8561dd25db66a40b67aebfaf83b9bff742d76a35
[deliverable/linux.git] / drivers / net / ethernet / nvidia / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey.
7 *
8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9 * trademarks of NVIDIA Corporation in the United States and other
10 * countries.
11 *
12 * Copyright (C) 2003,4,5 Manfred Spraul
13 * Copyright (C) 2004 Andrew de Quincey (wol support)
14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15 * IRQ rate fixes, bigendian fixes, cleanups, verification)
16 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 *
32 * Known bugs:
33 * We suspect that on some hardware no TX done interrupts are generated.
34 * This means recovery from netif_stop_queue only happens if the hw timer
35 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
36 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
37 * If your hardware reliably generates tx done interrupts, then you can remove
38 * DEV_NEED_TIMERIRQ from the driver_data flags.
39 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
40 * superfluous timer interrupts from the nic.
41 */
42
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44
45 #define FORCEDETH_VERSION "0.64"
46 #define DRV_NAME "forcedeth"
47
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/pci.h>
51 #include <linux/interrupt.h>
52 #include <linux/netdevice.h>
53 #include <linux/etherdevice.h>
54 #include <linux/delay.h>
55 #include <linux/sched.h>
56 #include <linux/spinlock.h>
57 #include <linux/ethtool.h>
58 #include <linux/timer.h>
59 #include <linux/skbuff.h>
60 #include <linux/mii.h>
61 #include <linux/random.h>
62 #include <linux/init.h>
63 #include <linux/if_vlan.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/slab.h>
66 #include <linux/uaccess.h>
67 #include <linux/prefetch.h>
68 #include <linux/u64_stats_sync.h>
69 #include <linux/io.h>
70
71 #include <asm/irq.h>
72 #include <asm/system.h>
73
74 #define TX_WORK_PER_LOOP 64
75 #define RX_WORK_PER_LOOP 64
76
77 /*
78 * Hardware access:
79 */
80
81 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
82 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
83 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
84 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
85 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
86 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
87 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
88 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
89 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
90 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
91 #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */
92 #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */
93 #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */
94 #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */
95 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
96 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
97 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
98 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
99 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
100 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
101 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
102 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
103 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
104 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
105 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
106 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
107 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
108
109 enum {
110 NvRegIrqStatus = 0x000,
111 #define NVREG_IRQSTAT_MIIEVENT 0x040
112 #define NVREG_IRQSTAT_MASK 0x83ff
113 NvRegIrqMask = 0x004,
114 #define NVREG_IRQ_RX_ERROR 0x0001
115 #define NVREG_IRQ_RX 0x0002
116 #define NVREG_IRQ_RX_NOBUF 0x0004
117 #define NVREG_IRQ_TX_ERR 0x0008
118 #define NVREG_IRQ_TX_OK 0x0010
119 #define NVREG_IRQ_TIMER 0x0020
120 #define NVREG_IRQ_LINK 0x0040
121 #define NVREG_IRQ_RX_FORCED 0x0080
122 #define NVREG_IRQ_TX_FORCED 0x0100
123 #define NVREG_IRQ_RECOVER_ERROR 0x8200
124 #define NVREG_IRQMASK_THROUGHPUT 0x00df
125 #define NVREG_IRQMASK_CPU 0x0060
126 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
127 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
128 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
129
130 NvRegUnknownSetupReg6 = 0x008,
131 #define NVREG_UNKSETUP6_VAL 3
132
133 /*
134 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
135 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
136 */
137 NvRegPollingInterval = 0x00c,
138 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
139 #define NVREG_POLL_DEFAULT_CPU 13
140 NvRegMSIMap0 = 0x020,
141 NvRegMSIMap1 = 0x024,
142 NvRegMSIIrqMask = 0x030,
143 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
144 NvRegMisc1 = 0x080,
145 #define NVREG_MISC1_PAUSE_TX 0x01
146 #define NVREG_MISC1_HD 0x02
147 #define NVREG_MISC1_FORCE 0x3b0f3c
148
149 NvRegMacReset = 0x34,
150 #define NVREG_MAC_RESET_ASSERT 0x0F3
151 NvRegTransmitterControl = 0x084,
152 #define NVREG_XMITCTL_START 0x01
153 #define NVREG_XMITCTL_MGMT_ST 0x40000000
154 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
155 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
156 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
157 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
158 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
159 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
160 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
161 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
162 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
163 #define NVREG_XMITCTL_DATA_START 0x00100000
164 #define NVREG_XMITCTL_DATA_READY 0x00010000
165 #define NVREG_XMITCTL_DATA_ERROR 0x00020000
166 NvRegTransmitterStatus = 0x088,
167 #define NVREG_XMITSTAT_BUSY 0x01
168
169 NvRegPacketFilterFlags = 0x8c,
170 #define NVREG_PFF_PAUSE_RX 0x08
171 #define NVREG_PFF_ALWAYS 0x7F0000
172 #define NVREG_PFF_PROMISC 0x80
173 #define NVREG_PFF_MYADDR 0x20
174 #define NVREG_PFF_LOOPBACK 0x10
175
176 NvRegOffloadConfig = 0x90,
177 #define NVREG_OFFLOAD_HOMEPHY 0x601
178 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
179 NvRegReceiverControl = 0x094,
180 #define NVREG_RCVCTL_START 0x01
181 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
182 NvRegReceiverStatus = 0x98,
183 #define NVREG_RCVSTAT_BUSY 0x01
184
185 NvRegSlotTime = 0x9c,
186 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
187 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
188 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
189 #define NVREG_SLOTTIME_HALF 0x0000ff00
190 #define NVREG_SLOTTIME_DEFAULT 0x00007f00
191 #define NVREG_SLOTTIME_MASK 0x000000ff
192
193 NvRegTxDeferral = 0xA0,
194 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
195 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
196 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
197 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
198 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
199 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
200 NvRegRxDeferral = 0xA4,
201 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
202 NvRegMacAddrA = 0xA8,
203 NvRegMacAddrB = 0xAC,
204 NvRegMulticastAddrA = 0xB0,
205 #define NVREG_MCASTADDRA_FORCE 0x01
206 NvRegMulticastAddrB = 0xB4,
207 NvRegMulticastMaskA = 0xB8,
208 #define NVREG_MCASTMASKA_NONE 0xffffffff
209 NvRegMulticastMaskB = 0xBC,
210 #define NVREG_MCASTMASKB_NONE 0xffff
211
212 NvRegPhyInterface = 0xC0,
213 #define PHY_RGMII 0x10000000
214 NvRegBackOffControl = 0xC4,
215 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
216 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
217 #define NVREG_BKOFFCTRL_SELECT 24
218 #define NVREG_BKOFFCTRL_GEAR 12
219
220 NvRegTxRingPhysAddr = 0x100,
221 NvRegRxRingPhysAddr = 0x104,
222 NvRegRingSizes = 0x108,
223 #define NVREG_RINGSZ_TXSHIFT 0
224 #define NVREG_RINGSZ_RXSHIFT 16
225 NvRegTransmitPoll = 0x10c,
226 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
227 NvRegLinkSpeed = 0x110,
228 #define NVREG_LINKSPEED_FORCE 0x10000
229 #define NVREG_LINKSPEED_10 1000
230 #define NVREG_LINKSPEED_100 100
231 #define NVREG_LINKSPEED_1000 50
232 #define NVREG_LINKSPEED_MASK (0xFFF)
233 NvRegUnknownSetupReg5 = 0x130,
234 #define NVREG_UNKSETUP5_BIT31 (1<<31)
235 NvRegTxWatermark = 0x13c,
236 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
237 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
238 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
239 NvRegTxRxControl = 0x144,
240 #define NVREG_TXRXCTL_KICK 0x0001
241 #define NVREG_TXRXCTL_BIT1 0x0002
242 #define NVREG_TXRXCTL_BIT2 0x0004
243 #define NVREG_TXRXCTL_IDLE 0x0008
244 #define NVREG_TXRXCTL_RESET 0x0010
245 #define NVREG_TXRXCTL_RXCHECK 0x0400
246 #define NVREG_TXRXCTL_DESC_1 0
247 #define NVREG_TXRXCTL_DESC_2 0x002100
248 #define NVREG_TXRXCTL_DESC_3 0xc02200
249 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
250 #define NVREG_TXRXCTL_VLANINS 0x00080
251 NvRegTxRingPhysAddrHigh = 0x148,
252 NvRegRxRingPhysAddrHigh = 0x14C,
253 NvRegTxPauseFrame = 0x170,
254 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
255 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
256 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
257 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
258 NvRegTxPauseFrameLimit = 0x174,
259 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
260 NvRegMIIStatus = 0x180,
261 #define NVREG_MIISTAT_ERROR 0x0001
262 #define NVREG_MIISTAT_LINKCHANGE 0x0008
263 #define NVREG_MIISTAT_MASK_RW 0x0007
264 #define NVREG_MIISTAT_MASK_ALL 0x000f
265 NvRegMIIMask = 0x184,
266 #define NVREG_MII_LINKCHANGE 0x0008
267
268 NvRegAdapterControl = 0x188,
269 #define NVREG_ADAPTCTL_START 0x02
270 #define NVREG_ADAPTCTL_LINKUP 0x04
271 #define NVREG_ADAPTCTL_PHYVALID 0x40000
272 #define NVREG_ADAPTCTL_RUNNING 0x100000
273 #define NVREG_ADAPTCTL_PHYSHIFT 24
274 NvRegMIISpeed = 0x18c,
275 #define NVREG_MIISPEED_BIT8 (1<<8)
276 #define NVREG_MIIDELAY 5
277 NvRegMIIControl = 0x190,
278 #define NVREG_MIICTL_INUSE 0x08000
279 #define NVREG_MIICTL_WRITE 0x00400
280 #define NVREG_MIICTL_ADDRSHIFT 5
281 NvRegMIIData = 0x194,
282 NvRegTxUnicast = 0x1a0,
283 NvRegTxMulticast = 0x1a4,
284 NvRegTxBroadcast = 0x1a8,
285 NvRegWakeUpFlags = 0x200,
286 #define NVREG_WAKEUPFLAGS_VAL 0x7770
287 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
288 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
289 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
290 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
291 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
292 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
293 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
294 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
295 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
296 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
297
298 NvRegMgmtUnitGetVersion = 0x204,
299 #define NVREG_MGMTUNITGETVERSION 0x01
300 NvRegMgmtUnitVersion = 0x208,
301 #define NVREG_MGMTUNITVERSION 0x08
302 NvRegPowerCap = 0x268,
303 #define NVREG_POWERCAP_D3SUPP (1<<30)
304 #define NVREG_POWERCAP_D2SUPP (1<<26)
305 #define NVREG_POWERCAP_D1SUPP (1<<25)
306 NvRegPowerState = 0x26c,
307 #define NVREG_POWERSTATE_POWEREDUP 0x8000
308 #define NVREG_POWERSTATE_VALID 0x0100
309 #define NVREG_POWERSTATE_MASK 0x0003
310 #define NVREG_POWERSTATE_D0 0x0000
311 #define NVREG_POWERSTATE_D1 0x0001
312 #define NVREG_POWERSTATE_D2 0x0002
313 #define NVREG_POWERSTATE_D3 0x0003
314 NvRegMgmtUnitControl = 0x278,
315 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
316 NvRegTxCnt = 0x280,
317 NvRegTxZeroReXmt = 0x284,
318 NvRegTxOneReXmt = 0x288,
319 NvRegTxManyReXmt = 0x28c,
320 NvRegTxLateCol = 0x290,
321 NvRegTxUnderflow = 0x294,
322 NvRegTxLossCarrier = 0x298,
323 NvRegTxExcessDef = 0x29c,
324 NvRegTxRetryErr = 0x2a0,
325 NvRegRxFrameErr = 0x2a4,
326 NvRegRxExtraByte = 0x2a8,
327 NvRegRxLateCol = 0x2ac,
328 NvRegRxRunt = 0x2b0,
329 NvRegRxFrameTooLong = 0x2b4,
330 NvRegRxOverflow = 0x2b8,
331 NvRegRxFCSErr = 0x2bc,
332 NvRegRxFrameAlignErr = 0x2c0,
333 NvRegRxLenErr = 0x2c4,
334 NvRegRxUnicast = 0x2c8,
335 NvRegRxMulticast = 0x2cc,
336 NvRegRxBroadcast = 0x2d0,
337 NvRegTxDef = 0x2d4,
338 NvRegTxFrame = 0x2d8,
339 NvRegRxCnt = 0x2dc,
340 NvRegTxPause = 0x2e0,
341 NvRegRxPause = 0x2e4,
342 NvRegRxDropFrame = 0x2e8,
343 NvRegVlanControl = 0x300,
344 #define NVREG_VLANCONTROL_ENABLE 0x2000
345 NvRegMSIXMap0 = 0x3e0,
346 NvRegMSIXMap1 = 0x3e4,
347 NvRegMSIXIrqStatus = 0x3f0,
348
349 NvRegPowerState2 = 0x600,
350 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
351 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
352 #define NVREG_POWERSTATE2_PHY_RESET 0x0004
353 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
354 };
355
356 /* Big endian: should work, but is untested */
357 struct ring_desc {
358 __le32 buf;
359 __le32 flaglen;
360 };
361
362 struct ring_desc_ex {
363 __le32 bufhigh;
364 __le32 buflow;
365 __le32 txvlan;
366 __le32 flaglen;
367 };
368
369 union ring_type {
370 struct ring_desc *orig;
371 struct ring_desc_ex *ex;
372 };
373
374 #define FLAG_MASK_V1 0xffff0000
375 #define FLAG_MASK_V2 0xffffc000
376 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
377 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
378
379 #define NV_TX_LASTPACKET (1<<16)
380 #define NV_TX_RETRYERROR (1<<19)
381 #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
382 #define NV_TX_FORCED_INTERRUPT (1<<24)
383 #define NV_TX_DEFERRED (1<<26)
384 #define NV_TX_CARRIERLOST (1<<27)
385 #define NV_TX_LATECOLLISION (1<<28)
386 #define NV_TX_UNDERFLOW (1<<29)
387 #define NV_TX_ERROR (1<<30)
388 #define NV_TX_VALID (1<<31)
389
390 #define NV_TX2_LASTPACKET (1<<29)
391 #define NV_TX2_RETRYERROR (1<<18)
392 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
393 #define NV_TX2_FORCED_INTERRUPT (1<<30)
394 #define NV_TX2_DEFERRED (1<<25)
395 #define NV_TX2_CARRIERLOST (1<<26)
396 #define NV_TX2_LATECOLLISION (1<<27)
397 #define NV_TX2_UNDERFLOW (1<<28)
398 /* error and valid are the same for both */
399 #define NV_TX2_ERROR (1<<30)
400 #define NV_TX2_VALID (1<<31)
401 #define NV_TX2_TSO (1<<28)
402 #define NV_TX2_TSO_SHIFT 14
403 #define NV_TX2_TSO_MAX_SHIFT 14
404 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
405 #define NV_TX2_CHECKSUM_L3 (1<<27)
406 #define NV_TX2_CHECKSUM_L4 (1<<26)
407
408 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
409
410 #define NV_RX_DESCRIPTORVALID (1<<16)
411 #define NV_RX_MISSEDFRAME (1<<17)
412 #define NV_RX_SUBSTRACT1 (1<<18)
413 #define NV_RX_ERROR1 (1<<23)
414 #define NV_RX_ERROR2 (1<<24)
415 #define NV_RX_ERROR3 (1<<25)
416 #define NV_RX_ERROR4 (1<<26)
417 #define NV_RX_CRCERR (1<<27)
418 #define NV_RX_OVERFLOW (1<<28)
419 #define NV_RX_FRAMINGERR (1<<29)
420 #define NV_RX_ERROR (1<<30)
421 #define NV_RX_AVAIL (1<<31)
422 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
423
424 #define NV_RX2_CHECKSUMMASK (0x1C000000)
425 #define NV_RX2_CHECKSUM_IP (0x10000000)
426 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
427 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
428 #define NV_RX2_DESCRIPTORVALID (1<<29)
429 #define NV_RX2_SUBSTRACT1 (1<<25)
430 #define NV_RX2_ERROR1 (1<<18)
431 #define NV_RX2_ERROR2 (1<<19)
432 #define NV_RX2_ERROR3 (1<<20)
433 #define NV_RX2_ERROR4 (1<<21)
434 #define NV_RX2_CRCERR (1<<22)
435 #define NV_RX2_OVERFLOW (1<<23)
436 #define NV_RX2_FRAMINGERR (1<<24)
437 /* error and avail are the same for both */
438 #define NV_RX2_ERROR (1<<30)
439 #define NV_RX2_AVAIL (1<<31)
440 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
441
442 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
443 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
444
445 /* Miscellaneous hardware related defines: */
446 #define NV_PCI_REGSZ_VER1 0x270
447 #define NV_PCI_REGSZ_VER2 0x2d4
448 #define NV_PCI_REGSZ_VER3 0x604
449 #define NV_PCI_REGSZ_MAX 0x604
450
451 /* various timeout delays: all in usec */
452 #define NV_TXRX_RESET_DELAY 4
453 #define NV_TXSTOP_DELAY1 10
454 #define NV_TXSTOP_DELAY1MAX 500000
455 #define NV_TXSTOP_DELAY2 100
456 #define NV_RXSTOP_DELAY1 10
457 #define NV_RXSTOP_DELAY1MAX 500000
458 #define NV_RXSTOP_DELAY2 100
459 #define NV_SETUP5_DELAY 5
460 #define NV_SETUP5_DELAYMAX 50000
461 #define NV_POWERUP_DELAY 5
462 #define NV_POWERUP_DELAYMAX 5000
463 #define NV_MIIBUSY_DELAY 50
464 #define NV_MIIPHY_DELAY 10
465 #define NV_MIIPHY_DELAYMAX 10000
466 #define NV_MAC_RESET_DELAY 64
467
468 #define NV_WAKEUPPATTERNS 5
469 #define NV_WAKEUPMASKENTRIES 4
470
471 /* General driver defaults */
472 #define NV_WATCHDOG_TIMEO (5*HZ)
473
474 #define RX_RING_DEFAULT 512
475 #define TX_RING_DEFAULT 256
476 #define RX_RING_MIN 128
477 #define TX_RING_MIN 64
478 #define RING_MAX_DESC_VER_1 1024
479 #define RING_MAX_DESC_VER_2_3 16384
480
481 /* rx/tx mac addr + type + vlan + align + slack*/
482 #define NV_RX_HEADERS (64)
483 /* even more slack. */
484 #define NV_RX_ALLOC_PAD (64)
485
486 /* maximum mtu size */
487 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
488 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
489
490 #define OOM_REFILL (1+HZ/20)
491 #define POLL_WAIT (1+HZ/100)
492 #define LINK_TIMEOUT (3*HZ)
493 #define STATS_INTERVAL (10*HZ)
494
495 /*
496 * desc_ver values:
497 * The nic supports three different descriptor types:
498 * - DESC_VER_1: Original
499 * - DESC_VER_2: support for jumbo frames.
500 * - DESC_VER_3: 64-bit format.
501 */
502 #define DESC_VER_1 1
503 #define DESC_VER_2 2
504 #define DESC_VER_3 3
505
506 /* PHY defines */
507 #define PHY_OUI_MARVELL 0x5043
508 #define PHY_OUI_CICADA 0x03f1
509 #define PHY_OUI_VITESSE 0x01c1
510 #define PHY_OUI_REALTEK 0x0732
511 #define PHY_OUI_REALTEK2 0x0020
512 #define PHYID1_OUI_MASK 0x03ff
513 #define PHYID1_OUI_SHFT 6
514 #define PHYID2_OUI_MASK 0xfc00
515 #define PHYID2_OUI_SHFT 10
516 #define PHYID2_MODEL_MASK 0x03f0
517 #define PHY_MODEL_REALTEK_8211 0x0110
518 #define PHY_REV_MASK 0x0001
519 #define PHY_REV_REALTEK_8211B 0x0000
520 #define PHY_REV_REALTEK_8211C 0x0001
521 #define PHY_MODEL_REALTEK_8201 0x0200
522 #define PHY_MODEL_MARVELL_E3016 0x0220
523 #define PHY_MARVELL_E3016_INITMASK 0x0300
524 #define PHY_CICADA_INIT1 0x0f000
525 #define PHY_CICADA_INIT2 0x0e00
526 #define PHY_CICADA_INIT3 0x01000
527 #define PHY_CICADA_INIT4 0x0200
528 #define PHY_CICADA_INIT5 0x0004
529 #define PHY_CICADA_INIT6 0x02000
530 #define PHY_VITESSE_INIT_REG1 0x1f
531 #define PHY_VITESSE_INIT_REG2 0x10
532 #define PHY_VITESSE_INIT_REG3 0x11
533 #define PHY_VITESSE_INIT_REG4 0x12
534 #define PHY_VITESSE_INIT_MSK1 0xc
535 #define PHY_VITESSE_INIT_MSK2 0x0180
536 #define PHY_VITESSE_INIT1 0x52b5
537 #define PHY_VITESSE_INIT2 0xaf8a
538 #define PHY_VITESSE_INIT3 0x8
539 #define PHY_VITESSE_INIT4 0x8f8a
540 #define PHY_VITESSE_INIT5 0xaf86
541 #define PHY_VITESSE_INIT6 0x8f86
542 #define PHY_VITESSE_INIT7 0xaf82
543 #define PHY_VITESSE_INIT8 0x0100
544 #define PHY_VITESSE_INIT9 0x8f82
545 #define PHY_VITESSE_INIT10 0x0
546 #define PHY_REALTEK_INIT_REG1 0x1f
547 #define PHY_REALTEK_INIT_REG2 0x19
548 #define PHY_REALTEK_INIT_REG3 0x13
549 #define PHY_REALTEK_INIT_REG4 0x14
550 #define PHY_REALTEK_INIT_REG5 0x18
551 #define PHY_REALTEK_INIT_REG6 0x11
552 #define PHY_REALTEK_INIT_REG7 0x01
553 #define PHY_REALTEK_INIT1 0x0000
554 #define PHY_REALTEK_INIT2 0x8e00
555 #define PHY_REALTEK_INIT3 0x0001
556 #define PHY_REALTEK_INIT4 0xad17
557 #define PHY_REALTEK_INIT5 0xfb54
558 #define PHY_REALTEK_INIT6 0xf5c7
559 #define PHY_REALTEK_INIT7 0x1000
560 #define PHY_REALTEK_INIT8 0x0003
561 #define PHY_REALTEK_INIT9 0x0008
562 #define PHY_REALTEK_INIT10 0x0005
563 #define PHY_REALTEK_INIT11 0x0200
564 #define PHY_REALTEK_INIT_MSK1 0x0003
565
566 #define PHY_GIGABIT 0x0100
567
568 #define PHY_TIMEOUT 0x1
569 #define PHY_ERROR 0x2
570
571 #define PHY_100 0x1
572 #define PHY_1000 0x2
573 #define PHY_HALF 0x100
574
575 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
576 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
577 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
578 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
579 #define NV_PAUSEFRAME_RX_REQ 0x0010
580 #define NV_PAUSEFRAME_TX_REQ 0x0020
581 #define NV_PAUSEFRAME_AUTONEG 0x0040
582
583 /* MSI/MSI-X defines */
584 #define NV_MSI_X_MAX_VECTORS 8
585 #define NV_MSI_X_VECTORS_MASK 0x000f
586 #define NV_MSI_CAPABLE 0x0010
587 #define NV_MSI_X_CAPABLE 0x0020
588 #define NV_MSI_ENABLED 0x0040
589 #define NV_MSI_X_ENABLED 0x0080
590
591 #define NV_MSI_X_VECTOR_ALL 0x0
592 #define NV_MSI_X_VECTOR_RX 0x0
593 #define NV_MSI_X_VECTOR_TX 0x1
594 #define NV_MSI_X_VECTOR_OTHER 0x2
595
596 #define NV_MSI_PRIV_OFFSET 0x68
597 #define NV_MSI_PRIV_VALUE 0xffffffff
598
599 #define NV_RESTART_TX 0x1
600 #define NV_RESTART_RX 0x2
601
602 #define NV_TX_LIMIT_COUNT 16
603
604 #define NV_DYNAMIC_THRESHOLD 4
605 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
606
607 /* statistics */
608 struct nv_ethtool_str {
609 char name[ETH_GSTRING_LEN];
610 };
611
612 static const struct nv_ethtool_str nv_estats_str[] = {
613 { "tx_bytes" }, /* includes Ethernet FCS CRC */
614 { "tx_zero_rexmt" },
615 { "tx_one_rexmt" },
616 { "tx_many_rexmt" },
617 { "tx_late_collision" },
618 { "tx_fifo_errors" },
619 { "tx_carrier_errors" },
620 { "tx_excess_deferral" },
621 { "tx_retry_error" },
622 { "rx_frame_error" },
623 { "rx_extra_byte" },
624 { "rx_late_collision" },
625 { "rx_runt" },
626 { "rx_frame_too_long" },
627 { "rx_over_errors" },
628 { "rx_crc_errors" },
629 { "rx_frame_align_error" },
630 { "rx_length_error" },
631 { "rx_unicast" },
632 { "rx_multicast" },
633 { "rx_broadcast" },
634 { "rx_packets" },
635 { "rx_errors_total" },
636 { "tx_errors_total" },
637
638 /* version 2 stats */
639 { "tx_deferral" },
640 { "tx_packets" },
641 { "rx_bytes" }, /* includes Ethernet FCS CRC */
642 { "tx_pause" },
643 { "rx_pause" },
644 { "rx_drop_frame" },
645
646 /* version 3 stats */
647 { "tx_unicast" },
648 { "tx_multicast" },
649 { "tx_broadcast" }
650 };
651
652 struct nv_ethtool_stats {
653 u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */
654 u64 tx_zero_rexmt;
655 u64 tx_one_rexmt;
656 u64 tx_many_rexmt;
657 u64 tx_late_collision;
658 u64 tx_fifo_errors;
659 u64 tx_carrier_errors;
660 u64 tx_excess_deferral;
661 u64 tx_retry_error;
662 u64 rx_frame_error;
663 u64 rx_extra_byte;
664 u64 rx_late_collision;
665 u64 rx_runt;
666 u64 rx_frame_too_long;
667 u64 rx_over_errors;
668 u64 rx_crc_errors;
669 u64 rx_frame_align_error;
670 u64 rx_length_error;
671 u64 rx_unicast;
672 u64 rx_multicast;
673 u64 rx_broadcast;
674 u64 rx_packets; /* should be ifconfig->rx_packets */
675 u64 rx_errors_total;
676 u64 tx_errors_total;
677
678 /* version 2 stats */
679 u64 tx_deferral;
680 u64 tx_packets; /* should be ifconfig->tx_packets */
681 u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */
682 u64 tx_pause;
683 u64 rx_pause;
684 u64 rx_drop_frame;
685
686 /* version 3 stats */
687 u64 tx_unicast;
688 u64 tx_multicast;
689 u64 tx_broadcast;
690 };
691
692 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
693 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
694 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
695
696 /* diagnostics */
697 #define NV_TEST_COUNT_BASE 3
698 #define NV_TEST_COUNT_EXTENDED 4
699
700 static const struct nv_ethtool_str nv_etests_str[] = {
701 { "link (online/offline)" },
702 { "register (offline) " },
703 { "interrupt (offline) " },
704 { "loopback (offline) " }
705 };
706
707 struct register_test {
708 __u32 reg;
709 __u32 mask;
710 };
711
712 static const struct register_test nv_registers_test[] = {
713 { NvRegUnknownSetupReg6, 0x01 },
714 { NvRegMisc1, 0x03c },
715 { NvRegOffloadConfig, 0x03ff },
716 { NvRegMulticastAddrA, 0xffffffff },
717 { NvRegTxWatermark, 0x0ff },
718 { NvRegWakeUpFlags, 0x07777 },
719 { 0, 0 }
720 };
721
722 struct nv_skb_map {
723 struct sk_buff *skb;
724 dma_addr_t dma;
725 unsigned int dma_len:31;
726 unsigned int dma_single:1;
727 struct ring_desc_ex *first_tx_desc;
728 struct nv_skb_map *next_tx_ctx;
729 };
730
731 /*
732 * SMP locking:
733 * All hardware access under netdev_priv(dev)->lock, except the performance
734 * critical parts:
735 * - rx is (pseudo-) lockless: it relies on the single-threading provided
736 * by the arch code for interrupts.
