_1)
2513 size += NET_IP_ALIGN;
2514 else
2515 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2516
2517 /* allocate skb */
2518 skb = netdev_alloc_skb(nic->dev, size);
2519 if (!skb) {
2520 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2521 ring->dev->name);
2522 if (first_rxdp) {
2523 dma_wmb();
2524 first_rxdp->Control_1 |= RXD_OWN_XENA;
2525 }
2526 swstats->mem_alloc_fail_cnt++;
2527
2528 return -ENOMEM ;
2529 }
2530 swstats->mem_allocated += skb->truesize;
2531
2532 if (ring->rxd_mode == RXD_MODE_1) {
2533 /* 1 buffer mode - normal operation mode */
2534 rxdp1 = (struct RxD1 *)rxdp;
2535 memset(rxdp, 0, sizeof(struct RxD1));
2536 skb_reserve(skb, NET_IP_ALIGN);
2537 rxdp1->Buffer0_ptr =
2538 pci_map_single(ring->pdev, skb->data,
2539 size - NET_IP_ALIGN,
2540 PCI_DMA_FROMDEVICE);
2541 if (pci_dma_mapping_error(nic->pdev,
2542 rxdp1->Buffer0_ptr))
2543 goto pci_map_failed;
2544
2545 rxdp->Control_2 =
2546 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2547 rxdp->Host_Control = (unsigned long)skb;
2548 } else if (ring->rxd_mode == RXD_MODE_3B) {
2549 /*
2550 * 2 buffer mode -
2551 * 2 buffer mode provides 128
2552 * byte aligned receive buffers.
2553 */
2554
2555 rxdp3 = (struct RxD3 *)rxdp;
2556 /* save buffer pointers to avoid frequent dma mapping */
2557 Buffer0_ptr = rxdp3->Buffer0_ptr;
2558 Buffer1_ptr = rxdp3->Buffer1_ptr;
2559 memset(rxdp, 0, sizeof(struct RxD3));
2560 /* restore the buffer pointers for dma sync*/
2561 rxdp3->Buffer0_ptr = Buffer0_ptr;
2562 rxdp3->Buffer1_ptr = Buffer1_ptr;
2563
2564 ba = &ring->ba[block_no][off];
2565 skb_reserve(skb, BUF0_LEN);
2566 tmp = (u64)(unsigned long)skb->data;
2567 tmp += ALIGN_SIZE;
2568 tmp &= ~ALIGN_SIZE;
2569 skb->data = (void *) (unsigned long)tmp;
2570 skb_reset_tail_pointer(skb);
2571
2572 if (from_card_up) {
2573 rxdp3->Buffer0_ptr =
2574 pci_map_single(ring->pdev, ba->ba_0,
2575 BUF0_LEN,
2576 PCI_DMA_FROMDEVICE);
2577 if (pci_dma_mapping_error(nic->pdev,
2578 rxdp3->Buffer0_ptr))
2579 goto pci_map_failed;
2580 } else
2581 pci_dma_sync_single_for_device(ring->pdev,
2582 (dma_addr_t)rxdp3->Buffer0_ptr,
2583 BUF0_LEN,
2584 PCI_DMA_FROMDEVICE);
2585
2586 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2587 if (ring->rxd_mode == RXD_MODE_3B) {
2588 /* Two buffer mode */
2589
2590 /*
2591 * Buffer2 will have L3/L4 header plus
2592 * L4 payload
2593 */
2594 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2595 skb->data,
2596 ring->mtu + 4,
2597 PCI_DMA_FROMDEVICE);
2598
2599 if (pci_dma_mapping_error(nic->pdev,
2600 rxdp3->Buffer2_ptr))
2601 goto pci_map_failed;
2602
2603 if (from_card_up) {
2604 rxdp3->Buffer1_ptr =
2605 pci_map_single(ring->pdev,
2606 ba->ba_1,
2607 BUF1_LEN,
2608 PCI_DMA_FROMDEVICE);
2609
2610 if (pci_dma_mapping_error(nic->pdev,
2611 rxdp3->Buffer1_ptr)) {
2612 pci_unmap_single(ring->pdev,
2613 (dma_addr_t)(unsigned long)
2614 skb->data,
2615 ring->mtu + 4,
2616 PCI_DMA_FROMDEVICE);
2617 goto pci_map_failed;
2618 }
2619 }
2620 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2621 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2622 (ring->mtu + 4);
2623 }
2624 rxdp->Control_2 |= s2BIT(0);
2625 rxdp->Host_Control = (unsigned long) (skb);
2626 }
2627 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2628 rxdp->Control_1 |= RXD_OWN_XENA;
2629 off++;
2630 if (off == (ring->rxd_count + 1))
2631 off = 0;
2632 ring->rx_curr_put_info.offset = off;
2633
2634 rxdp->Control_2 |= SET_RXD_MARKER;
2635 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2636 if (first_rxdp) {
2637 dma_wmb();
2638 first_rxdp->Control_1 |= RXD_OWN_XENA;
2639 }
2640 first_rxdp = rxdp;
2641 }
2642 ring->rx_bufs_left += 1;
2643 alloc_tab++;
2644 }
2645
2646 end:
2647 /* Transfer ownership of first descriptor to adapter just before
2648 * exiting. Before that, use memory barrier so that ownership
2649 * and other fields are seen by adapter correctly.
2650 */
2651 if (first_rxdp) {
2652 dma_wmb();
2653 first_rxdp->Control_1 |= RXD_OWN_XENA;
2654 }
2655
2656 return SUCCESS;
2657
2658 pci_map_failed:
2659 swstats->pci_map_fail_cnt++;
2660 swstats->mem_freed += skb->truesize;
2661 dev_kfree_skb_irq(skb);
2662 return -ENOMEM;
2663 }
2664
2665 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2666 {
2667 struct net_device *dev = sp->dev;
2668 int j;
2669 struct sk_buff *skb;
2670 struct RxD_t *rxdp;
2671 struct RxD1 *rxdp1;
2672 struct RxD3 *rxdp3;
2673 struct mac_info *mac_control = &sp->mac_control;
2674 struct stat_block *stats = mac_control->stats_info;
2675 struct swStat *swstats = &stats->sw_stat;
2676
2677 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2678 rxdp = mac_control->rings[ring_no].
2679 rx_blocks[blk].rxds[j].virt_addr;
2680 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2681 if (!skb)
2682 continue;
2683 if (sp->rxd_mode == RXD_MODE_1) {
2684 rxdp1 = (struct RxD1 *)rxdp;
2685 pci_unmap_single(sp->pdev,
2686 (dma_addr_t)rxdp1->Buffer0_ptr,
2687 dev->mtu +
2688 HEADER_ETHERNET_II_802_3_SIZE +
2689 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2690 PCI_DMA_FROMDEVICE);
2691 memset(rxdp, 0, sizeof(struct RxD1));
2692 } else if (sp->rxd_mode == RXD_MODE_3B) {
2693 rxdp3 = (struct RxD3 *)rxdp;
2694 pci_unmap_single(sp->pdev,
2695 (dma_addr_t)rxdp3->Buffer0_ptr,
2696 BUF0_LEN,
2697 PCI_DMA_FROMDEVICE);
2698 pci_unmap_single(sp->pdev,
2699 (dma_addr_t)rxdp3->Buffer1_ptr,
2700 BUF1_LEN,
2701 PCI_DMA_FROMDEVICE);
2702 pci_unmap_single(sp->pdev,
2703 (dma_addr_t)rxdp3->Buffer2_ptr,
2704 dev->mtu + 4,
2705 PCI_DMA_FROMDEVICE);
2706 memset(rxdp, 0, sizeof(struct RxD3));
2707 }
2708 swstats->mem_freed += skb->truesize;
2709 dev_kfree_skb(skb);
2710 mac_control->rings[ring_no].rx_bufs_left -= 1;
2711 }
2712 }
2713
2714 /**
2715 * free_rx_buffers - Frees all Rx buffers
2716 * @sp: device private variable.
2717 * Description:
2718 * This function will free all Rx buffers allocated by host.
2719 * Return Value:
2720 * NONE.
2721 */
2722
2723 static void free_rx_buffers(struct s2io_nic *sp)
2724 {
2725 struct net_device *dev = sp->dev;
2726 int i, blk = 0, buf_cnt = 0;
2727 struct config_param *config = &sp->config;
2728 struct mac_info *mac_control = &sp->mac_control;
2729
2730 for (i = 0; i < config->rx_ring_num; i++) {
2731 struct ring_info *ring = &mac_control->rings[i];
2732
2733 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2734 free_rxd_blk(sp, i, blk);
2735
2736 ring->rx_curr_put_info.block_index = 0;
2737 ring->rx_curr_get_info.block_index = 0;
2738 ring->rx_curr_put_info.offset = 0;
2739 ring->rx_curr_get_info.offset = 0;
2740 ring->rx_bufs_left = 0;
2741 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2742 dev->name, buf_cnt, i);
2743 }
2744 }
2745
2746 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2747 {
2748 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2749 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2750 ring->dev->name);
2751 }
2752 return 0;
2753 }
2754
2755 /**
2756 * s2io_poll - Rx interrupt handler for NAPI support
2757 * @napi : pointer to the napi structure.
2758 * @budget : The number of packets that were budgeted to be processed
2759 * during one pass through the 'Poll" function.
2760 * Description:
2761 * Comes into picture only if NAPI support has been incorporated. It does
2762 * the same thing that rx_intr_handler does, but not in a interrupt context
2763 * also It will process only a given number of packets.
2764 * Return value:
2765 * 0 on success and 1 if there are No Rx packets to be processed.
2766 */
2767
2768 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2769 {
2770 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2771 struct net_device *dev = ring->dev;
2772 int pkts_processed = 0;
2773 u8 __iomem *addr = NULL;
2774 u8 val8 = 0;
2775 struct s2io_nic *nic = netdev_priv(dev);
2776 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2777 int budget_org = budget;
2778
2779 if (unlikely(!is_s2io_card_up(nic)))
2780 return 0;
2781
2782 pkts_processed = rx_intr_handler(ring, budget);
2783 s2io_chk_rx_buffers(nic, ring);
2784
2785 if (pkts_processed < budget_org) {
2786 napi_complete(napi);
2787 /*Re Enable MSI-Rx Vector*/
2788 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2789 addr += 7 - ring->ring_no;
2790 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2791 writeb(val8, addr);
2792 val8 = readb(addr);
2793 }
2794 return pkts_processed;
2795 }
2796
2797 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2798 {
2799 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2800 int pkts_processed = 0;
2801 int ring_pkts_processed, i;
2802 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2803 int budget_org = budget;
2804 struct config_param *config = &nic->config;
2805 struct mac_info *mac_control = &nic->mac_control;
2806
2807 if (unlikely(!is_s2io_card_up(nic)))
2808 return 0;
2809
2810 for (i = 0; i < config->rx_ring_num; i++) {
2811 struct ring_info *ring = &mac_control->rings[i];
2812 ring_pkts_processed = rx_intr_handler(ring, budget);
2813 s2io_chk_rx_buffers(nic, ring);
2814 pkts_processed += ring_pkts_processed;
2815 budget -= ring_pkts_processed;
2816 if (budget <= 0)
2817 break;
2818 }
2819 if (pkts_processed < budget_org) {
2820 napi_complete(napi);
2821 /* Re enable the Rx interrupts for the ring */
2822 writeq(0, &bar0->rx_traffic_mask);
2823 readl(&bar0->rx_traffic_mask);
2824 }
2825 return pkts_processed;
2826 }
2827
2828 #ifdef CONFIG_NET_POLL_CONTROLLER
2829 /**
2830 * s2io_netpoll - netpoll event handler entry point
2831 * @dev : pointer to the device structure.
2832 * Description:
2833 * This function will be called by upper layer to check for events on the
2834 * interface in situations where interrupts are disabled. It is used for
2835 * specific in-kernel networking tasks, such as remote consoles and kernel
2836 * debugging over the network (example netdump in RedHat).
2837 */
2838 static void s2io_netpoll(struct net_device *dev)
2839 {
2840 struct s2io_nic *nic = netdev_priv(dev);
2841 const int irq = nic->pdev->irq;
2842 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2843 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2844 int i;
2845 struct config_param *config = &nic->config;
2846 struct mac_info *mac_control = &nic->mac_control;
2847
2848 if (pci_channel_offline(nic->pdev))
2849 return;
2850
2851 disable_irq(irq);
2852
2853 writeq(val64, &bar0->rx_traffic_int);
2854 writeq(val64, &bar0->tx_traffic_int);
2855
2856 /* we need to free up the transmitted skbufs or else netpoll will
2857 * run out of skbs and will fail and eventually netpoll application such
2858 * as netdump will fail.
2859 */
2860 for (i = 0; i < config->tx_fifo_num; i++)
2861 tx_intr_handler(&mac_control->fifos[i]);
2862
2863 /* check for received packet and indicate up to network */
2864 for (i = 0; i < config->rx_ring_num; i++) {
2865 struct ring_info *ring = &mac_control->rings[i];
2866
2867 rx_intr_handler(ring, 0);
2868 }
2869
2870 for (i = 0; i < config->rx_ring_num; i++) {
2871 struct ring_info *ring = &mac_control->rings[i];
2872
2873 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2874 DBG_PRINT(INFO_DBG,
2875 "%s: Out of memory in Rx Netpoll!!\n",
2876 dev->name);
2877 break;
2878 }
2879 }
2880 enable_irq(irq);
2881 }
2882 #endif
2883
2884 /**
2885 * rx_intr_handler - Rx interrupt handler
2886 * @ring_info: per ring structure.
2887 * @budget: budget for napi processing.
2888 * Description:
2889 * If the interrupt is because of a received frame or if the
2890 * receive ring contains fresh as yet un-processed frames,this function is
2891 * called. It picks out the RxD at which place the last Rx processing had
2892 * stopped and sends the skb to the OSM's Rx handler and then increments
2893 * the offset.
2894 * Return Value:
2895 * No. of napi packets processed.
2896 */
2897 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2898 {
2899 int get_block, put_block;
2900 struct rx_curr_get_info get_info, put_info;
2901 struct RxD_t *rxdp;
2902 struct sk_buff *skb;
2903 int pkt_cnt = 0, napi_pkts = 0;
2904 int i;
2905 struct RxD1 *rxdp1;
2906 struct RxD3 *rxdp3;
2907
2908 if (budget <= 0)
2909 return napi_pkts;
2910
2911 get_info = ring_data->rx_curr_get_info;
2912 get_block = get_info.block_index;
2913 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2914 put_block = put_info.block_index;
2915 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2916
2917 while (RXD_IS_UP2DT(rxdp)) {
2918 /*
2919 * If your are next to put index then it's
2920 * FIFO full condition
2921 */
2922 if ((get_block == put_block) &&
2923 (get_info.offset + 1) == put_info.offset) {
2924 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2925 ring_data->dev->name);
2926 break;
2927 }
2928 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2929 if (skb == NULL) {
2930 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2931 ring_data->dev->name);
2932 return 0;
2933 }
2934 if (ring_data->rxd_mode == RXD_MODE_1) {
2935 rxdp1 = (struct RxD1 *)rxdp;
2936 pci_unmap_single(ring_data->pdev, (dma_addr_t)
2937 rxdp1->Buffer0_ptr,
2938 ring_data->mtu +
2939 HEADER_ETHERNET_II_802_3_SIZE +
2940 HEADER_802_2_SIZE +
2941 HEADER_SNAP_SIZE,
2942 PCI_DMA_FROMDEVICE);
2943 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2944 rxdp3 = (struct RxD3 *)rxdp;
2945 pci_dma_sync_single_for_cpu(ring_data->pdev,
2946 (dma_addr_t)rxdp3->Buffer0_ptr,
2947 BUF0_LEN,
2948 PCI_DMA_FROMDEVICE);
2949 pci_unmap_single(ring_data->pdev,
2950 (dma_addr_t)rxdp3->Buffer2_ptr,
2951 ring_data->mtu + 4,
2952 PCI_DMA_FROMDEVICE);
2953 }
2954 prefetch(skb->data);
2955 rx_osm_handler(ring_data, rxdp);
2956 get_info.offset++;
2957 ring_data->rx_curr_get_info.offset = get_info.offset;
2958 rxdp = ring_data->rx_blocks[get_block].
2959 rxds[get_info.offset].virt_addr;
2960 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2961 get_info.offset = 0;
2962 ring_data->rx_curr_get_info.offset = get_info.offset;
2963 get_block++;
2964 if (get_block == ring_data->block_count)
2965 get_block = 0;
2966 ring_data->rx_curr_get_info.block_index = get_block;
2967 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2968 }
2969
2970 if (ring_data->nic->config.napi) {
2971 budget--;
2972 napi_pkts++;
2973 if (!budget)
2974 break;
2975 }
2976 pkt_cnt++;
2977 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2978 break;
2979 }
2980 if (ring_data->lro) {
2981 /* Clear all LRO sessions before exiting */
2982 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2983 struct lro *lro = &ring_data->lro0_n[i];
2984 if (lro->in_use) {
2985 update_L3L4_header(ring_data->nic, lro);
2986 queue_rx_frame(lro->parent, lro->vlan_tag);
2987 clear_lro_session(lro);
2988 }
2989 }
2990 }
2991 return napi_pkts;
2992 }
2993
2994 /**
2995 * tx_intr_handler - Transmit interrupt handler
2996 * @nic : device private variable
2997 * Description:
2998 * If an interrupt was raised to indicate DMA complete of the
2999 * Tx packet, this function is called. It identifies the last TxD
3000 * whose buffer was freed and frees all skbs whose data have already
3001 * DMA'ed into the NICs internal memory.
3002 * Return Value:
3003 * NONE
3004 */
3005
3006 static void tx_intr_handler(struct fifo_info *fifo_data)
3007 {
3008 struct s2io_nic *nic = fifo_data->nic;
3009 struct tx_curr_get_info get_info, put_info;
3010 struct sk_buff *skb = NULL;
3011 struct TxD *txdlp;
3012 int pkt_cnt = 0;
3013 unsigned long flags = 0;
3014 u8 err_mask;
3015 struct stat_block *stats = nic->mac_control.stats_info;
3016 struct swStat *swstats = &stats->sw_stat;
3017
3018 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3019 return;
3020
3021 get_info = fifo_data->tx_curr_get_info;
3022 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3023 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3024 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3025 (get_info.offset != put_info.offset) &&
3026 (txdlp->Host_Control)) {
3027 /* Check for TxD errors */
3028 if (txdlp->Control_1 & TXD_T_CODE) {
3029 unsigned long long err;
3030 err = txdlp->Control_1 & TXD_T_CODE;
3031 if (err & 0x1) {
3032 swstats->parity_err_cnt++;
3033 }
3034
3035 /* update t_code statistics */
3036 err_mask = err >> 48;
3037 switch (err_mask) {
3038 case 2:
3039 swstats->tx_buf_abort_cnt++;
3040 break;
3041
3042 case 3:
3043 swstats->tx_desc_abort_cnt++;
3044 break;
3045
3046 case 7:
3047 swstats->tx_parity_err_cnt++;
3048 break;
3049
3050 case 10:
3051 swstats->tx_link_loss_cnt++;
3052 break;
3053
3054 case 15:
3055 swstats->tx_list_proc_err_cnt++;
3056 break;
3057 }
3058 }
3059
3060 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3061 if (skb == NULL) {
3062 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3063 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3064 __func__);
3065 return;
3066 }
3067 pkt_cnt++;
3068
3069 /* Updating the statistics block */
3070 swstats->mem_freed += skb->truesize;
3071 dev_kfree_skb_irq(skb);
3072
3073 get_info.offset++;
3074 if (get_info.offset == get_info.fifo_len + 1)
3075 get_info.offset = 0;
3076 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3077 fifo_data->tx_curr_get_info.offset = get_info.offset;
3078 }
3079
3080 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3081
3082 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3083 }
3084
3085 /**
3086 * s2io_mdio_write - Function to write in to MDIO registers
3087 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3088 * @addr : address value
3089 * @value : data value
3090 * @dev : pointer to net_device structure
3091 * Description:
3092 * This function is used to write values to the MDIO registers
3093 * NONE
3094 */
3095 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3096 struct net_device *dev)
3097 {
3098 u64 val64;
3099 struct s2io_nic *sp = netdev_priv(dev);
3100 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3101
3102 /* address transaction */
3103 val64 = MDIO_MMD_INDX_ADDR(addr) |
3104 MDIO_MMD_DEV_ADDR(mmd_type) |
3105 MDIO_MMS_PRT_ADDR(0x0);
3106 writeq(val64, &bar0->mdio_control);
3107 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3108 writeq(val64, &bar0->mdio_control);
3109 udelay(100);
3110
3111 /* Data transaction */
3112 val64 = MDIO_MMD_INDX_ADDR(addr) |
3113 MDIO_MMD_DEV_ADDR(mmd_type) |
3114 MDIO_MMS_PRT_ADDR(0x0) |
3115 MDIO_MDIO_DATA(value) |
3116 MDIO_OP(MDIO_OP_WRITE_TRANS);
3117 writeq(val64, &bar0->mdio_control);
3118 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3119 writeq(val64, &bar0->mdio_control);
3120 udelay(100);
3121
3122 val64 = MDIO_MMD_INDX_ADDR(addr) |
3123 MDIO_MMD_DEV_ADDR(mmd_type) |
3124 MDIO_MMS_PRT_ADDR(0x0) |
3125 MDIO_OP(MDIO_OP_READ_TRANS);
3126 writeq(val64, &bar0->mdio_control);
3127 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3128 writeq(val64, &bar0->mdio_control);
3129 udelay(100);
3130 }
3131
3132 /**
3133 * s2io_mdio_read - Function to write in to MDIO registers
3134 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3135 * @addr : address value
3136 * @dev : pointer to net_device structure
3137 * Description:
3138 * This function is used to read values to the MDIO registers
3139 * NONE
3140 */
3141 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3142 {
3143 u64 val64 = 0x0;
3144 u64 rval64 = 0x0;
3145 struct s2io_nic *sp = netdev_priv(dev);
3146 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3147
3148 /* address transaction */
3149 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3150 | MDIO_MMD_DEV_ADDR(mmd_type)
3151 | MDIO_MMS_PRT_ADDR(0x0));
3152 writeq(val64, &bar0->mdio_control);
3153 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3154 writeq(val64, &bar0->mdio_control);
3155 udelay(100);
3156
3157 /* Data transaction */
3158 val64 = MDIO_MMD_INDX_ADDR(addr) |
3159 MDIO_MMD_DEV_ADDR(mmd_type) |
3160 MDIO_MMS_PRT_ADDR(0x0) |
3161 MDIO_OP(MDIO_OP_READ_TRANS);
3162 writeq(val64, &bar0->mdio_control);
3163 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3164 writeq(val64, &bar0->mdio_control);
3165 udelay(100);
3166
3167 /* Read the value from regs */
3168 rval64 = readq(&bar0->mdio_control);
3169 rval64 = rval64 & 0xFFFF0000;
3170 rval64 = rval64 >> 16;
3171 return rval64;
3172 }
3173
3174 /**
3175 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3176 * @counter : counter value to be updated
3177 * @flag : flag to indicate the status
3178 * @type : counter type
3179 * Description:
3180 * This function is to check the status of the xpak counters value
3181 * NONE
3182 */
3183
3184 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3185 u16 flag, u16 type)
3186 {
3187 u64 mask = 0x3;
3188 u64 val64;
3189 int i;
3190 for (i = 0; i < index; i++)
3191 mask = mask << 0x2;
3192
3193 if (flag > 0) {
3194 *counter = *counter + 1;
3195 val64 = *regs_stat & mask;
3196 val64 = val64 >> (index * 0x2);
3197 val64 = val64 + 1;
3198 if (val64 == 3) {
3199 switch (type) {
3200 case 1:
3201 DBG_PRINT(ERR_DBG,
3202 "Take Xframe NIC out of service.\n");
3203 DBG_PRINT(ERR_DBG,
3204 "Excessive temperatures may result in premature transceiver failure.\n");
3205 break;
3206 case 2:
3207 DBG_PRINT(ERR_DBG,
3208 "Take Xframe NIC out of service.\n");
3209 DBG_PRINT(ERR_DBG,
3210 "Excessive bias currents may indicate imminent laser diode failure.\n");
3211 break;
3212 case 3:
3213 DBG_PRINT(ERR_DBG,
3214 "Take Xframe NIC out of service.\n");
3215 DBG_PRINT(ERR_DBG,
3216 "Excessive laser output power may saturate far-end receiver.\n");
3217 break;
3218 default:
3219 DBG_PRINT(ERR_DBG,
3220 "Incorrect XPAK Alarm type\n");
3221 }
3222 val64 = 0x0;
3223 }
3224 val64 = val64 << (index * 0x2);
3225 *regs_stat = (*regs_stat & (~mask)) | (val64);
3226
3227 } else {
3228 *regs_stat = *regs_stat & (~mask);
3229 }
3230 }
3231
3232 /**
3233 * s2io_updt_xpak_counter - Function to update the xpak counters
3234 * @dev : pointer to net_device struct
3235 * Description:
3236 * This function is to upate the status of the xpak counters value
3237 * NONE
3238 */
3239 static void s2io_updt_xpak_counter(struct net_device *dev)
3240 {
3241 u16 flag = 0x0;
3242 u16 type = 0x0;
3243 u16 val16 = 0x0;
3244 u64 val64 = 0x0;
3245 u64 addr = 0x0;
3246
3247 struct s2io_nic *sp = netdev_priv(dev);
3248 struct stat_block *stats = sp->mac_control.stats_info;
3249 struct xpakStat *xstats = &stats->xpak_stat;
3250
3251 /* Check the communication with the MDIO slave */
3252 addr = MDIO_CTRL1;
3253 val64 = 0x0;
3254 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3255 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3256 DBG_PRINT(ERR_DBG,
3257 "ERR: MDIO slave access failed - Returned %llx\n",
3258 (unsigned long long)val64);
3259 return;
3260 }
3261
3262 /* Check for the expected value of control reg 1 */
3263 if (val64 != MDIO_CTRL1_SPEED10G) {
3264 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3265 "Returned: %llx- Expected: 0x%x\n",
3266 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3267 return;
3268 }
3269
3270 /* Loading the DOM register to MDIO register */
3271 addr = 0xA100;
3272 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3273 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3274
3275 /* Reading the Alarm flags */
3276 addr = 0xA070;
3277 val64 = 0x0;
3278 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3279
3280 flag = CHECKBIT(val64, 0x7);
3281 type = 1;
3282 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3283 &xstats->xpak_regs_stat,
3284 0x0, flag, type);
3285
3286 if (CHECKBIT(val64, 0x6))
3287 xstats->alarm_transceiver_temp_low++;
3288
3289 flag = CHECKBIT(val64, 0x3);
3290 type = 2;
3291 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3292 &xstats->xpak_regs_stat,
3293 0x2, flag, type);
3294
3295 if (CHECKBIT(val64, 0x2))
3296 xstats->alarm_laser_bias_current_low++;
3297
3298 flag = CHECKBIT(val64, 0x1);
3299 type = 3;
3300 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3301 &xstats->xpak_regs_stat,
3302 0x4, flag, type);
3303
3304 if (CHECKBIT(val64, 0x0))
3305 xstats->alarm_laser_output_power_low++;
3306
3307 /* Reading the Warning flags */
3308 addr = 0xA074;
3309 val64 = 0x0;
3310 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3311
3312 if (CHECKBIT(val64, 0x7))
3313 xstats->warn_transceiver_temp_high++;
3314
3315 if (CHECKBIT(val64, 0x6))
3316 xstats->warn_transceiver_temp_low++;
3317
3318 if (CHECKBIT(val64, 0x3))
3319 xstats->warn_laser_bias_current_high++;
3320
3321 if (CHECKBIT(val64, 0x2))
3322 xstats->warn_laser_bias_current_low++;
3323
3324 if (CHECKBIT(val64, 0x1))
3325 xstats->warn_laser_output_power_high++;
3326
3327 if (CHECKBIT(val64, 0x0))
3328 xstats->warn_laser_output_power_low++;
3329 }
3330
3331 /**
3332 * wait_for_cmd_complete - waits for a command to complete.
