Merge branch 'stable-4.6' of git://git.infradead.org/users/pcmoore/selinux into next
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qed / qed_spq.c
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/types.h>
10 #include <asm/byteorder.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include "qed.h"
22 #include "qed_cxt.h"
23 #include "qed_dev_api.h"
24 #include "qed_hsi.h"
25 #include "qed_hw.h"
26 #include "qed_int.h"
27 #include "qed_mcp.h"
28 #include "qed_reg_addr.h"
29 #include "qed_sp.h"
30
31 /***************************************************************************
32 * Structures & Definitions
33 ***************************************************************************/
34
35 #define SPQ_HIGH_PRI_RESERVE_DEFAULT (1)
36 #define SPQ_BLOCK_SLEEP_LENGTH (1000)
37
38 /***************************************************************************
39 * Blocking Imp. (BLOCK/EBLOCK mode)
40 ***************************************************************************/
41 static void qed_spq_blocking_cb(struct qed_hwfn *p_hwfn,
42 void *cookie,
43 union event_ring_data *data,
44 u8 fw_return_code)
45 {
46 struct qed_spq_comp_done *comp_done;
47
48 comp_done = (struct qed_spq_comp_done *)cookie;
49
50 comp_done->done = 0x1;
51 comp_done->fw_return_code = fw_return_code;
52
53 /* make update visible to waiting thread */
54 smp_wmb();
55 }
56
57 static int qed_spq_block(struct qed_hwfn *p_hwfn,
58 struct qed_spq_entry *p_ent,
59 u8 *p_fw_ret)
60 {
61 int sleep_count = SPQ_BLOCK_SLEEP_LENGTH;
62 struct qed_spq_comp_done *comp_done;
63 int rc;
64
65 comp_done = (struct qed_spq_comp_done *)p_ent->comp_cb.cookie;
66 while (sleep_count) {
67 /* validate we receive completion update */
68 smp_rmb();
69 if (comp_done->done == 1) {
70 if (p_fw_ret)
71 *p_fw_ret = comp_done->fw_return_code;
72 return 0;
73 }
74 usleep_range(5000, 10000);
75 sleep_count--;
76 }
77
78 DP_INFO(p_hwfn, "Ramrod is stuck, requesting MCP drain\n");
79 rc = qed_mcp_drain(p_hwfn, p_hwfn->p_main_ptt);
80 if (rc != 0)
81 DP_NOTICE(p_hwfn, "MCP drain failed\n");
82
83 /* Retry after drain */
84 sleep_count = SPQ_BLOCK_SLEEP_LENGTH;
85 while (sleep_count) {
86 /* validate we receive completion update */
87 smp_rmb();
88 if (comp_done->done == 1) {
89 if (p_fw_ret)
90 *p_fw_ret = comp_done->fw_return_code;
91 return 0;
92 }
93 usleep_range(5000, 10000);
94 sleep_count--;
95 }
96
97 if (comp_done->done == 1) {
98 if (p_fw_ret)
99 *p_fw_ret = comp_done->fw_return_code;
100 return 0;
101 }
102
103 DP_NOTICE(p_hwfn, "Ramrod is stuck, MCP drain failed\n");
104
105 return -EBUSY;
106 }
107
108 /***************************************************************************
109 * SPQ entries inner API
110 ***************************************************************************/
111 static int
112 qed_spq_fill_entry(struct qed_hwfn *p_hwfn,
113 struct qed_spq_entry *p_ent)
114 {
115 p_ent->flags = 0;
116
117 switch (p_ent->comp_mode) {
118 case QED_SPQ_MODE_EBLOCK:
119 case QED_SPQ_MODE_BLOCK:
120 p_ent->comp_cb.function = qed_spq_blocking_cb;
121 break;
122 case QED_SPQ_MODE_CB:
123 break;
124 default:
