Merge tag 'arc-4.1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qla3xxx.c
1 /*
2 * QLogic QLA3xxx NIC HBA Driver
3 * Copyright (c) 2003-2006 QLogic Corporation
4 *
5 * See LICENSE.qla3xxx for copyright and licensing details.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/ip.h>
26 #include <linux/in.h>
27 #include <linux/if_arp.h>
28 #include <linux/if_ether.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/ethtool.h>
32 #include <linux/skbuff.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/if_vlan.h>
35 #include <linux/delay.h>
36 #include <linux/mm.h>
37 #include <linux/prefetch.h>
38
39 #include "qla3xxx.h"
40
41 #define DRV_NAME "qla3xxx"
42 #define DRV_STRING "QLogic ISP3XXX Network Driver"
43 #define DRV_VERSION "v2.03.00-k5"
44
45 static const char ql3xxx_driver_name[] = DRV_NAME;
46 static const char ql3xxx_driver_version[] = DRV_VERSION;
47
48 #define TIMED_OUT_MSG \
49 "Timed out waiting for management port to get free before issuing command\n"
50
51 MODULE_AUTHOR("QLogic Corporation");
52 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
53 MODULE_LICENSE("GPL");
54 MODULE_VERSION(DRV_VERSION);
55
56 static const u32 default_msg
57 = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
58 | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
59
60 static int debug = -1; /* defaults above */
61 module_param(debug, int, 0);
62 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
63
64 static int msi;
65 module_param(msi, int, 0);
66 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
67
68 static const struct pci_device_id ql3xxx_pci_tbl[] = {
69 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
70 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
71 /* required last entry */
72 {0,}
73 };
74
75 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
76
77 /*
78 * These are the known PHY's which are used
79 */
80 enum PHY_DEVICE_TYPE {
81 PHY_TYPE_UNKNOWN = 0,
82 PHY_VITESSE_VSC8211,
83 PHY_AGERE_ET1011C,
84 MAX_PHY_DEV_TYPES
85 };
86
87 struct PHY_DEVICE_INFO {
88 const enum PHY_DEVICE_TYPE phyDevice;
89 const u32 phyIdOUI;
90 const u16 phyIdModel;
91 const char *name;
92 };
93
94 static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
95 {PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
96 {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
97 {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
98 };
99
100
101 /*
102 * Caller must take hw_lock.
103 */
104 static int ql_sem_spinlock(struct ql3_adapter *qdev,
105 u32 sem_mask, u32 sem_bits)
106 {
107 struct ql3xxx_port_registers __iomem *port_regs =
108 qdev->mem_map_registers;
109 u32 value;
110 unsigned int seconds = 3;
111
112 do {
113 writel((sem_mask | sem_bits),
114 &port_regs->CommonRegs.semaphoreReg);
115 value = readl(&port_regs->CommonRegs.semaphoreReg);
116 if ((value & (sem_mask >> 16)) == sem_bits)
117 return 0;
118 ssleep(1);
119 } while (--seconds);
120 return -1;
121 }
122
123 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
124 {
125 struct ql3xxx_port_registers __iomem *port_regs =
126 qdev->mem_map_registers;
127 writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
128 readl(&port_regs->CommonRegs.semaphoreReg);
129 }
130
131 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
132 {
133 struct ql3xxx_port_registers __iomem *port_regs =
134 qdev->mem_map_registers;
135 u32 value;
136
137 writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
138 value = readl(&port_regs->CommonRegs.semaphoreReg);
139 return ((value & (sem_mask >> 16)) == sem_bits);
140 }
141
142 /*
143 * Caller holds hw_lock.
144 */
145 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
146 {
147 int i = 0;
148
149 do {
150 if (ql_sem_lock(qdev,
151 QL_DRVR_SEM_MASK,
152 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
153 * 2) << 1)) {
154 netdev_printk(KERN_DEBUG, qdev->ndev,
155 "driver lock acquired\n");
156 return 1;
157 }
158 ssleep(1);
159 } while (++i < 10);
160
161 netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
162 return 0;
163 }
164
165 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
166 {
167 struct ql3xxx_port_registers __iomem *port_regs =
168 qdev->mem_map_registers;
169
170 writel(((ISP_CONTROL_NP_MASK << 16) | page),
171 &port_regs->CommonRegs.ispControlStatus);
172 readl(&port_regs->CommonRegs.ispControlStatus);
173 qdev->current_page = page;
174 }
175
176 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
177 {
178 u32 value;
179 unsigned long hw_flags;
180
181 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
182 value = readl(reg);
183 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
184
185 return value;
186 }
187
188 static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
189 {
190 return readl(reg);
191 }
192
193 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
194 {
195 u32 value;
196 unsigned long hw_flags;
197
198 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
199
200 if (qdev->current_page != 0)
201 ql_set_register_page(qdev, 0);
202 value = readl(reg);
203
204 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
205 return value;
206 }
207
208 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
209 {
210 if (qdev->current_page != 0)
211 ql_set_register_page(qdev, 0);
212 return readl(reg);
213 }
214
215 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
216 u32 __iomem *reg, u32 value)
217 {
218 unsigned long hw_flags;
219
220 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
221 writel(value, reg);
222 readl(reg);
223 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
224 }
225
226 static void ql_write_common_reg(struct ql3_adapter *qdev,
227 u32 __iomem *reg, u32 value)
228 {
229 writel(value, reg);
230 readl(reg);
231 }
232
233 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
234 u32 __iomem *reg, u32 value)
235 {
236 writel(value, reg);
237 readl(reg);
238 udelay(1);
239 }
240
241 static void ql_write_page0_reg(struct ql3_adapter *qdev,
242 u32 __iomem *reg, u32 value)
243 {
244 if (qdev->current_page != 0)
245 ql_set_register_page(qdev, 0);
246 writel(value, reg);
247 readl(reg);
248 }
249
250 /*
251 * Caller holds hw_lock. Only called during init.
252 */
253 static void ql_write_page1_reg(struct ql3_adapter *qdev,
254 u32 __iomem *reg, u32 value)
255 {
256 if (qdev->current_page != 1)
257 ql_set_register_page(qdev, 1);
258 writel(value, reg);
259 readl(reg);
260 }
261
262 /*
263 * Caller holds hw_lock. Only called during init.
264 */
265 static void ql_write_page2_reg(struct ql3_adapter *qdev,
266 u32 __iomem *reg, u32 value)
267 {
268 if (qdev->current_page != 2)
269 ql_set_register_page(qdev, 2);
270 writel(value, reg);
271 readl(reg);
272 }
273
274 static void ql_disable_interrupts(struct ql3_adapter *qdev)
275 {
276 struct ql3xxx_port_registers __iomem *port_regs =
277 qdev->mem_map_registers;
278
279 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
280 (ISP_IMR_ENABLE_INT << 16));
281
282 }
283
284 static void ql_enable_interrupts(struct ql3_adapter *qdev)
285 {
286 struct ql3xxx_port_registers __iomem *port_regs =
287 qdev->mem_map_registers;
288
289 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
290 ((0xff << 16) | ISP_IMR_ENABLE_INT));
291
292 }
293
294 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
295 struct ql_rcv_buf_cb *lrg_buf_cb)
296 {
297 dma_addr_t map;
298 int err;
299 lrg_buf_cb->next = NULL;
300
301 if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
302 qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
303 } else {
304 qdev->lrg_buf_free_tail->next = lrg_buf_cb;
305 qdev->lrg_buf_free_tail = lrg_buf_cb;
306 }
307
308 if (!lrg_buf_cb->skb) {
309 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
310 qdev->lrg_buffer_len);
311 if (unlikely(!lrg_buf_cb->skb)) {
312 qdev->lrg_buf_skb_check++;
313 } else {
314 /*
315 * We save some space to copy the ethhdr from first
316 * buffer
317 */
318 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
319 map = pci_map_single(qdev->pdev,
320 lrg_buf_cb->skb->data,
321 qdev->lrg_buffer_len -
322 QL_HEADER_SPACE,
323 PCI_DMA_FROMDEVICE);
324 err = pci_dma_mapping_error(qdev->pdev, map);
325 if (err) {
326 netdev_err(qdev->ndev,
327 "PCI mapping failed with error: %d\n",
328 err);
329 dev_kfree_skb(lrg_buf_cb->skb);
330 lrg_buf_cb->skb = NULL;
331
332 qdev->lrg_buf_skb_check++;
333 return;
334 }
335
336 lrg_buf_cb->buf_phy_addr_low =
337 cpu_to_le32(LS_64BITS(map));
338 lrg_buf_cb->buf_phy_addr_high =
339 cpu_to_le32(MS_64BITS(map));
340 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
341 dma_unmap_len_set(lrg_buf_cb, maplen,
342 qdev->lrg_buffer_len -
343 QL_HEADER_SPACE);
344 }
345 }
346
347 qdev->lrg_buf_free_count++;
348 }
349
350 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
351 *qdev)
352 {
353 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
354
355 if (lrg_buf_cb != NULL) {
356 qdev->lrg_buf_free_head = lrg_buf_cb->next;
357 if (qdev->lrg_buf_free_head == NULL)
358 qdev->lrg_buf_free_tail = NULL;
359 qdev->lrg_buf_free_count--;
360 }
361
362 return lrg_buf_cb;
363 }
364
365 static u32 addrBits = EEPROM_NO_ADDR_BITS;
366 static u32 dataBits = EEPROM_NO_DATA_BITS;
367
368 static void fm93c56a_deselect(struct ql3_adapter *qdev);
369 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
370 unsigned short *value);
371
372 /*
373 * Caller holds hw_lock.
374 */
375 static void fm93c56a_select(struct ql3_adapter *qdev)
376 {
377 struct ql3xxx_port_registers __iomem *port_regs =
378 qdev->mem_map_registers;
379 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
380
381 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
382 ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
383 ql_write_nvram_reg(qdev, spir,
384 ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
385 }
386
387 /*
388 * Caller holds hw_lock.
389 */
390 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
391 {
392 int i;
393 u32 mask;
394 u32 dataBit;
395 u32 previousBit;
396 struct ql3xxx_port_registers __iomem *port_regs =
397 qdev->mem_map_registers;
398 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
399
400 /* Clock in a zero, then do the start bit */
401 ql_write_nvram_reg(qdev, spir,
402 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
403 AUBURN_EEPROM_DO_1));
404 ql_write_nvram_reg(qdev, spir,
405 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
406 AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
407 ql_write_nvram_reg(qdev, spir,
408 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
409 AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
410
411 mask = 1 << (FM93C56A_CMD_BITS - 1);
412 /* Force the previous data bit to be different */
413 previousBit = 0xffff;
414 for (i = 0; i < FM93C56A_CMD_BITS; i++) {
415 dataBit = (cmd & mask)
416 ? AUBURN_EEPROM_DO_1
417 : AUBURN_EEPROM_DO_0;
418 if (previousBit != dataBit) {
419 /* If the bit changed, change the DO state to match */
420 ql_write_nvram_reg(qdev, spir,
421 (ISP_NVRAM_MASK |
422 qdev->eeprom_cmd_data | dataBit));
423 previousBit = dataBit;
424 }
425 ql_write_nvram_reg(qdev, spir,
426 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
427 dataBit | AUBURN_EEPROM_CLK_RISE));
428 ql_write_nvram_reg(qdev, spir,
429 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
430 dataBit | AUBURN_EEPROM_CLK_FALL));
431 cmd = cmd << 1;
432 }
433
434 mask = 1 << (addrBits - 1);
435 /* Force the previous data bit to be different */
436 previousBit = 0xffff;
437 for (i = 0; i < addrBits; i++) {
438 dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
439 : AUBURN_EEPROM_DO_0;
440 if (previousBit != dataBit) {
441 /*
442 * If the bit changed, then change the DO state to
443 * match
444 */
445 ql_write_nvram_reg(qdev, spir,
446 (ISP_NVRAM_MASK |
447 qdev->eeprom_cmd_data | dataBit));
448 previousBit = dataBit;
449 }
450 ql_write_nvram_reg(qdev, spir,
451 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
452 dataBit | AUBURN_EEPROM_CLK_RISE));
453 ql_write_nvram_reg(qdev, spir,
454 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
455 dataBit | AUBURN_EEPROM_CLK_FALL));
456 eepromAddr = eepromAddr << 1;
457 }
458 }
459
460 /*
461 * Caller holds hw_lock.
462 */
463 static void fm93c56a_deselect(struct ql3_adapter *qdev)
464 {
465 struct ql3xxx_port_registers __iomem *port_regs =
466 qdev->mem_map_registers;
467 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
468
469 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
470 ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
471 }
472
473 /*
474 * Caller holds hw_lock.
475 */
476 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
477 {
478 int i;
479 u32 data = 0;
480 u32 dataBit;
481 struct ql3xxx_port_registers __iomem *port_regs =
482 qdev->mem_map_registers;
483 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
484
485 /* Read the data bits */
486 /* The first bit is a dummy. Clock right over it. */
487 for (i = 0; i < dataBits; i++) {
488 ql_write_nvram_reg(qdev, spir,
489 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
490 AUBURN_EEPROM_CLK_RISE);
491 ql_write_nvram_reg(qdev, spir,
492 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
493 AUBURN_EEPROM_CLK_FALL);
494 dataBit = (ql_read_common_reg(qdev, spir) &
495 AUBURN_EEPROM_DI_1) ? 1 : 0;
496 data = (data << 1) | dataBit;
497 }
498 *value = (u16)data;
499 }
500
501 /*
502 * Caller holds hw_lock.
