Merge branches 'acpi-ec', 'acpi-video', 'acpi-button' and 'acpi-thermal'
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #ifdef CONFIG_QEDE_VXLAN
28 #include <net/vxlan.h>
29 #endif
30 #ifdef CONFIG_QEDE_GENEVE
31 #include <net/geneve.h>
32 #endif
33 #include <linux/ip.h>
34 #include <net/ipv6.h>
35 #include <net/tcp.h>
36 #include <linux/if_ether.h>
37 #include <linux/if_vlan.h>
38 #include <linux/pkt_sched.h>
39 #include <linux/ethtool.h>
40 #include <linux/in.h>
41 #include <linux/random.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/bitops.h>
44
45 #include "qede.h"
46
47 static char version[] =
48 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
49
50 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_MODULE_VERSION);
53
54 static uint debug;
55 module_param(debug, uint, 0);
56 MODULE_PARM_DESC(debug, " Default debug msglevel");
57
58 static const struct qed_eth_ops *qed_ops;
59
60 #define CHIP_NUM_57980S_40 0x1634
61 #define CHIP_NUM_57980S_10 0x1666
62 #define CHIP_NUM_57980S_MF 0x1636
63 #define CHIP_NUM_57980S_100 0x1644
64 #define CHIP_NUM_57980S_50 0x1654
65 #define CHIP_NUM_57980S_25 0x1656
66 #define CHIP_NUM_57980S_IOV 0x1664
67
68 #ifndef PCI_DEVICE_ID_NX2_57980E
69 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
70 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
71 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
72 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
73 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
74 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
75 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
76 #endif
77
78 enum qede_pci_private {
79 QEDE_PRIVATE_PF,
80 QEDE_PRIVATE_VF
81 };
82
83 static const struct pci_device_id qede_pci_tbl[] = {
84 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
85 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
87 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
88 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
89 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
90 #ifdef CONFIG_QED_SRIOV
91 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
92 #endif
93 { 0 }
94 };
95
96 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
97
98 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
99
100 #define TX_TIMEOUT (5 * HZ)
101
102 static void qede_remove(struct pci_dev *pdev);
103 static int qede_alloc_rx_buffer(struct qede_dev *edev,
104 struct qede_rx_queue *rxq);
105 static void qede_link_update(void *dev, struct qed_link_output *link);
106
107 #ifdef CONFIG_QED_SRIOV
108 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
109 {
110 struct qede_dev *edev = netdev_priv(ndev);
111
112 if (vlan > 4095) {
113 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
114 return -EINVAL;
115 }
116
117 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
118 vlan, vf);
119
120 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
121 }
122
123 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
124 {
125 struct qede_dev *edev = netdev_priv(ndev);
126
127 DP_VERBOSE(edev, QED_MSG_IOV,
128 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
129 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
130
131 if (!is_valid_ether_addr(mac)) {
132 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
133 return -EINVAL;
134 }
135
136 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
137 }
138
139 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
140 {
141 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
142 struct qed_dev_info *qed_info = &edev->dev_info.common;
143 int rc;
144
145 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
146
147 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
148
149 /* Enable/Disable Tx switching for PF */
150 if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
151 qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
152 struct qed_update_vport_params params;
153
154 memset(&params, 0, sizeof(params));
155 params.vport_id = 0;
156 params.update_tx_switching_flg = 1;
157 params.tx_switching_flg = num_vfs_param ? 1 : 0;
158 edev->ops->vport_update(edev->cdev, &params);
159 }
160
161 return rc;
162 }
163 #endif
164
165 static struct pci_driver qede_pci_driver = {
166 .name = "qede",
167 .id_table = qede_pci_tbl,
168 .probe = qede_probe,
169 .remove = qede_remove,
170 #ifdef CONFIG_QED_SRIOV
171 .sriov_configure = qede_sriov_configure,
172 #endif
173 };
174
175 static void qede_force_mac(void *dev, u8 *mac)
176 {
177 struct qede_dev *edev = dev;
178
179 ether_addr_copy(edev->ndev->dev_addr, mac);
180 ether_addr_copy(edev->primary_mac, mac);
181 }
182
183 static struct qed_eth_cb_ops qede_ll_ops = {
184 {
185 .link_update = qede_link_update,
186 },
187 .force_mac = qede_force_mac,
188 };
189
190 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
191 void *ptr)
192 {
193 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
194 struct ethtool_drvinfo drvinfo;
195 struct qede_dev *edev;
196
197 /* Currently only support name change */
198 if (event != NETDEV_CHANGENAME)
199 goto done;
200
201 /* Check whether this is a qede device */
202 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
203 goto done;
204
205 memset(&drvinfo, 0, sizeof(drvinfo));
206 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
207 if (strcmp(drvinfo.driver, "qede"))
208 goto done;
209 edev = netdev_priv(ndev);
210
211 /* Notify qed of the name change */
212 if (!edev->ops || !edev->ops->common)
213 goto done;
214 edev->ops->common->set_id(edev->cdev, edev->ndev->name,
215 "qede");
216
217 done:
218 return NOTIFY_DONE;
219 }
220
221 static struct notifier_block qede_netdev_notifier = {
222 .notifier_call = qede_netdev_event,
223 };
224
225 static
226 int __init qede_init(void)
227 {
228 int ret;
229
230 pr_notice("qede_init: %s\n", version);
231
232 qed_ops = qed_get_eth_ops();
233 if (!qed_ops) {
234 pr_notice("Failed to get qed ethtool operations\n");
235 return -EINVAL;
236 }
237
238 /* Must register notifier before pci ops, since we might miss
239 * interface rename after pci probe and netdev registeration.
240 */
241 ret = register_netdevice_notifier(&qede_netdev_notifier);
242 if (ret) {
243 pr_notice("Failed to register netdevice_notifier\n");
244 qed_put_eth_ops();
245 return -EINVAL;
246 }
247
248 ret = pci_register_driver(&qede_pci_driver);
249 if (ret) {
250 pr_notice("Failed to register driver\n");
251 unregister_netdevice_notifier(&qede_netdev_notifier);
252 qed_put_eth_ops();
253 return -EINVAL;
254 }
255
256 return 0;
257 }
258
259 static void __exit qede_cleanup(void)
260 {
261 pr_notice("qede_cleanup called\n");
262
263 unregister_netdevice_notifier(&qede_netdev_notifier);
264 pci_unregister_driver(&qede_pci_driver);
265 qed_put_eth_ops();
266 }
267
268 module_init(qede_init);
269 module_exit(qede_cleanup);
270
271 /* -------------------------------------------------------------------------
272 * START OF FAST-PATH
273 * -------------------------------------------------------------------------
274 */
275
276 /* Unmap the data and free skb */
277 static int qede_free_tx_pkt(struct qede_dev *edev,
278 struct qede_tx_queue *txq,
279 int *len)
280 {
281 u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
282 struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
283 struct eth_tx_1st_bd *first_bd;
284 struct eth_tx_bd *tx_data_bd;
285 int bds_consumed = 0;
286 int nbds;
287 bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
288 int i, split_bd_len = 0;
289
290 if (unlikely(!skb)) {
291 DP_ERR(edev,
292 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
293 idx, txq->sw_tx_cons, txq->sw_tx_prod);
294 return -1;
295 }
296
297 *len = skb->len;
298
299 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
300
301 bds_consumed++;
302
303 nbds = first_bd->data.nbds;
304
305 if (data_split) {
306 struct eth_tx_bd *split = (struct eth_tx_bd *)
307 qed_chain_consume(&txq->tx_pbl);
308 split_bd_len = BD_UNMAP_LEN(split);
309 bds_consumed++;
310 }
311 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
312 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
313
314 /* Unmap the data of the skb frags */
315 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
316 tx_data_bd = (struct eth_tx_bd *)
317 qed_chain_consume(&txq->tx_pbl);
318 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
319 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
320 }
321
322 while (bds_consumed++ < nbds)
323 qed_chain_consume(&txq->tx_pbl);
324
325 /* Free skb */
326 dev_kfree_skb_any(skb);
327 txq->sw_tx_ring[idx].skb = NULL;
328 txq->sw_tx_ring[idx].flags = 0;
329
330 return 0;
331 }
332
333 /* Unmap the data and free skb when mapping failed during start_xmit */
334 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
335 struct qede_tx_queue *txq,
336 struct eth_tx_1st_bd *first_bd,
337 int nbd,
338 bool data_split)
339 {
340 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
341 struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
342 struct eth_tx_bd *tx_data_bd;
343 int i, split_bd_len = 0;
344
345 /* Return prod to its position before this skb was handled */
346 qed_chain_set_prod(&txq->tx_pbl,
347 le16_to_cpu(txq->tx_db.data.bd_prod),
348 first_bd);
349
350 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
351
352 if (data_split) {
353 struct eth_tx_bd *split = (struct eth_tx_bd *)
354 qed_chain_produce(&txq->tx_pbl);
355 split_bd_len = BD_UNMAP_LEN(split);
356 nbd--;
357 }
358
359 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
360 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
361
362 /* Unmap the data of the skb frags */
363 for (i = 0; i < nbd; i++) {
364 tx_data_bd = (struct eth_tx_bd *)
365 qed_chain_produce(&txq->tx_pbl);
366 if (tx_data_bd->nbytes)
367 dma_unmap_page(&edev->pdev->dev,
368 BD_UNMAP_ADDR(tx_data_bd),
369 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
370 }
371
372 /* Return again prod to its position before this skb was handled */
373 qed_chain_set_prod(&txq->tx_pbl,
374 le16_to_cpu(txq->tx_db.data.bd_prod),
375 first_bd);
376
377 /* Free skb */
378 dev_kfree_skb_any(skb);
379 txq->sw_tx_ring[idx].skb = NULL;
380 txq->sw_tx_ring[idx].flags = 0;
381 }
382
383 static u32 qede_xmit_type(struct qede_dev *edev,
384 struct sk_buff *skb,
385 int *ipv6_ext)
386 {
387 u32 rc = XMIT_L4_CSUM;
388 __be16 l3_proto;
389
390 if (skb->ip_summed != CHECKSUM_PARTIAL)
391 return XMIT_PLAIN;
392
393 l3_proto = vlan_get_protocol(skb);
394 if (l3_proto == htons(ETH_P_IPV6) &&
395 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
396 *ipv6_ext = 1;
397
398 if (skb->encapsulation)
399 rc |= XMIT_ENC;
400
401 if (skb_is_gso(skb))
402 rc |= XMIT_LSO;
403
404 return rc;
405 }
406
407 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
408 struct eth_tx_2nd_bd *second_bd,
409 struct eth_tx_3rd_bd *third_bd)
410 {
411 u8 l4_proto;
412 u16 bd2_bits1 = 0, bd2_bits2 = 0;
413
414 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
415
416 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
417 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
418 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
419
420 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
421 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
422
423 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
424 l4_proto = ipv6_hdr(skb)->nexthdr;
425 else
426 l4_proto = ip_hdr(skb)->protocol;
427
428 if (l4_proto == IPPROTO_UDP)
429 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
430
431 if (third_bd)
432 third_bd->data.bitfields |=
433 cpu_to_le16(((tcp_hdrlen(skb) / 4) &
434 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
435 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
436
437 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
438 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
439 }
440
441 static int map_frag_to_bd(struct qede_dev *edev,
442 skb_frag_t *frag,
443 struct eth_tx_bd *bd)
444 {
445 dma_addr_t mapping;
446
447 /* Map skb non-linear frag data for DMA */
448 mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
449 skb_frag_size(frag),
450 DMA_TO_DEVICE);
451 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
452 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
453 return -ENOMEM;
454 }
455
456 /* Setup the data pointer of the frag data */
457 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
458
459 return 0;
460 }
461
462 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
463 {
464 if (is_encap_pkt)
465 return (skb_inner_transport_header(skb) +
466 inner_tcp_hdrlen(skb) - skb->data);
467 else
468 return (skb_transport_header(skb) +
469 tcp_hdrlen(skb) - skb->data);
470 }
471
472 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
473 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
474 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
475 u8 xmit_type)
476 {
477 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
478
479 if (xmit_type & XMIT_LSO) {
480 int hlen;
481
482 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
483
484 /* linear payload would require its own BD */
485 if (skb_headlen(skb) > hlen)
486 allowed_frags--;
487 }
488
489 return (skb_shinfo(skb)->nr_frags > allowed_frags);
490 }
491 #endif
492
493 /* Main transmit function */
494 static
495 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
496 struct net_device *ndev)
497 {
498 struct qede_dev *edev = netdev_priv(ndev);
499 struct netdev_queue *netdev_txq;
500 struct qede_tx_queue *txq;
501 struct eth_tx_1st_bd *first_bd;
502 struct eth_tx_2nd_bd *second_bd = NULL;
503 struct eth_tx_3rd_bd *third_bd = NULL;
504 struct eth_tx_bd *tx_data_bd = NULL;
505 u16 txq_index;
506 u8 nbd = 0;
507 dma_addr_t mapping;
508 int rc, frag_idx = 0, ipv6_ext = 0;
509 u8 xmit_type;
510 u16 idx;
511 u16 hlen;
512 bool data_split = false;
513
514 /* Get tx-queue context and netdev index */
515 txq_index = skb_get_queue_mapping(skb);
516 WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
517 txq = QEDE_TX_QUEUE(edev, txq_index);
518 netdev_txq = netdev_get_tx_queue(ndev, txq_index);
519
520 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
521 (MAX_SKB_FRAGS + 1));
522
523 xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
524
525 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
526 if (qede_pkt_req_lin(edev, skb, xmit_type)) {
527 if (skb_linearize(skb)) {
528 DP_NOTICE(edev,
529 "SKB linearization failed - silently dropping this SKB\n");
530 dev_kfree_skb_any(skb);
531 return NETDEV_TX_OK;
532 }
533 }
534 #endif
535
536 /* Fill the entry in the SW ring and the BDs in the FW ring */
537 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
538 txq->sw_tx_ring[idx].skb = skb;
539 first_bd = (struct eth_tx_1st_bd *)
540 qed_chain_produce(&txq->tx_pbl);
541 memset(first_bd, 0, sizeof(*first_bd));
542 first_bd->data.bd_flags.bitfields =
543 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
544
545 /* Map skb linear data for DMA and set in the first BD */
546 mapping = dma_map_single(&edev->pdev->dev, skb->data,
547 skb_headlen(skb), DMA_TO_DEVICE);
548 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
549 DP_NOTICE(edev, "SKB mapping failed\n");
550 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
551 return NETDEV_TX_OK;
552 }
553 nbd++;
554 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
555
556 /* In case there is IPv6 with extension headers or LSO we need 2nd and
557 * 3rd BDs.