737 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
738 * needs netdev_priv(dev)->lock :-(
739 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
740 *
741 * Hardware stats updates are protected by hwstats_lock:
742 * - updated by nv_do_stats_poll (timer). This is meant to avoid
743 * integer wraparound in the NIC stats registers, at low frequency
744 * (0.1 Hz)
745 * - updated by nv_get_ethtool_stats + nv_get_stats64
746 *
747 * Software stats are accessed only through 64b synchronization points
748 * and are not subject to other synchronization techniques (single
749 * update thread on the TX or RX paths).
750 */
751
752 /* in dev: base, irq */
753 struct fe_priv {
754 spinlock_t lock;
755
756 struct net_device *dev;
757 struct napi_struct napi;
758
759 /* hardware stats are updated in syscall and timer */
760 spinlock_t hwstats_lock;
761 struct nv_ethtool_stats estats;
762
763 int in_shutdown;
764 u32 linkspeed;
765 int duplex;
766 int autoneg;
767 int fixed_mode;
768 int phyaddr;
769 int wolenabled;
770 unsigned int phy_oui;
771 unsigned int phy_model;
772 unsigned int phy_rev;
773 u16 gigabit;
774 int intr_test;
775 int recover_error;
776 int quiet_count;
777
778 /* General data: RO fields */
779 dma_addr_t ring_addr;
780 struct pci_dev *pci_dev;
781 u32 orig_mac[2];
782 u32 events;
783 u32 irqmask;
784 u32 desc_ver;
785 u32 txrxctl_bits;
786 u32 vlanctl_bits;
787 u32 driver_data;
788 u32 device_id;
789 u32 register_size;
790 u32 mac_in_use;
791 int mgmt_version;
792 int mgmt_sema;
793
794 void __iomem *base;
795
796 /* rx specific fields.
797 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
798 */
799 union ring_type get_rx, put_rx, first_rx, last_rx;
800 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
801 struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
802 struct nv_skb_map *rx_skb;
803
804 union ring_type rx_ring;
805 unsigned int rx_buf_sz;
806 unsigned int pkt_limit;
807 struct timer_list oom_kick;
808 struct timer_list nic_poll;
809 struct timer_list stats_poll;
810 u32 nic_poll_irq;
811 int rx_ring_size;
812
813 /* RX software stats */
814 struct u64_stats_sync swstats_rx_syncp;
815 u64 stat_rx_packets;
816 u64 stat_rx_bytes; /* not always available in HW */
817 u64 stat_rx_missed_errors;
818 u64 stat_rx_dropped;
819
820 /* media detection workaround.
821 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
822 */
823 int need_linktimer;
824 unsigned long link_timeout;
825 /*
826 * tx specific fields.
827 */
828 union ring_type get_tx, put_tx, first_tx, last_tx;
829 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
830 struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
831 struct nv_skb_map *tx_skb;
832
833 union ring_type tx_ring;
834 u32 tx_flags;
835 int tx_ring_size;
836 int tx_limit;
837 u32 tx_pkts_in_progress;
838 struct nv_skb_map *tx_change_owner;
839 struct nv_skb_map *tx_end_flip;
840 int tx_stop;
841
842 /* TX software stats */
843 struct u64_stats_sync swstats_tx_syncp;
844 u64 stat_tx_packets; /* not always available in HW */
845 u64 stat_tx_bytes;
846 u64 stat_tx_dropped;
847
848 /* msi/msi-x fields */
849 u32 msi_flags;
850 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
851
852 /* flow control */
853 u32 pause_flags;
854
855 /* power saved state */
856 u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
857
858 /* for different msi-x irq type */
859 char name_rx[IFNAMSIZ + 3]; /* -rx */
860 char name_tx[IFNAMSIZ + 3]; /* -tx */
861 char name_other[IFNAMSIZ + 6]; /* -other */
862 };
863
864 /*
865 * Maximum number of loops until we assume that a bit in the irq mask
866 * is stuck. Overridable with module param.
867 */
868 static int max_interrupt_work = 4;
869
870 /*
871 * Optimization can be either throuput mode or cpu mode
872 *
873 * Throughput Mode: Every tx and rx packet will generate an interrupt.
874 * CPU Mode: Interrupts are controlled by a timer.
875 */
876 enum {
877 NV_OPTIMIZATION_MODE_THROUGHPUT,
878 NV_OPTIMIZATION_MODE_CPU,
879 NV_OPTIMIZATION_MODE_DYNAMIC
880 };
881 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
882
883 /*
884 * Poll interval for timer irq
885 *
886 * This interval determines how frequent an interrupt is generated.
887 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
888 * Min = 0, and Max = 65535
889 */
890 static int poll_interval = -1;
891
892 /*
893 * MSI interrupts
894 */
895 enum {
896 NV_MSI_INT_DISABLED,
897 NV_MSI_INT_ENABLED
898 };
899 static int msi = NV_MSI_INT_ENABLED;
900
901 /*
902 * MSIX interrupts
903 */
904 enum {
905 NV_MSIX_INT_DISABLED,
906 NV_MSIX_INT_ENABLED
907 };
908 static int msix = NV_MSIX_INT_ENABLED;
909
910 /*
911 * DMA 64bit
912 */
913 enum {
914 NV_DMA_64BIT_DISABLED,
915 NV_DMA_64BIT_ENABLED
916 };
917 static int dma_64bit = NV_DMA_64BIT_ENABLED;
918
919 /*
920 * Debug output control for tx_timeout
921 */
922 static bool debug_tx_timeout = false;
923
924 /*
925 * Crossover Detection
926 * Realtek 8201 phy + some OEM boards do not work properly.
927 */
928 enum {
929 NV_CROSSOVER_DETECTION_DISABLED,
930 NV_CROSSOVER_DETECTION_ENABLED
931 };
932 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
933
934 /*
935 * Power down phy when interface is down (persists through reboot;
936 * older Linux and other OSes may not power it up again)
937 */
938 static int phy_power_down;
939
940 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
941 {
942 return netdev_priv(dev);
943 }
944
945 static inline u8 __iomem *get_hwbase(struct net_device *dev)
946 {
947 return ((struct fe_priv *)netdev_priv(dev))->base;
948 }
949
950 static inline void pci_push(u8 __iomem *base)
951 {
952 /* force out pending posted writes */
953 readl(base);
954 }
955
956 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
957 {
958 return le32_to_cpu(prd->flaglen)
959 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
960 }
961
962 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
963 {
964 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
965 }
966
967 static bool nv_optimized(struct fe_priv *np)
968 {
969 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
970 return false;
971 return true;
972 }
973
974 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
975 int delay, int delaymax)
976 {
977 u8 __iomem *base = get_hwbase(dev);
978
979 pci_push(base);
980 do {
981 udelay(delay);
982 delaymax -= delay;
983 if (delaymax < 0)
984 return 1;
985 } while ((readl(base + offset) & mask) != target);
986 return 0;
987 }
988
989 #define NV_SETUP_RX_RING 0x01
990 #define NV_SETUP_TX_RING 0x02
991
992 static inline u32 dma_low(dma_addr_t addr)
993 {
994 return addr;
995 }
996
997 static inline u32 dma_high(dma_addr_t addr)
998 {
999 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
1000 }
1001
1002 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
1003 {
1004 struct fe_priv *np = get_nvpriv(dev);
1005 u8 __iomem *base = get_hwbase(dev);
1006
1007 if (!nv_optimized(np)) {
1008 if (rxtx_flags & NV_SETUP_RX_RING)
1009 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
1010 if (rxtx_flags & NV_SETUP_TX_RING)
1011 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1012 } else {
1013 if (rxtx_flags & NV_SETUP_RX_RING) {
1014 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
1015 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
1016 }
1017 if (rxtx_flags & NV_SETUP_TX_RING) {
1018 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1019 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
1020 }
1021 }
1022 }
1023
1024 static void free_rings(struct net_device *dev)
1025 {
1026 struct fe_priv *np = get_nvpriv(dev);
1027
1028 if (!nv_optimized(np)) {
1029 if (np->rx_ring.orig)
1030 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
1031 np->rx_ring.orig, np->ring_addr);
1032 } else {
1033 if (np->rx_ring.ex)
1034 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
1035 np->rx_ring.ex, np->ring_addr);
1036 }
1037 kfree(np->rx_skb);
1038 kfree(np->tx_skb);
1039 }
1040
1041 static int using_multi_irqs(struct net_device *dev)
1042 {
1043 struct fe_priv *np = get_nvpriv(dev);
1044
1045 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1046 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1047 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
1048 return 0;
1049 else
1050 return 1;
1051 }
1052
1053 static void nv_txrx_gate(struct net_device *dev, bool gate)
1054 {
1055 struct fe_priv *np = get_nvpriv(dev);
1056 u8 __iomem *base = get_hwbase(dev);
1057 u32 powerstate;
1058
1059 if (!np->mac_in_use &&
1060 (np->driver_data & DEV_HAS_POWER_CNTRL)) {
1061 powerstate = readl(base + NvRegPowerState2);
1062 if (gate)
1063 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
1064 else
1065 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
1066 writel(powerstate, base + NvRegPowerState2);
1067 }
1068 }
1069
1070 static void nv_enable_irq(struct net_device *dev)
1071 {
1072 struct fe_priv *np = get_nvpriv(dev);
1073
1074 if (!using_multi_irqs(dev)) {
1075 if (np->msi_flags & NV_MSI_X_ENABLED)
1076 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1077 else
1078 enable_irq(np->pci_dev->irq);
1079 } else {
1080 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1081 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1082 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1083 }
1084 }
1085
1086 static void nv_disable_irq(struct net_device *dev)
1087 {
1088 struct fe_priv *np = get_nvpriv(dev);
1089
1090 if (!using_multi_irqs(dev)) {
1091 if (np->msi_flags & NV_MSI_X_ENABLED)
1092 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1093 else
1094 disable_irq(np->pci_dev->irq);
1095 } else {
1096 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1097 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1098 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1099 }
1100 }
1101
1102 /* In MSIX mode, a write to irqmask behaves as XOR */
1103 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1104 {
1105 u8 __iomem *base = get_hwbase(dev);
1106
1107 writel(mask, base + NvRegIrqMask);
1108 }
1109
1110 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1111 {
1112 struct fe_priv *np = get_nvpriv(dev);
1113 u8 __iomem *base = get_hwbase(dev);
1114
1115 if (np->msi_flags & NV_MSI_X_ENABLED) {
1116 writel(mask, base + NvRegIrqMask);
1117 } else {
1118 if (np->msi_flags & NV_MSI_ENABLED)
1119 writel(0, base + NvRegMSIIrqMask);
1120 writel(0, base + NvRegIrqMask);
1121 }
1122 }
1123
1124 static void nv_napi_enable(struct net_device *dev)
1125 {
1126 struct fe_priv *np = get_nvpriv(dev);
1127
1128 napi_enable(&np->napi);
1129 }
1130
1131 static void nv_napi_disable(struct net_device *dev)
1132 {
1133 struct fe_priv *np = get_nvpriv(dev);
1134
1135 napi_disable(&np->napi);
1136 }
1137
1138 #define MII_READ (-1)
1139 /* mii_rw: read/write a register on the PHY.
1140 *
1141 * Caller must guarantee serialization
1142 */
1143 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1144 {
1145 u8 __iomem *base = get_hwbase(dev);
1146 u32 reg;
1147 int retval;
1148
1149 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1150
1151 reg = readl(base + NvRegMIIControl);
1152 if (reg & NVREG_MIICTL_INUSE) {
1153 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1154 udelay(NV_MIIBUSY_DELAY);
1155 }
1156
1157 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1158 if (value != MII_READ) {
1159 writel(value, base + NvRegMIIData);
1160 reg |= NVREG_MIICTL_WRITE;
1161 }
1162 writel(reg, base + NvRegMIIControl);
1163
1164 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1165 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) {
1166 retval = -1;
1167 } else if (value != MII_READ) {
1168 /* it was a write operation - fewer failures are detectable */
1169 retval = 0;
1170 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1171 retval = -1;
1172 } else {
1173 retval = readl(base + NvRegMIIData);
1174 }
1175
1176 return retval;
1177 }
1178
1179 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1180 {
1181 struct fe_priv *np = netdev_priv(dev);
1182 u32 miicontrol;
1183 unsigned int tries = 0;
1184
1185 miicontrol = BMCR_RESET | bmcr_setup;
1186 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol))
1187 return -1;
1188
1189 /* wait for 500ms */
1190 msleep(500);
1191
1192 /* must wait till reset is deasserted */
1193 while (miicontrol & BMCR_RESET) {
1194 usleep_range(10000, 20000);
1195 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1196 /* FIXME: 100 tries seem excessive */
1197 if (tries++ > 100)
1198 return -1;
1199 }
1200 return 0;
1201 }
1202
1203 static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np)
1204 {
1205 static const struct {
1206 int reg;
1207 int init;
1208 } ri[] = {
1209 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
1210 { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 },
1211 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 },
1212 { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 },
1213 { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 },
1214 { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 },
1215 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
1216 };
1217 int i;
1218
1219 for (i = 0; i < ARRAY_SIZE(ri); i++) {
1220 if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init))
1221 return PHY_ERROR;
1222 }
1223
1224 return 0;
1225 }
1226
1227 static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np)
1228 {
1229 u32 reg;
1230 u8 __iomem *base = get_hwbase(dev);
1231 u32 powerstate = readl(base + NvRegPowerState2);
1232
1233 /* need to perform hw phy reset */
1234 powerstate |= NVREG_POWERSTATE2_PHY_RESET;
1235 writel(powerstate, base + NvRegPowerState2);
1236 msleep(25);
1237
1238 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
1239 writel(powerstate, base + NvRegPowerState2);
1240 msleep(25);
1241
1242 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1243 reg |= PHY_REALTEK_INIT9;
1244 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg))
1245 return PHY_ERROR;
1246 if (mii_rw(dev, np->phyaddr,
1247 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10))
1248 return PHY_ERROR;
1249 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
1250 if (!(reg & PHY_REALTEK_INIT11)) {
1251 reg |= PHY_REALTEK_INIT11;
1252 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg))
1253 return PHY_ERROR;
1254 }
1255 if (mii_rw(dev, np->phyaddr,
1256 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
1257 return PHY_ERROR;
1258
1259 return 0;
1260 }
1261
1262 static int init_realtek_8201(struct net_device *dev, struct fe_priv *np)
1263 {
1264 u32 phy_reserved;
1265
1266 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1267 phy_reserved = mii_rw(dev, np->phyaddr,
1268 PHY_REALTEK_INIT_REG6, MII_READ);
1269 phy_reserved |= PHY_REALTEK_INIT7;
1270 if (mii_rw(dev, np->phyaddr,
1271 PHY_REALTEK_INIT_REG6, phy_reserved))
1272 return PHY_ERROR;
1273 }
1274
1275 return 0;
1276 }
1277
1278 static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np)
1279 {
1280 u32 phy_reserved;
1281
1282 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
1283 if (mii_rw(dev, np->phyaddr,
1284 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3))
1285 return PHY_ERROR;
1286 phy_reserved = mii_rw(dev, np->phyaddr,
1287 PHY_REALTEK_INIT_REG2, MII_READ);
1288 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
1289 phy_reserved |= PHY_REALTEK_INIT3;
1290 if (mii_rw(dev, np->phyaddr,
1291 PHY_REALTEK_INIT_REG2, phy_reserved))
1292 return PHY_ERROR;
1293 if (mii_rw(dev, np->phyaddr,
1294 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
1295 return PHY_ERROR;
1296 }
1297
1298 return 0;
1299 }
1300
1301 static int init_cicada(struct net_device *dev, struct fe_priv *np,
1302 u32 phyinterface)
1303 {
1304 u32 phy_reserved;
1305
1306 if (phyinterface & PHY_RGMII) {
1307 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1308 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1309 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1310 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved))
1311 return PHY_ERROR;
1312 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1313 phy_reserved |= PHY_CICADA_INIT5;
1314 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved))
1315 return PHY_ERROR;
1316 }
1317 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1318 phy_reserved |= PHY_CICADA_INIT6;
1319 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved))
1320 return PHY_ERROR;
1321
1322 return 0;
1323 }
1324
1325 static int init_vitesse(struct net_device *dev, struct fe_priv *np)
1326 {
1327 u32 phy_reserved;
1328
1329 if (mii_rw(dev, np->phyaddr,
1330 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1))
1331 return PHY_ERROR;
1332 if (mii_rw(dev, np->phyaddr,
1333 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2))
1334 return PHY_ERROR;
1335 phy_reserved = mii_rw(dev, np->phyaddr,
1336 PHY_VITESSE_INIT_REG4, MII_READ);
1337 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1338 return PHY_ERROR;
1339 phy_reserved = mii_rw(dev, np->phyaddr,
1340 PHY_VITESSE_INIT_REG3, MII_READ);
1341 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1342 phy_reserved |= PHY_VITESSE_INIT3;
1343 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1344 return PHY_ERROR;
1345 if (mii_rw(dev, np->phyaddr,
1346 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4))
1347 return PHY_ERROR;
1348 if (mii_rw(dev, np->phyaddr,
1349 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5))
1350 return PHY_ERROR;
1351 phy_reserved = mii_rw(dev, np->phyaddr,
1352 PHY_VITESSE_INIT_REG4, MII_READ);
1353 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1354 phy_reserved |= PHY_VITESSE_INIT3;
1355 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1356 return PHY_ERROR;
1357 phy_reserved = mii_rw(dev, np->phyaddr,
1358 PHY_VITESSE_INIT_REG3, MII_READ);
1359 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1360 return PHY_ERROR;
1361 if (mii_rw(dev, np->phyaddr,
1362 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6))
1363 return PHY_ERROR;
1364 if (mii_rw(dev, np->phyaddr,
1365 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7))
1366 return PHY_ERROR;
1367 phy_reserved = mii_rw(dev, np->phyaddr,
1368 PHY_VITESSE_INIT_REG4, MII_READ);
1369 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1370 return PHY_ERROR;
1371 phy_reserved = mii_rw(dev, np->phyaddr,
1372 PHY_VITESSE_INIT_REG3, MII_READ);
1373 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1374 phy_reserved |= PHY_VITESSE_INIT8;
1375 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1376 return PHY_ERROR;
1377 if (mii_rw(dev, np->phyaddr,
1378 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9))
1379 return PHY_ERROR;
1380 if (mii_rw(dev, np->phyaddr,
1381 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10))
1382 return PHY_ERROR;
1383
1384 return 0;
1385 }
1386
1387 static int phy_init(struct net_device *dev)
1388 {
1389 struct fe_priv *np = get_nvpriv(dev);
1390 u8 __iomem *base = get_hwbase(dev);
1391 u32 phyinterface;
1392 u32 mii_status, mii_control, mii_control_1000, reg;
1393
1394 /* phy errata for E3016 phy */
1395 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1396 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1397 reg &= ~PHY_MARVELL_E3016_INITMASK;
1398 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1399 netdev_info(dev, "%s: phy write to errata reg failed\n",
1400 pci_name(np->pci_dev));
1401 return PHY_ERROR;
1402 }
1403 }
1404 if (np->phy_oui == PHY_OUI_REALTEK) {
1405 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1406 np->phy_rev == PHY_REV_REALTEK_8211B) {
1407 if (init_realtek_8211b(dev, np)) {
1408 netdev_info(dev, "%s: phy init failed\n",
1409 pci_name(np->pci_dev));
1410 return PHY_ERROR;
1411 }
1412 } else if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1413 np->phy_rev == PHY_REV_REALTEK_8211C) {
1414 if (init_realtek_8211c(dev, np)) {
1415 netdev_info(dev, "%s: phy init failed\n",
1416 pci_name(np->pci_dev));
1417 return PHY_ERROR;
1418 }
1419 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1420 if (init_realtek_8201(dev, np)) {
1421 netdev_info(dev, "%s: phy init failed\n",
1422 pci_name(np->pci_dev));
1423 return PHY_ERROR;
1424 }
1425 }
1426 }
1427
1428 /* set advertise register */
1429 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1430 reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL |
1431 ADVERTISE_100HALF | ADVERTISE_100FULL |
1432 ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1433 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1434 netdev_info(dev, "%s: phy write to advertise failed\n",
1435 pci_name(np->pci_dev));
1436 return PHY_ERROR;
1437 }
1438
1439 /* get phy interface type */
1440 phyinterface = readl(base + NvRegPhyInterface);
1441
1442 /* see if gigabit phy */
1443 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1444 if (mii_status & PHY_GIGABIT) {
1445 np->gigabit = PHY_GIGABIT;
1446 mii_control_1000 = mii_rw(dev, np->phyaddr,
1447 MII_CTRL1000, MII_READ);
1448 mii_control_1000 &= ~ADVERTISE_1000HALF;
1449 if (phyinterface & PHY_RGMII)
1450 mii_control_1000 |= ADVERTISE_1000FULL;
1451 else
1452 mii_control_1000 &= ~ADVERTISE_1000FULL;
1453
1454 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1455 netdev_info(dev, "%s: phy init failed\n",
1456 pci_name(np->pci_dev));
1457 return PHY_ERROR;
1458 }
1459 } else
1460 np->gigabit = 0;
1461
1462 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1463 mii_control |= BMCR_ANENABLE;
1464
1465 if (np->phy_oui == PHY_OUI_REALTEK &&
1466 np->phy_model == PHY_MODEL_REALTEK_8211 &&
1467 np->phy_rev == PHY_REV_REALTEK_8211C) {
1468 /* start autoneg since we already performed hw reset above */
1469 mii_control |= BMCR_ANRESTART;
1470 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1471 netdev_info(dev, "%s: phy init failed\n",
1472 pci_name(np->pci_dev));
1473 return PHY_ERROR;
1474 }
1475 } else {
1476 /* reset the phy
1477 * (certain phys need bmcr to be setup with reset)
1478 */
1479 if (phy_reset(dev, mii_control)) {
1480 netdev_info(dev, "%s: phy reset failed\n",
1481 pci_name(np->pci_dev));
1482 return PHY_ERROR;
1483 }
1484 }
1485
1486 /* phy vendor specific configuration */
1487 if ((np->phy_oui == PHY_OUI_CICADA)) {
1488 if (init_cicada(dev, np, phyinterface)) {
1489 netdev_info(dev, "%s: phy init failed\n",
1490 pci_name(np->pci_dev));
1491 return PHY_ERROR;
1492 }
1493 } else if (np->phy_oui == PHY_OUI_VITESSE) {
1494 if (init_vitesse(dev, np)) {
1495 netdev_info(dev, "%s: phy init failed\n",
1496 pci_name(np->pci_dev));