503 */
504 static void eeprom_readword(struct ql3_adapter *qdev,
505 u32 eepromAddr, unsigned short *value)
506 {
507 fm93c56a_select(qdev);
508 fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
509 fm93c56a_datain(qdev, value);
510 fm93c56a_deselect(qdev);
511 }
512
513 static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
514 {
515 __le16 *p = (__le16 *)ndev->dev_addr;
516 p[0] = cpu_to_le16(addr[0]);
517 p[1] = cpu_to_le16(addr[1]);
518 p[2] = cpu_to_le16(addr[2]);
519 }
520
521 static int ql_get_nvram_params(struct ql3_adapter *qdev)
522 {
523 u16 *pEEPROMData;
524 u16 checksum = 0;
525 u32 index;
526 unsigned long hw_flags;
527
528 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
529
530 pEEPROMData = (u16 *)&qdev->nvram_data;
531 qdev->eeprom_cmd_data = 0;
532 if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
533 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
534 2) << 10)) {
535 pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
536 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
537 return -1;
538 }
539
540 for (index = 0; index < EEPROM_SIZE; index++) {
541 eeprom_readword(qdev, index, pEEPROMData);
542 checksum += *pEEPROMData;
543 pEEPROMData++;
544 }
545 ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
546
547 if (checksum != 0) {
548 netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
549 checksum);
550 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
551 return -1;
552 }
553
554 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
555 return checksum;
556 }
557
558 static const u32 PHYAddr[2] = {
559 PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
560 };
561
562 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
563 {
564 struct ql3xxx_port_registers __iomem *port_regs =
565 qdev->mem_map_registers;
566 u32 temp;
567 int count = 1000;
568
569 while (count) {
570 temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
571 if (!(temp & MAC_MII_STATUS_BSY))
572 return 0;
573 udelay(10);
574 count--;
575 }
576 return -1;
577 }
578
579 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
580 {
581 struct ql3xxx_port_registers __iomem *port_regs =
582 qdev->mem_map_registers;
583 u32 scanControl;
584
585 if (qdev->numPorts > 1) {
586 /* Auto scan will cycle through multiple ports */
587 scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
588 } else {
589 scanControl = MAC_MII_CONTROL_SC;
590 }
591
592 /*
593 * Scan register 1 of PHY/PETBI,
594 * Set up to scan both devices
595 * The autoscan starts from the first register, completes
596 * the last one before rolling over to the first
597 */
598 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
599 PHYAddr[0] | MII_SCAN_REGISTER);
600
601 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
602 (scanControl) |
603 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
604 }
605
606 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
607 {
608 u8 ret;
609 struct ql3xxx_port_registers __iomem *port_regs =
610 qdev->mem_map_registers;
611
612 /* See if scan mode is enabled before we turn it off */
613 if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
614 (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
615 /* Scan is enabled */
616 ret = 1;
617 } else {
618 /* Scan is disabled */
619 ret = 0;
620 }
621
622 /*
623 * When disabling scan mode you must first change the MII register
624 * address
625 */
626 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
627 PHYAddr[0] | MII_SCAN_REGISTER);
628
629 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
630 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
631 MAC_MII_CONTROL_RC) << 16));
632
633 return ret;
634 }
635
636 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
637 u16 regAddr, u16 value, u32 phyAddr)
638 {
639 struct ql3xxx_port_registers __iomem *port_regs =
640 qdev->mem_map_registers;
641 u8 scanWasEnabled;
642
643 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
644
645 if (ql_wait_for_mii_ready(qdev)) {
646 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
647 return -1;
648 }
649
650 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
651 phyAddr | regAddr);
652
653 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
654
655 /* Wait for write to complete 9/10/04 SJP */
656 if (ql_wait_for_mii_ready(qdev)) {
657 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
658 return -1;
659 }
660
661 if (scanWasEnabled)
662 ql_mii_enable_scan_mode(qdev);
663
664 return 0;
665 }
666
667 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
668 u16 *value, u32 phyAddr)
669 {
670 struct ql3xxx_port_registers __iomem *port_regs =
671 qdev->mem_map_registers;
672 u8 scanWasEnabled;
673 u32 temp;
674
675 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
676
677 if (ql_wait_for_mii_ready(qdev)) {
678 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
679 return -1;
680 }
681
682 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
683 phyAddr | regAddr);
684
685 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
686 (MAC_MII_CONTROL_RC << 16));
687
688 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
689 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
690
691 /* Wait for the read to complete */
692 if (ql_wait_for_mii_ready(qdev)) {
693 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
694 return -1;
695 }
696
697 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
698 *value = (u16) temp;
699
700 if (scanWasEnabled)
701 ql_mii_enable_scan_mode(qdev);
702
703 return 0;
704 }
705
706 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
707 {
708 struct ql3xxx_port_registers __iomem *port_regs =
709 qdev->mem_map_registers;
710
711 ql_mii_disable_scan_mode(qdev);
712
713 if (ql_wait_for_mii_ready(qdev)) {
714 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
715 return -1;
716 }
717
718 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
719 qdev->PHYAddr | regAddr);
720
721 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
722
723 /* Wait for write to complete. */
724 if (ql_wait_for_mii_ready(qdev)) {
725 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
726 return -1;
727 }
728
729 ql_mii_enable_scan_mode(qdev);
730
731 return 0;
732 }
733
734 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
735 {
736 u32 temp;
737 struct ql3xxx_port_registers __iomem *port_regs =
738 qdev->mem_map_registers;
739
740 ql_mii_disable_scan_mode(qdev);
741
742 if (ql_wait_for_mii_ready(qdev)) {
743 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
744 return -1;
745 }
746
747 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
748 qdev->PHYAddr | regAddr);
749
750 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
751 (MAC_MII_CONTROL_RC << 16));
752
753 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
754 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
755
756 /* Wait for the read to complete */
757 if (ql_wait_for_mii_ready(qdev)) {
758 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
759 return -1;
760 }
761
762 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
763 *value = (u16) temp;
764
765 ql_mii_enable_scan_mode(qdev);
766
767 return 0;
768 }
769
770 static void ql_petbi_reset(struct ql3_adapter *qdev)
771 {
772 ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
773 }
774
775 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
776 {
777 u16 reg;
778
779 /* Enable Auto-negotiation sense */
780 ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
781 reg |= PETBI_TBI_AUTO_SENSE;
782 ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
783
784 ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
785 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
786
787 ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
788 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
789 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
790
791 }
792
793 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
794 {
795 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
796 PHYAddr[qdev->mac_index]);
797 }
798
799 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
800 {
801 u16 reg;
802
803 /* Enable Auto-negotiation sense */
804 ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
805 PHYAddr[qdev->mac_index]);
806 reg |= PETBI_TBI_AUTO_SENSE;
807 ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
808 PHYAddr[qdev->mac_index]);
809
810 ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
811 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
812 PHYAddr[qdev->mac_index]);
813
814 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
815 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
816 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
817 PHYAddr[qdev->mac_index]);
818 }
819
820 static void ql_petbi_init(struct ql3_adapter *qdev)
821 {
822 ql_petbi_reset(qdev);
823 ql_petbi_start_neg(qdev);
824 }
825
826 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
827 {
828 ql_petbi_reset_ex(qdev);
829 ql_petbi_start_neg_ex(qdev);
830 }
831
832 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
833 {
834 u16 reg;
835
836 if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
837 return 0;
838
839 return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
840 }
841
842 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
843 {
844 netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
845 /* power down device bit 11 = 1 */
846 ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
847 /* enable diagnostic mode bit 2 = 1 */
848 ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
849 /* 1000MB amplitude adjust (see Agere errata) */
850 ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
851 /* 1000MB amplitude adjust (see Agere errata) */
852 ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
853 /* 100MB amplitude adjust (see Agere errata) */
854 ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
855 /* 100MB amplitude adjust (see Agere errata) */
856 ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
857 /* 10MB amplitude adjust (see Agere errata) */
858 ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
859 /* 10MB amplitude adjust (see Agere errata) */
860 ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
861 /* point to hidden reg 0x2806 */
862 ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
863 /* Write new PHYAD w/bit 5 set */
864 ql_mii_write_reg_ex(qdev, 0x11,
865 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
866 /*
867 * Disable diagnostic mode bit 2 = 0
868 * Power up device bit 11 = 0
869 * Link up (on) and activity (blink)
870 */
871 ql_mii_write_reg(qdev, 0x12, 0x840a);
872 ql_mii_write_reg(qdev, 0x00, 0x1140);
873 ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
874 }
875
876 static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
877 u16 phyIdReg0, u16 phyIdReg1)
878 {
879 enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
880 u32 oui;
881 u16 model;
882 int i;
883
884 if (phyIdReg0 == 0xffff)
885 return result;
886
887 if (phyIdReg1 == 0xffff)
888 return result;
889
890 /* oui is split between two registers */
891 oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
892
893 model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
894
895 /* Scan table for this PHY */
896 for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
897 if ((oui == PHY_DEVICES[i].phyIdOUI) &&
898 (model == PHY_DEVICES[i].phyIdModel)) {
899 netdev_info(qdev->ndev, "Phy: %s\n",
900 PHY_DEVICES[i].name);
901 result = PHY_DEVICES[i].phyDevice;
902 break;
903 }
904 }
905
906 return result;
907 }
908
909 static int ql_phy_get_speed(struct ql3_adapter *qdev)
910 {
911 u16 reg;
912
913 switch (qdev->phyType) {
914 case PHY_AGERE_ET1011C: {
915 if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
916 return 0;
917
918 reg = (reg >> 8) & 3;
919 break;
920 }
921 default:
922 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
923 return 0;
924
925 reg = (((reg & 0x18) >> 3) & 3);
926 }
927
928 switch (reg) {
929 case 2:
930 return SPEED_1000;
931 case 1:
932 return SPEED_100;
933 case 0:
934 return SPEED_10;
935 default:
936 return -1;
937 }
938 }
939
940 static int ql_is_full_dup(struct ql3_adapter *qdev)
941 {
942 u16 reg;
943
944 switch (qdev->phyType) {
945 case PHY_AGERE_ET1011C: {
946 if (ql_mii_read_reg(qdev, 0x1A, &reg))
947 return 0;
948
949 return ((reg & 0x0080) && (reg & 0x1000)) != 0;
950 }
951 case PHY_VITESSE_VSC8211:
952 default: {
953 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
954 return 0;
955 return (reg & PHY_AUX_DUPLEX_STAT) != 0;
956 }
957 }
958 }
959
960 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
961 {
962 u16 reg;
963
964 if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
965 return 0;
966
967 return (reg & PHY_NEG_PAUSE) != 0;
968 }
969
970 static int PHY_Setup(struct ql3_adapter *qdev)
971 {
972 u16 reg1;
973 u16 reg2;
974 bool agereAddrChangeNeeded = false;
975 u32 miiAddr = 0;
976 int err;
977
978 /* Determine the PHY we are using by reading the ID's */
979 err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
980 if (err != 0) {
981 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
982 return err;
983 }
984
985 err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
986 if (err != 0) {
987 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
988 return err;
989 }
990
991 /* Check if we have a Agere PHY */
992 if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
993
994 /* Determine which MII address we should be using
995 determined by the index of the card */
996 if (qdev->mac_index == 0)
997 miiAddr = MII_AGERE_ADDR_1;
998 else
999 miiAddr = MII_AGERE_ADDR_2;
1000
1001 err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
1002 if (err != 0) {
1003 netdev_err(qdev->ndev,
1004 "Could not read from reg PHY_ID_0_REG after Agere detected\n");
1005 return err;
1006 }
1007
1008 err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1009 if (err != 0) {
1010 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
1011 return err;
1012 }
1013
1014 /* We need to remember to initialize the Agere PHY */
1015 agereAddrChangeNeeded = true;
1016 }
1017
1018 /* Determine the particular PHY we have on board to apply
1019 PHY specific initializations */
1020 qdev->phyType = getPhyType(qdev, reg1, reg2);
1021
1022 if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1023 /* need this here so address gets changed */
1024 phyAgereSpecificInit(qdev, miiAddr);
1025 } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1026 netdev_err(qdev->ndev, "PHY is unknown\n");
1027 return -EIO;
1028 }
1029
1030 return 0;
1031 }
1032
1033 /*
1034 * Caller holds hw_lock.
1035 */
1036 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1037 {
1038 struct ql3xxx_port_registers __iomem *port_regs =
1039 qdev->mem_map_registers;
1040 u32 value;
1041
1042 if (enable)
1043 value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1044 else
1045 value = (MAC_CONFIG_REG_PE << 16);
1046
1047 if (qdev->mac_index)
1048 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1049 else
1050 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1051 }
1052
1053 /*
1054 * Caller holds hw_lock.
1055 */
1056 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1057 {
1058 struct ql3xxx_port_registers __iomem *port_regs =
1059 qdev->mem_map_registers;
1060 u32 value;
1061
1062 if (enable)
1063 value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1064 else
1065 value = (MAC_CONFIG_REG_SR << 16);
1066
1067 if (qdev->mac_index)
1068 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1069 else
1070 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1071 }
1072
1073 /*
1074 * Caller holds hw_lock.
1075 */
1076 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1077 {
1078 struct ql3xxx_port_registers __iomem *port_regs =
1079 qdev->mem_map_registers;
1080 u32 value;
1081
1082 if (enable)
1083 value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1084 else
1085 value = (MAC_CONFIG_REG_GM << 16);
1086
1087 if (qdev->mac_index)
1088 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1089 else
1090 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1091 }
1092
1093 /*
1094 * Caller holds hw_lock.
1095 */
1096 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1097 {
1098 struct ql3xxx_port_registers __iomem *port_regs =
1099 qdev->mem_map_registers;
1100 u32 value;
1101
1102 if (enable)
1103 value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1104 else
1105 value = (MAC_CONFIG_REG_FD << 16);
1106
1107 if (qdev->mac_index)
1108 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1109 else
1110 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1111 }
1112
1113 /*
1114 * Caller holds hw_lock.
1115 */
1116 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1117 {
1118 struct ql3xxx_port_registers __iomem *port_regs =
1119 qdev->mem_map_registers;
1120 u32 value;
1121
1122 if (enable)
1123 value =
1124 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1125 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1126 else
1127 value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1128
1129 if (qdev->mac_index)
1130 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1131 else
1132 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1133 }
1134
1135 /*
1136 * Caller holds hw_lock.
1137 */
1138 static int ql_is_fiber(struct ql3_adapter *qdev)
1139 {
1140 struct ql3xxx_port_registers __iomem *port_regs =
1141 qdev->mem_map_registers;
1142 u32 bitToCheck = 0;
1143 u32 temp;
1144
1145 switch (qdev->mac_index) {
1146 case 0:
1147 bitToCheck = PORT_STATUS_SM0;
1148 break;
1149 case 1:
1150 bitToCheck = PORT_STATUS_SM1;
1151 break;
1152 }
1153
1154 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1155 return (temp & bitToCheck) != 0;
1156 }
1157
1158 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1159 {
1160 u16 reg;
1161 ql_mii_read_reg(qdev, 0x00, &reg);
1162 return (reg & 0x1000) != 0;
1163 }
1164
1165 /*
1166 * Caller holds hw_lock.