558 */
559 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
560 second_bd = (struct eth_tx_2nd_bd *)
561 qed_chain_produce(&txq->tx_pbl);
562 memset(second_bd, 0, sizeof(*second_bd));
563
564 nbd++;
565 third_bd = (struct eth_tx_3rd_bd *)
566 qed_chain_produce(&txq->tx_pbl);
567 memset(third_bd, 0, sizeof(*third_bd));
568
569 nbd++;
570 /* We need to fill in additional data in second_bd... */
571 tx_data_bd = (struct eth_tx_bd *)second_bd;
572 }
573
574 if (skb_vlan_tag_present(skb)) {
575 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
576 first_bd->data.bd_flags.bitfields |=
577 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
578 }
579
580 /* Fill the parsing flags & params according to the requested offload */
581 if (xmit_type & XMIT_L4_CSUM) {
582 u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT;
583
584 /* We don't re-calculate IP checksum as it is already done by
585 * the upper stack
586 */
587 first_bd->data.bd_flags.bitfields |=
588 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
589
590 if (xmit_type & XMIT_ENC) {
591 first_bd->data.bd_flags.bitfields |=
592 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
593 } else {
594 /* In cases when OS doesn't indicate for inner offloads
595 * when packet is tunnelled, we need to override the HW
596 * tunnel configuration so that packets are treated as
597 * regular non tunnelled packets and no inner offloads
598 * are done by the hardware.
599 */
600 first_bd->data.bitfields |= cpu_to_le16(temp);
601 }
602
603 /* If the packet is IPv6 with extension header, indicate that
604 * to FW and pass few params, since the device cracker doesn't
605 * support parsing IPv6 with extension header/s.
606 */
607 if (unlikely(ipv6_ext))
608 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
609 }
610
611 if (xmit_type & XMIT_LSO) {
612 first_bd->data.bd_flags.bitfields |=
613 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
614 third_bd->data.lso_mss =
615 cpu_to_le16(skb_shinfo(skb)->gso_size);
616
617 if (unlikely(xmit_type & XMIT_ENC)) {
618 first_bd->data.bd_flags.bitfields |=
619 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
620 hlen = qede_get_skb_hlen(skb, true);
621 } else {
622 first_bd->data.bd_flags.bitfields |=
623 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
624 hlen = qede_get_skb_hlen(skb, false);
625 }
626
627 /* @@@TBD - if will not be removed need to check */
628 third_bd->data.bitfields |=
629 cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
630
631 /* Make life easier for FW guys who can't deal with header and
632 * data on same BD. If we need to split, use the second bd...
633 */
634 if (unlikely(skb_headlen(skb) > hlen)) {
635 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
636 "TSO split header size is %d (%x:%x)\n",
637 first_bd->nbytes, first_bd->addr.hi,
638 first_bd->addr.lo);
639
640 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
641 le32_to_cpu(first_bd->addr.lo)) +
642 hlen;
643
644 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
645 le16_to_cpu(first_bd->nbytes) -
646 hlen);
647
648 /* this marks the BD as one that has no
649 * individual mapping
650 */
651 txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
652
653 first_bd->nbytes = cpu_to_le16(hlen);
654
655 tx_data_bd = (struct eth_tx_bd *)third_bd;
656 data_split = true;
657 }
658 }
659
660 /* Handle fragmented skb */
661 /* special handle for frags inside 2nd and 3rd bds.. */
662 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
663 rc = map_frag_to_bd(edev,
664 &skb_shinfo(skb)->frags[frag_idx],
665 tx_data_bd);
666 if (rc) {
667 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
668 data_split);
669 return NETDEV_TX_OK;
670 }
671
672 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
673 tx_data_bd = (struct eth_tx_bd *)third_bd;
674 else
675 tx_data_bd = NULL;
676
677 frag_idx++;
678 }
679
680 /* map last frags into 4th, 5th .... */
681 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
682 tx_data_bd = (struct eth_tx_bd *)
683 qed_chain_produce(&txq->tx_pbl);
684
685 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
686
687 rc = map_frag_to_bd(edev,
688 &skb_shinfo(skb)->frags[frag_idx],
689 tx_data_bd);
690 if (rc) {
691 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
692 data_split);
693 return NETDEV_TX_OK;
694 }
695 }
696
697 /* update the first BD with the actual num BDs */
698 first_bd->data.nbds = nbd;
699
700 netdev_tx_sent_queue(netdev_txq, skb->len);
701
702 skb_tx_timestamp(skb);
703
704 /* Advance packet producer only before sending the packet since mapping
705 * of pages may fail.
706 */
707 txq->sw_tx_prod++;
708
709 /* 'next page' entries are counted in the producer value */
710 txq->tx_db.data.bd_prod =
711 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
712
713 /* wmb makes sure that the BDs data is updated before updating the
714 * producer, otherwise FW may read old data from the BDs.
715 */
716 wmb();
717 barrier();
718 writel(txq->tx_db.raw, txq->doorbell_addr);
719
720 /* mmiowb is needed to synchronize doorbell writes from more than one
721 * processor. It guarantees that the write arrives to the device before
722 * the queue lock is released and another start_xmit is called (possibly
723 * on another CPU). Without this barrier, the next doorbell can bypass
724 * this doorbell. This is applicable to IA64/Altix systems.
725 */
726 mmiowb();
727
728 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
729 < (MAX_SKB_FRAGS + 1))) {
730 netif_tx_stop_queue(netdev_txq);
731 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
732 "Stop queue was called\n");
733 /* paired memory barrier is in qede_tx_int(), we have to keep
734 * ordering of set_bit() in netif_tx_stop_queue() and read of
735 * fp->bd_tx_cons
736 */
737 smp_mb();
738
739 if (qed_chain_get_elem_left(&txq->tx_pbl)
740 >= (MAX_SKB_FRAGS + 1) &&
741 (edev->state == QEDE_STATE_OPEN)) {
742 netif_tx_wake_queue(netdev_txq);
743 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
744 "Wake queue was called\n");
745 }
746 }
747
748 return NETDEV_TX_OK;
749 }
750
751 int qede_txq_has_work(struct qede_tx_queue *txq)
752 {
753 u16 hw_bd_cons;
754
755 /* Tell compiler that consumer and producer can change */
756 barrier();
757 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
758 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
759 return 0;
760
761 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
762 }
763
764 static int qede_tx_int(struct qede_dev *edev,
765 struct qede_tx_queue *txq)
766 {
767 struct netdev_queue *netdev_txq;
768 u16 hw_bd_cons;
769 unsigned int pkts_compl = 0, bytes_compl = 0;
770 int rc;
771
772 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
773
774 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
775 barrier();
776
777 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
778 int len = 0;
779
780 rc = qede_free_tx_pkt(edev, txq, &len);
781 if (rc) {
782 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
783 hw_bd_cons,
784 qed_chain_get_cons_idx(&txq->tx_pbl));
785 break;
786 }
787
788 bytes_compl += len;
789 pkts_compl++;
790 txq->sw_tx_cons++;
791 }
792
793 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
794
795 /* Need to make the tx_bd_cons update visible to start_xmit()
796 * before checking for netif_tx_queue_stopped(). Without the
797 * memory barrier, there is a small possibility that
798 * start_xmit() will miss it and cause the queue to be stopped
799 * forever.
800 * On the other hand we need an rmb() here to ensure the proper
801 * ordering of bit testing in the following
802 * netif_tx_queue_stopped(txq) call.
803 */
804 smp_mb();
805
806 if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
807 /* Taking tx_lock is needed to prevent reenabling the queue
808 * while it's empty. This could have happen if rx_action() gets
809 * suspended in qede_tx_int() after the condition before
810 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
811 *
812 * stops the queue->sees fresh tx_bd_cons->releases the queue->
813 * sends some packets consuming the whole queue again->
814 * stops the queue
815 */
816
817 __netif_tx_lock(netdev_txq, smp_processor_id());
818
819 if ((netif_tx_queue_stopped(netdev_txq)) &&
820 (edev->state == QEDE_STATE_OPEN) &&
821 (qed_chain_get_elem_left(&txq->tx_pbl)
822 >= (MAX_SKB_FRAGS + 1))) {
823 netif_tx_wake_queue(netdev_txq);
824 DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
825 "Wake queue was called\n");
826 }
827
828 __netif_tx_unlock(netdev_txq);
829 }
830
831 return 0;
832 }
833
834 bool qede_has_rx_work(struct qede_rx_queue *rxq)
835 {
836 u16 hw_comp_cons, sw_comp_cons;
837
838 /* Tell compiler that status block fields can change */
839 barrier();
840
841 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
842 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
843
844 return hw_comp_cons != sw_comp_cons;
845 }
846
847 static bool qede_has_tx_work(struct qede_fastpath *fp)
848 {
849 u8 tc;
850
851 for (tc = 0; tc < fp->edev->num_tc; tc++)
852 if (qede_txq_has_work(&fp->txqs[tc]))
853 return true;
854 return false;
855 }
856
857 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
858 {
859 qed_chain_consume(&rxq->rx_bd_ring);
860 rxq->sw_rx_cons++;
861 }
862
863 /* This function reuses the buffer(from an offset) from
864 * consumer index to producer index in the bd ring
865 */
866 static inline void qede_reuse_page(struct qede_dev *edev,
867 struct qede_rx_queue *rxq,
868 struct sw_rx_data *curr_cons)
869 {
870 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
871 struct sw_rx_data *curr_prod;
872 dma_addr_t new_mapping;
873
874 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
875 *curr_prod = *curr_cons;
876
877 new_mapping = curr_prod->mapping + curr_prod->page_offset;
878
879 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
880 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
881
882 rxq->sw_rx_prod++;
883 curr_cons->data = NULL;
884 }
885
886 /* In case of allocation failures reuse buffers
887 * from consumer index to produce buffers for firmware
888 */
889 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
890 struct qede_dev *edev, u8 count)
891 {
892 struct sw_rx_data *curr_cons;
893
894 for (; count > 0; count--) {
895 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
896 qede_reuse_page(edev, rxq, curr_cons);
897 qede_rx_bd_ring_consume(rxq);
898 }
899 }
900
901 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
902 struct qede_rx_queue *rxq,
903 struct sw_rx_data *curr_cons)
904 {
905 /* Move to the next segment in the page */
906 curr_cons->page_offset += rxq->rx_buf_seg_size;
907
908 if (curr_cons->page_offset == PAGE_SIZE) {
909 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
910 /* Since we failed to allocate new buffer
911 * current buffer can be used again.
912 */
913 curr_cons->page_offset -= rxq->rx_buf_seg_size;
914
915 return -ENOMEM;
916 }
917
918 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
919 PAGE_SIZE, DMA_FROM_DEVICE);
920 } else {
921 /* Increment refcount of the page as we don't want
922 * network stack to take the ownership of the page
923 * which can be recycled multiple times by the driver.
924 */
925 page_ref_inc(curr_cons->data);
926 qede_reuse_page(edev, rxq, curr_cons);
927 }
928
929 return 0;
930 }
931
932 static inline void qede_update_rx_prod(struct qede_dev *edev,
933 struct qede_rx_queue *rxq)
934 {
935 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
936 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
937 struct eth_rx_prod_data rx_prods = {0};
938
939 /* Update producers */
940 rx_prods.bd_prod = cpu_to_le16(bd_prod);
941 rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
942
943 /* Make sure that the BD and SGE data is updated before updating the
944 * producers since FW might read the BD/SGE right after the producer
945 * is updated.
946 */
947 wmb();
948
949 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
950 (u32 *)&rx_prods);
951
952 /* mmiowb is needed to synchronize doorbell writes from more than one
953 * processor. It guarantees that the write arrives to the device before
954 * the napi lock is released and another qede_poll is called (possibly
955 * on another CPU). Without this barrier, the next doorbell can bypass
956 * this doorbell. This is applicable to IA64/Altix systems.
957 */
958 mmiowb();
959 }
960
961 static u32 qede_get_rxhash(struct qede_dev *edev,
962 u8 bitfields,
963 __le32 rss_hash,
964 enum pkt_hash_types *rxhash_type)
965 {
966 enum rss_hash_type htype;
967
968 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
969
970 if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
971 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
972 (htype == RSS_HASH_TYPE_IPV6)) ?
973 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
974 return le32_to_cpu(rss_hash);
975 }
976 *rxhash_type = PKT_HASH_TYPE_NONE;
977 return 0;
978 }
979
980 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
981 {
982 skb_checksum_none_assert(skb);
983
984 if (csum_flag & QEDE_CSUM_UNNECESSARY)
985 skb->ip_summed = CHECKSUM_UNNECESSARY;
986
987 if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
988 skb->csum_level = 1;
989 }
990
991 static inline void qede_skb_receive(struct qede_dev *edev,
992 struct qede_fastpath *fp,
993 struct sk_buff *skb,
994 u16 vlan_tag)
995 {
996 if (vlan_tag)
997 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
998 vlan_tag);
999
1000 napi_gro_receive(&fp->napi, skb);
1001 }
1002
1003 static void qede_set_gro_params(struct qede_dev *edev,
1004 struct sk_buff *skb,
1005 struct eth_fast_path_rx_tpa_start_cqe *cqe)
1006 {
1007 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1008
1009 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1010 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1011 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1012 else
1013 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1014
1015 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1016 cqe->header_len;
1017 }
1018
1019 static int qede_fill_frag_skb(struct qede_dev *edev,
1020 struct qede_rx_queue *rxq,
1021 u8 tpa_agg_index,
1022 u16 len_on_bd)
1023 {
1024 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1025 NUM_RX_BDS_MAX];
1026 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1027 struct sk_buff *skb = tpa_info->skb;
1028
1029 if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1030 goto out;
1031
1032 /* Add one frag and update the appropriate fields in the skb */
1033 skb_fill_page_desc(skb, tpa_info->frag_id++,
1034 current_bd->data, current_bd->page_offset,
1035 len_on_bd);
1036
1037 if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1038 /* Incr page ref count to reuse on allocation failure
1039 * so that it doesn't get freed while freeing SKB.
