Merge branch 'linus' into x86/apic
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qla3xxx.c
1 /*
2 * QLogic QLA3xxx NIC HBA Driver
3 * Copyright (c) 2003-2006 QLogic Corporation
4 *
5 * See LICENSE.qla3xxx for copyright and licensing details.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/ip.h>
26 #include <linux/in.h>
27 #include <linux/if_arp.h>
28 #include <linux/if_ether.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/ethtool.h>
32 #include <linux/skbuff.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/if_vlan.h>
35 #include <linux/delay.h>
36 #include <linux/mm.h>
37 #include <linux/prefetch.h>
38
39 #include "qla3xxx.h"
40
41 #define DRV_NAME "qla3xxx"
42 #define DRV_STRING "QLogic ISP3XXX Network Driver"
43 #define DRV_VERSION "v2.03.00-k5"
44
45 static const char ql3xxx_driver_name[] = DRV_NAME;
46 static const char ql3xxx_driver_version[] = DRV_VERSION;
47
48 #define TIMED_OUT_MSG \
49 "Timed out waiting for management port to get free before issuing command\n"
50
51 MODULE_AUTHOR("QLogic Corporation");
52 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
53 MODULE_LICENSE("GPL");
54 MODULE_VERSION(DRV_VERSION);
55
56 static const u32 default_msg
57 = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
58 | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
59
60 static int debug = -1; /* defaults above */
61 module_param(debug, int, 0);
62 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
63
64 static int msi;
65 module_param(msi, int, 0);
66 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
67
68 static const struct pci_device_id ql3xxx_pci_tbl[] = {
69 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
70 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
71 /* required last entry */
72 {0,}
73 };
74
75 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
76
77 /*
78 * These are the known PHY's which are used
79 */
80 enum PHY_DEVICE_TYPE {
81 PHY_TYPE_UNKNOWN = 0,
82 PHY_VITESSE_VSC8211,
83 PHY_AGERE_ET1011C,
84 MAX_PHY_DEV_TYPES
85 };
86
87 struct PHY_DEVICE_INFO {
88 const enum PHY_DEVICE_TYPE phyDevice;
89 const u32 phyIdOUI;
90 const u16 phyIdModel;
91 const char *name;
92 };
93
94 static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
95 {PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
96 {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
97 {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
98 };
99
100
101 /*
102 * Caller must take hw_lock.
103 */
104 static int ql_sem_spinlock(struct ql3_adapter *qdev,
105 u32 sem_mask, u32 sem_bits)
106 {
107 struct ql3xxx_port_registers __iomem *port_regs =
108 qdev->mem_map_registers;
109 u32 value;
110 unsigned int seconds = 3;
111
112 do {
113 writel((sem_mask | sem_bits),
114 &port_regs->CommonRegs.semaphoreReg);
115 value = readl(&port_regs->CommonRegs.semaphoreReg);
116 if ((value & (sem_mask >> 16)) == sem_bits)
117 return 0;
118 ssleep(1);
119 } while (--seconds);
120 return -1;
121 }
122
123 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
124 {
125 struct ql3xxx_port_registers __iomem *port_regs =
126 qdev->mem_map_registers;
127 writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
128 readl(&port_regs->CommonRegs.semaphoreReg);
129 }
130
131 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
132 {
133 struct ql3xxx_port_registers __iomem *port_regs =
134 qdev->mem_map_registers;
135 u32 value;
136
137 writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
138 value = readl(&port_regs->CommonRegs.semaphoreReg);
139 return ((value & (sem_mask >> 16)) == sem_bits);
140 }
141
142 /*
143 * Caller holds hw_lock.
144 */
145 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
146 {
147 int i = 0;
148
149 do {
150 if (ql_sem_lock(qdev,
151 QL_DRVR_SEM_MASK,
152 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
153 * 2) << 1)) {
154 netdev_printk(KERN_DEBUG, qdev->ndev,
155 "driver lock acquired\n");
156 return 1;
157 }
158 ssleep(1);
159 } while (++i < 10);
160
161 netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
162 return 0;
163 }
164
165 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
166 {
167 struct ql3xxx_port_registers __iomem *port_regs =
168 qdev->mem_map_registers;
169
170 writel(((ISP_CONTROL_NP_MASK << 16) | page),
171 &port_regs->CommonRegs.ispControlStatus);
172 readl(&port_regs->CommonRegs.ispControlStatus);
173 qdev->current_page = page;
174 }
175
176 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
177 {
178 u32 value;
179 unsigned long hw_flags;
180
181 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
182 value = readl(reg);
183 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
184
185 return value;
186 }
187
188 static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
189 {
190 return readl(reg);
191 }
192
193 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
194 {
195 u32 value;
196 unsigned long hw_flags;
197
198 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
199
200 if (qdev->current_page != 0)
201 ql_set_register_page(qdev, 0);
202 value = readl(reg);
203
204 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
205 return value;
206 }
207
208 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
209 {
210 if (qdev->current_page != 0)
211 ql_set_register_page(qdev, 0);
212 return readl(reg);
213 }
214
215 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
216 u32 __iomem *reg, u32 value)
217 {
218 unsigned long hw_flags;
219
220 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
221 writel(value, reg);
222 readl(reg);
223 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
224 }
225
226 static void ql_write_common_reg(struct ql3_adapter *qdev,
227 u32 __iomem *reg, u32 value)
228 {
229 writel(value, reg);
230 readl(reg);
231 }
232
233 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
234 u32 __iomem *reg, u32 value)
235 {
236 writel(value, reg);
237 readl(reg);
238 udelay(1);
239 }
240
241 static void ql_write_page0_reg(struct ql3_adapter *qdev,
242 u32 __iomem *reg, u32 value)
243 {
244 if (qdev->current_page != 0)
245 ql_set_register_page(qdev, 0);
246 writel(value, reg);
247 readl(reg);
248 }
249
250 /*
251 * Caller holds hw_lock. Only called during init.
252 */
253 static void ql_write_page1_reg(struct ql3_adapter *qdev,
254 u32 __iomem *reg, u32 value)
255 {
256 if (qdev->current_page != 1)
257 ql_set_register_page(qdev, 1);
258 writel(value, reg);
259 readl(reg);
260 }
261
262 /*
263 * Caller holds hw_lock. Only called during init.
264 */
265 static void ql_write_page2_reg(struct ql3_adapter *qdev,
266 u32 __iomem *reg, u32 value)
267 {
268 if (qdev->current_page != 2)
269 ql_set_register_page(qdev, 2);
270 writel(value, reg);
271 readl(reg);
272 }
273
274 static void ql_disable_interrupts(struct ql3_adapter *qdev)
275 {
276 struct ql3xxx_port_registers __iomem *port_regs =
277 qdev->mem_map_registers;
278
279 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
280 (ISP_IMR_ENABLE_INT << 16));
281
282 }
283
284 static void ql_enable_interrupts(struct ql3_adapter *qdev)
285 {
286 struct ql3xxx_port_registers __iomem *port_regs =
287 qdev->mem_map_registers;
288
289 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
290 ((0xff << 16) | ISP_IMR_ENABLE_INT));
291
292 }
293
294 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
295 struct ql_rcv_buf_cb *lrg_buf_cb)
296 {
297 dma_addr_t map;
298 int err;
299 lrg_buf_cb->next = NULL;
300
301 if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
302 qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
303 } else {
304 qdev->lrg_buf_free_tail->next = lrg_buf_cb;
305 qdev->lrg_buf_free_tail = lrg_buf_cb;
306 }
307
308 if (!lrg_buf_cb->skb) {
309 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
310 qdev->lrg_buffer_len);
311 if (unlikely(!lrg_buf_cb->skb)) {
312 qdev->lrg_buf_skb_check++;
313 } else {
314 /*
315 * We save some space to copy the ethhdr from first
316 * buffer
317 */
318 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
319 map = pci_map_single(qdev->pdev,
320 lrg_buf_cb->skb->data,
321 qdev->lrg_buffer_len -
322 QL_HEADER_SPACE,
323 PCI_DMA_FROMDEVICE);
324 err = pci_dma_mapping_error(qdev->pdev, map);
325 if (err) {
326 netdev_err(qdev->ndev,
327 "PCI mapping failed with error: %d\n",
328 err);
329 dev_kfree_skb(lrg_buf_cb->skb);
330 lrg_buf_cb->skb = NULL;
331
332 qdev->lrg_buf_skb_check++;
333 return;
334 }
335
336 lrg_buf_cb->buf_phy_addr_low =
337 cpu_to_le32(LS_64BITS(map));
338 lrg_buf_cb->buf_phy_addr_high =
339 cpu_to_le32(MS_64BITS(map));
340 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
341 dma_unmap_len_set(lrg_buf_cb, maplen,
342 qdev->lrg_buffer_len -
343 QL_HEADER_SPACE);
344 }
345 }
346
347 qdev->lrg_buf_free_count++;
348 }
349
350 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
351 *qdev)
352 {
353 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
354
355 if (lrg_buf_cb != NULL) {
356 qdev->lrg_buf_free_head = lrg_buf_cb->next;
357 if (qdev->lrg_buf_free_head == NULL)
358 qdev->lrg_buf_free_tail = NULL;
359 qdev->lrg_buf_free_count--;
360 }
361
362 return lrg_buf_cb;
363 }
364
365 static u32 addrBits = EEPROM_NO_ADDR_BITS;
366 static u32 dataBits = EEPROM_NO_DATA_BITS;
367
368 static void fm93c56a_deselect(struct ql3_adapter *qdev);
369 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
370 unsigned short *value);
371
372 /*
373 * Caller holds hw_lock.
374 */
375 static void fm93c56a_select(struct ql3_adapter *qdev)
376 {
377 struct ql3xxx_port_registers __iomem *port_regs =
378 qdev->mem_map_registers;
379 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
380
381 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
382 ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
383 ql_write_nvram_reg(qdev, spir,
384 ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
385 }
386
387 /*
388 * Caller holds hw_lock.
389 */
390 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
391 {
392 int i;
393 u32 mask;
394 u32 dataBit;
395 u32 previousBit;
396 struct ql3xxx_port_registers __iomem *port_regs =
397 qdev->mem_map_registers;
398 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
399
400 /* Clock in a zero, then do the start bit */
401 ql_write_nvram_reg(qdev, spir,
402 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
403 AUBURN_EEPROM_DO_1));
404 ql_write_nvram_reg(qdev, spir,
405 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
406 AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
407 ql_write_nvram_reg(qdev, spir,
408 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
409 AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
410
411 mask = 1 << (FM93C56A_CMD_BITS - 1);
412 /* Force the previous data bit to be different */
413 previousBit = 0xffff;
414 for (i = 0; i < FM93C56A_CMD_BITS; i++) {
415 dataBit = (cmd & mask)
416 ? AUBURN_EEPROM_DO_1
417 : AUBURN_EEPROM_DO_0;
418 if (previousBit != dataBit) {
419 /* If the bit changed, change the DO state to match */
420 ql_write_nvram_reg(qdev, spir,
421 (ISP_NVRAM_MASK |
422 qdev->eeprom_cmd_data | dataBit));
423 previousBit = dataBit;
424 }
425 ql_write_nvram_reg(qdev, spir,
426 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
427 dataBit | AUBURN_EEPROM_CLK_RISE));
428 ql_write_nvram_reg(qdev, spir,
429 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
430 dataBit | AUBURN_EEPROM_CLK_FALL));
431 cmd = cmd << 1;
432 }
433
434 mask = 1 << (addrBits - 1);
435 /* Force the previous data bit to be different */
436 previousBit = 0xffff;
437 for (i = 0; i < addrBits; i++) {
438 dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
439 : AUBURN_EEPROM_DO_0;
440 if (previousBit != dataBit) {
441 /*
442 * If the bit changed, then change the DO state to
443 * match
444 */
445 ql_write_nvram_reg(qdev, spir,
446 (ISP_NVRAM_MASK |
447 qdev->eeprom_cmd_data | dataBit));
448 previousBit = dataBit;
449 }
450 ql_write_nvram_reg(qdev, spir,
451 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
452 dataBit | AUBURN_EEPROM_CLK_RISE));
453 ql_write_nvram_reg(qdev, spir,
454 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
455 dataBit | AUBURN_EEPROM_CLK_FALL));
456 eepromAddr = eepromAddr << 1;
457 }
458 }
459
460 /*
461 * Caller holds hw_lock.
462 */
463 static void fm93c56a_deselect(struct ql3_adapter *qdev)
464 {
465 struct ql3xxx_port_registers __iomem *port_regs =
466 qdev->mem_map_registers;
467 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
468
469 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
470 ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
471 }
472
473 /*
474 * Caller holds hw_lock.
475 */
476 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
477 {
478 int i;
479 u32 data = 0;
480 u32 dataBit;
481 struct ql3xxx_port_registers __iomem *port_regs =
482 qdev->mem_map_registers;
483 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
484
485 /* Read the data bits */
486 /* The first bit is a dummy. Clock right over it. */
487 for (i = 0; i < dataBits; i++) {
488 ql_write_nvram_reg(qdev, spir,
489 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
490 AUBURN_EEPROM_CLK_RISE);
491 ql_write_nvram_reg(qdev, spir,
492 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
493 AUBURN_EEPROM_CLK_FALL);
494 dataBit = (ql_read_common_reg(qdev, spir) &
495 AUBURN_EEPROM_DI_1) ? 1 : 0;
496 data = (data << 1) | dataBit;
497 }
498 *value = (u16)data;
499 }
500
501 /*
502 * Caller holds hw_lock.