1167 */
1168 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1169 {
1170 struct ql3xxx_port_registers __iomem *port_regs =
1171 qdev->mem_map_registers;
1172 u32 bitToCheck = 0;
1173 u32 temp;
1174
1175 switch (qdev->mac_index) {
1176 case 0:
1177 bitToCheck = PORT_STATUS_AC0;
1178 break;
1179 case 1:
1180 bitToCheck = PORT_STATUS_AC1;
1181 break;
1182 }
1183
1184 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1185 if (temp & bitToCheck) {
1186 netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
1187 return 1;
1188 }
1189 netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
1190 return 0;
1191 }
1192
1193 /*
1194 * ql_is_neg_pause() returns 1 if pause was negotiated to be on
1195 */
1196 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1197 {
1198 if (ql_is_fiber(qdev))
1199 return ql_is_petbi_neg_pause(qdev);
1200 else
1201 return ql_is_phy_neg_pause(qdev);
1202 }
1203
1204 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1205 {
1206 struct ql3xxx_port_registers __iomem *port_regs =
1207 qdev->mem_map_registers;
1208 u32 bitToCheck = 0;
1209 u32 temp;
1210
1211 switch (qdev->mac_index) {
1212 case 0:
1213 bitToCheck = PORT_STATUS_AE0;
1214 break;
1215 case 1:
1216 bitToCheck = PORT_STATUS_AE1;
1217 break;
1218 }
1219 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1220 return (temp & bitToCheck) != 0;
1221 }
1222
1223 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1224 {
1225 if (ql_is_fiber(qdev))
1226 return SPEED_1000;
1227 else
1228 return ql_phy_get_speed(qdev);
1229 }
1230
1231 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1232 {
1233 if (ql_is_fiber(qdev))
1234 return 1;
1235 else
1236 return ql_is_full_dup(qdev);
1237 }
1238
1239 /*
1240 * Caller holds hw_lock.
1241 */
1242 static int ql_link_down_detect(struct ql3_adapter *qdev)
1243 {
1244 struct ql3xxx_port_registers __iomem *port_regs =
1245 qdev->mem_map_registers;
1246 u32 bitToCheck = 0;
1247 u32 temp;
1248
1249 switch (qdev->mac_index) {
1250 case 0:
1251 bitToCheck = ISP_CONTROL_LINK_DN_0;
1252 break;
1253 case 1:
1254 bitToCheck = ISP_CONTROL_LINK_DN_1;
1255 break;
1256 }
1257
1258 temp =
1259 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1260 return (temp & bitToCheck) != 0;
1261 }
1262
1263 /*
1264 * Caller holds hw_lock.
1265 */
1266 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1267 {
1268 struct ql3xxx_port_registers __iomem *port_regs =
1269 qdev->mem_map_registers;
1270
1271 switch (qdev->mac_index) {
1272 case 0:
1273 ql_write_common_reg(qdev,
1274 &port_regs->CommonRegs.ispControlStatus,
1275 (ISP_CONTROL_LINK_DN_0) |
1276 (ISP_CONTROL_LINK_DN_0 << 16));
1277 break;
1278
1279 case 1:
1280 ql_write_common_reg(qdev,
1281 &port_regs->CommonRegs.ispControlStatus,
1282 (ISP_CONTROL_LINK_DN_1) |
1283 (ISP_CONTROL_LINK_DN_1 << 16));
1284 break;
1285
1286 default:
1287 return 1;
1288 }
1289
1290 return 0;
1291 }
1292
1293 /*
1294 * Caller holds hw_lock.
1295 */
1296 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1297 {
1298 struct ql3xxx_port_registers __iomem *port_regs =
1299 qdev->mem_map_registers;
1300 u32 bitToCheck = 0;
1301 u32 temp;
1302
1303 switch (qdev->mac_index) {
1304 case 0:
1305 bitToCheck = PORT_STATUS_F1_ENABLED;
1306 break;
1307 case 1:
1308 bitToCheck = PORT_STATUS_F3_ENABLED;
1309 break;
1310 default:
1311 break;
1312 }
1313
1314 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1315 if (temp & bitToCheck) {
1316 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1317 "not link master\n");
1318 return 0;
1319 }
1320
1321 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
1322 return 1;
1323 }
1324
1325 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1326 {
1327 ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1328 PHYAddr[qdev->mac_index]);
1329 }
1330
1331 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1332 {
1333 u16 reg;
1334 u16 portConfiguration;
1335
1336 if (qdev->phyType == PHY_AGERE_ET1011C)
1337 ql_mii_write_reg(qdev, 0x13, 0x0000);
1338 /* turn off external loopback */
1339
1340 if (qdev->mac_index == 0)
1341 portConfiguration =
1342 qdev->nvram_data.macCfg_port0.portConfiguration;
1343 else
1344 portConfiguration =
1345 qdev->nvram_data.macCfg_port1.portConfiguration;
1346
1347 /* Some HBA's in the field are set to 0 and they need to
1348 be reinterpreted with a default value */
1349 if (portConfiguration == 0)
1350 portConfiguration = PORT_CONFIG_DEFAULT;
1351
1352 /* Set the 1000 advertisements */
1353 ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1354 PHYAddr[qdev->mac_index]);
1355 reg &= ~PHY_GIG_ALL_PARAMS;
1356
1357 if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1358 if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
1359 reg |= PHY_GIG_ADV_1000F;
1360 else
1361 reg |= PHY_GIG_ADV_1000H;
1362 }
1363
1364 ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1365 PHYAddr[qdev->mac_index]);
1366
1367 /* Set the 10/100 & pause negotiation advertisements */
1368 ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1369 PHYAddr[qdev->mac_index]);
1370 reg &= ~PHY_NEG_ALL_PARAMS;
1371
1372 if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1373 reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1374
1375 if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1376 if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1377 reg |= PHY_NEG_ADV_100F;
1378
1379 if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1380 reg |= PHY_NEG_ADV_10F;
1381 }
1382
1383 if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1384 if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1385 reg |= PHY_NEG_ADV_100H;
1386
1387 if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1388 reg |= PHY_NEG_ADV_10H;
1389 }
1390
1391 if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
1392 reg |= 1;
1393
1394 ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1395 PHYAddr[qdev->mac_index]);
1396
1397 ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1398
1399 ql_mii_write_reg_ex(qdev, CONTROL_REG,
1400 reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1401 PHYAddr[qdev->mac_index]);
1402 }
1403
1404 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1405 {
1406 ql_phy_reset_ex(qdev);
1407 PHY_Setup(qdev);
1408 ql_phy_start_neg_ex(qdev);
1409 }
1410
1411 /*
1412 * Caller holds hw_lock.
1413 */
1414 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1415 {
1416 struct ql3xxx_port_registers __iomem *port_regs =
1417 qdev->mem_map_registers;
1418 u32 bitToCheck = 0;
1419 u32 temp, linkState;
1420
1421 switch (qdev->mac_index) {
1422 case 0:
1423 bitToCheck = PORT_STATUS_UP0;
1424 break;
1425 case 1:
1426 bitToCheck = PORT_STATUS_UP1;
1427 break;
1428 }
1429
1430 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1431 if (temp & bitToCheck)
1432 linkState = LS_UP;
1433 else
1434 linkState = LS_DOWN;
1435
1436 return linkState;
1437 }
1438
1439 static int ql_port_start(struct ql3_adapter *qdev)
1440 {
1441 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1442 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1443 2) << 7)) {
1444 netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
1445 return -1;
1446 }
1447
1448 if (ql_is_fiber(qdev)) {
1449 ql_petbi_init(qdev);
1450 } else {
1451 /* Copper port */
1452 ql_phy_init_ex(qdev);
1453 }
1454
1455 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1456 return 0;
1457 }
1458
1459 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1460 {
1461
1462 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1463 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1464 2) << 7))
1465 return -1;
1466
1467 if (!ql_auto_neg_error(qdev)) {
1468 if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1469 /* configure the MAC */
1470 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1471 "Configuring link\n");
1472 ql_mac_cfg_soft_reset(qdev, 1);
1473 ql_mac_cfg_gig(qdev,
1474 (ql_get_link_speed
1475 (qdev) ==
1476 SPEED_1000));
1477 ql_mac_cfg_full_dup(qdev,
1478 ql_is_link_full_dup
1479 (qdev));
1480 ql_mac_cfg_pause(qdev,
1481 ql_is_neg_pause
1482 (qdev));
1483 ql_mac_cfg_soft_reset(qdev, 0);
1484
1485 /* enable the MAC */
1486 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1487 "Enabling mac\n");
1488 ql_mac_enable(qdev, 1);
1489 }
1490
1491 qdev->port_link_state = LS_UP;
1492 netif_start_queue(qdev->ndev);
1493 netif_carrier_on(qdev->ndev);
1494 netif_info(qdev, link, qdev->ndev,
1495 "Link is up at %d Mbps, %s duplex\n",
1496 ql_get_link_speed(qdev),
1497 ql_is_link_full_dup(qdev) ? "full" : "half");
1498
1499 } else { /* Remote error detected */
1500
1501 if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1502 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1503 "Remote error detected. Calling ql_port_start()\n");
1504 /*
1505 * ql_port_start() is shared code and needs
1506 * to lock the PHY on it's own.
1507 */
1508 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1509 if (ql_port_start(qdev)) /* Restart port */
1510 return -1;
1511 return 0;
1512 }
1513 }
1514 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1515 return 0;
1516 }
1517
1518 static void ql_link_state_machine_work(struct work_struct *work)
1519 {
1520 struct ql3_adapter *qdev =
1521 container_of(work, struct ql3_adapter, link_state_work.work);
1522
1523 u32 curr_link_state;
1524 unsigned long hw_flags;
1525
1526 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1527
1528 curr_link_state = ql_get_link_state(qdev);
1529
1530 if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
1531 netif_info(qdev, link, qdev->ndev,
1532 "Reset in progress, skip processing link state\n");
1533
1534 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1535
1536 /* Restart timer on 2 second interval. */
1537 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1538
1539 return;
1540 }
1541
1542 switch (qdev->port_link_state) {
1543 default:
1544 if (test_bit(QL_LINK_MASTER, &qdev->flags))
1545 ql_port_start(qdev);
1546 qdev->port_link_state = LS_DOWN;
1547 /* Fall Through */
1548
1549 case LS_DOWN:
1550 if (curr_link_state == LS_UP) {
1551 netif_info(qdev, link, qdev->ndev, "Link is up\n");
1552 if (ql_is_auto_neg_complete(qdev))
1553 ql_finish_auto_neg(qdev);
1554
1555 if (qdev->port_link_state == LS_UP)
1556 ql_link_down_detect_clear(qdev);
1557
1558 qdev->port_link_state = LS_UP;
1559 }
1560 break;
1561
1562 case LS_UP:
1563 /*
1564 * See if the link is currently down or went down and came
1565 * back up
1566 */
1567 if (curr_link_state == LS_DOWN) {
1568 netif_info(qdev, link, qdev->ndev, "Link is down\n");
1569 qdev->port_link_state = LS_DOWN;
1570 }
1571 if (ql_link_down_detect(qdev))
1572 qdev->port_link_state = LS_DOWN;
1573 break;
1574 }
1575 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1576
1577 /* Restart timer on 2 second interval. */
1578 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1579 }
1580
1581 /*
1582 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1583 */
1584 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1585 {
1586 if (ql_this_adapter_controls_port(qdev))
1587 set_bit(QL_LINK_MASTER, &qdev->flags);
1588 else
1589 clear_bit(QL_LINK_MASTER, &qdev->flags);
1590 }
1591
1592 /*
1593 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1594 */
1595 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1596 {
1597 ql_mii_enable_scan_mode(qdev);
1598
1599 if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1600 if (ql_this_adapter_controls_port(qdev))
1601 ql_petbi_init_ex(qdev);
1602 } else {
1603 if (ql_this_adapter_controls_port(qdev))
1604 ql_phy_init_ex(qdev);
1605 }
1606 }
1607
1608 /*
1609 * MII_Setup needs to be called before taking the PHY out of reset
1610 * so that the management interface clock speed can be set properly.
1611 * It would be better if we had a way to disable MDC until after the
1612 * PHY is out of reset, but we don't have that capability.
