Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qla3xxx.c
1 /*
2 * QLogic QLA3xxx NIC HBA Driver
3 * Copyright (c) 2003-2006 QLogic Corporation
4 *
5 * See LICENSE.qla3xxx for copyright and licensing details.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/ip.h>
26 #include <linux/in.h>
27 #include <linux/if_arp.h>
28 #include <linux/if_ether.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/ethtool.h>
32 #include <linux/skbuff.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/if_vlan.h>
35 #include <linux/delay.h>
36 #include <linux/mm.h>
37 #include <linux/prefetch.h>
38
39 #include "qla3xxx.h"
40
41 #define DRV_NAME "qla3xxx"
42 #define DRV_STRING "QLogic ISP3XXX Network Driver"
43 #define DRV_VERSION "v2.03.00-k5"
44
45 static const char ql3xxx_driver_name[] = DRV_NAME;
46 static const char ql3xxx_driver_version[] = DRV_VERSION;
47
48 #define TIMED_OUT_MSG \
49 "Timed out waiting for management port to get free before issuing command\n"
50
51 MODULE_AUTHOR("QLogic Corporation");
52 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
53 MODULE_LICENSE("GPL");
54 MODULE_VERSION(DRV_VERSION);
55
56 static const u32 default_msg
57 = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
58 | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
59
60 static int debug = -1; /* defaults above */
61 module_param(debug, int, 0);
62 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
63
64 static int msi;
65 module_param(msi, int, 0);
66 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
67
68 static DEFINE_PCI_DEVICE_TABLE(ql3xxx_pci_tbl) = {
69 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
70 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
71 /* required last entry */
72 {0,}
73 };
74
75 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
76
77 /*
78 * These are the known PHY's which are used
79 */
80 enum PHY_DEVICE_TYPE {
81 PHY_TYPE_UNKNOWN = 0,
82 PHY_VITESSE_VSC8211,
83 PHY_AGERE_ET1011C,
84 MAX_PHY_DEV_TYPES
85 };
86
87 struct PHY_DEVICE_INFO {
88 const enum PHY_DEVICE_TYPE phyDevice;
89 const u32 phyIdOUI;
90 const u16 phyIdModel;
91 const char *name;
92 };
93
94 static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
95 {PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
96 {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
97 {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
98 };
99
100
101 /*
102 * Caller must take hw_lock.
103 */
104 static int ql_sem_spinlock(struct ql3_adapter *qdev,
105 u32 sem_mask, u32 sem_bits)
106 {
107 struct ql3xxx_port_registers __iomem *port_regs =
108 qdev->mem_map_registers;
109 u32 value;
110 unsigned int seconds = 3;
111
112 do {
113 writel((sem_mask | sem_bits),
114 &port_regs->CommonRegs.semaphoreReg);
115 value = readl(&port_regs->CommonRegs.semaphoreReg);
116 if ((value & (sem_mask >> 16)) == sem_bits)
117 return 0;
118 ssleep(1);
119 } while (--seconds);
120 return -1;
121 }
122
123 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
124 {
125 struct ql3xxx_port_registers __iomem *port_regs =
126 qdev->mem_map_registers;
127 writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
128 readl(&port_regs->CommonRegs.semaphoreReg);
129 }
130
131 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
132 {
133 struct ql3xxx_port_registers __iomem *port_regs =
134 qdev->mem_map_registers;
135 u32 value;
136
137 writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
138 value = readl(&port_regs->CommonRegs.semaphoreReg);
139 return ((value & (sem_mask >> 16)) == sem_bits);
140 }
141
142 /*
143 * Caller holds hw_lock.
144 */
145 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
146 {
147 int i = 0;
148
149 while (i < 10) {
150 if (i)
151 ssleep(1);
152
153 if (ql_sem_lock(qdev,
154 QL_DRVR_SEM_MASK,
155 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
156 * 2) << 1)) {
157 netdev_printk(KERN_DEBUG, qdev->ndev,
158 "driver lock acquired\n");
159 return 1;
160 }
161 }
162
163 netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
164 return 0;
165 }
166
167 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
168 {
169 struct ql3xxx_port_registers __iomem *port_regs =
170 qdev->mem_map_registers;
171
172 writel(((ISP_CONTROL_NP_MASK << 16) | page),
173 &port_regs->CommonRegs.ispControlStatus);
174 readl(&port_regs->CommonRegs.ispControlStatus);
175 qdev->current_page = page;
176 }
177
178 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
179 {
180 u32 value;
181 unsigned long hw_flags;
182
183 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
184 value = readl(reg);
185 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
186
187 return value;
188 }
189
190 static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
191 {
192 return readl(reg);
193 }
194
195 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
196 {
197 u32 value;
198 unsigned long hw_flags;
199
200 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
201
202 if (qdev->current_page != 0)
203 ql_set_register_page(qdev, 0);
204 value = readl(reg);
205
206 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
207 return value;
208 }
209
210 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
211 {
212 if (qdev->current_page != 0)
213 ql_set_register_page(qdev, 0);
214 return readl(reg);
215 }
216
217 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
218 u32 __iomem *reg, u32 value)
219 {
220 unsigned long hw_flags;
221
222 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
223 writel(value, reg);
224 readl(reg);
225 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
226 }
227
228 static void ql_write_common_reg(struct ql3_adapter *qdev,
229 u32 __iomem *reg, u32 value)
230 {
231 writel(value, reg);
232 readl(reg);
233 }
234
235 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
236 u32 __iomem *reg, u32 value)
237 {
238 writel(value, reg);
239 readl(reg);
240 udelay(1);
241 }
242
243 static void ql_write_page0_reg(struct ql3_adapter *qdev,
244 u32 __iomem *reg, u32 value)
245 {
246 if (qdev->current_page != 0)
247 ql_set_register_page(qdev, 0);
248 writel(value, reg);
249 readl(reg);
250 }
251
252 /*
253 * Caller holds hw_lock. Only called during init.
254 */
255 static void ql_write_page1_reg(struct ql3_adapter *qdev,
256 u32 __iomem *reg, u32 value)
257 {
258 if (qdev->current_page != 1)
259 ql_set_register_page(qdev, 1);
260 writel(value, reg);
261 readl(reg);
262 }
263
264 /*
265 * Caller holds hw_lock. Only called during init.
266 */
267 static void ql_write_page2_reg(struct ql3_adapter *qdev,
268 u32 __iomem *reg, u32 value)
269 {
270 if (qdev->current_page != 2)
271 ql_set_register_page(qdev, 2);
272 writel(value, reg);
273 readl(reg);
274 }
275
276 static void ql_disable_interrupts(struct ql3_adapter *qdev)
277 {
278 struct ql3xxx_port_registers __iomem *port_regs =
279 qdev->mem_map_registers;
280
281 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
282 (ISP_IMR_ENABLE_INT << 16));
283
284 }
285
286 static void ql_enable_interrupts(struct ql3_adapter *qdev)
287 {
288 struct ql3xxx_port_registers __iomem *port_regs =
289 qdev->mem_map_registers;
290
291 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
292 ((0xff << 16) | ISP_IMR_ENABLE_INT));
293
294 }
295
296 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
297 struct ql_rcv_buf_cb *lrg_buf_cb)
298 {
299 dma_addr_t map;
300 int err;
301 lrg_buf_cb->next = NULL;
302
303 if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
304 qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
305 } else {
306 qdev->lrg_buf_free_tail->next = lrg_buf_cb;
307 qdev->lrg_buf_free_tail = lrg_buf_cb;
308 }
309
310 if (!lrg_buf_cb->skb) {
311 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
312 qdev->lrg_buffer_len);
313 if (unlikely(!lrg_buf_cb->skb)) {
314 qdev->lrg_buf_skb_check++;
315 } else {
316 /*
317 * We save some space to copy the ethhdr from first
318 * buffer
319 */
320 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
321 map = pci_map_single(qdev->pdev,
322 lrg_buf_cb->skb->data,
323 qdev->lrg_buffer_len -
324 QL_HEADER_SPACE,
325 PCI_DMA_FROMDEVICE);
326 err = pci_dma_mapping_error(qdev->pdev, map);
327 if (err) {
328 netdev_err(qdev->ndev,
329 "PCI mapping failed with error: %d\n",
330 err);
331 dev_kfree_skb(lrg_buf_cb->skb);
332 lrg_buf_cb->skb = NULL;
333
334 qdev->lrg_buf_skb_check++;
335 return;
336 }
337
338 lrg_buf_cb->buf_phy_addr_low =
339 cpu_to_le32(LS_64BITS(map));
340 lrg_buf_cb->buf_phy_addr_high =
341 cpu_to_le32(MS_64BITS(map));
342 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
343 dma_unmap_len_set(lrg_buf_cb, maplen,
344 qdev->lrg_buffer_len -
345 QL_HEADER_SPACE);
346 }
347 }
348
349 qdev->lrg_buf_free_count++;
350 }
351
352 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
353 *qdev)
354 {
355 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
356
357 if (lrg_buf_cb != NULL) {
358 qdev->lrg_buf_free_head = lrg_buf_cb->next;
359 if (qdev->lrg_buf_free_head == NULL)
360 qdev->lrg_buf_free_tail = NULL;
361 qdev->lrg_buf_free_count--;
362 }
363
364 return lrg_buf_cb;
365 }
366
367 static u32 addrBits = EEPROM_NO_ADDR_BITS;
368 static u32 dataBits = EEPROM_NO_DATA_BITS;
369
370 static void fm93c56a_deselect(struct ql3_adapter *qdev);
371 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
372 unsigned short *value);
373
374 /*
375 * Caller holds hw_lock.
376 */
377 static void fm93c56a_select(struct ql3_adapter *qdev)
378 {
379 struct ql3xxx_port_registers __iomem *port_regs =
380 qdev->mem_map_registers;
381 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
382
383 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
384 ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
385 ql_write_nvram_reg(qdev, spir,
386 ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
387 }
388
389 /*
390 * Caller holds hw_lock.
391 */
392 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
393 {
394 int i;
395 u32 mask;
396 u32 dataBit;
397 u32 previousBit;
398 struct ql3xxx_port_registers __iomem *port_regs =
399 qdev->mem_map_registers;
400 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
401
402 /* Clock in a zero, then do the start bit */
403 ql_write_nvram_reg(qdev, spir,
404 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
405 AUBURN_EEPROM_DO_1));
406 ql_write_nvram_reg(qdev, spir,
407 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
408 AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
409 ql_write_nvram_reg(qdev, spir,
410 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
411 AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
412
413 mask = 1 << (FM93C56A_CMD_BITS - 1);
414 /* Force the previous data bit to be different */
415 previousBit = 0xffff;
416 for (i = 0; i < FM93C56A_CMD_BITS; i++) {
417 dataBit = (cmd & mask)
418 ? AUBURN_EEPROM_DO_1
419 : AUBURN_EEPROM_DO_0;
420 if (previousBit != dataBit) {
421 /* If the bit changed, change the DO state to match */
422 ql_write_nvram_reg(qdev, spir,
423 (ISP_NVRAM_MASK |
424 qdev->eeprom_cmd_data | dataBit));
425 previousBit = dataBit;
426 }
427 ql_write_nvram_reg(qdev, spir,
428 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
429 dataBit | AUBURN_EEPROM_CLK_RISE));
430 ql_write_nvram_reg(qdev, spir,
431 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
432 dataBit | AUBURN_EEPROM_CLK_FALL));
433 cmd = cmd << 1;
434 }
435
436 mask = 1 << (addrBits - 1);
437 /* Force the previous data bit to be different */
438 previousBit = 0xffff;
439 for (i = 0; i < addrBits; i++) {
440 dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
441 : AUBURN_EEPROM_DO_0;
442 if (previousBit != dataBit) {
443 /*
444 * If the bit changed, then change the DO state to
445 * match
446 */
447 ql_write_nvram_reg(qdev, spir,
448 (ISP_NVRAM_MASK |
449 qdev->eeprom_cmd_data | dataBit));
450 previousBit = dataBit;
451 }
452 ql_write_nvram_reg(qdev, spir,
453 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
454 dataBit | AUBURN_EEPROM_CLK_RISE));
455 ql_write_nvram_reg(qdev, spir,
456 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
457 dataBit | AUBURN_EEPROM_CLK_FALL));
458 eepromAddr = eepromAddr << 1;
459 }
460 }
461
462 /*
463 * Caller holds hw_lock.
464 */
465 static void fm93c56a_deselect(struct ql3_adapter *qdev)
466 {
467 struct ql3xxx_port_registers __iomem *port_regs =
468 qdev->mem_map_registers;
469 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
470
471 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
472 ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
473 }
474
475 /*
476 * Caller holds hw_lock.
477 */
478 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
479 {
480 int i;
481 u32 data = 0;
482 u32 dataBit;
483 struct ql3xxx_port_registers __iomem *port_regs =
484 qdev->mem_map_registers;
485 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
486
487 /* Read the data bits */
488 /* The first bit is a dummy. Clock right over it. */
489 for (i = 0; i < dataBits; i++) {
490 ql_write_nvram_reg(qdev, spir,
491 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
492 AUBURN_EEPROM_CLK_RISE);
493 ql_write_nvram_reg(qdev, spir,
494 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
495 AUBURN_EEPROM_CLK_FALL);
496 dataBit = (ql_read_common_reg(qdev, spir) &
497 AUBURN_EEPROM_DI_1) ? 1 : 0;
498 data = (data << 1) | dataBit;
499 }
500 *value = (u16)data;
501 }
502
503 /*
504 * Caller holds hw_lock.