125 DP_NOTICE(p_hwfn, "Unknown SPQE completion mode %d\n",
126 p_ent->comp_mode);
127 return -EINVAL;
128 }
129
130 DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
131 "Ramrod header: [CID 0x%08x CMD 0x%02x protocol 0x%02x] Data pointer: [%08x:%08x] Completion Mode: %s\n",
132 p_ent->elem.hdr.cid,
133 p_ent->elem.hdr.cmd_id,
134 p_ent->elem.hdr.protocol_id,
135 p_ent->elem.data_ptr.hi,
136 p_ent->elem.data_ptr.lo,
137 D_TRINE(p_ent->comp_mode, QED_SPQ_MODE_EBLOCK,
138 QED_SPQ_MODE_BLOCK, "MODE_EBLOCK", "MODE_BLOCK",
139 "MODE_CB"));
140
141 return 0;
142 }
143
144 /***************************************************************************
145 * HSI access
146 ***************************************************************************/
147 static void qed_spq_hw_initialize(struct qed_hwfn *p_hwfn,
148 struct qed_spq *p_spq)
149 {
150 u16 pq;
151 struct qed_cxt_info cxt_info;
152 struct core_conn_context *p_cxt;
153 union qed_qm_pq_params pq_params;
154 int rc;
155
156 cxt_info.iid = p_spq->cid;
157
158 rc = qed_cxt_get_cid_info(p_hwfn, &cxt_info);
159
160 if (rc < 0) {
161 DP_NOTICE(p_hwfn, "Cannot find context info for cid=%d\n",
162 p_spq->cid);
163 return;
164 }
165
166 p_cxt = cxt_info.p_cxt;
167
168 SET_FIELD(p_cxt->xstorm_ag_context.flags10,
169 XSTORM_CORE_CONN_AG_CTX_DQ_CF_EN, 1);
170 SET_FIELD(p_cxt->xstorm_ag_context.flags1,
171 XSTORM_CORE_CONN_AG_CTX_DQ_CF_ACTIVE, 1);
172 SET_FIELD(p_cxt->xstorm_ag_context.flags9,
173 XSTORM_CORE_CONN_AG_CTX_CONSOLID_PROD_CF_EN, 1);
174
175 /* QM physical queue */
176 memset(&pq_params, 0, sizeof(pq_params));
177 pq_params.core.tc = LB_TC;
178 pq = qed_get_qm_pq(p_hwfn, PROTOCOLID_CORE, &pq_params);
179 p_cxt->xstorm_ag_context.physical_q0 = cpu_to_le16(pq);
180
181 p_cxt->xstorm_st_context.spq_base_lo =
182 DMA_LO_LE(p_spq->chain.p_phys_addr);
183 p_cxt->xstorm_st_context.spq_base_hi =
184 DMA_HI_LE(p_spq->chain.p_phys_addr);
185
186 p_cxt->xstorm_st_context.consolid_base_addr.lo =
187 DMA_LO_LE(p_hwfn->p_consq->chain.p_phys_addr);
188 p_cxt->xstorm_st_context.consolid_base_addr.hi =
189 DMA_HI_LE(p_hwfn->p_consq->chain.p_phys_addr);
190 }
191
192 static int qed_spq_hw_post(struct qed_hwfn *p_hwfn,
193 struct qed_spq *p_spq,
194 struct qed_spq_entry *p_ent)
195 {
196 struct qed_chain *p_chain = &p_hwfn->p_spq->chain;
197 u16 echo = qed_chain_get_prod_idx(p_chain);
198 struct slow_path_element *elem;
199 struct core_db_data db;
200
201 p_ent->elem.hdr.echo = cpu_to_le16(echo);
202 elem = qed_chain_produce(p_chain);
203 if (!elem) {
204 DP_NOTICE(p_hwfn, "Failed to produce from SPQ chain\n");
205 return -EINVAL;
206 }
207
208 *elem = p_ent->elem; /* struct assignment */
209
210 /* send a doorbell on the slow hwfn session */
211 memset(&db, 0, sizeof(db));
212 SET_FIELD(db.params, CORE_DB_DATA_DEST, DB_DEST_XCM);
213 SET_FIELD(db.params, CORE_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
214 SET_FIELD(db.params, CORE_DB_DATA_AGG_VAL_SEL,
215 DQ_XCM_CORE_SPQ_PROD_CMD);
216 db.agg_flags = DQ_XCM_CORE_DQ_CF_CMD;
217
218 /* validate producer is up to-date */
219 rmb();
220
221 db.spq_prod = cpu_to_le16(qed_chain_get_prod_idx(p_chain));