1040 */
1041 page_ref_inc(current_bd->data);
1042 goto out;
1043 }
1044
1045 qed_chain_consume(&rxq->rx_bd_ring);
1046 rxq->sw_rx_cons++;
1047
1048 skb->data_len += len_on_bd;
1049 skb->truesize += rxq->rx_buf_seg_size;
1050 skb->len += len_on_bd;
1051
1052 return 0;
1053
1054 out:
1055 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1056 qede_recycle_rx_bd_ring(rxq, edev, 1);
1057 return -ENOMEM;
1058 }
1059
1060 static void qede_tpa_start(struct qede_dev *edev,
1061 struct qede_rx_queue *rxq,
1062 struct eth_fast_path_rx_tpa_start_cqe *cqe)
1063 {
1064 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1065 struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1066 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1067 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1068 dma_addr_t mapping = tpa_info->replace_buf_mapping;
1069 struct sw_rx_data *sw_rx_data_cons;
1070 struct sw_rx_data *sw_rx_data_prod;
1071 enum pkt_hash_types rxhash_type;
1072 u32 rxhash;
1073
1074 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1075 sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1076
1077 /* Use pre-allocated replacement buffer - we can't release the agg.
1078 * start until its over and we don't want to risk allocation failing
1079 * here, so re-allocate when aggregation will be over.
1080 */
1081 sw_rx_data_prod->mapping = replace_buf->mapping;
1082
1083 sw_rx_data_prod->data = replace_buf->data;
1084 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1085 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1086 sw_rx_data_prod->page_offset = replace_buf->page_offset;
1087
1088 rxq->sw_rx_prod++;
1089
1090 /* move partial skb from cons to pool (don't unmap yet)
1091 * save mapping, incase we drop the packet later on.
1092 */
1093 tpa_info->start_buf = *sw_rx_data_cons;
1094 mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1095 le32_to_cpu(rx_bd_cons->addr.lo));
1096
1097 tpa_info->start_buf_mapping = mapping;
1098 rxq->sw_rx_cons++;
1099
1100 /* set tpa state to start only if we are able to allocate skb
1101 * for this aggregation, otherwise mark as error and aggregation will
1102 * be dropped
1103 */
1104 tpa_info->skb = netdev_alloc_skb(edev->ndev,
1105 le16_to_cpu(cqe->len_on_first_bd));
1106 if (unlikely(!tpa_info->skb)) {
1107 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1108 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1109 goto cons_buf;
1110 }
1111
1112 skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1113 memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1114
1115 /* Start filling in the aggregation info */
1116 tpa_info->frag_id = 0;
1117 tpa_info->agg_state = QEDE_AGG_STATE_START;
1118
1119 rxhash = qede_get_rxhash(edev, cqe->bitfields,
1120 cqe->rss_hash, &rxhash_type);
1121 skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1122 if ((le16_to_cpu(cqe->pars_flags.flags) >>
1123 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1124 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1125 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1126 else
1127 tpa_info->vlan_tag = 0;
1128
1129 /* This is needed in order to enable forwarding support */
1130 qede_set_gro_params(edev, tpa_info->skb, cqe);
1131
1132 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1133 if (likely(cqe->ext_bd_len_list[0]))
1134 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1135 le16_to_cpu(cqe->ext_bd_len_list[0]));
1136
1137 if (unlikely(cqe->ext_bd_len_list[1])) {
1138 DP_ERR(edev,
1139 "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1140 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1141 }
1142 }
1143
1144 #ifdef CONFIG_INET
1145 static void qede_gro_ip_csum(struct sk_buff *skb)
1146 {
1147 const struct iphdr *iph = ip_hdr(skb);
1148 struct tcphdr *th;
1149
1150 skb_set_transport_header(skb, sizeof(struct iphdr));
1151 th = tcp_hdr(skb);
1152
1153 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1154 iph->saddr, iph->daddr, 0);
1155
1156 tcp_gro_complete(skb);
1157 }
1158
1159 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1160 {
1161 struct ipv6hdr *iph = ipv6_hdr(skb);
1162 struct tcphdr *th;
1163
1164 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1165 th = tcp_hdr(skb);
1166
1167 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1168 &iph->saddr, &iph->daddr, 0);
1169 tcp_gro_complete(skb);
1170 }
1171 #endif
1172
1173 static void qede_gro_receive(struct qede_dev *edev,
1174 struct qede_fastpath *fp,
1175 struct sk_buff *skb,
1176 u16 vlan_tag)
1177 {
1178 /* FW can send a single MTU sized packet from gro flow
1179 * due to aggregation timeout/last segment etc. which
1180 * is not expected to be a gro packet. If a skb has zero
1181 * frags then simply push it in the stack as non gso skb.
1182 */
1183 if (unlikely(!skb->data_len)) {
1184 skb_shinfo(skb)->gso_type = 0;
1185 skb_shinfo(skb)->gso_size = 0;
1186 goto send_skb;
1187 }
1188
1189 #ifdef CONFIG_INET
1190 if (skb_shinfo(skb)->gso_size) {
1191 skb_set_network_header(skb, 0);
1192
1193 switch (skb->protocol) {
1194 case htons(ETH_P_IP):
1195 qede_gro_ip_csum(skb);
1196 break;
1197 case htons(ETH_P_IPV6):
1198 qede_gro_ipv6_csum(skb);
1199 break;
1200 default:
1201 DP_ERR(edev,
1202 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1203 ntohs(skb->protocol));
1204 }
1205 }
1206 #endif
1207
1208 send_skb:
1209 skb_record_rx_queue(skb, fp->rss_id);
1210 qede_skb_receive(edev, fp, skb, vlan_tag);
1211 }
1212
1213 static inline void qede_tpa_cont(struct qede_dev *edev,
1214 struct qede_rx_queue *rxq,
1215 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1216 {
1217 int i;
1218
1219 for (i = 0; cqe->len_list[i]; i++)
1220 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1221 le16_to_cpu(cqe->len_list[i]));
1222
1223 if (unlikely(i > 1))
1224 DP_ERR(edev,
1225 "Strange - TPA cont with more than a single len_list entry\n");
1226 }
1227
1228 static void qede_tpa_end(struct qede_dev *edev,
1229 struct qede_fastpath *fp,
1230 struct eth_fast_path_rx_tpa_end_cqe *cqe)
1231 {
1232 struct qede_rx_queue *rxq = fp->rxq;
1233 struct qede_agg_info *tpa_info;
1234 struct sk_buff *skb;
1235 int i;
1236
1237 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1238 skb = tpa_info->skb;
1239
1240 for (i = 0; cqe->len_list[i]; i++)
1241 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1242 le16_to_cpu(cqe->len_list[i]));
1243 if (unlikely(i > 1))
1244 DP_ERR(edev,
1245 "Strange - TPA emd with more than a single len_list entry\n");
1246
1247 if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1248 goto err;
1249
1250 /* Sanity */
1251 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1252 DP_ERR(edev,
1253 "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1254 cqe->num_of_bds, tpa_info->frag_id);
1255 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1256 DP_ERR(edev,
1257 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1258 le16_to_cpu(cqe->total_packet_len), skb->len);
1259
1260 memcpy(skb->data,
1261 page_address(tpa_info->start_buf.data) +
1262 tpa_info->start_cqe.placement_offset +
1263 tpa_info->start_buf.page_offset,
1264 le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1265
1266 /* Recycle [mapped] start buffer for the next replacement */
1267 tpa_info->replace_buf = tpa_info->start_buf;
1268 tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1269
1270 /* Finalize the SKB */
1271 skb->protocol = eth_type_trans(skb, edev->ndev);
1272 skb->ip_summed = CHECKSUM_UNNECESSARY;
1273
1274 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1275 * to skb_shinfo(skb)->gso_segs
1276 */
1277 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1278
1279 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1280
1281 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1282
1283 return;
1284 err:
1285 /* The BD starting the aggregation is still mapped; Re-use it for
1286 * future aggregations [as replacement buffer]
1287 */
1288 memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1289 sizeof(struct sw_rx_data));
1290 tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1291 tpa_info->start_buf.data = NULL;
1292 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1293 dev_kfree_skb_any(tpa_info->skb);
1294 tpa_info->skb = NULL;
1295 }
1296
1297 static bool qede_tunn_exist(u16 flag)
1298 {
1299 return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1300 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1301 }
1302
1303 static u8 qede_check_tunn_csum(u16 flag)
1304 {
1305 u16 csum_flag = 0;
1306 u8 tcsum = 0;
1307
1308 if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1309 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1310 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1311 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1312
1313 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1314 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1315 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1316 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1317 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1318 }
1319
1320 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1321 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1322 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1323 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1324
1325 if (csum_flag & flag)
1326 return QEDE_CSUM_ERROR;
1327
1328 return QEDE_CSUM_UNNECESSARY | tcsum;
1329 }
1330
1331 static u8 qede_check_notunn_csum(u16 flag)
1332 {
1333 u16 csum_flag = 0;
1334 u8 csum = 0;
1335
1336 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1337 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1338 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1339 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1340 csum = QEDE_CSUM_UNNECESSARY;
1341 }
1342
1343 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1344 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1345
1346 if (csum_flag & flag)
1347 return QEDE_CSUM_ERROR;
1348
1349 return csum;
1350 }
1351
1352 static u8 qede_check_csum(u16 flag)
1353 {
1354 if (!qede_tunn_exist(flag))
1355 return qede_check_notunn_csum(flag);
1356 else
1357 return qede_check_tunn_csum(flag);
1358 }
1359
1360 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1361 {
1362 struct qede_dev *edev = fp->edev;
1363 struct qede_rx_queue *rxq = fp->rxq;
1364
1365 u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1366 int rx_pkt = 0;
1367 u8 csum_flag;
1368
1369 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1370 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1371
1372 /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1373 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1374 * read before it is written by FW, then FW writes CQE and SB, and then
1375 * the CPU reads the hw_comp_cons, it will use an old CQE.
1376 */
1377 rmb();
1378
1379 /* Loop to complete all indicated BDs */
1380 while (sw_comp_cons != hw_comp_cons) {
1381 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1382 enum pkt_hash_types rxhash_type;
1383 enum eth_rx_cqe_type cqe_type;
1384 struct sw_rx_data *sw_rx_data;
1385 union eth_rx_cqe *cqe;
1386 struct sk_buff *skb;
1387 struct page *data;
1388 __le16 flags;
1389 u16 len, pad;
1390 u32 rx_hash;
1391
1392 /* Get the CQE from the completion ring */
1393 cqe = (union eth_rx_cqe *)
1394 qed_chain_consume(&rxq->rx_comp_ring);
1395 cqe_type = cqe->fast_path_regular.type;
1396
1397 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1398 edev->ops->eth_cqe_completion(
1399 edev->cdev, fp->rss_id,
1400 (struct eth_slow_path_rx_cqe *)cqe);
1401 goto next_cqe;
1402 }
1403
1404 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1405 switch (cqe_type) {
1406 case ETH_RX_CQE_TYPE_TPA_START:
1407 qede_tpa_start(edev, rxq,
1408 &cqe->fast_path_tpa_start);
1409 goto next_cqe;
1410 case ETH_RX_CQE_TYPE_TPA_CONT:
1411 qede_tpa_cont(edev, rxq,
1412 &cqe->fast_path_tpa_cont);
1413 goto next_cqe;
1414 case ETH_RX_CQE_TYPE_TPA_END:
1415 qede_tpa_end(edev, fp,
1416 &cqe->fast_path_tpa_end);
1417 goto next_rx_only;
1418 default:
1419 break;
1420 }
1421 }
1422
1423 /* Get the data from the SW ring */
1424 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1425 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1426 data = sw_rx_data->data;
1427
1428 fp_cqe = &cqe->fast_path_regular;
1429 len = le16_to_cpu(fp_cqe->len_on_first_bd);
1430 pad = fp_cqe->placement_offset;
1431 flags = cqe->fast_path_regular.pars_flags.flags;
1432
1433 /* If this is an error packet then drop it */
1434 parse_flag = le16_to_cpu(flags);
1435
1436 csum_flag = qede_check_csum(parse_flag);
1437 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1438 DP_NOTICE(edev,
1439 "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1440 sw_comp_cons, parse_flag);
1441 rxq->rx_hw_errors++;
1442 qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1443 goto next_cqe;
1444 }
1445
1446 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1447 if (unlikely(!skb)) {
1448 DP_NOTICE(edev,
1449 "Build_skb failed, dropping incoming packet\n");
1450 qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1451 rxq->rx_alloc_errors++;
1452 goto next_cqe;
1453 }
1454
1455 /* Copy data into SKB */
1456 if (len + pad <= QEDE_RX_HDR_SIZE) {
1457 memcpy(skb_put(skb, len),
1458 page_address(data) + pad +
1459 sw_rx_data->page_offset, len);
1460 qede_reuse_page(edev, rxq, sw_rx_data);
1461 } else {
1462 struct skb_frag_struct *frag;
1463 unsigned int pull_len;
1464 unsigned char *va;
1465
1466 frag = &skb_shinfo(skb)->frags[0];
1467
1468 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1469 pad + sw_rx_data->page_offset,
1470 len, rxq->rx_buf_seg_size);
1471
1472 va = skb_frag_address(frag);
1473 pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1474
1475 /* Align the pull_len to optimize memcpy */
1476 memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1477
1478 skb_frag_size_sub(frag, pull_len);
1479 frag->page_offset += pull_len;
1480 skb->data_len -= pull_len;
1481 skb->tail += pull_len;
1482
1483 if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1484 sw_rx_data))) {
1485 DP_ERR(edev, "Failed to allocate rx buffer\n");
1486 /* Incr page ref count to reuse on allocation
1487 * failure so that it doesn't get freed while
1488 * freeing SKB.
1489 */
1490
1491 page_ref_inc(sw_rx_data->data);
1492 rxq->rx_alloc_errors++;
1493 qede_recycle_rx_bd_ring(rxq, edev,
1494 fp_cqe->bd_num);
1495 dev_kfree_skb_any(skb);
1496 goto next_cqe;
1497 }
1498 }
1499
1500 qede_rx_bd_ring_consume(rxq);
1501
1502 if (fp_cqe->bd_num != 1) {
1503 u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1504 u8 num_frags;
1505
1506 pkt_len -= len;
1507
1508 for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1509 num_frags--) {
1510 u16 cur_size = pkt_len > rxq->rx_buf_size ?