503 */
504 static void eeprom_readword(struct ql3_adapter *qdev,
505 u32 eepromAddr, unsigned short *value)
506 {
507 fm93c56a_select(qdev);
508 fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
509 fm93c56a_datain(qdev, value);
510 fm93c56a_deselect(qdev);
511 }
512
513 static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
514 {
515 __le16 *p = (__le16 *)ndev->dev_addr;
516 p[0] = cpu_to_le16(addr[0]);
517 p[1] = cpu_to_le16(addr[1]);
518 p[2] = cpu_to_le16(addr[2]);
519 }
520
521 static int ql_get_nvram_params(struct ql3_adapter *qdev)
522 {
523 u16 *pEEPROMData;
524 u16 checksum = 0;
525 u32 index;
526 unsigned long hw_flags;
527
528 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
529
530 pEEPROMData = (u16 *)&qdev->nvram_data;
531 qdev->eeprom_cmd_data = 0;
532 if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
533 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
534 2) << 10)) {
535 pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
536 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
537 return -1;
538 }
539
540 for (index = 0; index < EEPROM_SIZE; index++) {
541 eeprom_readword(qdev, index, pEEPROMData);
542 checksum += *pEEPROMData;
543 pEEPROMData++;
544 }
545 ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
546
547 if (checksum != 0) {
548 netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
549 checksum);
550 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
551 return -1;
552 }
553
554 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
555 return checksum;
556 }
557
558 static const u32 PHYAddr[2] = {
559 PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
560 };
561
562 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
563 {
564 struct ql3xxx_port_registers __iomem *port_regs =
565 qdev->mem_map_registers;
566 u32 temp;
567 int count = 1000;
568
569 while (count) {
570 temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
571 if (!(temp & MAC_MII_STATUS_BSY))
572 return 0;
573 udelay(10);
574 count--;
575 }
576 return -1;
577 }
578
579 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
580 {
581 struct ql3xxx_port_registers __iomem *port_regs =
582 qdev->mem_map_registers;
583 u32 scanControl;
584
585 if (qdev->numPorts > 1) {
586 /* Auto scan will cycle through multiple ports */
587 scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
588 } else {
589 scanControl = MAC_MII_CONTROL_SC;
590 }
591
592 /*
593 * Scan register 1 of PHY/PETBI,
594 * Set up to scan both devices
595 * The autoscan starts from the first register, completes
596 * the last one before rolling over to the first
597 */
598 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
599 PHYAddr[0] | MII_SCAN_REGISTER);
600
601 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
602 (scanControl) |
603 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
604 }
605
606 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
607 {
608 u8 ret;
609 struct ql3xxx_port_registers __iomem *port_regs =
610 qdev->mem_map_registers;
611
612 /* See if scan mode is enabled before we turn it off */
613 if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
614 (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
615 /* Scan is enabled */
616 ret = 1;
617 } else {
618 /* Scan is disabled */
619 ret = 0;
620 }
621
622 /*
623 * When disabling scan mode you must first change the MII register
624 * address
625 */
626 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
627 PHYAddr[0] | MII_SCAN_REGISTER);
628
629 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
630 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
631 MAC_MII_CONTROL_RC) << 16));
632
633 return ret;
634 }
635
636 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
637 u16 regAddr, u16 value, u32 phyAddr)
638 {
639 struct ql3xxx_port_registers __iomem *port_regs =
640 qdev->mem_map_registers;
641 u8 scanWasEnabled;
642
643 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
644
645 if (ql_wait_for_mii_ready(qdev)) {
646 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
647 return -1;
648 }
649
650 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
651 phyAddr | regAddr);
652
653 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
654
655 /* Wait for write to complete 9/10/04 SJP */
656 if (ql_wait_for_mii_ready(qdev)) {
657 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
658 return -1;
659 }
660
661 if (scanWasEnabled)
662 ql_mii_enable_scan_mode(qdev);
663
664 return 0;
665 }
666
667 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
668 u16 *value, u32 phyAddr)
669 {
670 struct ql3xxx_port_registers __iomem *port_regs =
671 qdev->mem_map_registers;
672 u8 scanWasEnabled;
673 u32 temp;
674
675 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
676
677 if (ql_wait_for_mii_ready(qdev)) {
678 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
679 return -1;
680 }
681
682 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
683 phyAddr | regAddr);
684
685 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
686 (MAC_MII_CONTROL_RC << 16));
687
688 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
689 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
690
691 /* Wait for the read to complete */
692 if (ql_wait_for_mii_ready(qdev)) {
693 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
694 return -1;
695 }
696
697 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
698 *value = (u16) temp;
699
700 if (scanWasEnabled)
701 ql_mii_enable_scan_mode(qdev);
702
703 return 0;
704 }
705
706 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
707 {
708 struct ql3xxx_port_registers __iomem *port_regs =
709 qdev->mem_map_registers;
710
711 ql_mii_disable_scan_mode(qdev);
712
713 if (ql_wait_for_mii_ready(qdev)) {
714 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
715 return -1;
716 }
717
718 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
719 qdev->PHYAddr | regAddr);
720
721 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
722
723 /* Wait for write to complete. */
724 if (ql_wait_for_mii_ready(qdev)) {
725 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
726 return -1;
727 }
728
729 ql_mii_enable_scan_mode(qdev);
730
731 return 0;
732 }
733
734 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
735 {
736 u32 temp;
737 struct ql3xxx_port_registers __iomem *port_regs =
738 qdev->mem_map_registers;
739
740 ql_mii_disable_scan_mode(qdev);
741
742 if (ql_wait_for_mii_ready(qdev)) {
743 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
744 return -1;
745 }
746
747 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
748 qdev->PHYAddr | regAddr);
749
750 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
751 (MAC_MII_CONTROL_RC << 16));
752
753 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
754 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
755
756 /* Wait for the read to complete */
757 if (ql_wait_for_mii_ready(qdev)) {
758 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
759 return -1;
760 }
761
762 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
763 *value = (u16) temp;
764
765 ql_mii_enable_scan_mode(qdev);
766
767 return 0;
768 }
769
770 static void ql_petbi_reset(struct ql3_adapter *qdev)
771 {
772 ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
773 }
774
775 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
776 {
777 u16 reg;
778
779 /* Enable Auto-negotiation sense */
780 ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
781 reg |= PETBI_TBI_AUTO_SENSE;
782 ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
783
784 ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
785 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
786
787 ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
788 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
789 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
790
791 }
792
793 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
794 {
795 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
796 PHYAddr[qdev->mac_index]);
797 }
798
799 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
800 {
801 u16 reg;
802
803 /* Enable Auto-negotiation sense */
804 ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
805 PHYAddr[qdev->mac_index]);
806 reg |= PETBI_TBI_AUTO_SENSE;
807 ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
808 PHYAddr[qdev->mac_index]);
809
810 ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
811 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
812 PHYAddr[qdev->mac_index]);
813
814 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
815 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
816 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
817 PHYAddr[qdev->mac_index]);
818 }
819
820 static void ql_petbi_init(struct ql3_adapter *qdev)
821 {
822 ql_petbi_reset(qdev);
823 ql_petbi_start_neg(qdev);
824 }
825
826 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
827 {
828 ql_petbi_reset_ex(qdev);
829 ql_petbi_start_neg_ex(qdev);
830 }
831
832 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
833 {
834 u16 reg;
835
836 if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
837 return 0;
838
839 return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
840 }
841
842 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
843 {
844 netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
845 /* power down device bit 11 = 1 */
846 ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
847 /* enable diagnostic mode bit 2 = 1 */
848 ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
849 /* 1000MB amplitude adjust (see Agere errata) */
850 ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
851 /* 1000MB amplitude adjust (see Agere errata) */
852 ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
853 /* 100MB amplitude adjust (see Agere errata) */
854 ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
855 /* 100MB amplitude adjust (see Agere errata) */
856 ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
857 /* 10MB amplitude adjust (see Agere errata) */
858 ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
859 /* 10MB amplitude adjust (see Agere errata) */
860 ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
861 /* point to hidden reg 0x2806 */
862 ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
863 /* Write new PHYAD w/bit 5 set */
864 ql_mii_write_reg_ex(qdev, 0x11,
865 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
866 /*
867 * Disable diagnostic mode bit 2 = 0
868 * Power up device bit 11 = 0
869 * Link up (on) and activity (blink)
870 */
871 ql_mii_write_reg(qdev, 0x12, 0x840a);
872 ql_mii_write_reg(qdev, 0x00, 0x1140);
873 ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
874 }
875
876 static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
877 u16 phyIdReg0, u16 phyIdReg1)
878 {
879 enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
880 u32 oui;
881 u16 model;
882 int i;
883
884 if (phyIdReg0 == 0xffff)
885 return result;
886
887 if (phyIdReg1 == 0xffff)
888 return result;
889
890 /* oui is split between two registers */
891 oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
892
893 model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
894
895 /* Scan table for this PHY */
896 for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
897 if ((oui == PHY_DEVICES[i].phyIdOUI) &&
898 (model == PHY_DEVICES[i].phyIdModel)) {
899 netdev_info(qdev->ndev, "Phy: %s\n",
900 PHY_DEVICES[i].name);
901 result = PHY_DEVICES[i].phyDevice;
902 break;
903 }
904 }
905
906 return result;
907 }
908
909 static int ql_phy_get_speed(struct ql3_adapter *qdev)
910 {
911 u16 reg;
912
913 switch (qdev->phyType) {
914 case PHY_AGERE_ET1011C: {
915 if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
916 return 0;
917
918 reg = (reg >> 8) & 3;
919 break;
920 }
921 default:
922 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
923 return 0;
924
925 reg = (((reg & 0x18) >> 3) & 3);
926 }
927
928 switch (reg) {
929 case 2:
930 return SPEED_1000;
931 case 1:
932 return SPEED_100;
933 case 0:
934 return SPEED_10;
935 default:
936 return -1;
937 }
938 }
939
940 static int ql_is_full_dup(struct ql3_adapter *qdev)
941 {
942 u16 reg;
943
944 switch (qdev->phyType) {
945 case PHY_AGERE_ET1011C: {
946 if (ql_mii_read_reg(qdev, 0x1A, &reg))
947 return 0;
948
949 return ((reg & 0x0080) && (reg & 0x1000)) != 0;
950 }
951 case PHY_VITESSE_VSC8211:
952 default: {
953 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
954 return 0;
955 return (reg & PHY_AUX_DUPLEX_STAT) != 0;
956 }
957 }
958 }
959
960 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
961 {
962 u16 reg;
963
964 if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
965 return 0;
966
967 return (reg & PHY_NEG_PAUSE) != 0;
968 }
969
970 static int PHY_Setup(struct ql3_adapter *qdev)
971 {
972 u16 reg1;
973 u16 reg2;
974 bool agereAddrChangeNeeded = false;
975 u32 miiAddr = 0;
976 int err;
977
978 /* Determine the PHY we are using by reading the ID's */
979 err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
980 if (err != 0) {
981 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
982 return err;
983 }
984
985 err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
986 if (err != 0) {
987 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
988 return err;
989 }
990
991 /* Check if we have a Agere PHY */
992 if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
993
994 /* Determine which MII address we should be using
995 determined by the index of the card */
996 if (qdev->mac_index == 0)
997 miiAddr = MII_AGERE_ADDR_1;
998 else
999 miiAddr = MII_AGERE_ADDR_2;
1000
1001 err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
1002 if (err != 0) {
1003 netdev_err(qdev->ndev,
1004 "Could not read from reg PHY_ID_0_REG after Agere detected\n");
1005 return err;
1006 }
1007
1008 err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1009 if (err != 0) {
1010 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
1011 return err;
1012 }
1013
1014 /* We need to remember to initialize the Agere PHY */
1015 agereAddrChangeNeeded = true;
1016 }
1017
1018 /* Determine the particular PHY we have on board to apply
1019 PHY specific initializations */
1020 qdev->phyType = getPhyType(qdev, reg1, reg2);
1021
1022 if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1023 /* need this here so address gets changed */
1024 phyAgereSpecificInit(qdev, miiAddr);
1025 } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1026 netdev_err(qdev->ndev, "PHY is unknown\n");
1027 return -EIO;
1028 }
1029
1030 return 0;
1031 }
1032
1033 /*
1034 * Caller holds hw_lock.
1035 */
1036 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1037 {
1038 struct ql3xxx_port_registers __iomem *port_regs =
1039 qdev->mem_map_registers;
1040 u32 value;
1041
1042 if (enable)
1043 value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1044 else
1045 value = (MAC_CONFIG_REG_PE << 16);
1046
1047 if (qdev->mac_index)
1048 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1049 else
1050 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1051 }
1052
1053 /*
1054 * Caller holds hw_lock.
1055 */
1056 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1057 {
1058 struct ql3xxx_port_registers __iomem *port_regs =
1059 qdev->mem_map_registers;
1060 u32 value;
1061
1062 if (enable)
1063 value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1064 else
1065 value = (MAC_CONFIG_REG_SR << 16);
1066
1067 if (qdev->mac_index)
1068 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1069 else
1070 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1071 }
1072
1073 /*
1074 * Caller holds hw_lock.
1075 */
1076 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1077 {
1078 struct ql3xxx_port_registers __iomem *port_regs =
1079 qdev->mem_map_registers;
1080 u32 value;
1081
1082 if (enable)
1083 value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1084 else
1085 value = (MAC_CONFIG_REG_GM << 16);
1086
1087 if (qdev->mac_index)
1088 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1089 else
1090 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1091 }
1092
1093 /*
1094 * Caller holds hw_lock.
1095 */
1096 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1097 {
1098 struct ql3xxx_port_registers __iomem *port_regs =
1099 qdev->mem_map_registers;
1100 u32 value;
1101
1102 if (enable)
1103 value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1104 else
1105 value = (MAC_CONFIG_REG_FD << 16);
1106
1107 if (qdev->mac_index)
1108 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1109 else
1110 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1111 }
1112
1113 /*
1114 * Caller holds hw_lock.
1115 */
1116 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1117 {
1118 struct ql3xxx_port_registers __iomem *port_regs =
1119 qdev->mem_map_registers;
1120 u32 value;
1121
1122 if (enable)
1123 value =
1124 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1125 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1126 else
1127 value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1128
1129 if (qdev->mac_index)
1130 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1131 else
1132 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1133 }
1134
1135 /*
1136 * Caller holds hw_lock.
1137 */
1138 static int ql_is_fiber(struct ql3_adapter *qdev)
1139 {
1140 struct ql3xxx_port_registers __iomem *port_regs =
1141 qdev->mem_map_registers;
1142 u32 bitToCheck = 0;
1143 u32 temp;
1144
1145 switch (qdev->mac_index) {
1146 case 0:
1147 bitToCheck = PORT_STATUS_SM0;
1148 break;
1149 case 1:
1150 bitToCheck = PORT_STATUS_SM1;
1151 break;
1152 }
1153
1154 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1155 return (temp & bitToCheck) != 0;
1156 }
1157
1158 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1159 {
1160 u16 reg;
1161 ql_mii_read_reg(qdev, 0x00, &reg);
1162 return (reg & 0x1000) != 0;
1163 }
1164
1165 /*
1166 * Caller holds hw_lock.
