regmap: irq: Add support to call client specific pre/post interrupt service
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = -1; /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80 "Option to enable MPI firmware dump. "
81 "Default is OFF - Do Not allocate memory. ");
82
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86 "Option to allow force of firmware core dump. "
87 "Default is OFF - Do not allow.");
88
89 static const struct pci_device_id qlge_pci_tbl[] = {
90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92 /* required last entry */
93 {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102
103 /* This hardware semaphore causes exclusive access to
104 * resources shared between the NIC driver, MPI firmware,
105 * FCOE firmware and the FC driver.
106 */
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109 u32 sem_bits = 0;
110
111 switch (sem_mask) {
112 case SEM_XGMAC0_MASK:
113 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114 break;
115 case SEM_XGMAC1_MASK:
116 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117 break;
118 case SEM_ICB_MASK:
119 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120 break;
121 case SEM_MAC_ADDR_MASK:
122 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123 break;
124 case SEM_FLASH_MASK:
125 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126 break;
127 case SEM_PROBE_MASK:
128 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129 break;
130 case SEM_RT_IDX_MASK:
131 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132 break;
133 case SEM_PROC_REG_MASK:
134 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135 break;
136 default:
137 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138 return -EINVAL;
139 }
140
141 ql_write32(qdev, SEM, sem_bits | sem_mask);
142 return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147 unsigned int wait_count = 30;
148 do {
149 if (!ql_sem_trylock(qdev, sem_mask))
150 return 0;
151 udelay(100);
152 } while (--wait_count);
153 return -ETIMEDOUT;
154 }
155
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158 ql_write32(qdev, SEM, sem_mask);
159 ql_read32(qdev, SEM); /* flush */
160 }
161
162 /* This function waits for a specific bit to come ready
163 * in a given register. It is used mostly by the initialize
164 * process, but is also used in kernel thread API such as
165 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166 */
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169 u32 temp;
170 int count = UDELAY_COUNT;
171
172 while (count) {
173 temp = ql_read32(qdev, reg);
174
175 /* check for errors */
176 if (temp & err_bit) {
177 netif_alert(qdev, probe, qdev->ndev,
178 "register 0x%.08x access error, value = 0x%.08x!.\n",
179 reg, temp);
180 return -EIO;
181 } else if (temp & bit)
182 return 0;
183 udelay(UDELAY_DELAY);
184 count--;
185 }
186 netif_alert(qdev, probe, qdev->ndev,
187 "Timed out waiting for reg %x to come ready.\n", reg);
188 return -ETIMEDOUT;
189 }
190
191 /* The CFG register is used to download TX and RX control blocks
192 * to the chip. This function waits for an operation to complete.
193 */
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196 int count = UDELAY_COUNT;
197 u32 temp;
198
199 while (count) {
200 temp = ql_read32(qdev, CFG);
201 if (temp & CFG_LE)
202 return -EIO;
203 if (!(temp & bit))
204 return 0;
205 udelay(UDELAY_DELAY);
206 count--;
207 }
208 return -ETIMEDOUT;
209 }
210
211
212 /* Used to issue init control blocks to hw. Maps control block,
213 * sets address, triggers download, waits for completion.
214 */
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216 u16 q_id)
217 {
218 u64 map;
219 int status = 0;
220 int direction;
221 u32 mask;
222 u32 value;
223
224 direction =
225 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226 PCI_DMA_FROMDEVICE;
227
228 map = pci_map_single(qdev->pdev, ptr, size, direction);
229 if (pci_dma_mapping_error(qdev->pdev, map)) {
230 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231 return -ENOMEM;
232 }
233
234 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235 if (status)
236 return status;
237
238 status = ql_wait_cfg(qdev, bit);
239 if (status) {
240 netif_err(qdev, ifup, qdev->ndev,
241 "Timed out waiting for CFG to come ready.\n");
242 goto exit;
243 }
244
245 ql_write32(qdev, ICB_L, (u32) map);
246 ql_write32(qdev, ICB_H, (u32) (map >> 32));
247
248 mask = CFG_Q_MASK | (bit << 16);
249 value = bit | (q_id << CFG_Q_SHIFT);
250 ql_write32(qdev, CFG, (mask | value));
251
252 /*
253 * Wait for the bit to clear after signaling hw.