1511 rxq->rx_buf_size : pkt_len;
1512 if (unlikely(!cur_size)) {
1513 DP_ERR(edev,
1514 "Still got %d BDs for mapping jumbo, but length became 0\n",
1515 num_frags);
1516 qede_recycle_rx_bd_ring(rxq, edev,
1517 num_frags);
1518 dev_kfree_skb_any(skb);
1519 goto next_cqe;
1520 }
1521
1522 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1523 qede_recycle_rx_bd_ring(rxq, edev,
1524 num_frags);
1525 dev_kfree_skb_any(skb);
1526 goto next_cqe;
1527 }
1528
1529 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1530 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1531 qede_rx_bd_ring_consume(rxq);
1532
1533 dma_unmap_page(&edev->pdev->dev,
1534 sw_rx_data->mapping,
1535 PAGE_SIZE, DMA_FROM_DEVICE);
1536
1537 skb_fill_page_desc(skb,
1538 skb_shinfo(skb)->nr_frags++,
1539 sw_rx_data->data, 0,
1540 cur_size);
1541
1542 skb->truesize += PAGE_SIZE;
1543 skb->data_len += cur_size;
1544 skb->len += cur_size;
1545 pkt_len -= cur_size;
1546 }
1547
1548 if (unlikely(pkt_len))
1549 DP_ERR(edev,
1550 "Mapped all BDs of jumbo, but still have %d bytes\n",
1551 pkt_len);
1552 }
1553
1554 skb->protocol = eth_type_trans(skb, edev->ndev);
1555
1556 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1557 fp_cqe->rss_hash,
1558 &rxhash_type);
1559
1560 skb_set_hash(skb, rx_hash, rxhash_type);
1561
1562 qede_set_skb_csum(skb, csum_flag);
1563
1564 skb_record_rx_queue(skb, fp->rss_id);
1565
1566 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1567 next_rx_only:
1568 rx_pkt++;
1569
1570 next_cqe: /* don't consume bd rx buffer */
1571 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1572 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1573 /* CR TPA - revisit how to handle budget in TPA perhaps
1574 * increase on "end"
1575 */
1576 if (rx_pkt == budget)
1577 break;
1578 } /* repeat while sw_comp_cons != hw_comp_cons... */
1579
1580 /* Update producers */
1581 qede_update_rx_prod(edev, rxq);
1582
1583 return rx_pkt;
1584 }
1585
1586 static int qede_poll(struct napi_struct *napi, int budget)
1587 {
1588 int work_done = 0;
1589 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1590 napi);
1591 struct qede_dev *edev = fp->edev;
1592
1593 while (1) {
1594 u8 tc;
1595
1596 for (tc = 0; tc < edev->num_tc; tc++)
1597 if (qede_txq_has_work(&fp->txqs[tc]))
1598 qede_tx_int(edev, &fp->txqs[tc]);
1599
1600 if (qede_has_rx_work(fp->rxq)) {
1601 work_done += qede_rx_int(fp, budget - work_done);
1602
1603 /* must not complete if we consumed full budget */
1604 if (work_done >= budget)
1605 break;
1606 }
1607
1608 /* Fall out from the NAPI loop if needed */
1609 if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1610 qed_sb_update_sb_idx(fp->sb_info);
1611 /* *_has_*_work() reads the status block,
1612 * thus we need to ensure that status block indices
1613 * have been actually read (qed_sb_update_sb_idx)
1614 * prior to this check (*_has_*_work) so that
1615 * we won't write the "newer" value of the status block
1616 * to HW (if there was a DMA right after
1617 * qede_has_rx_work and if there is no rmb, the memory
1618 * reading (qed_sb_update_sb_idx) may be postponed
1619 * to right before *_ack_sb). In this case there
1620 * will never be another interrupt until there is
1621 * another update of the status block, while there
1622 * is still unhandled work.
1623 */
1624 rmb();
1625
1626 if (!(qede_has_rx_work(fp->rxq) ||
1627 qede_has_tx_work(fp))) {
1628 napi_complete(napi);
1629 /* Update and reenable interrupts */
1630 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1631 1 /*update*/);
1632 break;
1633 }
1634 }
1635 }
1636
1637 return work_done;
1638 }
1639
1640 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1641 {
1642 struct qede_fastpath *fp = fp_cookie;
1643
1644 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1645
1646 napi_schedule_irqoff(&fp->napi);
1647 return IRQ_HANDLED;
1648 }
1649
1650 /* -------------------------------------------------------------------------
1651 * END OF FAST-PATH
1652 * -------------------------------------------------------------------------
1653 */
1654
1655 static int qede_open(struct net_device *ndev);
1656 static int qede_close(struct net_device *ndev);
1657 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1658 static void qede_set_rx_mode(struct net_device *ndev);
1659 static void qede_config_rx_mode(struct net_device *ndev);
1660
1661 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1662 enum qed_filter_xcast_params_type opcode,
1663 unsigned char mac[ETH_ALEN])
1664 {
1665 struct qed_filter_params filter_cmd;
1666
1667 memset(&filter_cmd, 0, sizeof(filter_cmd));
1668 filter_cmd.type = QED_FILTER_TYPE_UCAST;
1669 filter_cmd.filter.ucast.type = opcode;
1670 filter_cmd.filter.ucast.mac_valid = 1;
1671 ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1672
1673 return edev->ops->filter_config(edev->cdev, &filter_cmd);
1674 }
1675
1676 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1677 enum qed_filter_xcast_params_type opcode,
1678 u16 vid)
1679 {
1680 struct qed_filter_params filter_cmd;
1681
1682 memset(&filter_cmd, 0, sizeof(filter_cmd));
1683 filter_cmd.type = QED_FILTER_TYPE_UCAST;
1684 filter_cmd.filter.ucast.type = opcode;
1685 filter_cmd.filter.ucast.vlan_valid = 1;
1686 filter_cmd.filter.ucast.vlan = vid;
1687
1688 return edev->ops->filter_config(edev->cdev, &filter_cmd);
1689 }
1690
1691 void qede_fill_by_demand_stats(struct qede_dev *edev)
1692 {
1693 struct qed_eth_stats stats;
1694
1695 edev->ops->get_vport_stats(edev->cdev, &stats);
1696 edev->stats.no_buff_discards = stats.no_buff_discards;
1697 edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1698 edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1699 edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1700 edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1701 edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1702 edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1703 edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1704 edev->stats.mac_filter_discards = stats.mac_filter_discards;
1705
1706 edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1707 edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1708 edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1709 edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1710 edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1711 edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1712 edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1713 edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1714 edev->stats.coalesced_events = stats.tpa_coalesced_events;
1715 edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1716 edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1717 edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1718
1719 edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1720 edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1721 edev->stats.rx_128_to_255_byte_packets =
1722 stats.rx_128_to_255_byte_packets;
1723 edev->stats.rx_256_to_511_byte_packets =
1724 stats.rx_256_to_511_byte_packets;
1725 edev->stats.rx_512_to_1023_byte_packets =
1726 stats.rx_512_to_1023_byte_packets;
1727 edev->stats.rx_1024_to_1518_byte_packets =
1728 stats.rx_1024_to_1518_byte_packets;
1729 edev->stats.rx_1519_to_1522_byte_packets =
1730 stats.rx_1519_to_1522_byte_packets;
1731 edev->stats.rx_1519_to_2047_byte_packets =
1732 stats.rx_1519_to_2047_byte_packets;
1733 edev->stats.rx_2048_to_4095_byte_packets =
1734 stats.rx_2048_to_4095_byte_packets;
1735 edev->stats.rx_4096_to_9216_byte_packets =
1736 stats.rx_4096_to_9216_byte_packets;
1737 edev->stats.rx_9217_to_16383_byte_packets =
1738 stats.rx_9217_to_16383_byte_packets;
1739 edev->stats.rx_crc_errors = stats.rx_crc_errors;
1740 edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1741 edev->stats.rx_pause_frames = stats.rx_pause_frames;
1742 edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1743 edev->stats.rx_align_errors = stats.rx_align_errors;
1744 edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1745 edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1746 edev->stats.rx_jabbers = stats.rx_jabbers;
1747 edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1748 edev->stats.rx_fragments = stats.rx_fragments;
1749 edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1750 edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1751 edev->stats.tx_128_to_255_byte_packets =
1752 stats.tx_128_to_255_byte_packets;
1753 edev->stats.tx_256_to_511_byte_packets =
1754 stats.tx_256_to_511_byte_packets;
1755 edev->stats.tx_512_to_1023_byte_packets =
1756 stats.tx_512_to_1023_byte_packets;
1757 edev->stats.tx_1024_to_1518_byte_packets =
1758 stats.tx_1024_to_1518_byte_packets;
1759 edev->stats.tx_1519_to_2047_byte_packets =
1760 stats.tx_1519_to_2047_byte_packets;
1761 edev->stats.tx_2048_to_4095_byte_packets =
1762 stats.tx_2048_to_4095_byte_packets;
1763 edev->stats.tx_4096_to_9216_byte_packets =
1764 stats.tx_4096_to_9216_byte_packets;
1765 edev->stats.tx_9217_to_16383_byte_packets =
1766 stats.tx_9217_to_16383_byte_packets;
1767 edev->stats.tx_pause_frames = stats.tx_pause_frames;
1768 edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1769 edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1770 edev->stats.tx_total_collisions = stats.tx_total_collisions;
1771 edev->stats.brb_truncates = stats.brb_truncates;
1772 edev->stats.brb_discards = stats.brb_discards;
1773 edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1774 }
1775
1776 static struct rtnl_link_stats64 *qede_get_stats64(
1777 struct net_device *dev,
1778 struct rtnl_link_stats64 *stats)
1779 {
1780 struct qede_dev *edev = netdev_priv(dev);
1781
1782 qede_fill_by_demand_stats(edev);
1783
1784 stats->rx_packets = edev->stats.rx_ucast_pkts +
1785 edev->stats.rx_mcast_pkts +
1786 edev->stats.rx_bcast_pkts;
1787 stats->tx_packets = edev->stats.tx_ucast_pkts +
1788 edev->stats.tx_mcast_pkts +
1789 edev->stats.tx_bcast_pkts;
1790
1791 stats->rx_bytes = edev->stats.rx_ucast_bytes +
1792 edev->stats.rx_mcast_bytes +
1793 edev->stats.rx_bcast_bytes;
1794
1795 stats->tx_bytes = edev->stats.tx_ucast_bytes +
1796 edev->stats.tx_mcast_bytes +
1797 edev->stats.tx_bcast_bytes;
1798
1799 stats->tx_errors = edev->stats.tx_err_drop_pkts;
1800 stats->multicast = edev->stats.rx_mcast_pkts +
1801 edev->stats.rx_bcast_pkts;
1802
1803 stats->rx_fifo_errors = edev->stats.no_buff_discards;
1804
1805 stats->collisions = edev->stats.tx_total_collisions;
1806 stats->rx_crc_errors = edev->stats.rx_crc_errors;
1807 stats->rx_frame_errors = edev->stats.rx_align_errors;
1808
1809 return stats;
1810 }
1811
1812 #ifdef CONFIG_QED_SRIOV
1813 static int qede_get_vf_config(struct net_device *dev, int vfidx,
1814 struct ifla_vf_info *ivi)
1815 {
1816 struct qede_dev *edev = netdev_priv(dev);
1817
1818 if (!edev->ops)
1819 return -EINVAL;
1820
1821 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1822 }
1823
1824 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1825 int min_tx_rate, int max_tx_rate)
1826 {
1827 struct qede_dev *edev = netdev_priv(dev);
1828
1829 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
1830 max_tx_rate);
1831 }
1832
1833 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1834 {
1835 struct qede_dev *edev = netdev_priv(dev);
1836
1837 if (!edev->ops)
1838 return -EINVAL;
1839
1840 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1841 }
1842
1843 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1844 int link_state)
1845 {
1846 struct qede_dev *edev = netdev_priv(dev);
1847
1848 if (!edev->ops)
1849 return -EINVAL;
1850
1851 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1852 }
1853 #endif
1854
1855 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1856 {
1857 struct qed_update_vport_params params;
1858 int rc;
1859
1860 /* Proceed only if action actually needs to be performed */
1861 if (edev->accept_any_vlan == action)
1862 return;
1863
1864 memset(&params, 0, sizeof(params));
1865
1866 params.vport_id = 0;
1867 params.accept_any_vlan = action;
1868 params.update_accept_any_vlan_flg = 1;
1869
1870 rc = edev->ops->vport_update(edev->cdev, &params);
1871 if (rc) {
1872 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1873 action ? "enable" : "disable");
1874 } else {
1875 DP_INFO(edev, "%s accept-any-vlan\n",
1876 action ? "enabled" : "disabled");
1877 edev->accept_any_vlan = action;
1878 }
1879 }
1880
1881 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1882 {
1883 struct qede_dev *edev = netdev_priv(dev);
1884 struct qede_vlan *vlan, *tmp;
1885 int rc;
1886
1887 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1888
1889 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1890 if (!vlan) {
1891 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1892 return -ENOMEM;
1893 }
1894 INIT_LIST_HEAD(&vlan->list);
1895 vlan->vid = vid;
1896 vlan->configured = false;
1897
1898 /* Verify vlan isn't already configured */
1899 list_for_each_entry(tmp, &edev->vlan_list, list) {
1900 if (tmp->vid == vlan->vid) {
1901 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1902 "vlan already configured\n");
1903 kfree(vlan);
1904 return -EEXIST;
1905 }
1906 }
1907
1908 /* If interface is down, cache this VLAN ID and return */
1909 if (edev->state != QEDE_STATE_OPEN) {
1910 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1911 "Interface is down, VLAN %d will be configured when interface is up\n",
1912 vid);
1913 if (vid != 0)
1914 edev->non_configured_vlans++;
1915 list_add(&vlan->list, &edev->vlan_list);
1916
1917 return 0;
1918 }
1919
1920 /* Check for the filter limit.