222
223 /* do not reorder */
224 barrier();
225
226 DOORBELL(p_hwfn, qed_db_addr(p_spq->cid, DQ_DEMS_LEGACY), *(u32 *)&db);
227
228 /* make sure doorbell is rang */
229 mmiowb();
230
231 DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
232 "Doorbelled [0x%08x, CID 0x%08x] with Flags: %02x agg_params: %02x, prod: %04x\n",
233 qed_db_addr(p_spq->cid, DQ_DEMS_LEGACY),
234 p_spq->cid, db.params, db.agg_flags,
235 qed_chain_get_prod_idx(p_chain));
236
237 return 0;
238 }
239
240 /***************************************************************************
241 * Asynchronous events
242 ***************************************************************************/
243 static int
244 qed_async_event_completion(struct qed_hwfn *p_hwfn,
245 struct event_ring_entry *p_eqe)
246 {
247 DP_NOTICE(p_hwfn,
248 "Unknown Async completion for protocol: %d\n",
249 p_eqe->protocol_id);
250 return -EINVAL;
251 }
252
253 /***************************************************************************
254 * EQ API
255 ***************************************************************************/
256 void qed_eq_prod_update(struct qed_hwfn *p_hwfn,
257 u16 prod)
258 {
259 u32 addr = GTT_BAR0_MAP_REG_USDM_RAM +
260 USTORM_EQE_CONS_OFFSET(p_hwfn->rel_pf_id);
261
262 REG_WR16(p_hwfn, addr, prod);
263
264 /* keep prod updates ordered */
265 mmiowb();
266 }
267
268 int qed_eq_completion(struct qed_hwfn *p_hwfn,
269 void *cookie)
270
271 {
272 struct qed_eq *p_eq = cookie;
273 struct qed_chain *p_chain = &p_eq->chain;
274 int rc = 0;
275
276 /* take a snapshot of the FW consumer */
277 u16 fw_cons_idx = le16_to_cpu(*p_eq->p_fw_cons);
278
279 DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "fw_cons_idx %x\n", fw_cons_idx);
280
281 /* Need to guarantee the fw_cons index we use points to a usuable
282 * element (to comply with our chain), so our macros would comply
283 */
284 if ((fw_cons_idx & qed_chain_get_usable_per_page(p_chain)) ==
285 qed_chain_get_usable_per_page(p_chain))
286 fw_cons_idx += qed_chain_get_unusable_per_page(p_chain);
287
288 /* Complete current segment of eq entries */
289 while (fw_cons_idx != qed_chain_get_cons_idx(p_chain)) {
290 struct event_ring_entry *p_eqe = qed_chain_consume(p_chain);
291
292 if (!p_eqe) {
293 rc = -EINVAL;
294 break;
295 }
296
297 DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
298 "op %x prot %x res0 %x echo %x fwret %x flags %x\n",
299 p_eqe->opcode,
300 p_eqe->protocol_id,
301 p_eqe->reserved0,
302 le16_to_cpu(p_eqe->echo),
303 p_eqe->fw_return_code,
304 p_eqe->flags);
305
306 if (GET_FIELD(p_eqe->flags, EVENT_RING_ENTRY_ASYNC)) {
307 if (qed_async_event_completion(p_hwfn, p_eqe))
308 rc = -EINVAL;
309 } else if (qed_spq_completion(p_hwfn,
310 p_eqe->echo,
311 p_eqe->fw_return_code,
312 &p_eqe->data)) {
313 rc = -EINVAL;
314 }
315
316 qed_chain_recycle_consumed(p_chain);
317 }
318
319 qed_eq_prod_update(p_hwfn, qed_chain_get_prod_idx(p_chain));
320
321 return rc;
322 }
323
324 struct qed_eq *qed_eq_alloc(struct qed_hwfn *p_hwfn,
325 u16 num_elem)
326 {
327 struct qed_eq *p_eq;
328
329 /* Allocate EQ struct */
330 p_eq = kzalloc(sizeof(*p_eq), GFP_ATOMIC);