1497 return PHY_ERROR;
1498 }
1499 } else if (np->phy_oui == PHY_OUI_REALTEK) {
1500 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1501 np->phy_rev == PHY_REV_REALTEK_8211B) {
1502 /* reset could have cleared these out, set them back */
1503 if (init_realtek_8211b(dev, np)) {
1504 netdev_info(dev, "%s: phy init failed\n",
1505 pci_name(np->pci_dev));
1506 return PHY_ERROR;
1507 }
1508 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1509 if (init_realtek_8201(dev, np) ||
1510 init_realtek_8201_cross(dev, np)) {
1511 netdev_info(dev, "%s: phy init failed\n",
1512 pci_name(np->pci_dev));
1513 return PHY_ERROR;
1514 }
1515 }
1516 }
1517
1518 /* some phys clear out pause advertisement on reset, set it back */
1519 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1520
1521 /* restart auto negotiation, power down phy */
1522 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1523 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1524 if (phy_power_down)
1525 mii_control |= BMCR_PDOWN;
1526 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control))
1527 return PHY_ERROR;
1528
1529 return 0;
1530 }
1531
1532 static void nv_start_rx(struct net_device *dev)
1533 {
1534 struct fe_priv *np = netdev_priv(dev);
1535 u8 __iomem *base = get_hwbase(dev);
1536 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1537
1538 /* Already running? Stop it. */
1539 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1540 rx_ctrl &= ~NVREG_RCVCTL_START;
1541 writel(rx_ctrl, base + NvRegReceiverControl);
1542 pci_push(base);
1543 }
1544 writel(np->linkspeed, base + NvRegLinkSpeed);
1545 pci_push(base);
1546 rx_ctrl |= NVREG_RCVCTL_START;
1547 if (np->mac_in_use)
1548 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1549 writel(rx_ctrl, base + NvRegReceiverControl);
1550 pci_push(base);
1551 }
1552
1553 static void nv_stop_rx(struct net_device *dev)
1554 {
1555 struct fe_priv *np = netdev_priv(dev);
1556 u8 __iomem *base = get_hwbase(dev);
1557 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1558
1559 if (!np->mac_in_use)
1560 rx_ctrl &= ~NVREG_RCVCTL_START;
1561 else
1562 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1563 writel(rx_ctrl, base + NvRegReceiverControl);
1564 if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1565 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX))
1566 netdev_info(dev, "%s: ReceiverStatus remained busy\n",
1567 __func__);
1568
1569 udelay(NV_RXSTOP_DELAY2);
1570 if (!np->mac_in_use)
1571 writel(0, base + NvRegLinkSpeed);
1572 }
1573
1574 static void nv_start_tx(struct net_device *dev)
1575 {
1576 struct fe_priv *np = netdev_priv(dev);
1577 u8 __iomem *base = get_hwbase(dev);
1578 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1579
1580 tx_ctrl |= NVREG_XMITCTL_START;
1581 if (np->mac_in_use)
1582 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1583 writel(tx_ctrl, base + NvRegTransmitterControl);
1584 pci_push(base);
1585 }
1586
1587 static void nv_stop_tx(struct net_device *dev)
1588 {
1589 struct fe_priv *np = netdev_priv(dev);
1590 u8 __iomem *base = get_hwbase(dev);
1591 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1592
1593 if (!np->mac_in_use)
1594 tx_ctrl &= ~NVREG_XMITCTL_START;
1595 else
1596 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1597 writel(tx_ctrl, base + NvRegTransmitterControl);
1598 if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1599 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX))
1600 netdev_info(dev, "%s: TransmitterStatus remained busy\n",
1601 __func__);
1602
1603 udelay(NV_TXSTOP_DELAY2);
1604 if (!np->mac_in_use)
1605 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1606 base + NvRegTransmitPoll);
1607 }
1608
1609 static void nv_start_rxtx(struct net_device *dev)
1610 {
1611 nv_start_rx(dev);
1612 nv_start_tx(dev);
1613 }
1614
1615 static void nv_stop_rxtx(struct net_device *dev)
1616 {
1617 nv_stop_rx(dev);
1618 nv_stop_tx(dev);
1619 }
1620
1621 static void nv_txrx_reset(struct net_device *dev)
1622 {
1623 struct fe_priv *np = netdev_priv(dev);
1624 u8 __iomem *base = get_hwbase(dev);
1625
1626 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1627 pci_push(base);
1628 udelay(NV_TXRX_RESET_DELAY);
1629 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1630 pci_push(base);
1631 }
1632
1633 static void nv_mac_reset(struct net_device *dev)
1634 {
1635 struct fe_priv *np = netdev_priv(dev);
1636 u8 __iomem *base = get_hwbase(dev);
1637 u32 temp1, temp2, temp3;
1638
1639 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1640 pci_push(base);
1641
1642 /* save registers since they will be cleared on reset */
1643 temp1 = readl(base + NvRegMacAddrA);
1644 temp2 = readl(base + NvRegMacAddrB);
1645 temp3 = readl(base + NvRegTransmitPoll);
1646
1647 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1648 pci_push(base);
1649 udelay(NV_MAC_RESET_DELAY);
1650 writel(0, base + NvRegMacReset);
1651 pci_push(base);
1652 udelay(NV_MAC_RESET_DELAY);
1653
1654 /* restore saved registers */
1655 writel(temp1, base + NvRegMacAddrA);
1656 writel(temp2, base + NvRegMacAddrB);
1657 writel(temp3, base + NvRegTransmitPoll);
1658
1659 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1660 pci_push(base);
1661 }
1662
1663 /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */
1664 static void nv_update_stats(struct net_device *dev)
1665 {
1666 struct fe_priv *np = netdev_priv(dev);
1667 u8 __iomem *base = get_hwbase(dev);
1668
1669 /* If it happens that this is run in top-half context, then
1670 * replace the spin_lock of hwstats_lock with
1671 * spin_lock_irqsave() in calling functions. */
1672 WARN_ONCE(in_irq(), "forcedeth: estats spin_lock(_bh) from top-half");
1673 assert_spin_locked(&np->hwstats_lock);
1674
1675 /* query hardware */
1676 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1677 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1678 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1679 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1680 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1681 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1682 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1683 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1684 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1685 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1686 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1687 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1688 np->estats.rx_runt += readl(base + NvRegRxRunt);
1689 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1690 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1691 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1692 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1693 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1694 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1695 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1696 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1697 np->estats.rx_packets =
1698 np->estats.rx_unicast +
1699 np->estats.rx_multicast +
1700 np->estats.rx_broadcast;
1701 np->estats.rx_errors_total =
1702 np->estats.rx_crc_errors +
1703 np->estats.rx_over_errors +
1704 np->estats.rx_frame_error +
1705 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1706 np->estats.rx_late_collision +
1707 np->estats.rx_runt +
1708 np->estats.rx_frame_too_long;
1709 np->estats.tx_errors_total =
1710 np->estats.tx_late_collision +
1711 np->estats.tx_fifo_errors +
1712 np->estats.tx_carrier_errors +
1713 np->estats.tx_excess_deferral +
1714 np->estats.tx_retry_error;
1715
1716 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1717 np->estats.tx_deferral += readl(base + NvRegTxDef);
1718 np->estats.tx_packets += readl(base + NvRegTxFrame);
1719 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1720 np->estats.tx_pause += readl(base + NvRegTxPause);
1721 np->estats.rx_pause += readl(base + NvRegRxPause);
1722 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1723 np->estats.rx_errors_total += np->estats.rx_drop_frame;
1724 }
1725
1726 if (np->driver_data & DEV_HAS_STATISTICS_V3) {
1727 np->estats.tx_unicast += readl(base + NvRegTxUnicast);
1728 np->estats.tx_multicast += readl(base + NvRegTxMulticast);
1729 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
1730 }
1731 }
1732
1733 /*
1734 * nv_get_stats64: dev->ndo_get_stats64 function
1735 * Get latest stats value from the nic.
1736 * Called with read_lock(&dev_base_lock) held for read -
1737 * only synchronized against unregister_netdevice.
1738 */
1739 static struct rtnl_link_stats64*
1740 nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage)
1741 __acquires(&netdev_priv(dev)->hwstats_lock)
1742 __releases(&netdev_priv(dev)->hwstats_lock)
1743 {
1744 struct fe_priv *np = netdev_priv(dev);
1745 unsigned int syncp_start;
1746
1747 /*
1748 * Note: because HW stats are not always available and for
1749 * consistency reasons, the following ifconfig stats are
1750 * managed by software: rx_bytes, tx_bytes, rx_packets and
1751 * tx_packets. The related hardware stats reported by ethtool
1752 * should be equivalent to these ifconfig stats, with 4
1753 * additional bytes per packet (Ethernet FCS CRC), except for
1754 * tx_packets when TSO kicks in.
1755 */
1756
1757 /* software stats */
1758 do {
1759 syncp_start = u64_stats_fetch_begin_bh(&np->swstats_rx_syncp);
1760 storage->rx_packets = np->stat_rx_packets;
1761 storage->rx_bytes = np->stat_rx_bytes;
1762 storage->rx_dropped = np->stat_rx_dropped;
1763 storage->rx_missed_errors = np->stat_rx_missed_errors;
1764 } while (u64_stats_fetch_retry_bh(&np->swstats_rx_syncp, syncp_start));
1765
1766 do {
1767 syncp_start = u64_stats_fetch_begin_bh(&np->swstats_tx_syncp);
1768 storage->tx_packets = np->stat_tx_packets;
1769 storage->tx_bytes = np->stat_tx_bytes;
1770 storage->tx_dropped = np->stat_tx_dropped;
1771 } while (u64_stats_fetch_retry_bh(&np->swstats_tx_syncp, syncp_start));
1772
1773 /* If the nic supports hw counters then retrieve latest values */
1774 if (np->driver_data & DEV_HAS_STATISTICS_V123) {
1775 spin_lock_bh(&np->hwstats_lock);
1776
1777 nv_update_stats(dev);
1778
1779 /* generic stats */
1780 storage->rx_errors = np->estats.rx_errors_total;
1781 storage->tx_errors = np->estats.tx_errors_total;
1782
1783 /* meaningful only when NIC supports stats v3 */
1784 storage->multicast = np->estats.rx_multicast;
1785
1786 /* detailed rx_errors */
1787 storage->rx_length_errors = np->estats.rx_length_error;
1788 storage->rx_over_errors = np->estats.rx_over_errors;
1789 storage->rx_crc_errors = np->estats.rx_crc_errors;
1790 storage->rx_frame_errors = np->estats.rx_frame_align_error;
1791 storage->rx_fifo_errors = np->estats.rx_drop_frame;
1792
1793 /* detailed tx_errors */
1794 storage->tx_carrier_errors = np->estats.tx_carrier_errors;
1795 storage->tx_fifo_errors = np->estats.tx_fifo_errors;
1796
1797 spin_unlock_bh(&np->hwstats_lock);
1798 }
1799
1800 return storage;
1801 }
1802
1803 /*
1804 * nv_alloc_rx: fill rx ring entries.
1805 * Return 1 if the allocations for the skbs failed and the
1806 * rx engine is without Available descriptors
1807 */
1808 static int nv_alloc_rx(struct net_device *dev)
1809 {
1810 struct fe_priv *np = netdev_priv(dev);
1811 struct ring_desc *less_rx;
1812
1813 less_rx = np->get_rx.orig;
1814 if (less_rx-- == np->first_rx.orig)
1815 less_rx = np->last_rx.orig;
1816
1817 while (np->put_rx.orig != less_rx) {
1818 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
1819 if (skb) {
1820 np->put_rx_ctx->skb = skb;
1821 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1822 skb->data,
1823 skb_tailroom(skb),
1824 PCI_DMA_FROMDEVICE);
1825 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1826 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1827 wmb();
1828 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1829 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1830 np->put_rx.orig = np->first_rx.orig;
1831 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1832 np->put_rx_ctx = np->first_rx_ctx;
1833 } else {
1834 u64_stats_update_begin(&np->swstats_rx_syncp);
1835 np->stat_rx_dropped++;
1836 u64_stats_update_end(&np->swstats_rx_syncp);
1837 return 1;
1838 }
1839 }
1840 return 0;
1841 }
1842
1843 static int nv_alloc_rx_optimized(struct net_device *dev)
1844 {
1845 struct fe_priv *np = netdev_priv(dev);
1846 struct ring_desc_ex *less_rx;
1847
1848 less_rx = np->get_rx.ex;
1849 if (less_rx-- == np->first_rx.ex)
1850 less_rx = np->last_rx.ex;
1851
1852 while (np->put_rx.ex != less_rx) {
1853 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
1854 if (skb) {
1855 np->put_rx_ctx->skb = skb;
1856 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1857 skb->data,
1858 skb_tailroom(skb),
1859 PCI_DMA_FROMDEVICE);
1860 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1861 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1862 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1863 wmb();
1864 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1865 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1866 np->put_rx.ex = np->first_rx.ex;
1867 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1868 np->put_rx_ctx = np->first_rx_ctx;
1869 } else {
1870 u64_stats_update_begin(&np->swstats_rx_syncp);
1871 np->stat_rx_dropped++;
1872 u64_stats_update_end(&np->swstats_rx_syncp);
1873 return 1;
1874 }
1875 }
1876 return 0;
1877 }
1878
1879 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1880 static void nv_do_rx_refill(unsigned long data)
1881 {
1882 struct net_device *dev = (struct net_device *) data;
1883 struct fe_priv *np = netdev_priv(dev);
1884
1885 /* Just reschedule NAPI rx processing */
1886 napi_schedule(&np->napi);
1887 }
1888
1889 static void nv_init_rx(struct net_device *dev)
1890 {
1891 struct fe_priv *np = netdev_priv(dev);
1892 int i;
1893
1894 np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1895
1896 if (!nv_optimized(np))
1897 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1898 else
1899 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1900 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1901 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1902
1903 for (i = 0; i < np->rx_ring_size; i++) {
1904 if (!nv_optimized(np)) {
1905 np->rx_ring.orig[i].flaglen = 0;
1906 np->rx_ring.orig[i].buf = 0;
1907 } else {
1908 np->rx_ring.ex[i].flaglen = 0;
1909 np->rx_ring.ex[i].txvlan = 0;
1910 np->rx_ring.ex[i].bufhigh = 0;
1911 np->rx_ring.ex[i].buflow = 0;
1912 }
1913 np->rx_skb[i].skb = NULL;
1914 np->rx_skb[i].dma = 0;
1915 }
1916 }
1917
1918 static void nv_init_tx(struct net_device *dev)
1919 {
1920 struct fe_priv *np = netdev_priv(dev);
1921 int i;
1922
1923 np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1924
1925 if (!nv_optimized(np))
1926 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1927 else
1928 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1929 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1930 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1931 netdev_reset_queue(np->dev);
1932 np->tx_pkts_in_progress = 0;
1933 np->tx_change_owner = NULL;
1934 np->tx_end_flip = NULL;
1935 np->tx_stop = 0;
1936
1937 for (i = 0; i < np->tx_ring_size; i++) {
1938 if (!nv_optimized(np)) {
1939 np->tx_ring.orig[i].flaglen = 0;
1940 np->tx_ring.orig[i].buf = 0;
1941 } else {
1942 np->tx_ring.ex[i].flaglen = 0;
1943 np->tx_ring.ex[i].txvlan = 0;
1944 np->tx_ring.ex[i].bufhigh = 0;
1945 np->tx_ring.ex[i].buflow = 0;
1946 }
1947 np->tx_skb[i].skb = NULL;
1948 np->tx_skb[i].dma = 0;
1949 np->tx_skb[i].dma_len = 0;
1950 np->tx_skb[i].dma_single = 0;
1951 np->tx_skb[i].first_tx_desc = NULL;
1952 np->tx_skb[i].next_tx_ctx = NULL;
1953 }
1954 }
1955
1956 static int nv_init_ring(struct net_device *dev)
1957 {
1958 struct fe_priv *np = netdev_priv(dev);
1959
1960 nv_init_tx(dev);
1961 nv_init_rx(dev);
1962
1963 if (!nv_optimized(np))
1964 return nv_alloc_rx(dev);
1965 else
1966 return nv_alloc_rx_optimized(dev);
1967 }
1968
1969 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1970 {
1971 if (tx_skb->dma) {
1972 if (tx_skb->dma_single)
1973 pci_unmap_single(np->pci_dev, tx_skb->dma,
1974 tx_skb->dma_len,
1975 PCI_DMA_TODEVICE);
1976 else
1977 pci_unmap_page(np->pci_dev, tx_skb->dma,
1978 tx_skb->dma_len,
1979 PCI_DMA_TODEVICE);
1980 tx_skb->dma = 0;
1981 }
1982 }
1983
1984 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1985 {
1986 nv_unmap_txskb(np, tx_skb);
1987 if (tx_skb->skb) {
1988 dev_kfree_skb_any(tx_skb->skb);
1989 tx_skb->skb = NULL;
1990 return 1;
1991 }
1992 return 0;
1993 }
1994
1995 static void nv_drain_tx(struct net_device *dev)
1996 {
1997 struct fe_priv *np = netdev_priv(dev);
1998 unsigned int i;
1999
2000 for (i = 0; i < np->tx_ring_size; i++) {
2001 if (!nv_optimized(np)) {
2002 np->tx_ring.orig[i].flaglen = 0;
2003 np->tx_ring.orig[i].buf = 0;
2004 } else {
2005 np->tx_ring.ex[i].flaglen = 0;
2006 np->tx_ring.ex[i].txvlan = 0;
2007 np->tx_ring.ex[i].bufhigh = 0;
2008 np->tx_ring.ex[i].buflow = 0;
2009 }
2010 if (nv_release_txskb(np, &np->tx_skb[i])) {
2011 u64_stats_update_begin(&np->swstats_tx_syncp);
2012 np->stat_tx_dropped++;
2013 u64_stats_update_end(&np->swstats_tx_syncp);
2014 }
2015 np->tx_skb[i].dma = 0;
2016 np->tx_skb[i].dma_len = 0;
2017 np->tx_skb[i].dma_single = 0;
2018 np->tx_skb[i].first_tx_desc = NULL;
2019 np->tx_skb[i].next_tx_ctx = NULL;
2020 }
2021 np->tx_pkts_in_progress = 0;
2022 np->tx_change_owner = NULL;
2023 np->tx_end_flip = NULL;
2024 }
2025
2026 static void nv_drain_rx(struct net_device *dev)
2027 {
2028 struct fe_priv *np = netdev_priv(dev);
2029 int i;
2030
2031 for (i = 0; i < np->rx_ring_size; i++) {
2032 if (!nv_optimized(np)) {
2033 np->rx_ring.orig[i].flaglen = 0;
2034 np->rx_ring.orig[i].buf = 0;
2035 } else {
2036 np->rx_ring.ex[i].flaglen = 0;
2037 np->rx_ring.ex[i].txvlan = 0;
2038 np->rx_ring.ex[i].bufhigh = 0;
2039 np->rx_ring.ex[i].buflow = 0;
2040 }
2041 wmb();
2042 if (np->rx_skb[i].skb) {
2043 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
2044 (skb_end_pointer(np->rx_skb[i].skb) -
2045 np->rx_skb[i].skb->data),
2046 PCI_DMA_FROMDEVICE);
2047 dev_kfree_skb(np->rx_skb[i].skb);
2048 np->rx_skb[i].skb = NULL;
2049 }
2050 }
2051 }
2052
2053 static void nv_drain_rxtx(struct net_device *dev)
2054 {
2055 nv_drain_tx(dev);
2056 nv_drain_rx(dev);
2057 }
2058
2059 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
2060 {
2061 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
2062 }
2063
2064 static void nv_legacybackoff_reseed(struct net_device *dev)
2065 {
2066 u8 __iomem *base = get_hwbase(dev);
2067 u32 reg;
2068 u32 low;
2069 int tx_status = 0;
2070
2071 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
2072 get_random_bytes(&low, sizeof(low));
2073 reg |= low & NVREG_SLOTTIME_MASK;
2074
2075 /* Need to stop tx before change takes effect.
2076 * Caller has already gained np->lock.
2077 */
2078 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
2079 if (tx_status)
2080 nv_stop_tx(dev);
2081 nv_stop_rx(dev);
2082 writel(reg, base + NvRegSlotTime);
2083 if (tx_status)
2084 nv_start_tx(dev);
2085 nv_start_rx(dev);
2086 }
2087
2088 /* Gear Backoff Seeds */
2089 #define BACKOFF_SEEDSET_ROWS 8
2090 #define BACKOFF_SEEDSET_LFSRS 15
2091
2092 /* Known Good seed sets */
2093 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2094 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2095 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
2096 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2097 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
2098 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
2099 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
2100 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
2101 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} };
2102
2103 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2104 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2105 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2106 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
2107 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2108 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2109 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2110 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2111 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} };
2112
2113 static void nv_gear_backoff_reseed(struct net_device *dev)
2114 {
2115 u8 __iomem *base = get_hwbase(dev);
2116 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
2117 u32 temp, seedset, combinedSeed;
2118 int i;
2119
2120 /* Setup seed for free running LFSR */
2121 /* We are going to read the time stamp counter 3 times
2122 and swizzle bits around to increase randomness */
2123 get_random_bytes(&miniseed1, sizeof(miniseed1));
2124 miniseed1 &= 0x0fff;
2125 if (miniseed1 == 0)
2126 miniseed1 = 0xabc;
2127
2128 get_random_bytes(&miniseed2, sizeof(miniseed2));
2129 miniseed2 &= 0x0fff;
2130 if (miniseed2 == 0)
2131 miniseed2 = 0xabc;
2132 miniseed2_reversed =
2133 ((miniseed2 & 0xF00) >> 8) |
2134 (miniseed2 & 0x0F0) |
2135 ((miniseed2 & 0x00F) << 8);
2136
2137 get_random_bytes(&miniseed3, sizeof(miniseed3));
2138 miniseed3 &= 0x0fff;
2139 if (miniseed3 == 0)
2140 miniseed3 = 0xabc;
2141 miniseed3_reversed =
2142 ((miniseed3 & 0xF00) >> 8) |
2143 (miniseed3 & 0x0F0) |
2144 ((miniseed3 & 0x00F) << 8);
2145
2146 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
2147 (miniseed2 ^ miniseed3_reversed);
2148
2149 /* Seeds can not be zero */
2150 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
2151 combinedSeed |= 0x08;
2152 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
2153 combinedSeed |= 0x8000;
2154
2155 /* No need to disable tx here */
2156 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
2157 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
2158 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
2159 writel(temp, base + NvRegBackOffControl);
2160
2161 /* Setup seeds for all gear LFSRs. */
2162 get_random_bytes(&seedset, sizeof(seedset));
2163 seedset = seedset % BACKOFF_SEEDSET_ROWS;
2164 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) {
2165 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
2166 temp |= main_seedset[seedset][i-1] & 0x3ff;
2167 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
2168 writel(temp, base + NvRegBackOffControl);
2169 }
2170 }
2171
2172 /*
2173 * nv_start_xmit: dev->hard_start_xmit function
2174 * Called with netif_tx_lock held.