254 */
255 status = ql_wait_cfg(qdev, bit);
256 exit:
257 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
258 pci_unmap_single(qdev->pdev, map, size, direction);
259 return status;
260 }
261
262 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264 u32 *value)
265 {
266 u32 offset = 0;
267 int status;
268
269 switch (type) {
270 case MAC_ADDR_TYPE_MULTI_MAC:
271 case MAC_ADDR_TYPE_CAM_MAC:
272 {
273 status =
274 ql_wait_reg_rdy(qdev,
275 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276 if (status)
277 goto exit;
278 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281 status =
282 ql_wait_reg_rdy(qdev,
283 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284 if (status)
285 goto exit;
286 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287 status =
288 ql_wait_reg_rdy(qdev,
289 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290 if (status)
291 goto exit;
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 status =
296 ql_wait_reg_rdy(qdev,
297 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298 if (status)
299 goto exit;
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 if (type == MAC_ADDR_TYPE_CAM_MAC) {
302 status =
303 ql_wait_reg_rdy(qdev,
304 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305 if (status)
306 goto exit;
307 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310 status =
311 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312 MAC_ADDR_MR, 0);
313 if (status)
314 goto exit;
315 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316 }
317 break;
318 }
319 case MAC_ADDR_TYPE_VLAN:
320 case MAC_ADDR_TYPE_MULTI_FLTR:
321 default:
322 netif_crit(qdev, ifup, qdev->ndev,
323 "Address type %d not yet supported.\n", type);
324 status = -EPERM;
325 }
326 exit:
327 return status;
328 }
329
330 /* Set up a MAC, multicast or VLAN address for the
331 * inbound frame matching.
332 */
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334 u16 index)
335 {
336 u32 offset = 0;
337 int status = 0;
338
339 switch (type) {
340 case MAC_ADDR_TYPE_MULTI_MAC:
341 {
342 u32 upper = (addr[0] << 8) | addr[1];
343 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 (addr[4] << 8) | (addr[5]);
345
346 status =
347 ql_wait_reg_rdy(qdev,
348 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 if (status)
350 goto exit;
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 (index << MAC_ADDR_IDX_SHIFT) |
353 type | MAC_ADDR_E);
354 ql_write32(qdev, MAC_ADDR_DATA, lower);
355 status =
356 ql_wait_reg_rdy(qdev,
357 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 if (status)
359 goto exit;
360 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 (index << MAC_ADDR_IDX_SHIFT) |
362 type | MAC_ADDR_E);
363
364 ql_write32(qdev, MAC_ADDR_DATA, upper);
365 status =
366 ql_wait_reg_rdy(qdev,
367 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368 if (status)
369 goto exit;
370 break;
371 }
372 case MAC_ADDR_TYPE_CAM_MAC:
373 {
374 u32 cam_output;
375 u32 upper = (addr[0] << 8) | addr[1];
376 u32 lower =
377 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378 (addr[5]);
379 status =
380 ql_wait_reg_rdy(qdev,
381 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382 if (status)
383 goto exit;
384 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 type); /* type */
387 ql_write32(qdev, MAC_ADDR_DATA, lower);
388 status =
389 ql_wait_reg_rdy(qdev,
390 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391 if (status)
392 goto exit;
393 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 type); /* type */
396 ql_write32(qdev, MAC_ADDR_DATA, upper);
397 status =
398 ql_wait_reg_rdy(qdev,
399 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400 if (status)
401 goto exit;
402 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
403 (index << MAC_ADDR_IDX_SHIFT) | /* index */
404 type); /* type */
405 /* This field should also include the queue id
406 and possibly the function id. Right now we hardcode
407 the route field to NIC core.