505 */
506 static void eeprom_readword(struct ql3_adapter *qdev,
507 u32 eepromAddr, unsigned short *value)
508 {
509 fm93c56a_select(qdev);
510 fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
511 fm93c56a_datain(qdev, value);
512 fm93c56a_deselect(qdev);
513 }
514
515 static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
516 {
517 __le16 *p = (__le16 *)ndev->dev_addr;
518 p[0] = cpu_to_le16(addr[0]);
519 p[1] = cpu_to_le16(addr[1]);
520 p[2] = cpu_to_le16(addr[2]);
521 }
522
523 static int ql_get_nvram_params(struct ql3_adapter *qdev)
524 {
525 u16 *pEEPROMData;
526 u16 checksum = 0;
527 u32 index;
528 unsigned long hw_flags;
529
530 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
531
532 pEEPROMData = (u16 *)&qdev->nvram_data;
533 qdev->eeprom_cmd_data = 0;
534 if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
535 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
536 2) << 10)) {
537 pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
538 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
539 return -1;
540 }
541
542 for (index = 0; index < EEPROM_SIZE; index++) {
543 eeprom_readword(qdev, index, pEEPROMData);
544 checksum += *pEEPROMData;
545 pEEPROMData++;
546 }
547 ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
548
549 if (checksum != 0) {
550 netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
551 checksum);
552 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
553 return -1;
554 }
555
556 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
557 return checksum;
558 }
559
560 static const u32 PHYAddr[2] = {
561 PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
562 };
563
564 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
565 {
566 struct ql3xxx_port_registers __iomem *port_regs =
567 qdev->mem_map_registers;
568 u32 temp;
569 int count = 1000;
570
571 while (count) {
572 temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
573 if (!(temp & MAC_MII_STATUS_BSY))
574 return 0;
575 udelay(10);
576 count--;
577 }
578 return -1;
579 }
580
581 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
582 {
583 struct ql3xxx_port_registers __iomem *port_regs =
584 qdev->mem_map_registers;
585 u32 scanControl;
586
587 if (qdev->numPorts > 1) {
588 /* Auto scan will cycle through multiple ports */
589 scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
590 } else {
591 scanControl = MAC_MII_CONTROL_SC;
592 }
593
594 /*
595 * Scan register 1 of PHY/PETBI,
596 * Set up to scan both devices
597 * The autoscan starts from the first register, completes
598 * the last one before rolling over to the first
599 */
600 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
601 PHYAddr[0] | MII_SCAN_REGISTER);
602
603 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
604 (scanControl) |
605 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
606 }
607
608 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
609 {
610 u8 ret;
611 struct ql3xxx_port_registers __iomem *port_regs =
612 qdev->mem_map_registers;
613
614 /* See if scan mode is enabled before we turn it off */
615 if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
616 (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
617 /* Scan is enabled */
618 ret = 1;
619 } else {
620 /* Scan is disabled */
621 ret = 0;
622 }
623
624 /*
625 * When disabling scan mode you must first change the MII register
626 * address
627 */
628 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
629 PHYAddr[0] | MII_SCAN_REGISTER);
630
631 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
632 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
633 MAC_MII_CONTROL_RC) << 16));
634
635 return ret;
636 }
637
638 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
639 u16 regAddr, u16 value, u32 phyAddr)
640 {
641 struct ql3xxx_port_registers __iomem *port_regs =
642 qdev->mem_map_registers;
643 u8 scanWasEnabled;
644
645 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
646
647 if (ql_wait_for_mii_ready(qdev)) {
648 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
649 return -1;
650 }
651
652 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
653 phyAddr | regAddr);
654
655 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
656
657 /* Wait for write to complete 9/10/04 SJP */
658 if (ql_wait_for_mii_ready(qdev)) {
659 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
660 return -1;
661 }
662
663 if (scanWasEnabled)
664 ql_mii_enable_scan_mode(qdev);
665
666 return 0;
667 }
668
669 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
670 u16 *value, u32 phyAddr)
671 {
672 struct ql3xxx_port_registers __iomem *port_regs =
673 qdev->mem_map_registers;
674 u8 scanWasEnabled;
675 u32 temp;
676
677 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
678
679 if (ql_wait_for_mii_ready(qdev)) {
680 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
681 return -1;
682 }
683
684 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
685 phyAddr | regAddr);
686
687 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
688 (MAC_MII_CONTROL_RC << 16));
689
690 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
691 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
692
693 /* Wait for the read to complete */
694 if (ql_wait_for_mii_ready(qdev)) {
695 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
696 return -1;
697 }
698
699 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
700 *value = (u16) temp;
701
702 if (scanWasEnabled)
703 ql_mii_enable_scan_mode(qdev);
704
705 return 0;
706 }
707
708 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
709 {
710 struct ql3xxx_port_registers __iomem *port_regs =
711 qdev->mem_map_registers;
712
713 ql_mii_disable_scan_mode(qdev);
714
715 if (ql_wait_for_mii_ready(qdev)) {
716 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
717 return -1;
718 }
719
720 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
721 qdev->PHYAddr | regAddr);
722
723 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
724
725 /* Wait for write to complete. */
726 if (ql_wait_for_mii_ready(qdev)) {
727 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
728 return -1;
729 }
730
731 ql_mii_enable_scan_mode(qdev);
732
733 return 0;
734 }
735
736 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
737 {
738 u32 temp;
739 struct ql3xxx_port_registers __iomem *port_regs =
740 qdev->mem_map_registers;
741
742 ql_mii_disable_scan_mode(qdev);
743
744 if (ql_wait_for_mii_ready(qdev)) {
745 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
746 return -1;
747 }
748
749 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
750 qdev->PHYAddr | regAddr);
751
752 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
753 (MAC_MII_CONTROL_RC << 16));
754
755 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
756 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
757
758 /* Wait for the read to complete */
759 if (ql_wait_for_mii_ready(qdev)) {
760 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
761 return -1;
762 }
763
764 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
765 *value = (u16) temp;
766
767 ql_mii_enable_scan_mode(qdev);
768
769 return 0;
770 }
771
772 static void ql_petbi_reset(struct ql3_adapter *qdev)
773 {
774 ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
775 }
776
777 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
778 {
779 u16 reg;
780
781 /* Enable Auto-negotiation sense */
782 ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
783 reg |= PETBI_TBI_AUTO_SENSE;
784 ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
785
786 ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
787 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
788
789 ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
790 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
791 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
792
793 }
794
795 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
796 {
797 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
798 PHYAddr[qdev->mac_index]);
799 }
800
801 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
802 {
803 u16 reg;
804
805 /* Enable Auto-negotiation sense */
806 ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
807 PHYAddr[qdev->mac_index]);
808 reg |= PETBI_TBI_AUTO_SENSE;
809 ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
810 PHYAddr[qdev->mac_index]);
811
812 ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
813 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
814 PHYAddr[qdev->mac_index]);
815
816 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
817 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
818 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
819 PHYAddr[qdev->mac_index]);
820 }
821
822 static void ql_petbi_init(struct ql3_adapter *qdev)
823 {
824 ql_petbi_reset(qdev);
825 ql_petbi_start_neg(qdev);
826 }
827
828 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
829 {
830 ql_petbi_reset_ex(qdev);
831 ql_petbi_start_neg_ex(qdev);
832 }
833
834 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
835 {
836 u16 reg;
837
838 if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
839 return 0;
840
841 return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
842 }
843
844 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
845 {
846 netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
847 /* power down device bit 11 = 1 */
848 ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
849 /* enable diagnostic mode bit 2 = 1 */
850 ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
851 /* 1000MB amplitude adjust (see Agere errata) */
852 ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
853 /* 1000MB amplitude adjust (see Agere errata) */
854 ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
855 /* 100MB amplitude adjust (see Agere errata) */
856 ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
857 /* 100MB amplitude adjust (see Agere errata) */
858 ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
859 /* 10MB amplitude adjust (see Agere errata) */
860 ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
861 /* 10MB amplitude adjust (see Agere errata) */
862 ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
863 /* point to hidden reg 0x2806 */
864 ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
865 /* Write new PHYAD w/bit 5 set */
866 ql_mii_write_reg_ex(qdev, 0x11,
867 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
868 /*
869 * Disable diagnostic mode bit 2 = 0
870 * Power up device bit 11 = 0
871 * Link up (on) and activity (blink)
872 */
873 ql_mii_write_reg(qdev, 0x12, 0x840a);
874 ql_mii_write_reg(qdev, 0x00, 0x1140);
875 ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
876 }
877
878 static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
879 u16 phyIdReg0, u16 phyIdReg1)
880 {
881 enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
882 u32 oui;
883 u16 model;
884 int i;
885
886 if (phyIdReg0 == 0xffff)
887 return result;
888
889 if (phyIdReg1 == 0xffff)
890 return result;
891
892 /* oui is split between two registers */
893 oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
894
895 model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
896
897 /* Scan table for this PHY */
898 for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
899 if ((oui == PHY_DEVICES[i].phyIdOUI) &&
900 (model == PHY_DEVICES[i].phyIdModel)) {
901 netdev_info(qdev->ndev, "Phy: %s\n",
902 PHY_DEVICES[i].name);
903 result = PHY_DEVICES[i].phyDevice;
904 break;
905 }
906 }
907
908 return result;
909 }
910
911 static int ql_phy_get_speed(struct ql3_adapter *qdev)
912 {
913 u16 reg;
914
915 switch (qdev->phyType) {
916 case PHY_AGERE_ET1011C: {
917 if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
918 return 0;
919
920 reg = (reg >> 8) & 3;
921 break;
922 }
923 default:
924 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
925 return 0;
926
927 reg = (((reg & 0x18) >> 3) & 3);
928 }
929
930 switch (reg) {
931 case 2:
932 return SPEED_1000;
933 case 1:
934 return SPEED_100;
935 case 0:
936 return SPEED_10;
937 default:
938 return -1;
939 }
940 }
941
942 static int ql_is_full_dup(struct ql3_adapter *qdev)
943 {
944 u16 reg;
945
946 switch (qdev->phyType) {
947 case PHY_AGERE_ET1011C: {
948 if (ql_mii_read_reg(qdev, 0x1A, &reg))
949 return 0;
950
951 return ((reg & 0x0080) && (reg & 0x1000)) != 0;
952 }
953 case PHY_VITESSE_VSC8211:
954 default: {
955 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
956 return 0;
957 return (reg & PHY_AUX_DUPLEX_STAT) != 0;
958 }
959 }
960 }
961
962 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
963 {
964 u16 reg;
965
966 if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
967 return 0;
968
969 return (reg & PHY_NEG_PAUSE) != 0;
970 }
971
972 static int PHY_Setup(struct ql3_adapter *qdev)
973 {
974 u16 reg1;
975 u16 reg2;
976 bool agereAddrChangeNeeded = false;
977 u32 miiAddr = 0;
978 int err;
979
980 /* Determine the PHY we are using by reading the ID's */
981 err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
982 if (err != 0) {
983 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
984 return err;
985 }
986
987 err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
988 if (err != 0) {
989 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
990 return err;
991 }
992
993 /* Check if we have a Agere PHY */
994 if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
995
996 /* Determine which MII address we should be using
997 determined by the index of the card */
998 if (qdev->mac_index == 0)
999 miiAddr = MII_AGERE_ADDR_1;
1000 else
1001 miiAddr = MII_AGERE_ADDR_2;
1002
1003 err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
1004 if (err != 0) {
1005 netdev_err(qdev->ndev,
1006 "Could not read from reg PHY_ID_0_REG after Agere detected\n");
1007 return err;
1008 }
1009
1010 err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1011 if (err != 0) {
1012 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
1013 return err;
1014 }
1015
1016 /* We need to remember to initialize the Agere PHY */
1017 agereAddrChangeNeeded = true;
1018 }
1019
1020 /* Determine the particular PHY we have on board to apply
1021 PHY specific initializations */
1022 qdev->phyType = getPhyType(qdev, reg1, reg2);
1023
1024 if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1025 /* need this here so address gets changed */
1026 phyAgereSpecificInit(qdev, miiAddr);
1027 } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1028 netdev_err(qdev->ndev, "PHY is unknown\n");
1029 return -EIO;
1030 }
1031
1032 return 0;
1033 }
1034
1035 /*
1036 * Caller holds hw_lock.
1037 */
1038 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1039 {
1040 struct ql3xxx_port_registers __iomem *port_regs =
1041 qdev->mem_map_registers;
1042 u32 value;
1043
1044 if (enable)
1045 value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1046 else
1047 value = (MAC_CONFIG_REG_PE << 16);
1048
1049 if (qdev->mac_index)
1050 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1051 else
1052 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1053 }
1054
1055 /*
1056 * Caller holds hw_lock.
1057 */
1058 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1059 {
1060 struct ql3xxx_port_registers __iomem *port_regs =
1061 qdev->mem_map_registers;
1062 u32 value;
1063
1064 if (enable)
1065 value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1066 else
1067 value = (MAC_CONFIG_REG_SR << 16);
1068
1069 if (qdev->mac_index)
1070 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1071 else
1072 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1073 }
1074
1075 /*
1076 * Caller holds hw_lock.
1077 */
1078 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1079 {
1080 struct ql3xxx_port_registers __iomem *port_regs =
1081 qdev->mem_map_registers;
1082 u32 value;
1083
1084 if (enable)
1085 value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1086 else
1087 value = (MAC_CONFIG_REG_GM << 16);
1088
1089 if (qdev->mac_index)
1090 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1091 else
1092 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1093 }
1094
1095 /*
1096 * Caller holds hw_lock.
1097 */
1098 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1099 {
1100 struct ql3xxx_port_registers __iomem *port_regs =
1101 qdev->mem_map_registers;
1102 u32 value;
1103
1104 if (enable)
1105 value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1106 else
1107 value = (MAC_CONFIG_REG_FD << 16);
1108
1109 if (qdev->mac_index)
1110 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1111 else
1112 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1113 }
1114
1115 /*
1116 * Caller holds hw_lock.
1117 */
1118 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1119 {
1120 struct ql3xxx_port_registers __iomem *port_regs =
1121 qdev->mem_map_registers;
1122 u32 value;
1123
1124 if (enable)
1125 value =
1126 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1127 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1128 else
1129 value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1130
1131 if (qdev->mac_index)
1132 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1133 else
1134 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1135 }
1136
1137 /*
1138 * Caller holds hw_lock.
1139 */
1140 static int ql_is_fiber(struct ql3_adapter *qdev)
1141 {
1142 struct ql3xxx_port_registers __iomem *port_regs =
1143 qdev->mem_map_registers;
1144 u32 bitToCheck = 0;
1145 u32 temp;
1146
1147 switch (qdev->mac_index) {
1148 case 0:
1149 bitToCheck = PORT_STATUS_SM0;
1150 break;
1151 case 1:
1152 bitToCheck = PORT_STATUS_SM1;
1153 break;
1154 }
1155
1156 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1157 return (temp & bitToCheck) != 0;
1158 }
1159
1160 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1161 {
1162 u16 reg;
1163 ql_mii_read_reg(qdev, 0x00, &reg);
1164 return (reg & 0x1000) != 0;
1165 }
1166
1167 /*
1168 * Caller holds hw_lock.