1921 * Note - vlan0 has a reserved filter and can be added without
1922 * worrying about quota
1923 */
1924 if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1925 (vlan->vid == 0)) {
1926 rc = qede_set_ucast_rx_vlan(edev,
1927 QED_FILTER_XCAST_TYPE_ADD,
1928 vlan->vid);
1929 if (rc) {
1930 DP_ERR(edev, "Failed to configure VLAN %d\n",
1931 vlan->vid);
1932 kfree(vlan);
1933 return -EINVAL;
1934 }
1935 vlan->configured = true;
1936
1937 /* vlan0 filter isn't consuming out of our quota */
1938 if (vlan->vid != 0)
1939 edev->configured_vlans++;
1940 } else {
1941 /* Out of quota; Activate accept-any-VLAN mode */
1942 if (!edev->non_configured_vlans)
1943 qede_config_accept_any_vlan(edev, true);
1944
1945 edev->non_configured_vlans++;
1946 }
1947
1948 list_add(&vlan->list, &edev->vlan_list);
1949
1950 return 0;
1951 }
1952
1953 static void qede_del_vlan_from_list(struct qede_dev *edev,
1954 struct qede_vlan *vlan)
1955 {
1956 /* vlan0 filter isn't consuming out of our quota */
1957 if (vlan->vid != 0) {
1958 if (vlan->configured)
1959 edev->configured_vlans--;
1960 else
1961 edev->non_configured_vlans--;
1962 }
1963
1964 list_del(&vlan->list);
1965 kfree(vlan);
1966 }
1967
1968 static int qede_configure_vlan_filters(struct qede_dev *edev)
1969 {
1970 int rc = 0, real_rc = 0, accept_any_vlan = 0;
1971 struct qed_dev_eth_info *dev_info;
1972 struct qede_vlan *vlan = NULL;
1973
1974 if (list_empty(&edev->vlan_list))
1975 return 0;
1976
1977 dev_info = &edev->dev_info;
1978
1979 /* Configure non-configured vlans */
1980 list_for_each_entry(vlan, &edev->vlan_list, list) {
1981 if (vlan->configured)
1982 continue;
1983
1984 /* We have used all our credits, now enable accept_any_vlan */
1985 if ((vlan->vid != 0) &&
1986 (edev->configured_vlans == dev_info->num_vlan_filters)) {
1987 accept_any_vlan = 1;
1988 continue;
1989 }
1990
1991 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1992
1993 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1994 vlan->vid);
1995 if (rc) {
1996 DP_ERR(edev, "Failed to configure VLAN %u\n",
1997 vlan->vid);
1998 real_rc = rc;
1999 continue;
2000 }
2001
2002 vlan->configured = true;
2003 /* vlan0 filter doesn't consume our VLAN filter's quota */
2004 if (vlan->vid != 0) {
2005 edev->non_configured_vlans--;
2006 edev->configured_vlans++;
2007 }
2008 }
2009
2010 /* enable accept_any_vlan mode if we have more VLANs than credits,
2011 * or remove accept_any_vlan mode if we've actually removed
2012 * a non-configured vlan, and all remaining vlans are truly configured.
2013 */
2014
2015 if (accept_any_vlan)
2016 qede_config_accept_any_vlan(edev, true);
2017 else if (!edev->non_configured_vlans)
2018 qede_config_accept_any_vlan(edev, false);
2019
2020 return real_rc;
2021 }
2022
2023 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2024 {
2025 struct qede_dev *edev = netdev_priv(dev);
2026 struct qede_vlan *vlan = NULL;
2027 int rc;
2028
2029 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2030
2031 /* Find whether entry exists */
2032 list_for_each_entry(vlan, &edev->vlan_list, list)
2033 if (vlan->vid == vid)
2034 break;
2035
2036 if (!vlan || (vlan->vid != vid)) {
2037 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2038 "Vlan isn't configured\n");
2039 return 0;
2040 }
2041
2042 if (edev->state != QEDE_STATE_OPEN) {
2043 /* As interface is already down, we don't have a VPORT
2044 * instance to remove vlan filter. So just update vlan list
2045 */
2046 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2047 "Interface is down, removing VLAN from list only\n");
2048 qede_del_vlan_from_list(edev, vlan);
2049 return 0;
2050 }
2051
2052 /* Remove vlan */
2053 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
2054 if (rc) {
2055 DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2056 return -EINVAL;
2057 }
2058
2059 qede_del_vlan_from_list(edev, vlan);
2060
2061 /* We have removed a VLAN - try to see if we can
2062 * configure non-configured VLAN from the list.
2063 */
2064 rc = qede_configure_vlan_filters(edev);
2065
2066 return rc;
2067 }
2068
2069 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2070 {
2071 struct qede_vlan *vlan = NULL;
2072
2073 if (list_empty(&edev->vlan_list))
2074 return;
2075
2076 list_for_each_entry(vlan, &edev->vlan_list, list) {
2077 if (!vlan->configured)
2078 continue;
2079
2080 vlan->configured = false;
2081
2082 /* vlan0 filter isn't consuming out of our quota */
2083 if (vlan->vid != 0) {
2084 edev->non_configured_vlans++;
2085 edev->configured_vlans--;
2086 }
2087
2088 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2089 "marked vlan %d as non-configured\n",
2090 vlan->vid);
2091 }
2092
2093 edev->accept_any_vlan = false;
2094 }
2095
2096 int qede_set_features(struct net_device *dev, netdev_features_t features)
2097 {
2098 struct qede_dev *edev = netdev_priv(dev);
2099 netdev_features_t changes = features ^ dev->features;
2100 bool need_reload = false;
2101
2102 /* No action needed if hardware GRO is disabled during driver load */
2103 if (changes & NETIF_F_GRO) {
2104 if (dev->features & NETIF_F_GRO)
2105 need_reload = !edev->gro_disable;
2106 else
2107 need_reload = edev->gro_disable;
2108 }
2109
2110 if (need_reload && netif_running(edev->ndev)) {
2111 dev->features = features;
2112 qede_reload(edev, NULL, NULL);
2113 return 1;
2114 }
2115
2116 return 0;
2117 }
2118
2119 #ifdef CONFIG_QEDE_VXLAN
2120 static void qede_add_vxlan_port(struct net_device *dev,
2121 sa_family_t sa_family, __be16 port)
2122 {
2123 struct qede_dev *edev = netdev_priv(dev);
2124 u16 t_port = ntohs(port);
2125
2126 if (edev->vxlan_dst_port)
2127 return;
2128
2129 edev->vxlan_dst_port = t_port;
2130
2131 DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d", t_port);
2132
2133 set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2134 schedule_delayed_work(&edev->sp_task, 0);
2135 }
2136
2137 static void qede_del_vxlan_port(struct net_device *dev,
2138 sa_family_t sa_family, __be16 port)
2139 {
2140 struct qede_dev *edev = netdev_priv(dev);
2141 u16 t_port = ntohs(port);
2142
2143 if (t_port != edev->vxlan_dst_port)
2144 return;
2145
2146 edev->vxlan_dst_port = 0;
2147
2148 DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d", t_port);
2149
2150 set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2151 schedule_delayed_work(&edev->sp_task, 0);
2152 }
2153 #endif
2154
2155 #ifdef CONFIG_QEDE_GENEVE
2156 static void qede_add_geneve_port(struct net_device *dev,
2157 sa_family_t sa_family, __be16 port)
2158 {
2159 struct qede_dev *edev = netdev_priv(dev);
2160 u16 t_port = ntohs(port);
2161
2162 if (edev->geneve_dst_port)
2163 return;
2164
2165 edev->geneve_dst_port = t_port;
2166
2167 DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d", t_port);
2168 set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2169 schedule_delayed_work(&edev->sp_task, 0);
2170 }
2171
2172 static void qede_del_geneve_port(struct net_device *dev,
2173 sa_family_t sa_family, __be16 port)
2174 {
2175 struct qede_dev *edev = netdev_priv(dev);
2176 u16 t_port = ntohs(port);
2177
2178 if (t_port != edev->geneve_dst_port)
2179 return;
2180
2181 edev->geneve_dst_port = 0;
2182
2183 DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d", t_port);
2184 set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2185 schedule_delayed_work(&edev->sp_task, 0);
2186 }
2187 #endif
2188
2189 static const struct net_device_ops qede_netdev_ops = {
2190 .ndo_open = qede_open,
2191 .ndo_stop = qede_close,
2192 .ndo_start_xmit = qede_start_xmit,
2193 .ndo_set_rx_mode = qede_set_rx_mode,
2194 .ndo_set_mac_address = qede_set_mac_addr,
2195 .ndo_validate_addr = eth_validate_addr,
2196 .ndo_change_mtu = qede_change_mtu,
2197 #ifdef CONFIG_QED_SRIOV
2198 .ndo_set_vf_mac = qede_set_vf_mac,
2199 .ndo_set_vf_vlan = qede_set_vf_vlan,
2200 #endif
2201 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2202 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2203 .ndo_set_features = qede_set_features,
2204 .ndo_get_stats64 = qede_get_stats64,
2205 #ifdef CONFIG_QED_SRIOV
2206 .ndo_set_vf_link_state = qede_set_vf_link_state,
2207 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2208 .ndo_get_vf_config = qede_get_vf_config,
2209 .ndo_set_vf_rate = qede_set_vf_rate,
2210 #endif
2211 #ifdef CONFIG_QEDE_VXLAN
2212 .ndo_add_vxlan_port = qede_add_vxlan_port,
2213 .ndo_del_vxlan_port = qede_del_vxlan_port,
2214 #endif
2215 #ifdef CONFIG_QEDE_GENEVE
2216 .ndo_add_geneve_port = qede_add_geneve_port,
2217 .ndo_del_geneve_port = qede_del_geneve_port,
2218 #endif
2219 };
2220
2221 /* -------------------------------------------------------------------------
2222 * START OF PROBE / REMOVE
2223 * -------------------------------------------------------------------------
2224 */
2225
2226 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2227 struct pci_dev *pdev,
2228 struct qed_dev_eth_info *info,
2229 u32 dp_module,
2230 u8 dp_level)
2231 {
2232 struct net_device *ndev;
2233 struct qede_dev *edev;
2234
2235 ndev = alloc_etherdev_mqs(sizeof(*edev),
2236 info->num_queues,
2237 info->num_queues);
2238 if (!ndev) {
2239 pr_err("etherdev allocation failed\n");
2240 return NULL;
2241 }
2242
2243 edev = netdev_priv(ndev);
2244 edev->ndev = ndev;
2245 edev->cdev = cdev;
2246 edev->pdev = pdev;
2247 edev->dp_module = dp_module;
2248 edev->dp_level = dp_level;
2249 edev->ops = qed_ops;
2250 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2251 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2252
2253 SET_NETDEV_DEV(ndev, &pdev->dev);
2254
2255 memset(&edev->stats, 0, sizeof(edev->stats));
2256 memcpy(&edev->dev_info, info, sizeof(*info));
2257
2258 edev->num_tc = edev->dev_info.num_tc;
2259
2260 INIT_LIST_HEAD(&edev->vlan_list);
2261
2262 return edev;
2263 }
2264
2265 static void qede_init_ndev(struct qede_dev *edev)
2266 {
2267 struct net_device *ndev = edev->ndev;
2268 struct pci_dev *pdev = edev->pdev;
2269 u32 hw_features;
2270
2271 pci_set_drvdata(pdev, ndev);
2272
2273 ndev->mem_start = edev->dev_info.common.pci_mem_start;
2274 ndev->base_addr = ndev->mem_start;
2275 ndev->mem_end = edev->dev_info.common.pci_mem_end;
2276 ndev->irq = edev->dev_info.common.pci_irq;
2277
2278 ndev->watchdog_timeo = TX_TIMEOUT;
2279
2280 ndev->netdev_ops = &qede_netdev_ops;
2281
2282 qede_set_ethtool_ops(ndev);
2283
2284 /* user-changeble features */
2285 hw_features = NETIF_F_GRO | NETIF_F_SG |
2286 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2287 NETIF_F_TSO | NETIF_F_TSO6;
2288
2289 /* Encap features*/
2290 hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2291 NETIF_F_TSO_ECN;
2292 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2293 NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2294 NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2295 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2296
2297 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2298 NETIF_F_HIGHDMA;
2299 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2300 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2301 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2302
2303 ndev->hw_features = hw_features;
2304
2305 /* Set network device HW mac */
2306 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2307 }
2308
2309 /* This function converts from 32b param to two params of level and module
2310 * Input 32b decoding:
2311 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2312 * 'happy' flow, e.g. memory allocation failed.
2313 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2314 * and provide important parameters.
2315 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2316 * module. VERBOSE prints are for tracking the specific flow in low level.
2317 *
2318 * Notice that the level should be that of the lowest required logs.