1167 */
1168 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1169 {
1170 struct ql3xxx_port_registers __iomem *port_regs =
1171 qdev->mem_map_registers;
1172 u32 bitToCheck = 0;
1173 u32 temp;
1174
1175 switch (qdev->mac_index) {
1176 case 0:
1177 bitToCheck = PORT_STATUS_AC0;
1178 break;
1179 case 1:
1180 bitToCheck = PORT_STATUS_AC1;
1181 break;
1182 }
1183
1184 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1185 if (temp & bitToCheck) {
1186 netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
1187 return 1;
1188 }
1189 netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
1190 return 0;
1191 }
1192
1193 /*
1194 * ql_is_neg_pause() returns 1 if pause was negotiated to be on
1195 */
1196 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1197 {
1198 if (ql_is_fiber(qdev))
1199 return ql_is_petbi_neg_pause(qdev);
1200 else
1201 return ql_is_phy_neg_pause(qdev);
1202 }
1203
1204 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1205 {
1206 struct ql3xxx_port_registers __iomem *port_regs =
1207 qdev->mem_map_registers;
1208 u32 bitToCheck = 0;
1209 u32 temp;
1210
1211 switch (qdev->mac_index) {
1212 case 0:
1213 bitToCheck = PORT_STATUS_AE0;
1214 break;
1215 case 1:
1216 bitToCheck = PORT_STATUS_AE1;
1217 break;
1218 }
1219 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1220 return (temp & bitToCheck) != 0;
1221 }
1222
1223 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1224 {
1225 if (ql_is_fiber(qdev))
1226 return SPEED_1000;
1227 else
1228 return ql_phy_get_speed(qdev);
1229 }
1230
1231 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1232 {
1233 if (ql_is_fiber(qdev))
1234 return 1;
1235 else
1236 return ql_is_full_dup(qdev);
1237 }
1238
1239 /*
1240 * Caller holds hw_lock.
1241 */
1242 static int ql_link_down_detect(struct ql3_adapter *qdev)
1243 {
1244 struct ql3xxx_port_registers __iomem *port_regs =
1245 qdev->mem_map_registers;
1246 u32 bitToCheck = 0;
1247 u32 temp;
1248
1249 switch (qdev->mac_index) {
1250 case 0:
1251 bitToCheck = ISP_CONTROL_LINK_DN_0;
1252 break;
1253 case 1:
1254 bitToCheck = ISP_CONTROL_LINK_DN_1;
1255 break;
1256 }
1257
1258 temp =
1259 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1260 return (temp & bitToCheck) != 0;
1261 }
1262
1263 /*
1264 * Caller holds hw_lock.
1265 */
1266 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1267 {
1268 struct ql3xxx_port_registers __iomem *port_regs =
1269 qdev->mem_map_registers;
1270
1271 switch (qdev->mac_index) {
1272 case 0:
1273 ql_write_common_reg(qdev,
1274 &port_regs->CommonRegs.ispControlStatus,
1275 (ISP_CONTROL_LINK_DN_0) |
1276 (ISP_CONTROL_LINK_DN_0 << 16));
1277 break;
1278
1279 case 1:
1280 ql_write_common_reg(qdev,
1281 &port_regs->CommonRegs.ispControlStatus,
1282 (ISP_CONTROL_LINK_DN_1) |
1283 (ISP_CONTROL_LINK_DN_1 << 16));
1284 break;
1285
1286 default:
1287 return 1;
1288 }
1289
1290 return 0;
1291 }
1292
1293 /*
1294 * Caller holds hw_lock.
1295 */
1296 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1297 {
1298 struct ql3xxx_port_registers __iomem *port_regs =
1299 qdev->mem_map_registers;
1300 u32 bitToCheck = 0;
1301 u32 temp;
1302
1303 switch (qdev->mac_index) {
1304 case 0:
1305 bitToCheck = PORT_STATUS_F1_ENABLED;
1306 break;
1307 case 1:
1308 bitToCheck = PORT_STATUS_F3_ENABLED;
1309 break;
1310 default:
1311 break;
1312 }
1313
1314 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1315 if (temp & bitToCheck) {
1316 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1317 "not link master\n");
1318 return 0;
1319 }
1320
1321 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
1322 return 1;
1323 }
1324
1325 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1326 {
1327 ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1328 PHYAddr[qdev->mac_index]);
1329 }
1330
1331 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1332 {
1333 u16 reg;
1334 u16 portConfiguration;
1335
1336 if (qdev->phyType == PHY_AGERE_ET1011C)
1337 ql_mii_write_reg(qdev, 0x13, 0x0000);
1338 /* turn off external loopback */
1339
1340 if (qdev->mac_index == 0)
1341 portConfiguration =
1342 qdev->nvram_data.macCfg_port0.portConfiguration;
1343 else
1344 portConfiguration =
1345 qdev->nvram_data.macCfg_port1.portConfiguration;
1346
1347 /* Some HBA's in the field are set to 0 and they need to
1348 be reinterpreted with a default value */
1349 if (portConfiguration == 0)
1350 portConfiguration = PORT_CONFIG_DEFAULT;
1351
1352 /* Set the 1000 advertisements */
1353 ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1354 PHYAddr[qdev->mac_index]);
1355 reg &= ~PHY_GIG_ALL_PARAMS;
1356
1357 if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1358 if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
1359 reg |= PHY_GIG_ADV_1000F;
1360 else
1361 reg |= PHY_GIG_ADV_1000H;
1362 }
1363
1364 ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1365 PHYAddr[qdev->mac_index]);
1366
1367 /* Set the 10/100 & pause negotiation advertisements */
1368 ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1369 PHYAddr[qdev->mac_index]);
1370 reg &= ~PHY_NEG_ALL_PARAMS;
1371
1372 if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1373 reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1374
1375 if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1376 if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1377 reg |= PHY_NEG_ADV_100F;
1378
1379 if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1380 reg |= PHY_NEG_ADV_10F;
1381 }
1382
1383 if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1384 if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1385 reg |= PHY_NEG_ADV_100H;
1386
1387 if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1388 reg |= PHY_NEG_ADV_10H;
1389 }
1390
1391 if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
1392 reg |= 1;
1393
1394 ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1395 PHYAddr[qdev->mac_index]);
1396
1397 ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1398
1399 ql_mii_write_reg_ex(qdev, CONTROL_REG,
1400 reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1401 PHYAddr[qdev->mac_index]);
1402 }
1403
1404 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1405 {
1406 ql_phy_reset_ex(qdev);
1407 PHY_Setup(qdev);
1408 ql_phy_start_neg_ex(qdev);
1409 }
1410
1411 /*
1412 * Caller holds hw_lock.
1413 */
1414 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1415 {
1416 struct ql3xxx_port_registers __iomem *port_regs =
1417 qdev->mem_map_registers;
1418 u32 bitToCheck = 0;
1419 u32 temp, linkState;
1420
1421 switch (qdev->mac_index) {
1422 case 0:
1423 bitToCheck = PORT_STATUS_UP0;
1424 break;
1425 case 1:
1426 bitToCheck = PORT_STATUS_UP1;
1427 break;
1428 }
1429
1430 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1431 if (temp & bitToCheck)
1432 linkState = LS_UP;
1433 else
1434 linkState = LS_DOWN;
1435
1436 return linkState;
1437 }
1438
1439 static int ql_port_start(struct ql3_adapter *qdev)
1440 {
1441 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1442 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1443 2) << 7)) {
1444 netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
1445 return -1;
1446 }
1447
1448 if (ql_is_fiber(qdev)) {
1449 ql_petbi_init(qdev);
1450 } else {
1451 /* Copper port */
1452 ql_phy_init_ex(qdev);
1453 }
1454
1455 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1456 return 0;
1457 }
1458
1459 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1460 {
1461
1462 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1463 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1464 2) << 7))
1465 return -1;
1466
1467 if (!ql_auto_neg_error(qdev)) {
1468 if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1469 /* configure the MAC */
1470 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1471 "Configuring link\n");
1472 ql_mac_cfg_soft_reset(qdev, 1);
1473 ql_mac_cfg_gig(qdev,
1474 (ql_get_link_speed
1475 (qdev) ==
1476 SPEED_1000));
1477 ql_mac_cfg_full_dup(qdev,
1478 ql_is_link_full_dup
1479 (qdev));
1480 ql_mac_cfg_pause(qdev,
1481 ql_is_neg_pause
1482 (qdev));
1483 ql_mac_cfg_soft_reset(qdev, 0);
1484
1485 /* enable the MAC */
1486 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1487 "Enabling mac\n");
1488 ql_mac_enable(qdev, 1);
1489 }
1490
1491 qdev->port_link_state = LS_UP;
1492 netif_start_queue(qdev->ndev);
1493 netif_carrier_on(qdev->ndev);
1494 netif_info(qdev, link, qdev->ndev,
1495 "Link is up at %d Mbps, %s duplex\n",
1496 ql_get_link_speed(qdev),
1497 ql_is_link_full_dup(qdev) ? "full" : "half");
1498
1499 } else { /* Remote error detected */
1500
1501 if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1502 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1503 "Remote error detected. Calling ql_port_start()\n");
1504 /*
1505 * ql_port_start() is shared code and needs
1506 * to lock the PHY on it's own.
1507 */
1508 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1509 if (ql_port_start(qdev)) /* Restart port */
1510 return -1;
1511 return 0;
1512 }
1513 }
1514 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1515 return 0;
1516 }
1517
1518 static void ql_link_state_machine_work(struct work_struct *work)
1519 {
1520 struct ql3_adapter *qdev =
1521 container_of(work, struct ql3_adapter, link_state_work.work);
1522
1523 u32 curr_link_state;
1524 unsigned long hw_flags;
1525
1526 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1527
1528 curr_link_state = ql_get_link_state(qdev);
1529
1530 if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
1531 netif_info(qdev, link, qdev->ndev,
1532 "Reset in progress, skip processing link state\n");
1533
1534 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1535
1536 /* Restart timer on 2 second interval. */
1537 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1538
1539 return;
1540 }
1541
1542 switch (qdev->port_link_state) {
1543 default:
1544 if (test_bit(QL_LINK_MASTER, &qdev->flags))
1545 ql_port_start(qdev);
1546 qdev->port_link_state = LS_DOWN;
1547 /* Fall Through */
1548
1549 case LS_DOWN:
1550 if (curr_link_state == LS_UP) {
1551 netif_info(qdev, link, qdev->ndev, "Link is up\n");
1552 if (ql_is_auto_neg_complete(qdev))
1553 ql_finish_auto_neg(qdev);
1554
1555 if (qdev->port_link_state == LS_UP)
1556 ql_link_down_detect_clear(qdev);
1557
1558 qdev->port_link_state = LS_UP;
1559 }
1560 break;
1561
1562 case LS_UP:
1563 /*
1564 * See if the link is currently down or went down and came
1565 * back up
1566 */
1567 if (curr_link_state == LS_DOWN) {
1568 netif_info(qdev, link, qdev->ndev, "Link is down\n");
1569 qdev->port_link_state = LS_DOWN;
1570 }
1571 if (ql_link_down_detect(qdev))
1572 qdev->port_link_state = LS_DOWN;
1573 break;
1574 }
1575 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1576
1577 /* Restart timer on 2 second interval. */
1578 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1579 }
1580
1581 /*
1582 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1583 */
1584 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1585 {
1586 if (ql_this_adapter_controls_port(qdev))
1587 set_bit(QL_LINK_MASTER, &qdev->flags);
1588 else
1589 clear_bit(QL_LINK_MASTER, &qdev->flags);
1590 }
1591
1592 /*
1593 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1594 */
1595 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1596 {
1597 ql_mii_enable_scan_mode(qdev);
1598
1599 if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1600 if (ql_this_adapter_controls_port(qdev))
1601 ql_petbi_init_ex(qdev);
1602 } else {
1603 if (ql_this_adapter_controls_port(qdev))
1604 ql_phy_init_ex(qdev);
1605 }
1606 }
1607
1608 /*
1609 * MII_Setup needs to be called before taking the PHY out of reset
1610 * so that the management interface clock speed can be set properly.
1611 * It would be better if we had a way to disable MDC until after the
1612 * PHY is out of reset, but we don't have that capability.