1169 */
1170 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1171 {
1172 struct ql3xxx_port_registers __iomem *port_regs =
1173 qdev->mem_map_registers;
1174 u32 bitToCheck = 0;
1175 u32 temp;
1176
1177 switch (qdev->mac_index) {
1178 case 0:
1179 bitToCheck = PORT_STATUS_AC0;
1180 break;
1181 case 1:
1182 bitToCheck = PORT_STATUS_AC1;
1183 break;
1184 }
1185
1186 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1187 if (temp & bitToCheck) {
1188 netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
1189 return 1;
1190 }
1191 netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
1192 return 0;
1193 }
1194
1195 /*
1196 * ql_is_neg_pause() returns 1 if pause was negotiated to be on
1197 */
1198 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1199 {
1200 if (ql_is_fiber(qdev))
1201 return ql_is_petbi_neg_pause(qdev);
1202 else
1203 return ql_is_phy_neg_pause(qdev);
1204 }
1205
1206 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1207 {
1208 struct ql3xxx_port_registers __iomem *port_regs =
1209 qdev->mem_map_registers;
1210 u32 bitToCheck = 0;
1211 u32 temp;
1212
1213 switch (qdev->mac_index) {
1214 case 0:
1215 bitToCheck = PORT_STATUS_AE0;
1216 break;
1217 case 1:
1218 bitToCheck = PORT_STATUS_AE1;
1219 break;
1220 }
1221 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1222 return (temp & bitToCheck) != 0;
1223 }
1224
1225 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1226 {
1227 if (ql_is_fiber(qdev))
1228 return SPEED_1000;
1229 else
1230 return ql_phy_get_speed(qdev);
1231 }
1232
1233 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1234 {
1235 if (ql_is_fiber(qdev))
1236 return 1;
1237 else
1238 return ql_is_full_dup(qdev);
1239 }
1240
1241 /*
1242 * Caller holds hw_lock.
1243 */
1244 static int ql_link_down_detect(struct ql3_adapter *qdev)
1245 {
1246 struct ql3xxx_port_registers __iomem *port_regs =
1247 qdev->mem_map_registers;
1248 u32 bitToCheck = 0;
1249 u32 temp;
1250
1251 switch (qdev->mac_index) {
1252 case 0:
1253 bitToCheck = ISP_CONTROL_LINK_DN_0;
1254 break;
1255 case 1:
1256 bitToCheck = ISP_CONTROL_LINK_DN_1;
1257 break;
1258 }
1259
1260 temp =
1261 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1262 return (temp & bitToCheck) != 0;
1263 }
1264
1265 /*
1266 * Caller holds hw_lock.
1267 */
1268 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1269 {
1270 struct ql3xxx_port_registers __iomem *port_regs =
1271 qdev->mem_map_registers;
1272
1273 switch (qdev->mac_index) {
1274 case 0:
1275 ql_write_common_reg(qdev,
1276 &port_regs->CommonRegs.ispControlStatus,
1277 (ISP_CONTROL_LINK_DN_0) |
1278 (ISP_CONTROL_LINK_DN_0 << 16));
1279 break;
1280
1281 case 1:
1282 ql_write_common_reg(qdev,
1283 &port_regs->CommonRegs.ispControlStatus,
1284 (ISP_CONTROL_LINK_DN_1) |
1285 (ISP_CONTROL_LINK_DN_1 << 16));
1286 break;
1287
1288 default:
1289 return 1;
1290 }
1291
1292 return 0;
1293 }
1294
1295 /*
1296 * Caller holds hw_lock.
1297 */
1298 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1299 {
1300 struct ql3xxx_port_registers __iomem *port_regs =
1301 qdev->mem_map_registers;
1302 u32 bitToCheck = 0;
1303 u32 temp;
1304
1305 switch (qdev->mac_index) {
1306 case 0:
1307 bitToCheck = PORT_STATUS_F1_ENABLED;
1308 break;
1309 case 1:
1310 bitToCheck = PORT_STATUS_F3_ENABLED;
1311 break;
1312 default:
1313 break;
1314 }
1315
1316 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1317 if (temp & bitToCheck) {
1318 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1319 "not link master\n");
1320 return 0;
1321 }
1322
1323 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
1324 return 1;
1325 }
1326
1327 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1328 {
1329 ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1330 PHYAddr[qdev->mac_index]);
1331 }
1332
1333 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1334 {
1335 u16 reg;
1336 u16 portConfiguration;
1337
1338 if (qdev->phyType == PHY_AGERE_ET1011C)
1339 ql_mii_write_reg(qdev, 0x13, 0x0000);
1340 /* turn off external loopback */
1341
1342 if (qdev->mac_index == 0)
1343 portConfiguration =
1344 qdev->nvram_data.macCfg_port0.portConfiguration;
1345 else
1346 portConfiguration =
1347 qdev->nvram_data.macCfg_port1.portConfiguration;
1348
1349 /* Some HBA's in the field are set to 0 and they need to
1350 be reinterpreted with a default value */
1351 if (portConfiguration == 0)
1352 portConfiguration = PORT_CONFIG_DEFAULT;
1353
1354 /* Set the 1000 advertisements */
1355 ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1356 PHYAddr[qdev->mac_index]);
1357 reg &= ~PHY_GIG_ALL_PARAMS;
1358
1359 if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1360 if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
1361 reg |= PHY_GIG_ADV_1000F;
1362 else
1363 reg |= PHY_GIG_ADV_1000H;
1364 }
1365
1366 ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1367 PHYAddr[qdev->mac_index]);
1368
1369 /* Set the 10/100 & pause negotiation advertisements */
1370 ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1371 PHYAddr[qdev->mac_index]);
1372 reg &= ~PHY_NEG_ALL_PARAMS;
1373
1374 if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1375 reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1376
1377 if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1378 if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1379 reg |= PHY_NEG_ADV_100F;
1380
1381 if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1382 reg |= PHY_NEG_ADV_10F;
1383 }
1384
1385 if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1386 if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1387 reg |= PHY_NEG_ADV_100H;
1388
1389 if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1390 reg |= PHY_NEG_ADV_10H;
1391 }
1392
1393 if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
1394 reg |= 1;
1395
1396 ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1397 PHYAddr[qdev->mac_index]);
1398
1399 ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1400
1401 ql_mii_write_reg_ex(qdev, CONTROL_REG,
1402 reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1403 PHYAddr[qdev->mac_index]);
1404 }
1405
1406 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1407 {
1408 ql_phy_reset_ex(qdev);
1409 PHY_Setup(qdev);
1410 ql_phy_start_neg_ex(qdev);
1411 }
1412
1413 /*
1414 * Caller holds hw_lock.
1415 */
1416 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1417 {
1418 struct ql3xxx_port_registers __iomem *port_regs =
1419 qdev->mem_map_registers;
1420 u32 bitToCheck = 0;
1421 u32 temp, linkState;
1422
1423 switch (qdev->mac_index) {
1424 case 0:
1425 bitToCheck = PORT_STATUS_UP0;
1426 break;
1427 case 1:
1428 bitToCheck = PORT_STATUS_UP1;
1429 break;
1430 }
1431
1432 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1433 if (temp & bitToCheck)
1434 linkState = LS_UP;
1435 else
1436 linkState = LS_DOWN;
1437
1438 return linkState;
1439 }
1440
1441 static int ql_port_start(struct ql3_adapter *qdev)
1442 {
1443 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1444 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1445 2) << 7)) {
1446 netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
1447 return -1;
1448 }
1449
1450 if (ql_is_fiber(qdev)) {
1451 ql_petbi_init(qdev);
1452 } else {
1453 /* Copper port */
1454 ql_phy_init_ex(qdev);
1455 }
1456
1457 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1458 return 0;
1459 }
1460
1461 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1462 {
1463
1464 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1465 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1466 2) << 7))
1467 return -1;
1468
1469 if (!ql_auto_neg_error(qdev)) {
1470 if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1471 /* configure the MAC */
1472 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1473 "Configuring link\n");
1474 ql_mac_cfg_soft_reset(qdev, 1);
1475 ql_mac_cfg_gig(qdev,
1476 (ql_get_link_speed
1477 (qdev) ==
1478 SPEED_1000));
1479 ql_mac_cfg_full_dup(qdev,
1480 ql_is_link_full_dup
1481 (qdev));
1482 ql_mac_cfg_pause(qdev,
1483 ql_is_neg_pause
1484 (qdev));
1485 ql_mac_cfg_soft_reset(qdev, 0);
1486
1487 /* enable the MAC */
1488 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1489 "Enabling mac\n");
1490 ql_mac_enable(qdev, 1);
1491 }
1492
1493 qdev->port_link_state = LS_UP;
1494 netif_start_queue(qdev->ndev);
1495 netif_carrier_on(qdev->ndev);
1496 netif_info(qdev, link, qdev->ndev,
1497 "Link is up at %d Mbps, %s duplex\n",
1498 ql_get_link_speed(qdev),
1499 ql_is_link_full_dup(qdev) ? "full" : "half");
1500
1501 } else { /* Remote error detected */
1502
1503 if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1504 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1505 "Remote error detected. Calling ql_port_start()\n");
1506 /*
1507 * ql_port_start() is shared code and needs
1508 * to lock the PHY on it's own.
1509 */
1510 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1511 if (ql_port_start(qdev)) /* Restart port */
1512 return -1;
1513 return 0;
1514 }
1515 }
1516 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1517 return 0;
1518 }
1519
1520 static void ql_link_state_machine_work(struct work_struct *work)
1521 {
1522 struct ql3_adapter *qdev =
1523 container_of(work, struct ql3_adapter, link_state_work.work);
1524
1525 u32 curr_link_state;
1526 unsigned long hw_flags;
1527
1528 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1529
1530 curr_link_state = ql_get_link_state(qdev);
1531
1532 if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
1533 netif_info(qdev, link, qdev->ndev,
1534 "Reset in progress, skip processing link state\n");
1535
1536 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1537
1538 /* Restart timer on 2 second interval. */
1539 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1540
1541 return;
1542 }
1543
1544 switch (qdev->port_link_state) {
1545 default:
1546 if (test_bit(QL_LINK_MASTER, &qdev->flags))
1547 ql_port_start(qdev);
1548 qdev->port_link_state = LS_DOWN;
1549 /* Fall Through */
1550
1551 case LS_DOWN:
1552 if (curr_link_state == LS_UP) {
1553 netif_info(qdev, link, qdev->ndev, "Link is up\n");
1554 if (ql_is_auto_neg_complete(qdev))
1555 ql_finish_auto_neg(qdev);
1556
1557 if (qdev->port_link_state == LS_UP)
1558 ql_link_down_detect_clear(qdev);
1559
1560 qdev->port_link_state = LS_UP;
1561 }
1562 break;
1563
1564 case LS_UP:
1565 /*
1566 * See if the link is currently down or went down and came
1567 * back up
1568 */
1569 if (curr_link_state == LS_DOWN) {
1570 netif_info(qdev, link, qdev->ndev, "Link is down\n");
1571 qdev->port_link_state = LS_DOWN;
1572 }
1573 if (ql_link_down_detect(qdev))
1574 qdev->port_link_state = LS_DOWN;
1575 break;
1576 }
1577 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1578
1579 /* Restart timer on 2 second interval. */
1580 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1581 }
1582
1583 /*
1584 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1585 */
1586 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1587 {
1588 if (ql_this_adapter_controls_port(qdev))
1589 set_bit(QL_LINK_MASTER, &qdev->flags);
1590 else
1591 clear_bit(QL_LINK_MASTER, &qdev->flags);
1592 }
1593
1594 /*
1595 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1596 */
1597 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1598 {
1599 ql_mii_enable_scan_mode(qdev);
1600
1601 if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1602 if (ql_this_adapter_controls_port(qdev))
1603 ql_petbi_init_ex(qdev);
1604 } else {
1605 if (ql_this_adapter_controls_port(qdev))
1606 ql_phy_init_ex(qdev);
1607 }
1608 }
1609
1610 /*
1611 * MII_Setup needs to be called before taking the PHY out of reset
1612 * so that the management interface clock speed can be set properly.
1613 * It would be better if we had a way to disable MDC until after the
1614 * PHY is out of reset, but we don't have that capability.