2175 */
2176 static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
2177 {
2178 struct fe_priv *np = netdev_priv(dev);
2179 u32 tx_flags = 0;
2180 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
2181 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2182 unsigned int i;
2183 u32 offset = 0;
2184 u32 bcnt;
2185 u32 size = skb_headlen(skb);
2186 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2187 u32 empty_slots;
2188 struct ring_desc *put_tx;
2189 struct ring_desc *start_tx;
2190 struct ring_desc *prev_tx;
2191 struct nv_skb_map *prev_tx_ctx;
2192 unsigned long flags;
2193
2194 /* add fragments to entries count */
2195 for (i = 0; i < fragments; i++) {
2196 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2197
2198 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
2199 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2200 }
2201
2202 spin_lock_irqsave(&np->lock, flags);
2203 empty_slots = nv_get_empty_tx_slots(np);
2204 if (unlikely(empty_slots <= entries)) {
2205 netif_stop_queue(dev);
2206 np->tx_stop = 1;
2207 spin_unlock_irqrestore(&np->lock, flags);
2208 return NETDEV_TX_BUSY;
2209 }
2210 spin_unlock_irqrestore(&np->lock, flags);
2211
2212 start_tx = put_tx = np->put_tx.orig;
2213
2214 /* setup the header buffer */
2215 do {
2216 prev_tx = put_tx;
2217 prev_tx_ctx = np->put_tx_ctx;
2218 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2219 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2220 PCI_DMA_TODEVICE);
2221 np->put_tx_ctx->dma_len = bcnt;
2222 np->put_tx_ctx->dma_single = 1;
2223 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2224 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2225
2226 tx_flags = np->tx_flags;
2227 offset += bcnt;
2228 size -= bcnt;
2229 if (unlikely(put_tx++ == np->last_tx.orig))
2230 put_tx = np->first_tx.orig;
2231 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2232 np->put_tx_ctx = np->first_tx_ctx;
2233 } while (size);
2234
2235 /* setup the fragments */
2236 for (i = 0; i < fragments; i++) {
2237 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2238 u32 frag_size = skb_frag_size(frag);
2239 offset = 0;
2240
2241 do {
2242 prev_tx = put_tx;
2243 prev_tx_ctx = np->put_tx_ctx;
2244 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
2245 np->put_tx_ctx->dma = skb_frag_dma_map(
2246 &np->pci_dev->dev,
2247 frag, offset,
2248 bcnt,
2249 DMA_TO_DEVICE);
2250 np->put_tx_ctx->dma_len = bcnt;
2251 np->put_tx_ctx->dma_single = 0;
2252 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2253 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2254
2255 offset += bcnt;
2256 frag_size -= bcnt;
2257 if (unlikely(put_tx++ == np->last_tx.orig))
2258 put_tx = np->first_tx.orig;
2259 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2260 np->put_tx_ctx = np->first_tx_ctx;
2261 } while (frag_size);
2262 }
2263
2264 /* set last fragment flag */
2265 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
2266
2267 /* save skb in this slot's context area */
2268 prev_tx_ctx->skb = skb;
2269
2270 if (skb_is_gso(skb))
2271 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2272 else
2273 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2274 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2275
2276 spin_lock_irqsave(&np->lock, flags);
2277
2278 /* set tx flags */
2279 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2280
2281 netdev_sent_queue(np->dev, skb->len);
2282
2283 np->put_tx.orig = put_tx;
2284
2285 spin_unlock_irqrestore(&np->lock, flags);
2286
2287 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2288 return NETDEV_TX_OK;
2289 }
2290
2291 static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
2292 struct net_device *dev)
2293 {
2294 struct fe_priv *np = netdev_priv(dev);
2295 u32 tx_flags = 0;
2296 u32 tx_flags_extra;
2297 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2298 unsigned int i;
2299 u32 offset = 0;
2300 u32 bcnt;
2301 u32 size = skb_headlen(skb);
2302 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2303 u32 empty_slots;
2304 struct ring_desc_ex *put_tx;
2305 struct ring_desc_ex *start_tx;
2306 struct ring_desc_ex *prev_tx;
2307 struct nv_skb_map *prev_tx_ctx;
2308 struct nv_skb_map *start_tx_ctx;
2309 unsigned long flags;
2310
2311 /* add fragments to entries count */
2312 for (i = 0; i < fragments; i++) {
2313 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2314
2315 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
2316 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2317 }
2318
2319 spin_lock_irqsave(&np->lock, flags);
2320 empty_slots = nv_get_empty_tx_slots(np);
2321 if (unlikely(empty_slots <= entries)) {
2322 netif_stop_queue(dev);
2323 np->tx_stop = 1;
2324 spin_unlock_irqrestore(&np->lock, flags);
2325 return NETDEV_TX_BUSY;
2326 }
2327 spin_unlock_irqrestore(&np->lock, flags);
2328
2329 start_tx = put_tx = np->put_tx.ex;
2330 start_tx_ctx = np->put_tx_ctx;
2331
2332 /* setup the header buffer */
2333 do {
2334 prev_tx = put_tx;
2335 prev_tx_ctx = np->put_tx_ctx;
2336 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2337 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2338 PCI_DMA_TODEVICE);
2339 np->put_tx_ctx->dma_len = bcnt;
2340 np->put_tx_ctx->dma_single = 1;
2341 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2342 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2343 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2344
2345 tx_flags = NV_TX2_VALID;
2346 offset += bcnt;
2347 size -= bcnt;
2348 if (unlikely(put_tx++ == np->last_tx.ex))
2349 put_tx = np->first_tx.ex;
2350 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2351 np->put_tx_ctx = np->first_tx_ctx;
2352 } while (size);
2353
2354 /* setup the fragments */
2355 for (i = 0; i < fragments; i++) {
2356 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2357 u32 frag_size = skb_frag_size(frag);
2358 offset = 0;
2359
2360 do {
2361 prev_tx = put_tx;
2362 prev_tx_ctx = np->put_tx_ctx;
2363 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
2364 np->put_tx_ctx->dma = skb_frag_dma_map(
2365 &np->pci_dev->dev,
2366 frag, offset,
2367 bcnt,
2368 DMA_TO_DEVICE);
2369 np->put_tx_ctx->dma_len = bcnt;
2370 np->put_tx_ctx->dma_single = 0;
2371 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2372 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2373 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2374
2375 offset += bcnt;
2376 frag_size -= bcnt;
2377 if (unlikely(put_tx++ == np->last_tx.ex))
2378 put_tx = np->first_tx.ex;
2379 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2380 np->put_tx_ctx = np->first_tx_ctx;
2381 } while (frag_size);
2382 }
2383
2384 /* set last fragment flag */
2385 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2386
2387 /* save skb in this slot's context area */
2388 prev_tx_ctx->skb = skb;
2389
2390 if (skb_is_gso(skb))
2391 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2392 else
2393 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2394 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2395
2396 /* vlan tag */
2397 if (vlan_tx_tag_present(skb))
2398 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT |
2399 vlan_tx_tag_get(skb));
2400 else
2401 start_tx->txvlan = 0;
2402
2403 spin_lock_irqsave(&np->lock, flags);
2404
2405 if (np->tx_limit) {
2406 /* Limit the number of outstanding tx. Setup all fragments, but
2407 * do not set the VALID bit on the first descriptor. Save a pointer
2408 * to that descriptor and also for next skb_map element.
2409 */
2410
2411 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2412 if (!np->tx_change_owner)
2413 np->tx_change_owner = start_tx_ctx;
2414
2415 /* remove VALID bit */
2416 tx_flags &= ~NV_TX2_VALID;
2417 start_tx_ctx->first_tx_desc = start_tx;
2418 start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2419 np->tx_end_flip = np->put_tx_ctx;
2420 } else {
2421 np->tx_pkts_in_progress++;
2422 }
2423 }
2424
2425 /* set tx flags */
2426 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2427
2428 netdev_sent_queue(np->dev, skb->len);
2429
2430 np->put_tx.ex = put_tx;
2431
2432 spin_unlock_irqrestore(&np->lock, flags);
2433
2434 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2435 return NETDEV_TX_OK;
2436 }
2437
2438 static inline void nv_tx_flip_ownership(struct net_device *dev)
2439 {
2440 struct fe_priv *np = netdev_priv(dev);
2441
2442 np->tx_pkts_in_progress--;
2443 if (np->tx_change_owner) {
2444 np->tx_change_owner->first_tx_desc->flaglen |=
2445 cpu_to_le32(NV_TX2_VALID);
2446 np->tx_pkts_in_progress++;
2447
2448 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2449 if (np->tx_change_owner == np->tx_end_flip)
2450 np->tx_change_owner = NULL;
2451
2452 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2453 }
2454 }
2455
2456 /*
2457 * nv_tx_done: check for completed packets, release the skbs.
2458 *
2459 * Caller must own np->lock.
2460 */
2461 static int nv_tx_done(struct net_device *dev, int limit)
2462 {
2463 struct fe_priv *np = netdev_priv(dev);
2464 u32 flags;
2465 int tx_work = 0;
2466 struct ring_desc *orig_get_tx = np->get_tx.orig;
2467 unsigned int bytes_compl = 0;
2468
2469 while ((np->get_tx.orig != np->put_tx.orig) &&
2470 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
2471 (tx_work < limit)) {
2472
2473 nv_unmap_txskb(np, np->get_tx_ctx);
2474
2475 if (np->desc_ver == DESC_VER_1) {
2476 if (flags & NV_TX_LASTPACKET) {
2477 if (flags & NV_TX_ERROR) {
2478 if ((flags & NV_TX_RETRYERROR)
2479 && !(flags & NV_TX_RETRYCOUNT_MASK))
2480 nv_legacybackoff_reseed(dev);
2481 } else {
2482 u64_stats_update_begin(&np->swstats_tx_syncp);
2483 np->stat_tx_packets++;
2484 np->stat_tx_bytes += np->get_tx_ctx->skb->len;
2485 u64_stats_update_end(&np->swstats_tx_syncp);
2486 }
2487 bytes_compl += np->get_tx_ctx->skb->len;
2488 dev_kfree_skb_any(np->get_tx_ctx->skb);
2489 np->get_tx_ctx->skb = NULL;
2490 tx_work++;
2491 }
2492 } else {
2493 if (flags & NV_TX2_LASTPACKET) {
2494 if (flags & NV_TX2_ERROR) {
2495 if ((flags & NV_TX2_RETRYERROR)
2496 && !(flags & NV_TX2_RETRYCOUNT_MASK))
2497 nv_legacybackoff_reseed(dev);
2498 } else {
2499 u64_stats_update_begin(&np->swstats_tx_syncp);
2500 np->stat_tx_packets++;
2501 np->stat_tx_bytes += np->get_tx_ctx->skb->len;
2502 u64_stats_update_end(&np->swstats_tx_syncp);
2503 }
2504 bytes_compl += np->get_tx_ctx->skb->len;
2505 dev_kfree_skb_any(np->get_tx_ctx->skb);
2506 np->get_tx_ctx->skb = NULL;
2507 tx_work++;
2508 }
2509 }
2510 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2511 np->get_tx.orig = np->first_tx.orig;
2512 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2513 np->get_tx_ctx = np->first_tx_ctx;
2514 }
2515
2516 netdev_completed_queue(np->dev, tx_work, bytes_compl);
2517
2518 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2519 np->tx_stop = 0;
2520 netif_wake_queue(dev);
2521 }
2522 return tx_work;
2523 }
2524
2525 static int nv_tx_done_optimized(struct net_device *dev, int limit)
2526 {
2527 struct fe_priv *np = netdev_priv(dev);
2528 u32 flags;
2529 int tx_work = 0;
2530 struct ring_desc_ex *orig_get_tx = np->get_tx.ex;
2531 unsigned long bytes_cleaned = 0;
2532
2533 while ((np->get_tx.ex != np->put_tx.ex) &&
2534 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) &&
2535 (tx_work < limit)) {
2536
2537 nv_unmap_txskb(np, np->get_tx_ctx);
2538
2539 if (flags & NV_TX2_LASTPACKET) {
2540 if (flags & NV_TX2_ERROR) {
2541 if ((flags & NV_TX2_RETRYERROR)
2542 && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
2543 if (np->driver_data & DEV_HAS_GEAR_MODE)
2544 nv_gear_backoff_reseed(dev);
2545 else
2546 nv_legacybackoff_reseed(dev);
2547 }
2548 } else {
2549 u64_stats_update_begin(&np->swstats_tx_syncp);
2550 np->stat_tx_packets++;
2551 np->stat_tx_bytes += np->get_tx_ctx->skb->len;
2552 u64_stats_update_end(&np->swstats_tx_syncp);
2553 }
2554
2555 bytes_cleaned += np->get_tx_ctx->skb->len;
2556 dev_kfree_skb_any(np->get_tx_ctx->skb);
2557 np->get_tx_ctx->skb = NULL;
2558 tx_work++;
2559
2560 if (np->tx_limit)
2561 nv_tx_flip_ownership(dev);
2562 }
2563
2564 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2565 np->get_tx.ex = np->first_tx.ex;
2566 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2567 np->get_tx_ctx = np->first_tx_ctx;
2568 }
2569
2570 netdev_completed_queue(np->dev, tx_work, bytes_cleaned);
2571
2572 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2573 np->tx_stop = 0;
2574 netif_wake_queue(dev);
2575 }
2576 return tx_work;
2577 }
2578
2579 /*
2580 * nv_tx_timeout: dev->tx_timeout function
2581 * Called with netif_tx_lock held.
2582 */
2583 static void nv_tx_timeout(struct net_device *dev)
2584 {
2585 struct fe_priv *np = netdev_priv(dev);
2586 u8 __iomem *base = get_hwbase(dev);
2587 u32 status;
2588 union ring_type put_tx;
2589 int saved_tx_limit;
2590
2591 if (np->msi_flags & NV_MSI_X_ENABLED)
2592 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2593 else
2594 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2595
2596 netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status);
2597
2598 if (unlikely(debug_tx_timeout)) {
2599 int i;
2600
2601 netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr);
2602 netdev_info(dev, "Dumping tx registers\n");
2603 for (i = 0; i <= np->register_size; i += 32) {
2604 netdev_info(dev,
2605 "%3x: %08x %08x %08x %08x "
2606 "%08x %08x %08x %08x\n",
2607 i,
2608 readl(base + i + 0), readl(base + i + 4),
2609 readl(base + i + 8), readl(base + i + 12),
2610 readl(base + i + 16), readl(base + i + 20),
2611 readl(base + i + 24), readl(base + i + 28));
2612 }
2613 netdev_info(dev, "Dumping tx ring\n");
2614 for (i = 0; i < np->tx_ring_size; i += 4) {
2615 if (!nv_optimized(np)) {
2616 netdev_info(dev,
2617 "%03x: %08x %08x // %08x %08x "
2618 "// %08x %08x // %08x %08x\n",
2619 i,
2620 le32_to_cpu(np->tx_ring.orig[i].buf),
2621 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2622 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2623 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2624 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2625 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2626 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2627 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2628 } else {
2629 netdev_info(dev,
2630 "%03x: %08x %08x %08x "
2631 "// %08x %08x %08x "
2632 "// %08x %08x %08x "
2633 "// %08x %08x %08x\n",
2634 i,
2635 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2636 le32_to_cpu(np->tx_ring.ex[i].buflow),
2637 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2638 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2639 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2640 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2641 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2642 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2643 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2644 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2645 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2646 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2647 }
2648 }
2649 }
2650
2651 spin_lock_irq(&np->lock);
2652
2653 /* 1) stop tx engine */
2654 nv_stop_tx(dev);
2655
2656 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
2657 saved_tx_limit = np->tx_limit;
2658 np->tx_limit = 0; /* prevent giving HW any limited pkts */
2659 np->tx_stop = 0; /* prevent waking tx queue */
2660 if (!nv_optimized(np))
2661 nv_tx_done(dev, np->tx_ring_size);
2662 else
2663 nv_tx_done_optimized(dev, np->tx_ring_size);
2664
2665 /* save current HW position */
2666 if (np->tx_change_owner)
2667 put_tx.ex = np->tx_change_owner->first_tx_desc;
2668 else
2669 put_tx = np->put_tx;
2670
2671 /* 3) clear all tx state */
2672 nv_drain_tx(dev);
2673 nv_init_tx(dev);
2674
2675 /* 4) restore state to current HW position */
2676 np->get_tx = np->put_tx = put_tx;
2677 np->tx_limit = saved_tx_limit;
2678
2679 /* 5) restart tx engine */
2680 nv_start_tx(dev);
2681 netif_wake_queue(dev);
2682 spin_unlock_irq(&np->lock);
2683 }
2684
2685 /*
2686 * Called when the nic notices a mismatch between the actual data len on the
2687 * wire and the len indicated in the 802 header
2688 */
2689 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2690 {
2691 int hdrlen; /* length of the 802 header */
2692 int protolen; /* length as stored in the proto field */
2693
2694 /* 1) calculate len according to header */
2695 if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2696 protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto);
2697 hdrlen = VLAN_HLEN;
2698 } else {
2699 protolen = ntohs(((struct ethhdr *)packet)->h_proto);
2700 hdrlen = ETH_HLEN;
2701 }
2702 if (protolen > ETH_DATA_LEN)
2703 return datalen; /* Value in proto field not a len, no checks possible */
2704
2705 protolen += hdrlen;
2706 /* consistency checks: */
2707 if (datalen > ETH_ZLEN) {
2708 if (datalen >= protolen) {
2709 /* more data on wire than in 802 header, trim of
2710 * additional data.
2711 */
2712 return protolen;
2713 } else {
2714 /* less data on wire than mentioned in header.
2715 * Discard the packet.
2716 */
2717 return -1;
2718 }
2719 } else {
2720 /* short packet. Accept only if 802 values are also short */
2721 if (protolen > ETH_ZLEN) {
2722 return -1;
2723 }
2724 return datalen;
2725 }
2726 }
2727
2728 static int nv_rx_process(struct net_device *dev, int limit)
2729 {
2730 struct fe_priv *np = netdev_priv(dev);
2731 u32 flags;
2732 int rx_work = 0;
2733 struct sk_buff *skb;
2734 int len;
2735
2736 while ((np->get_rx.orig != np->put_rx.orig) &&
2737 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2738 (rx_work < limit)) {
2739
2740 /*
2741 * the packet is for us - immediately tear down the pci mapping.
2742 * TODO: check if a prefetch of the first cacheline improves
2743 * the performance.
2744 */
2745 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2746 np->get_rx_ctx->dma_len,
2747 PCI_DMA_FROMDEVICE);
2748 skb = np->get_rx_ctx->skb;
2749 np->get_rx_ctx->skb = NULL;
2750
2751 /* look at what we actually got: */
2752 if (np->desc_ver == DESC_VER_1) {
2753 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2754 len = flags & LEN_MASK_V1;
2755 if (unlikely(flags & NV_RX_ERROR)) {
2756 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
2757 len = nv_getlen(dev, skb->data, len);
2758 if (len < 0) {
2759 dev_kfree_skb(skb);
2760 goto next_pkt;
2761 }
2762 }
2763 /* framing errors are soft errors */
2764 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
2765 if (flags & NV_RX_SUBSTRACT1)
2766 len--;
2767 }
2768 /* the rest are hard errors */
2769 else {
2770 if (flags & NV_RX_MISSEDFRAME) {
2771 u64_stats_update_begin(&np->swstats_rx_syncp);
2772 np->stat_rx_missed_errors++;
2773 u64_stats_update_end(&np->swstats_rx_syncp);
2774 }
2775 dev_kfree_skb(skb);
2776 goto next_pkt;
2777 }
2778 }
2779 } else {
2780 dev_kfree_skb(skb);
2781 goto next_pkt;
2782 }
2783 } else {
2784 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2785 len = flags & LEN_MASK_V2;
2786 if (unlikely(flags & NV_RX2_ERROR)) {
2787 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2788 len = nv_getlen(dev, skb->data, len);
2789 if (len < 0) {
2790 dev_kfree_skb(skb);
2791 goto next_pkt;
2792 }
2793 }
2794 /* framing errors are soft errors */
2795 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2796 if (flags & NV_RX2_SUBSTRACT1)
2797 len--;
2798 }
2799 /* the rest are hard errors */
2800 else {
2801 dev_kfree_skb(skb);
2802 goto next_pkt;
2803 }
2804 }
2805 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2806 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2807 skb->ip_summed = CHECKSUM_UNNECESSARY;
2808 } else {
2809 dev_kfree_skb(skb);
2810 goto next_pkt;
2811 }
2812 }
2813 /* got a valid packet - forward it to the network core */
2814 skb_put(skb, len);
2815 skb->protocol = eth_type_trans(skb, dev);
2816 napi_gro_receive(&np->napi, skb);
2817 u64_stats_update_begin(&np->swstats_rx_syncp);
2818 np->stat_rx_packets++;
2819 np->stat_rx_bytes += len;
2820 u64_stats_update_end(&np->swstats_rx_syncp);
2821 next_pkt:
2822 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2823 np->get_rx.orig = np->first_rx.orig;
2824 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2825 np->get_rx_ctx = np->first_rx_ctx;
2826
2827 rx_work++;
2828 }
2829
2830 return rx_work;
2831 }
2832
2833 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2834 {
2835 struct fe_priv *np = netdev_priv(dev);
2836 u32 flags;
2837 u32 vlanflags = 0;
2838 int rx_work = 0;
2839 struct sk_buff *skb;
2840 int len;
2841
2842 while ((np->get_rx.ex != np->put_rx.ex) &&
2843 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2844 (rx_work < limit)) {
2845
2846 /*
2847 * the packet is for us - immediately tear down the pci mapping.
2848 * TODO: check if a prefetch of the first cacheline improves
2849 * the performance.
2850 */
2851 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2852 np->get_rx_ctx->dma_len,
2853 PCI_DMA_FROMDEVICE);
2854 skb = np->get_rx_ctx->skb;
2855 np->get_rx_ctx->skb = NULL;
2856
2857 /* look at what we actually got: */
2858 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2859 len = flags & LEN_MASK_V2;
2860 if (unlikely(flags & NV_RX2_ERROR)) {
2861 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2862 len = nv_getlen(dev, skb->data, len);
2863 if (len < 0) {
2864 dev_kfree_skb(skb);
2865 goto next_pkt;
2866 }
2867 }
2868 /* framing errors are soft errors */
2869 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2870 if (flags & NV_RX2_SUBSTRACT1)
2871 len--;
2872 }
2873 /* the rest are hard errors */
2874 else {
2875 dev_kfree_skb(skb);
2876 goto next_pkt;
2877 }
2878 }
2879
2880 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2881 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2882 skb->ip_summed = CHECKSUM_UNNECESSARY;
2883
2884 /* got a valid packet - forward it to the network core */
2885 skb_put(skb, len);
2886 skb->protocol = eth_type_trans(skb, dev);
2887 prefetch(skb->data);
2888
2889 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2890
2891 /*
2892 * There's need to check for NETIF_F_HW_VLAN_RX here.
2893 * Even if vlan rx accel is disabled,
2894 * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set.
2895 */
2896 if (dev->features & NETIF_F_HW_VLAN_RX &&
2897 vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2898 u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK;
2899
2900 __vlan_hwaccel_put_tag(skb, vid);
2901 }
2902 napi_gro_receive(&np->napi, skb);
2903 u64_stats_update_begin(&np->swstats_rx_syncp);
2904 np->stat_rx_packets++;
2905 np->stat_rx_bytes += len;
2906 u64_stats_update_end(&np->swstats_rx_syncp);
2907 } else {
2908 dev_kfree_skb(skb);
2909 }
2910 next_pkt:
2911 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2912 np->get_rx.ex = np->first_rx.ex;
2913 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2914 np->get_rx_ctx = np->first_rx_ctx;
2915
2916 rx_work++;
2917 }
2918
2919 return rx_work;
2920 }
2921
2922 static void set_bufsize(struct net_device *dev)
2923 {
2924 struct fe_priv *np = netdev_priv(dev);
2925
2926 if (dev->mtu <= ETH_DATA_LEN)
2927 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2928 else
2929 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2930 }
2931
2932 /*
2933 * nv_change_mtu: dev->change_mtu function
2934 * Called with dev_base_lock held for read.
2935 */
2936 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2937 {
2938 struct fe_priv *np = netdev_priv(dev);
2939 int old_mtu;
2940
2941 if (new_mtu < 64 || new_mtu > np->pkt_limit)
2942 return -EINVAL;
2943
2944 old_mtu = dev->mtu;
2945 dev->mtu = new_mtu;
2946
2947 /* return early if the buffer sizes will not change */
2948 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2949 return 0;
2950 if (old_mtu == new_mtu)
2951 return 0;
2952
2953 /* synchronized against open : rtnl_lock() held by caller */
2954 if (netif_running(dev)) {
2955 u8 __iomem *base = get_hwbase(dev);
2956 /*
2957 * It seems that the nic preloads valid ring entries into an
2958 * internal buffer. The procedure for flushing everything is
2959 * guessed, there is probably a simpler approach.
2960 * Changing the MTU is a rare event, it shouldn't matter.
2961 */
2962 nv_disable_irq(dev);
2963 nv_napi_disable(dev);
2964 netif_tx_lock_bh(dev);
2965 netif_addr_lock(dev);
2966 spin_lock(&np->lock);
2967 /* stop engines */
2968 nv_stop_rxtx(dev);
2969 nv_txrx_reset(dev);
2970 /* drain rx queue */
2971 nv_drain_rxtx(dev);
2972 /* reinit driver view of the rx queue */
2973 set_bufsize(dev);
2974 if (nv_init_ring(dev)) {
2975 if (!np->in_shutdown)
2976 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2977 }
2978 /* reinit nic view of the rx queue */
2979 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2980 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2981 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2982 base + NvRegRingSizes);
2983 pci_push(base);
2984 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2985 pci_push(base);
2986
2987 /* restart rx engine */
2988 nv_start_rxtx(dev);
2989 spin_unlock(&np->lock);
2990 netif_addr_unlock(dev);
2991 netif_tx_unlock_bh(dev);
2992 nv_napi_enable(dev);
2993 nv_enable_irq(dev);
2994 }
2995 return 0;
2996 }
2997
2998 static void nv_copy_mac_to_hw(struct net_device *dev)
2999 {
3000 u8 __iomem *base = get_hwbase(dev);
3001 u32 mac[2];
3002
3003 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
3004 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
3005 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
3006
3007 writel(mac[0], base + NvRegMacAddrA);
3008 writel(mac[1], base + NvRegMacAddrB);
3009 }
3010
3011 /*
3012 * nv_set_mac_address: dev->set_mac_address function
3013 * Called with rtnl_lock() held.