3333 * @sp : private member of the device structure, which is a pointer to the
3334 * s2io_nic structure.
3335 * Description: Function that waits for a command to Write into RMAC
3336 * ADDR DATA registers to be completed and returns either success or
3337 * error depending on whether the command was complete or not.
3338 * Return value:
3339 * SUCCESS on success and FAILURE on failure.
3340 */
3341
3342 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3343 int bit_state)
3344 {
3345 int ret = FAILURE, cnt = 0, delay = 1;
3346 u64 val64;
3347
3348 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3349 return FAILURE;
3350
3351 do {
3352 val64 = readq(addr);
3353 if (bit_state == S2IO_BIT_RESET) {
3354 if (!(val64 & busy_bit)) {
3355 ret = SUCCESS;
3356 break;
3357 }
3358 } else {
3359 if (val64 & busy_bit) {
3360 ret = SUCCESS;
3361 break;
3362 }
3363 }
3364
3365 if (in_interrupt())
3366 mdelay(delay);
3367 else
3368 msleep(delay);
3369
3370 if (++cnt >= 10)
3371 delay = 50;
3372 } while (cnt < 20);
3373 return ret;
3374 }
3375 /**
3376 * check_pci_device_id - Checks if the device id is supported
3377 * @id : device id
3378 * Description: Function to check if the pci device id is supported by driver.
3379 * Return value: Actual device id if supported else PCI_ANY_ID
3380 */
3381 static u16 check_pci_device_id(u16 id)
3382 {
3383 switch (id) {
3384 case PCI_DEVICE_ID_HERC_WIN:
3385 case PCI_DEVICE_ID_HERC_UNI:
3386 return XFRAME_II_DEVICE;
3387 case PCI_DEVICE_ID_S2IO_UNI:
3388 case PCI_DEVICE_ID_S2IO_WIN:
3389 return XFRAME_I_DEVICE;
3390 default:
3391 return PCI_ANY_ID;
3392 }
3393 }
3394
3395 /**
3396 * s2io_reset - Resets the card.
3397 * @sp : private member of the device structure.
3398 * Description: Function to Reset the card. This function then also
3399 * restores the previously saved PCI configuration space registers as
3400 * the card reset also resets the configuration space.
3401 * Return value:
3402 * void.
3403 */
3404
3405 static void s2io_reset(struct s2io_nic *sp)
3406 {
3407 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3408 u64 val64;
3409 u16 subid, pci_cmd;
3410 int i;
3411 u16 val16;
3412 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3413 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3414 struct stat_block *stats;
3415 struct swStat *swstats;
3416
3417 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3418 __func__, pci_name(sp->pdev));
3419
3420 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3421 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3422
3423 val64 = SW_RESET_ALL;
3424 writeq(val64, &bar0->sw_reset);
3425 if (strstr(sp->product_name, "CX4"))
3426 msleep(750);
3427 msleep(250);
3428 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3429
3430 /* Restore the PCI state saved during initialization. */
3431 pci_restore_state(sp->pdev);
3432 pci_save_state(sp->pdev);
3433 pci_read_config_word(sp->pdev, 0x2, &val16);
3434 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3435 break;
3436 msleep(200);
3437 }
3438
3439 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3440 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3441
3442 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3443
3444 s2io_init_pci(sp);
3445
3446 /* Set swapper to enable I/O register access */
3447 s2io_set_swapper(sp);
3448
3449 /* restore mac_addr entries */
3450 do_s2io_restore_unicast_mc(sp);
3451
3452 /* Restore the MSIX table entries from local variables */
3453 restore_xmsi_data(sp);
3454
3455 /* Clear certain PCI/PCI-X fields after reset */
3456 if (sp->device_type == XFRAME_II_DEVICE) {
3457 /* Clear "detected parity error" bit */
3458 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3459
3460 /* Clearing PCIX Ecc status register */
3461 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3462
3463 /* Clearing PCI_STATUS error reflected here */
3464 writeq(s2BIT(62), &bar0->txpic_int_reg);
3465 }
3466
3467 /* Reset device statistics maintained by OS */
3468 memset(&sp->stats, 0, sizeof(struct net_device_stats));
3469
3470 stats = sp->mac_control.stats_info;
3471 swstats = &stats->sw_stat;
3472
3473 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3474 up_cnt = swstats->link_up_cnt;
3475 down_cnt = swstats->link_down_cnt;
3476 up_time = swstats->link_up_time;
3477 down_time = swstats->link_down_time;
3478 reset_cnt = swstats->soft_reset_cnt;
3479 mem_alloc_cnt = swstats->mem_allocated;
3480 mem_free_cnt = swstats->mem_freed;
3481 watchdog_cnt = swstats->watchdog_timer_cnt;
3482
3483 memset(stats, 0, sizeof(struct stat_block));
3484
3485 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3486 swstats->link_up_cnt = up_cnt;
3487 swstats->link_down_cnt = down_cnt;
3488 swstats->link_up_time = up_time;
3489 swstats->link_down_time = down_time;
3490 swstats->soft_reset_cnt = reset_cnt;
3491 swstats->mem_allocated = mem_alloc_cnt;
3492 swstats->mem_freed = mem_free_cnt;
3493 swstats->watchdog_timer_cnt = watchdog_cnt;
3494
3495 /* SXE-002: Configure link and activity LED to turn it off */
3496 subid = sp->pdev->subsystem_device;
3497 if (((subid & 0xFF) >= 0x07) &&
3498 (sp->device_type == XFRAME_I_DEVICE)) {
3499 val64 = readq(&bar0->gpio_control);
3500 val64 |= 0x0000800000000000ULL;
3501 writeq(val64, &bar0->gpio_control);
3502 val64 = 0x0411040400000000ULL;
3503 writeq(val64, (void __iomem *)bar0 + 0x2700);
3504 }
3505
3506 /*
3507 * Clear spurious ECC interrupts that would have occurred on
3508 * XFRAME II cards after reset.
3509 */
3510 if (sp->device_type == XFRAME_II_DEVICE) {
3511 val64 = readq(&bar0->pcc_err_reg);
3512 writeq(val64, &bar0->pcc_err_reg);
3513 }
3514
3515 sp->device_enabled_once = false;
3516 }
3517
3518 /**
3519 * s2io_set_swapper - to set the swapper controle on the card
3520 * @sp : private member of the device structure,
3521 * pointer to the s2io_nic structure.
3522 * Description: Function to set the swapper control on the card
3523 * correctly depending on the 'endianness' of the system.
3524 * Return value:
3525 * SUCCESS on success and FAILURE on failure.
3526 */
3527
3528 static int s2io_set_swapper(struct s2io_nic *sp)
3529 {
3530 struct net_device *dev = sp->dev;
3531 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3532 u64 val64, valt, valr;
3533
3534 /*
3535 * Set proper endian settings and verify the same by reading
3536 * the PIF Feed-back register.
3537 */
3538
3539 val64 = readq(&bar0->pif_rd_swapper_fb);
3540 if (val64 != 0x0123456789ABCDEFULL) {
3541 int i = 0;
3542 static const u64 value[] = {
3543 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3544 0x8100008181000081ULL, /* FE=1, SE=0 */
3545 0x4200004242000042ULL, /* FE=0, SE=1 */
3546 0 /* FE=0, SE=0 */
3547 };
3548
3549 while (i < 4) {
3550 writeq(value[i], &bar0->swapper_ctrl);
3551 val64 = readq(&bar0->pif_rd_swapper_fb);
3552 if (val64 == 0x0123456789ABCDEFULL)
3553 break;
3554 i++;
3555 }
3556 if (i == 4) {
3557 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3558 "feedback read %llx\n",
3559 dev->name, (unsigned long long)val64);
3560 return FAILURE;
3561 }
3562 valr = value[i];
3563 } else {
3564 valr = readq(&bar0->swapper_ctrl);
3565 }
3566
3567 valt = 0x0123456789ABCDEFULL;
3568 writeq(valt, &bar0->xmsi_address);
3569 val64 = readq(&bar0->xmsi_address);
3570
3571 if (val64 != valt) {
3572 int i = 0;
3573 static const u64 value[] = {
3574 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3575 0x0081810000818100ULL, /* FE=1, SE=0 */
3576 0x0042420000424200ULL, /* FE=0, SE=1 */
3577 0 /* FE=0, SE=0 */
3578 };
3579
3580 while (i < 4) {
3581 writeq((value[i] | valr), &bar0->swapper_ctrl);
3582 writeq(valt, &bar0->xmsi_address);
3583 val64 = readq(&bar0->xmsi_address);
3584 if (val64 == valt)
3585 break;
3586 i++;
3587 }
3588 if (i == 4) {
3589 unsigned long long x = val64;
3590 DBG_PRINT(ERR_DBG,
3591 "Write failed, Xmsi_addr reads:0x%llx\n", x);
3592 return FAILURE;
3593 }
3594 }
3595 val64 = readq(&bar0->swapper_ctrl);
3596 val64 &= 0xFFFF000000000000ULL;
3597
3598 #ifdef __BIG_ENDIAN
3599 /*
3600 * The device by default set to a big endian format, so a
3601 * big endian driver need not set anything.
3602 */
3603 val64 |= (SWAPPER_CTRL_TXP_FE |
3604 SWAPPER_CTRL_TXP_SE |
3605 SWAPPER_CTRL_TXD_R_FE |
3606 SWAPPER_CTRL_TXD_W_FE |
3607 SWAPPER_CTRL_TXF_R_FE |
3608 SWAPPER_CTRL_RXD_R_FE |
3609 SWAPPER_CTRL_RXD_W_FE |
3610 SWAPPER_CTRL_RXF_W_FE |
3611 SWAPPER_CTRL_XMSI_FE |
3612 SWAPPER_CTRL_STATS_FE |
3613 SWAPPER_CTRL_STATS_SE);
3614 if (sp->config.intr_type == INTA)
3615 val64 |= SWAPPER_CTRL_XMSI_SE;
3616 writeq(val64, &bar0->swapper_ctrl);
3617 #else
3618 /*
3619 * Initially we enable all bits to make it accessible by the
3620 * driver, then we selectively enable only those bits that
3621 * we want to set.
3622 */
3623 val64 |= (SWAPPER_CTRL_TXP_FE |
3624 SWAPPER_CTRL_TXP_SE |
3625 SWAPPER_CTRL_TXD_R_FE |
3626 SWAPPER_CTRL_TXD_R_SE |
3627 SWAPPER_CTRL_TXD_W_FE |
3628 SWAPPER_CTRL_TXD_W_SE |
3629 SWAPPER_CTRL_TXF_R_FE |
3630 SWAPPER_CTRL_RXD_R_FE |
3631 SWAPPER_CTRL_RXD_R_SE |
3632 SWAPPER_CTRL_RXD_W_FE |
3633 SWAPPER_CTRL_RXD_W_SE |
3634 SWAPPER_CTRL_RXF_W_FE |
3635 SWAPPER_CTRL_XMSI_FE |
3636 SWAPPER_CTRL_STATS_FE |
3637 SWAPPER_CTRL_STATS_SE);
3638 if (sp->config.intr_type == INTA)
3639 val64 |= SWAPPER_CTRL_XMSI_SE;
3640 writeq(val64, &bar0->swapper_ctrl);
3641 #endif
3642 val64 = readq(&bar0->swapper_ctrl);
3643
3644 /*
3645 * Verifying if endian settings are accurate by reading a
3646 * feedback register.
3647 */
3648 val64 = readq(&bar0->pif_rd_swapper_fb);
3649 if (val64 != 0x0123456789ABCDEFULL) {
3650 /* Endian settings are incorrect, calls for another dekko. */
3651 DBG_PRINT(ERR_DBG,
3652 "%s: Endian settings are wrong, feedback read %llx\n",
3653 dev->name, (unsigned long long)val64);
3654 return FAILURE;
3655 }
3656
3657 return SUCCESS;
3658 }
3659
3660 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3661 {
3662 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3663 u64 val64;
3664 int ret = 0, cnt = 0;
3665
3666 do {
3667 val64 = readq(&bar0->xmsi_access);
3668 if (!(val64 & s2BIT(15)))
3669 break;
3670 mdelay(1);
3671 cnt++;
3672 } while (cnt < 5);
3673 if (cnt == 5) {
3674 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3675 ret = 1;
3676 }
3677
3678 return ret;
3679 }
3680
3681 static void restore_xmsi_data(struct s2io_nic *nic)
3682 {
3683 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3684 u64 val64;
3685 int i, msix_index;
3686
3687 if (nic->device_type == XFRAME_I_DEVICE)
3688 return;
3689
3690 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3691 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3692 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3693 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3694 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3695 writeq(val64, &bar0->xmsi_access);
3696 if (wait_for_msix_trans(nic, msix_index)) {
3697 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3698 __func__, msix_index);
3699 continue;
3700 }
3701 }
3702 }
3703
3704 static void store_xmsi_data(struct s2io_nic *nic)
3705 {
3706 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3707 u64 val64, addr, data;
3708 int i, msix_index;
3709
3710 if (nic->device_type == XFRAME_I_DEVICE)
3711 return;
3712
3713 /* Store and display */
3714 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3715 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3716 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3717 writeq(val64, &bar0->xmsi_access);
3718 if (wait_for_msix_trans(nic, msix_index)) {
3719 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3720 __func__, msix_index);
3721 continue;
3722 }
3723 addr = readq(&bar0->xmsi_address);
3724 data = readq(&bar0->xmsi_data);
3725 if (addr && data) {
3726 nic->msix_info[i].addr = addr;
3727 nic->msix_info[i].data = data;
3728 }
3729 }
3730 }
3731
3732 static int s2io_enable_msi_x(struct s2io_nic *nic)
3733 {
3734 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3735 u64 rx_mat;
3736 u16 msi_control; /* Temp variable */
3737 int ret, i, j, msix_indx = 1;
3738 int size;
3739 struct stat_block *stats = nic->mac_control.stats_info;
3740 struct swStat *swstats = &stats->sw_stat;
3741
3742 size = nic->num_entries * sizeof(struct msix_entry);
3743 nic->entries = kzalloc(size, GFP_KERNEL);
3744 if (!nic->entries) {
3745 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3746 __func__);
3747 swstats->mem_alloc_fail_cnt++;
3748 return -ENOMEM;
3749 }
3750 swstats->mem_allocated += size;
3751
3752 size = nic->num_entries * sizeof(struct s2io_msix_entry);
3753 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3754 if (!nic->s2io_entries) {
3755 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3756 __func__);
3757 swstats->mem_alloc_fail_cnt++;
3758 kfree(nic->entries);
3759 swstats->mem_freed
3760 += (nic->num_entries * sizeof(struct msix_entry));
3761 return -ENOMEM;
3762 }
3763 swstats->mem_allocated += size;
3764
3765 nic->entries[0].entry = 0;
3766 nic->s2io_entries[0].entry = 0;
3767 nic->s2io_entries[0].in_use = MSIX_FLG;
3768 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3769 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3770
3771 for (i = 1; i < nic->num_entries; i++) {
3772 nic->entries[i].entry = ((i - 1) * 8) + 1;
3773 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3774 nic->s2io_entries[i].arg = NULL;
3775 nic->s2io_entries[i].in_use = 0;
3776 }
3777
3778 rx_mat = readq(&bar0->rx_mat);
3779 for (j = 0; j < nic->config.rx_ring_num; j++) {
3780 rx_mat |= RX_MAT_SET(j, msix_indx);
3781 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3782 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3783 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3784 msix_indx += 8;
3785 }
3786 writeq(rx_mat, &bar0->rx_mat);
3787 readq(&bar0->rx_mat);
3788
3789 ret = pci_enable_msix_range(nic->pdev, nic->entries,
3790 nic->num_entries, nic->num_entries);
3791 /* We fail init if error or we get less vectors than min required */
3792 if (ret < 0) {
3793 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3794 kfree(nic->entries);
3795 swstats->mem_freed += nic->num_entries *
3796 sizeof(struct msix_entry);
3797 kfree(nic->s2io_entries);
3798 swstats->mem_freed += nic->num_entries *
3799 sizeof(struct s2io_msix_entry);
3800 nic->entries = NULL;
3801 nic->s2io_entries = NULL;
3802 return -ENOMEM;
3803 }
3804
3805 /*
3806 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3807 * in the herc NIC. (Temp change, needs to be removed later)
3808 */
3809 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3810 msi_control |= 0x1; /* Enable MSI */
3811 pci_write_config_word(nic->pdev, 0x42, msi_control);
3812
3813 return 0;
3814 }
3815
3816 /* Handle software interrupt used during MSI(X) test */
3817 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3818 {
3819 struct s2io_nic *sp = dev_id;
3820
3821 sp->msi_detected = 1;
3822 wake_up(&sp->msi_wait);
3823
3824 return IRQ_HANDLED;
3825 }
3826
3827 /* Test interrupt path by forcing a a software IRQ */
3828 static int s2io_test_msi(struct s2io_nic *sp)
3829 {
3830 struct pci_dev *pdev = sp->pdev;
3831 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3832 int err;
3833 u64 val64, saved64;
3834
3835 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3836 sp->name, sp);
3837 if (err) {
3838 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3839 sp->dev->name, pci_name(pdev), pdev->irq);
3840 return err;
3841 }
3842
3843 init_waitqueue_head(&sp->msi_wait);
3844 sp->msi_detected = 0;
3845
3846 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3847 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3848 val64 |= SCHED_INT_CTRL_TIMER_EN;
3849 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3850 writeq(val64, &bar0->scheduled_int_ctrl);
3851
3852 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3853
3854 if (!sp->msi_detected) {
3855 /* MSI(X) test failed, go back to INTx mode */
3856 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3857 "using MSI(X) during test\n",
3858 sp->dev->name, pci_name(pdev));
3859
3860 err = -EOPNOTSUPP;
3861 }
3862
3863 free_irq(sp->entries[1].vector, sp);
3864
3865 writeq(saved64, &bar0->scheduled_int_ctrl);
3866
3867 return err;
3868 }
3869
3870 static void remove_msix_isr(struct s2io_nic *sp)
3871 {
3872 int i;
3873 u16 msi_control;
3874
3875 for (i = 0; i < sp->num_entries; i++) {
3876 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3877 int vector = sp->entries[i].vector;
3878 void *arg = sp->s2io_entries[i].arg;
3879 free_irq(vector, arg);
3880 }
3881 }
3882
3883 kfree(sp->entries);
3884 kfree(sp->s2io_entries);
3885 sp->entries = NULL;
3886 sp->s2io_entries = NULL;
3887
3888 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3889 msi_control &= 0xFFFE; /* Disable MSI */
3890 pci_write_config_word(sp->pdev, 0x42, msi_control);
3891
3892 pci_disable_msix(sp->pdev);
3893 }
3894
3895 static void remove_inta_isr(struct s2io_nic *sp)
3896 {
3897 free_irq(sp->pdev->irq, sp->dev);
3898 }
3899
3900 /* ********************************************************* *
3901 * Functions defined below concern the OS part of the driver *
3902 * ********************************************************* */
3903
3904 /**
3905 * s2io_open - open entry point of the driver
3906 * @dev : pointer to the device structure.
3907 * Description:
3908 * This function is the open entry point of the driver. It mainly calls a
3909 * function to allocate Rx buffers and inserts them into the buffer
3910 * descriptors and then enables the Rx part of the NIC.
3911 * Return value:
3912 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3913 * file on failure.
3914 */
3915
3916 static int s2io_open(struct net_device *dev)
3917 {
3918 struct s2io_nic *sp = netdev_priv(dev);
3919 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3920 int err = 0;
3921
3922 /*
3923 * Make sure you have link off by default every time
3924 * Nic is initialized
3925 */
3926 netif_carrier_off(dev);
3927 sp->last_link_state = 0;
3928
3929 /* Initialize H/W and enable interrupts */
3930 err = s2io_card_up(sp);
3931 if (err) {
3932 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3933 dev->name);
3934 goto hw_init_failed;
3935 }
3936
3937 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3938 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3939 s2io_card_down(sp);
3940 err = -ENODEV;
3941 goto hw_init_failed;
3942 }
3943 s2io_start_all_tx_queue(sp);
3944 return 0;
3945
3946 hw_init_failed:
3947 if (sp->config.intr_type == MSI_X) {
3948 if (sp->entries) {
3949 kfree(sp->entries);
3950 swstats->mem_freed += sp->num_entries *
3951 sizeof(struct msix_entry);
3952 }
3953 if (sp->s2io_entries) {
3954 kfree(sp->s2io_entries);
3955 swstats->mem_freed += sp->num_entries *
3956 sizeof(struct s2io_msix_entry);
3957 }
3958 }
3959 return err;
3960 }
3961
3962 /**
3963 * s2io_close -close entry point of the driver
3964 * @dev : device pointer.