2319 */
2320 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2321 {
2322 *p_dp_level = QED_LEVEL_NOTICE;
2323 *p_dp_module = 0;
2324
2325 if (debug & QED_LOG_VERBOSE_MASK) {
2326 *p_dp_level = QED_LEVEL_VERBOSE;
2327 *p_dp_module = (debug & 0x3FFFFFFF);
2328 } else if (debug & QED_LOG_INFO_MASK) {
2329 *p_dp_level = QED_LEVEL_INFO;
2330 } else if (debug & QED_LOG_NOTICE_MASK) {
2331 *p_dp_level = QED_LEVEL_NOTICE;
2332 }
2333 }
2334
2335 static void qede_free_fp_array(struct qede_dev *edev)
2336 {
2337 if (edev->fp_array) {
2338 struct qede_fastpath *fp;
2339 int i;
2340
2341 for_each_rss(i) {
2342 fp = &edev->fp_array[i];
2343
2344 kfree(fp->sb_info);
2345 kfree(fp->rxq);
2346 kfree(fp->txqs);
2347 }
2348 kfree(edev->fp_array);
2349 }
2350 edev->num_rss = 0;
2351 }
2352
2353 static int qede_alloc_fp_array(struct qede_dev *edev)
2354 {
2355 struct qede_fastpath *fp;
2356 int i;
2357
2358 edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2359 sizeof(*edev->fp_array), GFP_KERNEL);
2360 if (!edev->fp_array) {
2361 DP_NOTICE(edev, "fp array allocation failed\n");
2362 goto err;
2363 }
2364
2365 for_each_rss(i) {
2366 fp = &edev->fp_array[i];
2367
2368 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2369 if (!fp->sb_info) {
2370 DP_NOTICE(edev, "sb info struct allocation failed\n");
2371 goto err;
2372 }
2373
2374 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2375 if (!fp->rxq) {
2376 DP_NOTICE(edev, "RXQ struct allocation failed\n");
2377 goto err;
2378 }
2379
2380 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2381 if (!fp->txqs) {
2382 DP_NOTICE(edev, "TXQ array allocation failed\n");
2383 goto err;
2384 }
2385 }
2386
2387 return 0;
2388 err:
2389 qede_free_fp_array(edev);
2390 return -ENOMEM;
2391 }
2392
2393 static void qede_sp_task(struct work_struct *work)
2394 {
2395 struct qede_dev *edev = container_of(work, struct qede_dev,
2396 sp_task.work);
2397 struct qed_dev *cdev = edev->cdev;
2398
2399 mutex_lock(&edev->qede_lock);
2400
2401 if (edev->state == QEDE_STATE_OPEN) {
2402 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2403 qede_config_rx_mode(edev->ndev);
2404 }
2405
2406 if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2407 struct qed_tunn_params tunn_params;
2408
2409 memset(&tunn_params, 0, sizeof(tunn_params));
2410 tunn_params.update_vxlan_port = 1;
2411 tunn_params.vxlan_port = edev->vxlan_dst_port;
2412 qed_ops->tunn_config(cdev, &tunn_params);
2413 }
2414
2415 if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2416 struct qed_tunn_params tunn_params;
2417
2418 memset(&tunn_params, 0, sizeof(tunn_params));
2419 tunn_params.update_geneve_port = 1;
2420 tunn_params.geneve_port = edev->geneve_dst_port;
2421 qed_ops->tunn_config(cdev, &tunn_params);
2422 }
2423
2424 mutex_unlock(&edev->qede_lock);
2425 }
2426
2427 static void qede_update_pf_params(struct qed_dev *cdev)
2428 {
2429 struct qed_pf_params pf_params;
2430
2431 /* 64 rx + 64 tx */
2432 memset(&pf_params, 0, sizeof(struct qed_pf_params));
2433 pf_params.eth_pf_params.num_cons = 128;
2434 qed_ops->common->update_pf_params(cdev, &pf_params);
2435 }
2436
2437 enum qede_probe_mode {
2438 QEDE_PROBE_NORMAL,
2439 };
2440
2441 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2442 bool is_vf, enum qede_probe_mode mode)
2443 {
2444 struct qed_probe_params probe_params;
2445 struct qed_slowpath_params params;
2446 struct qed_dev_eth_info dev_info;
2447 struct qede_dev *edev;
2448 struct qed_dev *cdev;
2449 int rc;
2450
2451 if (unlikely(dp_level & QED_LEVEL_INFO))
2452 pr_notice("Starting qede probe\n");
2453
2454 memset(&probe_params, 0, sizeof(probe_params));
2455 probe_params.protocol = QED_PROTOCOL_ETH;
2456 probe_params.dp_module = dp_module;
2457 probe_params.dp_level = dp_level;
2458 probe_params.is_vf = is_vf;
2459 cdev = qed_ops->common->probe(pdev, &probe_params);
2460 if (!cdev) {
2461 rc = -ENODEV;
2462 goto err0;
2463 }
2464
2465 qede_update_pf_params(cdev);
2466
2467 /* Start the Slowpath-process */
2468 memset(&params, 0, sizeof(struct qed_slowpath_params));
2469 params.int_mode = QED_INT_MODE_MSIX;
2470 params.drv_major = QEDE_MAJOR_VERSION;
2471 params.drv_minor = QEDE_MINOR_VERSION;
2472 params.drv_rev = QEDE_REVISION_VERSION;
2473 params.drv_eng = QEDE_ENGINEERING_VERSION;
2474 strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2475 rc = qed_ops->common->slowpath_start(cdev, &params);
2476 if (rc) {
2477 pr_notice("Cannot start slowpath\n");
2478 goto err1;
2479 }
2480
2481 /* Learn information crucial for qede to progress */
2482 rc = qed_ops->fill_dev_info(cdev, &dev_info);
2483 if (rc)
2484 goto err2;
2485
2486 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2487 dp_level);
2488 if (!edev) {
2489 rc = -ENOMEM;
2490 goto err2;
2491 }
2492
2493 if (is_vf)
2494 edev->flags |= QEDE_FLAG_IS_VF;
2495
2496 qede_init_ndev(edev);
2497
2498 rc = register_netdev(edev->ndev);
2499 if (rc) {
2500 DP_NOTICE(edev, "Cannot register net-device\n");
2501 goto err3;
2502 }
2503
2504 edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2505
2506 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2507
2508 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2509 mutex_init(&edev->qede_lock);
2510
2511 DP_INFO(edev, "Ending successfully qede probe\n");
2512
2513 return 0;
2514
2515 err3:
2516 free_netdev(edev->ndev);
2517 err2:
2518 qed_ops->common->slowpath_stop(cdev);
2519 err1:
2520 qed_ops->common->remove(cdev);
2521 err0:
2522 return rc;
2523 }
2524
2525 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2526 {
2527 bool is_vf = false;
2528 u32 dp_module = 0;
2529 u8 dp_level = 0;
2530
2531 switch ((enum qede_pci_private)id->driver_data) {
2532 case QEDE_PRIVATE_VF:
2533 if (debug & QED_LOG_VERBOSE_MASK)
2534 dev_err(&pdev->dev, "Probing a VF\n");
2535 is_vf = true;
2536 break;
2537 default:
2538 if (debug & QED_LOG_VERBOSE_MASK)
2539 dev_err(&pdev->dev, "Probing a PF\n");
2540 }
2541
2542 qede_config_debug(debug, &dp_module, &dp_level);
2543
2544 return __qede_probe(pdev, dp_module, dp_level, is_vf,
2545 QEDE_PROBE_NORMAL);
2546 }
2547
2548 enum qede_remove_mode {
2549 QEDE_REMOVE_NORMAL,
2550 };
2551
2552 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2553 {
2554 struct net_device *ndev = pci_get_drvdata(pdev);
2555 struct qede_dev *edev = netdev_priv(ndev);
2556 struct qed_dev *cdev = edev->cdev;
2557
2558 DP_INFO(edev, "Starting qede_remove\n");
2559
2560 cancel_delayed_work_sync(&edev->sp_task);
2561 unregister_netdev(ndev);
2562
2563 edev->ops->common->set_power_state(cdev, PCI_D0);
2564
2565 pci_set_drvdata(pdev, NULL);
2566
2567 free_netdev(ndev);
2568
2569 /* Use global ops since we've freed edev */
2570 qed_ops->common->slowpath_stop(cdev);
2571 qed_ops->common->remove(cdev);
2572
2573 pr_notice("Ending successfully qede_remove\n");
2574 }
2575
2576 static void qede_remove(struct pci_dev *pdev)
2577 {
2578 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2579 }
2580
2581 /* -------------------------------------------------------------------------
2582 * START OF LOAD / UNLOAD
2583 * -------------------------------------------------------------------------
2584 */
2585
2586 static int qede_set_num_queues(struct qede_dev *edev)
2587 {
2588 int rc;
2589 u16 rss_num;
2590
2591 /* Setup queues according to possible resources*/
2592 if (edev->req_rss)
2593 rss_num = edev->req_rss;
2594 else
2595 rss_num = netif_get_num_default_rss_queues() *
2596 edev->dev_info.common.num_hwfns;
2597
2598 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2599
2600 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2601 if (rc > 0) {
2602 /* Managed to request interrupts for our queues */
2603 edev->num_rss = rc;
2604 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2605 QEDE_RSS_CNT(edev), rss_num);
2606 rc = 0;
2607 }
2608 return rc;
2609 }
2610
2611 static void qede_free_mem_sb(struct qede_dev *edev,
2612 struct qed_sb_info *sb_info)
2613 {
2614 if (sb_info->sb_virt)
2615 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2616 (void *)sb_info->sb_virt, sb_info->sb_phys);
2617 }
2618
2619 /* This function allocates fast-path status block memory */
2620 static int qede_alloc_mem_sb(struct qede_dev *edev,
2621 struct qed_sb_info *sb_info,
2622 u16 sb_id)
2623 {
2624 struct status_block *sb_virt;
2625 dma_addr_t sb_phys;
2626 int rc;
2627
2628 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2629 sizeof(*sb_virt),
2630 &sb_phys, GFP_KERNEL);
2631 if (!sb_virt) {
2632 DP_ERR(edev, "Status block allocation failed\n");
2633 return -ENOMEM;
2634 }
2635
2636 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2637 sb_virt, sb_phys, sb_id,
2638 QED_SB_TYPE_L2_QUEUE);
2639 if (rc) {
2640 DP_ERR(edev, "Status block initialization failed\n");
2641 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2642 sb_virt, sb_phys);
2643 return rc;
2644 }
2645
2646 return 0;
2647 }
2648
2649 static void qede_free_rx_buffers(struct qede_dev *edev,
2650 struct qede_rx_queue *rxq)
2651 {
2652 u16 i;
2653
2654 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2655 struct sw_rx_data *rx_buf;
2656 struct page *data;
2657
2658 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2659 data = rx_buf->data;
2660
2661 dma_unmap_page(&edev->pdev->dev,
2662 rx_buf->mapping,
2663 PAGE_SIZE, DMA_FROM_DEVICE);
2664
2665 rx_buf->data = NULL;
2666 __free_page(data);
2667 }
2668 }
2669
2670 static void qede_free_sge_mem(struct qede_dev *edev,
2671 struct qede_rx_queue *rxq) {
2672 int i;
2673
2674 if (edev->gro_disable)
2675 return;
2676
2677 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2678 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2679 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2680
2681 if (replace_buf->data) {
2682 dma_unmap_page(&edev->pdev->dev,
2683 replace_buf->mapping,
2684 PAGE_SIZE, DMA_FROM_DEVICE);
2685 __free_page(replace_buf->data);
2686 }
2687 }
2688 }
2689
2690 static void qede_free_mem_rxq(struct qede_dev *edev,
2691 struct qede_rx_queue *rxq)
2692 {
2693 qede_free_sge_mem(edev, rxq);
2694
2695 /* Free rx buffers */
2696 qede_free_rx_buffers(edev, rxq);
2697
2698 /* Free the parallel SW ring */
2699 kfree(rxq->sw_rx_ring);
2700
2701 /* Free the real RQ ring used by FW */
2702 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2703 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2704 }
2705
2706 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2707 struct qede_rx_queue *rxq)
2708 {
2709 struct sw_rx_data *sw_rx_data;
2710 struct eth_rx_bd *rx_bd;
2711 dma_addr_t mapping;
2712 struct page *data;
2713 u16 rx_buf_size;
2714
2715 rx_buf_size = rxq->rx_buf_size;
2716
2717 data = alloc_pages(GFP_ATOMIC, 0);
2718 if (unlikely(!data)) {
2719 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2720 return -ENOMEM;
2721 }
2722
2723 /* Map the entire page as it would be used
2724 * for multiple RX buffer segment size mapping.
2725 */
2726 mapping = dma_map_page(&edev->pdev->dev, data, 0,
2727 PAGE_SIZE, DMA_FROM_DEVICE);
2728 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2729 __free_page(data);
2730 DP_NOTICE(edev, "Failed to map Rx buffer\n");
2731 return -ENOMEM;
2732 }
2733
2734 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2735 sw_rx_data->page_offset = 0;
2736 sw_rx_data->data = data;
2737 sw_rx_data->mapping = mapping;
2738
2739 /* Advance PROD and get BD pointer */
2740 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2741 WARN_ON(!rx_bd);
2742 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2743 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2744
2745 rxq->sw_rx_prod++;
2746
2747 return 0;
2748 }
2749
2750 static int qede_alloc_sge_mem(struct qede_dev *edev,
2751 struct qede_rx_queue *rxq)
2752 {
2753 dma_addr_t mapping;
2754 int i;
2755
2756 if (edev->gro_disable)
2757 return 0;
2758
2759 if (edev->ndev->mtu > PAGE_SIZE) {
2760 edev->gro_disable = 1;
2761 return 0;
2762 }
2763
2764 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2765 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2766 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2767
2768 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2769 if (unlikely(!replace_buf->data)) {
2770 DP_NOTICE(edev,
2771 "Failed to allocate TPA skb pool [replacement buffer]\n");
2772 goto err;
2773 }
2774
2775 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2776 rxq->rx_buf_size, DMA_FROM_DEVICE);
2777 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2778 DP_NOTICE(edev,
2779 "Failed to map TPA replacement buffer\n");
2780 goto err;
2781 }
2782
2783 replace_buf->mapping = mapping;
2784 tpa_info->replace_buf.page_offset = 0;
2785
2786 tpa_info->replace_buf_mapping = mapping;
2787 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2788 }
2789
2790 return 0;
2791 err:
2792 qede_free_sge_mem(edev, rxq);
2793 edev->gro_disable = 1;
2794 return -ENOMEM;
2795 }
2796
2797 /* This function allocates all memory needed per Rx queue */
2798 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2799 struct qede_rx_queue *rxq)
2800 {
2801 int i, rc, size;
2802
2803 rxq->num_rx_buffers = edev->q_num_rx_buffers;
2804
2805 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2806 edev->ndev->mtu;
2807 if (rxq->rx_buf_size > PAGE_SIZE)
2808 rxq->rx_buf_size = PAGE_SIZE;
2809
2810 /* Segment size to spilt a page in multiple equal parts */
2811 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2812
2813 /* Allocate the parallel driver ring for Rx buffers */
2814 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2815 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2816 if (!rxq->sw_rx_ring) {
2817 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2818 rc = -ENOMEM;
2819 goto err;
2820 }
2821
2822 /* Allocate FW Rx ring */
2823 rc = edev->ops->common->chain_alloc(edev->cdev,
2824 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2825 QED_CHAIN_MODE_NEXT_PTR,
2826 RX_RING_SIZE,
2827 sizeof(struct eth_rx_bd),
2828 &rxq->rx_bd_ring);
2829
2830 if (rc)
2831 goto err;
2832
2833 /* Allocate FW completion ring */
2834 rc = edev->ops->common->chain_alloc(edev->cdev,
2835 QED_CHAIN_USE_TO_CONSUME,
2836 QED_CHAIN_MODE_PBL,
2837 RX_RING_SIZE,
2838 sizeof(union eth_rx_cqe),
2839 &rxq->rx_comp_ring);
2840 if (rc)
2841 goto err;
2842
2843 /* Allocate buffers for the Rx ring */
2844 for (i = 0; i < rxq->num_rx_buffers; i++) {
2845 rc = qede_alloc_rx_buffer(edev, rxq);
2846 if (rc) {
2847 DP_ERR(edev,
2848 "Rx buffers allocation failed at index %d\n", i);
2849 goto err;
2850 }
2851 }
2852
2853 rc = qede_alloc_sge_mem(edev, rxq);
2854 err:
2855 return rc;
2856 }
2857
2858 static void qede_free_mem_txq(struct qede_dev *edev,
2859 struct qede_tx_queue *txq)
2860 {
2861 /* Free the parallel SW ring */
2862 kfree(txq->sw_tx_ring);
2863
2864 /* Free the real RQ ring used by FW */
2865 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2866 }
2867
2868 /* This function allocates all memory needed per Tx queue */
2869 static int qede_alloc_mem_txq(struct qede_dev *edev,
2870 struct qede_tx_queue *txq)
2871 {
2872 int size, rc;
2873 union eth_tx_bd_types *p_virt;
2874
2875 txq->num_tx_buffers = edev->q_num_tx_buffers;
2876
2877 /* Allocate the parallel driver ring for Tx buffers */
2878 size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2879 txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2880 if (!txq->sw_tx_ring) {
2881 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2882 goto err;
2883 }
2884
2885 rc = edev->ops->common->chain_alloc(edev->cdev,
2886 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2887 QED_CHAIN_MODE_PBL,
2888 NUM_TX_BDS_MAX,
2889 sizeof(*p_virt),
2890 &txq->tx_pbl);
2891 if (rc)
2892 goto err;
2893
2894 return 0;
2895
2896 err:
2897 qede_free_mem_txq(edev, txq);
2898 return -ENOMEM;
2899 }
2900
2901 /* This function frees all memory of a single fp */
2902 static void qede_free_mem_fp(struct qede_dev *edev,
2903 struct qede_fastpath *fp)
2904 {
2905 int tc;
2906
2907 qede_free_mem_sb(edev, fp->sb_info);
2908
2909 qede_free_mem_rxq(edev, fp->rxq);
2910
2911 for (tc = 0; tc < edev->num_tc; tc++)
2912 qede_free_mem_txq(edev, &fp->txqs[tc]);
2913 }
2914
2915 /* This function allocates all memory needed for a single fp (i.e. an entity
2916 * which contains status block, one rx queue and multiple per-TC tx queues.