331 if (!p_eq) {
332 DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_eq'\n");
333 return NULL;
334 }
335
336 /* Allocate and initialize EQ chain*/
337 if (qed_chain_alloc(p_hwfn->cdev,
338 QED_CHAIN_USE_TO_PRODUCE,
339 QED_CHAIN_MODE_PBL,
340 num_elem,
341 sizeof(union event_ring_element),
342 &p_eq->chain)) {
343 DP_NOTICE(p_hwfn, "Failed to allocate eq chain\n");
344 goto eq_allocate_fail;
345 }
346
347 /* register EQ completion on the SP SB */
348 qed_int_register_cb(p_hwfn,
349 qed_eq_completion,
350 p_eq,
351 &p_eq->eq_sb_index,
352 &p_eq->p_fw_cons);
353
354 return p_eq;
355
356 eq_allocate_fail:
357 qed_eq_free(p_hwfn, p_eq);
358 return NULL;
359 }
360
361 void qed_eq_setup(struct qed_hwfn *p_hwfn,
362 struct qed_eq *p_eq)
363 {
364 qed_chain_reset(&p_eq->chain);
365 }
366
367 void qed_eq_free(struct qed_hwfn *p_hwfn,
368 struct qed_eq *p_eq)
369 {
370 if (!p_eq)
371 return;
372 qed_chain_free(p_hwfn->cdev, &p_eq->chain);
373 kfree(p_eq);
374 }
375
376 /***************************************************************************
377 * CQE API - manipulate EQ functionality
378 ***************************************************************************/
379 static int qed_cqe_completion(
380 struct qed_hwfn *p_hwfn,
381 struct eth_slow_path_rx_cqe *cqe,
382 enum protocol_type protocol)
383 {
384 /* @@@tmp - it's possible we'll eventually want to handle some
385 * actual commands that can arrive here, but for now this is only
386 * used to complete the ramrod using the echo value on the cqe
387 */
388 return qed_spq_completion(p_hwfn, cqe->echo, 0, NULL);
389 }
390
391 int qed_eth_cqe_completion(struct qed_hwfn *p_hwfn,
392 struct eth_slow_path_rx_cqe *cqe)
393 {
394 int rc;
395
396 rc = qed_cqe_completion(p_hwfn, cqe, PROTOCOLID_ETH);
397 if (rc)
398 DP_NOTICE(p_hwfn,
399 "Failed to handle RXQ CQE [cmd 0x%02x]\n",
400 cqe->ramrod_cmd_id);
401
402 return rc;
403 }
404
405 /***************************************************************************
406 * Slow hwfn Queue (spq)
407 ***************************************************************************/
408 void qed_spq_setup(struct qed_hwfn *p_hwfn)
409 {
410 struct qed_spq *p_spq = p_hwfn->p_spq;
411 struct qed_spq_entry *p_virt = NULL;
412 dma_addr_t p_phys = 0;
413 unsigned int i = 0;
414
415 INIT_LIST_HEAD(&p_spq->pending);
416 INIT_LIST_HEAD(&p_spq->completion_pending);
417 INIT_LIST_HEAD(&p_spq->free_pool);
418 INIT_LIST_HEAD(&p_spq->unlimited_pending);
419 spin_lock_init(&p_spq->lock);
420
421 /* SPQ empty pool */
422 p_phys = p_spq->p_phys + offsetof(struct qed_spq_entry, ramrod);
423 p_virt = p_spq->p_virt;
424
425 for (i = 0; i < p_spq->chain.capacity; i++) {
426 p_virt->elem.data_ptr.hi = DMA_HI_LE(p_phys);
427 p_virt->elem.data_ptr.lo = DMA_LO_LE(p_phys);
428
429 list_add_tail(&p_virt->list, &p_spq->free_pool);
430
431 p_virt++;
432 p_phys += sizeof(struct qed_spq_entry);
433 }
434
435 /* Statistics */
436 p_spq->normal_count = 0;
437 p_spq->comp_count = 0;
438 p_spq->comp_sent_count = 0;
439 p_spq->unlimited_pending_count = 0;
440
441 bitmap_zero(p_spq->p_comp_bitmap, SPQ_RING_SIZE);