3965 * Description:
3966 * This is the stop entry point of the driver. It needs to undo exactly
3967 * whatever was done by the open entry point,thus it's usually referred to
3968 * as the close function.Among other things this function mainly stops the
3969 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3970 * Return value:
3971 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3972 * file on failure.
3973 */
3974
3975 static int s2io_close(struct net_device *dev)
3976 {
3977 struct s2io_nic *sp = netdev_priv(dev);
3978 struct config_param *config = &sp->config;
3979 u64 tmp64;
3980 int offset;
3981
3982 /* Return if the device is already closed *
3983 * Can happen when s2io_card_up failed in change_mtu *
3984 */
3985 if (!is_s2io_card_up(sp))
3986 return 0;
3987
3988 s2io_stop_all_tx_queue(sp);
3989 /* delete all populated mac entries */
3990 for (offset = 1; offset < config->max_mc_addr; offset++) {
3991 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3992 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3993 do_s2io_delete_unicast_mc(sp, tmp64);
3994 }
3995
3996 s2io_card_down(sp);
3997
3998 return 0;
3999 }
4000
4001 /**
4002 * s2io_xmit - Tx entry point of te driver
4003 * @skb : the socket buffer containing the Tx data.
4004 * @dev : device pointer.
4005 * Description :
4006 * This function is the Tx entry point of the driver. S2IO NIC supports
4007 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4008 * NOTE: when device can't queue the pkt,just the trans_start variable will
4009 * not be upadted.
4010 * Return value:
4011 * 0 on success & 1 on failure.
4012 */
4013
4014 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4015 {
4016 struct s2io_nic *sp = netdev_priv(dev);
4017 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4018 register u64 val64;
4019 struct TxD *txdp;
4020 struct TxFIFO_element __iomem *tx_fifo;
4021 unsigned long flags = 0;
4022 u16 vlan_tag = 0;
4023 struct fifo_info *fifo = NULL;
4024 int do_spin_lock = 1;
4025 int offload_type;
4026 int enable_per_list_interrupt = 0;
4027 struct config_param *config = &sp->config;
4028 struct mac_info *mac_control = &sp->mac_control;
4029 struct stat_block *stats = mac_control->stats_info;
4030 struct swStat *swstats = &stats->sw_stat;
4031
4032 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4033
4034 if (unlikely(skb->len <= 0)) {
4035 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4036 dev_kfree_skb_any(skb);
4037 return NETDEV_TX_OK;
4038 }
4039
4040 if (!is_s2io_card_up(sp)) {
4041 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4042 dev->name);
4043 dev_kfree_skb_any(skb);
4044 return NETDEV_TX_OK;
4045 }
4046
4047 queue = 0;
4048 if (skb_vlan_tag_present(skb))
4049 vlan_tag = skb_vlan_tag_get(skb);
4050 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4051 if (skb->protocol == htons(ETH_P_IP)) {
4052 struct iphdr *ip;
4053 struct tcphdr *th;
4054 ip = ip_hdr(skb);
4055
4056 if (!ip_is_fragment(ip)) {
4057 th = (struct tcphdr *)(((unsigned char *)ip) +
4058 ip->ihl*4);
4059
4060 if (ip->protocol == IPPROTO_TCP) {
4061 queue_len = sp->total_tcp_fifos;
4062 queue = (ntohs(th->source) +
4063 ntohs(th->dest)) &
4064 sp->fifo_selector[queue_len - 1];
4065 if (queue >= queue_len)
4066 queue = queue_len - 1;
4067 } else if (ip->protocol == IPPROTO_UDP) {
4068 queue_len = sp->total_udp_fifos;
4069 queue = (ntohs(th->source) +
4070 ntohs(th->dest)) &
4071 sp->fifo_selector[queue_len - 1];
4072 if (queue >= queue_len)
4073 queue = queue_len - 1;
4074 queue += sp->udp_fifo_idx;
4075 if (skb->len > 1024)
4076 enable_per_list_interrupt = 1;
4077 do_spin_lock = 0;
4078 }
4079 }
4080 }
4081 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4082 /* get fifo number based on skb->priority value */
4083 queue = config->fifo_mapping
4084 [skb->priority & (MAX_TX_FIFOS - 1)];
4085 fifo = &mac_control->fifos[queue];
4086
4087 if (do_spin_lock)
4088 spin_lock_irqsave(&fifo->tx_lock, flags);
4089 else {
4090 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4091 return NETDEV_TX_LOCKED;
4092 }
4093
4094 if (sp->config.multiq) {
4095 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4096 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4097 return NETDEV_TX_BUSY;
4098 }
4099 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4100 if (netif_queue_stopped(dev)) {
4101 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4102 return NETDEV_TX_BUSY;
4103 }
4104 }
4105
4106 put_off = (u16)fifo->tx_curr_put_info.offset;
4107 get_off = (u16)fifo->tx_curr_get_info.offset;
4108 txdp = fifo->list_info[put_off].list_virt_addr;
4109
4110 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4111 /* Avoid "put" pointer going beyond "get" pointer */
4112 if (txdp->Host_Control ||
4113 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4114 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4115 s2io_stop_tx_queue(sp, fifo->fifo_no);
4116 dev_kfree_skb_any(skb);
4117 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4118 return NETDEV_TX_OK;
4119 }
4120
4121 offload_type = s2io_offload_type(skb);
4122 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4123 txdp->Control_1 |= TXD_TCP_LSO_EN;
4124 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4125 }
4126 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4127 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4128 TXD_TX_CKO_TCP_EN |
4129 TXD_TX_CKO_UDP_EN);
4130 }
4131 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4132 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4133 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4134 if (enable_per_list_interrupt)
4135 if (put_off & (queue_len >> 5))
4136 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4137 if (vlan_tag) {
4138 txdp->Control_2 |= TXD_VLAN_ENABLE;
4139 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4140 }
4141
4142 frg_len = skb_headlen(skb);
4143 if (offload_type == SKB_GSO_UDP) {
4144 int ufo_size;
4145
4146 ufo_size = s2io_udp_mss(skb);
4147 ufo_size &= ~7;
4148 txdp->Control_1 |= TXD_UFO_EN;
4149 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4150 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4151 #ifdef __BIG_ENDIAN
4152 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4153 fifo->ufo_in_band_v[put_off] =
4154 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4155 #else
4156 fifo->ufo_in_band_v[put_off] =
4157 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4158 #endif
4159 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4160 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4161 fifo->ufo_in_band_v,
4162 sizeof(u64),
4163 PCI_DMA_TODEVICE);
4164 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4165 goto pci_map_failed;
4166 txdp++;
4167 }
4168
4169 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4170 frg_len, PCI_DMA_TODEVICE);
4171 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4172 goto pci_map_failed;
4173
4174 txdp->Host_Control = (unsigned long)skb;
4175 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4176 if (offload_type == SKB_GSO_UDP)
4177 txdp->Control_1 |= TXD_UFO_EN;
4178
4179 frg_cnt = skb_shinfo(skb)->nr_frags;
4180 /* For fragmented SKB. */
4181 for (i = 0; i < frg_cnt; i++) {
4182 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4183 /* A '0' length fragment will be ignored */
4184 if (!skb_frag_size(frag))
4185 continue;
4186 txdp++;
4187 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4188 frag, 0,
4189 skb_frag_size(frag),
4190 DMA_TO_DEVICE);
4191 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4192 if (offload_type == SKB_GSO_UDP)
4193 txdp->Control_1 |= TXD_UFO_EN;
4194 }
4195 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4196
4197 if (offload_type == SKB_GSO_UDP)
4198 frg_cnt++; /* as Txd0 was used for inband header */
4199
4200 tx_fifo = mac_control->tx_FIFO_start[queue];
4201 val64 = fifo->list_info[put_off].list_phy_addr;
4202 writeq(val64, &tx_fifo->TxDL_Pointer);
4203
4204 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4205 TX_FIFO_LAST_LIST);
4206 if (offload_type)
4207 val64 |= TX_FIFO_SPECIAL_FUNC;
4208
4209 writeq(val64, &tx_fifo->List_Control);
4210
4211 mmiowb();
4212
4213 put_off++;
4214 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4215 put_off = 0;
4216 fifo->tx_curr_put_info.offset = put_off;
4217
4218 /* Avoid "put" pointer going beyond "get" pointer */
4219 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4220 swstats->fifo_full_cnt++;
4221 DBG_PRINT(TX_DBG,
4222 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4223 put_off, get_off);
4224 s2io_stop_tx_queue(sp, fifo->fifo_no);
4225 }
4226 swstats->mem_allocated += skb->truesize;
4227 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4228
4229 if (sp->config.intr_type == MSI_X)
4230 tx_intr_handler(fifo);
4231
4232 return NETDEV_TX_OK;
4233
4234 pci_map_failed:
4235 swstats->pci_map_fail_cnt++;
4236 s2io_stop_tx_queue(sp, fifo->fifo_no);
4237 swstats->mem_freed += skb->truesize;
4238 dev_kfree_skb_any(skb);
4239 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4240 return NETDEV_TX_OK;
4241 }
4242
4243 static void
4244 s2io_alarm_handle(unsigned long data)
4245 {
4246 struct s2io_nic *sp = (struct s2io_nic *)data;
4247 struct net_device *dev = sp->dev;
4248
4249 s2io_handle_errors(dev);
4250 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4251 }
4252
4253 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4254 {
4255 struct ring_info *ring = (struct ring_info *)dev_id;
4256 struct s2io_nic *sp = ring->nic;
4257 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4258
4259 if (unlikely(!is_s2io_card_up(sp)))
4260 return IRQ_HANDLED;
4261
4262 if (sp->config.napi) {
4263 u8 __iomem *addr = NULL;
4264 u8 val8 = 0;
4265
4266 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4267 addr += (7 - ring->ring_no);
4268 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4269 writeb(val8, addr);
4270 val8 = readb(addr);
4271 napi_schedule(&ring->napi);
4272 } else {
4273 rx_intr_handler(ring, 0);
4274 s2io_chk_rx_buffers(sp, ring);
4275 }
4276
4277 return IRQ_HANDLED;
4278 }
4279
4280 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4281 {
4282 int i;
4283 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4284 struct s2io_nic *sp = fifos->nic;
4285 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4286 struct config_param *config = &sp->config;
4287 u64 reason;
4288
4289 if (unlikely(!is_s2io_card_up(sp)))
4290 return IRQ_NONE;
4291
4292 reason = readq(&bar0->general_int_status);
4293 if (unlikely(reason == S2IO_MINUS_ONE))
4294 /* Nothing much can be done. Get out */
4295 return IRQ_HANDLED;
4296
4297 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4298 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4299
4300 if (reason & GEN_INTR_TXPIC)
4301 s2io_txpic_intr_handle(sp);
4302
4303 if (reason & GEN_INTR_TXTRAFFIC)
4304 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4305
4306 for (i = 0; i < config->tx_fifo_num; i++)
4307 tx_intr_handler(&fifos[i]);
4308
4309 writeq(sp->general_int_mask, &bar0->general_int_mask);
4310 readl(&bar0->general_int_status);
4311 return IRQ_HANDLED;
4312 }
4313 /* The interrupt was not raised by us */
4314 return IRQ_NONE;
4315 }
4316
4317 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4318 {
4319 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4320 u64 val64;
4321
4322 val64 = readq(&bar0->pic_int_status);
4323 if (val64 & PIC_INT_GPIO) {
4324 val64 = readq(&bar0->gpio_int_reg);
4325 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4326 (val64 & GPIO_INT_REG_LINK_UP)) {
4327 /*
4328 * This is unstable state so clear both up/down
4329 * interrupt and adapter to re-evaluate the link state.
4330 */
4331 val64 |= GPIO_INT_REG_LINK_DOWN;
4332 val64 |= GPIO_INT_REG_LINK_UP;
4333 writeq(val64, &bar0->gpio_int_reg);
4334 val64 = readq(&bar0->gpio_int_mask);
4335 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4336 GPIO_INT_MASK_LINK_DOWN);
4337 writeq(val64, &bar0->gpio_int_mask);
4338 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4339 val64 = readq(&bar0->adapter_status);
4340 /* Enable Adapter */
4341 val64 = readq(&bar0->adapter_control);
4342 val64 |= ADAPTER_CNTL_EN;
4343 writeq(val64, &bar0->adapter_control);
4344 val64 |= ADAPTER_LED_ON;
4345 writeq(val64, &bar0->adapter_control);
4346 if (!sp->device_enabled_once)
4347 sp->device_enabled_once = 1;
4348
4349 s2io_link(sp, LINK_UP);
4350 /*
4351 * unmask link down interrupt and mask link-up
4352 * intr
4353 */
4354 val64 = readq(&bar0->gpio_int_mask);
4355 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4356 val64 |= GPIO_INT_MASK_LINK_UP;
4357 writeq(val64, &bar0->gpio_int_mask);
4358
4359 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4360 val64 = readq(&bar0->adapter_status);
4361 s2io_link(sp, LINK_DOWN);
4362 /* Link is down so unmaks link up interrupt */
4363 val64 = readq(&bar0->gpio_int_mask);
4364 val64 &= ~GPIO_INT_MASK_LINK_UP;
4365 val64 |= GPIO_INT_MASK_LINK_DOWN;
4366 writeq(val64, &bar0->gpio_int_mask);
4367
4368 /* turn off LED */
4369 val64 = readq(&bar0->adapter_control);
4370 val64 = val64 & (~ADAPTER_LED_ON);
4371 writeq(val64, &bar0->adapter_control);
4372 }
4373 }
4374 val64 = readq(&bar0->gpio_int_mask);
4375 }
4376
4377 /**
4378 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4379 * @value: alarm bits
4380 * @addr: address value
4381 * @cnt: counter variable
4382 * Description: Check for alarm and increment the counter
4383 * Return Value:
4384 * 1 - if alarm bit set
4385 * 0 - if alarm bit is not set
4386 */
4387 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4388 unsigned long long *cnt)
4389 {
4390 u64 val64;
4391 val64 = readq(addr);
4392 if (val64 & value) {
4393 writeq(val64, addr);
4394 (*cnt)++;
4395 return 1;
4396 }
4397 return 0;
4398
4399 }
4400
4401 /**
4402 * s2io_handle_errors - Xframe error indication handler
4403 * @nic: device private variable
4404 * Description: Handle alarms such as loss of link, single or
4405 * double ECC errors, critical and serious errors.
4406 * Return Value:
4407 * NONE
4408 */
4409 static void s2io_handle_errors(void *dev_id)
4410 {
4411 struct net_device *dev = (struct net_device *)dev_id;
4412 struct s2io_nic *sp = netdev_priv(dev);
4413 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4414 u64 temp64 = 0, val64 = 0;
4415 int i = 0;
4416
4417 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4418 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4419
4420 if (!is_s2io_card_up(sp))
4421 return;
4422
4423 if (pci_channel_offline(sp->pdev))
4424 return;
4425
4426 memset(&sw_stat->ring_full_cnt, 0,
4427 sizeof(sw_stat->ring_full_cnt));
4428
4429 /* Handling the XPAK counters update */
4430 if (stats->xpak_timer_count < 72000) {
4431 /* waiting for an hour */
4432 stats->xpak_timer_count++;
4433 } else {
4434 s2io_updt_xpak_counter(dev);
4435 /* reset the count to zero */
4436 stats->xpak_timer_count = 0;
4437 }
4438
4439 /* Handling link status change error Intr */
4440 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4441 val64 = readq(&bar0->mac_rmac_err_reg);
4442 writeq(val64, &bar0->mac_rmac_err_reg);
4443 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4444 schedule_work(&sp->set_link_task);
4445 }
4446
4447 /* In case of a serious error, the device will be Reset. */
4448 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4449 &sw_stat->serious_err_cnt))
4450 goto reset;
4451
4452 /* Check for data parity error */
4453 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4454 &sw_stat->parity_err_cnt))
4455 goto reset;
4456
4457 /* Check for ring full counter */
4458 if (sp->device_type == XFRAME_II_DEVICE) {
4459 val64 = readq(&bar0->ring_bump_counter1);
4460 for (i = 0; i < 4; i++) {
4461 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4462 temp64 >>= 64 - ((i+1)*16);
4463 sw_stat->ring_full_cnt[i] += temp64;
4464 }
4465
4466 val64 = readq(&bar0->ring_bump_counter2);
4467 for (i = 0; i < 4; i++) {
4468 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4469 temp64 >>= 64 - ((i+1)*16);
4470 sw_stat->ring_full_cnt[i+4] += temp64;
4471 }
4472 }
4473
4474 val64 = readq(&bar0->txdma_int_status);
4475 /*check for pfc_err*/
4476 if (val64 & TXDMA_PFC_INT) {
4477 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4478 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4479 PFC_PCIX_ERR,
4480 &bar0->pfc_err_reg,
4481 &sw_stat->pfc_err_cnt))
4482 goto reset;
4483 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4484 &bar0->pfc_err_reg,
4485 &sw_stat->pfc_err_cnt);
4486 }
4487
4488 /*check for tda_err*/
4489 if (val64 & TXDMA_TDA_INT) {
4490 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4491 TDA_SM0_ERR_ALARM |
4492 TDA_SM1_ERR_ALARM,
4493 &bar0->tda_err_reg,
4494 &sw_stat->tda_err_cnt))
4495 goto reset;
4496 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4497 &bar0->tda_err_reg,
4498 &sw_stat->tda_err_cnt);
4499 }
4500 /*check for pcc_err*/
4501 if (val64 & TXDMA_PCC_INT) {
4502 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4503 PCC_N_SERR | PCC_6_COF_OV_ERR |
4504 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4505 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4506 PCC_TXB_ECC_DB_ERR,
4507 &bar0->pcc_err_reg,
4508 &sw_stat->pcc_err_cnt))
4509 goto reset;
4510 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4511 &bar0->pcc_err_reg,
4512 &sw_stat->pcc_err_cnt);
4513 }
4514
4515 /*check for tti_err*/
4516 if (val64 & TXDMA_TTI_INT) {
4517 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4518 &bar0->tti_err_reg,
4519 &sw_stat->tti_err_cnt))
4520 goto reset;
4521 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4522 &bar0->tti_err_reg,
4523 &sw_stat->tti_err_cnt);
4524 }
4525
4526 /*check for lso_err*/
4527 if (val64 & TXDMA_LSO_INT) {
4528 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4529 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4530 &bar0->lso_err_reg,
4531 &sw_stat->lso_err_cnt))
4532 goto reset;
4533 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4534 &bar0->lso_err_reg,
4535 &sw_stat->lso_err_cnt);
4536 }
4537
4538 /*check for tpa_err*/
4539 if (val64 & TXDMA_TPA_INT) {
4540 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4541 &bar0->tpa_err_reg,
4542 &sw_stat->tpa_err_cnt))
4543 goto reset;
4544 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4545 &bar0->tpa_err_reg,
4546 &sw_stat->tpa_err_cnt);
4547 }
4548
4549 /*check for sm_err*/
4550 if (val64 & TXDMA_SM_INT) {
4551 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4552 &bar0->sm_err_reg,
4553 &sw_stat->sm_err_cnt))
4554 goto reset;
4555 }
4556
4557 val64 = readq(&bar0->mac_int_status);
4558 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4559 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4560 &bar0->mac_tmac_err_reg,
4561 &sw_stat->mac_tmac_err_cnt))
4562 goto reset;
4563 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4564 TMAC_DESC_ECC_SG_ERR |
4565 TMAC_DESC_ECC_DB_ERR,
4566 &bar0->mac_tmac_err_reg,
4567 &sw_stat->mac_tmac_err_cnt);
4568 }
4569
4570 val64 = readq(&bar0->xgxs_int_status);
4571 if (val64 & XGXS_INT_STATUS_TXGXS) {
4572 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4573 &bar0->xgxs_txgxs_err_reg,
4574 &sw_stat->xgxs_txgxs_err_cnt))
4575 goto reset;
4576 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4577 &bar0->xgxs_txgxs_err_reg,
4578 &sw_stat->xgxs_txgxs_err_cnt);
4579 }
4580
4581 val64 = readq(&bar0->rxdma_int_status);
4582 if (val64 & RXDMA_INT_RC_INT_M) {
4583 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4584 RC_FTC_ECC_DB_ERR |
4585 RC_PRCn_SM_ERR_ALARM |
4586 RC_FTC_SM_ERR_ALARM,
4587 &bar0->rc_err_reg,
4588 &sw_stat->rc_err_cnt))
4589 goto reset;
4590 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4591 RC_FTC_ECC_SG_ERR |
4592 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4593 &sw_stat->rc_err_cnt);
4594 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4595 PRC_PCI_AB_WR_Rn |
4596 PRC_PCI_AB_F_WR_Rn,
4597 &bar0->prc_pcix_err_reg,
4598 &sw_stat->prc_pcix_err_cnt))
4599 goto reset;
4600 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4601 PRC_PCI_DP_WR_Rn |
4602 PRC_PCI_DP_F_WR_Rn,
4603 &bar0->prc_pcix_err_reg,
4604 &sw_stat->prc_pcix_err_cnt);
4605 }
4606
4607 if (val64 & RXDMA_INT_RPA_INT_M) {
4608 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4609 &bar0->rpa_err_reg,
4610 &sw_stat->rpa_err_cnt))
4611 goto reset;
4612 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4613 &bar0->rpa_err_reg,
4614 &sw_stat->rpa_err_cnt);
4615 }
4616
4617 if (val64 & RXDMA_INT_RDA_INT_M) {
4618 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4619 RDA_FRM_ECC_DB_N_AERR |
4620 RDA_SM1_ERR_ALARM |
4621 RDA_SM0_ERR_ALARM |
4622 RDA_RXD_ECC_DB_SERR,
4623 &bar0->rda_err_reg,
4624 &sw_stat->rda_err_cnt))
4625 goto reset;
4626 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4627 RDA_FRM_ECC_SG_ERR |
4628 RDA_MISC_ERR |
4629 RDA_PCIX_ERR,
4630 &bar0->rda_err_reg,
4631 &sw_stat->rda_err_cnt);
4632 }
4633
4634 if (val64 & RXDMA_INT_RTI_INT_M) {
4635 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4636 &bar0->rti_err_reg,
4637 &sw_stat->rti_err_cnt))
4638 goto reset;
4639 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4640 &bar0->rti_err_reg,
4641 &sw_stat->rti_err_cnt);
4642 }
4643
4644 val64 = readq(&bar0->mac_int_status);
4645 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4646 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4647 &bar0->mac_rmac_err_reg,
4648 &sw_stat->mac_rmac_err_cnt))
4649 goto reset;
4650 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4651 RMAC_SINGLE_ECC_ERR |
4652 RMAC_DOUBLE_ECC_ERR,
4653 &bar0->mac_rmac_err_reg,
4654 &sw_stat->mac_rmac_err_cnt);
4655 }
4656
4657 val64 = readq(&bar0->xgxs_int_status);
4658 if (val64 & XGXS_INT_STATUS_RXGXS) {
4659 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4660 &bar0->xgxs_rxgxs_err_reg,
4661 &sw_stat->xgxs_rxgxs_err_cnt))
4662 goto reset;
4663 }
4664
4665 val64 = readq(&bar0->mc_int_status);
4666 if (val64 & MC_INT_STATUS_MC_INT) {
4667 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4668 &bar0->mc_err_reg,
4669 &sw_stat->mc_err_cnt))
4670 goto reset;
4671
4672 /* Handling Ecc errors */
4673 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4674 writeq(val64, &bar0->mc_err_reg);
4675 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4676 sw_stat->double_ecc_errs++;
4677 if (sp->device_type != XFRAME_II_DEVICE) {
4678 /*
4679 * Reset XframeI only if critical error
4680 */
4681 if (val64 &
4682 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4683 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4684 goto reset;
4685 }
4686 } else
4687 sw_stat->single_ecc_errs++;
4688 }
4689 }
4690 return;
4691
4692 reset:
4693 s2io_stop_all_tx_queue(sp);
4694 schedule_work(&sp->rst_timer_task);
4695 sw_stat->soft_reset_cnt++;
4696 }
4697
4698 /**
4699 * s2io_isr - ISR handler of the device .