1613 */
1614 static int ql_mii_setup(struct ql3_adapter *qdev)
1615 {
1616 u32 reg;
1617 struct ql3xxx_port_registers __iomem *port_regs =
1618 qdev->mem_map_registers;
1619
1620 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1621 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1622 2) << 7))
1623 return -1;
1624
1625 if (qdev->device_id == QL3032_DEVICE_ID)
1626 ql_write_page0_reg(qdev,
1627 &port_regs->macMIIMgmtControlReg, 0x0f00000);
1628
1629 /* Divide 125MHz clock by 28 to meet PHY timing requirements */
1630 reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1631
1632 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1633 reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1634
1635 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1636 return 0;
1637 }
1638
1639 #define SUPPORTED_OPTICAL_MODES (SUPPORTED_1000baseT_Full | \
1640 SUPPORTED_FIBRE | \
1641 SUPPORTED_Autoneg)
1642 #define SUPPORTED_TP_MODES (SUPPORTED_10baseT_Half | \
1643 SUPPORTED_10baseT_Full | \
1644 SUPPORTED_100baseT_Half | \
1645 SUPPORTED_100baseT_Full | \
1646 SUPPORTED_1000baseT_Half | \
1647 SUPPORTED_1000baseT_Full | \
1648 SUPPORTED_Autoneg | \
1649 SUPPORTED_TP) \
1650
1651 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1652 {
1653 if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
1654 return SUPPORTED_OPTICAL_MODES;
1655
1656 return SUPPORTED_TP_MODES;
1657 }
1658
1659 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1660 {
1661 int status;
1662 unsigned long hw_flags;
1663 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1664 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1665 (QL_RESOURCE_BITS_BASE_CODE |
1666 (qdev->mac_index) * 2) << 7)) {
1667 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1668 return 0;
1669 }
1670 status = ql_is_auto_cfg(qdev);
1671 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1672 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1673 return status;
1674 }
1675
1676 static u32 ql_get_speed(struct ql3_adapter *qdev)
1677 {
1678 u32 status;
1679 unsigned long hw_flags;
1680 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1681 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1682 (QL_RESOURCE_BITS_BASE_CODE |
1683 (qdev->mac_index) * 2) << 7)) {
1684 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1685 return 0;
1686 }
1687 status = ql_get_link_speed(qdev);
1688 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1689 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1690 return status;
1691 }
1692
1693 static int ql_get_full_dup(struct ql3_adapter *qdev)
1694 {
1695 int status;
1696 unsigned long hw_flags;
1697 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1698 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1699 (QL_RESOURCE_BITS_BASE_CODE |
1700 (qdev->mac_index) * 2) << 7)) {
1701 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1702 return 0;
1703 }
1704 status = ql_is_link_full_dup(qdev);
1705 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1706 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1707 return status;
1708 }
1709
1710 static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1711 {
1712 struct ql3_adapter *qdev = netdev_priv(ndev);
1713
1714 ecmd->transceiver = XCVR_INTERNAL;
1715 ecmd->supported = ql_supported_modes(qdev);
1716
1717 if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1718 ecmd->port = PORT_FIBRE;
1719 } else {
1720 ecmd->port = PORT_TP;
1721 ecmd->phy_address = qdev->PHYAddr;
1722 }
1723 ecmd->advertising = ql_supported_modes(qdev);
1724 ecmd->autoneg = ql_get_auto_cfg_status(qdev);
1725 ethtool_cmd_speed_set(ecmd, ql_get_speed(qdev));
1726 ecmd->duplex = ql_get_full_dup(qdev);
1727 return 0;
1728 }
1729
1730 static void ql_get_drvinfo(struct net_device *ndev,
1731 struct ethtool_drvinfo *drvinfo)
1732 {
1733 struct ql3_adapter *qdev = netdev_priv(ndev);
1734 strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
1735 strlcpy(drvinfo->version, ql3xxx_driver_version,
1736 sizeof(drvinfo->version));
1737 strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
1738 sizeof(drvinfo->bus_info));
1739 drvinfo->regdump_len = 0;
1740 drvinfo->eedump_len = 0;
1741 }
1742
1743 static u32 ql_get_msglevel(struct net_device *ndev)
1744 {
1745 struct ql3_adapter *qdev = netdev_priv(ndev);
1746 return qdev->msg_enable;
1747 }
1748
1749 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1750 {
1751 struct ql3_adapter *qdev = netdev_priv(ndev);
1752 qdev->msg_enable = value;
1753 }
1754
1755 static void ql_get_pauseparam(struct net_device *ndev,
1756 struct ethtool_pauseparam *pause)
1757 {
1758 struct ql3_adapter *qdev = netdev_priv(ndev);
1759 struct ql3xxx_port_registers __iomem *port_regs =
1760 qdev->mem_map_registers;
1761
1762 u32 reg;
1763 if (qdev->mac_index == 0)
1764 reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1765 else
1766 reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1767
1768 pause->autoneg = ql_get_auto_cfg_status(qdev);
1769 pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1770 pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1771 }
1772
1773 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1774 .get_settings = ql_get_settings,
1775 .get_drvinfo = ql_get_drvinfo,
1776 .get_link = ethtool_op_get_link,
1777 .get_msglevel = ql_get_msglevel,
1778 .set_msglevel = ql_set_msglevel,
1779 .get_pauseparam = ql_get_pauseparam,
1780 };
1781
1782 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1783 {
1784 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1785 dma_addr_t map;
1786 int err;
1787
1788 while (lrg_buf_cb) {
1789 if (!lrg_buf_cb->skb) {
1790 lrg_buf_cb->skb =
1791 netdev_alloc_skb(qdev->ndev,
1792 qdev->lrg_buffer_len);
1793 if (unlikely(!lrg_buf_cb->skb)) {
1794 netdev_printk(KERN_DEBUG, qdev->ndev,
1795 "Failed netdev_alloc_skb()\n");
1796 break;
1797 } else {
1798 /*
1799 * We save some space to copy the ethhdr from
1800 * first buffer
1801 */
1802 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1803 map = pci_map_single(qdev->pdev,
1804 lrg_buf_cb->skb->data,
1805 qdev->lrg_buffer_len -
1806 QL_HEADER_SPACE,
1807 PCI_DMA_FROMDEVICE);
1808
1809 err = pci_dma_mapping_error(qdev->pdev, map);
1810 if (err) {
1811 netdev_err(qdev->ndev,
1812 "PCI mapping failed with error: %d\n",
1813 err);
1814 dev_kfree_skb(lrg_buf_cb->skb);
1815 lrg_buf_cb->skb = NULL;
1816 break;
1817 }
1818
1819
1820 lrg_buf_cb->buf_phy_addr_low =
1821 cpu_to_le32(LS_64BITS(map));
1822 lrg_buf_cb->buf_phy_addr_high =
1823 cpu_to_le32(MS_64BITS(map));
1824 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1825 dma_unmap_len_set(lrg_buf_cb, maplen,
1826 qdev->lrg_buffer_len -
1827 QL_HEADER_SPACE);
1828 --qdev->lrg_buf_skb_check;
1829 if (!qdev->lrg_buf_skb_check)
1830 return 1;
1831 }
1832 }
1833 lrg_buf_cb = lrg_buf_cb->next;
1834 }
1835 return 0;
1836 }
1837
1838 /*
1839 * Caller holds hw_lock.
1840 */
1841 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1842 {
1843 struct ql3xxx_port_registers __iomem *port_regs =
1844 qdev->mem_map_registers;
1845
1846 if (qdev->small_buf_release_cnt >= 16) {
1847 while (qdev->small_buf_release_cnt >= 16) {
1848 qdev->small_buf_q_producer_index++;
1849
1850 if (qdev->small_buf_q_producer_index ==
1851 NUM_SBUFQ_ENTRIES)
1852 qdev->small_buf_q_producer_index = 0;
1853 qdev->small_buf_release_cnt -= 8;
1854 }
1855 wmb();
1856 writel(qdev->small_buf_q_producer_index,
1857 &port_regs->CommonRegs.rxSmallQProducerIndex);
1858 }
1859 }
1860
1861 /*
1862 * Caller holds hw_lock.
1863 */
1864 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1865 {
1866 struct bufq_addr_element *lrg_buf_q_ele;
1867 int i;
1868 struct ql_rcv_buf_cb *lrg_buf_cb;
1869 struct ql3xxx_port_registers __iomem *port_regs =
1870 qdev->mem_map_registers;
1871
1872 if ((qdev->lrg_buf_free_count >= 8) &&
1873 (qdev->lrg_buf_release_cnt >= 16)) {
1874
1875 if (qdev->lrg_buf_skb_check)
1876 if (!ql_populate_free_queue(qdev))
1877 return;
1878
1879 lrg_buf_q_ele = qdev->lrg_buf_next_free;
1880
1881 while ((qdev->lrg_buf_release_cnt >= 16) &&
1882 (qdev->lrg_buf_free_count >= 8)) {
1883
1884 for (i = 0; i < 8; i++) {
1885 lrg_buf_cb =
1886 ql_get_from_lrg_buf_free_list(qdev);
1887 lrg_buf_q_ele->addr_high =
1888 lrg_buf_cb->buf_phy_addr_high;
1889 lrg_buf_q_ele->addr_low =
1890 lrg_buf_cb->buf_phy_addr_low;
1891 lrg_buf_q_ele++;
1892
1893 qdev->lrg_buf_release_cnt--;
1894 }
1895
1896 qdev->lrg_buf_q_producer_index++;
1897
1898 if (qdev->lrg_buf_q_producer_index ==
1899 qdev->num_lbufq_entries)
1900 qdev->lrg_buf_q_producer_index = 0;
1901
1902 if (qdev->lrg_buf_q_producer_index ==
1903 (qdev->num_lbufq_entries - 1)) {
1904 lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
1905 }
1906 }
1907 wmb();
1908 qdev->lrg_buf_next_free = lrg_buf_q_ele;
1909 writel(qdev->lrg_buf_q_producer_index,
1910 &port_regs->CommonRegs.rxLargeQProducerIndex);
1911 }
1912 }
1913
1914 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
1915 struct ob_mac_iocb_rsp *mac_rsp)
1916 {
1917 struct ql_tx_buf_cb *tx_cb;
1918 int i;
1919
1920 if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1921 netdev_warn(qdev->ndev,
1922 "Frame too short but it was padded and sent\n");
1923 }
1924
1925 tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
1926
1927 /* Check the transmit response flags for any errors */
1928 if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1929 netdev_err(qdev->ndev,
1930 "Frame too short to be legal, frame not sent\n");
1931
1932 qdev->ndev->stats.tx_errors++;
1933 goto frame_not_sent;
1934 }
1935
1936 if (tx_cb->seg_count == 0) {
1937 netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
1938 mac_rsp->transaction_id);
1939
1940 qdev->ndev->stats.tx_errors++;
1941 goto invalid_seg_count;
1942 }
1943
1944 pci_unmap_single(qdev->pdev,
1945 dma_unmap_addr(&tx_cb->map[0], mapaddr),
1946 dma_unmap_len(&tx_cb->map[0], maplen),
1947 PCI_DMA_TODEVICE);
1948 tx_cb->seg_count--;
1949 if (tx_cb->seg_count) {
1950 for (i = 1; i < tx_cb->seg_count; i++) {
1951 pci_unmap_page(qdev->pdev,
1952 dma_unmap_addr(&tx_cb->map[i],
1953 mapaddr),
1954 dma_unmap_len(&tx_cb->map[i], maplen),
1955 PCI_DMA_TODEVICE);
1956 }
1957 }
1958 qdev->ndev->stats.tx_packets++;
1959 qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
1960
1961 frame_not_sent:
1962 dev_kfree_skb_irq(tx_cb->skb);
1963 tx_cb->skb = NULL;
1964
1965 invalid_seg_count:
1966 atomic_inc(&qdev->tx_count);
1967 }
1968
1969 static void ql_get_sbuf(struct ql3_adapter *qdev)
1970 {
1971 if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
1972 qdev->small_buf_index = 0;
1973 qdev->small_buf_release_cnt++;
1974 }
1975
1976 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
1977 {
1978 struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
1979 lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
1980 qdev->lrg_buf_release_cnt++;
1981 if (++qdev->lrg_buf_index == qdev->num_large_buffers)
1982 qdev->lrg_buf_index = 0;
1983 return lrg_buf_cb;
1984 }
1985
1986 /*
1987 * The difference between 3022 and 3032 for inbound completions:
1988 * 3022 uses two buffers per completion. The first buffer contains
1989 * (some) header info, the second the remainder of the headers plus
1990 * the data. For this chip we reserve some space at the top of the
1991 * receive buffer so that the header info in buffer one can be
1992 * prepended to the buffer two. Buffer two is the sent up while
1993 * buffer one is returned to the hardware to be reused.
1994 * 3032 receives all of it's data and headers in one buffer for a
1995 * simpler process. 3032 also supports checksum verification as
1996 * can be seen in ql_process_macip_rx_intr().
1997 */
1998 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
1999 struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
2000 {
2001 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2002 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2003 struct sk_buff *skb;
2004 u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2005
2006 /*
2007 * Get the inbound address list (small buffer).
2008 */
2009 ql_get_sbuf(qdev);
2010
2011 if (qdev->device_id == QL3022_DEVICE_ID)
2012 lrg_buf_cb1 = ql_get_lbuf(qdev);
2013
2014 /* start of second buffer */
2015 lrg_buf_cb2 = ql_get_lbuf(qdev);
2016 skb = lrg_buf_cb2->skb;
2017
2018 qdev->ndev->stats.rx_packets++;
2019 qdev->ndev->stats.rx_bytes += length;
2020
2021 skb_put(skb, length);
2022 pci_unmap_single(qdev->pdev,
2023 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2024 dma_unmap_len(lrg_buf_cb2, maplen),
2025 PCI_DMA_FROMDEVICE);
2026 prefetch(skb->data);
2027 skb_checksum_none_assert(skb);
2028 skb->protocol = eth_type_trans(skb, qdev->ndev);
2029
2030 netif_receive_skb(skb);
2031 lrg_buf_cb2->skb = NULL;
2032
2033 if (qdev->device_id == QL3022_DEVICE_ID)
2034 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2035 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2036 }
2037
2038 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2039 struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2040 {
2041 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2042 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2043 struct sk_buff *skb1 = NULL, *skb2;
2044 struct net_device *ndev = qdev->ndev;
2045 u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2046 u16 size = 0;
2047
2048 /*
2049 * Get the inbound address list (small buffer).
2050 */
2051
2052 ql_get_sbuf(qdev);
2053
2054 if (qdev->device_id == QL3022_DEVICE_ID) {
2055 /* start of first buffer on 3022 */
2056 lrg_buf_cb1 = ql_get_lbuf(qdev);
2057 skb1 = lrg_buf_cb1->skb;
2058 size = ETH_HLEN;
2059 if (*((u16 *) skb1->data) != 0xFFFF)
2060 size += VLAN_ETH_HLEN - ETH_HLEN;
2061 }
2062
2063 /* start of second buffer */
2064 lrg_buf_cb2 = ql_get_lbuf(qdev);
2065 skb2 = lrg_buf_cb2->skb;
2066
2067 skb_put(skb2, length); /* Just the second buffer length here. */
2068 pci_unmap_single(qdev->pdev,
2069 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2070 dma_unmap_len(lrg_buf_cb2, maplen),
2071 PCI_DMA_FROMDEVICE);
2072 prefetch(skb2->data);
2073
2074 skb_checksum_none_assert(skb2);
2075 if (qdev->device_id == QL3022_DEVICE_ID) {
2076 /*
2077 * Copy the ethhdr from first buffer to second. This
2078 * is necessary for 3022 IP completions.
2079 */
2080 skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2081 skb_push(skb2, size), size);
2082 } else {
2083 u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2084 if (checksum &
2085 (IB_IP_IOCB_RSP_3032_ICE |
2086 IB_IP_IOCB_RSP_3032_CE)) {
2087 netdev_err(ndev,
2088 "%s: Bad checksum for this %s packet, checksum = %x\n",
2089 __func__,
2090 ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
2091 "TCP" : "UDP"), checksum);
2092 } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2093 (checksum & IB_IP_IOCB_RSP_3032_UDP &&
2094 !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2095 skb2->ip_summed = CHECKSUM_UNNECESSARY;
2096 }
2097 }
2098 skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2099
2100 netif_receive_skb(skb2);
2101 ndev->stats.rx_packets++;
2102 ndev->stats.rx_bytes += length;
2103 lrg_buf_cb2->skb = NULL;
2104
2105 if (qdev->device_id == QL3022_DEVICE_ID)
2106 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2107 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2108 }
2109
2110 static int ql_tx_rx_clean(struct ql3_adapter *qdev,
2111 int *tx_cleaned, int *rx_cleaned, int work_to_do)
2112 {
2113 struct net_rsp_iocb *net_rsp;
2114 struct net_device *ndev = qdev->ndev;
2115 int work_done = 0;
2116
2117 /* While there are entries in the completion queue. */
2118 while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2119 qdev->rsp_consumer_index) && (work_done < work_to_do)) {
2120
2121 net_rsp = qdev->rsp_current;
2122 rmb();
2123 /*
2124 * Fix 4032 chip's undocumented "feature" where bit-8 is set
2125 * if the inbound completion is for a VLAN.