442 p_spq->comp_bitmap_idx = 0;
443
444 /* SPQ cid, cannot fail */
445 qed_cxt_acquire_cid(p_hwfn, PROTOCOLID_CORE, &p_spq->cid);
446 qed_spq_hw_initialize(p_hwfn, p_spq);
447
448 /* reset the chain itself */
449 qed_chain_reset(&p_spq->chain);
450 }
451
452 int qed_spq_alloc(struct qed_hwfn *p_hwfn)
453 {
454 struct qed_spq *p_spq = NULL;
455 dma_addr_t p_phys = 0;
456 struct qed_spq_entry *p_virt = NULL;
457
458 /* SPQ struct */
459 p_spq =
460 kzalloc(sizeof(struct qed_spq), GFP_ATOMIC);
461 if (!p_spq) {
462 DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_spq'\n");
463 return -ENOMEM;
464 }
465
466 /* SPQ ring */
467 if (qed_chain_alloc(p_hwfn->cdev,
468 QED_CHAIN_USE_TO_PRODUCE,
469 QED_CHAIN_MODE_SINGLE,
470 0, /* N/A when the mode is SINGLE */
471 sizeof(struct slow_path_element),
472 &p_spq->chain)) {
473 DP_NOTICE(p_hwfn, "Failed to allocate spq chain\n");
474 goto spq_allocate_fail;
475 }
476
477 /* allocate and fill the SPQ elements (incl. ramrod data list) */
478 p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
479 p_spq->chain.capacity *
480 sizeof(struct qed_spq_entry),
481 &p_phys,
482 GFP_KERNEL);
483
484 if (!p_virt)
485 goto spq_allocate_fail;
486
487 p_spq->p_virt = p_virt;
488 p_spq->p_phys = p_phys;
489 p_hwfn->p_spq = p_spq;
490
491 return 0;
492
493 spq_allocate_fail:
494 qed_chain_free(p_hwfn->cdev, &p_spq->chain);
495 kfree(p_spq);
496 return -ENOMEM;
497 }
498
499 void qed_spq_free(struct qed_hwfn *p_hwfn)
500 {
501 struct qed_spq *p_spq = p_hwfn->p_spq;
502
503 if (!p_spq)
504 return;
505
506 if (p_spq->p_virt)
507 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
508 p_spq->chain.capacity *
509 sizeof(struct qed_spq_entry),
510 p_spq->p_virt,
511 p_spq->p_phys);
512
513 qed_chain_free(p_hwfn->cdev, &p_spq->chain);
514 ;
515 kfree(p_spq);
516 }
517
518 int
519 qed_spq_get_entry(struct qed_hwfn *p_hwfn,
520 struct qed_spq_entry **pp_ent)
521 {
522 struct qed_spq *p_spq = p_hwfn->p_spq;
523 struct qed_spq_entry *p_ent = NULL;
524 int rc = 0;
525
526 spin_lock_bh(&p_spq->lock);
527
528 if (list_empty(&p_spq->free_pool)) {
529 p_ent = kzalloc(sizeof(*p_ent), GFP_ATOMIC);
530 if (!p_ent) {
531 rc = -ENOMEM;
532 goto out_unlock;
533 }
534 p_ent->queue = &p_spq->unlimited_pending;
535 } else {
536 p_ent = list_first_entry(&p_spq->free_pool,
537 struct qed_spq_entry,
538 list);
539 list_del(&p_ent->list);
540 p_ent->queue = &p_spq->pending;
541 }
542
543 *pp_ent = p_ent;
544
545 out_unlock:
546 spin_unlock_bh(&p_spq->lock);
547 return rc;
548 }
549
550 /* Locked variant; Should be called while the SPQ lock is taken */
551 static void __qed_spq_return_entry(struct qed_hwfn *p_hwfn,
552 struct qed_spq_entry *p_ent)
553 {
554 list_add_tail(&p_ent->list, &p_hwfn->p_spq->free_pool);
555 }
556
557 void qed_spq_return_entry(struct qed_hwfn *p_hwfn,
558 struct qed_spq_entry *p_ent)
559 {
560 spin_lock_bh(&p_hwfn->p_spq->lock);
561 __qed_spq_return_entry(p_hwfn, p_ent);
562 spin_unlock_bh(&p_hwfn->p_spq->lock);
563 }
564
565 /**
566 * @brief qed_spq_add_entry - adds a new entry to the pending
567 * list. Should be used while lock is being held.