1613 */
1614 static int ql_mii_setup(struct ql3_adapter *qdev)
1615 {
1616 u32 reg;
1617 struct ql3xxx_port_registers __iomem *port_regs =
1618 qdev->mem_map_registers;
1619
1620 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1621 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1622 2) << 7))
1623 return -1;
1624
1625 if (qdev->device_id == QL3032_DEVICE_ID)
1626 ql_write_page0_reg(qdev,
1627 &port_regs->macMIIMgmtControlReg, 0x0f00000);
1628
1629 /* Divide 125MHz clock by 28 to meet PHY timing requirements */
1630 reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1631
1632 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1633 reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1634
1635 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1636 return 0;
1637 }
1638
1639 #define SUPPORTED_OPTICAL_MODES (SUPPORTED_1000baseT_Full | \
1640 SUPPORTED_FIBRE | \
1641 SUPPORTED_Autoneg)
1642 #define SUPPORTED_TP_MODES (SUPPORTED_10baseT_Half | \
1643 SUPPORTED_10baseT_Full | \
1644 SUPPORTED_100baseT_Half | \
1645 SUPPORTED_100baseT_Full | \
1646 SUPPORTED_1000baseT_Half | \
1647 SUPPORTED_1000baseT_Full | \
1648 SUPPORTED_Autoneg | \
1649 SUPPORTED_TP) \
1650
1651 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1652 {
1653 if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
1654 return SUPPORTED_OPTICAL_MODES;
1655
1656 return SUPPORTED_TP_MODES;
1657 }
1658
1659 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1660 {
1661 int status;
1662 unsigned long hw_flags;
1663 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1664 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1665 (QL_RESOURCE_BITS_BASE_CODE |
1666 (qdev->mac_index) * 2) << 7)) {
1667 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1668 return 0;
1669 }
1670 status = ql_is_auto_cfg(qdev);
1671 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1672 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1673 return status;
1674 }
1675
1676 static u32 ql_get_speed(struct ql3_adapter *qdev)
1677 {
1678 u32 status;
1679 unsigned long hw_flags;
1680 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1681 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1682 (QL_RESOURCE_BITS_BASE_CODE |
1683 (qdev->mac_index) * 2) << 7)) {
1684 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1685 return 0;
1686 }
1687 status = ql_get_link_speed(qdev);
1688 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1689 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1690 return status;
1691 }
1692
1693 static int ql_get_full_dup(struct ql3_adapter *qdev)
1694 {
1695 int status;
1696 unsigned long hw_flags;
1697 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1698 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1699 (QL_RESOURCE_BITS_BASE_CODE |
1700 (qdev->mac_index) * 2) << 7)) {
1701 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1702 return 0;
1703 }
1704 status = ql_is_link_full_dup(qdev);
1705 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1706 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1707 return status;
1708 }
1709
1710 static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1711 {
1712 struct ql3_adapter *qdev = netdev_priv(ndev);
1713
1714 ecmd->transceiver = XCVR_INTERNAL;
1715 ecmd->supported = ql_supported_modes(qdev);
1716
1717 if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1718 ecmd->port = PORT_FIBRE;
1719 } else {
1720 ecmd->port = PORT_TP;
1721 ecmd->phy_address = qdev->PHYAddr;
1722 }
1723 ecmd->advertising = ql_supported_modes(qdev);
1724 ecmd->autoneg = ql_get_auto_cfg_status(qdev);
1725 ethtool_cmd_speed_set(ecmd, ql_get_speed(qdev));
1726 ecmd->duplex = ql_get_full_dup(qdev);
1727 return 0;
1728 }
1729
1730 static void ql_get_drvinfo(struct net_device *ndev,
1731 struct ethtool_drvinfo *drvinfo)
1732 {
1733 struct ql3_adapter *qdev = netdev_priv(ndev);
1734 strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
1735 strlcpy(drvinfo->version, ql3xxx_driver_version,
1736 sizeof(drvinfo->version));
1737 strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
1738 sizeof(drvinfo->bus_info));
1739 }
1740
1741 static u32 ql_get_msglevel(struct net_device *ndev)
1742 {
1743 struct ql3_adapter *qdev = netdev_priv(ndev);
1744 return qdev->msg_enable;
1745 }
1746
1747 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1748 {
1749 struct ql3_adapter *qdev = netdev_priv(ndev);
1750 qdev->msg_enable = value;
1751 }
1752
1753 static void ql_get_pauseparam(struct net_device *ndev,
1754 struct ethtool_pauseparam *pause)
1755 {
1756 struct ql3_adapter *qdev = netdev_priv(ndev);
1757 struct ql3xxx_port_registers __iomem *port_regs =
1758 qdev->mem_map_registers;
1759
1760 u32 reg;
1761 if (qdev->mac_index == 0)
1762 reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1763 else
1764 reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1765
1766 pause->autoneg = ql_get_auto_cfg_status(qdev);
1767 pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1768 pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1769 }
1770
1771 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1772 .get_settings = ql_get_settings,
1773 .get_drvinfo = ql_get_drvinfo,
1774 .get_link = ethtool_op_get_link,
1775 .get_msglevel = ql_get_msglevel,
1776 .set_msglevel = ql_set_msglevel,
1777 .get_pauseparam = ql_get_pauseparam,
1778 };
1779
1780 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1781 {
1782 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1783 dma_addr_t map;
1784 int err;
1785
1786 while (lrg_buf_cb) {
1787 if (!lrg_buf_cb->skb) {
1788 lrg_buf_cb->skb =
1789 netdev_alloc_skb(qdev->ndev,
1790 qdev->lrg_buffer_len);
1791 if (unlikely(!lrg_buf_cb->skb)) {
1792 netdev_printk(KERN_DEBUG, qdev->ndev,
1793 "Failed netdev_alloc_skb()\n");
1794 break;
1795 } else {
1796 /*
1797 * We save some space to copy the ethhdr from
1798 * first buffer
1799 */
1800 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1801 map = pci_map_single(qdev->pdev,
1802 lrg_buf_cb->skb->data,
1803 qdev->lrg_buffer_len -
1804 QL_HEADER_SPACE,
1805 PCI_DMA_FROMDEVICE);
1806
1807 err = pci_dma_mapping_error(qdev->pdev, map);
1808 if (err) {
1809 netdev_err(qdev->ndev,
1810 "PCI mapping failed with error: %d\n",
1811 err);
1812 dev_kfree_skb(lrg_buf_cb->skb);
1813 lrg_buf_cb->skb = NULL;
1814 break;
1815 }
1816
1817
1818 lrg_buf_cb->buf_phy_addr_low =
1819 cpu_to_le32(LS_64BITS(map));
1820 lrg_buf_cb->buf_phy_addr_high =
1821 cpu_to_le32(MS_64BITS(map));
1822 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1823 dma_unmap_len_set(lrg_buf_cb, maplen,
1824 qdev->lrg_buffer_len -
1825 QL_HEADER_SPACE);
1826 --qdev->lrg_buf_skb_check;
1827 if (!qdev->lrg_buf_skb_check)
1828 return 1;
1829 }
1830 }
1831 lrg_buf_cb = lrg_buf_cb->next;
1832 }
1833 return 0;
1834 }
1835
1836 /*
1837 * Caller holds hw_lock.
1838 */
1839 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1840 {
1841 struct ql3xxx_port_registers __iomem *port_regs =
1842 qdev->mem_map_registers;
1843
1844 if (qdev->small_buf_release_cnt >= 16) {
1845 while (qdev->small_buf_release_cnt >= 16) {
1846 qdev->small_buf_q_producer_index++;
1847
1848 if (qdev->small_buf_q_producer_index ==
1849 NUM_SBUFQ_ENTRIES)
1850 qdev->small_buf_q_producer_index = 0;
1851 qdev->small_buf_release_cnt -= 8;
1852 }
1853 wmb();
1854 writel(qdev->small_buf_q_producer_index,
1855 &port_regs->CommonRegs.rxSmallQProducerIndex);
1856 }
1857 }
1858
1859 /*
1860 * Caller holds hw_lock.
1861 */
1862 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1863 {
1864 struct bufq_addr_element *lrg_buf_q_ele;
1865 int i;
1866 struct ql_rcv_buf_cb *lrg_buf_cb;
1867 struct ql3xxx_port_registers __iomem *port_regs =
1868 qdev->mem_map_registers;
1869
1870 if ((qdev->lrg_buf_free_count >= 8) &&
1871 (qdev->lrg_buf_release_cnt >= 16)) {
1872
1873 if (qdev->lrg_buf_skb_check)
1874 if (!ql_populate_free_queue(qdev))
1875 return;
1876
1877 lrg_buf_q_ele = qdev->lrg_buf_next_free;
1878
1879 while ((qdev->lrg_buf_release_cnt >= 16) &&
1880 (qdev->lrg_buf_free_count >= 8)) {
1881
1882 for (i = 0; i < 8; i++) {
1883 lrg_buf_cb =
1884 ql_get_from_lrg_buf_free_list(qdev);
1885 lrg_buf_q_ele->addr_high =
1886 lrg_buf_cb->buf_phy_addr_high;
1887 lrg_buf_q_ele->addr_low =
1888 lrg_buf_cb->buf_phy_addr_low;
1889 lrg_buf_q_ele++;
1890
1891 qdev->lrg_buf_release_cnt--;
1892 }
1893
1894 qdev->lrg_buf_q_producer_index++;
1895
1896 if (qdev->lrg_buf_q_producer_index ==
1897 qdev->num_lbufq_entries)
1898 qdev->lrg_buf_q_producer_index = 0;
1899
1900 if (qdev->lrg_buf_q_producer_index ==
1901 (qdev->num_lbufq_entries - 1)) {
1902 lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
1903 }
1904 }
1905 wmb();
1906 qdev->lrg_buf_next_free = lrg_buf_q_ele;
1907 writel(qdev->lrg_buf_q_producer_index,
1908 &port_regs->CommonRegs.rxLargeQProducerIndex);
1909 }
1910 }
1911
1912 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
1913 struct ob_mac_iocb_rsp *mac_rsp)
1914 {
1915 struct ql_tx_buf_cb *tx_cb;
1916 int i;
1917
1918 if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1919 netdev_warn(qdev->ndev,
1920 "Frame too short but it was padded and sent\n");
1921 }
1922
1923 tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
1924
1925 /* Check the transmit response flags for any errors */
1926 if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1927 netdev_err(qdev->ndev,
1928 "Frame too short to be legal, frame not sent\n");
1929
1930 qdev->ndev->stats.tx_errors++;
1931 goto frame_not_sent;
1932 }
1933
1934 if (tx_cb->seg_count == 0) {
1935 netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
1936 mac_rsp->transaction_id);
1937
1938 qdev->ndev->stats.tx_errors++;
1939 goto invalid_seg_count;
1940 }
1941
1942 pci_unmap_single(qdev->pdev,
1943 dma_unmap_addr(&tx_cb->map[0], mapaddr),
1944 dma_unmap_len(&tx_cb->map[0], maplen),
1945 PCI_DMA_TODEVICE);
1946 tx_cb->seg_count--;
1947 if (tx_cb->seg_count) {
1948 for (i = 1; i < tx_cb->seg_count; i++) {
1949 pci_unmap_page(qdev->pdev,
1950 dma_unmap_addr(&tx_cb->map[i],
1951 mapaddr),
1952 dma_unmap_len(&tx_cb->map[i], maplen),
1953 PCI_DMA_TODEVICE);
1954 }
1955 }
1956 qdev->ndev->stats.tx_packets++;
1957 qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
1958
1959 frame_not_sent:
1960 dev_kfree_skb_irq(tx_cb->skb);
1961 tx_cb->skb = NULL;
1962
1963 invalid_seg_count:
1964 atomic_inc(&qdev->tx_count);
1965 }
1966
1967 static void ql_get_sbuf(struct ql3_adapter *qdev)
1968 {
1969 if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
1970 qdev->small_buf_index = 0;
1971 qdev->small_buf_release_cnt++;
1972 }
1973
1974 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
1975 {
1976 struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
1977 lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
1978 qdev->lrg_buf_release_cnt++;
1979 if (++qdev->lrg_buf_index == qdev->num_large_buffers)
1980 qdev->lrg_buf_index = 0;
1981 return lrg_buf_cb;
1982 }
1983
1984 /*
1985 * The difference between 3022 and 3032 for inbound completions:
1986 * 3022 uses two buffers per completion. The first buffer contains
1987 * (some) header info, the second the remainder of the headers plus
1988 * the data. For this chip we reserve some space at the top of the
1989 * receive buffer so that the header info in buffer one can be
1990 * prepended to the buffer two. Buffer two is the sent up while
1991 * buffer one is returned to the hardware to be reused.
1992 * 3032 receives all of it's data and headers in one buffer for a
1993 * simpler process. 3032 also supports checksum verification as
1994 * can be seen in ql_process_macip_rx_intr().
1995 */
1996 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
1997 struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
1998 {
1999 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2000 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2001 struct sk_buff *skb;
2002 u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2003
2004 /*
2005 * Get the inbound address list (small buffer).
2006 */
2007 ql_get_sbuf(qdev);
2008
2009 if (qdev->device_id == QL3022_DEVICE_ID)
2010 lrg_buf_cb1 = ql_get_lbuf(qdev);
2011
2012 /* start of second buffer */
2013 lrg_buf_cb2 = ql_get_lbuf(qdev);
2014 skb = lrg_buf_cb2->skb;
2015
2016 qdev->ndev->stats.rx_packets++;
2017 qdev->ndev->stats.rx_bytes += length;
2018
2019 skb_put(skb, length);
2020 pci_unmap_single(qdev->pdev,
2021 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2022 dma_unmap_len(lrg_buf_cb2, maplen),
2023 PCI_DMA_FROMDEVICE);
2024 prefetch(skb->data);
2025 skb_checksum_none_assert(skb);
2026 skb->protocol = eth_type_trans(skb, qdev->ndev);
2027
2028 netif_receive_skb(skb);
2029 lrg_buf_cb2->skb = NULL;
2030
2031 if (qdev->device_id == QL3022_DEVICE_ID)
2032 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2033 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2034 }
2035
2036 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2037 struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2038 {
2039 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2040 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2041 struct sk_buff *skb1 = NULL, *skb2;
2042 struct net_device *ndev = qdev->ndev;
2043 u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2044 u16 size = 0;
2045
2046 /*
2047 * Get the inbound address list (small buffer).
2048 */
2049
2050 ql_get_sbuf(qdev);
2051
2052 if (qdev->device_id == QL3022_DEVICE_ID) {
2053 /* start of first buffer on 3022 */
2054 lrg_buf_cb1 = ql_get_lbuf(qdev);
2055 skb1 = lrg_buf_cb1->skb;
2056 size = ETH_HLEN;
2057 if (*((u16 *) skb1->data) != 0xFFFF)
2058 size += VLAN_ETH_HLEN - ETH_HLEN;
2059 }
2060
2061 /* start of second buffer */
2062 lrg_buf_cb2 = ql_get_lbuf(qdev);
2063 skb2 = lrg_buf_cb2->skb;
2064
2065 skb_put(skb2, length); /* Just the second buffer length here. */
2066 pci_unmap_single(qdev->pdev,
2067 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2068 dma_unmap_len(lrg_buf_cb2, maplen),
2069 PCI_DMA_FROMDEVICE);
2070 prefetch(skb2->data);
2071
2072 skb_checksum_none_assert(skb2);
2073 if (qdev->device_id == QL3022_DEVICE_ID) {
2074 /*
2075 * Copy the ethhdr from first buffer to second. This
2076 * is necessary for 3022 IP completions.
2077 */
2078 skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2079 skb_push(skb2, size), size);
2080 } else {
2081 u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2082 if (checksum &
2083 (IB_IP_IOCB_RSP_3032_ICE |
2084 IB_IP_IOCB_RSP_3032_CE)) {
2085 netdev_err(ndev,
2086 "%s: Bad checksum for this %s packet, checksum = %x\n",
2087 __func__,
2088 ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
2089 "TCP" : "UDP"), checksum);
2090 } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2091 (checksum & IB_IP_IOCB_RSP_3032_UDP &&
2092 !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2093 skb2->ip_summed = CHECKSUM_UNNECESSARY;
2094 }
2095 }
2096 skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2097
2098 netif_receive_skb(skb2);
2099 ndev->stats.rx_packets++;
2100 ndev->stats.rx_bytes += length;
2101 lrg_buf_cb2->skb = NULL;
2102
2103 if (qdev->device_id == QL3022_DEVICE_ID)
2104 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2105 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2106 }
2107
2108 static int ql_tx_rx_clean(struct ql3_adapter *qdev,
2109 int *tx_cleaned, int *rx_cleaned, int work_to_do)
2110 {
2111 struct net_rsp_iocb *net_rsp;
2112 struct net_device *ndev = qdev->ndev;
2113 int work_done = 0;
2114
2115 /* While there are entries in the completion queue. */
2116 while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2117 qdev->rsp_consumer_index) && (work_done < work_to_do)) {
2118
2119 net_rsp = qdev->rsp_current;
2120 rmb();
2121 /*
2122 * Fix 4032 chip's undocumented "feature" where bit-8 is set
2123 * if the inbound completion is for a VLAN.