3014 */
3015 static int nv_set_mac_address(struct net_device *dev, void *addr)
3016 {
3017 struct fe_priv *np = netdev_priv(dev);
3018 struct sockaddr *macaddr = (struct sockaddr *)addr;
3019
3020 if (!is_valid_ether_addr(macaddr->sa_data))
3021 return -EADDRNOTAVAIL;
3022
3023 /* synchronized against open : rtnl_lock() held by caller */
3024 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
3025 dev->addr_assign_type &= ~NET_ADDR_RANDOM;
3026
3027 if (netif_running(dev)) {
3028 netif_tx_lock_bh(dev);
3029 netif_addr_lock(dev);
3030 spin_lock_irq(&np->lock);
3031
3032 /* stop rx engine */
3033 nv_stop_rx(dev);
3034
3035 /* set mac address */
3036 nv_copy_mac_to_hw(dev);
3037
3038 /* restart rx engine */
3039 nv_start_rx(dev);
3040 spin_unlock_irq(&np->lock);
3041 netif_addr_unlock(dev);
3042 netif_tx_unlock_bh(dev);
3043 } else {
3044 nv_copy_mac_to_hw(dev);
3045 }
3046 return 0;
3047 }
3048
3049 /*
3050 * nv_set_multicast: dev->set_multicast function
3051 * Called with netif_tx_lock held.
3052 */
3053 static void nv_set_multicast(struct net_device *dev)
3054 {
3055 struct fe_priv *np = netdev_priv(dev);
3056 u8 __iomem *base = get_hwbase(dev);
3057 u32 addr[2];
3058 u32 mask[2];
3059 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
3060
3061 memset(addr, 0, sizeof(addr));
3062 memset(mask, 0, sizeof(mask));
3063
3064 if (dev->flags & IFF_PROMISC) {
3065 pff |= NVREG_PFF_PROMISC;
3066 } else {
3067 pff |= NVREG_PFF_MYADDR;
3068
3069 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
3070 u32 alwaysOff[2];
3071 u32 alwaysOn[2];
3072
3073 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
3074 if (dev->flags & IFF_ALLMULTI) {
3075 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
3076 } else {
3077 struct netdev_hw_addr *ha;
3078
3079 netdev_for_each_mc_addr(ha, dev) {
3080 unsigned char *hw_addr = ha->addr;
3081 u32 a, b;
3082
3083 a = le32_to_cpu(*(__le32 *) hw_addr);
3084 b = le16_to_cpu(*(__le16 *) (&hw_addr[4]));
3085 alwaysOn[0] &= a;
3086 alwaysOff[0] &= ~a;
3087 alwaysOn[1] &= b;
3088 alwaysOff[1] &= ~b;
3089 }
3090 }
3091 addr[0] = alwaysOn[0];
3092 addr[1] = alwaysOn[1];
3093 mask[0] = alwaysOn[0] | alwaysOff[0];
3094 mask[1] = alwaysOn[1] | alwaysOff[1];
3095 } else {
3096 mask[0] = NVREG_MCASTMASKA_NONE;
3097 mask[1] = NVREG_MCASTMASKB_NONE;
3098 }
3099 }
3100 addr[0] |= NVREG_MCASTADDRA_FORCE;
3101 pff |= NVREG_PFF_ALWAYS;
3102 spin_lock_irq(&np->lock);
3103 nv_stop_rx(dev);
3104 writel(addr[0], base + NvRegMulticastAddrA);
3105 writel(addr[1], base + NvRegMulticastAddrB);
3106 writel(mask[0], base + NvRegMulticastMaskA);
3107 writel(mask[1], base + NvRegMulticastMaskB);
3108 writel(pff, base + NvRegPacketFilterFlags);
3109 nv_start_rx(dev);
3110 spin_unlock_irq(&np->lock);
3111 }
3112
3113 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
3114 {
3115 struct fe_priv *np = netdev_priv(dev);
3116 u8 __iomem *base = get_hwbase(dev);
3117
3118 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
3119
3120 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
3121 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
3122 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
3123 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
3124 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3125 } else {
3126 writel(pff, base + NvRegPacketFilterFlags);
3127 }
3128 }
3129 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
3130 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
3131 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
3132 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
3133 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
3134 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
3135 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
3136 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
3137 /* limit the number of tx pause frames to a default of 8 */
3138 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
3139 }
3140 writel(pause_enable, base + NvRegTxPauseFrame);
3141 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
3142 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3143 } else {
3144 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
3145 writel(regmisc, base + NvRegMisc1);
3146 }
3147 }
3148 }
3149
3150 static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex)
3151 {
3152 struct fe_priv *np = netdev_priv(dev);
3153 u8 __iomem *base = get_hwbase(dev);
3154 u32 phyreg, txreg;
3155 int mii_status;
3156
3157 np->linkspeed = NVREG_LINKSPEED_FORCE|speed;
3158 np->duplex = duplex;
3159
3160 /* see if gigabit phy */
3161 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3162 if (mii_status & PHY_GIGABIT) {
3163 np->gigabit = PHY_GIGABIT;
3164 phyreg = readl(base + NvRegSlotTime);
3165 phyreg &= ~(0x3FF00);
3166 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
3167 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3168 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
3169 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3170 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3171 phyreg |= NVREG_SLOTTIME_1000_FULL;
3172 writel(phyreg, base + NvRegSlotTime);
3173 }
3174
3175 phyreg = readl(base + NvRegPhyInterface);
3176 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3177 if (np->duplex == 0)
3178 phyreg |= PHY_HALF;
3179 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3180 phyreg |= PHY_100;
3181 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3182 NVREG_LINKSPEED_1000)
3183 phyreg |= PHY_1000;
3184 writel(phyreg, base + NvRegPhyInterface);
3185
3186 if (phyreg & PHY_RGMII) {
3187 if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3188 NVREG_LINKSPEED_1000)
3189 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3190 else
3191 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3192 } else {
3193 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3194 }
3195 writel(txreg, base + NvRegTxDeferral);
3196
3197 if (np->desc_ver == DESC_VER_1) {
3198 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3199 } else {
3200 if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3201 NVREG_LINKSPEED_1000)
3202 txreg = NVREG_TX_WM_DESC2_3_1000;
3203 else
3204 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3205 }
3206 writel(txreg, base + NvRegTxWatermark);
3207
3208 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
3209 base + NvRegMisc1);
3210 pci_push(base);
3211 writel(np->linkspeed, base + NvRegLinkSpeed);
3212 pci_push(base);
3213
3214 return;
3215 }
3216
3217 /**
3218 * nv_update_linkspeed: Setup the MAC according to the link partner
3219 * @dev: Network device to be configured
3220 *
3221 * The function queries the PHY and checks if there is a link partner.
3222 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
3223 * set to 10 MBit HD.
3224 *
3225 * The function returns 0 if there is no link partner and 1 if there is
3226 * a good link partner.
3227 */
3228 static int nv_update_linkspeed(struct net_device *dev)
3229 {
3230 struct fe_priv *np = netdev_priv(dev);
3231 u8 __iomem *base = get_hwbase(dev);
3232 int adv = 0;
3233 int lpa = 0;
3234 int adv_lpa, adv_pause, lpa_pause;
3235 int newls = np->linkspeed;
3236 int newdup = np->duplex;
3237 int mii_status;
3238 u32 bmcr;
3239 int retval = 0;
3240 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
3241 u32 txrxFlags = 0;
3242 u32 phy_exp;
3243
3244 /* If device loopback is enabled, set carrier on and enable max link
3245 * speed.
3246 */
3247 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3248 if (bmcr & BMCR_LOOPBACK) {
3249 if (netif_running(dev)) {
3250 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1);
3251 if (!netif_carrier_ok(dev))
3252 netif_carrier_on(dev);
3253 }
3254 return 1;
3255 }
3256
3257 /* BMSR_LSTATUS is latched, read it twice:
3258 * we want the current value.
3259 */
3260 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3261 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3262
3263 if (!(mii_status & BMSR_LSTATUS)) {
3264 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3265 newdup = 0;
3266 retval = 0;
3267 goto set_speed;
3268 }
3269
3270 if (np->autoneg == 0) {
3271 if (np->fixed_mode & LPA_100FULL) {
3272 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3273 newdup = 1;
3274 } else if (np->fixed_mode & LPA_100HALF) {
3275 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3276 newdup = 0;
3277 } else if (np->fixed_mode & LPA_10FULL) {
3278 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3279 newdup = 1;
3280 } else {
3281 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3282 newdup = 0;
3283 }
3284 retval = 1;
3285 goto set_speed;
3286 }
3287 /* check auto negotiation is complete */
3288 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
3289 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
3290 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3291 newdup = 0;
3292 retval = 0;
3293 goto set_speed;
3294 }
3295
3296 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3297 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
3298
3299 retval = 1;
3300 if (np->gigabit == PHY_GIGABIT) {
3301 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3302 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
3303
3304 if ((control_1000 & ADVERTISE_1000FULL) &&
3305 (status_1000 & LPA_1000FULL)) {
3306 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
3307 newdup = 1;
3308 goto set_speed;
3309 }
3310 }
3311
3312 /* FIXME: handle parallel detection properly */
3313 adv_lpa = lpa & adv;
3314 if (adv_lpa & LPA_100FULL) {
3315 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3316 newdup = 1;
3317 } else if (adv_lpa & LPA_100HALF) {
3318 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3319 newdup = 0;
3320 } else if (adv_lpa & LPA_10FULL) {
3321 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3322 newdup = 1;
3323 } else if (adv_lpa & LPA_10HALF) {
3324 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3325 newdup = 0;
3326 } else {
3327 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3328 newdup = 0;
3329 }
3330
3331 set_speed:
3332 if (np->duplex == newdup && np->linkspeed == newls)
3333 return retval;
3334
3335 np->duplex = newdup;
3336 np->linkspeed = newls;
3337
3338 /* The transmitter and receiver must be restarted for safe update */
3339 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
3340 txrxFlags |= NV_RESTART_TX;
3341 nv_stop_tx(dev);
3342 }
3343 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
3344 txrxFlags |= NV_RESTART_RX;
3345 nv_stop_rx(dev);
3346 }
3347
3348 if (np->gigabit == PHY_GIGABIT) {
3349 phyreg = readl(base + NvRegSlotTime);
3350 phyreg &= ~(0x3FF00);
3351 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
3352 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
3353 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3354 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3355 phyreg |= NVREG_SLOTTIME_1000_FULL;
3356 writel(phyreg, base + NvRegSlotTime);
3357 }
3358
3359 phyreg = readl(base + NvRegPhyInterface);
3360 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3361 if (np->duplex == 0)
3362 phyreg |= PHY_HALF;
3363 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3364 phyreg |= PHY_100;
3365 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3366 phyreg |= PHY_1000;
3367 writel(phyreg, base + NvRegPhyInterface);
3368
3369 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
3370 if (phyreg & PHY_RGMII) {
3371 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
3372 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3373 } else {
3374 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3375 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
3376 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
3377 else
3378 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
3379 } else {
3380 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3381 }
3382 }
3383 } else {
3384 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3385 txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
3386 else
3387 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3388 }
3389 writel(txreg, base + NvRegTxDeferral);
3390
3391 if (np->desc_ver == DESC_VER_1) {
3392 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3393 } else {
3394 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3395 txreg = NVREG_TX_WM_DESC2_3_1000;
3396 else
3397 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3398 }
3399 writel(txreg, base + NvRegTxWatermark);
3400
3401 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
3402 base + NvRegMisc1);
3403 pci_push(base);
3404 writel(np->linkspeed, base + NvRegLinkSpeed);
3405 pci_push(base);
3406
3407 pause_flags = 0;
3408 /* setup pause frame */
3409 if (np->duplex != 0) {
3410 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3411 adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3412 lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM);
3413
3414 switch (adv_pause) {
3415 case ADVERTISE_PAUSE_CAP:
3416 if (lpa_pause & LPA_PAUSE_CAP) {
3417 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3418 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3419 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3420 }
3421 break;
3422 case ADVERTISE_PAUSE_ASYM:
3423 if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM))
3424 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3425 break;
3426 case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM:
3427 if (lpa_pause & LPA_PAUSE_CAP) {
3428 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3429 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3430 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3431 }
3432 if (lpa_pause == LPA_PAUSE_ASYM)
3433 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3434 break;
3435 }
3436 } else {
3437 pause_flags = np->pause_flags;
3438 }
3439 }
3440 nv_update_pause(dev, pause_flags);
3441
3442 if (txrxFlags & NV_RESTART_TX)
3443 nv_start_tx(dev);
3444 if (txrxFlags & NV_RESTART_RX)
3445 nv_start_rx(dev);
3446
3447 return retval;
3448 }
3449
3450 static void nv_linkchange(struct net_device *dev)
3451 {
3452 if (nv_update_linkspeed(dev)) {
3453 if (!netif_carrier_ok(dev)) {
3454 netif_carrier_on(dev);
3455 netdev_info(dev, "link up\n");
3456 nv_txrx_gate(dev, false);
3457 nv_start_rx(dev);
3458 }
3459 } else {
3460 if (netif_carrier_ok(dev)) {
3461 netif_carrier_off(dev);
3462 netdev_info(dev, "link down\n");
3463 nv_txrx_gate(dev, true);
3464 nv_stop_rx(dev);
3465 }
3466 }
3467 }
3468
3469 static void nv_link_irq(struct net_device *dev)
3470 {
3471 u8 __iomem *base = get_hwbase(dev);
3472 u32 miistat;
3473
3474 miistat = readl(base + NvRegMIIStatus);
3475 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3476
3477 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3478 nv_linkchange(dev);
3479 }
3480
3481 static void nv_msi_workaround(struct fe_priv *np)
3482 {
3483
3484 /* Need to toggle the msi irq mask within the ethernet device,
3485 * otherwise, future interrupts will not be detected.
3486 */
3487 if (np->msi_flags & NV_MSI_ENABLED) {
3488 u8 __iomem *base = np->base;
3489
3490 writel(0, base + NvRegMSIIrqMask);
3491 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3492 }
3493 }
3494
3495 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
3496 {
3497 struct fe_priv *np = netdev_priv(dev);
3498
3499 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
3500 if (total_work > NV_DYNAMIC_THRESHOLD) {
3501 /* transition to poll based interrupts */
3502 np->quiet_count = 0;
3503 if (np->irqmask != NVREG_IRQMASK_CPU) {
3504 np->irqmask = NVREG_IRQMASK_CPU;
3505 return 1;
3506 }
3507 } else {
3508 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
3509 np->quiet_count++;
3510 } else {
3511 /* reached a period of low activity, switch
3512 to per tx/rx packet interrupts */
3513 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
3514 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3515 return 1;
3516 }
3517 }
3518 }
3519 }
3520 return 0;
3521 }
3522
3523 static irqreturn_t nv_nic_irq(int foo, void *data)
3524 {
3525 struct net_device *dev = (struct net_device *) data;
3526 struct fe_priv *np = netdev_priv(dev);
3527 u8 __iomem *base = get_hwbase(dev);
3528
3529 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3530 np->events = readl(base + NvRegIrqStatus);
3531 writel(np->events, base + NvRegIrqStatus);
3532 } else {
3533 np->events = readl(base + NvRegMSIXIrqStatus);
3534 writel(np->events, base + NvRegMSIXIrqStatus);
3535 }
3536 if (!(np->events & np->irqmask))
3537 return IRQ_NONE;
3538
3539 nv_msi_workaround(np);
3540
3541 if (napi_schedule_prep(&np->napi)) {
3542 /*
3543 * Disable further irq's (msix not enabled with napi)
3544 */
3545 writel(0, base + NvRegIrqMask);
3546 __napi_schedule(&np->napi);
3547 }
3548
3549 return IRQ_HANDLED;
3550 }
3551
3552 /**
3553 * All _optimized functions are used to help increase performance
3554 * (reduce CPU and increase throughput). They use descripter version 3,
3555 * compiler directives, and reduce memory accesses.
3556 */
3557 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3558 {
3559 struct net_device *dev = (struct net_device *) data;
3560 struct fe_priv *np = netdev_priv(dev);
3561 u8 __iomem *base = get_hwbase(dev);
3562
3563 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3564 np->events = readl(base + NvRegIrqStatus);
3565 writel(np->events, base + NvRegIrqStatus);
3566 } else {
3567 np->events = readl(base + NvRegMSIXIrqStatus);
3568 writel(np->events, base + NvRegMSIXIrqStatus);
3569 }
3570 if (!(np->events & np->irqmask))
3571 return IRQ_NONE;
3572
3573 nv_msi_workaround(np);
3574
3575 if (napi_schedule_prep(&np->napi)) {
3576 /*
3577 * Disable further irq's (msix not enabled with napi)
3578 */
3579 writel(0, base + NvRegIrqMask);
3580 __napi_schedule(&np->napi);
3581 }
3582
3583 return IRQ_HANDLED;
3584 }
3585
3586 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3587 {
3588 struct net_device *dev = (struct net_device *) data;
3589 struct fe_priv *np = netdev_priv(dev);
3590 u8 __iomem *base = get_hwbase(dev);
3591 u32 events;
3592 int i;
3593 unsigned long flags;
3594
3595 for (i = 0;; i++) {
3596 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3597 writel(events, base + NvRegMSIXIrqStatus);
3598 netdev_dbg(dev, "tx irq events: %08x\n", events);
3599 if (!(events & np->irqmask))
3600 break;
3601
3602 spin_lock_irqsave(&np->lock, flags);
3603 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3604 spin_unlock_irqrestore(&np->lock, flags);
3605
3606 if (unlikely(i > max_interrupt_work)) {
3607 spin_lock_irqsave(&np->lock, flags);
3608 /* disable interrupts on the nic */
3609 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3610 pci_push(base);
3611
3612 if (!np->in_shutdown) {
3613 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3614 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3615 }
3616 spin_unlock_irqrestore(&np->lock, flags);
3617 netdev_dbg(dev, "%s: too many iterations (%d)\n",
3618 __func__, i);
3619 break;
3620 }
3621
3622 }
3623
3624 return IRQ_RETVAL(i);
3625 }
3626
3627 static int nv_napi_poll(struct napi_struct *napi, int budget)
3628 {
3629 struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3630 struct net_device *dev = np->dev;
3631 u8 __iomem *base = get_hwbase(dev);
3632 unsigned long flags;
3633 int retcode;
3634 int rx_count, tx_work = 0, rx_work = 0;
3635
3636 do {
3637 if (!nv_optimized(np)) {
3638 spin_lock_irqsave(&np->lock, flags);
3639 tx_work += nv_tx_done(dev, np->tx_ring_size);
3640 spin_unlock_irqrestore(&np->lock, flags);
3641
3642 rx_count = nv_rx_process(dev, budget - rx_work);
3643 retcode = nv_alloc_rx(dev);
3644 } else {
3645 spin_lock_irqsave(&np->lock, flags);
3646 tx_work += nv_tx_done_optimized(dev, np->tx_ring_size);
3647 spin_unlock_irqrestore(&np->lock, flags);
3648
3649 rx_count = nv_rx_process_optimized(dev,
3650 budget - rx_work);
3651 retcode = nv_alloc_rx_optimized(dev);
3652 }
3653 } while (retcode == 0 &&
3654 rx_count > 0 && (rx_work += rx_count) < budget);
3655
3656 if (retcode) {
3657 spin_lock_irqsave(&np->lock, flags);
3658 if (!np->in_shutdown)
3659 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3660 spin_unlock_irqrestore(&np->lock, flags);
3661 }
3662
3663 nv_change_interrupt_mode(dev, tx_work + rx_work);
3664
3665 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3666 spin_lock_irqsave(&np->lock, flags);
3667 nv_link_irq(dev);
3668 spin_unlock_irqrestore(&np->lock, flags);
3669 }
3670 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3671 spin_lock_irqsave(&np->lock, flags);
3672 nv_linkchange(dev);
3673 spin_unlock_irqrestore(&np->lock, flags);
3674 np->link_timeout = jiffies + LINK_TIMEOUT;
3675 }
3676 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3677 spin_lock_irqsave(&np->lock, flags);
3678 if (!np->in_shutdown) {
3679 np->nic_poll_irq = np->irqmask;
3680 np->recover_error = 1;
3681 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3682 }
3683 spin_unlock_irqrestore(&np->lock, flags);
3684 napi_complete(napi);
3685 return rx_work;
3686 }
3687
3688 if (rx_work < budget) {
3689 /* re-enable interrupts
3690 (msix not enabled in napi) */
3691 napi_complete(napi);
3692
3693 writel(np->irqmask, base + NvRegIrqMask);
3694 }
3695 return rx_work;
3696 }
3697
3698 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3699 {
3700 struct net_device *dev = (struct net_device *) data;
3701 struct fe_priv *np = netdev_priv(dev);
3702 u8 __iomem *base = get_hwbase(dev);
3703 u32 events;
3704 int i;
3705 unsigned long flags;
3706
3707 for (i = 0;; i++) {
3708 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3709 writel(events, base + NvRegMSIXIrqStatus);
3710 netdev_dbg(dev, "rx irq events: %08x\n", events);
3711 if (!(events & np->irqmask))
3712 break;
3713
3714 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3715 if (unlikely(nv_alloc_rx_optimized(dev))) {
3716 spin_lock_irqsave(&np->lock, flags);
3717 if (!np->in_shutdown)
3718 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3719 spin_unlock_irqrestore(&np->lock, flags);
3720 }
3721 }
3722
3723 if (unlikely(i > max_interrupt_work)) {
3724 spin_lock_irqsave(&np->lock, flags);
3725 /* disable interrupts on the nic */
3726 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3727 pci_push(base);
3728
3729 if (!np->in_shutdown) {
3730 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3731 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3732 }
3733 spin_unlock_irqrestore(&np->lock, flags);
3734 netdev_dbg(dev, "%s: too many iterations (%d)\n",
3735 __func__, i);
3736 break;
3737 }
3738 }
3739
3740 return IRQ_RETVAL(i);
3741 }
3742
3743 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3744 {
3745 struct net_device *dev = (struct net_device *) data;
3746 struct fe_priv *np = netdev_priv(dev);
3747 u8 __iomem *base = get_hwbase(dev);
3748 u32 events;
3749 int i;
3750 unsigned long flags;
3751
3752 for (i = 0;; i++) {
3753 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3754 writel(events, base + NvRegMSIXIrqStatus);
3755 netdev_dbg(dev, "irq events: %08x\n", events);
3756 if (!(events & np->irqmask))
3757 break;
3758
3759 /* check tx in case we reached max loop limit in tx isr */
3760 spin_lock_irqsave(&np->lock, flags);
3761 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3762 spin_unlock_irqrestore(&np->lock, flags);
3763
3764 if (events & NVREG_IRQ_LINK) {
3765 spin_lock_irqsave(&np->lock, flags);
3766 nv_link_irq(dev);
3767 spin_unlock_irqrestore(&np->lock, flags);
3768 }
3769 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3770 spin_lock_irqsave(&np->lock, flags);
3771 nv_linkchange(dev);
3772 spin_unlock_irqrestore(&np->lock, flags);
3773 np->link_timeout = jiffies + LINK_TIMEOUT;
3774 }
3775 if (events & NVREG_IRQ_RECOVER_ERROR) {
3776 spin_lock_irq(&np->lock);
3777 /* disable interrupts on the nic */
3778 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3779 pci_push(base);
3780
3781 if (!np->in_shutdown) {
3782 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3783 np->recover_error = 1;
3784 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3785 }
3786 spin_unlock_irq(&np->lock);
3787 break;
3788 }
3789 if (unlikely(i > max_interrupt_work)) {
3790 spin_lock_irqsave(&np->lock, flags);
3791 /* disable interrupts on the nic */
3792 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3793 pci_push(base);
3794
3795 if (!np->in_shutdown) {
3796 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3797 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3798 }
3799 spin_unlock_irqrestore(&np->lock, flags);
3800 netdev_dbg(dev, "%s: too many iterations (%d)\n",
3801 __func__, i);
3802 break;
3803 }
3804
3805 }
3806
3807 return IRQ_RETVAL(i);
3808 }
3809
3810 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3811 {
3812 struct net_device *dev = (struct net_device *) data;
3813 struct fe_priv *np = netdev_priv(dev);
3814 u8 __iomem *base = get_hwbase(dev);
3815 u32 events;
3816
3817 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3818 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3819 writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3820 } else {
3821 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3822 writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3823 }
3824 pci_push(base);
3825 if (!(events & NVREG_IRQ_TIMER))
3826 return IRQ_RETVAL(0);
3827
3828 nv_msi_workaround(np);
3829
3830 spin_lock(&np->lock);
3831 np->intr_test = 1;
3832 spin_unlock(&np->lock);
3833
3834 return IRQ_RETVAL(1);
3835 }
3836
3837 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3838 {
3839 u8 __iomem *base = get_hwbase(dev);
3840 int i;
3841 u32 msixmap = 0;
3842
3843 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3844 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3845 * the remaining 8 interrupts.