568 *
569 * Addes an entry to the pending list is there is room (en empty
570 * element is available in the free_pool), or else places the
571 * entry in the unlimited_pending pool.
572 *
573 * @param p_hwfn
574 * @param p_ent
575 * @param priority
576 *
577 * @return int
578 */
579 static int
580 qed_spq_add_entry(struct qed_hwfn *p_hwfn,
581 struct qed_spq_entry *p_ent,
582 enum spq_priority priority)
583 {
584 struct qed_spq *p_spq = p_hwfn->p_spq;
585
586 if (p_ent->queue == &p_spq->unlimited_pending) {
587
588 if (list_empty(&p_spq->free_pool)) {
589 list_add_tail(&p_ent->list, &p_spq->unlimited_pending);
590 p_spq->unlimited_pending_count++;
591
592 return 0;
593 } else {
594 struct qed_spq_entry *p_en2;
595
596 p_en2 = list_first_entry(&p_spq->free_pool,
597 struct qed_spq_entry,
598 list);
599 list_del(&p_en2->list);
600
601 /* Copy the ring element physical pointer to the new
602 * entry, since we are about to override the entire ring
603 * entry and don't want to lose the pointer.
604 */
605 p_ent->elem.data_ptr = p_en2->elem.data_ptr;
606
607 *p_en2 = *p_ent;
608
609 kfree(p_ent);
610
611 p_ent = p_en2;
612 }
613 }
614
615 /* entry is to be placed in 'pending' queue */
616 switch (priority) {
617 case QED_SPQ_PRIORITY_NORMAL:
618 list_add_tail(&p_ent->list, &p_spq->pending);
619 p_spq->normal_count++;
620 break;
621 case QED_SPQ_PRIORITY_HIGH:
622 list_add(&p_ent->list, &p_spq->pending);
623 p_spq->high_count++;
624 break;
625 default:
626 return -EINVAL;
627 }
628
629 return 0;
630 }
631
632 /***************************************************************************
633 * Accessor
634 ***************************************************************************/
635 u32 qed_spq_get_cid(struct qed_hwfn *p_hwfn)
636 {
637 if (!p_hwfn->p_spq)
638 return 0xffffffff; /* illegal */
639 return p_hwfn->p_spq->cid;
640 }
641
642 /***************************************************************************
643 * Posting new Ramrods
644 ***************************************************************************/
645 static int qed_spq_post_list(struct qed_hwfn *p_hwfn,
646 struct list_head *head,
647 u32 keep_reserve)
648 {
649 struct qed_spq *p_spq = p_hwfn->p_spq;
650 int rc;
651
652 while (qed_chain_get_elem_left(&p_spq->chain) > keep_reserve &&
653 !list_empty(head)) {
654 struct qed_spq_entry *p_ent =
655 list_first_entry(head, struct qed_spq_entry, list);
656 list_del(&p_ent->list);
657 list_add_tail(&p_ent->list, &p_spq->completion_pending);
658 p_spq->comp_sent_count++;
659
660 rc = qed_spq_hw_post(p_hwfn, p_spq, p_ent);
661 if (rc) {
662 list_del(&p_ent->list);
663 __qed_spq_return_entry(p_hwfn, p_ent);
664 return rc;
665 }
666 }
667
668 return 0;
669 }
670
671 static int qed_spq_pend_post(struct qed_hwfn *p_hwfn)
672 {
673 struct qed_spq *p_spq = p_hwfn->p_spq;
674 struct qed_spq_entry *p_ent = NULL;
675
676 while (!list_empty(&p_spq->free_pool)) {
677 if (list_empty(&p_spq->unlimited_pending))
678 break;
679
680 p_ent = list_first_entry(&p_spq->unlimited_pending,