2124 */
2125 if (qdev->device_id == QL3032_DEVICE_ID)
2126 net_rsp->opcode &= 0x7f;
2127 switch (net_rsp->opcode) {
2128
2129 case OPCODE_OB_MAC_IOCB_FN0:
2130 case OPCODE_OB_MAC_IOCB_FN2:
2131 ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2132 net_rsp);
2133 (*tx_cleaned)++;
2134 break;
2135
2136 case OPCODE_IB_MAC_IOCB:
2137 case OPCODE_IB_3032_MAC_IOCB:
2138 ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2139 net_rsp);
2140 (*rx_cleaned)++;
2141 break;
2142
2143 case OPCODE_IB_IP_IOCB:
2144 case OPCODE_IB_3032_IP_IOCB:
2145 ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2146 net_rsp);
2147 (*rx_cleaned)++;
2148 break;
2149 default: {
2150 u32 *tmp = (u32 *)net_rsp;
2151 netdev_err(ndev,
2152 "Hit default case, not handled!\n"
2153 " dropping the packet, opcode = %x\n"
2154 "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
2155 net_rsp->opcode,
2156 (unsigned long int)tmp[0],
2157 (unsigned long int)tmp[1],
2158 (unsigned long int)tmp[2],
2159 (unsigned long int)tmp[3]);
2160 }
2161 }
2162
2163 qdev->rsp_consumer_index++;
2164
2165 if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2166 qdev->rsp_consumer_index = 0;
2167 qdev->rsp_current = qdev->rsp_q_virt_addr;
2168 } else {
2169 qdev->rsp_current++;
2170 }
2171
2172 work_done = *tx_cleaned + *rx_cleaned;
2173 }
2174
2175 return work_done;
2176 }
2177
2178 static int ql_poll(struct napi_struct *napi, int budget)
2179 {
2180 struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2181 int rx_cleaned = 0, tx_cleaned = 0;
2182 unsigned long hw_flags;
2183 struct ql3xxx_port_registers __iomem *port_regs =
2184 qdev->mem_map_registers;
2185
2186 ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
2187
2188 if (tx_cleaned + rx_cleaned != budget) {
2189 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
2190 __napi_complete(napi);
2191 ql_update_small_bufq_prod_index(qdev);
2192 ql_update_lrg_bufq_prod_index(qdev);
2193 writel(qdev->rsp_consumer_index,
2194 &port_regs->CommonRegs.rspQConsumerIndex);
2195 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
2196
2197 ql_enable_interrupts(qdev);
2198 }
2199 return tx_cleaned + rx_cleaned;
2200 }
2201
2202 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2203 {
2204
2205 struct net_device *ndev = dev_id;
2206 struct ql3_adapter *qdev = netdev_priv(ndev);
2207 struct ql3xxx_port_registers __iomem *port_regs =
2208 qdev->mem_map_registers;
2209 u32 value;
2210 int handled = 1;
2211 u32 var;
2212
2213 value = ql_read_common_reg_l(qdev,
2214 &port_regs->CommonRegs.ispControlStatus);
2215
2216 if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2217 spin_lock(&qdev->adapter_lock);
2218 netif_stop_queue(qdev->ndev);
2219 netif_carrier_off(qdev->ndev);
2220 ql_disable_interrupts(qdev);
2221 qdev->port_link_state = LS_DOWN;
2222 set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
2223
2224 if (value & ISP_CONTROL_FE) {
2225 /*
2226 * Chip Fatal Error.
2227 */
2228 var =
2229 ql_read_page0_reg_l(qdev,
2230 &port_regs->PortFatalErrStatus);
2231 netdev_warn(ndev,
2232 "Resetting chip. PortFatalErrStatus register = 0x%x\n",
2233 var);
2234 set_bit(QL_RESET_START, &qdev->flags) ;
2235 } else {
2236 /*
2237 * Soft Reset Requested.
2238 */
2239 set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
2240 netdev_err(ndev,
2241 "Another function issued a reset to the chip. ISR value = %x\n",
2242 value);
2243 }
2244 queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2245 spin_unlock(&qdev->adapter_lock);
2246 } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2247 ql_disable_interrupts(qdev);
2248 if (likely(napi_schedule_prep(&qdev->napi)))
2249 __napi_schedule(&qdev->napi);
2250 } else
2251 return IRQ_NONE;
2252
2253 return IRQ_RETVAL(handled);
2254 }
2255
2256 /*
2257 * Get the total number of segments needed for the given number of fragments.
2258 * This is necessary because outbound address lists (OAL) will be used when
2259 * more than two frags are given. Each address list has 5 addr/len pairs.
2260 * The 5th pair in each OAL is used to point to the next OAL if more frags
2261 * are coming. That is why the frags:segment count ratio is not linear.
2262 */
2263 static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
2264 {
2265 if (qdev->device_id == QL3022_DEVICE_ID)
2266 return 1;
2267
2268 if (frags <= 2)
2269 return frags + 1;
2270 else if (frags <= 6)
2271 return frags + 2;
2272 else if (frags <= 10)
2273 return frags + 3;
2274 else if (frags <= 14)
2275 return frags + 4;
2276 else if (frags <= 18)
2277 return frags + 5;
2278 return -1;
2279 }
2280
2281 static void ql_hw_csum_setup(const struct sk_buff *skb,
2282 struct ob_mac_iocb_req *mac_iocb_ptr)
2283 {
2284 const struct iphdr *ip = ip_hdr(skb);
2285
2286 mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2287 mac_iocb_ptr->ip_hdr_len = ip->ihl;
2288
2289 if (ip->protocol == IPPROTO_TCP) {
2290 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2291 OB_3032MAC_IOCB_REQ_IC;
2292 } else {
2293 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2294 OB_3032MAC_IOCB_REQ_IC;
2295 }
2296
2297 }
2298
2299 /*
2300 * Map the buffers for this transmit.
2301 * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2302 */
2303 static int ql_send_map(struct ql3_adapter *qdev,
2304 struct ob_mac_iocb_req *mac_iocb_ptr,
2305 struct ql_tx_buf_cb *tx_cb,
2306 struct sk_buff *skb)
2307 {
2308 struct oal *oal;
2309 struct oal_entry *oal_entry;
2310 int len = skb_headlen(skb);
2311 dma_addr_t map;
2312 int err;
2313 int completed_segs, i;
2314 int seg_cnt, seg = 0;
2315 int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2316
2317 seg_cnt = tx_cb->seg_count;
2318 /*
2319 * Map the skb buffer first.
2320 */
2321 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
2322
2323 err = pci_dma_mapping_error(qdev->pdev, map);
2324 if (err) {
2325 netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
2326 err);
2327
2328 return NETDEV_TX_BUSY;
2329 }
2330
2331 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2332 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2333 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2334 oal_entry->len = cpu_to_le32(len);
2335 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2336 dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
2337 seg++;
2338
2339 if (seg_cnt == 1) {
2340 /* Terminate the last segment. */
2341 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2342 return NETDEV_TX_OK;
2343 }
2344 oal = tx_cb->oal;
2345 for (completed_segs = 0;
2346 completed_segs < frag_cnt;
2347 completed_segs++, seg++) {
2348 skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2349 oal_entry++;
2350 /*
2351 * Check for continuation requirements.
2352 * It's strange but necessary.
2353 * Continuation entry points to outbound address list.
2354 */
2355 if ((seg == 2 && seg_cnt > 3) ||
2356 (seg == 7 && seg_cnt > 8) ||
2357 (seg == 12 && seg_cnt > 13) ||
2358 (seg == 17 && seg_cnt > 18)) {
2359 map = pci_map_single(qdev->pdev, oal,
2360 sizeof(struct oal),
2361 PCI_DMA_TODEVICE);
2362
2363 err = pci_dma_mapping_error(qdev->pdev, map);
2364 if (err) {
2365 netdev_err(qdev->ndev,
2366 "PCI mapping outbound address list with error: %d\n",
2367 err);
2368 goto map_error;
2369 }
2370
2371 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2372 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2373 oal_entry->len = cpu_to_le32(sizeof(struct oal) |
2374 OAL_CONT_ENTRY);
2375 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2376 dma_unmap_len_set(&tx_cb->map[seg], maplen,
2377 sizeof(struct oal));
2378 oal_entry = (struct oal_entry *)oal;
2379 oal++;
2380 seg++;
2381 }
2382
2383 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
2384 DMA_TO_DEVICE);
2385
2386 err = dma_mapping_error(&qdev->pdev->dev, map);
2387 if (err) {
2388 netdev_err(qdev->ndev,
2389 "PCI mapping frags failed with error: %d\n",
2390 err);
2391 goto map_error;
2392 }
2393
2394 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2395 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2396 oal_entry->len = cpu_to_le32(skb_frag_size(frag));
2397 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2398 dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
2399 }
2400 /* Terminate the last segment. */
2401 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2402 return NETDEV_TX_OK;
2403
2404 map_error:
2405 /* A PCI mapping failed and now we will need to back out
2406 * We need to traverse through the oal's and associated pages which
2407 * have been mapped and now we must unmap them to clean up properly
2408 */
2409
2410 seg = 1;
2411 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2412 oal = tx_cb->oal;
2413 for (i = 0; i < completed_segs; i++, seg++) {
2414 oal_entry++;
2415
2416 /*
2417 * Check for continuation requirements.
2418 * It's strange but necessary.
2419 */
2420
2421 if ((seg == 2 && seg_cnt > 3) ||
2422 (seg == 7 && seg_cnt > 8) ||
2423 (seg == 12 && seg_cnt > 13) ||
2424 (seg == 17 && seg_cnt > 18)) {
2425 pci_unmap_single(qdev->pdev,
2426 dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2427 dma_unmap_len(&tx_cb->map[seg], maplen),
2428 PCI_DMA_TODEVICE);
2429 oal++;
2430 seg++;
2431 }
2432
2433 pci_unmap_page(qdev->pdev,
2434 dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2435 dma_unmap_len(&tx_cb->map[seg], maplen),
2436 PCI_DMA_TODEVICE);
2437 }
2438
2439 pci_unmap_single(qdev->pdev,
2440 dma_unmap_addr(&tx_cb->map[0], mapaddr),
2441 dma_unmap_addr(&tx_cb->map[0], maplen),
2442 PCI_DMA_TODEVICE);
2443
2444 return NETDEV_TX_BUSY;
2445
2446 }
2447
2448 /*
2449 * The difference between 3022 and 3032 sends:
2450 * 3022 only supports a simple single segment transmission.
2451 * 3032 supports checksumming and scatter/gather lists (fragments).
2452 * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2453 * in the IOCB plus a chain of outbound address lists (OAL) that
2454 * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
2455 * will be used to point to an OAL when more ALP entries are required.
2456 * The IOCB is always the top of the chain followed by one or more
2457 * OALs (when necessary).
2458 */
2459 static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
2460 struct net_device *ndev)
2461 {
2462 struct ql3_adapter *qdev = netdev_priv(ndev);
2463 struct ql3xxx_port_registers __iomem *port_regs =
2464 qdev->mem_map_registers;
2465 struct ql_tx_buf_cb *tx_cb;
2466 u32 tot_len = skb->len;
2467 struct ob_mac_iocb_req *mac_iocb_ptr;
2468
2469 if (unlikely(atomic_read(&qdev->tx_count) < 2))
2470 return NETDEV_TX_BUSY;
2471
2472 tx_cb = &qdev->tx_buf[qdev->req_producer_index];
2473 tx_cb->seg_count = ql_get_seg_count(qdev,
2474 skb_shinfo(skb)->nr_frags);
2475 if (tx_cb->seg_count == -1) {
2476 netdev_err(ndev, "%s: invalid segment count!\n", __func__);
2477 return NETDEV_TX_OK;
2478 }
2479
2480 mac_iocb_ptr = tx_cb->queue_entry;
2481 memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2482 mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2483 mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2484 mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2485 mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2486 mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2487 tx_cb->skb = skb;
2488 if (qdev->device_id == QL3032_DEVICE_ID &&
2489 skb->ip_summed == CHECKSUM_PARTIAL)
2490 ql_hw_csum_setup(skb, mac_iocb_ptr);
2491
2492 if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
2493 netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
2494 return NETDEV_TX_BUSY;
2495 }
2496
2497 wmb();
2498 qdev->req_producer_index++;
2499 if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2500 qdev->req_producer_index = 0;
2501 wmb();
2502 ql_write_common_reg_l(qdev,
2503 &port_regs->CommonRegs.reqQProducerIndex,
2504 qdev->req_producer_index);
2505
2506 netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
2507 "tx queued, slot %d, len %d\n",
2508 qdev->req_producer_index, skb->len);
2509
2510 atomic_dec(&qdev->tx_count);
2511 return NETDEV_TX_OK;
2512 }
2513
2514 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2515 {
2516 qdev->req_q_size =
2517 (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2518
2519 qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2520
2521 /* The barrier is required to ensure request and response queue
2522 * addr writes to the registers.