3846 */
3847 for (i = 0; i < 8; i++) {
3848 if ((irqmask >> i) & 0x1)
3849 msixmap |= vector << (i << 2);
3850 }
3851 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3852
3853 msixmap = 0;
3854 for (i = 0; i < 8; i++) {
3855 if ((irqmask >> (i + 8)) & 0x1)
3856 msixmap |= vector << (i << 2);
3857 }
3858 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3859 }
3860
3861 static int nv_request_irq(struct net_device *dev, int intr_test)
3862 {
3863 struct fe_priv *np = get_nvpriv(dev);
3864 u8 __iomem *base = get_hwbase(dev);
3865 int ret = 1;
3866 int i;
3867 irqreturn_t (*handler)(int foo, void *data);
3868
3869 if (intr_test) {
3870 handler = nv_nic_irq_test;
3871 } else {
3872 if (nv_optimized(np))
3873 handler = nv_nic_irq_optimized;
3874 else
3875 handler = nv_nic_irq;
3876 }
3877
3878 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3879 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
3880 np->msi_x_entry[i].entry = i;
3881 ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK));
3882 if (ret == 0) {
3883 np->msi_flags |= NV_MSI_X_ENABLED;
3884 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3885 /* Request irq for rx handling */
3886 sprintf(np->name_rx, "%s-rx", dev->name);
3887 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
3888 nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
3889 netdev_info(dev,
3890 "request_irq failed for rx %d\n",
3891 ret);
3892 pci_disable_msix(np->pci_dev);
3893 np->msi_flags &= ~NV_MSI_X_ENABLED;
3894 goto out_err;
3895 }
3896 /* Request irq for tx handling */
3897 sprintf(np->name_tx, "%s-tx", dev->name);
3898 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
3899 nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
3900 netdev_info(dev,
3901 "request_irq failed for tx %d\n",
3902 ret);
3903 pci_disable_msix(np->pci_dev);
3904 np->msi_flags &= ~NV_MSI_X_ENABLED;
3905 goto out_free_rx;
3906 }
3907 /* Request irq for link and timer handling */
3908 sprintf(np->name_other, "%s-other", dev->name);
3909 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
3910 nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
3911 netdev_info(dev,
3912 "request_irq failed for link %d\n",
3913 ret);
3914 pci_disable_msix(np->pci_dev);
3915 np->msi_flags &= ~NV_MSI_X_ENABLED;
3916 goto out_free_tx;
3917 }
3918 /* map interrupts to their respective vector */
3919 writel(0, base + NvRegMSIXMap0);
3920 writel(0, base + NvRegMSIXMap1);
3921 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3922 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3923 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3924 } else {
3925 /* Request irq for all interrupts */
3926 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
3927 netdev_info(dev,
3928 "request_irq failed %d\n",
3929 ret);
3930 pci_disable_msix(np->pci_dev);
3931 np->msi_flags &= ~NV_MSI_X_ENABLED;
3932 goto out_err;
3933 }
3934
3935 /* map interrupts to vector 0 */
3936 writel(0, base + NvRegMSIXMap0);
3937 writel(0, base + NvRegMSIXMap1);
3938 }
3939 netdev_info(dev, "MSI-X enabled\n");
3940 }
3941 }
3942 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
3943 ret = pci_enable_msi(np->pci_dev);
3944 if (ret == 0) {
3945 np->msi_flags |= NV_MSI_ENABLED;
3946 dev->irq = np->pci_dev->irq;
3947 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
3948 netdev_info(dev, "request_irq failed %d\n",
3949 ret);
3950 pci_disable_msi(np->pci_dev);
3951 np->msi_flags &= ~NV_MSI_ENABLED;
3952 dev->irq = np->pci_dev->irq;
3953 goto out_err;
3954 }
3955
3956 /* map interrupts to vector 0 */
3957 writel(0, base + NvRegMSIMap0);
3958 writel(0, base + NvRegMSIMap1);
3959 /* enable msi vector 0 */
3960 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3961 netdev_info(dev, "MSI enabled\n");
3962 }
3963 }
3964 if (ret != 0) {
3965 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
3966 goto out_err;
3967
3968 }
3969
3970 return 0;
3971 out_free_tx:
3972 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
3973 out_free_rx:
3974 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
3975 out_err:
3976 return 1;
3977 }
3978
3979 static void nv_free_irq(struct net_device *dev)
3980 {
3981 struct fe_priv *np = get_nvpriv(dev);
3982 int i;
3983
3984 if (np->msi_flags & NV_MSI_X_ENABLED) {
3985 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
3986 free_irq(np->msi_x_entry[i].vector, dev);
3987 pci_disable_msix(np->pci_dev);
3988 np->msi_flags &= ~NV_MSI_X_ENABLED;
3989 } else {
3990 free_irq(np->pci_dev->irq, dev);
3991 if (np->msi_flags & NV_MSI_ENABLED) {
3992 pci_disable_msi(np->pci_dev);
3993 np->msi_flags &= ~NV_MSI_ENABLED;
3994 }
3995 }
3996 }
3997
3998 static void nv_do_nic_poll(unsigned long data)
3999 {
4000 struct net_device *dev = (struct net_device *) data;
4001 struct fe_priv *np = netdev_priv(dev);
4002 u8 __iomem *base = get_hwbase(dev);
4003 u32 mask = 0;
4004
4005 /*
4006 * First disable irq(s) and then
4007 * reenable interrupts on the nic, we have to do this before calling
4008 * nv_nic_irq because that may decide to do otherwise
4009 */
4010
4011 if (!using_multi_irqs(dev)) {
4012 if (np->msi_flags & NV_MSI_X_ENABLED)
4013 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4014 else
4015 disable_irq_lockdep(np->pci_dev->irq);
4016 mask = np->irqmask;
4017 } else {
4018 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4019 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4020 mask |= NVREG_IRQ_RX_ALL;
4021 }
4022 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4023 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4024 mask |= NVREG_IRQ_TX_ALL;
4025 }
4026 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4027 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4028 mask |= NVREG_IRQ_OTHER;
4029 }
4030 }
4031 /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
4032
4033 if (np->recover_error) {
4034 np->recover_error = 0;
4035 netdev_info(dev, "MAC in recoverable error state\n");
4036 if (netif_running(dev)) {
4037 netif_tx_lock_bh(dev);
4038 netif_addr_lock(dev);
4039 spin_lock(&np->lock);
4040 /* stop engines */
4041 nv_stop_rxtx(dev);
4042 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4043 nv_mac_reset(dev);
4044 nv_txrx_reset(dev);
4045 /* drain rx queue */
4046 nv_drain_rxtx(dev);
4047 /* reinit driver view of the rx queue */
4048 set_bufsize(dev);
4049 if (nv_init_ring(dev)) {
4050 if (!np->in_shutdown)
4051 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4052 }
4053 /* reinit nic view of the rx queue */
4054 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4055 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4056 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4057 base + NvRegRingSizes);
4058 pci_push(base);
4059 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4060 pci_push(base);
4061 /* clear interrupts */
4062 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4063 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4064 else
4065 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4066
4067 /* restart rx engine */
4068 nv_start_rxtx(dev);
4069 spin_unlock(&np->lock);
4070 netif_addr_unlock(dev);
4071 netif_tx_unlock_bh(dev);
4072 }
4073 }
4074
4075 writel(mask, base + NvRegIrqMask);
4076 pci_push(base);
4077
4078 if (!using_multi_irqs(dev)) {
4079 np->nic_poll_irq = 0;
4080 if (nv_optimized(np))
4081 nv_nic_irq_optimized(0, dev);
4082 else
4083 nv_nic_irq(0, dev);
4084 if (np->msi_flags & NV_MSI_X_ENABLED)
4085 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4086 else
4087 enable_irq_lockdep(np->pci_dev->irq);
4088 } else {
4089 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4090 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
4091 nv_nic_irq_rx(0, dev);
4092 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4093 }
4094 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4095 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
4096 nv_nic_irq_tx(0, dev);
4097 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4098 }
4099 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4100 np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
4101 nv_nic_irq_other(0, dev);
4102 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4103 }
4104 }
4105
4106 }
4107
4108 #ifdef CONFIG_NET_POLL_CONTROLLER
4109 static void nv_poll_controller(struct net_device *dev)
4110 {
4111 nv_do_nic_poll((unsigned long) dev);
4112 }
4113 #endif
4114
4115 static void nv_do_stats_poll(unsigned long data)
4116 __acquires(&netdev_priv(dev)->hwstats_lock)
4117 __releases(&netdev_priv(dev)->hwstats_lock)
4118 {
4119 struct net_device *dev = (struct net_device *) data;
4120 struct fe_priv *np = netdev_priv(dev);
4121
4122 /* If lock is currently taken, the stats are being refreshed
4123 * and hence fresh enough */
4124 if (spin_trylock(&np->hwstats_lock)) {
4125 nv_update_stats(dev);
4126 spin_unlock(&np->hwstats_lock);
4127 }
4128
4129 if (!np->in_shutdown)
4130 mod_timer(&np->stats_poll,
4131 round_jiffies(jiffies + STATS_INTERVAL));
4132 }
4133
4134 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4135 {
4136 struct fe_priv *np = netdev_priv(dev);
4137 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
4138 strlcpy(info->version, FORCEDETH_VERSION, sizeof(info->version));
4139 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
4140 }
4141
4142 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4143 {
4144 struct fe_priv *np = netdev_priv(dev);
4145 wolinfo->supported = WAKE_MAGIC;
4146
4147 spin_lock_irq(&np->lock);
4148 if (np->wolenabled)
4149 wolinfo->wolopts = WAKE_MAGIC;
4150 spin_unlock_irq(&np->lock);
4151 }
4152
4153 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4154 {
4155 struct fe_priv *np = netdev_priv(dev);
4156 u8 __iomem *base = get_hwbase(dev);
4157 u32 flags = 0;
4158
4159 if (wolinfo->wolopts == 0) {
4160 np->wolenabled = 0;
4161 } else if (wolinfo->wolopts & WAKE_MAGIC) {
4162 np->wolenabled = 1;
4163 flags = NVREG_WAKEUPFLAGS_ENABLE;
4164 }
4165 if (netif_running(dev)) {
4166 spin_lock_irq(&np->lock);
4167 writel(flags, base + NvRegWakeUpFlags);
4168 spin_unlock_irq(&np->lock);
4169 }
4170 device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled);
4171 return 0;
4172 }
4173
4174 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4175 {
4176 struct fe_priv *np = netdev_priv(dev);
4177 u32 speed;
4178 int adv;
4179
4180 spin_lock_irq(&np->lock);
4181 ecmd->port = PORT_MII;
4182 if (!netif_running(dev)) {
4183 /* We do not track link speed / duplex setting if the
4184 * interface is disabled. Force a link check */
4185 if (nv_update_linkspeed(dev)) {
4186 if (!netif_carrier_ok(dev))
4187 netif_carrier_on(dev);
4188 } else {
4189 if (netif_carrier_ok(dev))
4190 netif_carrier_off(dev);
4191 }
4192 }
4193
4194 if (netif_carrier_ok(dev)) {
4195 switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) {
4196 case NVREG_LINKSPEED_10:
4197 speed = SPEED_10;
4198 break;
4199 case NVREG_LINKSPEED_100:
4200 speed = SPEED_100;
4201 break;
4202 case NVREG_LINKSPEED_1000:
4203 speed = SPEED_1000;
4204 break;
4205 default:
4206 speed = -1;
4207 break;
4208 }
4209 ecmd->duplex = DUPLEX_HALF;
4210 if (np->duplex)
4211 ecmd->duplex = DUPLEX_FULL;
4212 } else {
4213 speed = -1;
4214 ecmd->duplex = -1;
4215 }
4216 ethtool_cmd_speed_set(ecmd, speed);
4217 ecmd->autoneg = np->autoneg;
4218
4219 ecmd->advertising = ADVERTISED_MII;
4220 if (np->autoneg) {
4221 ecmd->advertising |= ADVERTISED_Autoneg;
4222 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4223 if (adv & ADVERTISE_10HALF)
4224 ecmd->advertising |= ADVERTISED_10baseT_Half;
4225 if (adv & ADVERTISE_10FULL)
4226 ecmd->advertising |= ADVERTISED_10baseT_Full;
4227 if (adv & ADVERTISE_100HALF)
4228 ecmd->advertising |= ADVERTISED_100baseT_Half;
4229 if (adv & ADVERTISE_100FULL)
4230 ecmd->advertising |= ADVERTISED_100baseT_Full;
4231 if (np->gigabit == PHY_GIGABIT) {
4232 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4233 if (adv & ADVERTISE_1000FULL)
4234 ecmd->advertising |= ADVERTISED_1000baseT_Full;
4235 }
4236 }
4237 ecmd->supported = (SUPPORTED_Autoneg |
4238 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
4239 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
4240 SUPPORTED_MII);
4241 if (np->gigabit == PHY_GIGABIT)
4242 ecmd->supported |= SUPPORTED_1000baseT_Full;
4243
4244 ecmd->phy_address = np->phyaddr;
4245 ecmd->transceiver = XCVR_EXTERNAL;
4246
4247 /* ignore maxtxpkt, maxrxpkt for now */
4248 spin_unlock_irq(&np->lock);
4249 return 0;
4250 }
4251
4252 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4253 {
4254 struct fe_priv *np = netdev_priv(dev);
4255 u32 speed = ethtool_cmd_speed(ecmd);
4256
4257 if (ecmd->port != PORT_MII)
4258 return -EINVAL;
4259 if (ecmd->transceiver != XCVR_EXTERNAL)
4260 return -EINVAL;
4261 if (ecmd->phy_address != np->phyaddr) {
4262 /* TODO: support switching between multiple phys. Should be
4263 * trivial, but not enabled due to lack of test hardware. */
4264 return -EINVAL;
4265 }
4266 if (ecmd->autoneg == AUTONEG_ENABLE) {
4267 u32 mask;
4268
4269 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
4270 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
4271 if (np->gigabit == PHY_GIGABIT)
4272 mask |= ADVERTISED_1000baseT_Full;
4273
4274 if ((ecmd->advertising & mask) == 0)
4275 return -EINVAL;
4276
4277 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
4278 /* Note: autonegotiation disable, speed 1000 intentionally
4279 * forbidden - no one should need that. */
4280
4281 if (speed != SPEED_10 && speed != SPEED_100)
4282 return -EINVAL;
4283 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
4284 return -EINVAL;
4285 } else {
4286 return -EINVAL;
4287 }
4288
4289 netif_carrier_off(dev);
4290 if (netif_running(dev)) {
4291 unsigned long flags;
4292
4293 nv_disable_irq(dev);
4294 netif_tx_lock_bh(dev);
4295 netif_addr_lock(dev);
4296 /* with plain spinlock lockdep complains */
4297 spin_lock_irqsave(&np->lock, flags);
4298 /* stop engines */
4299 /* FIXME:
4300 * this can take some time, and interrupts are disabled
4301 * due to spin_lock_irqsave, but let's hope no daemon
4302 * is going to change the settings very often...
4303 * Worst case:
4304 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
4305 * + some minor delays, which is up to a second approximately
4306 */
4307 nv_stop_rxtx(dev);
4308 spin_unlock_irqrestore(&np->lock, flags);
4309 netif_addr_unlock(dev);
4310 netif_tx_unlock_bh(dev);
4311 }
4312
4313 if (ecmd->autoneg == AUTONEG_ENABLE) {
4314 int adv, bmcr;
4315
4316 np->autoneg = 1;
4317
4318 /* advertise only what has been requested */
4319 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4320 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4321 if (ecmd->advertising & ADVERTISED_10baseT_Half)
4322 adv |= ADVERTISE_10HALF;
4323 if (ecmd->advertising & ADVERTISED_10baseT_Full)
4324 adv |= ADVERTISE_10FULL;
4325 if (ecmd->advertising & ADVERTISED_100baseT_Half)
4326 adv |= ADVERTISE_100HALF;
4327 if (ecmd->advertising & ADVERTISED_100baseT_Full)
4328 adv |= ADVERTISE_100FULL;
4329 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
4330 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4331 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4332 adv |= ADVERTISE_PAUSE_ASYM;
4333 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4334
4335 if (np->gigabit == PHY_GIGABIT) {
4336 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4337 adv &= ~ADVERTISE_1000FULL;
4338 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
4339 adv |= ADVERTISE_1000FULL;
4340 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4341 }
4342
4343 if (netif_running(dev))
4344 netdev_info(dev, "link down\n");
4345 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4346 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4347 bmcr |= BMCR_ANENABLE;
4348 /* reset the phy in order for settings to stick,
4349 * and cause autoneg to start */
4350 if (phy_reset(dev, bmcr)) {
4351 netdev_info(dev, "phy reset failed\n");
4352 return -EINVAL;
4353 }
4354 } else {
4355 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4356 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4357 }
4358 } else {
4359 int adv, bmcr;
4360
4361 np->autoneg = 0;
4362
4363 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4364 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4365 if (speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
4366 adv |= ADVERTISE_10HALF;
4367 if (speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
4368 adv |= ADVERTISE_10FULL;
4369 if (speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
4370 adv |= ADVERTISE_100HALF;
4371 if (speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
4372 adv |= ADVERTISE_100FULL;
4373 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4374 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */
4375 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4376 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4377 }
4378 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4379 adv |= ADVERTISE_PAUSE_ASYM;
4380 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4381 }
4382 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4383 np->fixed_mode = adv;
4384
4385 if (np->gigabit == PHY_GIGABIT) {
4386 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4387 adv &= ~ADVERTISE_1000FULL;
4388 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4389 }
4390
4391 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4392 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4393 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4394 bmcr |= BMCR_FULLDPLX;
4395 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4396 bmcr |= BMCR_SPEED100;
4397 if (np->phy_oui == PHY_OUI_MARVELL) {
4398 /* reset the phy in order for forced mode settings to stick */
4399 if (phy_reset(dev, bmcr)) {
4400 netdev_info(dev, "phy reset failed\n");
4401 return -EINVAL;
4402 }
4403 } else {
4404 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4405 if (netif_running(dev)) {
4406 /* Wait a bit and then reconfigure the nic. */
4407 udelay(10);
4408 nv_linkchange(dev);
4409 }
4410 }
4411 }
4412
4413 if (netif_running(dev)) {
4414 nv_start_rxtx(dev);
4415 nv_enable_irq(dev);
4416 }
4417
4418 return 0;
4419 }
4420
4421 #define FORCEDETH_REGS_VER 1
4422
4423 static int nv_get_regs_len(struct net_device *dev)
4424 {
4425 struct fe_priv *np = netdev_priv(dev);
4426 return np->register_size;
4427 }
4428
4429 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4430 {
4431 struct fe_priv *np = netdev_priv(dev);
4432 u8 __iomem *base = get_hwbase(dev);
4433 u32 *rbuf = buf;
4434 int i;
4435
4436 regs->version = FORCEDETH_REGS_VER;
4437 spin_lock_irq(&np->lock);
4438 for (i = 0; i <= np->register_size/sizeof(u32); i++)
4439 rbuf[i] = readl(base + i*sizeof(u32));
4440 spin_unlock_irq(&np->lock);
4441 }
4442
4443 static int nv_nway_reset(struct net_device *dev)
4444 {
4445 struct fe_priv *np = netdev_priv(dev);
4446 int ret;
4447
4448 if (np->autoneg) {
4449 int bmcr;
4450
4451 netif_carrier_off(dev);
4452 if (netif_running(dev)) {
4453 nv_disable_irq(dev);
4454 netif_tx_lock_bh(dev);
4455 netif_addr_lock(dev);
4456 spin_lock(&np->lock);
4457 /* stop engines */
4458 nv_stop_rxtx(dev);
4459 spin_unlock(&np->lock);
4460 netif_addr_unlock(dev);
4461 netif_tx_unlock_bh(dev);
4462 netdev_info(dev, "link down\n");
4463 }
4464
4465 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4466 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4467 bmcr |= BMCR_ANENABLE;
4468 /* reset the phy in order for settings to stick*/
4469 if (phy_reset(dev, bmcr)) {
4470 netdev_info(dev, "phy reset failed\n");
4471 return -EINVAL;
4472 }
4473 } else {
4474 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4475 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4476 }
4477
4478 if (netif_running(dev)) {
4479 nv_start_rxtx(dev);
4480 nv_enable_irq(dev);
4481 }
4482 ret = 0;
4483 } else {
4484 ret = -EINVAL;
4485 }
4486
4487 return ret;
4488 }
4489
4490 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4491 {
4492 struct fe_priv *np = netdev_priv(dev);
4493
4494 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4495 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4496
4497 ring->rx_pending = np->rx_ring_size;
4498 ring->tx_pending = np->tx_ring_size;
4499 }
4500
4501 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4502 {
4503 struct fe_priv *np = netdev_priv(dev);
4504 u8 __iomem *base = get_hwbase(dev);
4505 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4506 dma_addr_t ring_addr;
4507
4508 if (ring->rx_pending < RX_RING_MIN ||
4509 ring->tx_pending < TX_RING_MIN ||
4510 ring->rx_mini_pending != 0 ||
4511 ring->rx_jumbo_pending != 0 ||
4512 (np->desc_ver == DESC_VER_1 &&
4513 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4514 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4515 (np->desc_ver != DESC_VER_1 &&
4516 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4517 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4518 return -EINVAL;
4519 }
4520
4521 /* allocate new rings */
4522 if (!nv_optimized(np)) {
4523 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4524 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4525 &ring_addr);
4526 } else {
4527 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4528 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4529 &ring_addr);
4530 }
4531 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4532 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4533 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4534 /* fall back to old rings */
4535 if (!nv_optimized(np)) {
4536 if (rxtx_ring)
4537 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4538 rxtx_ring, ring_addr);
4539 } else {
4540 if (rxtx_ring)
4541 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4542 rxtx_ring, ring_addr);
4543 }
4544
4545 kfree(rx_skbuff);
4546 kfree(tx_skbuff);
4547 goto exit;
4548 }
4549
4550 if (netif_running(dev)) {
4551 nv_disable_irq(dev);
4552 nv_napi_disable(dev);
4553 netif_tx_lock_bh(dev);
4554 netif_addr_lock(dev);
4555 spin_lock(&np->lock);
4556 /* stop engines */
4557 nv_stop_rxtx(dev);
4558 nv_txrx_reset(dev);
4559 /* drain queues */
4560 nv_drain_rxtx(dev);
4561 /* delete queues */
4562 free_rings(dev);
4563 }
4564
4565 /* set new values */
4566 np->rx_ring_size = ring->rx_pending;
4567 np->tx_ring_size = ring->tx_pending;
4568
4569 if (!nv_optimized(np)) {
4570 np->rx_ring.orig = (struct ring_desc *)rxtx_ring;
4571 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4572 } else {
4573 np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring;
4574 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4575 }
4576 np->rx_skb = (struct nv_skb_map *)rx_skbuff;
4577 np->tx_skb = (struct nv_skb_map *)tx_skbuff;
4578 np->ring_addr = ring_addr;
4579
4580 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4581 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4582
4583 if (netif_running(dev)) {
4584 /* reinit driver view of the queues */
4585 set_bufsize(dev);
4586 if (nv_init_ring(dev)) {
4587 if (!np->in_shutdown)
4588 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4589 }
4590
4591 /* reinit nic view of the queues */
4592 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4593 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4594 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4595 base + NvRegRingSizes);
4596 pci_push(base);
4597 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4598 pci_push(base);
4599
4600 /* restart engines */
4601 nv_start_rxtx(dev);
4602 spin_unlock(&np->lock);
4603 netif_addr_unlock(dev);
4604 netif_tx_unlock_bh(dev);
4605 nv_napi_enable(dev);
4606 nv_enable_irq(dev);
4607 }
4608 return 0;
4609 exit:
4610 return -ENOMEM;
4611 }
4612
4613 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4614 {
4615 struct fe_priv *np = netdev_priv(dev);
4616
4617 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4618 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4619 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4620 }
4621
4622 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4623 {
4624 struct fe_priv *np = netdev_priv(dev);
4625 int adv, bmcr;
4626
4627 if ((!np->autoneg && np->duplex == 0) ||
4628 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4629 netdev_info(dev, "can not set pause settings when forced link is in half duplex\n");