2917 */
2918 static int qede_alloc_mem_fp(struct qede_dev *edev,
2919 struct qede_fastpath *fp)
2920 {
2921 int rc, tc;
2922
2923 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2924 if (rc)
2925 goto err;
2926
2927 rc = qede_alloc_mem_rxq(edev, fp->rxq);
2928 if (rc)
2929 goto err;
2930
2931 for (tc = 0; tc < edev->num_tc; tc++) {
2932 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2933 if (rc)
2934 goto err;
2935 }
2936
2937 return 0;
2938 err:
2939 return rc;
2940 }
2941
2942 static void qede_free_mem_load(struct qede_dev *edev)
2943 {
2944 int i;
2945
2946 for_each_rss(i) {
2947 struct qede_fastpath *fp = &edev->fp_array[i];
2948
2949 qede_free_mem_fp(edev, fp);
2950 }
2951 }
2952
2953 /* This function allocates all qede memory at NIC load. */
2954 static int qede_alloc_mem_load(struct qede_dev *edev)
2955 {
2956 int rc = 0, rss_id;
2957
2958 for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2959 struct qede_fastpath *fp = &edev->fp_array[rss_id];
2960
2961 rc = qede_alloc_mem_fp(edev, fp);
2962 if (rc) {
2963 DP_ERR(edev,
2964 "Failed to allocate memory for fastpath - rss id = %d\n",
2965 rss_id);
2966 qede_free_mem_load(edev);
2967 return rc;
2968 }
2969 }
2970
2971 return 0;
2972 }
2973
2974 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2975 static void qede_init_fp(struct qede_dev *edev)
2976 {
2977 int rss_id, txq_index, tc;
2978 struct qede_fastpath *fp;
2979
2980 for_each_rss(rss_id) {
2981 fp = &edev->fp_array[rss_id];
2982
2983 fp->edev = edev;
2984 fp->rss_id = rss_id;
2985
2986 memset((void *)&fp->napi, 0, sizeof(fp->napi));
2987
2988 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
2989
2990 memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2991 fp->rxq->rxq_id = rss_id;
2992
2993 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2994 for (tc = 0; tc < edev->num_tc; tc++) {
2995 txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2996 fp->txqs[tc].index = txq_index;
2997 }
2998
2999 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
3000 edev->ndev->name, rss_id);
3001 }
3002
3003 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
3004 }
3005
3006 static int qede_set_real_num_queues(struct qede_dev *edev)
3007 {
3008 int rc = 0;
3009
3010 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
3011 if (rc) {
3012 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
3013 return rc;
3014 }
3015 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
3016 if (rc) {
3017 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
3018 return rc;
3019 }
3020
3021 return 0;
3022 }
3023
3024 static void qede_napi_disable_remove(struct qede_dev *edev)
3025 {
3026 int i;
3027
3028 for_each_rss(i) {
3029 napi_disable(&edev->fp_array[i].napi);
3030
3031 netif_napi_del(&edev->fp_array[i].napi);
3032 }
3033 }
3034
3035 static void qede_napi_add_enable(struct qede_dev *edev)
3036 {
3037 int i;
3038
3039 /* Add NAPI objects */
3040 for_each_rss(i) {
3041 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3042 qede_poll, NAPI_POLL_WEIGHT);
3043 napi_enable(&edev->fp_array[i].napi);
3044 }
3045 }
3046
3047 static void qede_sync_free_irqs(struct qede_dev *edev)
3048 {
3049 int i;
3050
3051 for (i = 0; i < edev->int_info.used_cnt; i++) {
3052 if (edev->int_info.msix_cnt) {
3053 synchronize_irq(edev->int_info.msix[i].vector);
3054 free_irq(edev->int_info.msix[i].vector,
3055 &edev->fp_array[i]);
3056 } else {
3057 edev->ops->common->simd_handler_clean(edev->cdev, i);
3058 }
3059 }
3060
3061 edev->int_info.used_cnt = 0;
3062 }
3063
3064 static int qede_req_msix_irqs(struct qede_dev *edev)
3065 {
3066 int i, rc;
3067
3068 /* Sanitize number of interrupts == number of prepared RSS queues */
3069 if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
3070 DP_ERR(edev,
3071 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3072 QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
3073 return -EINVAL;
3074 }
3075
3076 for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
3077 rc = request_irq(edev->int_info.msix[i].vector,
3078 qede_msix_fp_int, 0, edev->fp_array[i].name,
3079 &edev->fp_array[i]);
3080 if (rc) {
3081 DP_ERR(edev, "Request fp %d irq failed\n", i);
3082 qede_sync_free_irqs(edev);
3083 return rc;
3084 }
3085 DP_VERBOSE(edev, NETIF_MSG_INTR,
3086 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3087 edev->fp_array[i].name, i,
3088 &edev->fp_array[i]);
3089 edev->int_info.used_cnt++;
3090 }
3091
3092 return 0;
3093 }
3094
3095 static void qede_simd_fp_handler(void *cookie)
3096 {
3097 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3098
3099 napi_schedule_irqoff(&fp->napi);
3100 }
3101
3102 static int qede_setup_irqs(struct qede_dev *edev)
3103 {
3104 int i, rc = 0;
3105
3106 /* Learn Interrupt configuration */
3107 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3108 if (rc)
3109 return rc;
3110
3111 if (edev->int_info.msix_cnt) {
3112 rc = qede_req_msix_irqs(edev);
3113 if (rc)
3114 return rc;
3115 edev->ndev->irq = edev->int_info.msix[0].vector;
3116 } else {
3117 const struct qed_common_ops *ops;
3118
3119 /* qed should learn receive the RSS ids and callbacks */
3120 ops = edev->ops->common;
3121 for (i = 0; i < QEDE_RSS_CNT(edev); i++)
3122 ops->simd_handler_config(edev->cdev,
3123 &edev->fp_array[i], i,
3124 qede_simd_fp_handler);
3125 edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
3126 }
3127 return 0;
3128 }
3129
3130 static int qede_drain_txq(struct qede_dev *edev,
3131 struct qede_tx_queue *txq,
3132 bool allow_drain)
3133 {
3134 int rc, cnt = 1000;
3135
3136 while (txq->sw_tx_cons != txq->sw_tx_prod) {
3137 if (!cnt) {
3138 if (allow_drain) {
3139 DP_NOTICE(edev,
3140 "Tx queue[%d] is stuck, requesting MCP to drain\n",
3141 txq->index);
3142 rc = edev->ops->common->drain(edev->cdev);
3143 if (rc)
3144 return rc;
3145 return qede_drain_txq(edev, txq, false);
3146 }
3147 DP_NOTICE(edev,
3148 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3149 txq->index, txq->sw_tx_prod,
3150 txq->sw_tx_cons);
3151 return -ENODEV;
3152 }
3153 cnt--;
3154 usleep_range(1000, 2000);
3155 barrier();
3156 }
3157
3158 /* FW finished processing, wait for HW to transmit all tx packets */
3159 usleep_range(1000, 2000);
3160
3161 return 0;
3162 }
3163
3164 static int qede_stop_queues(struct qede_dev *edev)
3165 {
3166 struct qed_update_vport_params vport_update_params;
3167 struct qed_dev *cdev = edev->cdev;
3168 int rc, tc, i;
3169
3170 /* Disable the vport */
3171 memset(&vport_update_params, 0, sizeof(vport_update_params));
3172 vport_update_params.vport_id = 0;
3173 vport_update_params.update_vport_active_flg = 1;
3174 vport_update_params.vport_active_flg = 0;
3175 vport_update_params.update_rss_flg = 0;
3176
3177 rc = edev->ops->vport_update(cdev, &vport_update_params);
3178 if (rc) {
3179 DP_ERR(edev, "Failed to update vport\n");
3180 return rc;
3181 }
3182
3183 /* Flush Tx queues. If needed, request drain from MCP */
3184 for_each_rss(i) {
3185 struct qede_fastpath *fp = &edev->fp_array[i];
3186
3187 for (tc = 0; tc < edev->num_tc; tc++) {
3188 struct qede_tx_queue *txq = &fp->txqs[tc];
3189
3190 rc = qede_drain_txq(edev, txq, true);
3191 if (rc)
3192 return rc;
3193 }
3194 }
3195
3196 /* Stop all Queues in reverse order*/
3197 for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
3198 struct qed_stop_rxq_params rx_params;
3199
3200 /* Stop the Tx Queue(s)*/
3201 for (tc = 0; tc < edev->num_tc; tc++) {
3202 struct qed_stop_txq_params tx_params;
3203
3204 tx_params.rss_id = i;
3205 tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
3206 rc = edev->ops->q_tx_stop(cdev, &tx_params);
3207 if (rc) {
3208 DP_ERR(edev, "Failed to stop TXQ #%d\n",
3209 tx_params.tx_queue_id);
3210 return rc;
3211 }
3212 }
3213
3214 /* Stop the Rx Queue*/
3215 memset(&rx_params, 0, sizeof(rx_params));
3216 rx_params.rss_id = i;
3217 rx_params.rx_queue_id = i;
3218
3219 rc = edev->ops->q_rx_stop(cdev, &rx_params);
3220 if (rc) {
3221 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3222 return rc;
3223 }
3224 }
3225
3226 /* Stop the vport */
3227 rc = edev->ops->vport_stop(cdev, 0);
3228 if (rc)
3229 DP_ERR(edev, "Failed to stop VPORT\n");
3230
3231 return rc;
3232 }
3233
3234 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
3235 {
3236 int rc, tc, i;
3237 int vlan_removal_en = 1;
3238 struct qed_dev *cdev = edev->cdev;
3239 struct qed_update_vport_params vport_update_params;
3240 struct qed_queue_start_common_params q_params;
3241 struct qed_dev_info *qed_info = &edev->dev_info.common;
3242 struct qed_start_vport_params start = {0};
3243 bool reset_rss_indir = false;
3244
3245 if (!edev->num_rss) {
3246 DP_ERR(edev,
3247 "Cannot update V-VPORT as active as there are no Rx queues\n");
3248 return -EINVAL;
3249 }
3250
3251 start.gro_enable = !edev->gro_disable;
3252 start.mtu = edev->ndev->mtu;
3253 start.vport_id = 0;
3254 start.drop_ttl0 = true;
3255 start.remove_inner_vlan = vlan_removal_en;
3256
3257 rc = edev->ops->vport_start(cdev, &start);
3258
3259 if (rc) {
3260 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3261 return rc;
3262 }
3263
3264 DP_VERBOSE(edev, NETIF_MSG_IFUP,
3265 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3266 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3267
3268 for_each_rss(i) {
3269 struct qede_fastpath *fp = &edev->fp_array[i];
3270 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
3271
3272 memset(&q_params, 0, sizeof(q_params));
3273 q_params.rss_id = i;
3274 q_params.queue_id = i;
3275 q_params.vport_id = 0;
3276 q_params.sb = fp->sb_info->igu_sb_id;
3277 q_params.sb_idx = RX_PI;
3278
3279 rc = edev->ops->q_rx_start(cdev, &q_params,
3280 fp->rxq->rx_buf_size,
3281 fp->rxq->rx_bd_ring.p_phys_addr,
3282 phys_table,
3283 fp->rxq->rx_comp_ring.page_cnt,
3284 &fp->rxq->hw_rxq_prod_addr);
3285 if (rc) {
3286 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
3287 return rc;
3288 }
3289
3290 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
3291
3292 qede_update_rx_prod(edev, fp->rxq);
3293
3294 for (tc = 0; tc < edev->num_tc; tc++) {
3295 struct qede_tx_queue *txq = &fp->txqs[tc];
3296 int txq_index = tc * QEDE_RSS_CNT(edev) + i;
3297
3298 memset(&q_params, 0, sizeof(q_params));
3299 q_params.rss_id = i;
3300 q_params.queue_id = txq_index;
3301 q_params.vport_id = 0;
3302 q_params.sb = fp->sb_info->igu_sb_id;
3303 q_params.sb_idx = TX_PI(tc);
3304
3305 rc = edev->ops->q_tx_start(cdev, &q_params,
3306 txq->tx_pbl.pbl.p_phys_table,
3307 txq->tx_pbl.page_cnt,
3308 &txq->doorbell_addr);
3309 if (rc) {
3310 DP_ERR(edev, "Start TXQ #%d failed %d\n",
3311 txq_index, rc);
3312 return rc;
3313 }
3314
3315 txq->hw_cons_ptr =
3316 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3317 SET_FIELD(txq->tx_db.data.params,
3318 ETH_DB_DATA_DEST, DB_DEST_XCM);
3319 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3320 DB_AGG_CMD_SET);
3321 SET_FIELD(txq->tx_db.data.params,
3322 ETH_DB_DATA_AGG_VAL_SEL,
3323 DQ_XCM_ETH_TX_BD_PROD_CMD);
3324
3325 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3326 }
3327 }
3328
3329 /* Prepare and send the vport enable */
3330 memset(&vport_update_params, 0, sizeof(vport_update_params));
3331 vport_update_params.vport_id = start.vport_id;
3332 vport_update_params.update_vport_active_flg = 1;
3333 vport_update_params.vport_active_flg = 1;
3334
3335 if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3336 qed_info->tx_switching) {
3337 vport_update_params.update_tx_switching_flg = 1;
3338 vport_update_params.tx_switching_flg = 1;
3339 }
3340
3341 /* Fill struct with RSS params */
3342 if (QEDE_RSS_CNT(edev) > 1) {
3343 vport_update_params.update_rss_flg = 1;
3344
3345 /* Need to validate current RSS config uses valid entries */
3346 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3347 if (edev->rss_params.rss_ind_table[i] >=
3348 edev->num_rss) {
3349 reset_rss_indir = true;
3350 break;
3351 }
3352 }
3353
3354 if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3355 reset_rss_indir) {
3356 u16 val;
3357
3358 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3359 u16 indir_val;
3360
3361 val = QEDE_RSS_CNT(edev);
3362 indir_val = ethtool_rxfh_indir_default(i, val);
3363 edev->rss_params.rss_ind_table[i] = indir_val;