2523 */
2524 wmb();
2525
2526 qdev->req_q_virt_addr =
2527 pci_alloc_consistent(qdev->pdev,
2528 (size_t) qdev->req_q_size,
2529 &qdev->req_q_phy_addr);
2530
2531 if ((qdev->req_q_virt_addr == NULL) ||
2532 LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2533 netdev_err(qdev->ndev, "reqQ failed\n");
2534 return -ENOMEM;
2535 }
2536
2537 qdev->rsp_q_virt_addr =
2538 pci_alloc_consistent(qdev->pdev,
2539 (size_t) qdev->rsp_q_size,
2540 &qdev->rsp_q_phy_addr);
2541
2542 if ((qdev->rsp_q_virt_addr == NULL) ||
2543 LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2544 netdev_err(qdev->ndev, "rspQ allocation failed\n");
2545 pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
2546 qdev->req_q_virt_addr,
2547 qdev->req_q_phy_addr);
2548 return -ENOMEM;
2549 }
2550
2551 set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2552
2553 return 0;
2554 }
2555
2556 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2557 {
2558 if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
2559 netdev_info(qdev->ndev, "Already done\n");
2560 return;
2561 }
2562
2563 pci_free_consistent(qdev->pdev,
2564 qdev->req_q_size,
2565 qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2566
2567 qdev->req_q_virt_addr = NULL;
2568
2569 pci_free_consistent(qdev->pdev,
2570 qdev->rsp_q_size,
2571 qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2572
2573 qdev->rsp_q_virt_addr = NULL;
2574
2575 clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2576 }
2577
2578 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2579 {
2580 /* Create Large Buffer Queue */
2581 qdev->lrg_buf_q_size =
2582 qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2583 if (qdev->lrg_buf_q_size < PAGE_SIZE)
2584 qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2585 else
2586 qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2587
2588 qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
2589 sizeof(struct ql_rcv_buf_cb),
2590 GFP_KERNEL);
2591 if (qdev->lrg_buf == NULL)
2592 return -ENOMEM;
2593
2594 qdev->lrg_buf_q_alloc_virt_addr =
2595 pci_alloc_consistent(qdev->pdev,
2596 qdev->lrg_buf_q_alloc_size,
2597 &qdev->lrg_buf_q_alloc_phy_addr);
2598
2599 if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2600 netdev_err(qdev->ndev, "lBufQ failed\n");
2601 return -ENOMEM;
2602 }
2603 qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2604 qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2605
2606 /* Create Small Buffer Queue */
2607 qdev->small_buf_q_size =
2608 NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2609 if (qdev->small_buf_q_size < PAGE_SIZE)
2610 qdev->small_buf_q_alloc_size = PAGE_SIZE;
2611 else
2612 qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2613
2614 qdev->small_buf_q_alloc_virt_addr =
2615 pci_alloc_consistent(qdev->pdev,
2616 qdev->small_buf_q_alloc_size,
2617 &qdev->small_buf_q_alloc_phy_addr);
2618
2619 if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2620 netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
2621 pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
2622 qdev->lrg_buf_q_alloc_virt_addr,
2623 qdev->lrg_buf_q_alloc_phy_addr);
2624 return -ENOMEM;
2625 }
2626
2627 qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2628 qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2629 set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2630 return 0;
2631 }
2632
2633 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2634 {
2635 if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
2636 netdev_info(qdev->ndev, "Already done\n");
2637 return;
2638 }
2639 kfree(qdev->lrg_buf);
2640 pci_free_consistent(qdev->pdev,
2641 qdev->lrg_buf_q_alloc_size,
2642 qdev->lrg_buf_q_alloc_virt_addr,
2643 qdev->lrg_buf_q_alloc_phy_addr);
2644
2645 qdev->lrg_buf_q_virt_addr = NULL;
2646
2647 pci_free_consistent(qdev->pdev,
2648 qdev->small_buf_q_alloc_size,
2649 qdev->small_buf_q_alloc_virt_addr,
2650 qdev->small_buf_q_alloc_phy_addr);
2651
2652 qdev->small_buf_q_virt_addr = NULL;
2653
2654 clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2655 }
2656
2657 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2658 {
2659 int i;
2660 struct bufq_addr_element *small_buf_q_entry;
2661
2662 /* Currently we allocate on one of memory and use it for smallbuffers */
2663 qdev->small_buf_total_size =
2664 (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2665 QL_SMALL_BUFFER_SIZE);
2666
2667 qdev->small_buf_virt_addr =
2668 pci_alloc_consistent(qdev->pdev,
2669 qdev->small_buf_total_size,
2670 &qdev->small_buf_phy_addr);
2671
2672 if (qdev->small_buf_virt_addr == NULL) {
2673 netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
2674 return -ENOMEM;
2675 }
2676
2677 qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2678 qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2679
2680 small_buf_q_entry = qdev->small_buf_q_virt_addr;
2681
2682 /* Initialize the small buffer queue. */
2683 for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2684 small_buf_q_entry->addr_high =
2685 cpu_to_le32(qdev->small_buf_phy_addr_high);
2686 small_buf_q_entry->addr_low =
2687 cpu_to_le32(qdev->small_buf_phy_addr_low +
2688 (i * QL_SMALL_BUFFER_SIZE));
2689 small_buf_q_entry++;
2690 }
2691 qdev->small_buf_index = 0;
2692 set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
2693 return 0;
2694 }
2695
2696 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2697 {
2698 if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
2699 netdev_info(qdev->ndev, "Already done\n");
2700 return;
2701 }
2702 if (qdev->small_buf_virt_addr != NULL) {
2703 pci_free_consistent(qdev->pdev,
2704 qdev->small_buf_total_size,
2705 qdev->small_buf_virt_addr,
2706 qdev->small_buf_phy_addr);
2707
2708 qdev->small_buf_virt_addr = NULL;
2709 }
2710 }
2711
2712 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2713 {
2714 int i = 0;
2715 struct ql_rcv_buf_cb *lrg_buf_cb;
2716
2717 for (i = 0; i < qdev->num_large_buffers; i++) {
2718 lrg_buf_cb = &qdev->lrg_buf[i];
2719 if (lrg_buf_cb->skb) {
2720 dev_kfree_skb(lrg_buf_cb->skb);
2721 pci_unmap_single(qdev->pdev,
2722 dma_unmap_addr(lrg_buf_cb, mapaddr),
2723 dma_unmap_len(lrg_buf_cb, maplen),
2724 PCI_DMA_FROMDEVICE);
2725 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2726 } else {
2727 break;
2728 }
2729 }
2730 }
2731
2732 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2733 {
2734 int i;
2735 struct ql_rcv_buf_cb *lrg_buf_cb;
2736 struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2737
2738 for (i = 0; i < qdev->num_large_buffers; i++) {
2739 lrg_buf_cb = &qdev->lrg_buf[i];
2740 buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2741 buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2742 buf_addr_ele++;
2743 }
2744 qdev->lrg_buf_index = 0;
2745 qdev->lrg_buf_skb_check = 0;
2746 }
2747
2748 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2749 {
2750 int i;
2751 struct ql_rcv_buf_cb *lrg_buf_cb;
2752 struct sk_buff *skb;
2753 dma_addr_t map;
2754 int err;
2755
2756 for (i = 0; i < qdev->num_large_buffers; i++) {
2757 skb = netdev_alloc_skb(qdev->ndev,
2758 qdev->lrg_buffer_len);
2759 if (unlikely(!skb)) {
2760 /* Better luck next round */
2761 netdev_err(qdev->ndev,
2762 "large buff alloc failed for %d bytes at index %d\n",
2763 qdev->lrg_buffer_len * 2, i);
2764 ql_free_large_buffers(qdev);
2765 return -ENOMEM;
2766 } else {
2767
2768 lrg_buf_cb = &qdev->lrg_buf[i];
2769 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2770 lrg_buf_cb->index = i;
2771 lrg_buf_cb->skb = skb;
2772 /*
2773 * We save some space to copy the ethhdr from first
2774 * buffer
2775 */
2776 skb_reserve(skb, QL_HEADER_SPACE);
2777 map = pci_map_single(qdev->pdev,
2778 skb->data,
2779 qdev->lrg_buffer_len -
2780 QL_HEADER_SPACE,
2781 PCI_DMA_FROMDEVICE);
2782
2783 err = pci_dma_mapping_error(qdev->pdev, map);
2784 if (err) {
2785 netdev_err(qdev->ndev,
2786 "PCI mapping failed with error: %d\n",
2787 err);
2788 ql_free_large_buffers(qdev);
2789 return -ENOMEM;
2790 }
2791
2792 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2793 dma_unmap_len_set(lrg_buf_cb, maplen,
2794 qdev->lrg_buffer_len -
2795 QL_HEADER_SPACE);
2796 lrg_buf_cb->buf_phy_addr_low =
2797 cpu_to_le32(LS_64BITS(map));
2798 lrg_buf_cb->buf_phy_addr_high =
2799 cpu_to_le32(MS_64BITS(map));
2800 }
2801 }
2802 return 0;
2803 }
2804
2805 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2806 {
2807 struct ql_tx_buf_cb *tx_cb;
2808 int i;
2809
2810 tx_cb = &qdev->tx_buf[0];
2811 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2812 kfree(tx_cb->oal);
2813 tx_cb->oal = NULL;
2814 tx_cb++;
2815 }
2816 }
2817
2818 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2819 {
2820 struct ql_tx_buf_cb *tx_cb;
2821 int i;
2822 struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
2823
2824 /* Create free list of transmit buffers */
2825 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2826
2827 tx_cb = &qdev->tx_buf[i];
2828 tx_cb->skb = NULL;
2829 tx_cb->queue_entry = req_q_curr;
2830 req_q_curr++;
2831 tx_cb->oal = kmalloc(512, GFP_KERNEL);
2832 if (tx_cb->oal == NULL)
2833 return -ENOMEM;
2834 }
2835 return 0;
2836 }
2837
2838 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
2839 {
2840 if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
2841 qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
2842 qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
2843 } else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
2844 /*
2845 * Bigger buffers, so less of them.
2846 */
2847 qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
2848 qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
2849 } else {
2850 netdev_err(qdev->ndev, "Invalid mtu size: %d. Only %d and %d are accepted.\n",
2851 qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
2852 return -ENOMEM;
2853 }
2854 qdev->num_large_buffers =
2855 qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
2856 qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
2857 qdev->max_frame_size =
2858 (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
2859
2860 /*
2861 * First allocate a page of shared memory and use it for shadow
2862 * locations of Network Request Queue Consumer Address Register and
2863 * Network Completion Queue Producer Index Register
2864 */
2865 qdev->shadow_reg_virt_addr =
2866 pci_alloc_consistent(qdev->pdev,
2867 PAGE_SIZE, &qdev->shadow_reg_phy_addr);
2868
2869 if (qdev->shadow_reg_virt_addr != NULL) {
2870 qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
2871 qdev->req_consumer_index_phy_addr_high =
2872 MS_64BITS(qdev->shadow_reg_phy_addr);
2873 qdev->req_consumer_index_phy_addr_low =
2874 LS_64BITS(qdev->shadow_reg_phy_addr);
2875
2876 qdev->prsp_producer_index =
2877 (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
2878 qdev->rsp_producer_index_phy_addr_high =
2879 qdev->req_consumer_index_phy_addr_high;
2880 qdev->rsp_producer_index_phy_addr_low =
2881 qdev->req_consumer_index_phy_addr_low + 8;
2882 } else {
2883 netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
2884 return -ENOMEM;
2885 }
2886
2887 if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
2888 netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
2889 goto err_req_rsp;
2890 }
2891
2892 if (ql_alloc_buffer_queues(qdev) != 0) {
2893 netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
2894 goto err_buffer_queues;
2895 }
2896
2897 if (ql_alloc_small_buffers(qdev) != 0) {
2898 netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
2899 goto err_small_buffers;
2900 }
2901
2902 if (ql_alloc_large_buffers(qdev) != 0) {
2903 netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
2904 goto err_small_buffers;
2905 }
2906
2907 /* Initialize the large buffer queue. */
2908 ql_init_large_buffers(qdev);
2909 if (ql_create_send_free_list(qdev))
2910 goto err_free_list;
2911
2912 qdev->rsp_current = qdev->rsp_q_virt_addr;
2913
2914 return 0;
2915 err_free_list:
2916 ql_free_send_free_list(qdev);
2917 err_small_buffers:
2918 ql_free_buffer_queues(qdev);
2919 err_buffer_queues:
2920 ql_free_net_req_rsp_queues(qdev);
2921 err_req_rsp:
2922 pci_free_consistent(qdev->pdev,
2923 PAGE_SIZE,
2924 qdev->shadow_reg_virt_addr,
2925 qdev->shadow_reg_phy_addr);
2926
2927 return -ENOMEM;
2928 }
2929
2930 static void ql_free_mem_resources(struct ql3_adapter *qdev)
2931 {
2932 ql_free_send_free_list(qdev);
2933 ql_free_large_buffers(qdev);
2934 ql_free_small_buffers(qdev);
2935 ql_free_buffer_queues(qdev);
2936 ql_free_net_req_rsp_queues(qdev);
2937 if (qdev->shadow_reg_virt_addr != NULL) {
2938 pci_free_consistent(qdev->pdev,
2939 PAGE_SIZE,
2940 qdev->shadow_reg_virt_addr,
2941 qdev->shadow_reg_phy_addr);
2942 qdev->shadow_reg_virt_addr = NULL;
2943 }
2944 }
2945
2946 static int ql_init_misc_registers(struct ql3_adapter *qdev)
2947 {
2948 struct ql3xxx_local_ram_registers __iomem *local_ram =
2949 (void __iomem *)qdev->mem_map_registers;
2950
2951 if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
2952 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2953 2) << 4))
2954 return -1;
2955
2956 ql_write_page2_reg(qdev,
2957 &local_ram->bufletSize, qdev->nvram_data.bufletSize);
2958
2959 ql_write_page2_reg(qdev,
2960 &local_ram->maxBufletCount,
2961 qdev->nvram_data.bufletCount);
2962
2963 ql_write_page2_reg(qdev,
2964 &local_ram->freeBufletThresholdLow,
2965 (qdev->nvram_data.tcpWindowThreshold25 << 16) |
2966 (qdev->nvram_data.tcpWindowThreshold0));
2967
2968 ql_write_page2_reg(qdev,
2969 &local_ram->freeBufletThresholdHigh,
2970 qdev->nvram_data.tcpWindowThreshold50);
2971
2972 ql_write_page2_reg(qdev,
2973 &local_ram->ipHashTableBase,
2974 (qdev->nvram_data.ipHashTableBaseHi << 16) |
2975 qdev->nvram_data.ipHashTableBaseLo);
2976 ql_write_page2_reg(qdev,
2977 &local_ram->ipHashTableCount,
2978 qdev->nvram_data.ipHashTableSize);
2979 ql_write_page2_reg(qdev,
2980 &local_ram->tcpHashTableBase,
2981 (qdev->nvram_data.tcpHashTableBaseHi << 16) |
2982 qdev->nvram_data.tcpHashTableBaseLo);
2983 ql_write_page2_reg(qdev,
2984 &local_ram->tcpHashTableCount,
2985 qdev->nvram_data.tcpHashTableSize);
2986 ql_write_page2_reg(qdev,
2987 &local_ram->ncbBase,
2988 (qdev->nvram_data.ncbTableBaseHi << 16) |
2989 qdev->nvram_data.ncbTableBaseLo);
2990 ql_write_page2_reg(qdev,
2991 &local_ram->maxNcbCount,
2992 qdev->nvram_data.ncbTableSize);
2993 ql_write_page2_reg(qdev,
2994 &local_ram->drbBase,
2995 (qdev->nvram_data.drbTableBaseHi << 16) |
2996 qdev->nvram_data.drbTableBaseLo);
2997 ql_write_page2_reg(qdev,
2998 &local_ram->maxDrbCount,
2999 qdev->nvram_data.drbTableSize);
3000 ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
3001 return 0;
3002 }
3003
3004 static int ql_adapter_initialize(struct ql3_adapter *qdev)
3005 {
3006 u32 value;
3007 struct ql3xxx_port_registers __iomem *port_regs =
3008 qdev->mem_map_registers;
3009 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
3010 struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3011 (void __iomem *)port_regs;
3012 u32 delay = 10;
3013 int status = 0;
3014
3015 if (ql_mii_setup(qdev))
3016 return -1;
3017
3018 /* Bring out PHY out of reset */
3019 ql_write_common_reg(qdev, spir,
3020 (ISP_SERIAL_PORT_IF_WE |
3021 (ISP_SERIAL_PORT_IF_WE << 16)));
3022 /* Give the PHY time to come out of reset. */
3023 mdelay(100);
3024 qdev->port_link_state = LS_DOWN;
3025 netif_carrier_off(qdev->ndev);
3026
3027 /* V2 chip fix for ARS-39168. */
3028 ql_write_common_reg(qdev, spir,
3029 (ISP_SERIAL_PORT_IF_SDE |
3030 (ISP_SERIAL_PORT_IF_SDE << 16)));
3031
3032 /* Request Queue Registers */
3033 *((u32 *)(qdev->preq_consumer_index)) = 0;
3034 atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
3035 qdev->req_producer_index = 0;
3036
3037 ql_write_page1_reg(qdev,
3038 &hmem_regs->reqConsumerIndexAddrHigh,
3039 qdev->req_consumer_index_phy_addr_high);
3040 ql_write_page1_reg(qdev,
3041 &hmem_regs->reqConsumerIndexAddrLow,
3042 qdev->req_consumer_index_phy_addr_low);
3043
3044 ql_write_page1_reg(qdev,
3045 &hmem_regs->reqBaseAddrHigh,
3046 MS_64BITS(qdev->req_q_phy_addr));
3047 ql_write_page1_reg(qdev,
3048 &hmem_regs->reqBaseAddrLow,
3049 LS_64BITS(qdev->req_q_phy_addr));
3050 ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3051
3052 /* Response Queue Registers */
3053 *((__le16 *) (qdev->prsp_producer_index)) = 0;
3054 qdev->rsp_consumer_index = 0;
3055 qdev->rsp_current = qdev->rsp_q_virt_addr;
3056
3057 ql_write_page1_reg(qdev,
3058 &hmem_regs->rspProducerIndexAddrHigh,
3059 qdev->rsp_producer_index_phy_addr_high);
3060
3061 ql_write_page1_reg(qdev,
3062 &hmem_regs->rspProducerIndexAddrLow,
3063 qdev->rsp_producer_index_phy_addr_low);
3064
3065 ql_write_page1_reg(qdev,
3066 &hmem_regs->rspBaseAddrHigh,
3067 MS_64BITS(qdev->rsp_q_phy_addr));
3068
3069 ql_write_page1_reg(qdev,
3070 &hmem_regs->rspBaseAddrLow,
3071 LS_64BITS(qdev->rsp_q_phy_addr));
3072
3073 ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3074
3075 /* Large Buffer Queue */
3076 ql_write_page1_reg(qdev,
3077 &hmem_regs->rxLargeQBaseAddrHigh,
3078 MS_64BITS(qdev->lrg_buf_q_phy_addr));
3079
3080 ql_write_page1_reg(qdev,
3081 &hmem_regs->rxLargeQBaseAddrLow,
3082 LS_64BITS(qdev->lrg_buf_q_phy_addr));
3083
3084 ql_write_page1_reg(qdev,
3085 &hmem_regs->rxLargeQLength,
3086 qdev->num_lbufq_entries);
3087
3088 ql_write_page1_reg(qdev,
3089 &hmem_regs->rxLargeBufferLength,
3090 qdev->lrg_buffer_len);
3091
3092 /* Small Buffer Queue */
3093 ql_write_page1_reg(qdev,
3094 &hmem_regs->rxSmallQBaseAddrHigh,
3095 MS_64BITS(qdev->small_buf_q_phy_addr));
3096
3097 ql_write_page1_reg(qdev,
3098 &hmem_regs->rxSmallQBaseAddrLow,
3099 LS_64BITS(qdev->small_buf_q_phy_addr));
3100
3101 ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3102 ql_write_page1_reg(qdev,
3103 &hmem_regs->rxSmallBufferLength,
3104 QL_SMALL_BUFFER_SIZE);
3105
3106 qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3107 qdev->small_buf_release_cnt = 8;
3108 qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3109 qdev->lrg_buf_release_cnt = 8;
3110 qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
3111 qdev->small_buf_index = 0;
3112 qdev->lrg_buf_index = 0;
3113 qdev->lrg_buf_free_count = 0;
3114 qdev->lrg_buf_free_head = NULL;
3115 qdev->lrg_buf_free_tail = NULL;
3116
3117 ql_write_common_reg(qdev,
3118 &port_regs->CommonRegs.