4630 return -EINVAL;
4631 }
4632 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4633 netdev_info(dev, "hardware does not support tx pause frames\n");
4634 return -EINVAL;
4635 }
4636
4637 netif_carrier_off(dev);
4638 if (netif_running(dev)) {
4639 nv_disable_irq(dev);
4640 netif_tx_lock_bh(dev);
4641 netif_addr_lock(dev);
4642 spin_lock(&np->lock);
4643 /* stop engines */
4644 nv_stop_rxtx(dev);
4645 spin_unlock(&np->lock);
4646 netif_addr_unlock(dev);
4647 netif_tx_unlock_bh(dev);
4648 }
4649
4650 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4651 if (pause->rx_pause)
4652 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4653 if (pause->tx_pause)
4654 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4655
4656 if (np->autoneg && pause->autoneg) {
4657 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4658
4659 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4660 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4661 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
4662 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4663 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4664 adv |= ADVERTISE_PAUSE_ASYM;
4665 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4666
4667 if (netif_running(dev))
4668 netdev_info(dev, "link down\n");
4669 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4670 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4671 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4672 } else {
4673 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4674 if (pause->rx_pause)
4675 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4676 if (pause->tx_pause)
4677 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4678
4679 if (!netif_running(dev))
4680 nv_update_linkspeed(dev);
4681 else
4682 nv_update_pause(dev, np->pause_flags);
4683 }
4684
4685 if (netif_running(dev)) {
4686 nv_start_rxtx(dev);
4687 nv_enable_irq(dev);
4688 }
4689 return 0;
4690 }
4691
4692 static int nv_set_loopback(struct net_device *dev, netdev_features_t features)
4693 {
4694 struct fe_priv *np = netdev_priv(dev);
4695 unsigned long flags;
4696 u32 miicontrol;
4697 int err, retval = 0;
4698
4699 spin_lock_irqsave(&np->lock, flags);
4700 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4701 if (features & NETIF_F_LOOPBACK) {
4702 if (miicontrol & BMCR_LOOPBACK) {
4703 spin_unlock_irqrestore(&np->lock, flags);
4704 netdev_info(dev, "Loopback already enabled\n");
4705 return 0;
4706 }
4707 nv_disable_irq(dev);
4708 /* Turn on loopback mode */
4709 miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000;
4710 err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol);
4711 if (err) {
4712 retval = PHY_ERROR;
4713 spin_unlock_irqrestore(&np->lock, flags);
4714 phy_init(dev);
4715 } else {
4716 if (netif_running(dev)) {
4717 /* Force 1000 Mbps full-duplex */
4718 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000,
4719 1);
4720 /* Force link up */
4721 netif_carrier_on(dev);
4722 }
4723 spin_unlock_irqrestore(&np->lock, flags);
4724 netdev_info(dev,
4725 "Internal PHY loopback mode enabled.\n");
4726 }
4727 } else {
4728 if (!(miicontrol & BMCR_LOOPBACK)) {
4729 spin_unlock_irqrestore(&np->lock, flags);
4730 netdev_info(dev, "Loopback already disabled\n");
4731 return 0;
4732 }
4733 nv_disable_irq(dev);
4734 /* Turn off loopback */
4735 spin_unlock_irqrestore(&np->lock, flags);
4736 netdev_info(dev, "Internal PHY loopback mode disabled.\n");
4737 phy_init(dev);
4738 }
4739 msleep(500);
4740 spin_lock_irqsave(&np->lock, flags);
4741 nv_enable_irq(dev);
4742 spin_unlock_irqrestore(&np->lock, flags);
4743
4744 return retval;
4745 }
4746
4747 static netdev_features_t nv_fix_features(struct net_device *dev,
4748 netdev_features_t features)
4749 {
4750 /* vlan is dependent on rx checksum offload */
4751 if (features & (NETIF_F_HW_VLAN_TX|NETIF_F_HW_VLAN_RX))
4752 features |= NETIF_F_RXCSUM;
4753
4754 return features;
4755 }
4756
4757 static void nv_vlan_mode(struct net_device *dev, netdev_features_t features)
4758 {
4759 struct fe_priv *np = get_nvpriv(dev);
4760
4761 spin_lock_irq(&np->lock);
4762
4763 if (features & NETIF_F_HW_VLAN_RX)
4764 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP;
4765 else
4766 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4767
4768 if (features & NETIF_F_HW_VLAN_TX)
4769 np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS;
4770 else
4771 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4772
4773 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4774
4775 spin_unlock_irq(&np->lock);
4776 }
4777
4778 static int nv_set_features(struct net_device *dev, netdev_features_t features)
4779 {
4780 struct fe_priv *np = netdev_priv(dev);
4781 u8 __iomem *base = get_hwbase(dev);
4782 netdev_features_t changed = dev->features ^ features;
4783 int retval;
4784
4785 if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) {
4786 retval = nv_set_loopback(dev, features);
4787 if (retval != 0)
4788 return retval;
4789 }
4790
4791 if (changed & NETIF_F_RXCSUM) {
4792 spin_lock_irq(&np->lock);
4793
4794 if (features & NETIF_F_RXCSUM)
4795 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4796 else
4797 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4798
4799 if (netif_running(dev))
4800 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4801
4802 spin_unlock_irq(&np->lock);
4803 }
4804
4805 if (changed & (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX))
4806 nv_vlan_mode(dev, features);
4807
4808 return 0;
4809 }
4810
4811 static int nv_get_sset_count(struct net_device *dev, int sset)
4812 {
4813 struct fe_priv *np = netdev_priv(dev);
4814
4815 switch (sset) {
4816 case ETH_SS_TEST:
4817 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4818 return NV_TEST_COUNT_EXTENDED;
4819 else
4820 return NV_TEST_COUNT_BASE;
4821 case ETH_SS_STATS:
4822 if (np->driver_data & DEV_HAS_STATISTICS_V3)
4823 return NV_DEV_STATISTICS_V3_COUNT;
4824 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4825 return NV_DEV_STATISTICS_V2_COUNT;
4826 else if (np->driver_data & DEV_HAS_STATISTICS_V1)
4827 return NV_DEV_STATISTICS_V1_COUNT;
4828 else
4829 return 0;
4830 default:
4831 return -EOPNOTSUPP;
4832 }
4833 }
4834
4835 static void nv_get_ethtool_stats(struct net_device *dev,
4836 struct ethtool_stats *estats, u64 *buffer)
4837 __acquires(&netdev_priv(dev)->hwstats_lock)
4838 __releases(&netdev_priv(dev)->hwstats_lock)
4839 {
4840 struct fe_priv *np = netdev_priv(dev);
4841
4842 spin_lock_bh(&np->hwstats_lock);
4843 nv_update_stats(dev);
4844 memcpy(buffer, &np->estats,
4845 nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4846 spin_unlock_bh(&np->hwstats_lock);
4847 }
4848
4849 static int nv_link_test(struct net_device *dev)
4850 {
4851 struct fe_priv *np = netdev_priv(dev);
4852 int mii_status;
4853
4854 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4855 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4856
4857 /* check phy link status */
4858 if (!(mii_status & BMSR_LSTATUS))
4859 return 0;
4860 else
4861 return 1;
4862 }
4863
4864 static int nv_register_test(struct net_device *dev)
4865 {
4866 u8 __iomem *base = get_hwbase(dev);
4867 int i = 0;
4868 u32 orig_read, new_read;
4869
4870 do {
4871 orig_read = readl(base + nv_registers_test[i].reg);
4872
4873 /* xor with mask to toggle bits */
4874 orig_read ^= nv_registers_test[i].mask;
4875
4876 writel(orig_read, base + nv_registers_test[i].reg);
4877
4878 new_read = readl(base + nv_registers_test[i].reg);
4879
4880 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4881 return 0;
4882
4883 /* restore original value */
4884 orig_read ^= nv_registers_test[i].mask;
4885 writel(orig_read, base + nv_registers_test[i].reg);
4886
4887 } while (nv_registers_test[++i].reg != 0);
4888
4889 return 1;
4890 }
4891
4892 static int nv_interrupt_test(struct net_device *dev)
4893 {
4894 struct fe_priv *np = netdev_priv(dev);
4895 u8 __iomem *base = get_hwbase(dev);
4896 int ret = 1;
4897 int testcnt;
4898 u32 save_msi_flags, save_poll_interval = 0;
4899
4900 if (netif_running(dev)) {
4901 /* free current irq */
4902 nv_free_irq(dev);
4903 save_poll_interval = readl(base+NvRegPollingInterval);
4904 }
4905
4906 /* flag to test interrupt handler */
4907 np->intr_test = 0;
4908
4909 /* setup test irq */
4910 save_msi_flags = np->msi_flags;
4911 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4912 np->msi_flags |= 0x001; /* setup 1 vector */
4913 if (nv_request_irq(dev, 1))
4914 return 0;
4915
4916 /* setup timer interrupt */
4917 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4918 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4919
4920 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4921
4922 /* wait for at least one interrupt */
4923 msleep(100);
4924
4925 spin_lock_irq(&np->lock);
4926
4927 /* flag should be set within ISR */
4928 testcnt = np->intr_test;
4929 if (!testcnt)
4930 ret = 2;
4931
4932 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4933 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4934 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4935 else
4936 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4937
4938 spin_unlock_irq(&np->lock);
4939
4940 nv_free_irq(dev);
4941
4942 np->msi_flags = save_msi_flags;
4943
4944 if (netif_running(dev)) {
4945 writel(save_poll_interval, base + NvRegPollingInterval);
4946 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4947 /* restore original irq */
4948 if (nv_request_irq(dev, 0))
4949 return 0;
4950 }
4951
4952 return ret;
4953 }
4954
4955 static int nv_loopback_test(struct net_device *dev)
4956 {
4957 struct fe_priv *np = netdev_priv(dev);
4958 u8 __iomem *base = get_hwbase(dev);
4959 struct sk_buff *tx_skb, *rx_skb;
4960 dma_addr_t test_dma_addr;
4961 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
4962 u32 flags;
4963 int len, i, pkt_len;
4964 u8 *pkt_data;
4965 u32 filter_flags = 0;
4966 u32 misc1_flags = 0;
4967 int ret = 1;
4968
4969 if (netif_running(dev)) {
4970 nv_disable_irq(dev);
4971 filter_flags = readl(base + NvRegPacketFilterFlags);
4972 misc1_flags = readl(base + NvRegMisc1);
4973 } else {
4974 nv_txrx_reset(dev);
4975 }
4976
4977 /* reinit driver view of the rx queue */
4978 set_bufsize(dev);
4979 nv_init_ring(dev);
4980
4981 /* setup hardware for loopback */
4982 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
4983 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
4984
4985 /* reinit nic view of the rx queue */
4986 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4987 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4988 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4989 base + NvRegRingSizes);
4990 pci_push(base);
4991
4992 /* restart rx engine */
4993 nv_start_rxtx(dev);
4994
4995 /* setup packet for tx */
4996 pkt_len = ETH_DATA_LEN;
4997 tx_skb = netdev_alloc_skb(dev, pkt_len);
4998 if (!tx_skb) {
4999 netdev_err(dev, "netdev_alloc_skb() failed during loopback test\n");
5000 ret = 0;
5001 goto out;
5002 }
5003 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
5004 skb_tailroom(tx_skb),
5005 PCI_DMA_FROMDEVICE);
5006 pkt_data = skb_put(tx_skb, pkt_len);
5007 for (i = 0; i < pkt_len; i++)
5008 pkt_data[i] = (u8)(i & 0xff);
5009
5010 if (!nv_optimized(np)) {
5011 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
5012 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5013 } else {
5014 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
5015 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
5016 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5017 }
5018 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5019 pci_push(get_hwbase(dev));
5020
5021 msleep(500);
5022
5023 /* check for rx of the packet */
5024 if (!nv_optimized(np)) {
5025 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
5026 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
5027
5028 } else {
5029 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
5030 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
5031 }
5032
5033 if (flags & NV_RX_AVAIL) {
5034 ret = 0;
5035 } else if (np->desc_ver == DESC_VER_1) {
5036 if (flags & NV_RX_ERROR)
5037 ret = 0;
5038 } else {
5039 if (flags & NV_RX2_ERROR)
5040 ret = 0;
5041 }
5042
5043 if (ret) {
5044 if (len != pkt_len) {
5045 ret = 0;
5046 } else {
5047 rx_skb = np->rx_skb[0].skb;
5048 for (i = 0; i < pkt_len; i++) {
5049 if (rx_skb->data[i] != (u8)(i & 0xff)) {
5050 ret = 0;
5051 break;
5052 }
5053 }
5054 }
5055 }
5056
5057 pci_unmap_single(np->pci_dev, test_dma_addr,
5058 (skb_end_pointer(tx_skb) - tx_skb->data),
5059 PCI_DMA_TODEVICE);
5060 dev_kfree_skb_any(tx_skb);
5061 out:
5062 /* stop engines */
5063 nv_stop_rxtx(dev);
5064 nv_txrx_reset(dev);
5065 /* drain rx queue */
5066 nv_drain_rxtx(dev);
5067
5068 if (netif_running(dev)) {
5069 writel(misc1_flags, base + NvRegMisc1);
5070 writel(filter_flags, base + NvRegPacketFilterFlags);
5071 nv_enable_irq(dev);
5072 }
5073
5074 return ret;
5075 }
5076
5077 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
5078 {
5079 struct fe_priv *np = netdev_priv(dev);
5080 u8 __iomem *base = get_hwbase(dev);
5081 int result;
5082 memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
5083
5084 if (!nv_link_test(dev)) {
5085 test->flags |= ETH_TEST_FL_FAILED;
5086 buffer[0] = 1;
5087 }
5088
5089 if (test->flags & ETH_TEST_FL_OFFLINE) {
5090 if (netif_running(dev)) {
5091 netif_stop_queue(dev);
5092 nv_napi_disable(dev);
5093 netif_tx_lock_bh(dev);
5094 netif_addr_lock(dev);
5095 spin_lock_irq(&np->lock);
5096 nv_disable_hw_interrupts(dev, np->irqmask);
5097 if (!(np->msi_flags & NV_MSI_X_ENABLED))
5098 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5099 else
5100 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
5101 /* stop engines */
5102 nv_stop_rxtx(dev);
5103 nv_txrx_reset(dev);
5104 /* drain rx queue */
5105 nv_drain_rxtx(dev);
5106 spin_unlock_irq(&np->lock);
5107 netif_addr_unlock(dev);
5108 netif_tx_unlock_bh(dev);
5109 }
5110
5111 if (!nv_register_test(dev)) {
5112 test->flags |= ETH_TEST_FL_FAILED;
5113 buffer[1] = 1;
5114 }
5115
5116 result = nv_interrupt_test(dev);
5117 if (result != 1) {
5118 test->flags |= ETH_TEST_FL_FAILED;
5119 buffer[2] = 1;
5120 }
5121 if (result == 0) {
5122 /* bail out */
5123 return;
5124 }
5125
5126 if (!nv_loopback_test(dev)) {
5127 test->flags |= ETH_TEST_FL_FAILED;
5128 buffer[3] = 1;
5129 }
5130
5131 if (netif_running(dev)) {
5132 /* reinit driver view of the rx queue */
5133 set_bufsize(dev);
5134 if (nv_init_ring(dev)) {
5135 if (!np->in_shutdown)
5136 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5137 }
5138 /* reinit nic view of the rx queue */
5139 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5140 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5141 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5142 base + NvRegRingSizes);
5143 pci_push(base);
5144 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5145 pci_push(base);
5146 /* restart rx engine */
5147 nv_start_rxtx(dev);
5148 netif_start_queue(dev);
5149 nv_napi_enable(dev);
5150 nv_enable_hw_interrupts(dev, np->irqmask);
5151 }
5152 }
5153 }
5154
5155 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
5156 {
5157 switch (stringset) {
5158 case ETH_SS_STATS:
5159 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
5160 break;
5161 case ETH_SS_TEST:
5162 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
5163 break;
5164 }
5165 }
5166
5167 static const struct ethtool_ops ops = {
5168 .get_drvinfo = nv_get_drvinfo,
5169 .get_link = ethtool_op_get_link,
5170 .get_wol = nv_get_wol,
5171 .set_wol = nv_set_wol,
5172 .get_settings = nv_get_settings,
5173 .set_settings = nv_set_settings,
5174 .get_regs_len = nv_get_regs_len,
5175 .get_regs = nv_get_regs,
5176 .nway_reset = nv_nway_reset,
5177 .get_ringparam = nv_get_ringparam,
5178 .set_ringparam = nv_set_ringparam,
5179 .get_pauseparam = nv_get_pauseparam,
5180 .set_pauseparam = nv_set_pauseparam,
5181 .get_strings = nv_get_strings,
5182 .get_ethtool_stats = nv_get_ethtool_stats,
5183 .get_sset_count = nv_get_sset_count,
5184 .self_test = nv_self_test,
5185 };
5186
5187 /* The mgmt unit and driver use a semaphore to access the phy during init */
5188 static int nv_mgmt_acquire_sema(struct net_device *dev)
5189 {
5190 struct fe_priv *np = netdev_priv(dev);
5191 u8 __iomem *base = get_hwbase(dev);
5192 int i;
5193 u32 tx_ctrl, mgmt_sema;
5194
5195 for (i = 0; i < 10; i++) {
5196 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
5197 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
5198 break;
5199 msleep(500);
5200 }
5201
5202 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
5203 return 0;
5204
5205 for (i = 0; i < 2; i++) {
5206 tx_ctrl = readl(base + NvRegTransmitterControl);
5207 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
5208 writel(tx_ctrl, base + NvRegTransmitterControl);
5209
5210 /* verify that semaphore was acquired */
5211 tx_ctrl = readl(base + NvRegTransmitterControl);
5212 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
5213 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
5214 np->mgmt_sema = 1;
5215 return 1;
5216 } else
5217 udelay(50);
5218 }
5219
5220 return 0;
5221 }
5222
5223 static void nv_mgmt_release_sema(struct net_device *dev)
5224 {
5225 struct fe_priv *np = netdev_priv(dev);
5226 u8 __iomem *base = get_hwbase(dev);
5227 u32 tx_ctrl;
5228
5229 if (np->driver_data & DEV_HAS_MGMT_UNIT) {
5230 if (np->mgmt_sema) {
5231 tx_ctrl = readl(base + NvRegTransmitterControl);
5232 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
5233 writel(tx_ctrl, base + NvRegTransmitterControl);
5234 }
5235 }
5236 }
5237
5238
5239 static int nv_mgmt_get_version(struct net_device *dev)
5240 {
5241 struct fe_priv *np = netdev_priv(dev);
5242 u8 __iomem *base = get_hwbase(dev);
5243 u32 data_ready = readl(base + NvRegTransmitterControl);
5244 u32 data_ready2 = 0;
5245 unsigned long start;
5246 int ready = 0;
5247
5248 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
5249 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
5250 start = jiffies;
5251 while (time_before(jiffies, start + 5*HZ)) {
5252 data_ready2 = readl(base + NvRegTransmitterControl);
5253 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
5254 ready = 1;
5255 break;
5256 }
5257 schedule_timeout_uninterruptible(1);
5258 }
5259
5260 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
5261 return 0;
5262
5263 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
5264
5265 return 1;
5266 }
5267
5268 static int nv_open(struct net_device *dev)
5269 {
5270 struct fe_priv *np = netdev_priv(dev);
5271 u8 __iomem *base = get_hwbase(dev);
5272 int ret = 1;
5273 int oom, i;
5274 u32 low;
5275
5276 /* power up phy */
5277 mii_rw(dev, np->phyaddr, MII_BMCR,
5278 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
5279
5280 nv_txrx_gate(dev, false);
5281 /* erase previous misconfiguration */
5282 if (np->driver_data & DEV_HAS_POWER_CNTRL)
5283 nv_mac_reset(dev);
5284 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5285 writel(0, base + NvRegMulticastAddrB);
5286 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5287 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5288 writel(0, base + NvRegPacketFilterFlags);
5289
5290 writel(0, base + NvRegTransmitterControl);
5291 writel(0, base + NvRegReceiverControl);
5292
5293 writel(0, base + NvRegAdapterControl);
5294
5295 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
5296 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
5297
5298 /* initialize descriptor rings */
5299 set_bufsize(dev);
5300 oom = nv_init_ring(dev);
5301
5302 writel(0, base + NvRegLinkSpeed);
5303 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5304 nv_txrx_reset(dev);
5305 writel(0, base + NvRegUnknownSetupReg6);
5306
5307 np->in_shutdown = 0;
5308
5309 /* give hw rings */
5310 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5311 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5312 base + NvRegRingSizes);
5313
5314 writel(np->linkspeed, base + NvRegLinkSpeed);
5315 if (np->desc_ver == DESC_VER_1)
5316 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
5317 else
5318 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
5319 writel(np->txrxctl_bits, base + NvRegTxRxControl);
5320 writel(np->vlanctl_bits, base + NvRegVlanControl);
5321 pci_push(base);
5322 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
5323 if (reg_delay(dev, NvRegUnknownSetupReg5,
5324 NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
5325 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX))
5326 netdev_info(dev,
5327 "%s: SetupReg5, Bit 31 remained off\n", __func__);
5328
5329 writel(0, base + NvRegMIIMask);
5330 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5331 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5332
5333 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
5334 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
5335 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
5336 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5337
5338 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
5339
5340 get_random_bytes(&low, sizeof(low));
5341 low &= NVREG_SLOTTIME_MASK;
5342 if (np->desc_ver == DESC_VER_1) {
5343 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
5344 } else {
5345 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
5346 /* setup legacy backoff */
5347 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
5348 } else {
5349 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
5350 nv_gear_backoff_reseed(dev);
5351 }
5352 }
5353 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
5354 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
5355 if (poll_interval == -1) {
5356 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
5357 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
5358 else
5359 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5360 } else
5361 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5362 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5363 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
5364 base + NvRegAdapterControl);
5365 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
5366 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
5367 if (np->wolenabled)
5368 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
5369
5370 i = readl(base + NvRegPowerState);
5371 if ((i & NVREG_POWERSTATE_POWEREDUP) == 0)
5372 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5373
5374 pci_push(base);
5375 udelay(10);
5376 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
5377
5378 nv_disable_hw_interrupts(dev, np->irqmask);
5379 pci_push(base);
5380 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5381 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5382 pci_push(base);
5383
5384 if (nv_request_irq(dev, 0))
5385 goto out_drain;
5386
5387 /* ask for interrupts */
5388 nv_enable_hw_interrupts(dev, np->irqmask);
5389
5390 spin_lock_irq(&np->lock);
5391 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5392 writel(0, base + NvRegMulticastAddrB);
5393 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5394 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5395 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5396 /* One manual link speed update: Interrupts are enabled, future link
5397 * speed changes cause interrupts and are handled by nv_link_irq().
5398 */
5399 {
5400 u32 miistat;
5401 miistat = readl(base + NvRegMIIStatus);
5402 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5403 }
5404 /* set linkspeed to invalid value, thus force nv_update_linkspeed
5405 * to init hw */
5406 np->linkspeed = 0;
5407 ret = nv_update_linkspeed(dev);
5408 nv_start_rxtx(dev);
5409 netif_start_queue(dev);
5410 nv_napi_enable(dev);
5411
5412 if (ret) {
5413 netif_carrier_on(dev);
5414 } else {
5415 netdev_info(dev, "no link during initialization\n");
5416 netif_carrier_off(dev);
5417 }
5418 if (oom)
5419 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5420
5421 /* start statistics timer */
5422 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5423 mod_timer(&np->stats_poll,
5424 round_jiffies(jiffies + STATS_INTERVAL));
5425
5426 spin_unlock_irq(&np->lock);
5427
5428 /* If the loopback feature was set while the device was down, make sure
5429 * that it's set correctly now.