1615 */
1616 static int ql_mii_setup(struct ql3_adapter *qdev)
1617 {
1618 u32 reg;
1619 struct ql3xxx_port_registers __iomem *port_regs =
1620 qdev->mem_map_registers;
1621
1622 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1623 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1624 2) << 7))
1625 return -1;
1626
1627 if (qdev->device_id == QL3032_DEVICE_ID)
1628 ql_write_page0_reg(qdev,
1629 &port_regs->macMIIMgmtControlReg, 0x0f00000);
1630
1631 /* Divide 125MHz clock by 28 to meet PHY timing requirements */
1632 reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1633
1634 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1635 reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1636
1637 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1638 return 0;
1639 }
1640
1641 #define SUPPORTED_OPTICAL_MODES (SUPPORTED_1000baseT_Full | \
1642 SUPPORTED_FIBRE | \
1643 SUPPORTED_Autoneg)
1644 #define SUPPORTED_TP_MODES (SUPPORTED_10baseT_Half | \
1645 SUPPORTED_10baseT_Full | \
1646 SUPPORTED_100baseT_Half | \
1647 SUPPORTED_100baseT_Full | \
1648 SUPPORTED_1000baseT_Half | \
1649 SUPPORTED_1000baseT_Full | \
1650 SUPPORTED_Autoneg | \
1651 SUPPORTED_TP) \
1652
1653 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1654 {
1655 if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
1656 return SUPPORTED_OPTICAL_MODES;
1657
1658 return SUPPORTED_TP_MODES;
1659 }
1660
1661 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1662 {
1663 int status;
1664 unsigned long hw_flags;
1665 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1666 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1667 (QL_RESOURCE_BITS_BASE_CODE |
1668 (qdev->mac_index) * 2) << 7)) {
1669 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1670 return 0;
1671 }
1672 status = ql_is_auto_cfg(qdev);
1673 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1674 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1675 return status;
1676 }
1677
1678 static u32 ql_get_speed(struct ql3_adapter *qdev)
1679 {
1680 u32 status;
1681 unsigned long hw_flags;
1682 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1683 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1684 (QL_RESOURCE_BITS_BASE_CODE |
1685 (qdev->mac_index) * 2) << 7)) {
1686 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1687 return 0;
1688 }
1689 status = ql_get_link_speed(qdev);
1690 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1691 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1692 return status;
1693 }
1694
1695 static int ql_get_full_dup(struct ql3_adapter *qdev)
1696 {
1697 int status;
1698 unsigned long hw_flags;
1699 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1700 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1701 (QL_RESOURCE_BITS_BASE_CODE |
1702 (qdev->mac_index) * 2) << 7)) {
1703 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1704 return 0;
1705 }
1706 status = ql_is_link_full_dup(qdev);
1707 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1708 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1709 return status;
1710 }
1711
1712 static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1713 {
1714 struct ql3_adapter *qdev = netdev_priv(ndev);
1715
1716 ecmd->transceiver = XCVR_INTERNAL;
1717 ecmd->supported = ql_supported_modes(qdev);
1718
1719 if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1720 ecmd->port = PORT_FIBRE;
1721 } else {
1722 ecmd->port = PORT_TP;
1723 ecmd->phy_address = qdev->PHYAddr;
1724 }
1725 ecmd->advertising = ql_supported_modes(qdev);
1726 ecmd->autoneg = ql_get_auto_cfg_status(qdev);
1727 ethtool_cmd_speed_set(ecmd, ql_get_speed(qdev));
1728 ecmd->duplex = ql_get_full_dup(qdev);
1729 return 0;
1730 }
1731
1732 static void ql_get_drvinfo(struct net_device *ndev,
1733 struct ethtool_drvinfo *drvinfo)
1734 {
1735 struct ql3_adapter *qdev = netdev_priv(ndev);
1736 strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
1737 strlcpy(drvinfo->version, ql3xxx_driver_version,
1738 sizeof(drvinfo->version));
1739 strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
1740 sizeof(drvinfo->bus_info));
1741 drvinfo->regdump_len = 0;
1742 drvinfo->eedump_len = 0;
1743 }
1744
1745 static u32 ql_get_msglevel(struct net_device *ndev)
1746 {
1747 struct ql3_adapter *qdev = netdev_priv(ndev);
1748 return qdev->msg_enable;
1749 }
1750
1751 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1752 {
1753 struct ql3_adapter *qdev = netdev_priv(ndev);
1754 qdev->msg_enable = value;
1755 }
1756
1757 static void ql_get_pauseparam(struct net_device *ndev,
1758 struct ethtool_pauseparam *pause)
1759 {
1760 struct ql3_adapter *qdev = netdev_priv(ndev);
1761 struct ql3xxx_port_registers __iomem *port_regs =
1762 qdev->mem_map_registers;
1763
1764 u32 reg;
1765 if (qdev->mac_index == 0)
1766 reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1767 else
1768 reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1769
1770 pause->autoneg = ql_get_auto_cfg_status(qdev);
1771 pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1772 pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1773 }
1774
1775 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1776 .get_settings = ql_get_settings,
1777 .get_drvinfo = ql_get_drvinfo,
1778 .get_link = ethtool_op_get_link,
1779 .get_msglevel = ql_get_msglevel,
1780 .set_msglevel = ql_set_msglevel,
1781 .get_pauseparam = ql_get_pauseparam,
1782 };
1783
1784 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1785 {
1786 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1787 dma_addr_t map;
1788 int err;
1789
1790 while (lrg_buf_cb) {
1791 if (!lrg_buf_cb->skb) {
1792 lrg_buf_cb->skb =
1793 netdev_alloc_skb(qdev->ndev,
1794 qdev->lrg_buffer_len);
1795 if (unlikely(!lrg_buf_cb->skb)) {
1796 netdev_printk(KERN_DEBUG, qdev->ndev,
1797 "Failed netdev_alloc_skb()\n");
1798 break;
1799 } else {
1800 /*
1801 * We save some space to copy the ethhdr from
1802 * first buffer
1803 */
1804 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1805 map = pci_map_single(qdev->pdev,
1806 lrg_buf_cb->skb->data,
1807 qdev->lrg_buffer_len -
1808 QL_HEADER_SPACE,
1809 PCI_DMA_FROMDEVICE);
1810
1811 err = pci_dma_mapping_error(qdev->pdev, map);
1812 if (err) {
1813 netdev_err(qdev->ndev,
1814 "PCI mapping failed with error: %d\n",
1815 err);
1816 dev_kfree_skb(lrg_buf_cb->skb);
1817 lrg_buf_cb->skb = NULL;
1818 break;
1819 }
1820
1821
1822 lrg_buf_cb->buf_phy_addr_low =
1823 cpu_to_le32(LS_64BITS(map));
1824 lrg_buf_cb->buf_phy_addr_high =
1825 cpu_to_le32(MS_64BITS(map));
1826 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1827 dma_unmap_len_set(lrg_buf_cb, maplen,
1828 qdev->lrg_buffer_len -
1829 QL_HEADER_SPACE);
1830 --qdev->lrg_buf_skb_check;
1831 if (!qdev->lrg_buf_skb_check)
1832 return 1;
1833 }
1834 }
1835 lrg_buf_cb = lrg_buf_cb->next;
1836 }
1837 return 0;
1838 }
1839
1840 /*
1841 * Caller holds hw_lock.
1842 */
1843 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1844 {
1845 struct ql3xxx_port_registers __iomem *port_regs =
1846 qdev->mem_map_registers;
1847
1848 if (qdev->small_buf_release_cnt >= 16) {
1849 while (qdev->small_buf_release_cnt >= 16) {
1850 qdev->small_buf_q_producer_index++;
1851
1852 if (qdev->small_buf_q_producer_index ==
1853 NUM_SBUFQ_ENTRIES)
1854 qdev->small_buf_q_producer_index = 0;
1855 qdev->small_buf_release_cnt -= 8;
1856 }
1857 wmb();
1858 writel(qdev->small_buf_q_producer_index,
1859 &port_regs->CommonRegs.rxSmallQProducerIndex);
1860 }
1861 }
1862
1863 /*
1864 * Caller holds hw_lock.
1865 */
1866 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1867 {
1868 struct bufq_addr_element *lrg_buf_q_ele;
1869 int i;
1870 struct ql_rcv_buf_cb *lrg_buf_cb;
1871 struct ql3xxx_port_registers __iomem *port_regs =
1872 qdev->mem_map_registers;
1873
1874 if ((qdev->lrg_buf_free_count >= 8) &&
1875 (qdev->lrg_buf_release_cnt >= 16)) {
1876
1877 if (qdev->lrg_buf_skb_check)
1878 if (!ql_populate_free_queue(qdev))
1879 return;
1880
1881 lrg_buf_q_ele = qdev->lrg_buf_next_free;
1882
1883 while ((qdev->lrg_buf_release_cnt >= 16) &&
1884 (qdev->lrg_buf_free_count >= 8)) {
1885
1886 for (i = 0; i < 8; i++) {
1887 lrg_buf_cb =
1888 ql_get_from_lrg_buf_free_list(qdev);
1889 lrg_buf_q_ele->addr_high =
1890 lrg_buf_cb->buf_phy_addr_high;
1891 lrg_buf_q_ele->addr_low =
1892 lrg_buf_cb->buf_phy_addr_low;
1893 lrg_buf_q_ele++;
1894
1895 qdev->lrg_buf_release_cnt--;
1896 }
1897
1898 qdev->lrg_buf_q_producer_index++;
1899
1900 if (qdev->lrg_buf_q_producer_index ==
1901 qdev->num_lbufq_entries)
1902 qdev->lrg_buf_q_producer_index = 0;
1903
1904 if (qdev->lrg_buf_q_producer_index ==
1905 (qdev->num_lbufq_entries - 1)) {
1906 lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
1907 }
1908 }
1909 wmb();
1910 qdev->lrg_buf_next_free = lrg_buf_q_ele;
1911 writel(qdev->lrg_buf_q_producer_index,
1912 &port_regs->CommonRegs.rxLargeQProducerIndex);
1913 }
1914 }
1915
1916 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
1917 struct ob_mac_iocb_rsp *mac_rsp)
1918 {
1919 struct ql_tx_buf_cb *tx_cb;
1920 int i;
1921
1922 if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1923 netdev_warn(qdev->ndev,
1924 "Frame too short but it was padded and sent\n");
1925 }
1926
1927 tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
1928
1929 /* Check the transmit response flags for any errors */
1930 if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1931 netdev_err(qdev->ndev,
1932 "Frame too short to be legal, frame not sent\n");
1933
1934 qdev->ndev->stats.tx_errors++;
1935 goto frame_not_sent;
1936 }
1937
1938 if (tx_cb->seg_count == 0) {
1939 netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
1940 mac_rsp->transaction_id);
1941
1942 qdev->ndev->stats.tx_errors++;
1943 goto invalid_seg_count;
1944 }
1945
1946 pci_unmap_single(qdev->pdev,
1947 dma_unmap_addr(&tx_cb->map[0], mapaddr),
1948 dma_unmap_len(&tx_cb->map[0], maplen),
1949 PCI_DMA_TODEVICE);
1950 tx_cb->seg_count--;
1951 if (tx_cb->seg_count) {
1952 for (i = 1; i < tx_cb->seg_count; i++) {
1953 pci_unmap_page(qdev->pdev,
1954 dma_unmap_addr(&tx_cb->map[i],
1955 mapaddr),
1956 dma_unmap_len(&tx_cb->map[i], maplen),
1957 PCI_DMA_TODEVICE);
1958 }
1959 }
1960 qdev->ndev->stats.tx_packets++;
1961 qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
1962
1963 frame_not_sent:
1964 dev_kfree_skb_irq(tx_cb->skb);
1965 tx_cb->skb = NULL;
1966
1967 invalid_seg_count:
1968 atomic_inc(&qdev->tx_count);
1969 }
1970
1971 static void ql_get_sbuf(struct ql3_adapter *qdev)
1972 {
1973 if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
1974 qdev->small_buf_index = 0;
1975 qdev->small_buf_release_cnt++;
1976 }
1977
1978 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
1979 {
1980 struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
1981 lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
1982 qdev->lrg_buf_release_cnt++;
1983 if (++qdev->lrg_buf_index == qdev->num_large_buffers)
1984 qdev->lrg_buf_index = 0;
1985 return lrg_buf_cb;
1986 }
1987
1988 /*
1989 * The difference between 3022 and 3032 for inbound completions:
1990 * 3022 uses two buffers per completion. The first buffer contains
1991 * (some) header info, the second the remainder of the headers plus
1992 * the data. For this chip we reserve some space at the top of the
1993 * receive buffer so that the header info in buffer one can be
1994 * prepended to the buffer two. Buffer two is the sent up while
1995 * buffer one is returned to the hardware to be reused.
1996 * 3032 receives all of it's data and headers in one buffer for a
1997 * simpler process. 3032 also supports checksum verification as
1998 * can be seen in ql_process_macip_rx_intr().
1999 */
2000 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
2001 struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
2002 {
2003 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2004 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2005 struct sk_buff *skb;
2006 u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2007
2008 /*
2009 * Get the inbound address list (small buffer).
2010 */
2011 ql_get_sbuf(qdev);
2012
2013 if (qdev->device_id == QL3022_DEVICE_ID)
2014 lrg_buf_cb1 = ql_get_lbuf(qdev);
2015
2016 /* start of second buffer */
2017 lrg_buf_cb2 = ql_get_lbuf(qdev);
2018 skb = lrg_buf_cb2->skb;
2019
2020 qdev->ndev->stats.rx_packets++;
2021 qdev->ndev->stats.rx_bytes += length;
2022
2023 skb_put(skb, length);
2024 pci_unmap_single(qdev->pdev,
2025 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2026 dma_unmap_len(lrg_buf_cb2, maplen),
2027 PCI_DMA_FROMDEVICE);
2028 prefetch(skb->data);
2029 skb_checksum_none_assert(skb);
2030 skb->protocol = eth_type_trans(skb, qdev->ndev);
2031
2032 netif_receive_skb(skb);
2033 lrg_buf_cb2->skb = NULL;
2034
2035 if (qdev->device_id == QL3022_DEVICE_ID)
2036 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2037 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2038 }
2039
2040 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2041 struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2042 {
2043 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2044 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2045 struct sk_buff *skb1 = NULL, *skb2;
2046 struct net_device *ndev = qdev->ndev;
2047 u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2048 u16 size = 0;
2049
2050 /*
2051 * Get the inbound address list (small buffer).
2052 */
2053
2054 ql_get_sbuf(qdev);
2055
2056 if (qdev->device_id == QL3022_DEVICE_ID) {
2057 /* start of first buffer on 3022 */
2058 lrg_buf_cb1 = ql_get_lbuf(qdev);
2059 skb1 = lrg_buf_cb1->skb;
2060 size = ETH_HLEN;
2061 if (*((u16 *) skb1->data) != 0xFFFF)
2062 size += VLAN_ETH_HLEN - ETH_HLEN;
2063 }
2064
2065 /* start of second buffer */
2066 lrg_buf_cb2 = ql_get_lbuf(qdev);
2067 skb2 = lrg_buf_cb2->skb;
2068
2069 skb_put(skb2, length); /* Just the second buffer length here. */
2070 pci_unmap_single(qdev->pdev,
2071 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2072 dma_unmap_len(lrg_buf_cb2, maplen),
2073 PCI_DMA_FROMDEVICE);
2074 prefetch(skb2->data);
2075
2076 skb_checksum_none_assert(skb2);
2077 if (qdev->device_id == QL3022_DEVICE_ID) {
2078 /*
2079 * Copy the ethhdr from first buffer to second. This
2080 * is necessary for 3022 IP completions.
2081 */
2082 skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2083 skb_push(skb2, size), size);
2084 } else {
2085 u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2086 if (checksum &
2087 (IB_IP_IOCB_RSP_3032_ICE |
2088 IB_IP_IOCB_RSP_3032_CE)) {
2089 netdev_err(ndev,
2090 "%s: Bad checksum for this %s packet, checksum = %x\n",
2091 __func__,
2092 ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
2093 "TCP" : "UDP"), checksum);
2094 } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2095 (checksum & IB_IP_IOCB_RSP_3032_UDP &&
2096 !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2097 skb2->ip_summed = CHECKSUM_UNNECESSARY;
2098 }
2099 }
2100 skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2101
2102 netif_receive_skb(skb2);
2103 ndev->stats.rx_packets++;
2104 ndev->stats.rx_bytes += length;
2105 lrg_buf_cb2->skb = NULL;
2106
2107 if (qdev->device_id == QL3022_DEVICE_ID)
2108 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2109 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2110 }
2111
2112 static int ql_tx_rx_clean(struct ql3_adapter *qdev,
2113 int *tx_cleaned, int *rx_cleaned, int work_to_do)
2114 {
2115 struct net_rsp_iocb *net_rsp;
2116 struct net_device *ndev = qdev->ndev;
2117 int work_done = 0;
2118
2119 /* While there are entries in the completion queue. */
2120 while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2121 qdev->rsp_consumer_index) && (work_done < work_to_do)) {
2122
2123 net_rsp = qdev->rsp_current;
2124 rmb();
2125 /*
2126 * Fix 4032 chip's undocumented "feature" where bit-8 is set
2127 * if the inbound completion is for a VLAN.