3119 rxSmallQProducerIndex,
3120 qdev->small_buf_q_producer_index);
3121 ql_write_common_reg(qdev,
3122 &port_regs->CommonRegs.
3123 rxLargeQProducerIndex,
3124 qdev->lrg_buf_q_producer_index);
3125
3126 /*
3127 * Find out if the chip has already been initialized. If it has, then
3128 * we skip some of the initialization.
3129 */
3130 clear_bit(QL_LINK_MASTER, &qdev->flags);
3131 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3132 if ((value & PORT_STATUS_IC) == 0) {
3133
3134 /* Chip has not been configured yet, so let it rip. */
3135 if (ql_init_misc_registers(qdev)) {
3136 status = -1;
3137 goto out;
3138 }
3139
3140 value = qdev->nvram_data.tcpMaxWindowSize;
3141 ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3142
3143 value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3144
3145 if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3146 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3147 * 2) << 13)) {
3148 status = -1;
3149 goto out;
3150 }
3151 ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3152 ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3153 (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3154 16) | (INTERNAL_CHIP_SD |
3155 INTERNAL_CHIP_WE)));
3156 ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3157 }
3158
3159 if (qdev->mac_index)
3160 ql_write_page0_reg(qdev,
3161 &port_regs->mac1MaxFrameLengthReg,
3162 qdev->max_frame_size);
3163 else
3164 ql_write_page0_reg(qdev,
3165 &port_regs->mac0MaxFrameLengthReg,
3166 qdev->max_frame_size);
3167
3168 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3169 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3170 2) << 7)) {
3171 status = -1;
3172 goto out;
3173 }
3174
3175 PHY_Setup(qdev);
3176 ql_init_scan_mode(qdev);
3177 ql_get_phy_owner(qdev);
3178
3179 /* Load the MAC Configuration */
3180
3181 /* Program lower 32 bits of the MAC address */
3182 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3183 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3184 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3185 ((qdev->ndev->dev_addr[2] << 24)
3186 | (qdev->ndev->dev_addr[3] << 16)
3187 | (qdev->ndev->dev_addr[4] << 8)
3188 | qdev->ndev->dev_addr[5]));
3189
3190 /* Program top 16 bits of the MAC address */
3191 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3192 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3193 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3194 ((qdev->ndev->dev_addr[0] << 8)
3195 | qdev->ndev->dev_addr[1]));
3196
3197 /* Enable Primary MAC */
3198 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3199 ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3200 MAC_ADDR_INDIRECT_PTR_REG_PE));
3201
3202 /* Clear Primary and Secondary IP addresses */
3203 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3204 ((IP_ADDR_INDEX_REG_MASK << 16) |
3205 (qdev->mac_index << 2)));
3206 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3207
3208 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3209 ((IP_ADDR_INDEX_REG_MASK << 16) |
3210 ((qdev->mac_index << 2) + 1)));
3211 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3212
3213 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3214
3215 /* Indicate Configuration Complete */
3216 ql_write_page0_reg(qdev,
3217 &port_regs->portControl,
3218 ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3219
3220 do {
3221 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3222 if (value & PORT_STATUS_IC)
3223 break;
3224 spin_unlock_irq(&qdev->hw_lock);
3225 msleep(500);
3226 spin_lock_irq(&qdev->hw_lock);
3227 } while (--delay);
3228
3229 if (delay == 0) {
3230 netdev_err(qdev->ndev, "Hw Initialization timeout\n");
3231 status = -1;
3232 goto out;
3233 }
3234
3235 /* Enable Ethernet Function */
3236 if (qdev->device_id == QL3032_DEVICE_ID) {
3237 value =
3238 (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3239 QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3240 QL3032_PORT_CONTROL_ET);
3241 ql_write_page0_reg(qdev, &port_regs->functionControl,
3242 ((value << 16) | value));
3243 } else {
3244 value =
3245 (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3246 PORT_CONTROL_HH);
3247 ql_write_page0_reg(qdev, &port_regs->portControl,
3248 ((value << 16) | value));
3249 }
3250
3251
3252 out:
3253 return status;
3254 }
3255
3256 /*
3257 * Caller holds hw_lock.
3258 */
3259 static int ql_adapter_reset(struct ql3_adapter *qdev)
3260 {
3261 struct ql3xxx_port_registers __iomem *port_regs =
3262 qdev->mem_map_registers;
3263 int status = 0;
3264 u16 value;
3265 int max_wait_time;
3266
3267 set_bit(QL_RESET_ACTIVE, &qdev->flags);
3268 clear_bit(QL_RESET_DONE, &qdev->flags);
3269
3270 /*
3271 * Issue soft reset to chip.
3272 */
3273 netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
3274 ql_write_common_reg(qdev,
3275 &port_regs->CommonRegs.ispControlStatus,
3276 ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3277
3278 /* Wait 3 seconds for reset to complete. */
3279 netdev_printk(KERN_DEBUG, qdev->ndev,
3280 "Wait 10 milliseconds for reset to complete\n");
3281
3282 /* Wait until the firmware tells us the Soft Reset is done */
3283 max_wait_time = 5;
3284 do {
3285 value =
3286 ql_read_common_reg(qdev,
3287 &port_regs->CommonRegs.ispControlStatus);
3288 if ((value & ISP_CONTROL_SR) == 0)
3289 break;
3290
3291 ssleep(1);
3292 } while ((--max_wait_time));
3293
3294 /*
3295 * Also, make sure that the Network Reset Interrupt bit has been
3296 * cleared after the soft reset has taken place.
3297 */
3298 value =
3299 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3300 if (value & ISP_CONTROL_RI) {
3301 netdev_printk(KERN_DEBUG, qdev->ndev,
3302 "clearing RI after reset\n");
3303 ql_write_common_reg(qdev,
3304 &port_regs->CommonRegs.
3305 ispControlStatus,
3306 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3307 }
3308
3309 if (max_wait_time == 0) {
3310 /* Issue Force Soft Reset */
3311 ql_write_common_reg(qdev,
3312 &port_regs->CommonRegs.
3313 ispControlStatus,
3314 ((ISP_CONTROL_FSR << 16) |
3315 ISP_CONTROL_FSR));
3316 /*
3317 * Wait until the firmware tells us the Force Soft Reset is
3318 * done
3319 */
3320 max_wait_time = 5;
3321 do {
3322 value = ql_read_common_reg(qdev,
3323 &port_regs->CommonRegs.
3324 ispControlStatus);
3325 if ((value & ISP_CONTROL_FSR) == 0)
3326 break;
3327 ssleep(1);
3328 } while ((--max_wait_time));
3329 }
3330 if (max_wait_time == 0)
3331 status = 1;
3332
3333 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3334 set_bit(QL_RESET_DONE, &qdev->flags);
3335 return status;
3336 }
3337
3338 static void ql_set_mac_info(struct ql3_adapter *qdev)
3339 {
3340 struct ql3xxx_port_registers __iomem *port_regs =
3341 qdev->mem_map_registers;
3342 u32 value, port_status;
3343 u8 func_number;
3344
3345 /* Get the function number */
3346 value =
3347 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3348 func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3349 port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3350 switch (value & ISP_CONTROL_FN_MASK) {
3351 case ISP_CONTROL_FN0_NET:
3352 qdev->mac_index = 0;
3353 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3354 qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3355 qdev->PHYAddr = PORT0_PHY_ADDRESS;
3356 if (port_status & PORT_STATUS_SM0)
3357 set_bit(QL_LINK_OPTICAL, &qdev->flags);
3358 else
3359 clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3360 break;
3361
3362 case ISP_CONTROL_FN1_NET:
3363 qdev->mac_index = 1;
3364 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3365 qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3366 qdev->PHYAddr = PORT1_PHY_ADDRESS;
3367 if (port_status & PORT_STATUS_SM1)
3368 set_bit(QL_LINK_OPTICAL, &qdev->flags);
3369 else
3370 clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3371 break;
3372
3373 case ISP_CONTROL_FN0_SCSI:
3374 case ISP_CONTROL_FN1_SCSI:
3375 default:
3376 netdev_printk(KERN_DEBUG, qdev->ndev,
3377 "Invalid function number, ispControlStatus = 0x%x\n",
3378 value);
3379 break;
3380 }
3381 qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
3382 }
3383
3384 static void ql_display_dev_info(struct net_device *ndev)
3385 {
3386 struct ql3_adapter *qdev = netdev_priv(ndev);
3387 struct pci_dev *pdev = qdev->pdev;
3388
3389 netdev_info(ndev,
3390 "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
3391 DRV_NAME, qdev->index, qdev->chip_rev_id,
3392 qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
3393 qdev->pci_slot);
3394 netdev_info(ndev, "%s Interface\n",
3395 test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
3396
3397 /*
3398 * Print PCI bus width/type.