3364 }
3365 edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3366 }
3367
3368 if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3369 netdev_rss_key_fill(edev->rss_params.rss_key,
3370 sizeof(edev->rss_params.rss_key));
3371 edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3372 }
3373
3374 if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3375 edev->rss_params.rss_caps = QED_RSS_IPV4 |
3376 QED_RSS_IPV6 |
3377 QED_RSS_IPV4_TCP |
3378 QED_RSS_IPV6_TCP;
3379 edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3380 }
3381
3382 memcpy(&vport_update_params.rss_params, &edev->rss_params,
3383 sizeof(vport_update_params.rss_params));
3384 } else {
3385 memset(&vport_update_params.rss_params, 0,
3386 sizeof(vport_update_params.rss_params));
3387 }
3388
3389 rc = edev->ops->vport_update(cdev, &vport_update_params);
3390 if (rc) {
3391 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3392 return rc;
3393 }
3394
3395 return 0;
3396 }
3397
3398 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3399 enum qed_filter_xcast_params_type opcode,
3400 unsigned char *mac, int num_macs)
3401 {
3402 struct qed_filter_params filter_cmd;
3403 int i;
3404
3405 memset(&filter_cmd, 0, sizeof(filter_cmd));
3406 filter_cmd.type = QED_FILTER_TYPE_MCAST;
3407 filter_cmd.filter.mcast.type = opcode;
3408 filter_cmd.filter.mcast.num = num_macs;
3409
3410 for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3411 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3412
3413 return edev->ops->filter_config(edev->cdev, &filter_cmd);
3414 }
3415
3416 enum qede_unload_mode {
3417 QEDE_UNLOAD_NORMAL,
3418 };
3419
3420 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3421 {
3422 struct qed_link_params link_params;
3423 int rc;
3424
3425 DP_INFO(edev, "Starting qede unload\n");
3426
3427 mutex_lock(&edev->qede_lock);
3428 edev->state = QEDE_STATE_CLOSED;
3429
3430 /* Close OS Tx */
3431 netif_tx_disable(edev->ndev);
3432 netif_carrier_off(edev->ndev);
3433
3434 /* Reset the link */
3435 memset(&link_params, 0, sizeof(link_params));
3436 link_params.link_up = false;
3437 edev->ops->common->set_link(edev->cdev, &link_params);
3438 rc = qede_stop_queues(edev);
3439 if (rc) {
3440 qede_sync_free_irqs(edev);
3441 goto out;
3442 }
3443
3444 DP_INFO(edev, "Stopped Queues\n");
3445
3446 qede_vlan_mark_nonconfigured(edev);
3447 edev->ops->fastpath_stop(edev->cdev);
3448
3449 /* Release the interrupts */
3450 qede_sync_free_irqs(edev);
3451 edev->ops->common->set_fp_int(edev->cdev, 0);
3452
3453 qede_napi_disable_remove(edev);
3454
3455 qede_free_mem_load(edev);
3456 qede_free_fp_array(edev);
3457
3458 out:
3459 mutex_unlock(&edev->qede_lock);
3460 DP_INFO(edev, "Ending qede unload\n");
3461 }
3462
3463 enum qede_load_mode {
3464 QEDE_LOAD_NORMAL,
3465 QEDE_LOAD_RELOAD,
3466 };
3467
3468 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3469 {
3470 struct qed_link_params link_params;
3471 struct qed_link_output link_output;
3472 int rc;
3473
3474 DP_INFO(edev, "Starting qede load\n");
3475
3476 rc = qede_set_num_queues(edev);
3477 if (rc)
3478 goto err0;
3479
3480 rc = qede_alloc_fp_array(edev);
3481 if (rc)
3482 goto err0;
3483
3484 qede_init_fp(edev);
3485
3486 rc = qede_alloc_mem_load(edev);
3487 if (rc)
3488 goto err1;
3489 DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3490 QEDE_RSS_CNT(edev), edev->num_tc);
3491
3492 rc = qede_set_real_num_queues(edev);
3493 if (rc)
3494 goto err2;
3495
3496 qede_napi_add_enable(edev);
3497 DP_INFO(edev, "Napi added and enabled\n");
3498
3499 rc = qede_setup_irqs(edev);
3500 if (rc)
3501 goto err3;
3502 DP_INFO(edev, "Setup IRQs succeeded\n");
3503
3504 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
3505 if (rc)
3506 goto err4;
3507 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3508
3509 /* Add primary mac and set Rx filters */
3510 ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3511
3512 mutex_lock(&edev->qede_lock);
3513 edev->state = QEDE_STATE_OPEN;
3514 mutex_unlock(&edev->qede_lock);
3515
3516 /* Program un-configured VLANs */
3517 qede_configure_vlan_filters(edev);
3518
3519 /* Ask for link-up using current configuration */
3520 memset(&link_params, 0, sizeof(link_params));
3521 link_params.link_up = true;
3522 edev->ops->common->set_link(edev->cdev, &link_params);
3523
3524 /* Query whether link is already-up */
3525 memset(&link_output, 0, sizeof(link_output));
3526 edev->ops->common->get_link(edev->cdev, &link_output);
3527 qede_link_update(edev, &link_output);
3528
3529 DP_INFO(edev, "Ending successfully qede load\n");
3530
3531 return 0;
3532
3533 err4:
3534 qede_sync_free_irqs(edev);
3535 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3536 err3:
3537 qede_napi_disable_remove(edev);
3538 err2:
3539 qede_free_mem_load(edev);
3540 err1:
3541 edev->ops->common->set_fp_int(edev->cdev, 0);
3542 qede_free_fp_array(edev);
3543 edev->num_rss = 0;
3544 err0:
3545 return rc;
3546 }
3547
3548 void qede_reload(struct qede_dev *edev,
3549 void (*func)(struct qede_dev *, union qede_reload_args *),
3550 union qede_reload_args *args)
3551 {
3552 qede_unload(edev, QEDE_UNLOAD_NORMAL);
3553 /* Call function handler to update parameters
3554 * needed for function load.
3555 */
3556 if (func)
3557 func(edev, args);
3558
3559 qede_load(edev, QEDE_LOAD_RELOAD);
3560
3561 mutex_lock(&edev->qede_lock);
3562 qede_config_rx_mode(edev->ndev);
3563 mutex_unlock(&edev->qede_lock);
3564 }
3565
3566 /* called with rtnl_lock */
3567 static int qede_open(struct net_device *ndev)
3568 {
3569 struct qede_dev *edev = netdev_priv(ndev);
3570 int rc;
3571
3572 netif_carrier_off(ndev);
3573
3574 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3575
3576 rc = qede_load(edev, QEDE_LOAD_NORMAL);
3577
3578 if (rc)
3579 return rc;
3580
3581 #ifdef CONFIG_QEDE_VXLAN
3582 vxlan_get_rx_port(ndev);
3583 #endif
3584 #ifdef CONFIG_QEDE_GENEVE
3585 geneve_get_rx_port(ndev);
3586 #endif
3587 return 0;
3588 }
3589
3590 static int qede_close(struct net_device *ndev)
3591 {
3592 struct qede_dev *edev = netdev_priv(ndev);
3593
3594 qede_unload(edev, QEDE_UNLOAD_NORMAL);
3595
3596 return 0;
3597 }
3598
3599 static void qede_link_update(void *dev, struct qed_link_output *link)
3600 {
3601 struct qede_dev *edev = dev;
3602
3603 if (!netif_running(edev->ndev)) {
3604 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3605 return;
3606 }
3607
3608 if (link->link_up) {
3609 if (!netif_carrier_ok(edev->ndev)) {
3610 DP_NOTICE(edev, "Link is up\n");
3611 netif_tx_start_all_queues(edev->ndev);
3612 netif_carrier_on(edev->ndev);
3613 }
3614 } else {
3615 if (netif_carrier_ok(edev->ndev)) {
3616 DP_NOTICE(edev, "Link is down\n");
3617 netif_tx_disable(edev->ndev);
3618 netif_carrier_off(edev->ndev);
3619 }
3620 }
3621 }
3622
3623 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3624 {
3625 struct qede_dev *edev = netdev_priv(ndev);
3626 struct sockaddr *addr = p;
3627 int rc;
3628
3629 ASSERT_RTNL(); /* @@@TBD To be removed */
3630
3631 DP_INFO(edev, "Set_mac_addr called\n");
3632
3633 if (!is_valid_ether_addr(addr->sa_data)) {
3634 DP_NOTICE(edev, "The MAC address is not valid\n");
3635 return -EFAULT;
3636 }
3637
3638 if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3639 DP_NOTICE(edev, "qed prevents setting MAC\n");
3640 return -EINVAL;
3641 }
3642
3643 ether_addr_copy(ndev->dev_addr, addr->sa_data);
3644
3645 if (!netif_running(ndev)) {
3646 DP_NOTICE(edev, "The device is currently down\n");
3647 return 0;
3648 }
3649
3650 /* Remove the previous primary mac */
3651 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3652 edev->primary_mac);
3653 if (rc)
3654 return rc;
3655
3656 /* Add MAC filter according to the new unicast HW MAC address */
3657 ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3658 return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3659 edev->primary_mac);
3660 }
3661
3662 static int
3663 qede_configure_mcast_filtering(struct net_device *ndev,
3664 enum qed_filter_rx_mode_type *accept_flags)
3665 {
3666 struct qede_dev *edev = netdev_priv(ndev);
3667 unsigned char *mc_macs, *temp;
3668 struct netdev_hw_addr *ha;
3669 int rc = 0, mc_count;
3670 size_t size;
3671
3672 size = 64 * ETH_ALEN;
3673
3674 mc_macs = kzalloc(size, GFP_KERNEL);
3675 if (!mc_macs) {
3676 DP_NOTICE(edev,
3677 "Failed to allocate memory for multicast MACs\n");
3678 rc = -ENOMEM;
3679 goto exit;
3680 }
3681
3682 temp = mc_macs;
3683
3684 /* Remove all previously configured MAC filters */
3685 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3686 mc_macs, 1);
3687 if (rc)
3688 goto exit;
3689
3690 netif_addr_lock_bh(ndev);
3691
3692 mc_count = netdev_mc_count(ndev);
3693 if (mc_count < 64) {
3694 netdev_for_each_mc_addr(ha, ndev) {
3695 ether_addr_copy(temp, ha->addr);
3696 temp += ETH_ALEN;
3697 }
3698 }
3699
3700 netif_addr_unlock_bh(ndev);
3701
3702 /* Check for all multicast @@@TBD resource allocation */
3703 if ((ndev->flags & IFF_ALLMULTI) ||
3704 (mc_count > 64)) {
3705 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3706 *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3707 } else {
3708 /* Add all multicast MAC filters */
3709 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3710 mc_macs, mc_count);
3711 }
3712
3713 exit:
3714 kfree(mc_macs);
3715 return rc;
3716 }
3717
3718 static void qede_set_rx_mode(struct net_device *ndev)
3719 {
3720 struct qede_dev *edev = netdev_priv(ndev);
3721
3722 DP_INFO(edev, "qede_set_rx_mode called\n");
3723
3724 if (edev->state != QEDE_STATE_OPEN) {
3725 DP_INFO(edev,
3726 "qede_set_rx_mode called while interface is down\n");
3727 } else {
3728 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3729 schedule_delayed_work(&edev->sp_task, 0);
3730 }
3731 }
3732
3733 /* Must be called with qede_lock held */
3734 static void qede_config_rx_mode(struct net_device *ndev)
3735 {
3736 enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3737 struct qede_dev *edev = netdev_priv(ndev);
3738 struct qed_filter_params rx_mode;
3739 unsigned char *uc_macs, *temp;
3740 struct netdev_hw_addr *ha;
3741 int rc, uc_count;
3742 size_t size;
3743
3744 netif_addr_lock_bh(ndev);
3745
3746 uc_count = netdev_uc_count(ndev);
3747 size = uc_count * ETH_ALEN;
3748
3749 uc_macs = kzalloc(size, GFP_ATOMIC);
3750 if (!uc_macs) {
3751 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3752 netif_addr_unlock_bh(ndev);
3753 return;
3754 }
3755
3756 temp = uc_macs;
3757 netdev_for_each_uc_addr(ha, ndev) {
3758 ether_addr_copy(temp, ha->addr);
3759 temp += ETH_ALEN;
3760 }
3761
3762 netif_addr_unlock_bh(ndev);
3763
3764 /* Configure the struct for the Rx mode */
3765 memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3766 rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3767
3768 /* Remove all previous unicast secondary macs and multicast macs
3769 * (configrue / leave the primary mac)
3770 */
3771 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3772 edev->primary_mac);
3773 if (rc)
3774 goto out;
3775
3776 /* Check for promiscuous */
3777 if ((ndev->flags & IFF_PROMISC) ||
3778 (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3779 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3780 } else {
3781 /* Add MAC filters according to the unicast secondary macs */
3782 int i;
3783
3784 temp = uc_macs;
3785 for (i = 0; i < uc_count; i++) {
3786 rc = qede_set_ucast_rx_mac(edev,
3787 QED_FILTER_XCAST_TYPE_ADD,
3788 temp);
3789 if (rc)
3790 goto out;
3791
3792 temp += ETH_ALEN;
3793 }
3794
3795 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3796 if (rc)
3797 goto out;
3798 }
3799
3800 /* take care of VLAN mode */
3801 if (ndev->flags & IFF_PROMISC) {
3802 qede_config_accept_any_vlan(edev, true);
3803 } else if (!edev->non_configured_vlans) {
3804 /* It's possible that accept_any_vlan mode is set due to a
3805 * previous setting of IFF_PROMISC. If vlan credits are
3806 * sufficient, disable accept_any_vlan.
3807 */
3808 qede_config_accept_any_vlan(edev, false);
3809 }
3810
3811 rx_mode.filter.accept_flags = accept_flags;
3812 edev->ops->filter_config(edev->cdev, &rx_mode);
3813 out:
3814 kfree(uc_macs);
3815 }
This page took 0.11682 seconds and 6 git commands to generate.