2128 */
2129 if (qdev->device_id == QL3032_DEVICE_ID)
2130 net_rsp->opcode &= 0x7f;
2131 switch (net_rsp->opcode) {
2132
2133 case OPCODE_OB_MAC_IOCB_FN0:
2134 case OPCODE_OB_MAC_IOCB_FN2:
2135 ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2136 net_rsp);
2137 (*tx_cleaned)++;
2138 break;
2139
2140 case OPCODE_IB_MAC_IOCB:
2141 case OPCODE_IB_3032_MAC_IOCB:
2142 ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2143 net_rsp);
2144 (*rx_cleaned)++;
2145 break;
2146
2147 case OPCODE_IB_IP_IOCB:
2148 case OPCODE_IB_3032_IP_IOCB:
2149 ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2150 net_rsp);
2151 (*rx_cleaned)++;
2152 break;
2153 default: {
2154 u32 *tmp = (u32 *)net_rsp;
2155 netdev_err(ndev,
2156 "Hit default case, not handled!\n"
2157 " dropping the packet, opcode = %x\n"
2158 "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
2159 net_rsp->opcode,
2160 (unsigned long int)tmp[0],
2161 (unsigned long int)tmp[1],
2162 (unsigned long int)tmp[2],
2163 (unsigned long int)tmp[3]);
2164 }
2165 }
2166
2167 qdev->rsp_consumer_index++;
2168
2169 if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2170 qdev->rsp_consumer_index = 0;
2171 qdev->rsp_current = qdev->rsp_q_virt_addr;
2172 } else {
2173 qdev->rsp_current++;
2174 }
2175
2176 work_done = *tx_cleaned + *rx_cleaned;
2177 }
2178
2179 return work_done;
2180 }
2181
2182 static int ql_poll(struct napi_struct *napi, int budget)
2183 {
2184 struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2185 int rx_cleaned = 0, tx_cleaned = 0;
2186 unsigned long hw_flags;
2187 struct ql3xxx_port_registers __iomem *port_regs =
2188 qdev->mem_map_registers;
2189
2190 ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
2191
2192 if (tx_cleaned + rx_cleaned != budget) {
2193 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
2194 __napi_complete(napi);
2195 ql_update_small_bufq_prod_index(qdev);
2196 ql_update_lrg_bufq_prod_index(qdev);
2197 writel(qdev->rsp_consumer_index,
2198 &port_regs->CommonRegs.rspQConsumerIndex);
2199 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
2200
2201 ql_enable_interrupts(qdev);
2202 }
2203 return tx_cleaned + rx_cleaned;
2204 }
2205
2206 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2207 {
2208
2209 struct net_device *ndev = dev_id;
2210 struct ql3_adapter *qdev = netdev_priv(ndev);
2211 struct ql3xxx_port_registers __iomem *port_regs =
2212 qdev->mem_map_registers;
2213 u32 value;
2214 int handled = 1;
2215 u32 var;
2216
2217 value = ql_read_common_reg_l(qdev,
2218 &port_regs->CommonRegs.ispControlStatus);
2219
2220 if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2221 spin_lock(&qdev->adapter_lock);
2222 netif_stop_queue(qdev->ndev);
2223 netif_carrier_off(qdev->ndev);
2224 ql_disable_interrupts(qdev);
2225 qdev->port_link_state = LS_DOWN;
2226 set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
2227
2228 if (value & ISP_CONTROL_FE) {
2229 /*
2230 * Chip Fatal Error.
2231 */
2232 var =
2233 ql_read_page0_reg_l(qdev,
2234 &port_regs->PortFatalErrStatus);
2235 netdev_warn(ndev,
2236 "Resetting chip. PortFatalErrStatus register = 0x%x\n",
2237 var);
2238 set_bit(QL_RESET_START, &qdev->flags) ;
2239 } else {
2240 /*
2241 * Soft Reset Requested.
2242 */
2243 set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
2244 netdev_err(ndev,
2245 "Another function issued a reset to the chip. ISR value = %x\n",
2246 value);
2247 }
2248 queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2249 spin_unlock(&qdev->adapter_lock);
2250 } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2251 ql_disable_interrupts(qdev);
2252 if (likely(napi_schedule_prep(&qdev->napi)))
2253 __napi_schedule(&qdev->napi);
2254 } else
2255 return IRQ_NONE;
2256
2257 return IRQ_RETVAL(handled);
2258 }
2259
2260 /*
2261 * Get the total number of segments needed for the given number of fragments.
2262 * This is necessary because outbound address lists (OAL) will be used when
2263 * more than two frags are given. Each address list has 5 addr/len pairs.
2264 * The 5th pair in each OAL is used to point to the next OAL if more frags
2265 * are coming. That is why the frags:segment count ratio is not linear.
2266 */
2267 static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
2268 {
2269 if (qdev->device_id == QL3022_DEVICE_ID)
2270 return 1;
2271
2272 if (frags <= 2)
2273 return frags + 1;
2274 else if (frags <= 6)
2275 return frags + 2;
2276 else if (frags <= 10)
2277 return frags + 3;
2278 else if (frags <= 14)
2279 return frags + 4;
2280 else if (frags <= 18)
2281 return frags + 5;
2282 return -1;
2283 }
2284
2285 static void ql_hw_csum_setup(const struct sk_buff *skb,
2286 struct ob_mac_iocb_req *mac_iocb_ptr)
2287 {
2288 const struct iphdr *ip = ip_hdr(skb);
2289
2290 mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2291 mac_iocb_ptr->ip_hdr_len = ip->ihl;
2292
2293 if (ip->protocol == IPPROTO_TCP) {
2294 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2295 OB_3032MAC_IOCB_REQ_IC;
2296 } else {
2297 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2298 OB_3032MAC_IOCB_REQ_IC;
2299 }
2300
2301 }
2302
2303 /*
2304 * Map the buffers for this transmit.
2305 * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2306 */
2307 static int ql_send_map(struct ql3_adapter *qdev,
2308 struct ob_mac_iocb_req *mac_iocb_ptr,
2309 struct ql_tx_buf_cb *tx_cb,
2310 struct sk_buff *skb)
2311 {
2312 struct oal *oal;
2313 struct oal_entry *oal_entry;
2314 int len = skb_headlen(skb);
2315 dma_addr_t map;
2316 int err;
2317 int completed_segs, i;
2318 int seg_cnt, seg = 0;
2319 int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2320
2321 seg_cnt = tx_cb->seg_count;
2322 /*
2323 * Map the skb buffer first.
2324 */
2325 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
2326
2327 err = pci_dma_mapping_error(qdev->pdev, map);
2328 if (err) {
2329 netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
2330 err);
2331
2332 return NETDEV_TX_BUSY;
2333 }
2334
2335 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2336 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2337 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2338 oal_entry->len = cpu_to_le32(len);
2339 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2340 dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
2341 seg++;
2342
2343 if (seg_cnt == 1) {
2344 /* Terminate the last segment. */
2345 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2346 return NETDEV_TX_OK;
2347 }
2348 oal = tx_cb->oal;
2349 for (completed_segs = 0;
2350 completed_segs < frag_cnt;
2351 completed_segs++, seg++) {
2352 skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2353 oal_entry++;
2354 /*
2355 * Check for continuation requirements.
2356 * It's strange but necessary.
2357 * Continuation entry points to outbound address list.
2358 */
2359 if ((seg == 2 && seg_cnt > 3) ||
2360 (seg == 7 && seg_cnt > 8) ||
2361 (seg == 12 && seg_cnt > 13) ||
2362 (seg == 17 && seg_cnt > 18)) {
2363 map = pci_map_single(qdev->pdev, oal,
2364 sizeof(struct oal),
2365 PCI_DMA_TODEVICE);
2366
2367 err = pci_dma_mapping_error(qdev->pdev, map);
2368 if (err) {
2369 netdev_err(qdev->ndev,
2370 "PCI mapping outbound address list with error: %d\n",
2371 err);
2372 goto map_error;
2373 }
2374
2375 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2376 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2377 oal_entry->len = cpu_to_le32(sizeof(struct oal) |
2378 OAL_CONT_ENTRY);
2379 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2380 dma_unmap_len_set(&tx_cb->map[seg], maplen,
2381 sizeof(struct oal));
2382 oal_entry = (struct oal_entry *)oal;
2383 oal++;
2384 seg++;
2385 }
2386
2387 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
2388 DMA_TO_DEVICE);
2389
2390 err = dma_mapping_error(&qdev->pdev->dev, map);
2391 if (err) {
2392 netdev_err(qdev->ndev,
2393 "PCI mapping frags failed with error: %d\n",
2394 err);
2395 goto map_error;
2396 }
2397
2398 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2399 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2400 oal_entry->len = cpu_to_le32(skb_frag_size(frag));
2401 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2402 dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
2403 }
2404 /* Terminate the last segment. */
2405 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2406 return NETDEV_TX_OK;
2407
2408 map_error:
2409 /* A PCI mapping failed and now we will need to back out
2410 * We need to traverse through the oal's and associated pages which
2411 * have been mapped and now we must unmap them to clean up properly
2412 */
2413
2414 seg = 1;
2415 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2416 oal = tx_cb->oal;
2417 for (i = 0; i < completed_segs; i++, seg++) {
2418 oal_entry++;
2419
2420 /*
2421 * Check for continuation requirements.
2422 * It's strange but necessary.
2423 */
2424
2425 if ((seg == 2 && seg_cnt > 3) ||
2426 (seg == 7 && seg_cnt > 8) ||
2427 (seg == 12 && seg_cnt > 13) ||
2428 (seg == 17 && seg_cnt > 18)) {
2429 pci_unmap_single(qdev->pdev,
2430 dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2431 dma_unmap_len(&tx_cb->map[seg], maplen),
2432 PCI_DMA_TODEVICE);
2433 oal++;
2434 seg++;
2435 }
2436
2437 pci_unmap_page(qdev->pdev,
2438 dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2439 dma_unmap_len(&tx_cb->map[seg], maplen),
2440 PCI_DMA_TODEVICE);
2441 }
2442
2443 pci_unmap_single(qdev->pdev,
2444 dma_unmap_addr(&tx_cb->map[0], mapaddr),
2445 dma_unmap_addr(&tx_cb->map[0], maplen),
2446 PCI_DMA_TODEVICE);
2447
2448 return NETDEV_TX_BUSY;
2449
2450 }
2451
2452 /*
2453 * The difference between 3022 and 3032 sends:
2454 * 3022 only supports a simple single segment transmission.
2455 * 3032 supports checksumming and scatter/gather lists (fragments).
2456 * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2457 * in the IOCB plus a chain of outbound address lists (OAL) that
2458 * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
2459 * will be used to point to an OAL when more ALP entries are required.
2460 * The IOCB is always the top of the chain followed by one or more
2461 * OALs (when necessary).
2462 */
2463 static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
2464 struct net_device *ndev)
2465 {
2466 struct ql3_adapter *qdev = netdev_priv(ndev);
2467 struct ql3xxx_port_registers __iomem *port_regs =
2468 qdev->mem_map_registers;
2469 struct ql_tx_buf_cb *tx_cb;
2470 u32 tot_len = skb->len;
2471 struct ob_mac_iocb_req *mac_iocb_ptr;
2472
2473 if (unlikely(atomic_read(&qdev->tx_count) < 2))
2474 return NETDEV_TX_BUSY;
2475
2476 tx_cb = &qdev->tx_buf[qdev->req_producer_index];
2477 tx_cb->seg_count = ql_get_seg_count(qdev,
2478 skb_shinfo(skb)->nr_frags);
2479 if (tx_cb->seg_count == -1) {
2480 netdev_err(ndev, "%s: invalid segment count!\n", __func__);
2481 return NETDEV_TX_OK;
2482 }
2483
2484 mac_iocb_ptr = tx_cb->queue_entry;
2485 memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2486 mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2487 mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2488 mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2489 mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2490 mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2491 tx_cb->skb = skb;
2492 if (qdev->device_id == QL3032_DEVICE_ID &&
2493 skb->ip_summed == CHECKSUM_PARTIAL)
2494 ql_hw_csum_setup(skb, mac_iocb_ptr);
2495
2496 if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
2497 netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
2498 return NETDEV_TX_BUSY;
2499 }
2500
2501 wmb();
2502 qdev->req_producer_index++;
2503 if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2504 qdev->req_producer_index = 0;
2505 wmb();
2506 ql_write_common_reg_l(qdev,
2507 &port_regs->CommonRegs.reqQProducerIndex,
2508 qdev->req_producer_index);
2509
2510 netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
2511 "tx queued, slot %d, len %d\n",
2512 qdev->req_producer_index, skb->len);
2513
2514 atomic_dec(&qdev->tx_count);
2515 return NETDEV_TX_OK;
2516 }
2517
2518 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2519 {
2520 qdev->req_q_size =
2521 (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2522
2523 qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2524
2525 /* The barrier is required to ensure request and response queue
2526 * addr writes to the registers.