3399 */
3400 netdev_info(ndev, "Bus interface is %s %s\n",
3401 ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3402 ((qdev->pci_x) ? "PCI-X" : "PCI"));
3403
3404 netdev_info(ndev, "mem IO base address adjusted = 0x%p\n",
3405 qdev->mem_map_registers);
3406 netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
3407
3408 netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
3409 }
3410
3411 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3412 {
3413 struct net_device *ndev = qdev->ndev;
3414 int retval = 0;
3415
3416 netif_stop_queue(ndev);
3417 netif_carrier_off(ndev);
3418
3419 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3420 clear_bit(QL_LINK_MASTER, &qdev->flags);
3421
3422 ql_disable_interrupts(qdev);
3423
3424 free_irq(qdev->pdev->irq, ndev);
3425
3426 if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3427 netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
3428 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3429 pci_disable_msi(qdev->pdev);
3430 }
3431
3432 del_timer_sync(&qdev->adapter_timer);
3433
3434 napi_disable(&qdev->napi);
3435
3436 if (do_reset) {
3437 int soft_reset;
3438 unsigned long hw_flags;
3439
3440 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3441 if (ql_wait_for_drvr_lock(qdev)) {
3442 soft_reset = ql_adapter_reset(qdev);
3443 if (soft_reset) {
3444 netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
3445 qdev->index);
3446 }
3447 netdev_err(ndev,
3448 "Releasing driver lock via chip reset\n");
3449 } else {
3450 netdev_err(ndev,
3451 "Could not acquire driver lock to do reset!\n");
3452 retval = -1;
3453 }
3454 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3455 }
3456 ql_free_mem_resources(qdev);
3457 return retval;
3458 }
3459
3460 static int ql_adapter_up(struct ql3_adapter *qdev)
3461 {
3462 struct net_device *ndev = qdev->ndev;
3463 int err;
3464 unsigned long irq_flags = IRQF_SHARED;
3465 unsigned long hw_flags;
3466
3467 if (ql_alloc_mem_resources(qdev)) {
3468 netdev_err(ndev, "Unable to allocate buffers\n");
3469 return -ENOMEM;
3470 }
3471
3472 if (qdev->msi) {
3473 if (pci_enable_msi(qdev->pdev)) {
3474 netdev_err(ndev,
3475 "User requested MSI, but MSI failed to initialize. Continuing without MSI.\n");
3476 qdev->msi = 0;
3477 } else {
3478 netdev_info(ndev, "MSI Enabled...\n");
3479 set_bit(QL_MSI_ENABLED, &qdev->flags);
3480 irq_flags &= ~IRQF_SHARED;
3481 }
3482 }
3483
3484 err = request_irq(qdev->pdev->irq, ql3xxx_isr,
3485 irq_flags, ndev->name, ndev);
3486 if (err) {
3487 netdev_err(ndev,
3488 "Failed to reserve interrupt %d - already in use\n",
3489 qdev->pdev->irq);
3490 goto err_irq;
3491 }
3492
3493 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3494
3495 err = ql_wait_for_drvr_lock(qdev);
3496 if (err) {
3497 err = ql_adapter_initialize(qdev);
3498 if (err) {
3499 netdev_err(ndev, "Unable to initialize adapter\n");
3500 goto err_init;
3501 }
3502 netdev_err(ndev, "Releasing driver lock\n");
3503 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3504 } else {
3505 netdev_err(ndev, "Could not acquire driver lock\n");
3506 goto err_lock;
3507 }
3508
3509 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3510
3511 set_bit(QL_ADAPTER_UP, &qdev->flags);
3512
3513 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3514
3515 napi_enable(&qdev->napi);
3516 ql_enable_interrupts(qdev);
3517 return 0;
3518
3519 err_init:
3520 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3521 err_lock:
3522 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3523 free_irq(qdev->pdev->irq, ndev);
3524 err_irq:
3525 if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3526 netdev_info(ndev, "calling pci_disable_msi()\n");
3527 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3528 pci_disable_msi(qdev->pdev);
3529 }
3530 return err;
3531 }
3532
3533 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3534 {
3535 if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
3536 netdev_err(qdev->ndev,
3537 "Driver up/down cycle failed, closing device\n");
3538 rtnl_lock();
3539 dev_close(qdev->ndev);
3540 rtnl_unlock();
3541 return -1;
3542 }
3543 return 0;
3544 }
3545
3546 static int ql3xxx_close(struct net_device *ndev)
3547 {
3548 struct ql3_adapter *qdev = netdev_priv(ndev);
3549
3550 /*
3551 * Wait for device to recover from a reset.
3552 * (Rarely happens, but possible.)
3553 */
3554 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3555 msleep(50);
3556
3557 ql_adapter_down(qdev, QL_DO_RESET);
3558 return 0;
3559 }
3560
3561 static int ql3xxx_open(struct net_device *ndev)
3562 {
3563 struct ql3_adapter *qdev = netdev_priv(ndev);
3564 return ql_adapter_up(qdev);
3565 }
3566
3567 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3568 {
3569 struct ql3_adapter *qdev = netdev_priv(ndev);
3570 struct ql3xxx_port_registers __iomem *port_regs =
3571 qdev->mem_map_registers;
3572 struct sockaddr *addr = p;
3573 unsigned long hw_flags;
3574
3575 if (netif_running(ndev))
3576 return -EBUSY;
3577
3578 if (!is_valid_ether_addr(addr->sa_data))
3579 return -EADDRNOTAVAIL;
3580
3581 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3582
3583 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3584 /* Program lower 32 bits of the MAC address */
3585 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3586 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3587 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3588 ((ndev->dev_addr[2] << 24) | (ndev->
3589 dev_addr[3] << 16) |
3590 (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3591
3592 /* Program top 16 bits of the MAC address */
3593 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3594 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3595 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3596 ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3597 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3598
3599 return 0;
3600 }
3601
3602 static void ql3xxx_tx_timeout(struct net_device *ndev)
3603 {
3604 struct ql3_adapter *qdev = netdev_priv(ndev);
3605
3606 netdev_err(ndev, "Resetting...\n");
3607 /*
3608 * Stop the queues, we've got a problem.
3609 */
3610 netif_stop_queue(ndev);
3611
3612 /*
3613 * Wake up the worker to process this event.
3614 */
3615 queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3616 }
3617
3618 static void ql_reset_work(struct work_struct *work)
3619 {
3620 struct ql3_adapter *qdev =
3621 container_of(work, struct ql3_adapter, reset_work.work);
3622 struct net_device *ndev = qdev->ndev;
3623 u32 value;
3624 struct ql_tx_buf_cb *tx_cb;
3625 int max_wait_time, i;
3626 struct ql3xxx_port_registers __iomem *port_regs =
3627 qdev->mem_map_registers;
3628 unsigned long hw_flags;
3629
3630 if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
3631 clear_bit(QL_LINK_MASTER, &qdev->flags);
3632
3633 /*
3634 * Loop through the active list and return the skb.
3635 */
3636 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3637 int j;
3638 tx_cb = &qdev->tx_buf[i];
3639 if (tx_cb->skb) {
3640 netdev_printk(KERN_DEBUG, ndev,
3641 "Freeing lost SKB\n");
3642 pci_unmap_single(qdev->pdev,
3643 dma_unmap_addr(&tx_cb->map[0],
3644 mapaddr),
3645 dma_unmap_len(&tx_cb->map[0], maplen),
3646 PCI_DMA_TODEVICE);
3647 for (j = 1; j < tx_cb->seg_count; j++) {
3648 pci_unmap_page(qdev->pdev,
3649 dma_unmap_addr(&tx_cb->map[j],
3650 mapaddr),
3651 dma_unmap_len(&tx_cb->map[j],
3652 maplen),
3653 PCI_DMA_TODEVICE);
3654 }
3655 dev_kfree_skb(tx_cb->skb);
3656 tx_cb->skb = NULL;
3657 }
3658 }
3659
3660 netdev_err(ndev, "Clearing NRI after reset\n");
3661 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3662 ql_write_common_reg(qdev,
3663 &port_regs->CommonRegs.
3664 ispControlStatus,
3665 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3666 /*
3667 * Wait the for Soft Reset to Complete.
3668 */
3669 max_wait_time = 10;
3670 do {
3671 value = ql_read_common_reg(qdev,
3672 &port_regs->CommonRegs.
3673
3674 ispControlStatus);
3675 if ((value & ISP_CONTROL_SR) == 0) {
3676 netdev_printk(KERN_DEBUG, ndev,
3677 "reset completed\n");
3678 break;
3679 }
3680
3681 if (value & ISP_CONTROL_RI) {
3682 netdev_printk(KERN_DEBUG, ndev,
3683 "clearing NRI after reset\n");
3684 ql_write_common_reg(qdev,
3685 &port_regs->
3686 CommonRegs.
3687 ispControlStatus,
3688 ((ISP_CONTROL_RI <<
3689 16) | ISP_CONTROL_RI));
3690 }
3691
3692 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3693 ssleep(1);
3694 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3695 } while (--max_wait_time);
3696 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3697
3698 if (value & ISP_CONTROL_SR) {
3699
3700 /*
3701 * Set the reset flags and clear the board again.
3702 * Nothing else to do...
3703 */
3704 netdev_err(ndev,
3705 "Timed out waiting for reset to complete\n");
3706 netdev_err(ndev, "Do a reset\n");
3707 clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3708 clear_bit(QL_RESET_START, &qdev->flags);
3709 ql_cycle_adapter(qdev, QL_DO_RESET);
3710 return;
3711 }
3712
3713 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3714 clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3715 clear_bit(QL_RESET_START, &qdev->flags);
3716 ql_cycle_adapter(qdev, QL_NO_RESET);
3717 }
3718 }
3719
3720 static void ql_tx_timeout_work(struct work_struct *work)
3721 {
3722 struct ql3_adapter *qdev =
3723 container_of(work, struct ql3_adapter, tx_timeout_work.work);
3724
3725 ql_cycle_adapter(qdev, QL_DO_RESET);
3726 }
3727
3728 static void ql_get_board_info(struct ql3_adapter *qdev)
3729 {
3730 struct ql3xxx_port_registers __iomem *port_regs =
3731 qdev->mem_map_registers;
3732 u32 value;
3733
3734 value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3735
3736 qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3737 if (value & PORT_STATUS_64)
3738 qdev->pci_width = 64;
3739 else
3740 qdev->pci_width = 32;
3741 if (value & PORT_STATUS_X)
3742 qdev->pci_x = 1;
3743 else
3744 qdev->pci_x = 0;
3745 qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3746 }
3747
3748 static void ql3xxx_timer(unsigned long ptr)
3749 {
3750 struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
3751 queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3752 }
3753
3754 static const struct net_device_ops ql3xxx_netdev_ops = {
3755 .ndo_open = ql3xxx_open,
3756 .ndo_start_xmit = ql3xxx_send,
3757 .ndo_stop = ql3xxx_close,
3758 .ndo_change_mtu = eth_change_mtu,
3759 .ndo_validate_addr = eth_validate_addr,
3760 .ndo_set_mac_address = ql3xxx_set_mac_address,
3761 .ndo_tx_timeout = ql3xxx_tx_timeout,
3762 };
3763
3764 static int ql3xxx_probe(struct pci_dev *pdev,
3765 const struct pci_device_id *pci_entry)
3766 {
3767 struct net_device *ndev = NULL;
3768 struct ql3_adapter *qdev = NULL;
3769 static int cards_found;
3770 int uninitialized_var(pci_using_dac), err;
3771
3772 err = pci_enable_device(pdev);
3773 if (err) {
3774 pr_err("%s cannot enable PCI device\n", pci_name(pdev));
3775 goto err_out;
3776 }
3777
3778 err = pci_request_regions(pdev, DRV_NAME);
3779 if (err) {
3780 pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
3781 goto err_out_disable_pdev;
3782 }
3783
3784 pci_set_master(pdev);
3785
3786 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3787 pci_using_dac = 1;
3788 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3789 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3790 pci_using_dac = 0;
3791 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3792 }
3793
3794 if (err) {
3795 pr_err("%s no usable DMA configuration\n", pci_name(pdev));
3796 goto err_out_free_regions;
3797 }
3798
3799 ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3800 if (!ndev) {
3801 err = -ENOMEM;
3802 goto err_out_free_regions;
3803 }
3804
3805 SET_NETDEV_DEV(ndev, &pdev->dev);
3806
3807 pci_set_drvdata(pdev, ndev);
3808
3809 qdev = netdev_priv(ndev);
3810 qdev->index = cards_found;
3811 qdev->ndev = ndev;
3812 qdev->pdev = pdev;
3813 qdev->device_id = pci_entry->device;
3814 qdev->port_link_state = LS_DOWN;
3815 if (msi)
3816 qdev->msi = 1;
3817
3818 qdev->msg_enable = netif_msg_init(debug, default_msg);
3819
3820 if (pci_using_dac)
3821 ndev->features |= NETIF_F_HIGHDMA;
3822 if (qdev->device_id == QL3032_DEVICE_ID)
3823 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3824
3825 qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
3826 if (!qdev->mem_map_registers) {
3827 pr_err("%s: cannot map device registers\n", pci_name(pdev));
3828 err = -EIO;
3829 goto err_out_free_ndev;
3830 }
3831
3832 spin_lock_init(&qdev->adapter_lock);
3833 spin_lock_init(&qdev->hw_lock);
3834
3835 /* Set driver entry points */
3836 ndev->netdev_ops = &ql3xxx_netdev_ops;
3837 ndev->ethtool_ops = &ql3xxx_ethtool_ops;
3838 ndev->watchdog_timeo = 5 * HZ;
3839
3840 netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
3841
3842 ndev->irq = pdev->irq;
3843
3844 /* make sure the EEPROM is good */
3845 if (ql_get_nvram_params(qdev)) {
3846 pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
3847 __func__, qdev->index);
3848 err = -EIO;
3849 goto err_out_iounmap;
3850 }
3851
3852 ql_set_mac_info(qdev);
3853
3854 /* Validate and set parameters */
3855 if (qdev->mac_index) {
3856 ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
3857 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
3858 } else {
3859 ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
3860 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
3861 }
3862
3863 ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
3864
3865 /* Record PCI bus information. */
3866 ql_get_board_info(qdev);
3867
3868 /*
3869 * Set the Maximum Memory Read Byte Count value. We do this to handle
3870 * jumbo frames.
3871 */
3872 if (qdev->pci_x)
3873 pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
3874
3875 err = register_netdev(ndev);
3876 if (err) {
3877 pr_err("%s: cannot register net device\n", pci_name(pdev));
3878 goto err_out_iounmap;
3879 }
3880
3881 /* we're going to reset, so assume we have no link for now */
3882
3883 netif_carrier_off(ndev);
3884 netif_stop_queue(ndev);
3885
3886 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3887 INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
3888 INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
3889 INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
3890
3891 init_timer(&qdev->adapter_timer);
3892 qdev->adapter_timer.function = ql3xxx_timer;
3893 qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
3894 qdev->adapter_timer.data = (unsigned long)qdev;
3895
3896 if (!cards_found) {
3897 pr_alert("%s\n", DRV_STRING);
3898 pr_alert("Driver name: %s, Version: %s\n",
3899 DRV_NAME, DRV_VERSION);
3900 }
3901 ql_display_dev_info(ndev);
3902
3903 cards_found++;
3904 return 0;
3905
3906 err_out_iounmap:
3907 iounmap(qdev->mem_map_registers);
3908 err_out_free_ndev:
3909 free_netdev(ndev);
3910 err_out_free_regions:
3911 pci_release_regions(pdev);
3912 err_out_disable_pdev:
3913 pci_disable_device(pdev);
3914 err_out:
3915 return err;
3916 }
3917
3918 static void ql3xxx_remove(struct pci_dev *pdev)
3919 {
3920 struct net_device *ndev = pci_get_drvdata(pdev);
3921 struct ql3_adapter *qdev = netdev_priv(ndev);
3922
3923 unregister_netdev(ndev);
3924
3925 ql_disable_interrupts(qdev);
3926
3927 if (qdev->workqueue) {
3928 cancel_delayed_work(&qdev->reset_work);
3929 cancel_delayed_work(&qdev->tx_timeout_work);
3930 destroy_workqueue(qdev->workqueue);
3931 qdev->workqueue = NULL;
3932 }
3933
3934 iounmap(qdev->mem_map_registers);
3935 pci_release_regions(pdev);
3936 free_netdev(ndev);
3937 }
3938
3939 static struct pci_driver ql3xxx_driver = {
3940
3941 .name = DRV_NAME,
3942 .id_table = ql3xxx_pci_tbl,
3943 .probe = ql3xxx_probe,
3944 .remove = ql3xxx_remove,
3945 };
3946
3947 module_pci_driver(ql3xxx_driver);
This page took 0.16334 seconds and 6 git commands to generate.