2126 */
2127 if (qdev->device_id == QL3032_DEVICE_ID)
2128 net_rsp->opcode &= 0x7f;
2129 switch (net_rsp->opcode) {
2130
2131 case OPCODE_OB_MAC_IOCB_FN0:
2132 case OPCODE_OB_MAC_IOCB_FN2:
2133 ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2134 net_rsp);
2135 (*tx_cleaned)++;
2136 break;
2137
2138 case OPCODE_IB_MAC_IOCB:
2139 case OPCODE_IB_3032_MAC_IOCB:
2140 ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2141 net_rsp);
2142 (*rx_cleaned)++;
2143 break;
2144
2145 case OPCODE_IB_IP_IOCB:
2146 case OPCODE_IB_3032_IP_IOCB:
2147 ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2148 net_rsp);
2149 (*rx_cleaned)++;
2150 break;
2151 default: {
2152 u32 *tmp = (u32 *)net_rsp;
2153 netdev_err(ndev,
2154 "Hit default case, not handled!\n"
2155 " dropping the packet, opcode = %x\n"
2156 "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
2157 net_rsp->opcode,
2158 (unsigned long int)tmp[0],
2159 (unsigned long int)tmp[1],
2160 (unsigned long int)tmp[2],
2161 (unsigned long int)tmp[3]);
2162 }
2163 }
2164
2165 qdev->rsp_consumer_index++;
2166
2167 if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2168 qdev->rsp_consumer_index = 0;
2169 qdev->rsp_current = qdev->rsp_q_virt_addr;
2170 } else {
2171 qdev->rsp_current++;
2172 }
2173
2174 work_done = *tx_cleaned + *rx_cleaned;
2175 }
2176
2177 return work_done;
2178 }
2179
2180 static int ql_poll(struct napi_struct *napi, int budget)
2181 {
2182 struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2183 int rx_cleaned = 0, tx_cleaned = 0;
2184 unsigned long hw_flags;
2185 struct ql3xxx_port_registers __iomem *port_regs =
2186 qdev->mem_map_registers;
2187
2188 ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
2189
2190 if (tx_cleaned + rx_cleaned != budget) {
2191 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
2192 __napi_complete(napi);
2193 ql_update_small_bufq_prod_index(qdev);
2194 ql_update_lrg_bufq_prod_index(qdev);
2195 writel(qdev->rsp_consumer_index,
2196 &port_regs->CommonRegs.rspQConsumerIndex);
2197 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
2198
2199 ql_enable_interrupts(qdev);
2200 }
2201 return tx_cleaned + rx_cleaned;
2202 }
2203
2204 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2205 {
2206
2207 struct net_device *ndev = dev_id;
2208 struct ql3_adapter *qdev = netdev_priv(ndev);
2209 struct ql3xxx_port_registers __iomem *port_regs =
2210 qdev->mem_map_registers;
2211 u32 value;
2212 int handled = 1;
2213 u32 var;
2214
2215 value = ql_read_common_reg_l(qdev,
2216 &port_regs->CommonRegs.ispControlStatus);
2217
2218 if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2219 spin_lock(&qdev->adapter_lock);
2220 netif_stop_queue(qdev->ndev);
2221 netif_carrier_off(qdev->ndev);
2222 ql_disable_interrupts(qdev);
2223 qdev->port_link_state = LS_DOWN;
2224 set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
2225
2226 if (value & ISP_CONTROL_FE) {
2227 /*
2228 * Chip Fatal Error.
2229 */
2230 var =
2231 ql_read_page0_reg_l(qdev,
2232 &port_regs->PortFatalErrStatus);
2233 netdev_warn(ndev,
2234 "Resetting chip. PortFatalErrStatus register = 0x%x\n",
2235 var);
2236 set_bit(QL_RESET_START, &qdev->flags) ;
2237 } else {
2238 /*
2239 * Soft Reset Requested.
2240 */
2241 set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
2242 netdev_err(ndev,
2243 "Another function issued a reset to the chip. ISR value = %x\n",
2244 value);
2245 }
2246 queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2247 spin_unlock(&qdev->adapter_lock);
2248 } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2249 ql_disable_interrupts(qdev);
2250 if (likely(napi_schedule_prep(&qdev->napi)))
2251 __napi_schedule(&qdev->napi);
2252 } else
2253 return IRQ_NONE;
2254
2255 return IRQ_RETVAL(handled);
2256 }
2257
2258 /*
2259 * Get the total number of segments needed for the given number of fragments.
2260 * This is necessary because outbound address lists (OAL) will be used when
2261 * more than two frags are given. Each address list has 5 addr/len pairs.
2262 * The 5th pair in each OAL is used to point to the next OAL if more frags
2263 * are coming. That is why the frags:segment count ratio is not linear.
2264 */
2265 static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
2266 {
2267 if (qdev->device_id == QL3022_DEVICE_ID)
2268 return 1;
2269
2270 if (frags <= 2)
2271 return frags + 1;
2272 else if (frags <= 6)
2273 return frags + 2;
2274 else if (frags <= 10)
2275 return frags + 3;
2276 else if (frags <= 14)
2277 return frags + 4;
2278 else if (frags <= 18)
2279 return frags + 5;
2280 return -1;
2281 }
2282
2283 static void ql_hw_csum_setup(const struct sk_buff *skb,
2284 struct ob_mac_iocb_req *mac_iocb_ptr)
2285 {
2286 const struct iphdr *ip = ip_hdr(skb);
2287
2288 mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2289 mac_iocb_ptr->ip_hdr_len = ip->ihl;
2290
2291 if (ip->protocol == IPPROTO_TCP) {
2292 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2293 OB_3032MAC_IOCB_REQ_IC;
2294 } else {
2295 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2296 OB_3032MAC_IOCB_REQ_IC;
2297 }
2298
2299 }
2300
2301 /*
2302 * Map the buffers for this transmit.
2303 * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2304 */
2305 static int ql_send_map(struct ql3_adapter *qdev,
2306 struct ob_mac_iocb_req *mac_iocb_ptr,
2307 struct ql_tx_buf_cb *tx_cb,
2308 struct sk_buff *skb)
2309 {
2310 struct oal *oal;
2311 struct oal_entry *oal_entry;
2312 int len = skb_headlen(skb);
2313 dma_addr_t map;
2314 int err;
2315 int completed_segs, i;
2316 int seg_cnt, seg = 0;
2317 int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2318
2319 seg_cnt = tx_cb->seg_count;
2320 /*
2321 * Map the skb buffer first.
2322 */
2323 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
2324
2325 err = pci_dma_mapping_error(qdev->pdev, map);
2326 if (err) {
2327 netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
2328 err);
2329
2330 return NETDEV_TX_BUSY;
2331 }
2332
2333 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2334 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2335 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2336 oal_entry->len = cpu_to_le32(len);
2337 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2338 dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
2339 seg++;
2340
2341 if (seg_cnt == 1) {
2342 /* Terminate the last segment. */
2343 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2344 return NETDEV_TX_OK;
2345 }
2346 oal = tx_cb->oal;
2347 for (completed_segs = 0;
2348 completed_segs < frag_cnt;
2349 completed_segs++, seg++) {
2350 skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2351 oal_entry++;
2352 /*
2353 * Check for continuation requirements.
2354 * It's strange but necessary.
2355 * Continuation entry points to outbound address list.
2356 */
2357 if ((seg == 2 && seg_cnt > 3) ||
2358 (seg == 7 && seg_cnt > 8) ||
2359 (seg == 12 && seg_cnt > 13) ||
2360 (seg == 17 && seg_cnt > 18)) {
2361 map = pci_map_single(qdev->pdev, oal,
2362 sizeof(struct oal),
2363 PCI_DMA_TODEVICE);
2364
2365 err = pci_dma_mapping_error(qdev->pdev, map);
2366 if (err) {
2367 netdev_err(qdev->ndev,
2368 "PCI mapping outbound address list with error: %d\n",
2369 err);
2370 goto map_error;
2371 }
2372
2373 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2374 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2375 oal_entry->len = cpu_to_le32(sizeof(struct oal) |
2376 OAL_CONT_ENTRY);
2377 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2378 dma_unmap_len_set(&tx_cb->map[seg], maplen,
2379 sizeof(struct oal));
2380 oal_entry = (struct oal_entry *)oal;
2381 oal++;
2382 seg++;
2383 }
2384
2385 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
2386 DMA_TO_DEVICE);
2387
2388 err = dma_mapping_error(&qdev->pdev->dev, map);
2389 if (err) {
2390 netdev_err(qdev->ndev,
2391 "PCI mapping frags failed with error: %d\n",
2392 err);
2393 goto map_error;
2394 }
2395
2396 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2397 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2398 oal_entry->len = cpu_to_le32(skb_frag_size(frag));
2399 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2400 dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
2401 }
2402 /* Terminate the last segment. */
2403 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2404 return NETDEV_TX_OK;
2405
2406 map_error:
2407 /* A PCI mapping failed and now we will need to back out
2408 * We need to traverse through the oal's and associated pages which
2409 * have been mapped and now we must unmap them to clean up properly
2410 */
2411
2412 seg = 1;
2413 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2414 oal = tx_cb->oal;
2415 for (i = 0; i < completed_segs; i++, seg++) {
2416 oal_entry++;
2417
2418 /*
2419 * Check for continuation requirements.
2420 * It's strange but necessary.
2421 */
2422
2423 if ((seg == 2 && seg_cnt > 3) ||
2424 (seg == 7 && seg_cnt > 8) ||
2425 (seg == 12 && seg_cnt > 13) ||
2426 (seg == 17 && seg_cnt > 18)) {
2427 pci_unmap_single(qdev->pdev,
2428 dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2429 dma_unmap_len(&tx_cb->map[seg], maplen),
2430 PCI_DMA_TODEVICE);
2431 oal++;
2432 seg++;
2433 }
2434
2435 pci_unmap_page(qdev->pdev,
2436 dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2437 dma_unmap_len(&tx_cb->map[seg], maplen),
2438 PCI_DMA_TODEVICE);
2439 }
2440
2441 pci_unmap_single(qdev->pdev,
2442 dma_unmap_addr(&tx_cb->map[0], mapaddr),
2443 dma_unmap_addr(&tx_cb->map[0], maplen),
2444 PCI_DMA_TODEVICE);
2445
2446 return NETDEV_TX_BUSY;
2447
2448 }
2449
2450 /*
2451 * The difference between 3022 and 3032 sends:
2452 * 3022 only supports a simple single segment transmission.
2453 * 3032 supports checksumming and scatter/gather lists (fragments).
2454 * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2455 * in the IOCB plus a chain of outbound address lists (OAL) that
2456 * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
2457 * will be used to point to an OAL when more ALP entries are required.
2458 * The IOCB is always the top of the chain followed by one or more
2459 * OALs (when necessary).
2460 */
2461 static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
2462 struct net_device *ndev)
2463 {
2464 struct ql3_adapter *qdev = netdev_priv(ndev);
2465 struct ql3xxx_port_registers __iomem *port_regs =
2466 qdev->mem_map_registers;
2467 struct ql_tx_buf_cb *tx_cb;
2468 u32 tot_len = skb->len;
2469 struct ob_mac_iocb_req *mac_iocb_ptr;
2470
2471 if (unlikely(atomic_read(&qdev->tx_count) < 2))
2472 return NETDEV_TX_BUSY;
2473
2474 tx_cb = &qdev->tx_buf[qdev->req_producer_index];
2475 tx_cb->seg_count = ql_get_seg_count(qdev,
2476 skb_shinfo(skb)->nr_frags);
2477 if (tx_cb->seg_count == -1) {
2478 netdev_err(ndev, "%s: invalid segment count!\n", __func__);
2479 return NETDEV_TX_OK;
2480 }
2481
2482 mac_iocb_ptr = tx_cb->queue_entry;
2483 memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2484 mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2485 mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2486 mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2487 mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2488 mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2489 tx_cb->skb = skb;
2490 if (qdev->device_id == QL3032_DEVICE_ID &&
2491 skb->ip_summed == CHECKSUM_PARTIAL)
2492 ql_hw_csum_setup(skb, mac_iocb_ptr);
2493
2494 if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
2495 netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
2496 return NETDEV_TX_BUSY;
2497 }
2498
2499 wmb();
2500 qdev->req_producer_index++;
2501 if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2502 qdev->req_producer_index = 0;
2503 wmb();
2504 ql_write_common_reg_l(qdev,
2505 &port_regs->CommonRegs.reqQProducerIndex,
2506 qdev->req_producer_index);
2507
2508 netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
2509 "tx queued, slot %d, len %d\n",
2510 qdev->req_producer_index, skb->len);
2511
2512 atomic_dec(&qdev->tx_count);
2513 return NETDEV_TX_OK;
2514 }
2515
2516 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2517 {
2518 qdev->req_q_size =
2519 (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2520
2521 qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2522
2523 /* The barrier is required to ensure request and response queue
2524 * addr writes to the registers.