2527 */
2528 wmb();
2529
2530 qdev->req_q_virt_addr =
2531 pci_alloc_consistent(qdev->pdev,
2532 (size_t) qdev->req_q_size,
2533 &qdev->req_q_phy_addr);
2534
2535 if ((qdev->req_q_virt_addr == NULL) ||
2536 LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2537 netdev_err(qdev->ndev, "reqQ failed\n");
2538 return -ENOMEM;
2539 }
2540
2541 qdev->rsp_q_virt_addr =
2542 pci_alloc_consistent(qdev->pdev,
2543 (size_t) qdev->rsp_q_size,
2544 &qdev->rsp_q_phy_addr);
2545
2546 if ((qdev->rsp_q_virt_addr == NULL) ||
2547 LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2548 netdev_err(qdev->ndev, "rspQ allocation failed\n");
2549 pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
2550 qdev->req_q_virt_addr,
2551 qdev->req_q_phy_addr);
2552 return -ENOMEM;
2553 }
2554
2555 set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2556
2557 return 0;
2558 }
2559
2560 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2561 {
2562 if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
2563 netdev_info(qdev->ndev, "Already done\n");
2564 return;
2565 }
2566
2567 pci_free_consistent(qdev->pdev,
2568 qdev->req_q_size,
2569 qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2570
2571 qdev->req_q_virt_addr = NULL;
2572
2573 pci_free_consistent(qdev->pdev,
2574 qdev->rsp_q_size,
2575 qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2576
2577 qdev->rsp_q_virt_addr = NULL;
2578
2579 clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2580 }
2581
2582 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2583 {
2584 /* Create Large Buffer Queue */
2585 qdev->lrg_buf_q_size =
2586 qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2587 if (qdev->lrg_buf_q_size < PAGE_SIZE)
2588 qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2589 else
2590 qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2591
2592 qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
2593 sizeof(struct ql_rcv_buf_cb),
2594 GFP_KERNEL);
2595 if (qdev->lrg_buf == NULL)
2596 return -ENOMEM;
2597
2598 qdev->lrg_buf_q_alloc_virt_addr =
2599 pci_alloc_consistent(qdev->pdev,
2600 qdev->lrg_buf_q_alloc_size,
2601 &qdev->lrg_buf_q_alloc_phy_addr);
2602
2603 if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2604 netdev_err(qdev->ndev, "lBufQ failed\n");
2605 return -ENOMEM;
2606 }
2607 qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2608 qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2609
2610 /* Create Small Buffer Queue */
2611 qdev->small_buf_q_size =
2612 NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2613 if (qdev->small_buf_q_size < PAGE_SIZE)
2614 qdev->small_buf_q_alloc_size = PAGE_SIZE;
2615 else
2616 qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2617
2618 qdev->small_buf_q_alloc_virt_addr =
2619 pci_alloc_consistent(qdev->pdev,
2620 qdev->small_buf_q_alloc_size,
2621 &qdev->small_buf_q_alloc_phy_addr);
2622
2623 if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2624 netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
2625 pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
2626 qdev->lrg_buf_q_alloc_virt_addr,
2627 qdev->lrg_buf_q_alloc_phy_addr);
2628 return -ENOMEM;
2629 }
2630
2631 qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2632 qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2633 set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2634 return 0;
2635 }
2636
2637 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2638 {
2639 if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
2640 netdev_info(qdev->ndev, "Already done\n");
2641 return;
2642 }
2643 kfree(qdev->lrg_buf);
2644 pci_free_consistent(qdev->pdev,
2645 qdev->lrg_buf_q_alloc_size,
2646 qdev->lrg_buf_q_alloc_virt_addr,
2647 qdev->lrg_buf_q_alloc_phy_addr);
2648
2649 qdev->lrg_buf_q_virt_addr = NULL;
2650
2651 pci_free_consistent(qdev->pdev,
2652 qdev->small_buf_q_alloc_size,
2653 qdev->small_buf_q_alloc_virt_addr,
2654 qdev->small_buf_q_alloc_phy_addr);
2655
2656 qdev->small_buf_q_virt_addr = NULL;
2657
2658 clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2659 }
2660
2661 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2662 {
2663 int i;
2664 struct bufq_addr_element *small_buf_q_entry;
2665
2666 /* Currently we allocate on one of memory and use it for smallbuffers */
2667 qdev->small_buf_total_size =
2668 (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2669 QL_SMALL_BUFFER_SIZE);
2670
2671 qdev->small_buf_virt_addr =
2672 pci_alloc_consistent(qdev->pdev,
2673 qdev->small_buf_total_size,
2674 &qdev->small_buf_phy_addr);
2675
2676 if (qdev->small_buf_virt_addr == NULL) {
2677 netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
2678 return -ENOMEM;
2679 }
2680
2681 qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2682 qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2683
2684 small_buf_q_entry = qdev->small_buf_q_virt_addr;
2685
2686 /* Initialize the small buffer queue. */
2687 for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2688 small_buf_q_entry->addr_high =
2689 cpu_to_le32(qdev->small_buf_phy_addr_high);
2690 small_buf_q_entry->addr_low =
2691 cpu_to_le32(qdev->small_buf_phy_addr_low +
2692 (i * QL_SMALL_BUFFER_SIZE));
2693 small_buf_q_entry++;
2694 }
2695 qdev->small_buf_index = 0;
2696 set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
2697 return 0;
2698 }
2699
2700 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2701 {
2702 if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
2703 netdev_info(qdev->ndev, "Already done\n");
2704 return;
2705 }
2706 if (qdev->small_buf_virt_addr != NULL) {
2707 pci_free_consistent(qdev->pdev,
2708 qdev->small_buf_total_size,
2709 qdev->small_buf_virt_addr,
2710 qdev->small_buf_phy_addr);
2711
2712 qdev->small_buf_virt_addr = NULL;
2713 }
2714 }
2715
2716 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2717 {
2718 int i = 0;
2719 struct ql_rcv_buf_cb *lrg_buf_cb;
2720
2721 for (i = 0; i < qdev->num_large_buffers; i++) {
2722 lrg_buf_cb = &qdev->lrg_buf[i];
2723 if (lrg_buf_cb->skb) {
2724 dev_kfree_skb(lrg_buf_cb->skb);
2725 pci_unmap_single(qdev->pdev,
2726 dma_unmap_addr(lrg_buf_cb, mapaddr),
2727 dma_unmap_len(lrg_buf_cb, maplen),
2728 PCI_DMA_FROMDEVICE);
2729 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2730 } else {
2731 break;
2732 }
2733 }
2734 }
2735
2736 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2737 {
2738 int i;
2739 struct ql_rcv_buf_cb *lrg_buf_cb;
2740 struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2741
2742 for (i = 0; i < qdev->num_large_buffers; i++) {
2743 lrg_buf_cb = &qdev->lrg_buf[i];
2744 buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2745 buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2746 buf_addr_ele++;
2747 }
2748 qdev->lrg_buf_index = 0;
2749 qdev->lrg_buf_skb_check = 0;
2750 }
2751
2752 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2753 {
2754 int i;
2755 struct ql_rcv_buf_cb *lrg_buf_cb;
2756 struct sk_buff *skb;
2757 dma_addr_t map;
2758 int err;
2759
2760 for (i = 0; i < qdev->num_large_buffers; i++) {
2761 skb = netdev_alloc_skb(qdev->ndev,
2762 qdev->lrg_buffer_len);
2763 if (unlikely(!skb)) {
2764 /* Better luck next round */
2765 netdev_err(qdev->ndev,
2766 "large buff alloc failed for %d bytes at index %d\n",
2767 qdev->lrg_buffer_len * 2, i);
2768 ql_free_large_buffers(qdev);
2769 return -ENOMEM;
2770 } else {
2771
2772 lrg_buf_cb = &qdev->lrg_buf[i];
2773 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2774 lrg_buf_cb->index = i;
2775 lrg_buf_cb->skb = skb;
2776 /*
2777 * We save some space to copy the ethhdr from first
2778 * buffer
2779 */
2780 skb_reserve(skb, QL_HEADER_SPACE);
2781 map = pci_map_single(qdev->pdev,
2782 skb->data,
2783 qdev->lrg_buffer_len -
2784 QL_HEADER_SPACE,
2785 PCI_DMA_FROMDEVICE);
2786
2787 err = pci_dma_mapping_error(qdev->pdev, map);
2788 if (err) {
2789 netdev_err(qdev->ndev,
2790 "PCI mapping failed with error: %d\n",
2791 err);
2792 ql_free_large_buffers(qdev);
2793 return -ENOMEM;
2794 }
2795
2796 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2797 dma_unmap_len_set(lrg_buf_cb, maplen,
2798 qdev->lrg_buffer_len -
2799 QL_HEADER_SPACE);
2800 lrg_buf_cb->buf_phy_addr_low =
2801 cpu_to_le32(LS_64BITS(map));
2802 lrg_buf_cb->buf_phy_addr_high =
2803 cpu_to_le32(MS_64BITS(map));
2804 }
2805 }
2806 return 0;
2807 }
2808
2809 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2810 {
2811 struct ql_tx_buf_cb *tx_cb;
2812 int i;
2813
2814 tx_cb = &qdev->tx_buf[0];
2815 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2816 kfree(tx_cb->oal);
2817 tx_cb->oal = NULL;
2818 tx_cb++;
2819 }
2820 }
2821
2822 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2823 {
2824 struct ql_tx_buf_cb *tx_cb;
2825 int i;
2826 struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
2827
2828 /* Create free list of transmit buffers */
2829 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2830
2831 tx_cb = &qdev->tx_buf[i];
2832 tx_cb->skb = NULL;
2833 tx_cb->queue_entry = req_q_curr;
2834 req_q_curr++;
2835 tx_cb->oal = kmalloc(512, GFP_KERNEL);
2836 if (tx_cb->oal == NULL)
2837 return -ENOMEM;
2838 }
2839 return 0;
2840 }
2841
2842 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
2843 {
2844 if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
2845 qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
2846 qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
2847 } else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
2848 /*
2849 * Bigger buffers, so less of them.
2850 */
2851 qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
2852 qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
2853 } else {
2854 netdev_err(qdev->ndev, "Invalid mtu size: %d. Only %d and %d are accepted.\n",
2855 qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
2856 return -ENOMEM;
2857 }
2858 qdev->num_large_buffers =
2859 qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
2860 qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
2861 qdev->max_frame_size =
2862 (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
2863
2864 /*
2865 * First allocate a page of shared memory and use it for shadow
2866 * locations of Network Request Queue Consumer Address Register and
2867 * Network Completion Queue Producer Index Register
2868 */
2869 qdev->shadow_reg_virt_addr =
2870 pci_alloc_consistent(qdev->pdev,
2871 PAGE_SIZE, &qdev->shadow_reg_phy_addr);
2872
2873 if (qdev->shadow_reg_virt_addr != NULL) {
2874 qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
2875 qdev->req_consumer_index_phy_addr_high =
2876 MS_64BITS(qdev->shadow_reg_phy_addr);
2877 qdev->req_consumer_index_phy_addr_low =
2878 LS_64BITS(qdev->shadow_reg_phy_addr);
2879
2880 qdev->prsp_producer_index =
2881 (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
2882 qdev->rsp_producer_index_phy_addr_high =
2883 qdev->req_consumer_index_phy_addr_high;
2884 qdev->rsp_producer_index_phy_addr_low =
2885 qdev->req_consumer_index_phy_addr_low + 8;
2886 } else {
2887 netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
2888 return -ENOMEM;
2889 }
2890
2891 if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
2892 netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
2893 goto err_req_rsp;
2894 }
2895
2896 if (ql_alloc_buffer_queues(qdev) != 0) {
2897 netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
2898 goto err_buffer_queues;
2899 }
2900
2901 if (ql_alloc_small_buffers(qdev) != 0) {
2902 netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
2903 goto err_small_buffers;
2904 }
2905
2906 if (ql_alloc_large_buffers(qdev) != 0) {
2907 netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
2908 goto err_small_buffers;
2909 }
2910
2911 /* Initialize the large buffer queue. */
2912 ql_init_large_buffers(qdev);
2913 if (ql_create_send_free_list(qdev))
2914 goto err_free_list;
2915
2916 qdev->rsp_current = qdev->rsp_q_virt_addr;
2917
2918 return 0;
2919 err_free_list:
2920 ql_free_send_free_list(qdev);
2921 err_small_buffers:
2922 ql_free_buffer_queues(qdev);
2923 err_buffer_queues:
2924 ql_free_net_req_rsp_queues(qdev);
2925 err_req_rsp:
2926 pci_free_consistent(qdev->pdev,
2927 PAGE_SIZE,
2928 qdev->shadow_reg_virt_addr,
2929 qdev->shadow_reg_phy_addr);
2930
2931 return -ENOMEM;
2932 }
2933
2934 static void ql_free_mem_resources(struct ql3_adapter *qdev)
2935 {
2936 ql_free_send_free_list(qdev);
2937 ql_free_large_buffers(qdev);
2938 ql_free_small_buffers(qdev);
2939 ql_free_buffer_queues(qdev);
2940 ql_free_net_req_rsp_queues(qdev);
2941 if (qdev->shadow_reg_virt_addr != NULL) {
2942 pci_free_consistent(qdev->pdev,
2943 PAGE_SIZE,
2944 qdev->shadow_reg_virt_addr,
2945 qdev->shadow_reg_phy_addr);
2946 qdev->shadow_reg_virt_addr = NULL;
2947 }
2948 }
2949
2950 static int ql_init_misc_registers(struct ql3_adapter *qdev)
2951 {
2952 struct ql3xxx_local_ram_registers __iomem *local_ram =
2953 (void __iomem *)qdev->mem_map_registers;
2954
2955 if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
2956 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2957 2) << 4))
2958 return -1;
2959
2960 ql_write_page2_reg(qdev,
2961 &local_ram->bufletSize, qdev->nvram_data.bufletSize);
2962
2963 ql_write_page2_reg(qdev,
2964 &local_ram->maxBufletCount,
2965 qdev->nvram_data.bufletCount);
2966
2967 ql_write_page2_reg(qdev,
2968 &local_ram->freeBufletThresholdLow,
2969 (qdev->nvram_data.tcpWindowThreshold25 << 16) |
2970 (qdev->nvram_data.tcpWindowThreshold0));
2971
2972 ql_write_page2_reg(qdev,
2973 &local_ram->freeBufletThresholdHigh,
2974 qdev->nvram_data.tcpWindowThreshold50);
2975
2976 ql_write_page2_reg(qdev,
2977 &local_ram->ipHashTableBase,
2978 (qdev->nvram_data.ipHashTableBaseHi << 16) |
2979 qdev->nvram_data.ipHashTableBaseLo);
2980 ql_write_page2_reg(qdev,
2981 &local_ram->ipHashTableCount,
2982 qdev->nvram_data.ipHashTableSize);
2983 ql_write_page2_reg(qdev,
2984 &local_ram->tcpHashTableBase,
2985 (qdev->nvram_data.tcpHashTableBaseHi << 16) |
2986 qdev->nvram_data.tcpHashTableBaseLo);
2987 ql_write_page2_reg(qdev,
2988 &local_ram->tcpHashTableCount,
2989 qdev->nvram_data.tcpHashTableSize);
2990 ql_write_page2_reg(qdev,
2991 &local_ram->ncbBase,
2992 (qdev->nvram_data.ncbTableBaseHi << 16) |
2993 qdev->nvram_data.ncbTableBaseLo);
2994 ql_write_page2_reg(qdev,
2995 &local_ram->maxNcbCount,
2996 qdev->nvram_data.ncbTableSize);
2997 ql_write_page2_reg(qdev,
2998 &local_ram->drbBase,
2999 (qdev->nvram_data.drbTableBaseHi << 16) |
3000 qdev->nvram_data.drbTableBaseLo);
3001 ql_write_page2_reg(qdev,
3002 &local_ram->maxDrbCount,
3003 qdev->nvram_data.drbTableSize);
3004 ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
3005 return 0;
3006 }
3007
3008 static int ql_adapter_initialize(struct ql3_adapter *qdev)
3009 {
3010 u32 value;
3011 struct ql3xxx_port_registers __iomem *port_regs =
3012 qdev->mem_map_registers;
3013 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
3014 struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3015 (void __iomem *)port_regs;
3016 u32 delay = 10;
3017 int status = 0;
3018
3019 if (ql_mii_setup(qdev))
3020 return -1;
3021
3022 /* Bring out PHY out of reset */
3023 ql_write_common_reg(qdev, spir,
3024 (ISP_SERIAL_PORT_IF_WE |
3025 (ISP_SERIAL_PORT_IF_WE << 16)));
3026 /* Give the PHY time to come out of reset. */
3027 mdelay(100);
3028 qdev->port_link_state = LS_DOWN;
3029 netif_carrier_off(qdev->ndev);
3030
3031 /* V2 chip fix for ARS-39168. */
3032 ql_write_common_reg(qdev, spir,
3033 (ISP_SERIAL_PORT_IF_SDE |
3034 (ISP_SERIAL_PORT_IF_SDE << 16)));
3035
3036 /* Request Queue Registers */
3037 *((u32 *)(qdev->preq_consumer_index)) = 0;
3038 atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
3039 qdev->req_producer_index = 0;
3040
3041 ql_write_page1_reg(qdev,
3042 &hmem_regs->reqConsumerIndexAddrHigh,
3043 qdev->req_consumer_index_phy_addr_high);
3044 ql_write_page1_reg(qdev,
3045 &hmem_regs->reqConsumerIndexAddrLow,
3046 qdev->req_consumer_index_phy_addr_low);
3047
3048 ql_write_page1_reg(qdev,
3049 &hmem_regs->reqBaseAddrHigh,
3050 MS_64BITS(qdev->req_q_phy_addr));
3051 ql_write_page1_reg(qdev,
3052 &hmem_regs->reqBaseAddrLow,
3053 LS_64BITS(qdev->req_q_phy_addr));
3054 ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3055
3056 /* Response Queue Registers */
3057 *((__le16 *) (qdev->prsp_producer_index)) = 0;
3058 qdev->rsp_consumer_index = 0;
3059 qdev->rsp_current = qdev->rsp_q_virt_addr;
3060
3061 ql_write_page1_reg(qdev,
3062 &hmem_regs->rspProducerIndexAddrHigh,
3063 qdev->rsp_producer_index_phy_addr_high);
3064
3065 ql_write_page1_reg(qdev,
3066 &hmem_regs->rspProducerIndexAddrLow,
3067 qdev->rsp_producer_index_phy_addr_low);
3068
3069 ql_write_page1_reg(qdev,
3070 &hmem_regs->rspBaseAddrHigh,
3071 MS_64BITS(qdev->rsp_q_phy_addr));
3072
3073 ql_write_page1_reg(qdev,
3074 &hmem_regs->rspBaseAddrLow,
3075 LS_64BITS(qdev->rsp_q_phy_addr));
3076
3077 ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3078
3079 /* Large Buffer Queue */
3080 ql_write_page1_reg(qdev,
3081 &hmem_regs->rxLargeQBaseAddrHigh,
3082 MS_64BITS(qdev->lrg_buf_q_phy_addr));
3083
3084 ql_write_page1_reg(qdev,
3085 &hmem_regs->rxLargeQBaseAddrLow,
3086 LS_64BITS(qdev->lrg_buf_q_phy_addr));
3087
3088 ql_write_page1_reg(qdev,
3089 &hmem_regs->rxLargeQLength,
3090 qdev->num_lbufq_entries);
3091
3092 ql_write_page1_reg(qdev,
3093 &hmem_regs->rxLargeBufferLength,
3094 qdev->lrg_buffer_len);
3095
3096 /* Small Buffer Queue */
3097 ql_write_page1_reg(qdev,
3098 &hmem_regs->rxSmallQBaseAddrHigh,
3099 MS_64BITS(qdev->small_buf_q_phy_addr));
3100
3101 ql_write_page1_reg(qdev,
3102 &hmem_regs->rxSmallQBaseAddrLow,
3103 LS_64BITS(qdev->small_buf_q_phy_addr));
3104
3105 ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3106 ql_write_page1_reg(qdev,
3107 &hmem_regs->rxSmallBufferLength,
3108 QL_SMALL_BUFFER_SIZE);
3109
3110 qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3111 qdev->small_buf_release_cnt = 8;
3112 qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3113 qdev->lrg_buf_release_cnt = 8;
3114 qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
3115 qdev->small_buf_index = 0;
3116 qdev->lrg_buf_index = 0;
3117 qdev->lrg_buf_free_count = 0;
3118 qdev->lrg_buf_free_head = NULL;
3119 qdev->lrg_buf_free_tail = NULL;
3120
3121 ql_write_common_reg(qdev,
3122 &port_regs->CommonRegs.