4700 * @irq: the irq of the device.
4701 * @dev_id: a void pointer to the dev structure of the NIC.
4702 * Description: This function is the ISR handler of the device. It
4703 * identifies the reason for the interrupt and calls the relevant
4704 * service routines. As a contongency measure, this ISR allocates the
4705 * recv buffers, if their numbers are below the panic value which is
4706 * presently set to 25% of the original number of rcv buffers allocated.
4707 * Return value:
4708 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4709 * IRQ_NONE: will be returned if interrupt is not from our device
4710 */
4711 static irqreturn_t s2io_isr(int irq, void *dev_id)
4712 {
4713 struct net_device *dev = (struct net_device *)dev_id;
4714 struct s2io_nic *sp = netdev_priv(dev);
4715 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4716 int i;
4717 u64 reason = 0;
4718 struct mac_info *mac_control;
4719 struct config_param *config;
4720
4721 /* Pretend we handled any irq's from a disconnected card */
4722 if (pci_channel_offline(sp->pdev))
4723 return IRQ_NONE;
4724
4725 if (!is_s2io_card_up(sp))
4726 return IRQ_NONE;
4727
4728 config = &sp->config;
4729 mac_control = &sp->mac_control;
4730
4731 /*
4732 * Identify the cause for interrupt and call the appropriate
4733 * interrupt handler. Causes for the interrupt could be;
4734 * 1. Rx of packet.
4735 * 2. Tx complete.
4736 * 3. Link down.
4737 */
4738 reason = readq(&bar0->general_int_status);
4739
4740 if (unlikely(reason == S2IO_MINUS_ONE))
4741 return IRQ_HANDLED; /* Nothing much can be done. Get out */
4742
4743 if (reason &
4744 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4745 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4746
4747 if (config->napi) {
4748 if (reason & GEN_INTR_RXTRAFFIC) {
4749 napi_schedule(&sp->napi);
4750 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4751 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4752 readl(&bar0->rx_traffic_int);
4753 }
4754 } else {
4755 /*
4756 * rx_traffic_int reg is an R1 register, writing all 1's
4757 * will ensure that the actual interrupt causing bit
4758 * get's cleared and hence a read can be avoided.
4759 */
4760 if (reason & GEN_INTR_RXTRAFFIC)
4761 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4762
4763 for (i = 0; i < config->rx_ring_num; i++) {
4764 struct ring_info *ring = &mac_control->rings[i];
4765
4766 rx_intr_handler(ring, 0);
4767 }
4768 }
4769
4770 /*
4771 * tx_traffic_int reg is an R1 register, writing all 1's
4772 * will ensure that the actual interrupt causing bit get's
4773 * cleared and hence a read can be avoided.
4774 */
4775 if (reason & GEN_INTR_TXTRAFFIC)
4776 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4777
4778 for (i = 0; i < config->tx_fifo_num; i++)
4779 tx_intr_handler(&mac_control->fifos[i]);
4780
4781 if (reason & GEN_INTR_TXPIC)
4782 s2io_txpic_intr_handle(sp);
4783
4784 /*
4785 * Reallocate the buffers from the interrupt handler itself.
4786 */
4787 if (!config->napi) {
4788 for (i = 0; i < config->rx_ring_num; i++) {
4789 struct ring_info *ring = &mac_control->rings[i];
4790
4791 s2io_chk_rx_buffers(sp, ring);
4792 }
4793 }
4794 writeq(sp->general_int_mask, &bar0->general_int_mask);
4795 readl(&bar0->general_int_status);
4796
4797 return IRQ_HANDLED;
4798
4799 } else if (!reason) {
4800 /* The interrupt was not raised by us */
4801 return IRQ_NONE;
4802 }
4803
4804 return IRQ_HANDLED;
4805 }
4806
4807 /**
4808 * s2io_updt_stats -
4809 */
4810 static void s2io_updt_stats(struct s2io_nic *sp)
4811 {
4812 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4813 u64 val64;
4814 int cnt = 0;
4815
4816 if (is_s2io_card_up(sp)) {
4817 /* Apprx 30us on a 133 MHz bus */
4818 val64 = SET_UPDT_CLICKS(10) |
4819 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4820 writeq(val64, &bar0->stat_cfg);
4821 do {
4822 udelay(100);
4823 val64 = readq(&bar0->stat_cfg);
4824 if (!(val64 & s2BIT(0)))
4825 break;
4826 cnt++;
4827 if (cnt == 5)
4828 break; /* Updt failed */
4829 } while (1);
4830 }
4831 }
4832
4833 /**
4834 * s2io_get_stats - Updates the device statistics structure.
4835 * @dev : pointer to the device structure.
4836 * Description:
4837 * This function updates the device statistics structure in the s2io_nic
4838 * structure and returns a pointer to the same.
4839 * Return value:
4840 * pointer to the updated net_device_stats structure.
4841 */
4842 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4843 {
4844 struct s2io_nic *sp = netdev_priv(dev);
4845 struct mac_info *mac_control = &sp->mac_control;
4846 struct stat_block *stats = mac_control->stats_info;
4847 u64 delta;
4848
4849 /* Configure Stats for immediate updt */
4850 s2io_updt_stats(sp);
4851
4852 /* A device reset will cause the on-adapter statistics to be zero'ed.
4853 * This can be done while running by changing the MTU. To prevent the
4854 * system from having the stats zero'ed, the driver keeps a copy of the
4855 * last update to the system (which is also zero'ed on reset). This
4856 * enables the driver to accurately know the delta between the last
4857 * update and the current update.
4858 */
4859 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4860 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4861 sp->stats.rx_packets += delta;
4862 dev->stats.rx_packets += delta;
4863
4864 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4865 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4866 sp->stats.tx_packets += delta;
4867 dev->stats.tx_packets += delta;
4868
4869 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4870 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4871 sp->stats.rx_bytes += delta;
4872 dev->stats.rx_bytes += delta;
4873
4874 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4875 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4876 sp->stats.tx_bytes += delta;
4877 dev->stats.tx_bytes += delta;
4878
4879 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4880 sp->stats.rx_errors += delta;
4881 dev->stats.rx_errors += delta;
4882
4883 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4884 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4885 sp->stats.tx_errors += delta;
4886 dev->stats.tx_errors += delta;
4887
4888 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4889 sp->stats.rx_dropped += delta;
4890 dev->stats.rx_dropped += delta;
4891
4892 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4893 sp->stats.tx_dropped += delta;
4894 dev->stats.tx_dropped += delta;
4895
4896 /* The adapter MAC interprets pause frames as multicast packets, but
4897 * does not pass them up. This erroneously increases the multicast
4898 * packet count and needs to be deducted when the multicast frame count
4899 * is queried.
4900 */
4901 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4902 le32_to_cpu(stats->rmac_vld_mcst_frms);
4903 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4904 delta -= sp->stats.multicast;
4905 sp->stats.multicast += delta;
4906 dev->stats.multicast += delta;
4907
4908 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4909 le32_to_cpu(stats->rmac_usized_frms)) +
4910 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4911 sp->stats.rx_length_errors += delta;
4912 dev->stats.rx_length_errors += delta;
4913
4914 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4915 sp->stats.rx_crc_errors += delta;
4916 dev->stats.rx_crc_errors += delta;
4917
4918 return &dev->stats;
4919 }
4920
4921 /**
4922 * s2io_set_multicast - entry point for multicast address enable/disable.
4923 * @dev : pointer to the device structure
4924 * Description:
4925 * This function is a driver entry point which gets called by the kernel
4926 * whenever multicast addresses must be enabled/disabled. This also gets
4927 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4928 * determine, if multicast address must be enabled or if promiscuous mode
4929 * is to be disabled etc.
4930 * Return value:
4931 * void.
4932 */
4933
4934 static void s2io_set_multicast(struct net_device *dev)
4935 {
4936 int i, j, prev_cnt;
4937 struct netdev_hw_addr *ha;
4938 struct s2io_nic *sp = netdev_priv(dev);
4939 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4940 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4941 0xfeffffffffffULL;
4942 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4943 void __iomem *add;
4944 struct config_param *config = &sp->config;
4945
4946 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4947 /* Enable all Multicast addresses */
4948 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4949 &bar0->rmac_addr_data0_mem);
4950 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4951 &bar0->rmac_addr_data1_mem);
4952 val64 = RMAC_ADDR_CMD_MEM_WE |
4953 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4954 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4955 writeq(val64, &bar0->rmac_addr_cmd_mem);
4956 /* Wait till command completes */
4957 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4958 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4959 S2IO_BIT_RESET);
4960
4961 sp->m_cast_flg = 1;
4962 sp->all_multi_pos = config->max_mc_addr - 1;
4963 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4964 /* Disable all Multicast addresses */
4965 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4966 &bar0->rmac_addr_data0_mem);
4967 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4968 &bar0->rmac_addr_data1_mem);
4969 val64 = RMAC_ADDR_CMD_MEM_WE |
4970 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4971 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4972 writeq(val64, &bar0->rmac_addr_cmd_mem);
4973 /* Wait till command completes */
4974 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4975 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4976 S2IO_BIT_RESET);
4977
4978 sp->m_cast_flg = 0;
4979 sp->all_multi_pos = 0;
4980 }
4981
4982 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4983 /* Put the NIC into promiscuous mode */
4984 add = &bar0->mac_cfg;
4985 val64 = readq(&bar0->mac_cfg);
4986 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4987
4988 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4989 writel((u32)val64, add);
4990 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4991 writel((u32) (val64 >> 32), (add + 4));
4992
4993 if (vlan_tag_strip != 1) {
4994 val64 = readq(&bar0->rx_pa_cfg);
4995 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4996 writeq(val64, &bar0->rx_pa_cfg);
4997 sp->vlan_strip_flag = 0;
4998 }
4999
5000 val64 = readq(&bar0->mac_cfg);
5001 sp->promisc_flg = 1;
5002 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5003 dev->name);
5004 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5005 /* Remove the NIC from promiscuous mode */
5006 add = &bar0->mac_cfg;
5007 val64 = readq(&bar0->mac_cfg);
5008 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5009
5010 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5011 writel((u32)val64, add);
5012 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5013 writel((u32) (val64 >> 32), (add + 4));
5014
5015 if (vlan_tag_strip != 0) {
5016 val64 = readq(&bar0->rx_pa_cfg);
5017 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5018 writeq(val64, &bar0->rx_pa_cfg);
5019 sp->vlan_strip_flag = 1;
5020 }
5021
5022 val64 = readq(&bar0->mac_cfg);
5023 sp->promisc_flg = 0;
5024 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5025 }
5026
5027 /* Update individual M_CAST address list */
5028 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5029 if (netdev_mc_count(dev) >
5030 (config->max_mc_addr - config->max_mac_addr)) {
5031 DBG_PRINT(ERR_DBG,
5032 "%s: No more Rx filters can be added - "
5033 "please enable ALL_MULTI instead\n",
5034 dev->name);
5035 return;
5036 }
5037
5038 prev_cnt = sp->mc_addr_count;
5039 sp->mc_addr_count = netdev_mc_count(dev);
5040
5041 /* Clear out the previous list of Mc in the H/W. */
5042 for (i = 0; i < prev_cnt; i++) {
5043 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5044 &bar0->rmac_addr_data0_mem);
5045 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5046 &bar0->rmac_addr_data1_mem);
5047 val64 = RMAC_ADDR_CMD_MEM_WE |
5048 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5049 RMAC_ADDR_CMD_MEM_OFFSET
5050 (config->mc_start_offset + i);
5051 writeq(val64, &bar0->rmac_addr_cmd_mem);
5052
5053 /* Wait for command completes */
5054 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5055 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5056 S2IO_BIT_RESET)) {
5057 DBG_PRINT(ERR_DBG,
5058 "%s: Adding Multicasts failed\n",
5059 dev->name);
5060 return;
5061 }
5062 }
5063
5064 /* Create the new Rx filter list and update the same in H/W. */
5065 i = 0;
5066 netdev_for_each_mc_addr(ha, dev) {
5067 mac_addr = 0;
5068 for (j = 0; j < ETH_ALEN; j++) {
5069 mac_addr |= ha->addr[j];
5070 mac_addr <<= 8;
5071 }
5072 mac_addr >>= 8;
5073 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5074 &bar0->rmac_addr_data0_mem);
5075 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5076 &bar0->rmac_addr_data1_mem);
5077 val64 = RMAC_ADDR_CMD_MEM_WE |
5078 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5079 RMAC_ADDR_CMD_MEM_OFFSET
5080 (i + config->mc_start_offset);
5081 writeq(val64, &bar0->rmac_addr_cmd_mem);
5082
5083 /* Wait for command completes */
5084 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5085 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5086 S2IO_BIT_RESET)) {
5087 DBG_PRINT(ERR_DBG,
5088 "%s: Adding Multicasts failed\n",
5089 dev->name);
5090 return;
5091 }
5092 i++;
5093 }
5094 }
5095 }
5096
5097 /* read from CAM unicast & multicast addresses and store it in
5098 * def_mac_addr structure
5099 */
5100 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5101 {
5102 int offset;
5103 u64 mac_addr = 0x0;
5104 struct config_param *config = &sp->config;
5105
5106 /* store unicast & multicast mac addresses */
5107 for (offset = 0; offset < config->max_mc_addr; offset++) {
5108 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5109 /* if read fails disable the entry */
5110 if (mac_addr == FAILURE)
5111 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5112 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5113 }
5114 }
5115
5116 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5117 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5118 {
5119 int offset;
5120 struct config_param *config = &sp->config;
5121 /* restore unicast mac address */
5122 for (offset = 0; offset < config->max_mac_addr; offset++)
5123 do_s2io_prog_unicast(sp->dev,
5124 sp->def_mac_addr[offset].mac_addr);
5125
5126 /* restore multicast mac address */
5127 for (offset = config->mc_start_offset;
5128 offset < config->max_mc_addr; offset++)
5129 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5130 }
5131
5132 /* add a multicast MAC address to CAM */
5133 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5134 {
5135 int i;
5136 u64 mac_addr = 0;
5137 struct config_param *config = &sp->config;
5138
5139 for (i = 0; i < ETH_ALEN; i++) {
5140 mac_addr <<= 8;
5141 mac_addr |= addr[i];
5142 }
5143 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5144 return SUCCESS;
5145
5146 /* check if the multicast mac already preset in CAM */
5147 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5148 u64 tmp64;
5149 tmp64 = do_s2io_read_unicast_mc(sp, i);
5150 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5151 break;
5152
5153 if (tmp64 == mac_addr)
5154 return SUCCESS;
5155 }
5156 if (i == config->max_mc_addr) {
5157 DBG_PRINT(ERR_DBG,
5158 "CAM full no space left for multicast MAC\n");
5159 return FAILURE;
5160 }
5161 /* Update the internal structure with this new mac address */
5162 do_s2io_copy_mac_addr(sp, i, mac_addr);
5163
5164 return do_s2io_add_mac(sp, mac_addr, i);
5165 }
5166
5167 /* add MAC address to CAM */
5168 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5169 {
5170 u64 val64;
5171 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5172
5173 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5174 &bar0->rmac_addr_data0_mem);
5175
5176 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5177 RMAC_ADDR_CMD_MEM_OFFSET(off);
5178 writeq(val64, &bar0->rmac_addr_cmd_mem);
5179
5180 /* Wait till command completes */
5181 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5182 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5183 S2IO_BIT_RESET)) {
5184 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5185 return FAILURE;
5186 }
5187 return SUCCESS;
5188 }
5189 /* deletes a specified unicast/multicast mac entry from CAM */
5190 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5191 {
5192 int offset;
5193 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5194 struct config_param *config = &sp->config;
5195
5196 for (offset = 1;
5197 offset < config->max_mc_addr; offset++) {
5198 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5199 if (tmp64 == addr) {
5200 /* disable the entry by writing 0xffffffffffffULL */
5201 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5202 return FAILURE;
5203 /* store the new mac list from CAM */
5204 do_s2io_store_unicast_mc(sp);
5205 return SUCCESS;
5206 }
5207 }
5208 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5209 (unsigned long long)addr);
5210 return FAILURE;
5211 }
5212
5213 /* read mac entries from CAM */
5214 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5215 {
5216 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5217 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5218
5219 /* read mac addr */
5220 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5221 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5222 writeq(val64, &bar0->rmac_addr_cmd_mem);
5223
5224 /* Wait till command completes */
5225 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5226 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5227 S2IO_BIT_RESET)) {
5228 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5229 return FAILURE;
5230 }
5231 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5232
5233 return tmp64 >> 16;
5234 }
5235
5236 /**
5237 * s2io_set_mac_addr - driver entry point
5238 */
5239
5240 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5241 {
5242 struct sockaddr *addr = p;
5243
5244 if (!is_valid_ether_addr(addr->sa_data))
5245 return -EADDRNOTAVAIL;
5246
5247 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5248
5249 /* store the MAC address in CAM */
5250 return do_s2io_prog_unicast(dev, dev->dev_addr);
5251 }
5252 /**
5253 * do_s2io_prog_unicast - Programs the Xframe mac address
5254 * @dev : pointer to the device structure.
5255 * @addr: a uchar pointer to the new mac address which is to be set.
5256 * Description : This procedure will program the Xframe to receive
5257 * frames with new Mac Address
5258 * Return value: SUCCESS on success and an appropriate (-)ve integer
5259 * as defined in errno.h file on failure.
5260 */
5261
5262 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5263 {
5264 struct s2io_nic *sp = netdev_priv(dev);
5265 register u64 mac_addr = 0, perm_addr = 0;
5266 int i;
5267 u64 tmp64;
5268 struct config_param *config = &sp->config;
5269
5270 /*
5271 * Set the new MAC address as the new unicast filter and reflect this
5272 * change on the device address registered with the OS. It will be
5273 * at offset 0.
5274 */
5275 for (i = 0; i < ETH_ALEN; i++) {
5276 mac_addr <<= 8;
5277 mac_addr |= addr[i];
5278 perm_addr <<= 8;
5279 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5280 }
5281
5282 /* check if the dev_addr is different than perm_addr */
5283 if (mac_addr == perm_addr)
5284 return SUCCESS;
5285
5286 /* check if the mac already preset in CAM */
5287 for (i = 1; i < config->max_mac_addr; i++) {
5288 tmp64 = do_s2io_read_unicast_mc(sp, i);
5289 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5290 break;
5291
5292 if (tmp64 == mac_addr) {
5293 DBG_PRINT(INFO_DBG,
5294 "MAC addr:0x%llx already present in CAM\n",
5295 (unsigned long long)mac_addr);
5296 return SUCCESS;
5297 }
5298 }
5299 if (i == config->max_mac_addr) {
5300 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5301 return FAILURE;
5302 }
5303 /* Update the internal structure with this new mac address */
5304 do_s2io_copy_mac_addr(sp, i, mac_addr);
5305
5306 return do_s2io_add_mac(sp, mac_addr, i);
5307 }
5308
5309 /**
5310 * s2io_ethtool_sset - Sets different link parameters.
5311 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5312 * @info: pointer to the structure with parameters given by ethtool to set
5313 * link information.
5314 * Description:
5315 * The function sets different link parameters provided by the user onto
5316 * the NIC.
5317 * Return value:
5318 * 0 on success.
5319 */
5320
5321 static int s2io_ethtool_sset(struct net_device *dev,
5322 struct ethtool_cmd *info)
5323 {
5324 struct s2io_nic *sp = netdev_priv(dev);
5325 if ((info->autoneg == AUTONEG_ENABLE) ||
5326 (ethtool_cmd_speed(info) != SPEED_10000) ||
5327 (info->duplex != DUPLEX_FULL))
5328 return -EINVAL;
5329 else {
5330 s2io_close(sp->dev);
5331 s2io_open(sp->dev);
5332 }
5333
5334 return 0;
5335 }
5336
5337 /**
5338 * s2io_ethtol_gset - Return link specific information.
5339 * @sp : private member of the device structure, pointer to the
5340 * s2io_nic structure.
5341 * @info : pointer to the structure with parameters given by ethtool
5342 * to return link information.
5343 * Description:
5344 * Returns link specific information like speed, duplex etc.. to ethtool.
5345 * Return value :
5346 * return 0 on success.
5347 */
5348
5349 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5350 {
5351 struct s2io_nic *sp = netdev_priv(dev);
5352 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5353 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5354 info->port = PORT_FIBRE;
5355
5356 /* info->transceiver */
5357 info->transceiver = XCVR_EXTERNAL;
5358
5359 if (netif_carrier_ok(sp->dev)) {
5360 ethtool_cmd_speed_set(info, SPEED_10000);
5361 info->duplex = DUPLEX_FULL;
5362 } else {
5363 ethtool_cmd_speed_set(info, SPEED_UNKNOWN);
5364 info->duplex = DUPLEX_UNKNOWN;
5365 }
5366
5367 info->autoneg = AUTONEG_DISABLE;
5368 return 0;
5369 }
5370
5371 /**
5372 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5373 * @sp : private member of the device structure, which is a pointer to the
5374 * s2io_nic structure.
5375 * @info : pointer to the structure with parameters given by ethtool to
5376 * return driver information.
5377 * Description:
5378 * Returns driver specefic information like name, version etc.. to ethtool.
5379 * Return value:
5380 * void
5381 */
5382
5383 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5384 struct ethtool_drvinfo *info)
5385 {
5386 struct s2io_nic *sp = netdev_priv(dev);
5387
5388 strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5389 strlcpy(info->version, s2io_driver_version, sizeof(info->version));
5390 strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5391 info->regdump_len = XENA_REG_SPACE;
5392 info->eedump_len = XENA_EEPROM_SPACE;
5393 }
5394
5395 /**
5396 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5397 * @sp: private member of the device structure, which is a pointer to the
5398 * s2io_nic structure.
5399 * @regs : pointer to the structure with parameters given by ethtool for
5400 * dumping the registers.
5401 * @reg_space: The input argumnet into which all the registers are dumped.
5402 * Description:
5403 * Dumps the entire register space of xFrame NIC into the user given
5404 * buffer area.
5405 * Return value :
5406 * void .
5407 */
5408
5409 static void s2io_ethtool_gregs(struct net_device *dev,
5410 struct ethtool_regs *regs, void *space)
5411 {
5412 int i;
5413 u64 reg;
5414 u8 *reg_space = (u8 *)space;
5415 struct s2io_nic *sp = netdev_priv(dev);
5416
5417 regs->len = XENA_REG_SPACE;
5418 regs->version = sp->pdev->subsystem_device;
5419
5420 for (i = 0; i < regs->len; i += 8) {
5421 reg = readq(sp->bar0 + i);
5422 memcpy((reg_space + i), &reg, 8);
5423 }
5424 }
5425
5426 /*
5427 * s2io_set_led - control NIC led
5428 */
5429 static void s2io_set_led(struct s2io_nic *sp, bool on)
5430 {
5431 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5432 u16 subid = sp->pdev->subsystem_device;
5433 u64 val64;
5434
5435 if ((sp->device_type == XFRAME_II_DEVICE) ||
5436 ((subid & 0xFF) >= 0x07)) {
5437 val64 = readq(&bar0->gpio_control);
5438 if (on)
5439 val64 |= GPIO_CTRL_GPIO_0;
5440 else
5441 val64 &= ~GPIO_CTRL_GPIO_0;
5442
5443 writeq(val64, &bar0->gpio_control);
5444 } else {
5445 val64 = readq(&bar0->adapter_control);
5446 if (on)
5447 val64 |= ADAPTER_LED_ON;
5448 else
5449 val64 &= ~ADAPTER_LED_ON;
5450
5451 writeq(val64, &bar0->adapter_control);
5452 }
5453
5454 }
5455
5456 /**
5457 * s2io_ethtool_set_led - To physically identify the nic on the system.
5458 * @dev : network device
5459 * @state: led setting
5460 *
5461 * Description: Used to physically identify the NIC on the system.
5462 * The Link LED will blink for a time specified by the user for
5463 * identification.
5464 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5465 * identification is possible only if it's link is up.