2525 */
2526 wmb();
2527
2528 qdev->req_q_virt_addr =
2529 pci_alloc_consistent(qdev->pdev,
2530 (size_t) qdev->req_q_size,
2531 &qdev->req_q_phy_addr);
2532
2533 if ((qdev->req_q_virt_addr == NULL) ||
2534 LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2535 netdev_err(qdev->ndev, "reqQ failed\n");
2536 return -ENOMEM;
2537 }
2538
2539 qdev->rsp_q_virt_addr =
2540 pci_alloc_consistent(qdev->pdev,
2541 (size_t) qdev->rsp_q_size,
2542 &qdev->rsp_q_phy_addr);
2543
2544 if ((qdev->rsp_q_virt_addr == NULL) ||
2545 LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2546 netdev_err(qdev->ndev, "rspQ allocation failed\n");
2547 pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
2548 qdev->req_q_virt_addr,
2549 qdev->req_q_phy_addr);
2550 return -ENOMEM;
2551 }
2552
2553 set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2554
2555 return 0;
2556 }
2557
2558 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2559 {
2560 if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
2561 netdev_info(qdev->ndev, "Already done\n");
2562 return;
2563 }
2564
2565 pci_free_consistent(qdev->pdev,
2566 qdev->req_q_size,
2567 qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2568
2569 qdev->req_q_virt_addr = NULL;
2570
2571 pci_free_consistent(qdev->pdev,
2572 qdev->rsp_q_size,
2573 qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2574
2575 qdev->rsp_q_virt_addr = NULL;
2576
2577 clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2578 }
2579
2580 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2581 {
2582 /* Create Large Buffer Queue */
2583 qdev->lrg_buf_q_size =
2584 qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2585 if (qdev->lrg_buf_q_size < PAGE_SIZE)
2586 qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2587 else
2588 qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2589
2590 qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
2591 sizeof(struct ql_rcv_buf_cb),
2592 GFP_KERNEL);
2593 if (qdev->lrg_buf == NULL)
2594 return -ENOMEM;
2595
2596 qdev->lrg_buf_q_alloc_virt_addr =
2597 pci_alloc_consistent(qdev->pdev,
2598 qdev->lrg_buf_q_alloc_size,
2599 &qdev->lrg_buf_q_alloc_phy_addr);
2600
2601 if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2602 netdev_err(qdev->ndev, "lBufQ failed\n");
2603 return -ENOMEM;
2604 }
2605 qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2606 qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2607
2608 /* Create Small Buffer Queue */
2609 qdev->small_buf_q_size =
2610 NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2611 if (qdev->small_buf_q_size < PAGE_SIZE)
2612 qdev->small_buf_q_alloc_size = PAGE_SIZE;
2613 else
2614 qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2615
2616 qdev->small_buf_q_alloc_virt_addr =
2617 pci_alloc_consistent(qdev->pdev,
2618 qdev->small_buf_q_alloc_size,
2619 &qdev->small_buf_q_alloc_phy_addr);
2620
2621 if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2622 netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
2623 pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
2624 qdev->lrg_buf_q_alloc_virt_addr,
2625 qdev->lrg_buf_q_alloc_phy_addr);
2626 return -ENOMEM;
2627 }
2628
2629 qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2630 qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2631 set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2632 return 0;
2633 }
2634
2635 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2636 {
2637 if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
2638 netdev_info(qdev->ndev, "Already done\n");
2639 return;
2640 }
2641 kfree(qdev->lrg_buf);
2642 pci_free_consistent(qdev->pdev,
2643 qdev->lrg_buf_q_alloc_size,
2644 qdev->lrg_buf_q_alloc_virt_addr,
2645 qdev->lrg_buf_q_alloc_phy_addr);
2646
2647 qdev->lrg_buf_q_virt_addr = NULL;
2648
2649 pci_free_consistent(qdev->pdev,
2650 qdev->small_buf_q_alloc_size,
2651 qdev->small_buf_q_alloc_virt_addr,
2652 qdev->small_buf_q_alloc_phy_addr);
2653
2654 qdev->small_buf_q_virt_addr = NULL;
2655
2656 clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2657 }
2658
2659 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2660 {
2661 int i;
2662 struct bufq_addr_element *small_buf_q_entry;
2663
2664 /* Currently we allocate on one of memory and use it for smallbuffers */
2665 qdev->small_buf_total_size =
2666 (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2667 QL_SMALL_BUFFER_SIZE);
2668
2669 qdev->small_buf_virt_addr =
2670 pci_alloc_consistent(qdev->pdev,
2671 qdev->small_buf_total_size,
2672 &qdev->small_buf_phy_addr);
2673
2674 if (qdev->small_buf_virt_addr == NULL) {
2675 netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
2676 return -ENOMEM;
2677 }
2678
2679 qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2680 qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2681
2682 small_buf_q_entry = qdev->small_buf_q_virt_addr;
2683
2684 /* Initialize the small buffer queue. */
2685 for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2686 small_buf_q_entry->addr_high =
2687 cpu_to_le32(qdev->small_buf_phy_addr_high);
2688 small_buf_q_entry->addr_low =
2689 cpu_to_le32(qdev->small_buf_phy_addr_low +
2690 (i * QL_SMALL_BUFFER_SIZE));
2691 small_buf_q_entry++;
2692 }
2693 qdev->small_buf_index = 0;
2694 set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
2695 return 0;
2696 }
2697
2698 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2699 {
2700 if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
2701 netdev_info(qdev->ndev, "Already done\n");
2702 return;
2703 }
2704 if (qdev->small_buf_virt_addr != NULL) {
2705 pci_free_consistent(qdev->pdev,
2706 qdev->small_buf_total_size,
2707 qdev->small_buf_virt_addr,
2708 qdev->small_buf_phy_addr);
2709
2710 qdev->small_buf_virt_addr = NULL;
2711 }
2712 }
2713
2714 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2715 {
2716 int i = 0;
2717 struct ql_rcv_buf_cb *lrg_buf_cb;
2718
2719 for (i = 0; i < qdev->num_large_buffers; i++) {
2720 lrg_buf_cb = &qdev->lrg_buf[i];
2721 if (lrg_buf_cb->skb) {
2722 dev_kfree_skb(lrg_buf_cb->skb);
2723 pci_unmap_single(qdev->pdev,
2724 dma_unmap_addr(lrg_buf_cb, mapaddr),
2725 dma_unmap_len(lrg_buf_cb, maplen),
2726 PCI_DMA_FROMDEVICE);
2727 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2728 } else {
2729 break;
2730 }
2731 }
2732 }
2733
2734 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2735 {
2736 int i;
2737 struct ql_rcv_buf_cb *lrg_buf_cb;
2738 struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2739
2740 for (i = 0; i < qdev->num_large_buffers; i++) {
2741 lrg_buf_cb = &qdev->lrg_buf[i];
2742 buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2743 buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2744 buf_addr_ele++;
2745 }
2746 qdev->lrg_buf_index = 0;
2747 qdev->lrg_buf_skb_check = 0;
2748 }
2749
2750 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2751 {
2752 int i;
2753 struct ql_rcv_buf_cb *lrg_buf_cb;
2754 struct sk_buff *skb;
2755 dma_addr_t map;
2756 int err;
2757
2758 for (i = 0; i < qdev->num_large_buffers; i++) {
2759 skb = netdev_alloc_skb(qdev->ndev,
2760 qdev->lrg_buffer_len);
2761 if (unlikely(!skb)) {
2762 /* Better luck next round */
2763 netdev_err(qdev->ndev,
2764 "large buff alloc failed for %d bytes at index %d\n",
2765 qdev->lrg_buffer_len * 2, i);
2766 ql_free_large_buffers(qdev);
2767 return -ENOMEM;
2768 } else {
2769
2770 lrg_buf_cb = &qdev->lrg_buf[i];
2771 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2772 lrg_buf_cb->index = i;
2773 lrg_buf_cb->skb = skb;
2774 /*
2775 * We save some space to copy the ethhdr from first
2776 * buffer
2777 */
2778 skb_reserve(skb, QL_HEADER_SPACE);
2779 map = pci_map_single(qdev->pdev,
2780 skb->data,
2781 qdev->lrg_buffer_len -
2782 QL_HEADER_SPACE,
2783 PCI_DMA_FROMDEVICE);
2784
2785 err = pci_dma_mapping_error(qdev->pdev, map);
2786 if (err) {
2787 netdev_err(qdev->ndev,
2788 "PCI mapping failed with error: %d\n",
2789 err);
2790 ql_free_large_buffers(qdev);
2791 return -ENOMEM;
2792 }
2793
2794 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2795 dma_unmap_len_set(lrg_buf_cb, maplen,
2796 qdev->lrg_buffer_len -
2797 QL_HEADER_SPACE);
2798 lrg_buf_cb->buf_phy_addr_low =
2799 cpu_to_le32(LS_64BITS(map));
2800 lrg_buf_cb->buf_phy_addr_high =
2801 cpu_to_le32(MS_64BITS(map));
2802 }
2803 }
2804 return 0;
2805 }
2806
2807 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2808 {
2809 struct ql_tx_buf_cb *tx_cb;
2810 int i;
2811
2812 tx_cb = &qdev->tx_buf[0];
2813 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2814 kfree(tx_cb->oal);
2815 tx_cb->oal = NULL;
2816 tx_cb++;
2817 }
2818 }
2819
2820 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2821 {
2822 struct ql_tx_buf_cb *tx_cb;
2823 int i;
2824 struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
2825
2826 /* Create free list of transmit buffers */
2827 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2828
2829 tx_cb = &qdev->tx_buf[i];
2830 tx_cb->skb = NULL;
2831 tx_cb->queue_entry = req_q_curr;
2832 req_q_curr++;
2833 tx_cb->oal = kmalloc(512, GFP_KERNEL);
2834 if (tx_cb->oal == NULL)
2835 return -ENOMEM;
2836 }
2837 return 0;
2838 }
2839
2840 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
2841 {
2842 if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
2843 qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
2844 qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
2845 } else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
2846 /*
2847 * Bigger buffers, so less of them.
2848 */
2849 qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
2850 qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
2851 } else {
2852 netdev_err(qdev->ndev, "Invalid mtu size: %d. Only %d and %d are accepted.\n",
2853 qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
2854 return -ENOMEM;
2855 }
2856 qdev->num_large_buffers =
2857 qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
2858 qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
2859 qdev->max_frame_size =
2860 (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
2861
2862 /*
2863 * First allocate a page of shared memory and use it for shadow
2864 * locations of Network Request Queue Consumer Address Register and
2865 * Network Completion Queue Producer Index Register
2866 */
2867 qdev->shadow_reg_virt_addr =
2868 pci_alloc_consistent(qdev->pdev,
2869 PAGE_SIZE, &qdev->shadow_reg_phy_addr);
2870
2871 if (qdev->shadow_reg_virt_addr != NULL) {
2872 qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
2873 qdev->req_consumer_index_phy_addr_high =
2874 MS_64BITS(qdev->shadow_reg_phy_addr);
2875 qdev->req_consumer_index_phy_addr_low =
2876 LS_64BITS(qdev->shadow_reg_phy_addr);
2877
2878 qdev->prsp_producer_index =
2879 (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
2880 qdev->rsp_producer_index_phy_addr_high =
2881 qdev->req_consumer_index_phy_addr_high;
2882 qdev->rsp_producer_index_phy_addr_low =
2883 qdev->req_consumer_index_phy_addr_low + 8;
2884 } else {
2885 netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
2886 return -ENOMEM;
2887 }
2888
2889 if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
2890 netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
2891 goto err_req_rsp;
2892 }
2893
2894 if (ql_alloc_buffer_queues(qdev) != 0) {
2895 netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
2896 goto err_buffer_queues;
2897 }
2898
2899 if (ql_alloc_small_buffers(qdev) != 0) {
2900 netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
2901 goto err_small_buffers;
2902 }
2903
2904 if (ql_alloc_large_buffers(qdev) != 0) {
2905 netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
2906 goto err_small_buffers;
2907 }
2908
2909 /* Initialize the large buffer queue. */
2910 ql_init_large_buffers(qdev);
2911 if (ql_create_send_free_list(qdev))
2912 goto err_free_list;
2913
2914 qdev->rsp_current = qdev->rsp_q_virt_addr;
2915
2916 return 0;
2917 err_free_list:
2918 ql_free_send_free_list(qdev);
2919 err_small_buffers:
2920 ql_free_buffer_queues(qdev);
2921 err_buffer_queues:
2922 ql_free_net_req_rsp_queues(qdev);
2923 err_req_rsp:
2924 pci_free_consistent(qdev->pdev,
2925 PAGE_SIZE,
2926 qdev->shadow_reg_virt_addr,
2927 qdev->shadow_reg_phy_addr);
2928
2929 return -ENOMEM;
2930 }
2931
2932 static void ql_free_mem_resources(struct ql3_adapter *qdev)
2933 {
2934 ql_free_send_free_list(qdev);
2935 ql_free_large_buffers(qdev);
2936 ql_free_small_buffers(qdev);
2937 ql_free_buffer_queues(qdev);
2938 ql_free_net_req_rsp_queues(qdev);
2939 if (qdev->shadow_reg_virt_addr != NULL) {
2940 pci_free_consistent(qdev->pdev,
2941 PAGE_SIZE,
2942 qdev->shadow_reg_virt_addr,
2943 qdev->shadow_reg_phy_addr);
2944 qdev->shadow_reg_virt_addr = NULL;
2945 }
2946 }
2947
2948 static int ql_init_misc_registers(struct ql3_adapter *qdev)
2949 {
2950 struct ql3xxx_local_ram_registers __iomem *local_ram =
2951 (void __iomem *)qdev->mem_map_registers;
2952
2953 if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
2954 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2955 2) << 4))
2956 return -1;
2957
2958 ql_write_page2_reg(qdev,
2959 &local_ram->bufletSize, qdev->nvram_data.bufletSize);
2960
2961 ql_write_page2_reg(qdev,
2962 &local_ram->maxBufletCount,
2963 qdev->nvram_data.bufletCount);
2964
2965 ql_write_page2_reg(qdev,
2966 &local_ram->freeBufletThresholdLow,
2967 (qdev->nvram_data.tcpWindowThreshold25 << 16) |
2968 (qdev->nvram_data.tcpWindowThreshold0));
2969
2970 ql_write_page2_reg(qdev,
2971 &local_ram->freeBufletThresholdHigh,
2972 qdev->nvram_data.tcpWindowThreshold50);
2973
2974 ql_write_page2_reg(qdev,
2975 &local_ram->ipHashTableBase,
2976 (qdev->nvram_data.ipHashTableBaseHi << 16) |
2977 qdev->nvram_data.ipHashTableBaseLo);
2978 ql_write_page2_reg(qdev,
2979 &local_ram->ipHashTableCount,
2980 qdev->nvram_data.ipHashTableSize);
2981 ql_write_page2_reg(qdev,
2982 &local_ram->tcpHashTableBase,
2983 (qdev->nvram_data.tcpHashTableBaseHi << 16) |
2984 qdev->nvram_data.tcpHashTableBaseLo);
2985 ql_write_page2_reg(qdev,
2986 &local_ram->tcpHashTableCount,
2987 qdev->nvram_data.tcpHashTableSize);
2988 ql_write_page2_reg(qdev,
2989 &local_ram->ncbBase,
2990 (qdev->nvram_data.ncbTableBaseHi << 16) |
2991 qdev->nvram_data.ncbTableBaseLo);
2992 ql_write_page2_reg(qdev,
2993 &local_ram->maxNcbCount,
2994 qdev->nvram_data.ncbTableSize);
2995 ql_write_page2_reg(qdev,
2996 &local_ram->drbBase,
2997 (qdev->nvram_data.drbTableBaseHi << 16) |
2998 qdev->nvram_data.drbTableBaseLo);
2999 ql_write_page2_reg(qdev,
3000 &local_ram->maxDrbCount,
3001 qdev->nvram_data.drbTableSize);
3002 ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
3003 return 0;
3004 }
3005
3006 static int ql_adapter_initialize(struct ql3_adapter *qdev)
3007 {
3008 u32 value;
3009 struct ql3xxx_port_registers __iomem *port_regs =
3010 qdev->mem_map_registers;
3011 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
3012 struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3013 (void __iomem *)port_regs;
3014 u32 delay = 10;
3015 int status = 0;
3016
3017 if (ql_mii_setup(qdev))
3018 return -1;
3019
3020 /* Bring out PHY out of reset */
3021 ql_write_common_reg(qdev, spir,
3022 (ISP_SERIAL_PORT_IF_WE |
3023 (ISP_SERIAL_PORT_IF_WE << 16)));
3024 /* Give the PHY time to come out of reset. */
3025 mdelay(100);
3026 qdev->port_link_state = LS_DOWN;
3027 netif_carrier_off(qdev->ndev);
3028
3029 /* V2 chip fix for ARS-39168. */
3030 ql_write_common_reg(qdev, spir,
3031 (ISP_SERIAL_PORT_IF_SDE |
3032 (ISP_SERIAL_PORT_IF_SDE << 16)));
3033
3034 /* Request Queue Registers */
3035 *((u32 *)(qdev->preq_consumer_index)) = 0;
3036 atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
3037 qdev->req_producer_index = 0;
3038
3039 ql_write_page1_reg(qdev,
3040 &hmem_regs->reqConsumerIndexAddrHigh,
3041 qdev->req_consumer_index_phy_addr_high);
3042 ql_write_page1_reg(qdev,
3043 &hmem_regs->reqConsumerIndexAddrLow,
3044 qdev->req_consumer_index_phy_addr_low);
3045
3046 ql_write_page1_reg(qdev,
3047 &hmem_regs->reqBaseAddrHigh,
3048 MS_64BITS(qdev->req_q_phy_addr));
3049 ql_write_page1_reg(qdev,
3050 &hmem_regs->reqBaseAddrLow,
3051 LS_64BITS(qdev->req_q_phy_addr));
3052 ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3053
3054 /* Response Queue Registers */
3055 *((__le16 *) (qdev->prsp_producer_index)) = 0;
3056 qdev->rsp_consumer_index = 0;
3057 qdev->rsp_current = qdev->rsp_q_virt_addr;
3058
3059 ql_write_page1_reg(qdev,
3060 &hmem_regs->rspProducerIndexAddrHigh,
3061 qdev->rsp_producer_index_phy_addr_high);
3062
3063 ql_write_page1_reg(qdev,
3064 &hmem_regs->rspProducerIndexAddrLow,
3065 qdev->rsp_producer_index_phy_addr_low);
3066
3067 ql_write_page1_reg(qdev,
3068 &hmem_regs->rspBaseAddrHigh,
3069 MS_64BITS(qdev->rsp_q_phy_addr));
3070
3071 ql_write_page1_reg(qdev,
3072 &hmem_regs->rspBaseAddrLow,
3073 LS_64BITS(qdev->rsp_q_phy_addr));
3074
3075 ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3076
3077 /* Large Buffer Queue */
3078 ql_write_page1_reg(qdev,
3079 &hmem_regs->rxLargeQBaseAddrHigh,
3080 MS_64BITS(qdev->lrg_buf_q_phy_addr));
3081
3082 ql_write_page1_reg(qdev,
3083 &hmem_regs->rxLargeQBaseAddrLow,
3084 LS_64BITS(qdev->lrg_buf_q_phy_addr));
3085
3086 ql_write_page1_reg(qdev,
3087 &hmem_regs->rxLargeQLength,
3088 qdev->num_lbufq_entries);
3089
3090 ql_write_page1_reg(qdev,
3091 &hmem_regs->rxLargeBufferLength,
3092 qdev->lrg_buffer_len);
3093
3094 /* Small Buffer Queue */
3095 ql_write_page1_reg(qdev,
3096 &hmem_regs->rxSmallQBaseAddrHigh,
3097 MS_64BITS(qdev->small_buf_q_phy_addr));
3098
3099 ql_write_page1_reg(qdev,
3100 &hmem_regs->rxSmallQBaseAddrLow,
3101 LS_64BITS(qdev->small_buf_q_phy_addr));
3102
3103 ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3104 ql_write_page1_reg(qdev,
3105 &hmem_regs->rxSmallBufferLength,
3106 QL_SMALL_BUFFER_SIZE);
3107
3108 qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3109 qdev->small_buf_release_cnt = 8;
3110 qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3111 qdev->lrg_buf_release_cnt = 8;
3112 qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
3113 qdev->small_buf_index = 0;
3114 qdev->lrg_buf_index = 0;
3115 qdev->lrg_buf_free_count = 0;
3116 qdev->lrg_buf_free_head = NULL;
3117 qdev->lrg_buf_free_tail = NULL;
3118
3119 ql_write_common_reg(qdev,
3120 &port_regs->CommonRegs.