681 struct qed_spq_entry,
682 list);
683 if (!p_ent)
684 return -EINVAL;
685
686 list_del(&p_ent->list);
687
688 qed_spq_add_entry(p_hwfn, p_ent, p_ent->priority);
689 }
690
691 return qed_spq_post_list(p_hwfn, &p_spq->pending,
692 SPQ_HIGH_PRI_RESERVE_DEFAULT);
693 }
694
695 int qed_spq_post(struct qed_hwfn *p_hwfn,
696 struct qed_spq_entry *p_ent,
697 u8 *fw_return_code)
698 {
699 int rc = 0;
700 struct qed_spq *p_spq = p_hwfn ? p_hwfn->p_spq : NULL;
701 bool b_ret_ent = true;
702
703 if (!p_hwfn)
704 return -EINVAL;
705
706 if (!p_ent) {
707 DP_NOTICE(p_hwfn, "Got a NULL pointer\n");
708 return -EINVAL;
709 }
710
711 /* Complete the entry */
712 rc = qed_spq_fill_entry(p_hwfn, p_ent);
713
714 spin_lock_bh(&p_spq->lock);
715
716 /* Check return value after LOCK is taken for cleaner error flow */
717 if (rc)
718 goto spq_post_fail;
719
720 /* Add the request to the pending queue */
721 rc = qed_spq_add_entry(p_hwfn, p_ent, p_ent->priority);
722 if (rc)
723 goto spq_post_fail;
724
725 rc = qed_spq_pend_post(p_hwfn);
726 if (rc) {
727 /* Since it's possible that pending failed for a different
728 * entry [although unlikely], the failed entry was already
729 * dealt with; No need to return it here.
730 */
731 b_ret_ent = false;
732 goto spq_post_fail;
733 }
734
735 spin_unlock_bh(&p_spq->lock);
736
737 if (p_ent->comp_mode == QED_SPQ_MODE_EBLOCK) {
738 /* For entries in QED BLOCK mode, the completion code cannot
739 * perform the necessary cleanup - if it did, we couldn't
740 * access p_ent here to see whether it's successful or not.
741 * Thus, after gaining the answer perform the cleanup here.
742 */
743 rc = qed_spq_block(p_hwfn, p_ent, fw_return_code);
744 if (rc)
745 goto spq_post_fail2;
746
747 /* return to pool */
748 qed_spq_return_entry(p_hwfn, p_ent);
749 }
750 return rc;
751
752 spq_post_fail2:
753 spin_lock_bh(&p_spq->lock);
754 list_del(&p_ent->list);
755 qed_chain_return_produced(&p_spq->chain);
756
757 spq_post_fail:
758 /* return to the free pool */
759 if (b_ret_ent)
760 __qed_spq_return_entry(p_hwfn, p_ent);
761 spin_unlock_bh(&p_spq->lock);
762
763 return rc;
764 }
765
766 int qed_spq_completion(struct qed_hwfn *p_hwfn,
767 __le16 echo,
768 u8 fw_return_code,
769 union event_ring_data *p_data)
770 {
771 struct qed_spq *p_spq;
772 struct qed_spq_entry *p_ent = NULL;
773 struct qed_spq_entry *tmp;
774 struct qed_spq_entry *found = NULL;
775 int rc;
776
777 if (!p_hwfn)
778 return -EINVAL;
779
780 p_spq = p_hwfn->p_spq;
781 if (!p_spq)
782 return -EINVAL;
783
784 spin_lock_bh(&p_spq->lock);
785 list_for_each_entry_safe(p_ent, tmp, &p_spq->completion_pending,
786 list) {
787 if (p_ent->elem.hdr.echo == echo) {
788 u16 pos = le16_to_cpu(echo) % SPQ_RING_SIZE;
789
790 list_del(&p_ent->list);
791
792 /* Avoid overriding of SPQ entries when getting
793 * out-of-order completions, by marking the completions
794 * in a bitmap and increasing the chain consumer only
795 * for the first successive completed entries.