5466 */
5467
5468 static int s2io_ethtool_set_led(struct net_device *dev,
5469 enum ethtool_phys_id_state state)
5470 {
5471 struct s2io_nic *sp = netdev_priv(dev);
5472 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5473 u16 subid = sp->pdev->subsystem_device;
5474
5475 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5476 u64 val64 = readq(&bar0->adapter_control);
5477 if (!(val64 & ADAPTER_CNTL_EN)) {
5478 pr_err("Adapter Link down, cannot blink LED\n");
5479 return -EAGAIN;
5480 }
5481 }
5482
5483 switch (state) {
5484 case ETHTOOL_ID_ACTIVE:
5485 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5486 return 1; /* cycle on/off once per second */
5487
5488 case ETHTOOL_ID_ON:
5489 s2io_set_led(sp, true);
5490 break;
5491
5492 case ETHTOOL_ID_OFF:
5493 s2io_set_led(sp, false);
5494 break;
5495
5496 case ETHTOOL_ID_INACTIVE:
5497 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5498 writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5499 }
5500
5501 return 0;
5502 }
5503
5504 static void s2io_ethtool_gringparam(struct net_device *dev,
5505 struct ethtool_ringparam *ering)
5506 {
5507 struct s2io_nic *sp = netdev_priv(dev);
5508 int i, tx_desc_count = 0, rx_desc_count = 0;
5509
5510 if (sp->rxd_mode == RXD_MODE_1) {
5511 ering->rx_max_pending = MAX_RX_DESC_1;
5512 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5513 } else {
5514 ering->rx_max_pending = MAX_RX_DESC_2;
5515 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5516 }
5517
5518 ering->tx_max_pending = MAX_TX_DESC;
5519
5520 for (i = 0; i < sp->config.rx_ring_num; i++)
5521 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5522 ering->rx_pending = rx_desc_count;
5523 ering->rx_jumbo_pending = rx_desc_count;
5524
5525 for (i = 0; i < sp->config.tx_fifo_num; i++)
5526 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5527 ering->tx_pending = tx_desc_count;
5528 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5529 }
5530
5531 /**
5532 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5533 * @sp : private member of the device structure, which is a pointer to the
5534 * s2io_nic structure.
5535 * @ep : pointer to the structure with pause parameters given by ethtool.
5536 * Description:
5537 * Returns the Pause frame generation and reception capability of the NIC.
5538 * Return value:
5539 * void
5540 */
5541 static void s2io_ethtool_getpause_data(struct net_device *dev,
5542 struct ethtool_pauseparam *ep)
5543 {
5544 u64 val64;
5545 struct s2io_nic *sp = netdev_priv(dev);
5546 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5547
5548 val64 = readq(&bar0->rmac_pause_cfg);
5549 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5550 ep->tx_pause = true;
5551 if (val64 & RMAC_PAUSE_RX_ENABLE)
5552 ep->rx_pause = true;
5553 ep->autoneg = false;
5554 }
5555
5556 /**
5557 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5558 * @sp : private member of the device structure, which is a pointer to the
5559 * s2io_nic structure.
5560 * @ep : pointer to the structure with pause parameters given by ethtool.
5561 * Description:
5562 * It can be used to set or reset Pause frame generation or reception
5563 * support of the NIC.
5564 * Return value:
5565 * int, returns 0 on Success
5566 */
5567
5568 static int s2io_ethtool_setpause_data(struct net_device *dev,
5569 struct ethtool_pauseparam *ep)
5570 {
5571 u64 val64;
5572 struct s2io_nic *sp = netdev_priv(dev);
5573 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5574
5575 val64 = readq(&bar0->rmac_pause_cfg);
5576 if (ep->tx_pause)
5577 val64 |= RMAC_PAUSE_GEN_ENABLE;
5578 else
5579 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5580 if (ep->rx_pause)
5581 val64 |= RMAC_PAUSE_RX_ENABLE;
5582 else
5583 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5584 writeq(val64, &bar0->rmac_pause_cfg);
5585 return 0;
5586 }
5587
5588 /**
5589 * read_eeprom - reads 4 bytes of data from user given offset.
5590 * @sp : private member of the device structure, which is a pointer to the
5591 * s2io_nic structure.
5592 * @off : offset at which the data must be written
5593 * @data : Its an output parameter where the data read at the given
5594 * offset is stored.
5595 * Description:
5596 * Will read 4 bytes of data from the user given offset and return the
5597 * read data.
5598 * NOTE: Will allow to read only part of the EEPROM visible through the
5599 * I2C bus.
5600 * Return value:
5601 * -1 on failure and 0 on success.
5602 */
5603
5604 #define S2IO_DEV_ID 5
5605 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5606 {
5607 int ret = -1;
5608 u32 exit_cnt = 0;
5609 u64 val64;
5610 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5611
5612 if (sp->device_type == XFRAME_I_DEVICE) {
5613 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5614 I2C_CONTROL_ADDR(off) |
5615 I2C_CONTROL_BYTE_CNT(0x3) |
5616 I2C_CONTROL_READ |
5617 I2C_CONTROL_CNTL_START;
5618 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5619
5620 while (exit_cnt < 5) {
5621 val64 = readq(&bar0->i2c_control);
5622 if (I2C_CONTROL_CNTL_END(val64)) {
5623 *data = I2C_CONTROL_GET_DATA(val64);
5624 ret = 0;
5625 break;
5626 }
5627 msleep(50);
5628 exit_cnt++;
5629 }
5630 }
5631
5632 if (sp->device_type == XFRAME_II_DEVICE) {
5633 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5634 SPI_CONTROL_BYTECNT(0x3) |
5635 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5636 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5637 val64 |= SPI_CONTROL_REQ;
5638 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5639 while (exit_cnt < 5) {
5640 val64 = readq(&bar0->spi_control);
5641 if (val64 & SPI_CONTROL_NACK) {
5642 ret = 1;
5643 break;
5644 } else if (val64 & SPI_CONTROL_DONE) {
5645 *data = readq(&bar0->spi_data);
5646 *data &= 0xffffff;
5647 ret = 0;
5648 break;
5649 }
5650 msleep(50);
5651 exit_cnt++;
5652 }
5653 }
5654 return ret;
5655 }
5656
5657 /**
5658 * write_eeprom - actually writes the relevant part of the data value.
5659 * @sp : private member of the device structure, which is a pointer to the
5660 * s2io_nic structure.
5661 * @off : offset at which the data must be written
5662 * @data : The data that is to be written
5663 * @cnt : Number of bytes of the data that are actually to be written into
5664 * the Eeprom. (max of 3)
5665 * Description:
5666 * Actually writes the relevant part of the data value into the Eeprom
5667 * through the I2C bus.
5668 * Return value:
5669 * 0 on success, -1 on failure.
5670 */
5671
5672 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5673 {
5674 int exit_cnt = 0, ret = -1;
5675 u64 val64;
5676 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5677
5678 if (sp->device_type == XFRAME_I_DEVICE) {
5679 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5680 I2C_CONTROL_ADDR(off) |
5681 I2C_CONTROL_BYTE_CNT(cnt) |
5682 I2C_CONTROL_SET_DATA((u32)data) |
5683 I2C_CONTROL_CNTL_START;
5684 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5685
5686 while (exit_cnt < 5) {
5687 val64 = readq(&bar0->i2c_control);
5688 if (I2C_CONTROL_CNTL_END(val64)) {
5689 if (!(val64 & I2C_CONTROL_NACK))
5690 ret = 0;
5691 break;
5692 }
5693 msleep(50);
5694 exit_cnt++;
5695 }
5696 }
5697
5698 if (sp->device_type == XFRAME_II_DEVICE) {
5699 int write_cnt = (cnt == 8) ? 0 : cnt;
5700 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5701
5702 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5703 SPI_CONTROL_BYTECNT(write_cnt) |
5704 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5705 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5706 val64 |= SPI_CONTROL_REQ;
5707 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5708 while (exit_cnt < 5) {
5709 val64 = readq(&bar0->spi_control);
5710 if (val64 & SPI_CONTROL_NACK) {
5711 ret = 1;
5712 break;
5713 } else if (val64 & SPI_CONTROL_DONE) {
5714 ret = 0;
5715 break;
5716 }
5717 msleep(50);
5718 exit_cnt++;
5719 }
5720 }
5721 return ret;
5722 }
5723 static void s2io_vpd_read(struct s2io_nic *nic)
5724 {
5725 u8 *vpd_data;
5726 u8 data;
5727 int i = 0, cnt, len, fail = 0;
5728 int vpd_addr = 0x80;
5729 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5730
5731 if (nic->device_type == XFRAME_II_DEVICE) {
5732 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5733 vpd_addr = 0x80;
5734 } else {
5735 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5736 vpd_addr = 0x50;
5737 }
5738 strcpy(nic->serial_num, "NOT AVAILABLE");
5739
5740 vpd_data = kmalloc(256, GFP_KERNEL);
5741 if (!vpd_data) {
5742 swstats->mem_alloc_fail_cnt++;
5743 return;
5744 }
5745 swstats->mem_allocated += 256;
5746
5747 for (i = 0; i < 256; i += 4) {
5748 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5749 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5750 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5751 for (cnt = 0; cnt < 5; cnt++) {
5752 msleep(2);
5753 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5754 if (data == 0x80)
5755 break;
5756 }
5757 if (cnt >= 5) {
5758 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5759 fail = 1;
5760 break;
5761 }
5762 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5763 (u32 *)&vpd_data[i]);
5764 }
5765
5766 if (!fail) {
5767 /* read serial number of adapter */
5768 for (cnt = 0; cnt < 252; cnt++) {
5769 if ((vpd_data[cnt] == 'S') &&
5770 (vpd_data[cnt+1] == 'N')) {
5771 len = vpd_data[cnt+2];
5772 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5773 memcpy(nic->serial_num,
5774 &vpd_data[cnt + 3],
5775 len);
5776 memset(nic->serial_num+len,
5777 0,
5778 VPD_STRING_LEN-len);
5779 break;
5780 }
5781 }
5782 }
5783 }
5784
5785 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5786 len = vpd_data[1];
5787 memcpy(nic->product_name, &vpd_data[3], len);
5788 nic->product_name[len] = 0;
5789 }
5790 kfree(vpd_data);
5791 swstats->mem_freed += 256;
5792 }
5793
5794 /**
5795 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5796 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5797 * @eeprom : pointer to the user level structure provided by ethtool,
5798 * containing all relevant information.
5799 * @data_buf : user defined value to be written into Eeprom.
5800 * Description: Reads the values stored in the Eeprom at given offset
5801 * for a given length. Stores these values int the input argument data
5802 * buffer 'data_buf' and returns these to the caller (ethtool.)
5803 * Return value:
5804 * int 0 on success
5805 */
5806
5807 static int s2io_ethtool_geeprom(struct net_device *dev,
5808 struct ethtool_eeprom *eeprom, u8 * data_buf)
5809 {
5810 u32 i, valid;
5811 u64 data;
5812 struct s2io_nic *sp = netdev_priv(dev);
5813
5814 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5815
5816 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5817 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5818
5819 for (i = 0; i < eeprom->len; i += 4) {
5820 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5821 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5822 return -EFAULT;
5823 }
5824 valid = INV(data);
5825 memcpy((data_buf + i), &valid, 4);
5826 }
5827 return 0;
5828 }
5829
5830 /**
5831 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5832 * @sp : private member of the device structure, which is a pointer to the
5833 * s2io_nic structure.
5834 * @eeprom : pointer to the user level structure provided by ethtool,
5835 * containing all relevant information.
5836 * @data_buf ; user defined value to be written into Eeprom.
5837 * Description:
5838 * Tries to write the user provided value in the Eeprom, at the offset
5839 * given by the user.
5840 * Return value:
5841 * 0 on success, -EFAULT on failure.
5842 */
5843
5844 static int s2io_ethtool_seeprom(struct net_device *dev,
5845 struct ethtool_eeprom *eeprom,
5846 u8 *data_buf)
5847 {
5848 int len = eeprom->len, cnt = 0;
5849 u64 valid = 0, data;
5850 struct s2io_nic *sp = netdev_priv(dev);
5851
5852 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5853 DBG_PRINT(ERR_DBG,
5854 "ETHTOOL_WRITE_EEPROM Err: "
5855 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5856 (sp->pdev->vendor | (sp->pdev->device << 16)),
5857 eeprom->magic);
5858 return -EFAULT;
5859 }
5860
5861 while (len) {
5862 data = (u32)data_buf[cnt] & 0x000000FF;
5863 if (data)
5864 valid = (u32)(data << 24);
5865 else
5866 valid = data;
5867
5868 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5869 DBG_PRINT(ERR_DBG,
5870 "ETHTOOL_WRITE_EEPROM Err: "
5871 "Cannot write into the specified offset\n");
5872 return -EFAULT;
5873 }
5874 cnt++;
5875 len--;
5876 }
5877
5878 return 0;
5879 }
5880
5881 /**
5882 * s2io_register_test - reads and writes into all clock domains.
5883 * @sp : private member of the device structure, which is a pointer to the
5884 * s2io_nic structure.
5885 * @data : variable that returns the result of each of the test conducted b
5886 * by the driver.
5887 * Description:
5888 * Read and write into all clock domains. The NIC has 3 clock domains,
5889 * see that registers in all the three regions are accessible.
5890 * Return value:
5891 * 0 on success.
5892 */
5893
5894 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5895 {
5896 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5897 u64 val64 = 0, exp_val;
5898 int fail = 0;
5899
5900 val64 = readq(&bar0->pif_rd_swapper_fb);
5901 if (val64 != 0x123456789abcdefULL) {
5902 fail = 1;
5903 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5904 }
5905
5906 val64 = readq(&bar0->rmac_pause_cfg);
5907 if (val64 != 0xc000ffff00000000ULL) {
5908 fail = 1;
5909 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5910 }
5911
5912 val64 = readq(&bar0->rx_queue_cfg);
5913 if (sp->device_type == XFRAME_II_DEVICE)
5914 exp_val = 0x0404040404040404ULL;
5915 else
5916 exp_val = 0x0808080808080808ULL;
5917 if (val64 != exp_val) {
5918 fail = 1;
5919 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5920 }
5921
5922 val64 = readq(&bar0->xgxs_efifo_cfg);
5923 if (val64 != 0x000000001923141EULL) {
5924 fail = 1;
5925 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5926 }
5927
5928 val64 = 0x5A5A5A5A5A5A5A5AULL;
5929 writeq(val64, &bar0->xmsi_data);
5930 val64 = readq(&bar0->xmsi_data);
5931 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5932 fail = 1;
5933 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5934 }
5935
5936 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5937 writeq(val64, &bar0->xmsi_data);
5938 val64 = readq(&bar0->xmsi_data);
5939 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5940 fail = 1;
5941 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5942 }
5943
5944 *data = fail;
5945 return fail;
5946 }
5947
5948 /**
5949 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5950 * @sp : private member of the device structure, which is a pointer to the
5951 * s2io_nic structure.
5952 * @data:variable that returns the result of each of the test conducted by
5953 * the driver.
5954 * Description:
5955 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5956 * register.
5957 * Return value:
5958 * 0 on success.
5959 */
5960
5961 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5962 {
5963 int fail = 0;
5964 u64 ret_data, org_4F0, org_7F0;
5965 u8 saved_4F0 = 0, saved_7F0 = 0;
5966 struct net_device *dev = sp->dev;
5967
5968 /* Test Write Error at offset 0 */
5969 /* Note that SPI interface allows write access to all areas
5970 * of EEPROM. Hence doing all negative testing only for Xframe I.
5971 */
5972 if (sp->device_type == XFRAME_I_DEVICE)
5973 if (!write_eeprom(sp, 0, 0, 3))
5974 fail = 1;
5975
5976 /* Save current values at offsets 0x4F0 and 0x7F0 */
5977 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5978 saved_4F0 = 1;
5979 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5980 saved_7F0 = 1;
5981
5982 /* Test Write at offset 4f0 */
5983 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5984 fail = 1;
5985 if (read_eeprom(sp, 0x4F0, &ret_data))
5986 fail = 1;
5987
5988 if (ret_data != 0x012345) {
5989 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5990 "Data written %llx Data read %llx\n",
5991 dev->name, (unsigned long long)0x12345,
5992 (unsigned long long)ret_data);
5993 fail = 1;
5994 }
5995
5996 /* Reset the EEPROM data go FFFF */
5997 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5998
5999 /* Test Write Request Error at offset 0x7c */
6000 if (sp->device_type == XFRAME_I_DEVICE)
6001 if (!write_eeprom(sp, 0x07C, 0, 3))
6002 fail = 1;
6003
6004 /* Test Write Request at offset 0x7f0 */
6005 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6006 fail = 1;
6007 if (read_eeprom(sp, 0x7F0, &ret_data))
6008 fail = 1;
6009
6010 if (ret_data != 0x012345) {
6011 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6012 "Data written %llx Data read %llx\n",
6013 dev->name, (unsigned long long)0x12345,
6014 (unsigned long long)ret_data);
6015 fail = 1;
6016 }
6017
6018 /* Reset the EEPROM data go FFFF */
6019 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6020
6021 if (sp->device_type == XFRAME_I_DEVICE) {
6022 /* Test Write Error at offset 0x80 */
6023 if (!write_eeprom(sp, 0x080, 0, 3))
6024 fail = 1;
6025
6026 /* Test Write Error at offset 0xfc */
6027 if (!write_eeprom(sp, 0x0FC, 0, 3))
6028 fail = 1;
6029
6030 /* Test Write Error at offset 0x100 */
6031 if (!write_eeprom(sp, 0x100, 0, 3))
6032 fail = 1;
6033
6034 /* Test Write Error at offset 4ec */
6035 if (!write_eeprom(sp, 0x4EC, 0, 3))
6036 fail = 1;
6037 }
6038
6039 /* Restore values at offsets 0x4F0 and 0x7F0 */
6040 if (saved_4F0)
6041 write_eeprom(sp, 0x4F0, org_4F0, 3);
6042 if (saved_7F0)
6043 write_eeprom(sp, 0x7F0, org_7F0, 3);
6044
6045 *data = fail;
6046 return fail;
6047 }
6048
6049 /**
6050 * s2io_bist_test - invokes the MemBist test of the card .
6051 * @sp : private member of the device structure, which is a pointer to the
6052 * s2io_nic structure.
6053 * @data:variable that returns the result of each of the test conducted by
6054 * the driver.
6055 * Description:
6056 * This invokes the MemBist test of the card. We give around
6057 * 2 secs time for the Test to complete. If it's still not complete
6058 * within this peiod, we consider that the test failed.
6059 * Return value:
6060 * 0 on success and -1 on failure.
6061 */
6062
6063 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6064 {
6065 u8 bist = 0;
6066 int cnt = 0, ret = -1;
6067
6068 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6069 bist |= PCI_BIST_START;
6070 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6071
6072 while (cnt < 20) {
6073 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6074 if (!(bist & PCI_BIST_START)) {
6075 *data = (bist & PCI_BIST_CODE_MASK);
6076 ret = 0;
6077 break;
6078 }
6079 msleep(100);
6080 cnt++;
6081 }
6082
6083 return ret;
6084 }
6085
6086 /**
6087 * s2io_link_test - verifies the link state of the nic
6088 * @sp ; private member of the device structure, which is a pointer to the
6089 * s2io_nic structure.
6090 * @data: variable that returns the result of each of the test conducted by
6091 * the driver.
6092 * Description:
6093 * The function verifies the link state of the NIC and updates the input
6094 * argument 'data' appropriately.
6095 * Return value:
6096 * 0 on success.
6097 */
6098
6099 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6100 {
6101 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6102 u64 val64;
6103
6104 val64 = readq(&bar0->adapter_status);
6105 if (!(LINK_IS_UP(val64)))
6106 *data = 1;
6107 else
6108 *data = 0;
6109
6110 return *data;
6111 }
6112
6113 /**
6114 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6115 * @sp: private member of the device structure, which is a pointer to the
6116 * s2io_nic structure.
6117 * @data: variable that returns the result of each of the test
6118 * conducted by the driver.
6119 * Description:
6120 * This is one of the offline test that tests the read and write
6121 * access to the RldRam chip on the NIC.
6122 * Return value:
6123 * 0 on success.
6124 */
6125
6126 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6127 {
6128 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6129 u64 val64;
6130 int cnt, iteration = 0, test_fail = 0;
6131
6132 val64 = readq(&bar0->adapter_control);
6133 val64 &= ~ADAPTER_ECC_EN;
6134 writeq(val64, &bar0->adapter_control);
6135
6136 val64 = readq(&bar0->mc_rldram_test_ctrl);
6137 val64 |= MC_RLDRAM_TEST_MODE;
6138 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6139
6140 val64 = readq(&bar0->mc_rldram_mrs);
6141 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6142 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6143
6144 val64 |= MC_RLDRAM_MRS_ENABLE;
6145 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6146
6147 while (iteration < 2) {
6148 val64 = 0x55555555aaaa0000ULL;
6149 if (iteration == 1)
6150 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6151 writeq(val64, &bar0->mc_rldram_test_d0);
6152
6153 val64 = 0xaaaa5a5555550000ULL;
6154 if (iteration == 1)
6155 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6156 writeq(val64, &bar0->mc_rldram_test_d1);
6157
6158 val64 = 0x55aaaaaaaa5a0000ULL;
6159 if (iteration == 1)
6160 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6161 writeq(val64, &bar0->mc_rldram_test_d2);
6162
6163 val64 = (u64) (0x0000003ffffe0100ULL);
6164 writeq(val64, &bar0->mc_rldram_test_add);
6165
6166 val64 = MC_RLDRAM_TEST_MODE |
6167 MC_RLDRAM_TEST_WRITE |
6168 MC_RLDRAM_TEST_GO;
6169 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6170
6171 for (cnt = 0; cnt < 5; cnt++) {
6172 val64 = readq(&bar0->mc_rldram_test_ctrl);
6173 if (val64 & MC_RLDRAM_TEST_DONE)
6174 break;
6175 msleep(200);
6176 }
6177
6178 if (cnt == 5)
6179 break;
6180
6181 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6182 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6183
6184 for (cnt = 0; cnt < 5; cnt++) {
6185 val64 = readq(&bar0->mc_rldram_test_ctrl);
6186 if (val64 & MC_RLDRAM_TEST_DONE)
6187 break;
6188 msleep(500);
6189 }
6190
6191 if (cnt == 5)
6192 break;
6193
6194 val64 = readq(&bar0->mc_rldram_test_ctrl);
6195 if (!(val64 & MC_RLDRAM_TEST_PASS))
6196 test_fail = 1;
6197
6198 iteration++;
6199 }
6200
6201 *data = test_fail;
6202
6203 /* Bring the adapter out of test mode */
6204 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6205
6206 return test_fail;
6207 }
6208
6209 /**
6210 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6211 * @sp : private member of the device structure, which is a pointer to the
6212 * s2io_nic structure.
6213 * @ethtest : pointer to a ethtool command specific structure that will be
6214 * returned to the user.
6215 * @data : variable that returns the result of each of the test
6216 * conducted by the driver.
6217 * Description:
6218 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6219 * the health of the card.