3123 rxSmallQProducerIndex,
3124 qdev->small_buf_q_producer_index);
3125 ql_write_common_reg(qdev,
3126 &port_regs->CommonRegs.
3127 rxLargeQProducerIndex,
3128 qdev->lrg_buf_q_producer_index);
3129
3130 /*
3131 * Find out if the chip has already been initialized. If it has, then
3132 * we skip some of the initialization.
3133 */
3134 clear_bit(QL_LINK_MASTER, &qdev->flags);
3135 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3136 if ((value & PORT_STATUS_IC) == 0) {
3137
3138 /* Chip has not been configured yet, so let it rip. */
3139 if (ql_init_misc_registers(qdev)) {
3140 status = -1;
3141 goto out;
3142 }
3143
3144 value = qdev->nvram_data.tcpMaxWindowSize;
3145 ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3146
3147 value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3148
3149 if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3150 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3151 * 2) << 13)) {
3152 status = -1;
3153 goto out;
3154 }
3155 ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3156 ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3157 (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3158 16) | (INTERNAL_CHIP_SD |
3159 INTERNAL_CHIP_WE)));
3160 ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3161 }
3162
3163 if (qdev->mac_index)
3164 ql_write_page0_reg(qdev,
3165 &port_regs->mac1MaxFrameLengthReg,
3166 qdev->max_frame_size);
3167 else
3168 ql_write_page0_reg(qdev,
3169 &port_regs->mac0MaxFrameLengthReg,
3170 qdev->max_frame_size);
3171
3172 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3173 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3174 2) << 7)) {
3175 status = -1;
3176 goto out;
3177 }
3178
3179 PHY_Setup(qdev);
3180 ql_init_scan_mode(qdev);
3181 ql_get_phy_owner(qdev);
3182
3183 /* Load the MAC Configuration */
3184
3185 /* Program lower 32 bits of the MAC address */
3186 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3187 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3188 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3189 ((qdev->ndev->dev_addr[2] << 24)
3190 | (qdev->ndev->dev_addr[3] << 16)
3191 | (qdev->ndev->dev_addr[4] << 8)
3192 | qdev->ndev->dev_addr[5]));
3193
3194 /* Program top 16 bits of the MAC address */
3195 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3196 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3197 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3198 ((qdev->ndev->dev_addr[0] << 8)
3199 | qdev->ndev->dev_addr[1]));
3200
3201 /* Enable Primary MAC */
3202 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3203 ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3204 MAC_ADDR_INDIRECT_PTR_REG_PE));
3205
3206 /* Clear Primary and Secondary IP addresses */
3207 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3208 ((IP_ADDR_INDEX_REG_MASK << 16) |
3209 (qdev->mac_index << 2)));
3210 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3211
3212 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3213 ((IP_ADDR_INDEX_REG_MASK << 16) |
3214 ((qdev->mac_index << 2) + 1)));
3215 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3216
3217 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3218
3219 /* Indicate Configuration Complete */
3220 ql_write_page0_reg(qdev,
3221 &port_regs->portControl,
3222 ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3223
3224 do {
3225 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3226 if (value & PORT_STATUS_IC)
3227 break;
3228 spin_unlock_irq(&qdev->hw_lock);
3229 msleep(500);
3230 spin_lock_irq(&qdev->hw_lock);
3231 } while (--delay);
3232
3233 if (delay == 0) {
3234 netdev_err(qdev->ndev, "Hw Initialization timeout\n");
3235 status = -1;
3236 goto out;
3237 }
3238
3239 /* Enable Ethernet Function */
3240 if (qdev->device_id == QL3032_DEVICE_ID) {
3241 value =
3242 (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3243 QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3244 QL3032_PORT_CONTROL_ET);
3245 ql_write_page0_reg(qdev, &port_regs->functionControl,
3246 ((value << 16) | value));
3247 } else {
3248 value =
3249 (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3250 PORT_CONTROL_HH);
3251 ql_write_page0_reg(qdev, &port_regs->portControl,
3252 ((value << 16) | value));
3253 }
3254
3255
3256 out:
3257 return status;
3258 }
3259
3260 /*
3261 * Caller holds hw_lock.
3262 */
3263 static int ql_adapter_reset(struct ql3_adapter *qdev)
3264 {
3265 struct ql3xxx_port_registers __iomem *port_regs =
3266 qdev->mem_map_registers;
3267 int status = 0;
3268 u16 value;
3269 int max_wait_time;
3270
3271 set_bit(QL_RESET_ACTIVE, &qdev->flags);
3272 clear_bit(QL_RESET_DONE, &qdev->flags);
3273
3274 /*
3275 * Issue soft reset to chip.
3276 */
3277 netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
3278 ql_write_common_reg(qdev,
3279 &port_regs->CommonRegs.ispControlStatus,
3280 ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3281
3282 /* Wait 3 seconds for reset to complete. */
3283 netdev_printk(KERN_DEBUG, qdev->ndev,
3284 "Wait 10 milliseconds for reset to complete\n");
3285
3286 /* Wait until the firmware tells us the Soft Reset is done */
3287 max_wait_time = 5;
3288 do {
3289 value =
3290 ql_read_common_reg(qdev,
3291 &port_regs->CommonRegs.ispControlStatus);
3292 if ((value & ISP_CONTROL_SR) == 0)
3293 break;
3294
3295 ssleep(1);
3296 } while ((--max_wait_time));
3297
3298 /*
3299 * Also, make sure that the Network Reset Interrupt bit has been
3300 * cleared after the soft reset has taken place.
3301 */
3302 value =
3303 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3304 if (value & ISP_CONTROL_RI) {
3305 netdev_printk(KERN_DEBUG, qdev->ndev,
3306 "clearing RI after reset\n");
3307 ql_write_common_reg(qdev,
3308 &port_regs->CommonRegs.
3309 ispControlStatus,
3310 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3311 }
3312
3313 if (max_wait_time == 0) {
3314 /* Issue Force Soft Reset */
3315 ql_write_common_reg(qdev,
3316 &port_regs->CommonRegs.
3317 ispControlStatus,
3318 ((ISP_CONTROL_FSR << 16) |
3319 ISP_CONTROL_FSR));
3320 /*
3321 * Wait until the firmware tells us the Force Soft Reset is
3322 * done
3323 */
3324 max_wait_time = 5;
3325 do {
3326 value = ql_read_common_reg(qdev,
3327 &port_regs->CommonRegs.
3328 ispControlStatus);
3329 if ((value & ISP_CONTROL_FSR) == 0)
3330 break;
3331 ssleep(1);
3332 } while ((--max_wait_time));
3333 }
3334 if (max_wait_time == 0)
3335 status = 1;
3336
3337 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3338 set_bit(QL_RESET_DONE, &qdev->flags);
3339 return status;
3340 }
3341
3342 static void ql_set_mac_info(struct ql3_adapter *qdev)
3343 {
3344 struct ql3xxx_port_registers __iomem *port_regs =
3345 qdev->mem_map_registers;
3346 u32 value, port_status;
3347 u8 func_number;
3348
3349 /* Get the function number */
3350 value =
3351 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3352 func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3353 port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3354 switch (value & ISP_CONTROL_FN_MASK) {
3355 case ISP_CONTROL_FN0_NET:
3356 qdev->mac_index = 0;
3357 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3358 qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3359 qdev->PHYAddr = PORT0_PHY_ADDRESS;
3360 if (port_status & PORT_STATUS_SM0)
3361 set_bit(QL_LINK_OPTICAL, &qdev->flags);
3362 else
3363 clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3364 break;
3365
3366 case ISP_CONTROL_FN1_NET:
3367 qdev->mac_index = 1;
3368 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3369 qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3370 qdev->PHYAddr = PORT1_PHY_ADDRESS;
3371 if (port_status & PORT_STATUS_SM1)
3372 set_bit(QL_LINK_OPTICAL, &qdev->flags);
3373 else
3374 clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3375 break;
3376
3377 case ISP_CONTROL_FN0_SCSI:
3378 case ISP_CONTROL_FN1_SCSI:
3379 default:
3380 netdev_printk(KERN_DEBUG, qdev->ndev,
3381 "Invalid function number, ispControlStatus = 0x%x\n",
3382 value);
3383 break;
3384 }
3385 qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
3386 }
3387
3388 static void ql_display_dev_info(struct net_device *ndev)
3389 {
3390 struct ql3_adapter *qdev = netdev_priv(ndev);
3391 struct pci_dev *pdev = qdev->pdev;
3392
3393 netdev_info(ndev,
3394 "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
3395 DRV_NAME, qdev->index, qdev->chip_rev_id,
3396 qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
3397 qdev->pci_slot);
3398 netdev_info(ndev, "%s Interface\n",
3399 test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
3400
3401 /*
3402 * Print PCI bus width/type.