5430 */
5431 if (dev->features & NETIF_F_LOOPBACK)
5432 nv_set_loopback(dev, dev->features);
5433
5434 return 0;
5435 out_drain:
5436 nv_drain_rxtx(dev);
5437 return ret;
5438 }
5439
5440 static int nv_close(struct net_device *dev)
5441 {
5442 struct fe_priv *np = netdev_priv(dev);
5443 u8 __iomem *base;
5444
5445 spin_lock_irq(&np->lock);
5446 np->in_shutdown = 1;
5447 spin_unlock_irq(&np->lock);
5448 nv_napi_disable(dev);
5449 synchronize_irq(np->pci_dev->irq);
5450
5451 del_timer_sync(&np->oom_kick);
5452 del_timer_sync(&np->nic_poll);
5453 del_timer_sync(&np->stats_poll);
5454
5455 netif_stop_queue(dev);
5456 spin_lock_irq(&np->lock);
5457 nv_stop_rxtx(dev);
5458 nv_txrx_reset(dev);
5459
5460 /* disable interrupts on the nic or we will lock up */
5461 base = get_hwbase(dev);
5462 nv_disable_hw_interrupts(dev, np->irqmask);
5463 pci_push(base);
5464
5465 spin_unlock_irq(&np->lock);
5466
5467 nv_free_irq(dev);
5468
5469 nv_drain_rxtx(dev);
5470
5471 if (np->wolenabled || !phy_power_down) {
5472 nv_txrx_gate(dev, false);
5473 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5474 nv_start_rx(dev);
5475 } else {
5476 /* power down phy */
5477 mii_rw(dev, np->phyaddr, MII_BMCR,
5478 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
5479 nv_txrx_gate(dev, true);
5480 }
5481
5482 /* FIXME: power down nic */
5483
5484 return 0;
5485 }
5486
5487 static const struct net_device_ops nv_netdev_ops = {
5488 .ndo_open = nv_open,
5489 .ndo_stop = nv_close,
5490 .ndo_get_stats64 = nv_get_stats64,
5491 .ndo_start_xmit = nv_start_xmit,
5492 .ndo_tx_timeout = nv_tx_timeout,
5493 .ndo_change_mtu = nv_change_mtu,
5494 .ndo_fix_features = nv_fix_features,
5495 .ndo_set_features = nv_set_features,
5496 .ndo_validate_addr = eth_validate_addr,
5497 .ndo_set_mac_address = nv_set_mac_address,
5498 .ndo_set_rx_mode = nv_set_multicast,
5499 #ifdef CONFIG_NET_POLL_CONTROLLER
5500 .ndo_poll_controller = nv_poll_controller,
5501 #endif
5502 };
5503
5504 static const struct net_device_ops nv_netdev_ops_optimized = {
5505 .ndo_open = nv_open,
5506 .ndo_stop = nv_close,
5507 .ndo_get_stats64 = nv_get_stats64,
5508 .ndo_start_xmit = nv_start_xmit_optimized,
5509 .ndo_tx_timeout = nv_tx_timeout,
5510 .ndo_change_mtu = nv_change_mtu,
5511 .ndo_fix_features = nv_fix_features,
5512 .ndo_set_features = nv_set_features,
5513 .ndo_validate_addr = eth_validate_addr,
5514 .ndo_set_mac_address = nv_set_mac_address,
5515 .ndo_set_rx_mode = nv_set_multicast,
5516 #ifdef CONFIG_NET_POLL_CONTROLLER
5517 .ndo_poll_controller = nv_poll_controller,
5518 #endif
5519 };
5520
5521 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5522 {
5523 struct net_device *dev;
5524 struct fe_priv *np;
5525 unsigned long addr;
5526 u8 __iomem *base;
5527 int err, i;
5528 u32 powerstate, txreg;
5529 u32 phystate_orig = 0, phystate;
5530 int phyinitialized = 0;
5531 static int printed_version;
5532
5533 if (!printed_version++)
5534 pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n",
5535 FORCEDETH_VERSION);
5536
5537 dev = alloc_etherdev(sizeof(struct fe_priv));
5538 err = -ENOMEM;
5539 if (!dev)
5540 goto out;
5541
5542 np = netdev_priv(dev);
5543 np->dev = dev;
5544 np->pci_dev = pci_dev;
5545 spin_lock_init(&np->lock);
5546 spin_lock_init(&np->hwstats_lock);
5547 SET_NETDEV_DEV(dev, &pci_dev->dev);
5548
5549 init_timer(&np->oom_kick);
5550 np->oom_kick.data = (unsigned long) dev;
5551 np->oom_kick.function = nv_do_rx_refill; /* timer handler */
5552 init_timer(&np->nic_poll);
5553 np->nic_poll.data = (unsigned long) dev;
5554 np->nic_poll.function = nv_do_nic_poll; /* timer handler */
5555 init_timer_deferrable(&np->stats_poll);
5556 np->stats_poll.data = (unsigned long) dev;
5557 np->stats_poll.function = nv_do_stats_poll; /* timer handler */
5558
5559 err = pci_enable_device(pci_dev);
5560 if (err)
5561 goto out_free;
5562
5563 pci_set_master(pci_dev);
5564
5565 err = pci_request_regions(pci_dev, DRV_NAME);
5566 if (err < 0)
5567 goto out_disable;
5568
5569 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5570 np->register_size = NV_PCI_REGSZ_VER3;
5571 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5572 np->register_size = NV_PCI_REGSZ_VER2;
5573 else
5574 np->register_size = NV_PCI_REGSZ_VER1;
5575
5576 err = -EINVAL;
5577 addr = 0;
5578 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5579 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5580 pci_resource_len(pci_dev, i) >= np->register_size) {
5581 addr = pci_resource_start(pci_dev, i);
5582 break;
5583 }
5584 }
5585 if (i == DEVICE_COUNT_RESOURCE) {
5586 dev_info(&pci_dev->dev, "Couldn't find register window\n");
5587 goto out_relreg;
5588 }
5589
5590 /* copy of driver data */
5591 np->driver_data = id->driver_data;
5592 /* copy of device id */
5593 np->device_id = id->device;
5594
5595 /* handle different descriptor versions */
5596 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5597 /* packet format 3: supports 40-bit addressing */
5598 np->desc_ver = DESC_VER_3;
5599 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5600 if (dma_64bit) {
5601 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
5602 dev_info(&pci_dev->dev,
5603 "64-bit DMA failed, using 32-bit addressing\n");
5604 else
5605 dev->features |= NETIF_F_HIGHDMA;
5606 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
5607 dev_info(&pci_dev->dev,
5608 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5609 }
5610 }
5611 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5612 /* packet format 2: supports jumbo frames */
5613 np->desc_ver = DESC_VER_2;
5614 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5615 } else {
5616 /* original packet format */
5617 np->desc_ver = DESC_VER_1;
5618 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5619 }
5620
5621 np->pkt_limit = NV_PKTLIMIT_1;
5622 if (id->driver_data & DEV_HAS_LARGEDESC)
5623 np->pkt_limit = NV_PKTLIMIT_2;
5624
5625 if (id->driver_data & DEV_HAS_CHECKSUM) {
5626 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5627 dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG |
5628 NETIF_F_TSO | NETIF_F_RXCSUM;
5629 }
5630
5631 np->vlanctl_bits = 0;
5632 if (id->driver_data & DEV_HAS_VLAN) {
5633 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5634 dev->hw_features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5635 }
5636
5637 dev->features |= dev->hw_features;
5638
5639 /* Add loopback capability to the device. */
5640 dev->hw_features |= NETIF_F_LOOPBACK;
5641
5642 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5643 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5644 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
5645 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
5646 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5647 }
5648
5649 err = -ENOMEM;
5650 np->base = ioremap(addr, np->register_size);
5651 if (!np->base)
5652 goto out_relreg;
5653 dev->base_addr = (unsigned long)np->base;
5654
5655 dev->irq = pci_dev->irq;
5656
5657 np->rx_ring_size = RX_RING_DEFAULT;
5658 np->tx_ring_size = TX_RING_DEFAULT;
5659
5660 if (!nv_optimized(np)) {
5661 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5662 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5663 &np->ring_addr);
5664 if (!np->rx_ring.orig)
5665 goto out_unmap;
5666 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5667 } else {
5668 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5669 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5670 &np->ring_addr);
5671 if (!np->rx_ring.ex)
5672 goto out_unmap;
5673 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5674 }
5675 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5676 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5677 if (!np->rx_skb || !np->tx_skb)
5678 goto out_freering;
5679
5680 if (!nv_optimized(np))
5681 dev->netdev_ops = &nv_netdev_ops;
5682 else
5683 dev->netdev_ops = &nv_netdev_ops_optimized;
5684
5685 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5686 SET_ETHTOOL_OPS(dev, &ops);
5687 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5688
5689 pci_set_drvdata(pci_dev, dev);
5690
5691 /* read the mac address */
5692 base = get_hwbase(dev);
5693 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5694 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5695
5696 /* check the workaround bit for correct mac address order */
5697 txreg = readl(base + NvRegTransmitPoll);
5698 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
5699 /* mac address is already in correct order */
5700 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5701 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5702 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5703 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5704 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5705 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5706 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5707 /* mac address is already in correct order */
5708 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5709 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5710 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5711 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5712 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5713 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5714 /*
5715 * Set orig mac address back to the reversed version.
5716 * This flag will be cleared during low power transition.
5717 * Therefore, we should always put back the reversed address.
5718 */
5719 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
5720 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
5721 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
5722 } else {
5723 /* need to reverse mac address to correct order */
5724 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5725 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5726 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5727 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5728 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5729 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5730 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5731 dev_dbg(&pci_dev->dev,
5732 "%s: set workaround bit for reversed mac addr\n",
5733 __func__);
5734 }
5735 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5736
5737 if (!is_valid_ether_addr(dev->perm_addr)) {
5738 /*
5739 * Bad mac address. At least one bios sets the mac address
5740 * to 01:23:45:67:89:ab
5741 */
5742 dev_err(&pci_dev->dev,
5743 "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n",
5744 dev->dev_addr);
5745 eth_hw_addr_random(dev);
5746 dev_err(&pci_dev->dev,
5747 "Using random MAC address: %pM\n", dev->dev_addr);
5748 }
5749
5750 /* set mac address */
5751 nv_copy_mac_to_hw(dev);
5752
5753 /* disable WOL */
5754 writel(0, base + NvRegWakeUpFlags);
5755 np->wolenabled = 0;
5756 device_set_wakeup_enable(&pci_dev->dev, false);
5757
5758 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5759
5760 /* take phy and nic out of low power mode */
5761 powerstate = readl(base + NvRegPowerState2);
5762 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5763 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
5764 pci_dev->revision >= 0xA3)
5765 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5766 writel(powerstate, base + NvRegPowerState2);
5767 }
5768
5769 if (np->desc_ver == DESC_VER_1)
5770 np->tx_flags = NV_TX_VALID;
5771 else
5772 np->tx_flags = NV_TX2_VALID;
5773
5774 np->msi_flags = 0;
5775 if ((id->driver_data & DEV_HAS_MSI) && msi)
5776 np->msi_flags |= NV_MSI_CAPABLE;
5777
5778 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5779 /* msix has had reported issues when modifying irqmask
5780 as in the case of napi, therefore, disable for now
5781 */
5782 #if 0
5783 np->msi_flags |= NV_MSI_X_CAPABLE;
5784 #endif
5785 }
5786
5787 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
5788 np->irqmask = NVREG_IRQMASK_CPU;
5789 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5790 np->msi_flags |= 0x0001;
5791 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
5792 !(id->driver_data & DEV_NEED_TIMERIRQ)) {
5793 /* start off in throughput mode */
5794 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5795 /* remove support for msix mode */
5796 np->msi_flags &= ~NV_MSI_X_CAPABLE;
5797 } else {
5798 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
5799 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5800 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5801 np->msi_flags |= 0x0003;
5802 }
5803
5804 if (id->driver_data & DEV_NEED_TIMERIRQ)
5805 np->irqmask |= NVREG_IRQ_TIMER;
5806 if (id->driver_data & DEV_NEED_LINKTIMER) {
5807 np->need_linktimer = 1;
5808 np->link_timeout = jiffies + LINK_TIMEOUT;
5809 } else {
5810 np->need_linktimer = 0;
5811 }
5812
5813 /* Limit the number of tx's outstanding for hw bug */
5814 if (id->driver_data & DEV_NEED_TX_LIMIT) {
5815 np->tx_limit = 1;
5816 if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) &&
5817 pci_dev->revision >= 0xA2)
5818 np->tx_limit = 0;
5819 }
5820
5821 /* clear phy state and temporarily halt phy interrupts */
5822 writel(0, base + NvRegMIIMask);
5823 phystate = readl(base + NvRegAdapterControl);
5824 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5825 phystate_orig = 1;
5826 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5827 writel(phystate, base + NvRegAdapterControl);
5828 }
5829 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5830
5831 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5832 /* management unit running on the mac? */
5833 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
5834 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
5835 nv_mgmt_acquire_sema(dev) &&
5836 nv_mgmt_get_version(dev)) {
5837 np->mac_in_use = 1;
5838 if (np->mgmt_version > 0)
5839 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
5840 /* management unit setup the phy already? */
5841 if (np->mac_in_use &&
5842 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5843 NVREG_XMITCTL_SYNC_PHY_INIT)) {
5844 /* phy is inited by mgmt unit */
5845 phyinitialized = 1;
5846 } else {
5847 /* we need to init the phy */
5848 }
5849 }
5850 }
5851
5852 /* find a suitable phy */
5853 for (i = 1; i <= 32; i++) {
5854 int id1, id2;
5855 int phyaddr = i & 0x1F;
5856
5857 spin_lock_irq(&np->lock);
5858 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5859 spin_unlock_irq(&np->lock);
5860 if (id1 < 0 || id1 == 0xffff)
5861 continue;
5862 spin_lock_irq(&np->lock);
5863 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5864 spin_unlock_irq(&np->lock);
5865 if (id2 < 0 || id2 == 0xffff)
5866 continue;
5867
5868 np->phy_model = id2 & PHYID2_MODEL_MASK;
5869 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5870 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5871 np->phyaddr = phyaddr;
5872 np->phy_oui = id1 | id2;
5873
5874 /* Realtek hardcoded phy id1 to all zero's on certain phys */
5875 if (np->phy_oui == PHY_OUI_REALTEK2)
5876 np->phy_oui = PHY_OUI_REALTEK;
5877 /* Setup phy revision for Realtek */
5878 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
5879 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
5880
5881 break;
5882 }
5883 if (i == 33) {
5884 dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n");
5885 goto out_error;
5886 }
5887
5888 if (!phyinitialized) {
5889 /* reset it */
5890 phy_init(dev);
5891 } else {
5892 /* see if it is a gigabit phy */
5893 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5894 if (mii_status & PHY_GIGABIT)
5895 np->gigabit = PHY_GIGABIT;
5896 }
5897
5898 /* set default link speed settings */
5899 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
5900 np->duplex = 0;
5901 np->autoneg = 1;
5902
5903 err = register_netdev(dev);
5904 if (err) {
5905 dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err);
5906 goto out_error;
5907 }
5908
5909 if (id->driver_data & DEV_HAS_VLAN)
5910 nv_vlan_mode(dev, dev->features);
5911
5912 netif_carrier_off(dev);
5913
5914 dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n",
5915 dev->name, np->phy_oui, np->phyaddr, dev->dev_addr);
5916
5917 dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
5918 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
5919 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
5920 "csum " : "",
5921 dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
5922 "vlan " : "",
5923 dev->features & (NETIF_F_LOOPBACK) ?
5924 "loopback " : "",
5925 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
5926 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
5927 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
5928 np->gigabit == PHY_GIGABIT ? "gbit " : "",
5929 np->need_linktimer ? "lnktim " : "",
5930 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
5931 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
5932 np->desc_ver);
5933
5934 return 0;
5935
5936 out_error:
5937 if (phystate_orig)
5938 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
5939 pci_set_drvdata(pci_dev, NULL);
5940 out_freering:
5941 free_rings(dev);
5942 out_unmap:
5943 iounmap(get_hwbase(dev));
5944 out_relreg:
5945 pci_release_regions(pci_dev);
5946 out_disable:
5947 pci_disable_device(pci_dev);
5948 out_free:
5949 free_netdev(dev);
5950 out:
5951 return err;
5952 }
5953
5954 static void nv_restore_phy(struct net_device *dev)
5955 {
5956 struct fe_priv *np = netdev_priv(dev);
5957 u16 phy_reserved, mii_control;
5958
5959 if (np->phy_oui == PHY_OUI_REALTEK &&
5960 np->phy_model == PHY_MODEL_REALTEK_8201 &&
5961 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
5962 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
5963 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
5964 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
5965 phy_reserved |= PHY_REALTEK_INIT8;
5966 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
5967 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
5968
5969 /* restart auto negotiation */
5970 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
5971 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
5972 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
5973 }
5974 }
5975
5976 static void nv_restore_mac_addr(struct pci_dev *pci_dev)
5977 {
5978 struct net_device *dev = pci_get_drvdata(pci_dev);
5979 struct fe_priv *np = netdev_priv(dev);
5980 u8 __iomem *base = get_hwbase(dev);
5981
5982 /* special op: write back the misordered MAC address - otherwise
5983 * the next nv_probe would see a wrong address.
5984 */
5985 writel(np->orig_mac[0], base + NvRegMacAddrA);
5986 writel(np->orig_mac[1], base + NvRegMacAddrB);
5987 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
5988 base + NvRegTransmitPoll);
5989 }
5990
5991 static void __devexit nv_remove(struct pci_dev *pci_dev)
5992 {
5993 struct net_device *dev = pci_get_drvdata(pci_dev);
5994
5995 unregister_netdev(dev);
5996
5997 nv_restore_mac_addr(pci_dev);
5998
5999 /* restore any phy related changes */
6000 nv_restore_phy(dev);
6001
6002 nv_mgmt_release_sema(dev);
6003
6004 /* free all structures */
6005 free_rings(dev);
6006 iounmap(get_hwbase(dev));
6007 pci_release_regions(pci_dev);
6008 pci_disable_device(pci_dev);
6009 free_netdev(dev);
6010 pci_set_drvdata(pci_dev, NULL);
6011 }
6012
6013 #ifdef CONFIG_PM_SLEEP
6014 static int nv_suspend(struct device *device)
6015 {
6016 struct pci_dev *pdev = to_pci_dev(device);
6017 struct net_device *dev = pci_get_drvdata(pdev);
6018 struct fe_priv *np = netdev_priv(dev);
6019 u8 __iomem *base = get_hwbase(dev);
6020 int i;
6021
6022 if (netif_running(dev)) {
6023 /* Gross. */
6024 nv_close(dev);
6025 }
6026 netif_device_detach(dev);
6027
6028 /* save non-pci configuration space */
6029 for (i = 0; i <= np->register_size/sizeof(u32); i++)
6030 np->saved_config_space[i] = readl(base + i*sizeof(u32));
6031
6032 return 0;
6033 }
6034
6035 static int nv_resume(struct device *device)
6036 {
6037 struct pci_dev *pdev = to_pci_dev(device);
6038 struct net_device *dev = pci_get_drvdata(pdev);
6039 struct fe_priv *np = netdev_priv(dev);
6040 u8 __iomem *base = get_hwbase(dev);
6041 int i, rc = 0;
6042
6043 /* restore non-pci configuration space */
6044 for (i = 0; i <= np->register_size/sizeof(u32); i++)
6045 writel(np->saved_config_space[i], base+i*sizeof(u32));
6046
6047 if (np->driver_data & DEV_NEED_MSI_FIX)
6048 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
6049
6050 /* restore phy state, including autoneg */
6051 phy_init(dev);
6052
6053 netif_device_attach(dev);
6054 if (netif_running(dev)) {
6055 rc = nv_open(dev);
6056 nv_set_multicast(dev);
6057 }
6058 return rc;
6059 }
6060
6061 static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume);
6062 #define NV_PM_OPS (&nv_pm_ops)
6063
6064 #else
6065 #define NV_PM_OPS NULL
6066 #endif /* CONFIG_PM_SLEEP */
6067
6068 #ifdef CONFIG_PM
6069 static void nv_shutdown(struct pci_dev *pdev)
6070 {
6071 struct net_device *dev = pci_get_drvdata(pdev);
6072 struct fe_priv *np = netdev_priv(dev);
6073
6074 if (netif_running(dev))
6075 nv_close(dev);
6076
6077 /*
6078 * Restore the MAC so a kernel started by kexec won't get confused.
6079 * If we really go for poweroff, we must not restore the MAC,
6080 * otherwise the MAC for WOL will be reversed at least on some boards.
6081 */
6082 if (system_state != SYSTEM_POWER_OFF)
6083 nv_restore_mac_addr(pdev);
6084
6085 pci_disable_device(pdev);
6086 /*
6087 * Apparently it is not possible to reinitialise from D3 hot,
6088 * only put the device into D3 if we really go for poweroff.
6089 */
6090 if (system_state == SYSTEM_POWER_OFF) {
6091 pci_wake_from_d3(pdev, np->wolenabled);
6092 pci_set_power_state(pdev, PCI_D3hot);
6093 }
6094 }
6095 #else
6096 #define nv_shutdown NULL
6097 #endif /* CONFIG_PM */
6098
6099 static DEFINE_PCI_DEVICE_TABLE(pci_tbl) = {
6100 { /* nForce Ethernet Controller */
6101 PCI_DEVICE(0x10DE, 0x01C3),
6102 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6103 },
6104 { /* nForce2 Ethernet Controller */
6105 PCI_DEVICE(0x10DE, 0x0066),
6106 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6107 },
6108 { /* nForce3 Ethernet Controller */
6109 PCI_DEVICE(0x10DE, 0x00D6),
6110 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6111 },
6112 { /* nForce3 Ethernet Controller */
6113 PCI_DEVICE(0x10DE, 0x0086),
6114 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6115 },
6116 { /* nForce3 Ethernet Controller */
6117 PCI_DEVICE(0x10DE, 0x008C),
6118 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6119 },
6120 { /* nForce3 Ethernet Controller */
6121 PCI_DEVICE(0x10DE, 0x00E6),
6122 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6123 },
6124 { /* nForce3 Ethernet Controller */
6125 PCI_DEVICE(0x10DE, 0x00DF),
6126 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6127 },
6128 { /* CK804 Ethernet Controller */
6129 PCI_DEVICE(0x10DE, 0x0056),
6130 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6131 },
6132 { /* CK804 Ethernet Controller */
6133 PCI_DEVICE(0x10DE, 0x0057),
6134 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6135 },
6136 { /* MCP04 Ethernet Controller */
6137 PCI_DEVICE(0x10DE, 0x0037),
6138 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6139 },
6140 { /* MCP04 Ethernet Controller */
6141 PCI_DEVICE(0x10DE, 0x0038),
6142 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6143 },
6144 { /* MCP51 Ethernet Controller */
6145 PCI_DEVICE(0x10DE, 0x0268),
6146 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6147 },
6148 { /* MCP51 Ethernet Controller */
6149 PCI_DEVICE(0x10DE, 0x0269),
6150 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6151 },
6152 { /* MCP55 Ethernet Controller */
6153 PCI_DEVICE(0x10DE, 0x0372),
6154 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6155 },
6156 { /* MCP55 Ethernet Controller */
6157 PCI_DEVICE(0x10DE, 0x0373),
6158 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6159 },
6160 { /* MCP61 Ethernet Controller */
6161 PCI_DEVICE(0x10DE, 0x03E5),
6162 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6163 },
6164 { /* MCP61 Ethernet Controller */
6165 PCI_DEVICE(0x10DE, 0x03E6),
6166 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6167 },
6168 { /* MCP61 Ethernet Controller */
6169 PCI_DEVICE(0x10DE, 0x03EE),
6170 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6171 },
6172 { /* MCP61 Ethernet Controller */
6173 PCI_DEVICE(0x10DE, 0x03EF),
6174 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6175 },
6176 { /* MCP65 Ethernet Controller */
6177 PCI_DEVICE(0x10DE, 0x0450),
6178 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6179 },
6180 { /* MCP65 Ethernet Controller */
6181 PCI_DEVICE(0x10DE, 0x0451),
6182 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6183 },
6184 { /* MCP65 Ethernet Controller */
6185 PCI_DEVICE(0x10DE, 0x0452),
6186 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6187 },
6188 { /* MCP65 Ethernet Controller */
6189 PCI_DEVICE(0x10DE, 0x0453),
6190 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6191 },
6192 { /* MCP67 Ethernet Controller */
6193 PCI_DEVICE(0x10DE, 0x054C),
6194 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6195 },
6196 { /* MCP67 Ethernet Controller */
6197 PCI_DEVICE(0x10DE, 0x054D),
6198 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6199 },
6200 { /* MCP67 Ethernet Controller */
6201 PCI_DEVICE(0x10DE, 0x054E),
6202 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6203 },
6204 { /* MCP67 Ethernet Controller */
6205 PCI_DEVICE(0x10DE, 0x054F),
6206 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6207 },
6208 { /* MCP73 Ethernet Controller */
6209 PCI_DEVICE(0x10DE, 0x07DC),
6210 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6211 },
6212 { /* MCP73 Ethernet Controller */
6213 PCI_DEVICE(0x10DE, 0x07DD),
6214 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6215 },
6216 { /* MCP73 Ethernet Controller */
6217 PCI_DEVICE(0x10DE, 0x07DE),
6218 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6219 },
6220 { /* MCP73 Ethernet Controller */
6221 PCI_DEVICE(0x10DE, 0x07DF),
6222 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6223 },
6224 { /* MCP77 Ethernet Controller */
6225 PCI_DEVICE(0x10DE, 0x0760),
6226 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6227 },
6228 { /* MCP77 Ethernet Controller */
6229 PCI_DEVICE(0x10DE, 0x0761),
6230 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6231 },
6232 { /* MCP77 Ethernet Controller */
6233 PCI_DEVICE(0x10DE, 0x0762),
6234 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6235 },
6236 { /* MCP77 Ethernet Controller */
6237 PCI_DEVICE(0x10DE, 0x0763),
6238 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6239 },
6240 { /* MCP79 Ethernet Controller */
6241 PCI_DEVICE(0x10DE, 0x0AB0),
6242 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6243 },
6244 { /* MCP79 Ethernet Controller */
6245 PCI_DEVICE(0x10DE, 0x0AB1),
6246 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6247 },
6248 { /* MCP79 Ethernet Controller */
6249 PCI_DEVICE(0x10DE, 0x0AB2),
6250 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6251 },
6252 { /* MCP79 Ethernet Controller */
6253 PCI_DEVICE(0x10DE, 0x0AB3),
6254 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6255 },
6256 { /* MCP89 Ethernet Controller */
6257 PCI_DEVICE(0x10DE, 0x0D7D),
6258 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
6259 },
6260 {0,},
6261 };
6262
6263 static struct pci_driver driver = {
6264 .name = DRV_NAME,
6265 .id_table = pci_tbl,
6266 .probe = nv_probe,
6267 .remove = __devexit_p(nv_remove),
6268 .shutdown = nv_shutdown,
6269 .driver.pm = NV_PM_OPS,
6270 };
6271
6272 static int __init init_nic(void)
6273 {
6274 return pci_register_driver(&driver);
6275 }
6276
6277 static void __exit exit_nic(void)
6278 {
6279 pci_unregister_driver(&driver);
6280 }
6281
6282 module_param(max_interrupt_work, int, 0);
6283 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
6284 module_param(optimization_mode, int, 0);
6285 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
6286 module_param(poll_interval, int, 0);
6287 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
6288 module_param(msi, int, 0);
6289 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
6290 module_param(msix, int, 0);
6291 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
6292 module_param(dma_64bit, int, 0);
6293 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
6294 module_param(phy_cross, int, 0);
6295 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
6296 module_param(phy_power_down, int, 0);
6297 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
6298 module_param(debug_tx_timeout, bool, 0);
6299 MODULE_PARM_DESC(debug_tx_timeout,
6300 "Dump tx related registers and ring when tx_timeout happens");
6301
6302 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
6303 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
6304 MODULE_LICENSE("GPL");
6305
6306 MODULE_DEVICE_TABLE(pci, pci_tbl);
6307
6308 module_init(init_nic);
6309 module_exit(exit_nic);
This page took 0.182023 seconds and 5 git commands to generate.