796 */
797 bitmap_set(p_spq->p_comp_bitmap, pos, SPQ_RING_SIZE);
798
799 while (test_bit(p_spq->comp_bitmap_idx,
800 p_spq->p_comp_bitmap)) {
801 bitmap_clear(p_spq->p_comp_bitmap,
802 p_spq->comp_bitmap_idx,
803 SPQ_RING_SIZE);
804 p_spq->comp_bitmap_idx++;
805 qed_chain_return_produced(&p_spq->chain);
806 }
807
808 p_spq->comp_count++;
809 found = p_ent;
810 break;
811 }
812
813 /* This is relatively uncommon - depends on scenarios
814 * which have mutliple per-PF sent ramrods.
815 */
816 DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
817 "Got completion for echo %04x - doesn't match echo %04x in completion pending list\n",
818 le16_to_cpu(echo),
819 le16_to_cpu(p_ent->elem.hdr.echo));
820 }
821
822 /* Release lock before callback, as callback may post
823 * an additional ramrod.
824 */
825 spin_unlock_bh(&p_spq->lock);
826
827 if (!found) {
828 DP_NOTICE(p_hwfn,
829 "Failed to find an entry this EQE completes\n");
830 return -EEXIST;
831 }
832
833 DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Complete: func %p cookie %p)\n",
834 p_ent->comp_cb.function, p_ent->comp_cb.cookie);
835 if (found->comp_cb.function)
836 found->comp_cb.function(p_hwfn, found->comp_cb.cookie, p_data,
837 fw_return_code);
838
839 if (found->comp_mode != QED_SPQ_MODE_EBLOCK)
840 /* EBLOCK is responsible for freeing its own entry */
841 qed_spq_return_entry(p_hwfn, found);
842
843 /* Attempt to post pending requests */
844 spin_lock_bh(&p_spq->lock);
845 rc = qed_spq_pend_post(p_hwfn);
846 spin_unlock_bh(&p_spq->lock);
847
848 return rc;
849 }
850
851 struct qed_consq *qed_consq_alloc(struct qed_hwfn *p_hwfn)
852 {
853 struct qed_consq *p_consq;
854
855 /* Allocate ConsQ struct */
856 p_consq = kzalloc(sizeof(*p_consq), GFP_ATOMIC);
857 if (!p_consq) {
858 DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_consq'\n");
859 return NULL;
860 }
861
862 /* Allocate and initialize EQ chain*/
863 if (qed_chain_alloc(p_hwfn->cdev,
864 QED_CHAIN_USE_TO_PRODUCE,
865 QED_CHAIN_MODE_PBL,
866 QED_CHAIN_PAGE_SIZE / 0x80,
867 0x80,
868 &p_consq->chain)) {
869 DP_NOTICE(p_hwfn, "Failed to allocate consq chain");
870 goto consq_allocate_fail;
871 }
872
873 return p_consq;
874
875 consq_allocate_fail:
876 qed_consq_free(p_hwfn, p_consq);
877 return NULL;
878 }
879
880 void qed_consq_setup(struct qed_hwfn *p_hwfn,
881 struct qed_consq *p_consq)
882 {
883 qed_chain_reset(&p_consq->chain);
884 }
885
886 void qed_consq_free(struct qed_hwfn *p_hwfn,
887 struct qed_consq *p_consq)
888 {
889 if (!p_consq)
890 return;
891 qed_chain_free(p_hwfn->cdev, &p_consq->chain);
892 kfree(p_consq);
893 }
This page took 0.05098 seconds and 6 git commands to generate.