3403 */
3404 netdev_info(ndev, "Bus interface is %s %s\n",
3405 ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3406 ((qdev->pci_x) ? "PCI-X" : "PCI"));
3407
3408 netdev_info(ndev, "mem IO base address adjusted = 0x%p\n",
3409 qdev->mem_map_registers);
3410 netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
3411
3412 netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
3413 }
3414
3415 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3416 {
3417 struct net_device *ndev = qdev->ndev;
3418 int retval = 0;
3419
3420 netif_stop_queue(ndev);
3421 netif_carrier_off(ndev);
3422
3423 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3424 clear_bit(QL_LINK_MASTER, &qdev->flags);
3425
3426 ql_disable_interrupts(qdev);
3427
3428 free_irq(qdev->pdev->irq, ndev);
3429
3430 if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3431 netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
3432 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3433 pci_disable_msi(qdev->pdev);
3434 }
3435
3436 del_timer_sync(&qdev->adapter_timer);
3437
3438 napi_disable(&qdev->napi);
3439
3440 if (do_reset) {
3441 int soft_reset;
3442 unsigned long hw_flags;
3443
3444 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3445 if (ql_wait_for_drvr_lock(qdev)) {
3446 soft_reset = ql_adapter_reset(qdev);
3447 if (soft_reset) {
3448 netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
3449 qdev->index);
3450 }
3451 netdev_err(ndev,
3452 "Releasing driver lock via chip reset\n");
3453 } else {
3454 netdev_err(ndev,
3455 "Could not acquire driver lock to do reset!\n");
3456 retval = -1;
3457 }
3458 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3459 }
3460 ql_free_mem_resources(qdev);
3461 return retval;
3462 }
3463
3464 static int ql_adapter_up(struct ql3_adapter *qdev)
3465 {
3466 struct net_device *ndev = qdev->ndev;
3467 int err;
3468 unsigned long irq_flags = IRQF_SHARED;
3469 unsigned long hw_flags;
3470
3471 if (ql_alloc_mem_resources(qdev)) {
3472 netdev_err(ndev, "Unable to allocate buffers\n");
3473 return -ENOMEM;
3474 }
3475
3476 if (qdev->msi) {
3477 if (pci_enable_msi(qdev->pdev)) {
3478 netdev_err(ndev,
3479 "User requested MSI, but MSI failed to initialize. Continuing without MSI.\n");
3480 qdev->msi = 0;
3481 } else {
3482 netdev_info(ndev, "MSI Enabled...\n");
3483 set_bit(QL_MSI_ENABLED, &qdev->flags);
3484 irq_flags &= ~IRQF_SHARED;
3485 }
3486 }
3487
3488 err = request_irq(qdev->pdev->irq, ql3xxx_isr,
3489 irq_flags, ndev->name, ndev);
3490 if (err) {
3491 netdev_err(ndev,
3492 "Failed to reserve interrupt %d - already in use\n",
3493 qdev->pdev->irq);
3494 goto err_irq;
3495 }
3496
3497 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3498
3499 err = ql_wait_for_drvr_lock(qdev);
3500 if (err) {
3501 err = ql_adapter_initialize(qdev);
3502 if (err) {
3503 netdev_err(ndev, "Unable to initialize adapter\n");
3504 goto err_init;
3505 }
3506 netdev_err(ndev, "Releasing driver lock\n");
3507 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3508 } else {
3509 netdev_err(ndev, "Could not acquire driver lock\n");
3510 goto err_lock;
3511 }
3512
3513 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3514
3515 set_bit(QL_ADAPTER_UP, &qdev->flags);
3516
3517 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3518
3519 napi_enable(&qdev->napi);
3520 ql_enable_interrupts(qdev);
3521 return 0;
3522
3523 err_init:
3524 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3525 err_lock:
3526 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3527 free_irq(qdev->pdev->irq, ndev);
3528 err_irq:
3529 if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3530 netdev_info(ndev, "calling pci_disable_msi()\n");
3531 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3532 pci_disable_msi(qdev->pdev);
3533 }
3534 return err;
3535 }
3536
3537 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3538 {
3539 if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
3540 netdev_err(qdev->ndev,
3541 "Driver up/down cycle failed, closing device\n");
3542 rtnl_lock();
3543 dev_close(qdev->ndev);
3544 rtnl_unlock();
3545 return -1;
3546 }
3547 return 0;
3548 }
3549
3550 static int ql3xxx_close(struct net_device *ndev)
3551 {
3552 struct ql3_adapter *qdev = netdev_priv(ndev);
3553
3554 /*
3555 * Wait for device to recover from a reset.
3556 * (Rarely happens, but possible.)
3557 */
3558 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3559 msleep(50);
3560
3561 ql_adapter_down(qdev, QL_DO_RESET);
3562 return 0;
3563 }
3564
3565 static int ql3xxx_open(struct net_device *ndev)
3566 {
3567 struct ql3_adapter *qdev = netdev_priv(ndev);
3568 return ql_adapter_up(qdev);
3569 }
3570
3571 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3572 {
3573 struct ql3_adapter *qdev = netdev_priv(ndev);
3574 struct ql3xxx_port_registers __iomem *port_regs =
3575 qdev->mem_map_registers;
3576 struct sockaddr *addr = p;
3577 unsigned long hw_flags;
3578
3579 if (netif_running(ndev))
3580 return -EBUSY;
3581
3582 if (!is_valid_ether_addr(addr->sa_data))
3583 return -EADDRNOTAVAIL;
3584
3585 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3586
3587 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3588 /* Program lower 32 bits of the MAC address */
3589 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3590 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3591 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3592 ((ndev->dev_addr[2] << 24) | (ndev->
3593 dev_addr[3] << 16) |
3594 (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3595
3596 /* Program top 16 bits of the MAC address */
3597 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3598 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3599 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3600 ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3601 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3602
3603 return 0;
3604 }
3605
3606 static void ql3xxx_tx_timeout(struct net_device *ndev)
3607 {
3608 struct ql3_adapter *qdev = netdev_priv(ndev);
3609
3610 netdev_err(ndev, "Resetting...\n");
3611 /*
3612 * Stop the queues, we've got a problem.
3613 */
3614 netif_stop_queue(ndev);
3615
3616 /*
3617 * Wake up the worker to process this event.
3618 */
3619 queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3620 }
3621
3622 static void ql_reset_work(struct work_struct *work)
3623 {
3624 struct ql3_adapter *qdev =
3625 container_of(work, struct ql3_adapter, reset_work.work);
3626 struct net_device *ndev = qdev->ndev;
3627 u32 value;
3628 struct ql_tx_buf_cb *tx_cb;
3629 int max_wait_time, i;
3630 struct ql3xxx_port_registers __iomem *port_regs =
3631 qdev->mem_map_registers;
3632 unsigned long hw_flags;
3633
3634 if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
3635 clear_bit(QL_LINK_MASTER, &qdev->flags);
3636
3637 /*
3638 * Loop through the active list and return the skb.
3639 */
3640 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3641 int j;
3642 tx_cb = &qdev->tx_buf[i];
3643 if (tx_cb->skb) {
3644 netdev_printk(KERN_DEBUG, ndev,
3645 "Freeing lost SKB\n");
3646 pci_unmap_single(qdev->pdev,
3647 dma_unmap_addr(&tx_cb->map[0],
3648 mapaddr),
3649 dma_unmap_len(&tx_cb->map[0], maplen),
3650 PCI_DMA_TODEVICE);
3651 for (j = 1; j < tx_cb->seg_count; j++) {
3652 pci_unmap_page(qdev->pdev,
3653 dma_unmap_addr(&tx_cb->map[j],
3654 mapaddr),
3655 dma_unmap_len(&tx_cb->map[j],
3656 maplen),
3657 PCI_DMA_TODEVICE);
3658 }
3659 dev_kfree_skb(tx_cb->skb);
3660 tx_cb->skb = NULL;
3661 }
3662 }
3663
3664 netdev_err(ndev, "Clearing NRI after reset\n");
3665 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3666 ql_write_common_reg(qdev,
3667 &port_regs->CommonRegs.
3668 ispControlStatus,
3669 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3670 /*
3671 * Wait the for Soft Reset to Complete.
3672 */
3673 max_wait_time = 10;
3674 do {
3675 value = ql_read_common_reg(qdev,
3676 &port_regs->CommonRegs.
3677
3678 ispControlStatus);
3679 if ((value & ISP_CONTROL_SR) == 0) {
3680 netdev_printk(KERN_DEBUG, ndev,
3681 "reset completed\n");
3682 break;
3683 }
3684
3685 if (value & ISP_CONTROL_RI) {
3686 netdev_printk(KERN_DEBUG, ndev,
3687 "clearing NRI after reset\n");
3688 ql_write_common_reg(qdev,
3689 &port_regs->
3690 CommonRegs.
3691 ispControlStatus,
3692 ((ISP_CONTROL_RI <<
3693 16) | ISP_CONTROL_RI));
3694 }
3695
3696 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3697 ssleep(1);
3698 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3699 } while (--max_wait_time);
3700 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3701
3702 if (value & ISP_CONTROL_SR) {
3703
3704 /*
3705 * Set the reset flags and clear the board again.
3706 * Nothing else to do...
3707 */
3708 netdev_err(ndev,
3709 "Timed out waiting for reset to complete\n");
3710 netdev_err(ndev, "Do a reset\n");
3711 clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3712 clear_bit(QL_RESET_START, &qdev->flags);
3713 ql_cycle_adapter(qdev, QL_DO_RESET);
3714 return;
3715 }
3716
3717 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3718 clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3719 clear_bit(QL_RESET_START, &qdev->flags);
3720 ql_cycle_adapter(qdev, QL_NO_RESET);
3721 }
3722 }
3723
3724 static void ql_tx_timeout_work(struct work_struct *work)
3725 {
3726 struct ql3_adapter *qdev =
3727 container_of(work, struct ql3_adapter, tx_timeout_work.work);
3728
3729 ql_cycle_adapter(qdev, QL_DO_RESET);
3730 }
3731
3732 static void ql_get_board_info(struct ql3_adapter *qdev)
3733 {
3734 struct ql3xxx_port_registers __iomem *port_regs =
3735 qdev->mem_map_registers;
3736 u32 value;
3737
3738 value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3739
3740 qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3741 if (value & PORT_STATUS_64)
3742 qdev->pci_width = 64;
3743 else
3744 qdev->pci_width = 32;
3745 if (value & PORT_STATUS_X)
3746 qdev->pci_x = 1;
3747 else
3748 qdev->pci_x = 0;
3749 qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3750 }
3751
3752 static void ql3xxx_timer(unsigned long ptr)
3753 {
3754 struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
3755 queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3756 }
3757
3758 static const struct net_device_ops ql3xxx_netdev_ops = {
3759 .ndo_open = ql3xxx_open,
3760 .ndo_start_xmit = ql3xxx_send,
3761 .ndo_stop = ql3xxx_close,
3762 .ndo_change_mtu = eth_change_mtu,
3763 .ndo_validate_addr = eth_validate_addr,
3764 .ndo_set_mac_address = ql3xxx_set_mac_address,
3765 .ndo_tx_timeout = ql3xxx_tx_timeout,
3766 };
3767
3768 static int ql3xxx_probe(struct pci_dev *pdev,
3769 const struct pci_device_id *pci_entry)
3770 {
3771 struct net_device *ndev = NULL;
3772 struct ql3_adapter *qdev = NULL;
3773 static int cards_found;
3774 int uninitialized_var(pci_using_dac), err;
3775
3776 err = pci_enable_device(pdev);
3777 if (err) {
3778 pr_err("%s cannot enable PCI device\n", pci_name(pdev));
3779 goto err_out;
3780 }
3781
3782 err = pci_request_regions(pdev, DRV_NAME);
3783 if (err) {
3784 pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
3785 goto err_out_disable_pdev;
3786 }
3787
3788 pci_set_master(pdev);
3789
3790 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3791 pci_using_dac = 1;
3792 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3793 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3794 pci_using_dac = 0;
3795 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3796 }
3797
3798 if (err) {
3799 pr_err("%s no usable DMA configuration\n", pci_name(pdev));
3800 goto err_out_free_regions;
3801 }
3802
3803 ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3804 if (!ndev) {
3805 err = -ENOMEM;
3806 goto err_out_free_regions;
3807 }
3808
3809 SET_NETDEV_DEV(ndev, &pdev->dev);
3810
3811 pci_set_drvdata(pdev, ndev);
3812
3813 qdev = netdev_priv(ndev);
3814 qdev->index = cards_found;
3815 qdev->ndev = ndev;
3816 qdev->pdev = pdev;
3817 qdev->device_id = pci_entry->device;
3818 qdev->port_link_state = LS_DOWN;
3819 if (msi)
3820 qdev->msi = 1;
3821
3822 qdev->msg_enable = netif_msg_init(debug, default_msg);
3823
3824 if (pci_using_dac)
3825 ndev->features |= NETIF_F_HIGHDMA;
3826 if (qdev->device_id == QL3032_DEVICE_ID)
3827 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3828
3829 qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
3830 if (!qdev->mem_map_registers) {
3831 pr_err("%s: cannot map device registers\n", pci_name(pdev));
3832 err = -EIO;
3833 goto err_out_free_ndev;
3834 }
3835
3836 spin_lock_init(&qdev->adapter_lock);
3837 spin_lock_init(&qdev->hw_lock);
3838
3839 /* Set driver entry points */
3840 ndev->netdev_ops = &ql3xxx_netdev_ops;
3841 SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
3842 ndev->watchdog_timeo = 5 * HZ;
3843
3844 netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
3845
3846 ndev->irq = pdev->irq;
3847
3848 /* make sure the EEPROM is good */
3849 if (ql_get_nvram_params(qdev)) {
3850 pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
3851 __func__, qdev->index);
3852 err = -EIO;
3853 goto err_out_iounmap;
3854 }
3855
3856 ql_set_mac_info(qdev);
3857
3858 /* Validate and set parameters */
3859 if (qdev->mac_index) {
3860 ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
3861 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
3862 } else {
3863 ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
3864 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
3865 }
3866
3867 ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
3868
3869 /* Record PCI bus information. */
3870 ql_get_board_info(qdev);
3871
3872 /*
3873 * Set the Maximum Memory Read Byte Count value. We do this to handle
3874 * jumbo frames.
3875 */
3876 if (qdev->pci_x)
3877 pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
3878
3879 err = register_netdev(ndev);
3880 if (err) {
3881 pr_err("%s: cannot register net device\n", pci_name(pdev));
3882 goto err_out_iounmap;
3883 }
3884
3885 /* we're going to reset, so assume we have no link for now */
3886
3887 netif_carrier_off(ndev);
3888 netif_stop_queue(ndev);
3889
3890 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3891 INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
3892 INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
3893 INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
3894
3895 init_timer(&qdev->adapter_timer);
3896 qdev->adapter_timer.function = ql3xxx_timer;
3897 qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
3898 qdev->adapter_timer.data = (unsigned long)qdev;
3899
3900 if (!cards_found) {
3901 pr_alert("%s\n", DRV_STRING);
3902 pr_alert("Driver name: %s, Version: %s\n",
3903 DRV_NAME, DRV_VERSION);
3904 }
3905 ql_display_dev_info(ndev);
3906
3907 cards_found++;
3908 return 0;
3909
3910 err_out_iounmap:
3911 iounmap(qdev->mem_map_registers);
3912 err_out_free_ndev:
3913 free_netdev(ndev);
3914 err_out_free_regions:
3915 pci_release_regions(pdev);
3916 err_out_disable_pdev:
3917 pci_disable_device(pdev);
3918 err_out:
3919 return err;
3920 }
3921
3922 static void ql3xxx_remove(struct pci_dev *pdev)
3923 {
3924 struct net_device *ndev = pci_get_drvdata(pdev);
3925 struct ql3_adapter *qdev = netdev_priv(ndev);
3926
3927 unregister_netdev(ndev);
3928
3929 ql_disable_interrupts(qdev);
3930
3931 if (qdev->workqueue) {
3932 cancel_delayed_work(&qdev->reset_work);
3933 cancel_delayed_work(&qdev->tx_timeout_work);
3934 destroy_workqueue(qdev->workqueue);
3935 qdev->workqueue = NULL;
3936 }
3937
3938 iounmap(qdev->mem_map_registers);
3939 pci_release_regions(pdev);
3940 free_netdev(ndev);
3941 }
3942
3943 static struct pci_driver ql3xxx_driver = {
3944
3945 .name = DRV_NAME,
3946 .id_table = ql3xxx_pci_tbl,
3947 .probe = ql3xxx_probe,
3948 .remove = ql3xxx_remove,
3949 };
3950
3951 module_pci_driver(ql3xxx_driver);
This page took 0.10955 seconds and 6 git commands to generate.