3121 rxSmallQProducerIndex,
3122 qdev->small_buf_q_producer_index);
3123 ql_write_common_reg(qdev,
3124 &port_regs->CommonRegs.
3125 rxLargeQProducerIndex,
3126 qdev->lrg_buf_q_producer_index);
3127
3128 /*
3129 * Find out if the chip has already been initialized. If it has, then
3130 * we skip some of the initialization.
3131 */
3132 clear_bit(QL_LINK_MASTER, &qdev->flags);
3133 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3134 if ((value & PORT_STATUS_IC) == 0) {
3135
3136 /* Chip has not been configured yet, so let it rip. */
3137 if (ql_init_misc_registers(qdev)) {
3138 status = -1;
3139 goto out;
3140 }
3141
3142 value = qdev->nvram_data.tcpMaxWindowSize;
3143 ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3144
3145 value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3146
3147 if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3148 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3149 * 2) << 13)) {
3150 status = -1;
3151 goto out;
3152 }
3153 ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3154 ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3155 (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3156 16) | (INTERNAL_CHIP_SD |
3157 INTERNAL_CHIP_WE)));
3158 ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3159 }
3160
3161 if (qdev->mac_index)
3162 ql_write_page0_reg(qdev,
3163 &port_regs->mac1MaxFrameLengthReg,
3164 qdev->max_frame_size);
3165 else
3166 ql_write_page0_reg(qdev,
3167 &port_regs->mac0MaxFrameLengthReg,
3168 qdev->max_frame_size);
3169
3170 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3171 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3172 2) << 7)) {
3173 status = -1;
3174 goto out;
3175 }
3176
3177 PHY_Setup(qdev);
3178 ql_init_scan_mode(qdev);
3179 ql_get_phy_owner(qdev);
3180
3181 /* Load the MAC Configuration */
3182
3183 /* Program lower 32 bits of the MAC address */
3184 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3185 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3186 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3187 ((qdev->ndev->dev_addr[2] << 24)
3188 | (qdev->ndev->dev_addr[3] << 16)
3189 | (qdev->ndev->dev_addr[4] << 8)
3190 | qdev->ndev->dev_addr[5]));
3191
3192 /* Program top 16 bits of the MAC address */
3193 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3194 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3195 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3196 ((qdev->ndev->dev_addr[0] << 8)
3197 | qdev->ndev->dev_addr[1]));
3198
3199 /* Enable Primary MAC */
3200 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3201 ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3202 MAC_ADDR_INDIRECT_PTR_REG_PE));
3203
3204 /* Clear Primary and Secondary IP addresses */
3205 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3206 ((IP_ADDR_INDEX_REG_MASK << 16) |
3207 (qdev->mac_index << 2)));
3208 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3209
3210 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3211 ((IP_ADDR_INDEX_REG_MASK << 16) |
3212 ((qdev->mac_index << 2) + 1)));
3213 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3214
3215 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3216
3217 /* Indicate Configuration Complete */
3218 ql_write_page0_reg(qdev,
3219 &port_regs->portControl,
3220 ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3221
3222 do {
3223 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3224 if (value & PORT_STATUS_IC)
3225 break;
3226 spin_unlock_irq(&qdev->hw_lock);
3227 msleep(500);
3228 spin_lock_irq(&qdev->hw_lock);
3229 } while (--delay);
3230
3231 if (delay == 0) {
3232 netdev_err(qdev->ndev, "Hw Initialization timeout\n");
3233 status = -1;
3234 goto out;
3235 }
3236
3237 /* Enable Ethernet Function */
3238 if (qdev->device_id == QL3032_DEVICE_ID) {
3239 value =
3240 (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3241 QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3242 QL3032_PORT_CONTROL_ET);
3243 ql_write_page0_reg(qdev, &port_regs->functionControl,
3244 ((value << 16) | value));
3245 } else {
3246 value =
3247 (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3248 PORT_CONTROL_HH);
3249 ql_write_page0_reg(qdev, &port_regs->portControl,
3250 ((value << 16) | value));
3251 }
3252
3253
3254 out:
3255 return status;
3256 }
3257
3258 /*
3259 * Caller holds hw_lock.
3260 */
3261 static int ql_adapter_reset(struct ql3_adapter *qdev)
3262 {
3263 struct ql3xxx_port_registers __iomem *port_regs =
3264 qdev->mem_map_registers;
3265 int status = 0;
3266 u16 value;
3267 int max_wait_time;
3268
3269 set_bit(QL_RESET_ACTIVE, &qdev->flags);
3270 clear_bit(QL_RESET_DONE, &qdev->flags);
3271
3272 /*
3273 * Issue soft reset to chip.
3274 */
3275 netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
3276 ql_write_common_reg(qdev,
3277 &port_regs->CommonRegs.ispControlStatus,
3278 ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3279
3280 /* Wait 3 seconds for reset to complete. */
3281 netdev_printk(KERN_DEBUG, qdev->ndev,
3282 "Wait 10 milliseconds for reset to complete\n");
3283
3284 /* Wait until the firmware tells us the Soft Reset is done */
3285 max_wait_time = 5;
3286 do {
3287 value =
3288 ql_read_common_reg(qdev,
3289 &port_regs->CommonRegs.ispControlStatus);
3290 if ((value & ISP_CONTROL_SR) == 0)
3291 break;
3292
3293 ssleep(1);
3294 } while ((--max_wait_time));
3295
3296 /*
3297 * Also, make sure that the Network Reset Interrupt bit has been
3298 * cleared after the soft reset has taken place.
3299 */
3300 value =
3301 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3302 if (value & ISP_CONTROL_RI) {
3303 netdev_printk(KERN_DEBUG, qdev->ndev,
3304 "clearing RI after reset\n");
3305 ql_write_common_reg(qdev,
3306 &port_regs->CommonRegs.
3307 ispControlStatus,
3308 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3309 }
3310
3311 if (max_wait_time == 0) {
3312 /* Issue Force Soft Reset */
3313 ql_write_common_reg(qdev,
3314 &port_regs->CommonRegs.
3315 ispControlStatus,
3316 ((ISP_CONTROL_FSR << 16) |
3317 ISP_CONTROL_FSR));
3318 /*
3319 * Wait until the firmware tells us the Force Soft Reset is
3320 * done
3321 */
3322 max_wait_time = 5;
3323 do {
3324 value = ql_read_common_reg(qdev,
3325 &port_regs->CommonRegs.
3326 ispControlStatus);
3327 if ((value & ISP_CONTROL_FSR) == 0)
3328 break;
3329 ssleep(1);
3330 } while ((--max_wait_time));
3331 }
3332 if (max_wait_time == 0)
3333 status = 1;
3334
3335 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3336 set_bit(QL_RESET_DONE, &qdev->flags);
3337 return status;
3338 }
3339
3340 static void ql_set_mac_info(struct ql3_adapter *qdev)
3341 {
3342 struct ql3xxx_port_registers __iomem *port_regs =
3343 qdev->mem_map_registers;
3344 u32 value, port_status;
3345 u8 func_number;
3346
3347 /* Get the function number */
3348 value =
3349 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3350 func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3351 port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3352 switch (value & ISP_CONTROL_FN_MASK) {
3353 case ISP_CONTROL_FN0_NET:
3354 qdev->mac_index = 0;
3355 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3356 qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3357 qdev->PHYAddr = PORT0_PHY_ADDRESS;
3358 if (port_status & PORT_STATUS_SM0)
3359 set_bit(QL_LINK_OPTICAL, &qdev->flags);
3360 else
3361 clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3362 break;
3363
3364 case ISP_CONTROL_FN1_NET:
3365 qdev->mac_index = 1;
3366 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3367 qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3368 qdev->PHYAddr = PORT1_PHY_ADDRESS;
3369 if (port_status & PORT_STATUS_SM1)
3370 set_bit(QL_LINK_OPTICAL, &qdev->flags);
3371 else
3372 clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3373 break;
3374
3375 case ISP_CONTROL_FN0_SCSI:
3376 case ISP_CONTROL_FN1_SCSI:
3377 default:
3378 netdev_printk(KERN_DEBUG, qdev->ndev,
3379 "Invalid function number, ispControlStatus = 0x%x\n",
3380 value);
3381 break;
3382 }
3383 qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
3384 }
3385
3386 static void ql_display_dev_info(struct net_device *ndev)
3387 {
3388 struct ql3_adapter *qdev = netdev_priv(ndev);
3389 struct pci_dev *pdev = qdev->pdev;
3390
3391 netdev_info(ndev,
3392 "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
3393 DRV_NAME, qdev->index, qdev->chip_rev_id,
3394 qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
3395 qdev->pci_slot);
3396 netdev_info(ndev, "%s Interface\n",
3397 test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
3398
3399 /*
3400 * Print PCI bus width/type.