6220 * Return value:
6221 * void
6222 */
6223
6224 static void s2io_ethtool_test(struct net_device *dev,
6225 struct ethtool_test *ethtest,
6226 uint64_t *data)
6227 {
6228 struct s2io_nic *sp = netdev_priv(dev);
6229 int orig_state = netif_running(sp->dev);
6230
6231 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6232 /* Offline Tests. */
6233 if (orig_state)
6234 s2io_close(sp->dev);
6235
6236 if (s2io_register_test(sp, &data[0]))
6237 ethtest->flags |= ETH_TEST_FL_FAILED;
6238
6239 s2io_reset(sp);
6240
6241 if (s2io_rldram_test(sp, &data[3]))
6242 ethtest->flags |= ETH_TEST_FL_FAILED;
6243
6244 s2io_reset(sp);
6245
6246 if (s2io_eeprom_test(sp, &data[1]))
6247 ethtest->flags |= ETH_TEST_FL_FAILED;
6248
6249 if (s2io_bist_test(sp, &data[4]))
6250 ethtest->flags |= ETH_TEST_FL_FAILED;
6251
6252 if (orig_state)
6253 s2io_open(sp->dev);
6254
6255 data[2] = 0;
6256 } else {
6257 /* Online Tests. */
6258 if (!orig_state) {
6259 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6260 dev->name);
6261 data[0] = -1;
6262 data[1] = -1;
6263 data[2] = -1;
6264 data[3] = -1;
6265 data[4] = -1;
6266 }
6267
6268 if (s2io_link_test(sp, &data[2]))
6269 ethtest->flags |= ETH_TEST_FL_FAILED;
6270
6271 data[0] = 0;
6272 data[1] = 0;
6273 data[3] = 0;
6274 data[4] = 0;
6275 }
6276 }
6277
6278 static void s2io_get_ethtool_stats(struct net_device *dev,
6279 struct ethtool_stats *estats,
6280 u64 *tmp_stats)
6281 {
6282 int i = 0, k;
6283 struct s2io_nic *sp = netdev_priv(dev);
6284 struct stat_block *stats = sp->mac_control.stats_info;
6285 struct swStat *swstats = &stats->sw_stat;
6286 struct xpakStat *xstats = &stats->xpak_stat;
6287
6288 s2io_updt_stats(sp);
6289 tmp_stats[i++] =
6290 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6291 le32_to_cpu(stats->tmac_frms);
6292 tmp_stats[i++] =
6293 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6294 le32_to_cpu(stats->tmac_data_octets);
6295 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6296 tmp_stats[i++] =
6297 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6298 le32_to_cpu(stats->tmac_mcst_frms);
6299 tmp_stats[i++] =
6300 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6301 le32_to_cpu(stats->tmac_bcst_frms);
6302 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6303 tmp_stats[i++] =
6304 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6305 le32_to_cpu(stats->tmac_ttl_octets);
6306 tmp_stats[i++] =
6307 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6308 le32_to_cpu(stats->tmac_ucst_frms);
6309 tmp_stats[i++] =
6310 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6311 le32_to_cpu(stats->tmac_nucst_frms);
6312 tmp_stats[i++] =
6313 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6314 le32_to_cpu(stats->tmac_any_err_frms);
6315 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6316 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6317 tmp_stats[i++] =
6318 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6319 le32_to_cpu(stats->tmac_vld_ip);
6320 tmp_stats[i++] =
6321 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6322 le32_to_cpu(stats->tmac_drop_ip);
6323 tmp_stats[i++] =
6324 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6325 le32_to_cpu(stats->tmac_icmp);
6326 tmp_stats[i++] =
6327 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6328 le32_to_cpu(stats->tmac_rst_tcp);
6329 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6330 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6331 le32_to_cpu(stats->tmac_udp);
6332 tmp_stats[i++] =
6333 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6334 le32_to_cpu(stats->rmac_vld_frms);
6335 tmp_stats[i++] =
6336 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6337 le32_to_cpu(stats->rmac_data_octets);
6338 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6339 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6340 tmp_stats[i++] =
6341 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6342 le32_to_cpu(stats->rmac_vld_mcst_frms);
6343 tmp_stats[i++] =
6344 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6345 le32_to_cpu(stats->rmac_vld_bcst_frms);
6346 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6347 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6348 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6349 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6350 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6351 tmp_stats[i++] =
6352 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6353 le32_to_cpu(stats->rmac_ttl_octets);
6354 tmp_stats[i++] =
6355 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6356 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6357 tmp_stats[i++] =
6358 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6359 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6360 tmp_stats[i++] =
6361 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6362 le32_to_cpu(stats->rmac_discarded_frms);
6363 tmp_stats[i++] =
6364 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6365 << 32 | le32_to_cpu(stats->rmac_drop_events);
6366 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6367 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6368 tmp_stats[i++] =
6369 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6370 le32_to_cpu(stats->rmac_usized_frms);
6371 tmp_stats[i++] =
6372 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6373 le32_to_cpu(stats->rmac_osized_frms);
6374 tmp_stats[i++] =
6375 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6376 le32_to_cpu(stats->rmac_frag_frms);
6377 tmp_stats[i++] =
6378 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6379 le32_to_cpu(stats->rmac_jabber_frms);
6380 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6381 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6382 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6383 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6384 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6385 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6386 tmp_stats[i++] =
6387 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6388 le32_to_cpu(stats->rmac_ip);
6389 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6390 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6391 tmp_stats[i++] =
6392 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6393 le32_to_cpu(stats->rmac_drop_ip);
6394 tmp_stats[i++] =
6395 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6396 le32_to_cpu(stats->rmac_icmp);
6397 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6398 tmp_stats[i++] =
6399 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6400 le32_to_cpu(stats->rmac_udp);
6401 tmp_stats[i++] =
6402 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6403 le32_to_cpu(stats->rmac_err_drp_udp);
6404 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6405 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6406 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6407 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6408 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6409 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6410 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6411 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6412 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6413 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6414 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6415 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6416 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6417 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6418 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6419 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6420 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6421 tmp_stats[i++] =
6422 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6423 le32_to_cpu(stats->rmac_pause_cnt);
6424 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6425 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6426 tmp_stats[i++] =
6427 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6428 le32_to_cpu(stats->rmac_accepted_ip);
6429 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6430 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6431 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6432 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6433 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6434 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6435 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6436 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6437 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6438 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6439 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6440 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6441 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6442 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6443 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6444 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6445 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6446 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6447 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6448
6449 /* Enhanced statistics exist only for Hercules */
6450 if (sp->device_type == XFRAME_II_DEVICE) {
6451 tmp_stats[i++] =
6452 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6453 tmp_stats[i++] =
6454 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6455 tmp_stats[i++] =
6456 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6457 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6458 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6459 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6460 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6461 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6462 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6463 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6464 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6465 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6466 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6467 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6468 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6469 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6470 }
6471
6472 tmp_stats[i++] = 0;
6473 tmp_stats[i++] = swstats->single_ecc_errs;
6474 tmp_stats[i++] = swstats->double_ecc_errs;
6475 tmp_stats[i++] = swstats->parity_err_cnt;
6476 tmp_stats[i++] = swstats->serious_err_cnt;
6477 tmp_stats[i++] = swstats->soft_reset_cnt;
6478 tmp_stats[i++] = swstats->fifo_full_cnt;
6479 for (k = 0; k < MAX_RX_RINGS; k++)
6480 tmp_stats[i++] = swstats->ring_full_cnt[k];
6481 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6482 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6483 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6484 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6485 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6486 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6487 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6488 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6489 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6490 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6491 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6492 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6493 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6494 tmp_stats[i++] = swstats->sending_both;
6495 tmp_stats[i++] = swstats->outof_sequence_pkts;
6496 tmp_stats[i++] = swstats->flush_max_pkts;
6497 if (swstats->num_aggregations) {
6498 u64 tmp = swstats->sum_avg_pkts_aggregated;
6499 int count = 0;
6500 /*
6501 * Since 64-bit divide does not work on all platforms,
6502 * do repeated subtraction.
6503 */
6504 while (tmp >= swstats->num_aggregations) {
6505 tmp -= swstats->num_aggregations;
6506 count++;
6507 }
6508 tmp_stats[i++] = count;
6509 } else
6510 tmp_stats[i++] = 0;
6511 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6512 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6513 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6514 tmp_stats[i++] = swstats->mem_allocated;
6515 tmp_stats[i++] = swstats->mem_freed;
6516 tmp_stats[i++] = swstats->link_up_cnt;
6517 tmp_stats[i++] = swstats->link_down_cnt;
6518 tmp_stats[i++] = swstats->link_up_time;
6519 tmp_stats[i++] = swstats->link_down_time;
6520
6521 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6522 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6523 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6524 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6525 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6526
6527 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6528 tmp_stats[i++] = swstats->rx_abort_cnt;
6529 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6530 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6531 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6532 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6533 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6534 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6535 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6536 tmp_stats[i++] = swstats->tda_err_cnt;
6537 tmp_stats[i++] = swstats->pfc_err_cnt;
6538 tmp_stats[i++] = swstats->pcc_err_cnt;
6539 tmp_stats[i++] = swstats->tti_err_cnt;
6540 tmp_stats[i++] = swstats->tpa_err_cnt;
6541 tmp_stats[i++] = swstats->sm_err_cnt;
6542 tmp_stats[i++] = swstats->lso_err_cnt;
6543 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6544 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6545 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6546 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6547 tmp_stats[i++] = swstats->rc_err_cnt;
6548 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6549 tmp_stats[i++] = swstats->rpa_err_cnt;
6550 tmp_stats[i++] = swstats->rda_err_cnt;
6551 tmp_stats[i++] = swstats->rti_err_cnt;
6552 tmp_stats[i++] = swstats->mc_err_cnt;
6553 }
6554
6555 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6556 {
6557 return XENA_REG_SPACE;
6558 }
6559
6560
6561 static int s2io_get_eeprom_len(struct net_device *dev)
6562 {
6563 return XENA_EEPROM_SPACE;
6564 }
6565
6566 static int s2io_get_sset_count(struct net_device *dev, int sset)
6567 {
6568 struct s2io_nic *sp = netdev_priv(dev);
6569
6570 switch (sset) {
6571 case ETH_SS_TEST:
6572 return S2IO_TEST_LEN;
6573 case ETH_SS_STATS:
6574 switch (sp->device_type) {
6575 case XFRAME_I_DEVICE:
6576 return XFRAME_I_STAT_LEN;
6577 case XFRAME_II_DEVICE:
6578 return XFRAME_II_STAT_LEN;
6579 default:
6580 return 0;
6581 }
6582 default:
6583 return -EOPNOTSUPP;
6584 }
6585 }
6586
6587 static void s2io_ethtool_get_strings(struct net_device *dev,
6588 u32 stringset, u8 *data)
6589 {
6590 int stat_size = 0;
6591 struct s2io_nic *sp = netdev_priv(dev);
6592
6593 switch (stringset) {
6594 case ETH_SS_TEST:
6595 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6596 break;
6597 case ETH_SS_STATS:
6598 stat_size = sizeof(ethtool_xena_stats_keys);
6599 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6600 if (sp->device_type == XFRAME_II_DEVICE) {
6601 memcpy(data + stat_size,
6602 &ethtool_enhanced_stats_keys,
6603 sizeof(ethtool_enhanced_stats_keys));
6604 stat_size += sizeof(ethtool_enhanced_stats_keys);
6605 }
6606
6607 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6608 sizeof(ethtool_driver_stats_keys));
6609 }
6610 }
6611
6612 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6613 {
6614 struct s2io_nic *sp = netdev_priv(dev);
6615 netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6616
6617 if (changed && netif_running(dev)) {
6618 int rc;
6619
6620 s2io_stop_all_tx_queue(sp);
6621 s2io_card_down(sp);
6622 dev->features = features;
6623 rc = s2io_card_up(sp);
6624 if (rc)
6625 s2io_reset(sp);
6626 else
6627 s2io_start_all_tx_queue(sp);
6628
6629 return rc ? rc : 1;
6630 }
6631
6632 return 0;
6633 }
6634
6635 static const struct ethtool_ops netdev_ethtool_ops = {
6636 .get_settings = s2io_ethtool_gset,
6637 .set_settings = s2io_ethtool_sset,
6638 .get_drvinfo = s2io_ethtool_gdrvinfo,
6639 .get_regs_len = s2io_ethtool_get_regs_len,
6640 .get_regs = s2io_ethtool_gregs,
6641 .get_link = ethtool_op_get_link,
6642 .get_eeprom_len = s2io_get_eeprom_len,
6643 .get_eeprom = s2io_ethtool_geeprom,
6644 .set_eeprom = s2io_ethtool_seeprom,
6645 .get_ringparam = s2io_ethtool_gringparam,
6646 .get_pauseparam = s2io_ethtool_getpause_data,
6647 .set_pauseparam = s2io_ethtool_setpause_data,
6648 .self_test = s2io_ethtool_test,
6649 .get_strings = s2io_ethtool_get_strings,
6650 .set_phys_id = s2io_ethtool_set_led,
6651 .get_ethtool_stats = s2io_get_ethtool_stats,
6652 .get_sset_count = s2io_get_sset_count,
6653 };
6654
6655 /**
6656 * s2io_ioctl - Entry point for the Ioctl
6657 * @dev : Device pointer.
6658 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6659 * a proprietary structure used to pass information to the driver.
6660 * @cmd : This is used to distinguish between the different commands that
6661 * can be passed to the IOCTL functions.
6662 * Description:
6663 * Currently there are no special functionality supported in IOCTL, hence
6664 * function always return EOPNOTSUPPORTED
6665 */
6666
6667 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6668 {
6669 return -EOPNOTSUPP;
6670 }
6671
6672 /**
6673 * s2io_change_mtu - entry point to change MTU size for the device.
6674 * @dev : device pointer.
6675 * @new_mtu : the new MTU size for the device.
6676 * Description: A driver entry point to change MTU size for the device.
6677 * Before changing the MTU the device must be stopped.
6678 * Return value:
6679 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6680 * file on failure.
6681 */
6682
6683 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6684 {
6685 struct s2io_nic *sp = netdev_priv(dev);
6686 int ret = 0;
6687
6688 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6689 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6690 return -EPERM;
6691 }
6692
6693 dev->mtu = new_mtu;
6694 if (netif_running(dev)) {
6695 s2io_stop_all_tx_queue(sp);
6696 s2io_card_down(sp);
6697 ret = s2io_card_up(sp);
6698 if (ret) {
6699 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6700 __func__);
6701 return ret;
6702 }
6703 s2io_wake_all_tx_queue(sp);
6704 } else { /* Device is down */
6705 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6706 u64 val64 = new_mtu;
6707
6708 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6709 }
6710
6711 return ret;
6712 }
6713
6714 /**
6715 * s2io_set_link - Set the LInk status
6716 * @data: long pointer to device private structue
6717 * Description: Sets the link status for the adapter
6718 */
6719
6720 static void s2io_set_link(struct work_struct *work)
6721 {
6722 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6723 set_link_task);
6724 struct net_device *dev = nic->dev;
6725 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6726 register u64 val64;
6727 u16 subid;
6728
6729 rtnl_lock();
6730
6731 if (!netif_running(dev))
6732 goto out_unlock;
6733
6734 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6735 /* The card is being reset, no point doing anything */
6736 goto out_unlock;
6737 }
6738
6739 subid = nic->pdev->subsystem_device;
6740 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6741 /*
6742 * Allow a small delay for the NICs self initiated
6743 * cleanup to complete.
6744 */
6745 msleep(100);
6746 }
6747
6748 val64 = readq(&bar0->adapter_status);
6749 if (LINK_IS_UP(val64)) {
6750 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6751 if (verify_xena_quiescence(nic)) {
6752 val64 = readq(&bar0->adapter_control);
6753 val64 |= ADAPTER_CNTL_EN;
6754 writeq(val64, &bar0->adapter_control);
6755 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6756 nic->device_type, subid)) {
6757 val64 = readq(&bar0->gpio_control);
6758 val64 |= GPIO_CTRL_GPIO_0;
6759 writeq(val64, &bar0->gpio_control);
6760 val64 = readq(&bar0->gpio_control);
6761 } else {
6762 val64 |= ADAPTER_LED_ON;
6763 writeq(val64, &bar0->adapter_control);
6764 }
6765 nic->device_enabled_once = true;
6766 } else {
6767 DBG_PRINT(ERR_DBG,
6768 "%s: Error: device is not Quiescent\n",
6769 dev->name);
6770 s2io_stop_all_tx_queue(nic);
6771 }
6772 }
6773 val64 = readq(&bar0->adapter_control);
6774 val64 |= ADAPTER_LED_ON;
6775 writeq(val64, &bar0->adapter_control);
6776 s2io_link(nic, LINK_UP);
6777 } else {
6778 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6779 subid)) {
6780 val64 = readq(&bar0->gpio_control);
6781 val64 &= ~GPIO_CTRL_GPIO_0;
6782 writeq(val64, &bar0->gpio_control);
6783 val64 = readq(&bar0->gpio_control);
6784 }
6785 /* turn off LED */
6786 val64 = readq(&bar0->adapter_control);
6787 val64 = val64 & (~ADAPTER_LED_ON);
6788 writeq(val64, &bar0->adapter_control);
6789 s2io_link(nic, LINK_DOWN);
6790 }
6791 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6792
6793 out_unlock:
6794 rtnl_unlock();
6795 }
6796
6797 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6798 struct buffAdd *ba,
6799 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6800 u64 *temp2, int size)
6801 {
6802 struct net_device *dev = sp->dev;
6803 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6804
6805 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6806 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6807 /* allocate skb */
6808 if (*skb) {
6809 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6810 /*
6811 * As Rx frame are not going to be processed,
6812 * using same mapped address for the Rxd
6813 * buffer pointer
6814 */
6815 rxdp1->Buffer0_ptr = *temp0;
6816 } else {
6817 *skb = netdev_alloc_skb(dev, size);
6818 if (!(*skb)) {
6819 DBG_PRINT(INFO_DBG,
6820 "%s: Out of memory to allocate %s\n",
6821 dev->name, "1 buf mode SKBs");
6822 stats->mem_alloc_fail_cnt++;
6823 return -ENOMEM ;
6824 }
6825 stats->mem_allocated += (*skb)->truesize;
6826 /* storing the mapped addr in a temp variable
6827 * such it will be used for next rxd whose
6828 * Host Control is NULL
6829 */
6830 rxdp1->Buffer0_ptr = *temp0 =
6831 pci_map_single(sp->pdev, (*skb)->data,
6832 size - NET_IP_ALIGN,
6833 PCI_DMA_FROMDEVICE);
6834 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6835 goto memalloc_failed;
6836 rxdp->Host_Control = (unsigned long) (*skb);
6837 }
6838 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6839 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6840 /* Two buffer Mode */
6841 if (*skb) {
6842 rxdp3->Buffer2_ptr = *temp2;
6843 rxdp3->Buffer0_ptr = *temp0;
6844 rxdp3->Buffer1_ptr = *temp1;
6845 } else {
6846 *skb = netdev_alloc_skb(dev, size);
6847 if (!(*skb)) {
6848 DBG_PRINT(INFO_DBG,
6849 "%s: Out of memory to allocate %s\n",
6850 dev->name,
6851 "2 buf mode SKBs");
6852 stats->mem_alloc_fail_cnt++;
6853 return -ENOMEM;
6854 }
6855 stats->mem_allocated += (*skb)->truesize;
6856 rxdp3->Buffer2_ptr = *temp2 =
6857 pci_map_single(sp->pdev, (*skb)->data,
6858 dev->mtu + 4,
6859 PCI_DMA_FROMDEVICE);
6860 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6861 goto memalloc_failed;
6862 rxdp3->Buffer0_ptr = *temp0 =
6863 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6864 PCI_DMA_FROMDEVICE);
6865 if (pci_dma_mapping_error(sp->pdev,
6866 rxdp3->Buffer0_ptr)) {
6867 pci_unmap_single(sp->pdev,
6868 (dma_addr_t)rxdp3->Buffer2_ptr,
6869 dev->mtu + 4,
6870 PCI_DMA_FROMDEVICE);
6871 goto memalloc_failed;
6872 }
6873 rxdp->Host_Control = (unsigned long) (*skb);
6874
6875 /* Buffer-1 will be dummy buffer not used */
6876 rxdp3->Buffer1_ptr = *temp1 =
6877 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6878 PCI_DMA_FROMDEVICE);
6879 if (pci_dma_mapping_error(sp->pdev,
6880 rxdp3->Buffer1_ptr)) {
6881 pci_unmap_single(sp->pdev,
6882 (dma_addr_t)rxdp3->Buffer0_ptr,
6883 BUF0_LEN, PCI_DMA_FROMDEVICE);
6884 pci_unmap_single(sp->pdev,
6885 (dma_addr_t)rxdp3->Buffer2_ptr,
6886 dev->mtu + 4,
6887 PCI_DMA_FROMDEVICE);
6888 goto memalloc_failed;
6889 }
6890 }
6891 }
6892 return 0;
6893
6894 memalloc_failed:
6895 stats->pci_map_fail_cnt++;
6896 stats->mem_freed += (*skb)->truesize;
6897 dev_kfree_skb(*skb);
6898 return -ENOMEM;
6899 }
6900
6901 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6902 int size)
6903 {
6904 struct net_device *dev = sp->dev;
6905 if (sp->rxd_mode == RXD_MODE_1) {
6906 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6907 } else if (sp->rxd_mode == RXD_MODE_3B) {
6908 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6909 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6910 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6911 }
6912 }
6913
6914 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6915 {
6916 int i, j, k, blk_cnt = 0, size;
6917 struct config_param *config = &sp->config;
6918 struct mac_info *mac_control = &sp->mac_control;
6919 struct net_device *dev = sp->dev;
6920 struct RxD_t *rxdp = NULL;
6921 struct sk_buff *skb = NULL;
6922 struct buffAdd *ba = NULL;
6923 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6924
6925 /* Calculate the size based on ring mode */
6926 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6927 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6928 if (sp->rxd_mode == RXD_MODE_1)
6929 size += NET_IP_ALIGN;
6930 else if (sp->rxd_mode == RXD_MODE_3B)
6931 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6932
6933 for (i = 0; i < config->rx_ring_num; i++) {
6934 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6935 struct ring_info *ring = &mac_control->rings[i];
6936
6937 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6938
6939 for (j = 0; j < blk_cnt; j++) {
6940 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6941 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6942 if (sp->rxd_mode == RXD_MODE_3B)
6943 ba = &ring->ba[j][k];
6944 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6945 &temp0_64,
6946 &temp1_64,
6947 &temp2_64,
6948 size) == -ENOMEM) {
6949 return 0;
6950 }
6951
6952 set_rxd_buffer_size(sp, rxdp, size);
6953 dma_wmb();
6954 /* flip the Ownership bit to Hardware */
6955 rxdp->Control_1 |= RXD_OWN_XENA;
6956 }
6957 }
6958 }
6959 return 0;
6960
6961 }
6962
6963 static int s2io_add_isr(struct s2io_nic *sp)
6964 {
6965 int ret = 0;
6966 struct net_device *dev = sp->dev;
6967 int err = 0;
6968
6969 if (sp->config.intr_type == MSI_X)
6970 ret = s2io_enable_msi_x(sp);
6971 if (ret) {
6972 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6973 sp->config.intr_type = INTA;
6974 }
6975
6976 /*
6977 * Store the values of the MSIX table in
6978 * the struct s2io_nic structure
6979 */
6980 store_xmsi_data(sp);
6981
6982 /* After proper initialization of H/W, register ISR */
6983 if (sp->config.intr_type == MSI_X) {
6984 int i, msix_rx_cnt = 0;
6985
6986 for (i = 0; i < sp->num_entries; i++) {
6987 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6988 if (sp->s2io_entries[i].type ==
6989 MSIX_RING_TYPE) {
6990 snprintf(sp->desc[i],
6991 sizeof(sp->desc[i]),
6992 "%s:MSI-X-%d-RX",
6993 dev->name, i);
6994 err = request_irq(sp->entries[i].vector,
6995 s2io_msix_ring_handle,
6996 0,
6997 sp->desc[i],
6998 sp->s2io_entries[i].arg);
6999 } else if (sp->s2io_entries[i].type ==
7000 MSIX_ALARM_TYPE) {
7001 snprintf(sp->desc[i],
7002 sizeof(sp->desc[i]),
7003 "%s:MSI-X-%d-TX",
7004 dev->name, i);
7005 err = request_irq(sp->entries[i].vector,
7006 s2io_msix_fifo_handle,
7007 0,
7008 sp->desc[i],
7009 sp->s2io_entries[i].arg);
7010
7011 }
7012 /* if either data or addr is zero print it. */
7013 if (!(sp->msix_info[i].addr &&
7014 sp->msix_info[i].data)) {
7015 DBG_PRINT(ERR_DBG,
7016 "%s @Addr:0x%llx Data:0x%llx\n",
7017 sp->desc[i],
7018 (unsigned long long)
7019 sp->msix_info[i].addr,
7020 (unsigned long long)
7021 ntohl(sp->msix_info[i].data));
7022 } else
7023 msix_rx_cnt++;
7024 if (err) {
7025 remove_msix_isr(sp);
7026
7027 DBG_PRINT(ERR_DBG,
7028 "%s:MSI-X-%d registration "
7029 "failed\n", dev->name, i);
7030
7031 DBG_PRINT(ERR_DBG,
7032 "%s: Defaulting to INTA\n",
7033 dev->name);
7034 sp->config.intr_type = INTA;
7035 break;
7036 }
7037 sp->s2io_entries[i].in_use =
7038 MSIX_REGISTERED_SUCCESS;
7039 }
7040 }
7041 if (!err) {
7042 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7043 DBG_PRINT(INFO_DBG,
7044 "MSI-X-TX entries enabled through alarm vector\n");
7045 }
7046 }
7047 if (sp->config.intr_type == INTA) {
7048 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
7049 sp->name, dev);
7050 if (err) {
7051 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7052 dev->name);
7053 return -1;
7054 }
7055 }
7056 return 0;
7057 }
7058
7059 static void s2io_rem_isr(struct s2io_nic *sp)
7060 {
7061 if (sp->config.intr_type == MSI_X)
7062 remove_msix_isr(sp);
7063 else
7064 remove_inta_isr(sp);
7065 }
7066
7067 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7068 {
7069 int cnt = 0;
7070 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7071 register u64 val64 = 0;
7072 struct config_param *config;
7073 config = &sp->config;
7074
7075 if (!is_s2io_card_up(sp))
7076 return;
7077
7078 del_timer_sync(&sp->alarm_timer);
7079 /* If s2io_set_link task is executing, wait till it completes. */
7080 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7081 msleep(50);
7082 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7083
7084 /* Disable napi */
7085 if (sp->config.napi) {
7086 int off = 0;
7087 if (config->intr_type == MSI_X) {
7088 for (; off < sp->config.rx_ring_num; off++)
7089 napi_disable(&sp->mac_control.rings[off].napi);
7090 }
7091 else
7092 napi_disable(&sp->napi);
7093 }
7094
7095 /* disable Tx and Rx traffic on the NIC */
7096 if (do_io)
7097 stop_nic(sp);
7098
7099 s2io_rem_isr(sp);
7100
7101 /* stop the tx queue, indicate link down */
7102 s2io_link(sp, LINK_DOWN);
7103
7104 /* Check if the device is Quiescent and then Reset the NIC */
7105 while (do_io) {
7106 /* As per the HW requirement we need to replenish the
7107 * receive buffer to avoid the ring bump. Since there is
7108 * no intention of processing the Rx frame at this pointwe are
7109 * just setting the ownership bit of rxd in Each Rx
7110 * ring to HW and set the appropriate buffer size
7111 * based on the ring mode
7112 */
7113 rxd_owner_bit_reset(sp);
7114
7115 val64 = readq(&bar0->adapter_status);
7116 if (verify_xena_quiescence(sp)) {
7117 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7118 break;
7119 }
7120
7121 msleep(50);
7122 cnt++;
7123 if (cnt == 10) {
7124 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7125 "adapter status reads 0x%llx\n",
7126 (unsigned long long)val64);
7127 break;
7128 }
7129 }
7130 if (do_io)
7131 s2io_reset(sp);
7132
7133 /* Free all Tx buffers */
7134 free_tx_buffers(sp);
7135
7136 /* Free all Rx buffers */
7137 free_rx_buffers(sp);
7138
7139 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7140 }
7141
7142 static void s2io_card_down(struct s2io_nic *sp)
7143 {
7144 do_s2io_card_down(sp, 1);
7145 }
7146
7147 static int s2io_card_up(struct s2io_nic *sp)
7148 {
7149 int i, ret = 0;
7150 struct config_param *config;
7151 struct mac_info *mac_control;
7152 struct net_device *dev = sp->dev;
7153 u16 interruptible;
7154
7155 /* Initialize the H/W I/O registers */
7156 ret = init_nic(sp);
7157 if (ret != 0) {
7158 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7159 dev->name);
7160 if (ret != -EIO)
7161 s2io_reset(sp);
7162 return ret;
7163 }
7164
7165 /*
7166 * Initializing the Rx buffers. For now we are considering only 1
7167 * Rx ring and initializing buffers into 30 Rx blocks
7168 */
7169 config = &sp->config;
7170 mac_control = &sp->mac_control;
7171
7172 for (i = 0; i < config->rx_ring_num; i++) {
7173 struct ring_info *ring = &mac_control->rings[i];
7174
7175 ring->mtu = dev->mtu;
7176 ring->lro = !!(dev->features & NETIF_F_LRO);
7177 ret = fill_rx_buffers(sp, ring, 1);
7178 if (ret) {
7179 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7180 dev->name);
7181 s2io_reset(sp);
7182 free_rx_buffers(sp);
7183 return -ENOMEM;
7184 }
7185 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7186 ring->rx_bufs_left);
7187 }
7188
7189 /* Initialise napi */
7190 if (config->napi) {
7191 if (config->intr_type == MSI_X) {
7192 for (i = 0; i < sp->config.rx_ring_num; i++)
7193 napi_enable(&sp->mac_control.rings[i].napi);
7194 } else {
7195 napi_enable(&sp->napi);
7196 }
7197 }
7198
7199 /* Maintain the state prior to the open */
7200 if (sp->promisc_flg)
7201 sp->promisc_flg = 0;
7202 if (sp->m_cast_flg) {
7203 sp->m_cast_flg = 0;
7204 sp->all_multi_pos = 0;
7205 }
7206
7207 /* Setting its receive mode */
7208 s2io_set_multicast(dev);
7209
7210 if (dev->features & NETIF_F_LRO) {
7211 /* Initialize max aggregatable pkts per session based on MTU */
7212 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7213 /* Check if we can use (if specified) user provided value */
7214 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7215 sp->lro_max_aggr_per_sess = lro_max_pkts;
7216 }
7217
7218 /* Enable Rx Traffic and interrupts on the NIC */
7219 if (start_nic(sp)) {
7220 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7221 s2io_reset(sp);
7222 free_rx_buffers(sp);
7223 return -ENODEV;
7224 }
7225
7226 /* Add interrupt service routine */
7227 if (s2io_add_isr(sp) != 0) {
7228 if (sp->config.intr_type == MSI_X)
7229 s2io_rem_isr(sp);
7230 s2io_reset(sp);
7231 free_rx_buffers(sp);
7232 return -ENODEV;
7233 }
7234
7235 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7236
7237 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7238
7239 /* Enable select interrupts */
7240 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7241 if (sp->config.intr_type != INTA) {
7242 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7243 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7244 } else {
7245 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7246 interruptible |= TX_PIC_INTR;
7247 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7248 }
7249
7250 return 0;
7251 }
7252
7253 /**
7254 * s2io_restart_nic - Resets the NIC.