3401 */
3402 netdev_info(ndev, "Bus interface is %s %s\n",
3403 ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3404 ((qdev->pci_x) ? "PCI-X" : "PCI"));
3405
3406 netdev_info(ndev, "mem IO base address adjusted = 0x%p\n",
3407 qdev->mem_map_registers);
3408 netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
3409
3410 netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
3411 }
3412
3413 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3414 {
3415 struct net_device *ndev = qdev->ndev;
3416 int retval = 0;
3417
3418 netif_stop_queue(ndev);
3419 netif_carrier_off(ndev);
3420
3421 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3422 clear_bit(QL_LINK_MASTER, &qdev->flags);
3423
3424 ql_disable_interrupts(qdev);
3425
3426 free_irq(qdev->pdev->irq, ndev);
3427
3428 if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3429 netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
3430 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3431 pci_disable_msi(qdev->pdev);
3432 }
3433
3434 del_timer_sync(&qdev->adapter_timer);
3435
3436 napi_disable(&qdev->napi);
3437
3438 if (do_reset) {
3439 int soft_reset;
3440 unsigned long hw_flags;
3441
3442 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3443 if (ql_wait_for_drvr_lock(qdev)) {
3444 soft_reset = ql_adapter_reset(qdev);
3445 if (soft_reset) {
3446 netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
3447 qdev->index);
3448 }
3449 netdev_err(ndev,
3450 "Releasing driver lock via chip reset\n");
3451 } else {
3452 netdev_err(ndev,
3453 "Could not acquire driver lock to do reset!\n");
3454 retval = -1;
3455 }
3456 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3457 }
3458 ql_free_mem_resources(qdev);
3459 return retval;
3460 }
3461
3462 static int ql_adapter_up(struct ql3_adapter *qdev)
3463 {
3464 struct net_device *ndev = qdev->ndev;
3465 int err;
3466 unsigned long irq_flags = IRQF_SHARED;
3467 unsigned long hw_flags;
3468
3469 if (ql_alloc_mem_resources(qdev)) {
3470 netdev_err(ndev, "Unable to allocate buffers\n");
3471 return -ENOMEM;
3472 }
3473
3474 if (qdev->msi) {
3475 if (pci_enable_msi(qdev->pdev)) {
3476 netdev_err(ndev,
3477 "User requested MSI, but MSI failed to initialize. Continuing without MSI.\n");
3478 qdev->msi = 0;
3479 } else {
3480 netdev_info(ndev, "MSI Enabled...\n");
3481 set_bit(QL_MSI_ENABLED, &qdev->flags);
3482 irq_flags &= ~IRQF_SHARED;
3483 }
3484 }
3485
3486 err = request_irq(qdev->pdev->irq, ql3xxx_isr,
3487 irq_flags, ndev->name, ndev);
3488 if (err) {
3489 netdev_err(ndev,
3490 "Failed to reserve interrupt %d - already in use\n",
3491 qdev->pdev->irq);
3492 goto err_irq;
3493 }
3494
3495 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3496
3497 err = ql_wait_for_drvr_lock(qdev);
3498 if (err) {
3499 err = ql_adapter_initialize(qdev);
3500 if (err) {
3501 netdev_err(ndev, "Unable to initialize adapter\n");
3502 goto err_init;
3503 }
3504 netdev_err(ndev, "Releasing driver lock\n");
3505 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3506 } else {
3507 netdev_err(ndev, "Could not acquire driver lock\n");
3508 goto err_lock;
3509 }
3510
3511 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3512
3513 set_bit(QL_ADAPTER_UP, &qdev->flags);
3514
3515 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3516
3517 napi_enable(&qdev->napi);
3518 ql_enable_interrupts(qdev);
3519 return 0;
3520
3521 err_init:
3522 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3523 err_lock:
3524 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3525 free_irq(qdev->pdev->irq, ndev);
3526 err_irq:
3527 if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3528 netdev_info(ndev, "calling pci_disable_msi()\n");
3529 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3530 pci_disable_msi(qdev->pdev);
3531 }
3532 return err;
3533 }
3534
3535 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3536 {
3537 if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
3538 netdev_err(qdev->ndev,
3539 "Driver up/down cycle failed, closing device\n");
3540 rtnl_lock();
3541 dev_close(qdev->ndev);
3542 rtnl_unlock();
3543 return -1;
3544 }
3545 return 0;
3546 }
3547
3548 static int ql3xxx_close(struct net_device *ndev)
3549 {
3550 struct ql3_adapter *qdev = netdev_priv(ndev);
3551
3552 /*
3553 * Wait for device to recover from a reset.
3554 * (Rarely happens, but possible.)
3555 */
3556 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3557 msleep(50);
3558
3559 ql_adapter_down(qdev, QL_DO_RESET);
3560 return 0;
3561 }
3562
3563 static int ql3xxx_open(struct net_device *ndev)
3564 {
3565 struct ql3_adapter *qdev = netdev_priv(ndev);
3566 return ql_adapter_up(qdev);
3567 }
3568
3569 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3570 {
3571 struct ql3_adapter *qdev = netdev_priv(ndev);
3572 struct ql3xxx_port_registers __iomem *port_regs =
3573 qdev->mem_map_registers;
3574 struct sockaddr *addr = p;
3575 unsigned long hw_flags;
3576
3577 if (netif_running(ndev))
3578 return -EBUSY;
3579
3580 if (!is_valid_ether_addr(addr->sa_data))
3581 return -EADDRNOTAVAIL;
3582
3583 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3584
3585 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3586 /* Program lower 32 bits of the MAC address */
3587 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3588 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3589 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3590 ((ndev->dev_addr[2] << 24) | (ndev->
3591 dev_addr[3] << 16) |
3592 (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3593
3594 /* Program top 16 bits of the MAC address */
3595 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3596 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3597 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3598 ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3599 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3600
3601 return 0;
3602 }
3603
3604 static void ql3xxx_tx_timeout(struct net_device *ndev)
3605 {
3606 struct ql3_adapter *qdev = netdev_priv(ndev);
3607
3608 netdev_err(ndev, "Resetting...\n");
3609 /*
3610 * Stop the queues, we've got a problem.
3611 */
3612 netif_stop_queue(ndev);
3613
3614 /*
3615 * Wake up the worker to process this event.
3616 */
3617 queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3618 }
3619
3620 static void ql_reset_work(struct work_struct *work)
3621 {
3622 struct ql3_adapter *qdev =
3623 container_of(work, struct ql3_adapter, reset_work.work);
3624 struct net_device *ndev = qdev->ndev;
3625 u32 value;
3626 struct ql_tx_buf_cb *tx_cb;
3627 int max_wait_time, i;
3628 struct ql3xxx_port_registers __iomem *port_regs =
3629 qdev->mem_map_registers;
3630 unsigned long hw_flags;
3631
3632 if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
3633 clear_bit(QL_LINK_MASTER, &qdev->flags);
3634
3635 /*
3636 * Loop through the active list and return the skb.
3637 */
3638 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3639 int j;
3640 tx_cb = &qdev->tx_buf[i];
3641 if (tx_cb->skb) {
3642 netdev_printk(KERN_DEBUG, ndev,
3643 "Freeing lost SKB\n");
3644 pci_unmap_single(qdev->pdev,
3645 dma_unmap_addr(&tx_cb->map[0],
3646 mapaddr),
3647 dma_unmap_len(&tx_cb->map[0], maplen),
3648 PCI_DMA_TODEVICE);
3649 for (j = 1; j < tx_cb->seg_count; j++) {
3650 pci_unmap_page(qdev->pdev,
3651 dma_unmap_addr(&tx_cb->map[j],
3652 mapaddr),
3653 dma_unmap_len(&tx_cb->map[j],
3654 maplen),
3655 PCI_DMA_TODEVICE);
3656 }
3657 dev_kfree_skb(tx_cb->skb);
3658 tx_cb->skb = NULL;
3659 }
3660 }
3661
3662 netdev_err(ndev, "Clearing NRI after reset\n");
3663 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3664 ql_write_common_reg(qdev,
3665 &port_regs->CommonRegs.
3666 ispControlStatus,
3667 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3668 /*
3669 * Wait the for Soft Reset to Complete.
3670 */
3671 max_wait_time = 10;
3672 do {
3673 value = ql_read_common_reg(qdev,
3674 &port_regs->CommonRegs.
3675
3676 ispControlStatus);
3677 if ((value & ISP_CONTROL_SR) == 0) {
3678 netdev_printk(KERN_DEBUG, ndev,
3679 "reset completed\n");
3680 break;
3681 }
3682
3683 if (value & ISP_CONTROL_RI) {
3684 netdev_printk(KERN_DEBUG, ndev,
3685 "clearing NRI after reset\n");
3686 ql_write_common_reg(qdev,
3687 &port_regs->
3688 CommonRegs.
3689 ispControlStatus,
3690 ((ISP_CONTROL_RI <<
3691 16) | ISP_CONTROL_RI));
3692 }
3693
3694 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3695 ssleep(1);
3696 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3697 } while (--max_wait_time);
3698 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3699
3700 if (value & ISP_CONTROL_SR) {
3701
3702 /*
3703 * Set the reset flags and clear the board again.
3704 * Nothing else to do...
3705 */
3706 netdev_err(ndev,
3707 "Timed out waiting for reset to complete\n");
3708 netdev_err(ndev, "Do a reset\n");
3709 clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3710 clear_bit(QL_RESET_START, &qdev->flags);
3711 ql_cycle_adapter(qdev, QL_DO_RESET);
3712 return;
3713 }
3714
3715 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3716 clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3717 clear_bit(QL_RESET_START, &qdev->flags);
3718 ql_cycle_adapter(qdev, QL_NO_RESET);
3719 }
3720 }
3721
3722 static void ql_tx_timeout_work(struct work_struct *work)
3723 {
3724 struct ql3_adapter *qdev =
3725 container_of(work, struct ql3_adapter, tx_timeout_work.work);
3726
3727 ql_cycle_adapter(qdev, QL_DO_RESET);
3728 }
3729
3730 static void ql_get_board_info(struct ql3_adapter *qdev)
3731 {
3732 struct ql3xxx_port_registers __iomem *port_regs =
3733 qdev->mem_map_registers;
3734 u32 value;
3735
3736 value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3737
3738 qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3739 if (value & PORT_STATUS_64)
3740 qdev->pci_width = 64;
3741 else
3742 qdev->pci_width = 32;
3743 if (value & PORT_STATUS_X)
3744 qdev->pci_x = 1;
3745 else
3746 qdev->pci_x = 0;
3747 qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3748 }
3749
3750 static void ql3xxx_timer(unsigned long ptr)
3751 {
3752 struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
3753 queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3754 }
3755
3756 static const struct net_device_ops ql3xxx_netdev_ops = {
3757 .ndo_open = ql3xxx_open,
3758 .ndo_start_xmit = ql3xxx_send,
3759 .ndo_stop = ql3xxx_close,
3760 .ndo_change_mtu = eth_change_mtu,
3761 .ndo_validate_addr = eth_validate_addr,
3762 .ndo_set_mac_address = ql3xxx_set_mac_address,
3763 .ndo_tx_timeout = ql3xxx_tx_timeout,
3764 };
3765
3766 static int ql3xxx_probe(struct pci_dev *pdev,
3767 const struct pci_device_id *pci_entry)
3768 {
3769 struct net_device *ndev = NULL;
3770 struct ql3_adapter *qdev = NULL;
3771 static int cards_found;
3772 int uninitialized_var(pci_using_dac), err;
3773
3774 err = pci_enable_device(pdev);
3775 if (err) {
3776 pr_err("%s cannot enable PCI device\n", pci_name(pdev));
3777 goto err_out;
3778 }
3779
3780 err = pci_request_regions(pdev, DRV_NAME);
3781 if (err) {
3782 pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
3783 goto err_out_disable_pdev;
3784 }
3785
3786 pci_set_master(pdev);
3787
3788 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3789 pci_using_dac = 1;
3790 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3791 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3792 pci_using_dac = 0;
3793 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3794 }
3795
3796 if (err) {
3797 pr_err("%s no usable DMA configuration\n", pci_name(pdev));
3798 goto err_out_free_regions;
3799 }
3800
3801 ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3802 if (!ndev) {
3803 err = -ENOMEM;
3804 goto err_out_free_regions;
3805 }
3806
3807 SET_NETDEV_DEV(ndev, &pdev->dev);
3808
3809 pci_set_drvdata(pdev, ndev);
3810
3811 qdev = netdev_priv(ndev);
3812 qdev->index = cards_found;
3813 qdev->ndev = ndev;
3814 qdev->pdev = pdev;
3815 qdev->device_id = pci_entry->device;
3816 qdev->port_link_state = LS_DOWN;
3817 if (msi)
3818 qdev->msi = 1;
3819
3820 qdev->msg_enable = netif_msg_init(debug, default_msg);
3821
3822 if (pci_using_dac)
3823 ndev->features |= NETIF_F_HIGHDMA;
3824 if (qdev->device_id == QL3032_DEVICE_ID)
3825 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3826
3827 qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
3828 if (!qdev->mem_map_registers) {
3829 pr_err("%s: cannot map device registers\n", pci_name(pdev));
3830 err = -EIO;
3831 goto err_out_free_ndev;
3832 }
3833
3834 spin_lock_init(&qdev->adapter_lock);
3835 spin_lock_init(&qdev->hw_lock);
3836
3837 /* Set driver entry points */
3838 ndev->netdev_ops = &ql3xxx_netdev_ops;
3839 ndev->ethtool_ops = &ql3xxx_ethtool_ops;
3840 ndev->watchdog_timeo = 5 * HZ;
3841
3842 netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
3843
3844 ndev->irq = pdev->irq;
3845
3846 /* make sure the EEPROM is good */
3847 if (ql_get_nvram_params(qdev)) {
3848 pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
3849 __func__, qdev->index);
3850 err = -EIO;
3851 goto err_out_iounmap;
3852 }
3853
3854 ql_set_mac_info(qdev);
3855
3856 /* Validate and set parameters */
3857 if (qdev->mac_index) {
3858 ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
3859 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
3860 } else {
3861 ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
3862 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
3863 }
3864
3865 ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
3866
3867 /* Record PCI bus information. */
3868 ql_get_board_info(qdev);
3869
3870 /*
3871 * Set the Maximum Memory Read Byte Count value. We do this to handle
3872 * jumbo frames.
3873 */
3874 if (qdev->pci_x)
3875 pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
3876
3877 err = register_netdev(ndev);
3878 if (err) {
3879 pr_err("%s: cannot register net device\n", pci_name(pdev));
3880 goto err_out_iounmap;
3881 }
3882
3883 /* we're going to reset, so assume we have no link for now */
3884
3885 netif_carrier_off(ndev);
3886 netif_stop_queue(ndev);
3887
3888 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3889 INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
3890 INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
3891 INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
3892
3893 init_timer(&qdev->adapter_timer);
3894 qdev->adapter_timer.function = ql3xxx_timer;
3895 qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
3896 qdev->adapter_timer.data = (unsigned long)qdev;
3897
3898 if (!cards_found) {
3899 pr_alert("%s\n", DRV_STRING);
3900 pr_alert("Driver name: %s, Version: %s\n",
3901 DRV_NAME, DRV_VERSION);
3902 }
3903 ql_display_dev_info(ndev);
3904
3905 cards_found++;
3906 return 0;
3907
3908 err_out_iounmap:
3909 iounmap(qdev->mem_map_registers);
3910 err_out_free_ndev:
3911 free_netdev(ndev);
3912 err_out_free_regions:
3913 pci_release_regions(pdev);
3914 err_out_disable_pdev:
3915 pci_disable_device(pdev);
3916 err_out:
3917 return err;
3918 }
3919
3920 static void ql3xxx_remove(struct pci_dev *pdev)
3921 {
3922 struct net_device *ndev = pci_get_drvdata(pdev);
3923 struct ql3_adapter *qdev = netdev_priv(ndev);
3924
3925 unregister_netdev(ndev);
3926
3927 ql_disable_interrupts(qdev);
3928
3929 if (qdev->workqueue) {
3930 cancel_delayed_work(&qdev->reset_work);
3931 cancel_delayed_work(&qdev->tx_timeout_work);
3932 destroy_workqueue(qdev->workqueue);
3933 qdev->workqueue = NULL;
3934 }
3935
3936 iounmap(qdev->mem_map_registers);
3937 pci_release_regions(pdev);
3938 free_netdev(ndev);
3939 }
3940
3941 static struct pci_driver ql3xxx_driver = {
3942
3943 .name = DRV_NAME,
3944 .id_table = ql3xxx_pci_tbl,
3945 .probe = ql3xxx_probe,
3946 .remove = ql3xxx_remove,
3947 };
3948
3949 module_pci_driver(ql3xxx_driver);
This page took 0.115718 seconds and 5 git commands to generate.