7255 * @data : long pointer to the device private structure
7256 * Description:
7257 * This function is scheduled to be run by the s2io_tx_watchdog
7258 * function after 0.5 secs to reset the NIC. The idea is to reduce
7259 * the run time of the watch dog routine which is run holding a
7260 * spin lock.
7261 */
7262
7263 static void s2io_restart_nic(struct work_struct *work)
7264 {
7265 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7266 struct net_device *dev = sp->dev;
7267
7268 rtnl_lock();
7269
7270 if (!netif_running(dev))
7271 goto out_unlock;
7272
7273 s2io_card_down(sp);
7274 if (s2io_card_up(sp)) {
7275 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7276 }
7277 s2io_wake_all_tx_queue(sp);
7278 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7279 out_unlock:
7280 rtnl_unlock();
7281 }
7282
7283 /**
7284 * s2io_tx_watchdog - Watchdog for transmit side.
7285 * @dev : Pointer to net device structure
7286 * Description:
7287 * This function is triggered if the Tx Queue is stopped
7288 * for a pre-defined amount of time when the Interface is still up.
7289 * If the Interface is jammed in such a situation, the hardware is
7290 * reset (by s2io_close) and restarted again (by s2io_open) to
7291 * overcome any problem that might have been caused in the hardware.
7292 * Return value:
7293 * void
7294 */
7295
7296 static void s2io_tx_watchdog(struct net_device *dev)
7297 {
7298 struct s2io_nic *sp = netdev_priv(dev);
7299 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7300
7301 if (netif_carrier_ok(dev)) {
7302 swstats->watchdog_timer_cnt++;
7303 schedule_work(&sp->rst_timer_task);
7304 swstats->soft_reset_cnt++;
7305 }
7306 }
7307
7308 /**
7309 * rx_osm_handler - To perform some OS related operations on SKB.
7310 * @sp: private member of the device structure,pointer to s2io_nic structure.
7311 * @skb : the socket buffer pointer.
7312 * @len : length of the packet
7313 * @cksum : FCS checksum of the frame.
7314 * @ring_no : the ring from which this RxD was extracted.
7315 * Description:
7316 * This function is called by the Rx interrupt serivce routine to perform
7317 * some OS related operations on the SKB before passing it to the upper
7318 * layers. It mainly checks if the checksum is OK, if so adds it to the
7319 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7320 * to the upper layer. If the checksum is wrong, it increments the Rx
7321 * packet error count, frees the SKB and returns error.
7322 * Return value:
7323 * SUCCESS on success and -1 on failure.
7324 */
7325 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7326 {
7327 struct s2io_nic *sp = ring_data->nic;
7328 struct net_device *dev = ring_data->dev;
7329 struct sk_buff *skb = (struct sk_buff *)
7330 ((unsigned long)rxdp->Host_Control);
7331 int ring_no = ring_data->ring_no;
7332 u16 l3_csum, l4_csum;
7333 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7334 struct lro *uninitialized_var(lro);
7335 u8 err_mask;
7336 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7337
7338 skb->dev = dev;
7339
7340 if (err) {
7341 /* Check for parity error */
7342 if (err & 0x1)
7343 swstats->parity_err_cnt++;
7344
7345 err_mask = err >> 48;
7346 switch (err_mask) {
7347 case 1:
7348 swstats->rx_parity_err_cnt++;
7349 break;
7350
7351 case 2:
7352 swstats->rx_abort_cnt++;
7353 break;
7354
7355 case 3:
7356 swstats->rx_parity_abort_cnt++;
7357 break;
7358
7359 case 4:
7360 swstats->rx_rda_fail_cnt++;
7361 break;
7362
7363 case 5:
7364 swstats->rx_unkn_prot_cnt++;
7365 break;
7366
7367 case 6:
7368 swstats->rx_fcs_err_cnt++;
7369 break;
7370
7371 case 7:
7372 swstats->rx_buf_size_err_cnt++;
7373 break;
7374
7375 case 8:
7376 swstats->rx_rxd_corrupt_cnt++;
7377 break;
7378
7379 case 15:
7380 swstats->rx_unkn_err_cnt++;
7381 break;
7382 }
7383 /*
7384 * Drop the packet if bad transfer code. Exception being
7385 * 0x5, which could be due to unsupported IPv6 extension header.
7386 * In this case, we let stack handle the packet.
7387 * Note that in this case, since checksum will be incorrect,
7388 * stack will validate the same.
7389 */
7390 if (err_mask != 0x5) {
7391 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7392 dev->name, err_mask);
7393 dev->stats.rx_crc_errors++;
7394 swstats->mem_freed
7395 += skb->truesize;
7396 dev_kfree_skb(skb);
7397 ring_data->rx_bufs_left -= 1;
7398 rxdp->Host_Control = 0;
7399 return 0;
7400 }
7401 }
7402
7403 rxdp->Host_Control = 0;
7404 if (sp->rxd_mode == RXD_MODE_1) {
7405 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7406
7407 skb_put(skb, len);
7408 } else if (sp->rxd_mode == RXD_MODE_3B) {
7409 int get_block = ring_data->rx_curr_get_info.block_index;
7410 int get_off = ring_data->rx_curr_get_info.offset;
7411 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7412 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7413 unsigned char *buff = skb_push(skb, buf0_len);
7414
7415 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7416 memcpy(buff, ba->ba_0, buf0_len);
7417 skb_put(skb, buf2_len);
7418 }
7419
7420 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7421 ((!ring_data->lro) ||
7422 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7423 (dev->features & NETIF_F_RXCSUM)) {
7424 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7425 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7426 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7427 /*
7428 * NIC verifies if the Checksum of the received
7429 * frame is Ok or not and accordingly returns
7430 * a flag in the RxD.
7431 */
7432 skb->ip_summed = CHECKSUM_UNNECESSARY;
7433 if (ring_data->lro) {
7434 u32 tcp_len = 0;
7435 u8 *tcp;
7436 int ret = 0;
7437
7438 ret = s2io_club_tcp_session(ring_data,
7439 skb->data, &tcp,
7440 &tcp_len, &lro,
7441 rxdp, sp);
7442 switch (ret) {
7443 case 3: /* Begin anew */
7444 lro->parent = skb;
7445 goto aggregate;
7446 case 1: /* Aggregate */
7447 lro_append_pkt(sp, lro, skb, tcp_len);
7448 goto aggregate;
7449 case 4: /* Flush session */
7450 lro_append_pkt(sp, lro, skb, tcp_len);
7451 queue_rx_frame(lro->parent,
7452 lro->vlan_tag);
7453 clear_lro_session(lro);
7454 swstats->flush_max_pkts++;
7455 goto aggregate;
7456 case 2: /* Flush both */
7457 lro->parent->data_len = lro->frags_len;
7458 swstats->sending_both++;
7459 queue_rx_frame(lro->parent,
7460 lro->vlan_tag);
7461 clear_lro_session(lro);
7462 goto send_up;
7463 case 0: /* sessions exceeded */
7464 case -1: /* non-TCP or not L2 aggregatable */
7465 case 5: /*
7466 * First pkt in session not
7467 * L3/L4 aggregatable
7468 */
7469 break;
7470 default:
7471 DBG_PRINT(ERR_DBG,
7472 "%s: Samadhana!!\n",
7473 __func__);
7474 BUG();
7475 }
7476 }
7477 } else {
7478 /*
7479 * Packet with erroneous checksum, let the
7480 * upper layers deal with it.
7481 */
7482 skb_checksum_none_assert(skb);
7483 }
7484 } else
7485 skb_checksum_none_assert(skb);
7486
7487 swstats->mem_freed += skb->truesize;
7488 send_up:
7489 skb_record_rx_queue(skb, ring_no);
7490 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7491 aggregate:
7492 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7493 return SUCCESS;
7494 }
7495
7496 /**
7497 * s2io_link - stops/starts the Tx queue.
7498 * @sp : private member of the device structure, which is a pointer to the
7499 * s2io_nic structure.
7500 * @link : inidicates whether link is UP/DOWN.
7501 * Description:
7502 * This function stops/starts the Tx queue depending on whether the link
7503 * status of the NIC is is down or up. This is called by the Alarm
7504 * interrupt handler whenever a link change interrupt comes up.
7505 * Return value:
7506 * void.
7507 */
7508
7509 static void s2io_link(struct s2io_nic *sp, int link)
7510 {
7511 struct net_device *dev = sp->dev;
7512 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7513
7514 if (link != sp->last_link_state) {
7515 init_tti(sp, link);
7516 if (link == LINK_DOWN) {
7517 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7518 s2io_stop_all_tx_queue(sp);
7519 netif_carrier_off(dev);
7520 if (swstats->link_up_cnt)
7521 swstats->link_up_time =
7522 jiffies - sp->start_time;
7523 swstats->link_down_cnt++;
7524 } else {
7525 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7526 if (swstats->link_down_cnt)
7527 swstats->link_down_time =
7528 jiffies - sp->start_time;
7529 swstats->link_up_cnt++;
7530 netif_carrier_on(dev);
7531 s2io_wake_all_tx_queue(sp);
7532 }
7533 }
7534 sp->last_link_state = link;
7535 sp->start_time = jiffies;
7536 }
7537
7538 /**
7539 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7540 * @sp : private member of the device structure, which is a pointer to the
7541 * s2io_nic structure.
7542 * Description:
7543 * This function initializes a few of the PCI and PCI-X configuration registers
7544 * with recommended values.
7545 * Return value:
7546 * void
7547 */
7548
7549 static void s2io_init_pci(struct s2io_nic *sp)
7550 {
7551 u16 pci_cmd = 0, pcix_cmd = 0;
7552
7553 /* Enable Data Parity Error Recovery in PCI-X command register. */
7554 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7555 &(pcix_cmd));
7556 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7557 (pcix_cmd | 1));
7558 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7559 &(pcix_cmd));
7560
7561 /* Set the PErr Response bit in PCI command register. */
7562 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7563 pci_write_config_word(sp->pdev, PCI_COMMAND,
7564 (pci_cmd | PCI_COMMAND_PARITY));
7565 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7566 }
7567
7568 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7569 u8 *dev_multiq)
7570 {
7571 int i;
7572
7573 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7574 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7575 "(%d) not supported\n", tx_fifo_num);
7576
7577 if (tx_fifo_num < 1)
7578 tx_fifo_num = 1;
7579 else
7580 tx_fifo_num = MAX_TX_FIFOS;
7581
7582 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7583 }
7584
7585 if (multiq)
7586 *dev_multiq = multiq;
7587
7588 if (tx_steering_type && (1 == tx_fifo_num)) {
7589 if (tx_steering_type != TX_DEFAULT_STEERING)
7590 DBG_PRINT(ERR_DBG,
7591 "Tx steering is not supported with "
7592 "one fifo. Disabling Tx steering.\n");
7593 tx_steering_type = NO_STEERING;
7594 }
7595
7596 if ((tx_steering_type < NO_STEERING) ||
7597 (tx_steering_type > TX_DEFAULT_STEERING)) {
7598 DBG_PRINT(ERR_DBG,
7599 "Requested transmit steering not supported\n");
7600 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7601 tx_steering_type = NO_STEERING;
7602 }
7603
7604 if (rx_ring_num > MAX_RX_RINGS) {
7605 DBG_PRINT(ERR_DBG,
7606 "Requested number of rx rings not supported\n");
7607 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7608 MAX_RX_RINGS);
7609 rx_ring_num = MAX_RX_RINGS;
7610 }
7611
7612 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7613 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7614 "Defaulting to INTA\n");
7615 *dev_intr_type = INTA;
7616 }
7617
7618 if ((*dev_intr_type == MSI_X) &&
7619 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7620 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7621 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7622 "Defaulting to INTA\n");
7623 *dev_intr_type = INTA;
7624 }
7625
7626 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7627 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7628 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7629 rx_ring_mode = 1;
7630 }
7631
7632 for (i = 0; i < MAX_RX_RINGS; i++)
7633 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7634 DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7635 "supported\nDefaulting to %d\n",
7636 MAX_RX_BLOCKS_PER_RING);
7637 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7638 }
7639
7640 return SUCCESS;
7641 }
7642
7643 /**
7644 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7645 * or Traffic class respectively.
7646 * @nic: device private variable
7647 * Description: The function configures the receive steering to
7648 * desired receive ring.
7649 * Return Value: SUCCESS on success and
7650 * '-1' on failure (endian settings incorrect).
7651 */
7652 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7653 {
7654 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7655 register u64 val64 = 0;
7656
7657 if (ds_codepoint > 63)
7658 return FAILURE;
7659
7660 val64 = RTS_DS_MEM_DATA(ring);
7661 writeq(val64, &bar0->rts_ds_mem_data);
7662
7663 val64 = RTS_DS_MEM_CTRL_WE |
7664 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7665 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7666
7667 writeq(val64, &bar0->rts_ds_mem_ctrl);
7668
7669 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7670 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7671 S2IO_BIT_RESET);
7672 }
7673
7674 static const struct net_device_ops s2io_netdev_ops = {
7675 .ndo_open = s2io_open,
7676 .ndo_stop = s2io_close,
7677 .ndo_get_stats = s2io_get_stats,
7678 .ndo_start_xmit = s2io_xmit,
7679 .ndo_validate_addr = eth_validate_addr,
7680 .ndo_set_rx_mode = s2io_set_multicast,
7681 .ndo_do_ioctl = s2io_ioctl,
7682 .ndo_set_mac_address = s2io_set_mac_addr,
7683 .ndo_change_mtu = s2io_change_mtu,
7684 .ndo_set_features = s2io_set_features,
7685 .ndo_tx_timeout = s2io_tx_watchdog,
7686 #ifdef CONFIG_NET_POLL_CONTROLLER
7687 .ndo_poll_controller = s2io_netpoll,
7688 #endif
7689 };
7690
7691 /**
7692 * s2io_init_nic - Initialization of the adapter .
7693 * @pdev : structure containing the PCI related information of the device.
7694 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7695 * Description:
7696 * The function initializes an adapter identified by the pci_dec structure.
7697 * All OS related initialization including memory and device structure and
7698 * initlaization of the device private variable is done. Also the swapper
7699 * control register is initialized to enable read and write into the I/O
7700 * registers of the device.
7701 * Return value:
7702 * returns 0 on success and negative on failure.
7703 */
7704
7705 static int
7706 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7707 {
7708 struct s2io_nic *sp;
7709 struct net_device *dev;
7710 int i, j, ret;
7711 int dma_flag = false;
7712 u32 mac_up, mac_down;
7713 u64 val64 = 0, tmp64 = 0;
7714 struct XENA_dev_config __iomem *bar0 = NULL;
7715 u16 subid;
7716 struct config_param *config;
7717 struct mac_info *mac_control;
7718 int mode;
7719 u8 dev_intr_type = intr_type;
7720 u8 dev_multiq = 0;
7721
7722 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7723 if (ret)
7724 return ret;
7725
7726 ret = pci_enable_device(pdev);
7727 if (ret) {
7728 DBG_PRINT(ERR_DBG,
7729 "%s: pci_enable_device failed\n", __func__);
7730 return ret;
7731 }
7732
7733 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7734 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7735 dma_flag = true;
7736 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7737 DBG_PRINT(ERR_DBG,
7738 "Unable to obtain 64bit DMA "
7739 "for consistent allocations\n");
7740 pci_disable_device(pdev);
7741 return -ENOMEM;
7742 }
7743 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7744 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7745 } else {
7746 pci_disable_device(pdev);
7747 return -ENOMEM;
7748 }
7749 ret = pci_request_regions(pdev, s2io_driver_name);
7750 if (ret) {
7751 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7752 __func__, ret);
7753 pci_disable_device(pdev);
7754 return -ENODEV;
7755 }
7756 if (dev_multiq)
7757 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7758 else
7759 dev = alloc_etherdev(sizeof(struct s2io_nic));
7760 if (dev == NULL) {
7761 pci_disable_device(pdev);
7762 pci_release_regions(pdev);
7763 return -ENODEV;
7764 }
7765
7766 pci_set_master(pdev);
7767 pci_set_drvdata(pdev, dev);
7768 SET_NETDEV_DEV(dev, &pdev->dev);
7769
7770 /* Private member variable initialized to s2io NIC structure */
7771 sp = netdev_priv(dev);
7772 sp->dev = dev;
7773 sp->pdev = pdev;
7774 sp->high_dma_flag = dma_flag;
7775 sp->device_enabled_once = false;
7776 if (rx_ring_mode == 1)
7777 sp->rxd_mode = RXD_MODE_1;
7778 if (rx_ring_mode == 2)
7779 sp->rxd_mode = RXD_MODE_3B;
7780
7781 sp->config.intr_type = dev_intr_type;
7782
7783 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7784 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7785 sp->device_type = XFRAME_II_DEVICE;
7786 else
7787 sp->device_type = XFRAME_I_DEVICE;
7788
7789
7790 /* Initialize some PCI/PCI-X fields of the NIC. */
7791 s2io_init_pci(sp);
7792
7793 /*
7794 * Setting the device configuration parameters.
7795 * Most of these parameters can be specified by the user during
7796 * module insertion as they are module loadable parameters. If
7797 * these parameters are not not specified during load time, they
7798 * are initialized with default values.
7799 */
7800 config = &sp->config;
7801 mac_control = &sp->mac_control;
7802
7803 config->napi = napi;
7804 config->tx_steering_type = tx_steering_type;
7805
7806 /* Tx side parameters. */
7807 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7808 config->tx_fifo_num = MAX_TX_FIFOS;
7809 else
7810 config->tx_fifo_num = tx_fifo_num;
7811
7812 /* Initialize the fifos used for tx steering */
7813 if (config->tx_fifo_num < 5) {
7814 if (config->tx_fifo_num == 1)
7815 sp->total_tcp_fifos = 1;
7816 else
7817 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7818 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7819 sp->total_udp_fifos = 1;
7820 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7821 } else {
7822 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7823 FIFO_OTHER_MAX_NUM);
7824 sp->udp_fifo_idx = sp->total_tcp_fifos;
7825 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7826 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7827 }
7828
7829 config->multiq = dev_multiq;
7830 for (i = 0; i < config->tx_fifo_num; i++) {
7831 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7832
7833 tx_cfg->fifo_len = tx_fifo_len[i];
7834 tx_cfg->fifo_priority = i;
7835 }
7836
7837 /* mapping the QoS priority to the configured fifos */
7838 for (i = 0; i < MAX_TX_FIFOS; i++)
7839 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7840
7841 /* map the hashing selector table to the configured fifos */
7842 for (i = 0; i < config->tx_fifo_num; i++)
7843 sp->fifo_selector[i] = fifo_selector[i];
7844
7845
7846 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7847 for (i = 0; i < config->tx_fifo_num; i++) {
7848 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7849
7850 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7851 if (tx_cfg->fifo_len < 65) {
7852 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7853 break;
7854 }
7855 }
7856 /* + 2 because one Txd for skb->data and one Txd for UFO */
7857 config->max_txds = MAX_SKB_FRAGS + 2;
7858
7859 /* Rx side parameters. */
7860 config->rx_ring_num = rx_ring_num;
7861 for (i = 0; i < config->rx_ring_num; i++) {
7862 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7863 struct ring_info *ring = &mac_control->rings[i];
7864
7865 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7866 rx_cfg->ring_priority = i;
7867 ring->rx_bufs_left = 0;
7868 ring->rxd_mode = sp->rxd_mode;
7869 ring->rxd_count = rxd_count[sp->rxd_mode];
7870 ring->pdev = sp->pdev;
7871 ring->dev = sp->dev;
7872 }
7873
7874 for (i = 0; i < rx_ring_num; i++) {
7875 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7876
7877 rx_cfg->ring_org = RING_ORG_BUFF1;
7878 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7879 }
7880
7881 /* Setting Mac Control parameters */
7882 mac_control->rmac_pause_time = rmac_pause_time;
7883 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7884 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7885
7886
7887 /* initialize the shared memory used by the NIC and the host */
7888 if (init_shared_mem(sp)) {
7889 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7890 ret = -ENOMEM;
7891 goto mem_alloc_failed;
7892 }
7893
7894 sp->bar0 = pci_ioremap_bar(pdev, 0);
7895 if (!sp->bar0) {
7896 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7897 dev->name);
7898 ret = -ENOMEM;
7899 goto bar0_remap_failed;
7900 }
7901
7902 sp->bar1 = pci_ioremap_bar(pdev, 2);
7903 if (!sp->bar1) {
7904 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7905 dev->name);
7906 ret = -ENOMEM;
7907 goto bar1_remap_failed;
7908 }
7909
7910 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7911 for (j = 0; j < MAX_TX_FIFOS; j++) {
7912 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7913 }
7914
7915 /* Driver entry points */
7916 dev->netdev_ops = &s2io_netdev_ops;
7917 dev->ethtool_ops = &netdev_ethtool_ops;
7918 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7919 NETIF_F_TSO | NETIF_F_TSO6 |
7920 NETIF_F_RXCSUM | NETIF_F_LRO;
7921 dev->features |= dev->hw_features |
7922 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
7923 if (sp->device_type & XFRAME_II_DEVICE) {
7924 dev->hw_features |= NETIF_F_UFO;
7925 if (ufo)
7926 dev->features |= NETIF_F_UFO;
7927 }
7928 if (sp->high_dma_flag == true)
7929 dev->features |= NETIF_F_HIGHDMA;
7930 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7931 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7932 INIT_WORK(&sp->set_link_task, s2io_set_link);
7933
7934 pci_save_state(sp->pdev);
7935
7936 /* Setting swapper control on the NIC, for proper reset operation */
7937 if (s2io_set_swapper(sp)) {
7938 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7939 dev->name);
7940 ret = -EAGAIN;
7941 goto set_swap_failed;
7942 }
7943
7944 /* Verify if the Herc works on the slot its placed into */
7945 if (sp->device_type & XFRAME_II_DEVICE) {
7946 mode = s2io_verify_pci_mode(sp);
7947 if (mode < 0) {
7948 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7949 __func__);
7950 ret = -EBADSLT;
7951 goto set_swap_failed;
7952 }
7953 }
7954
7955 if (sp->config.intr_type == MSI_X) {
7956 sp->num_entries = config->rx_ring_num + 1;
7957 ret = s2io_enable_msi_x(sp);
7958
7959 if (!ret) {
7960 ret = s2io_test_msi(sp);
7961 /* rollback MSI-X, will re-enable during add_isr() */
7962 remove_msix_isr(sp);
7963 }
7964 if (ret) {
7965
7966 DBG_PRINT(ERR_DBG,
7967 "MSI-X requested but failed to enable\n");
7968 sp->config.intr_type = INTA;
7969 }
7970 }
7971
7972 if (config->intr_type == MSI_X) {
7973 for (i = 0; i < config->rx_ring_num ; i++) {
7974 struct ring_info *ring = &mac_control->rings[i];
7975
7976 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7977 }
7978 } else {
7979 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7980 }
7981
7982 /* Not needed for Herc */
7983 if (sp->device_type & XFRAME_I_DEVICE) {
7984 /*
7985 * Fix for all "FFs" MAC address problems observed on
7986 * Alpha platforms
7987 */
7988 fix_mac_address(sp);
7989 s2io_reset(sp);
7990 }
7991
7992 /*
7993 * MAC address initialization.
7994 * For now only one mac address will be read and used.
7995 */
7996 bar0 = sp->bar0;
7997 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7998 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7999 writeq(val64, &bar0->rmac_addr_cmd_mem);
8000 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8001 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8002 S2IO_BIT_RESET);
8003 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8004 mac_down = (u32)tmp64;
8005 mac_up = (u32) (tmp64 >> 32);
8006
8007 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8008 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8009 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8010 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8011 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8012 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8013
8014 /* Set the factory defined MAC address initially */
8015 dev->addr_len = ETH_ALEN;
8016 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8017
8018 /* initialize number of multicast & unicast MAC entries variables */
8019 if (sp->device_type == XFRAME_I_DEVICE) {
8020 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8021 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8022 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8023 } else if (sp->device_type == XFRAME_II_DEVICE) {
8024 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8025 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8026 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8027 }
8028
8029 /* store mac addresses from CAM to s2io_nic structure */
8030 do_s2io_store_unicast_mc(sp);
8031
8032 /* Configure MSIX vector for number of rings configured plus one */
8033 if ((sp->device_type == XFRAME_II_DEVICE) &&
8034 (config->intr_type == MSI_X))
8035 sp->num_entries = config->rx_ring_num + 1;
8036
8037 /* Store the values of the MSIX table in the s2io_nic structure */
8038 store_xmsi_data(sp);
8039 /* reset Nic and bring it to known state */
8040 s2io_reset(sp);
8041
8042 /*
8043 * Initialize link state flags
8044 * and the card state parameter
8045 */
8046 sp->state = 0;
8047
8048 /* Initialize spinlocks */
8049 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8050 struct fifo_info *fifo = &mac_control->fifos[i];
8051
8052 spin_lock_init(&fifo->tx_lock);
8053 }
8054
8055 /*
8056 * SXE-002: Configure link and activity LED to init state
8057 * on driver load.
8058 */
8059 subid = sp->pdev->subsystem_device;
8060 if ((subid & 0xFF) >= 0x07) {
8061 val64 = readq(&bar0->gpio_control);
8062 val64 |= 0x0000800000000000ULL;
8063 writeq(val64, &bar0->gpio_control);
8064 val64 = 0x0411040400000000ULL;
8065 writeq(val64, (void __iomem *)bar0 + 0x2700);
8066 val64 = readq(&bar0->gpio_control);
8067 }
8068
8069 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8070
8071 if (register_netdev(dev)) {
8072 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8073 ret = -ENODEV;
8074 goto register_failed;
8075 }
8076 s2io_vpd_read(sp);
8077 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8078 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8079 sp->product_name, pdev->revision);
8080 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8081 s2io_driver_version);
8082 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8083 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8084 if (sp->device_type & XFRAME_II_DEVICE) {
8085 mode = s2io_print_pci_mode(sp);
8086 if (mode < 0) {
8087 ret = -EBADSLT;
8088 unregister_netdev(dev);
8089 goto set_swap_failed;
8090 }
8091 }
8092 switch (sp->rxd_mode) {
8093 case RXD_MODE_1:
8094 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8095 dev->name);
8096 break;
8097 case RXD_MODE_3B:
8098 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8099 dev->name);
8100 break;
8101 }
8102
8103 switch (sp->config.napi) {
8104 case 0:
8105 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8106 break;
8107 case 1:
8108 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8109 break;
8110 }
8111
8112 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8113 sp->config.tx_fifo_num);
8114
8115 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8116 sp->config.rx_ring_num);
8117
8118 switch (sp->config.intr_type) {
8119 case INTA:
8120 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8121 break;
8122 case MSI_X:
8123 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8124 break;
8125 }
8126 if (sp->config.multiq) {
8127 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8128 struct fifo_info *fifo = &mac_control->fifos[i];
8129
8130 fifo->multiq = config->multiq;
8131 }
8132 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8133 dev->name);
8134 } else
8135 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8136 dev->name);
8137
8138 switch (sp->config.tx_steering_type) {
8139 case NO_STEERING:
8140 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8141 dev->name);
8142 break;
8143 case TX_PRIORITY_STEERING:
8144 DBG_PRINT(ERR_DBG,
8145 "%s: Priority steering enabled for transmit\n",
8146 dev->name);
8147 break;
8148 case TX_DEFAULT_STEERING:
8149 DBG_PRINT(ERR_DBG,
8150 "%s: Default steering enabled for transmit\n",
8151 dev->name);
8152 }
8153
8154 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8155 dev->name);
8156 if (ufo)
8157 DBG_PRINT(ERR_DBG,
8158 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8159 dev->name);
8160 /* Initialize device name */
8161 snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
8162 sp->product_name);
8163
8164 if (vlan_tag_strip)
8165 sp->vlan_strip_flag = 1;
8166 else
8167 sp->vlan_strip_flag = 0;
8168
8169 /*
8170 * Make Link state as off at this point, when the Link change
8171 * interrupt comes the state will be automatically changed to
8172 * the right state.
8173 */
8174 netif_carrier_off(dev);
8175
8176 return 0;
8177
8178 register_failed:
8179 set_swap_failed:
8180 iounmap(sp->bar1);
8181 bar1_remap_failed:
8182 iounmap(sp->bar0);
8183 bar0_remap_failed:
8184 mem_alloc_failed:
8185 free_shared_mem(sp);
8186 pci_disable_device(pdev);
8187 pci_release_regions(pdev);
8188 free_netdev(dev);
8189
8190 return ret;
8191 }
8192
8193 /**
8194 * s2io_rem_nic - Free the PCI device
8195 * @pdev: structure containing the PCI related information of the device.
8196 * Description: This function is called by the Pci subsystem to release a
8197 * PCI device and free up all resource held up by the device. This could
8198 * be in response to a Hot plug event or when the driver is to be removed
8199 * from memory.
8200 */
8201
8202 static void s2io_rem_nic(struct pci_dev *pdev)
8203 {
8204 struct net_device *dev = pci_get_drvdata(pdev);
8205 struct s2io_nic *sp;
8206
8207 if (dev == NULL) {
8208 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8209 return;
8210 }
8211
8212 sp = netdev_priv(dev);
8213
8214 cancel_work_sync(&sp->rst_timer_task);
8215 cancel_work_sync(&sp->set_link_task);
8216
8217 unregister_netdev(dev);
8218
8219 free_shared_mem(sp);
8220 iounmap(sp->bar0);
8221 iounmap(sp->bar1);
8222 pci_release_regions(pdev);
8223 free_netdev(dev);
8224 pci_disable_device(pdev);
8225 }
8226
8227 /**
8228 * s2io_starter - Entry point for the driver
8229 * Description: This function is the entry point for the driver. It verifies
8230 * the module loadable parameters and initializes PCI configuration space.
8231 */
8232
8233 static int __init s2io_starter(void)
8234 {
8235 return pci_register_driver(&s2io_driver);
8236 }
8237
8238 /**
8239 * s2io_closer - Cleanup routine for the driver
8240 * Description: This function is the cleanup routine for the driver. It
8241 * unregisters the driver.
8242 */
8243
8244 static __exit void s2io_closer(void)
8245 {
8246 pci_unregister_driver(&s2io_driver);
8247 DBG_PRINT(INIT_DBG, "cleanup done\n");
8248 }
8249
8250 module_init(s2io_starter);
8251 module_exit(s2io_closer);
8252
8253 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8254 struct tcphdr **tcp, struct RxD_t *rxdp,
8255 struct s2io_nic *sp)
8256 {
8257 int ip_off;
8258 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8259
8260 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8261 DBG_PRINT(INIT_DBG,
8262 "%s: Non-TCP frames not supported for LRO\n",
8263 __func__);
8264 return -1;
8265 }
8266
8267 /* Checking for DIX type or DIX type with VLAN */
8268 if ((l2_type == 0) || (l2_type == 4)) {
8269 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8270 /*
8271 * If vlan stripping is disabled and the frame is VLAN tagged,
8272 * shift the offset by the VLAN header size bytes.
8273 */
8274 if ((!sp->vlan_strip_flag) &&
8275 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8276 ip_off += HEADER_VLAN_SIZE;
8277 } else {
8278 /* LLC, SNAP etc are considered non-mergeable */
8279 return -1;
8280 }
8281
8282 *ip = (struct iphdr *)(buffer + ip_off);
8283 ip_len = (u8)((*ip)->ihl);
8284 ip_len <<= 2;
8285 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8286
8287 return 0;
8288 }
8289
8290 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8291 struct tcphdr *tcp)
8292 {
8293 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8294 if ((lro->iph->saddr != ip->saddr) ||
8295 (lro->iph->daddr != ip->daddr) ||
8296 (lro->tcph->source != tcp->source) ||
8297 (lro->tcph->dest != tcp->dest))
8298 return -1;
8299 return 0;
8300 }
8301
8302 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8303 {
8304 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8305 }
8306
8307 static void initiate_new_session(struct lro *lro, u8 *l2h,
8308 struct iphdr *ip, struct tcphdr *tcp,
8309 u32 tcp_pyld_len, u16 vlan_tag)
8310 {
8311 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8312 lro->l2h = l2h;
8313 lro->iph = ip;
8314 lro->tcph = tcp;
8315 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8316 lro->tcp_ack = tcp->ack_seq;
8317 lro->sg_num = 1;
8318 lro->total_len = ntohs(ip->tot_len);
8319 lro->frags_len = 0;
8320 lro->vlan_tag = vlan_tag;
8321 /*
8322 * Check if we saw TCP timestamp.
8323 * Other consistency checks have already been done.
8324 */
8325 if (tcp->doff == 8) {
8326 __be32 *ptr;
8327 ptr = (__be32 *)(tcp+1);
8328 lro->saw_ts = 1;
8329 lro->cur_tsval = ntohl(*(ptr+1));
8330 lro->cur_tsecr = *(ptr+2);
8331 }
8332 lro->in_use = 1;
8333 }
8334
8335 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8336 {
8337 struct iphdr *ip = lro->iph;
8338 struct tcphdr *tcp = lro->tcph;
8339 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8340
8341 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8342
8343 /* Update L3 header */
8344 csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8345 ip->tot_len = htons(lro->total_len);
8346
8347 /* Update L4 header */
8348 tcp->ack_seq = lro->tcp_ack;
8349 tcp->window = lro->window;
8350
8351 /* Update tsecr field if this session has timestamps enabled */
8352 if (lro->saw_ts) {
8353 __be32 *ptr = (__be32 *)(tcp + 1);
8354 *(ptr+2) = lro->cur_tsecr;
8355 }
8356
8357 /* Update counters required for calculation of
8358 * average no. of packets aggregated.
8359 */
8360 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8361 swstats->num_aggregations++;
8362 }
8363
8364 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8365 struct tcphdr *tcp, u32 l4_pyld)
8366 {
8367 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8368 lro->total_len += l4_pyld;
8369 lro->frags_len += l4_pyld;
8370 lro->tcp_next_seq += l4_pyld;
8371 lro->sg_num++;
8372
8373 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8374 lro->tcp_ack = tcp->ack_seq;
8375 lro->window = tcp->window;
8376
8377 if (lro->saw_ts) {
8378 __be32 *ptr;
8379 /* Update tsecr and tsval from this packet */
8380 ptr = (__be32 *)(tcp+1);
8381 lro->cur_tsval = ntohl(*(ptr+1));
8382 lro->cur_tsecr = *(ptr + 2);
8383 }
8384 }
8385
8386 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8387 struct tcphdr *tcp, u32 tcp_pyld_len)
8388 {
8389 u8 *ptr;
8390
8391 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8392
8393 if (!tcp_pyld_len) {
8394 /* Runt frame or a pure ack */
8395 return -1;
8396 }
8397
8398 if (ip->ihl != 5) /* IP has options */
8399 return -1;
8400
8401 /* If we see CE codepoint in IP header, packet is not mergeable */
8402 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8403 return -1;
8404
8405 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8406 if (tcp->urg || tcp->psh || tcp->rst ||
8407 tcp->syn || tcp->fin ||
8408 tcp->ece || tcp->cwr || !tcp->ack) {
8409 /*
8410 * Currently recognize only the ack control word and
8411 * any other control field being set would result in
8412 * flushing the LRO session
8413 */
8414 return -1;
8415 }
8416
8417 /*
8418 * Allow only one TCP timestamp option. Don't aggregate if
8419 * any other options are detected.
8420 */
8421 if (tcp->doff != 5 && tcp->doff != 8)
8422 return -1;
8423
8424 if (tcp->doff == 8) {
8425 ptr = (u8 *)(tcp + 1);
8426 while (*ptr == TCPOPT_NOP)
8427 ptr++;
8428 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8429 return -1;
8430
8431 /* Ensure timestamp value increases monotonically */
8432 if (l_lro)
8433 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8434 return -1;
8435
8436 /* timestamp echo reply should be non-zero */
8437 if (*((__be32 *)(ptr+6)) == 0)
8438 return -1;
8439 }
8440
8441 return 0;
8442 }
8443
8444 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8445 u8 **tcp, u32 *tcp_len, struct lro **lro,
8446 struct RxD_t *rxdp, struct s2io_nic *sp)
8447 {
8448 struct iphdr *ip;
8449 struct tcphdr *tcph;
8450 int ret = 0, i;
8451 u16 vlan_tag = 0;
8452 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8453
8454 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8455 rxdp, sp);
8456 if (ret)
8457 return ret;
8458
8459 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8460
8461 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8462 tcph = (struct tcphdr *)*tcp;
8463 *tcp_len = get_l4_pyld_length(ip, tcph);
8464 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8465 struct lro *l_lro = &ring_data->lro0_n[i];
8466 if (l_lro->in_use) {
8467 if (check_for_socket_match(l_lro, ip, tcph))
8468 continue;
8469 /* Sock pair matched */
8470 *lro = l_lro;
8471
8472 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8473 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8474 "expected 0x%x, actual 0x%x\n",
8475 __func__,
8476 (*lro)->tcp_next_seq,
8477 ntohl(tcph->seq));
8478
8479 swstats->outof_sequence_pkts++;
8480 ret = 2;
8481 break;
8482 }
8483
8484 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8485 *tcp_len))
8486 ret = 1; /* Aggregate */
8487 else
8488 ret = 2; /* Flush both */
8489 break;
8490 }
8491 }
8492
8493 if (ret == 0) {
8494 /* Before searching for available LRO objects,
8495 * check if the pkt is L3/L4 aggregatable. If not
8496 * don't create new LRO session. Just send this
8497 * packet up.
8498 */
8499 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8500 return 5;
8501
8502 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8503 struct lro *l_lro = &ring_data->lro0_n[i];
8504 if (!(l_lro->in_use)) {
8505 *lro = l_lro;
8506 ret = 3; /* Begin anew */
8507 break;
8508 }
8509 }
8510 }
8511
8512 if (ret == 0) { /* sessions exceeded */
8513 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8514 __func__);
8515 *lro = NULL;
8516 return ret;
8517 }
8518
8519 switch (ret) {
8520 case 3:
8521 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8522 vlan_tag);
8523 break;
8524 case 2:
8525 update_L3L4_header(sp, *lro);
8526 break;
8527 case 1:
8528 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8529 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8530 update_L3L4_header(sp, *lro);
8531 ret = 4; /* Flush the LRO */
8532 }
8533 break;
8534 default:
8535 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8536 break;
8537 }
8538
8539 return ret;
8540 }
8541
8542 static void clear_lro_session(struct lro *lro)
8543 {
8544 static u16 lro_struct_size = sizeof(struct lro);
8545
8546 memset(lro, 0, lro_struct_size);
8547 }
8548
8549 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8550 {
8551 struct net_device *dev = skb->dev;
8552 struct s2io_nic *sp = netdev_priv(dev);
8553
8554 skb->protocol = eth_type_trans(skb, dev);
8555 if (vlan_tag && sp->vlan_strip_flag)
8556 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8557 if (sp->config.napi)
8558 netif_receive_skb(skb);
8559 else
8560 netif_rx(skb);
8561 }
8562
8563 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8564 struct sk_buff *skb, u32 tcp_len)
8565 {
8566 struct sk_buff *first = lro->parent;
8567 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8568
8569 first->len += tcp_len;
8570 first->data_len = lro->frags_len;
8571 skb_pull(skb, (skb->len - tcp_len));
8572 if (skb_shinfo(first)->frag_list)
8573 lro->last_frag->next = skb;
8574 else
8575 skb_shinfo(first)->frag_list = skb;
8576 first->truesize += skb->truesize;
8577 lro->last_frag = skb;
8578 swstats->clubbed_frms_cnt++;
8579 }
8580
8581 /**
8582 * s2io_io_error_detected - called when PCI error is detected
8583 * @pdev: Pointer to PCI device
8584 * @state: The current pci connection state
8585 *
8586 * This function is called after a PCI bus error affecting
8587 * this device has been detected.
8588 */
8589 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8590 pci_channel_state_t state)
8591 {
8592 struct net_device *netdev = pci_get_drvdata(pdev);
8593 struct s2io_nic *sp = netdev_priv(netdev);
8594
8595 netif_device_detach(netdev);
8596
8597 if (state == pci_channel_io_perm_failure)
8598 return PCI_ERS_RESULT_DISCONNECT;
8599
8600 if (netif_running(netdev)) {
8601 /* Bring down the card, while avoiding PCI I/O */
8602 do_s2io_card_down(sp, 0);
8603 }
8604 pci_disable_device(pdev);
8605
8606 return PCI_ERS_RESULT_NEED_RESET;
8607 }
8608
8609 /**
8610 * s2io_io_slot_reset - called after the pci bus has been reset.
8611 * @pdev: Pointer to PCI device
8612 *
8613 * Restart the card from scratch, as if from a cold-boot.
8614 * At this point, the card has exprienced a hard reset,
8615 * followed by fixups by BIOS, and has its config space
8616 * set up identically to what it was at cold boot.
8617 */
8618 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8619 {
8620 struct net_device *netdev = pci_get_drvdata(pdev);
8621 struct s2io_nic *sp = netdev_priv(netdev);
8622
8623 if (pci_enable_device(pdev)) {
8624 pr_err("Cannot re-enable PCI device after reset.\n");
8625 return PCI_ERS_RESULT_DISCONNECT;
8626 }
8627
8628 pci_set_master(pdev);
8629 s2io_reset(sp);
8630
8631 return PCI_ERS_RESULT_RECOVERED;
8632 }
8633
8634 /**
8635 * s2io_io_resume - called when traffic can start flowing again.
8636 * @pdev: Pointer to PCI device
8637 *
8638 * This callback is called when the error recovery driver tells
8639 * us that its OK to resume normal operation.
8640 */
8641 static void s2io_io_resume(struct pci_dev *pdev)
8642 {
8643 struct net_device *netdev = pci_get_drvdata(pdev);
8644 struct s2io_nic *sp = netdev_priv(netdev);
8645
8646 if (netif_running(netdev)) {
8647 if (s2io_card_up(sp)) {
8648 pr_err("Can't bring device back up after reset.\n");
8649 return;
8650 }
8651
8652 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8653 s2io_card_down(sp);
8654 pr_err("Can't restore mac addr after reset.\n");
8655 return;
8656 }
8657 }
8658
8659 netif_device_attach(netdev);
8660 netif_tx_wake_all_queues(netdev);
8661 }
This page took 0.331192 seconds and 5 git commands to generate.