408 */
409 cam_output = (CAM_OUT_ROUTE_NIC |
410 (qdev->
411 func << CAM_OUT_FUNC_SHIFT) |
412 (0 << CAM_OUT_CQ_ID_SHIFT));
413 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414 cam_output |= CAM_OUT_RV;
415 /* route to NIC core */
416 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417 break;
418 }
419 case MAC_ADDR_TYPE_VLAN:
420 {
421 u32 enable_bit = *((u32 *) &addr[0]);
422 /* For VLAN, the addr actually holds a bit that
423 * either enables or disables the vlan id we are
424 * addressing. It's either MAC_ADDR_E on or off.
425 * That's bit-27 we're talking about.
426 */
427 status =
428 ql_wait_reg_rdy(qdev,
429 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430 if (status)
431 goto exit;
432 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433 (index << MAC_ADDR_IDX_SHIFT) | /* index */
434 type | /* type */
435 enable_bit); /* enable/disable */
436 break;
437 }
438 case MAC_ADDR_TYPE_MULTI_FLTR:
439 default:
440 netif_crit(qdev, ifup, qdev->ndev,
441 "Address type %d not yet supported.\n", type);
442 status = -EPERM;
443 }
444 exit:
445 return status;
446 }
447
448 /* Set or clear MAC address in hardware. We sometimes
449 * have to clear it to prevent wrong frame routing
450 * especially in a bonding environment.
451 */
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454 int status;
455 char zero_mac_addr[ETH_ALEN];
456 char *addr;
457
458 if (set) {
459 addr = &qdev->current_mac_addr[0];
460 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 "Set Mac addr %pM\n", addr);
462 } else {
463 eth_zero_addr(zero_mac_addr);
464 addr = &zero_mac_addr[0];
465 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 "Clearing MAC address\n");
467 }
468 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469 if (status)
470 return status;
471 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474 if (status)
475 netif_err(qdev, ifup, qdev->ndev,
476 "Failed to init mac address.\n");
477 return status;
478 }
479
480 void ql_link_on(struct ql_adapter *qdev)
481 {
482 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483 netif_carrier_on(qdev->ndev);
484 ql_set_mac_addr(qdev, 1);
485 }
486
487 void ql_link_off(struct ql_adapter *qdev)
488 {
489 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490 netif_carrier_off(qdev->ndev);
491 ql_set_mac_addr(qdev, 0);
492 }
493
494 /* Get a specific frame routing value from the CAM.
495 * Used for debug and reg dump.
496 */
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499 int status = 0;
500
501 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502 if (status)
503 goto exit;
504
505 ql_write32(qdev, RT_IDX,
506 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508 if (status)
509 goto exit;
510 *value = ql_read32(qdev, RT_DATA);
511 exit:
512 return status;
513 }
514
515 /* The NIC function for this chip has 16 routing indexes. Each one can be used
516 * to route different frame types to various inbound queues. We send broadcast/
517 * multicast/error frames to the default queue for slow handling,
518 * and CAM hit/RSS frames to the fast handling queues.
519 */
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521 int enable)
522 {
523 int status = -EINVAL; /* Return error if no mask match. */
524 u32 value = 0;
525
526 switch (mask) {
527 case RT_IDX_CAM_HIT:
528 {
529 value = RT_IDX_DST_CAM_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 break;
533 }
534 case RT_IDX_VALID: /* Promiscuous Mode frames. */
535 {
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 break;
540 }
541 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
542 {
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 break;
547 }
548 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549 {
550 value = RT_IDX_DST_DFLT_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_IP_CSUM_ERR_SLOT <<
553 RT_IDX_IDX_SHIFT); /* index */
554 break;
555 }
556 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557 {
558 value = RT_IDX_DST_DFLT_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 RT_IDX_IDX_SHIFT); /* index */
562 break;
563 }
564 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
565 {
566 value = RT_IDX_DST_DFLT_Q | /* dest */
567 RT_IDX_TYPE_NICQ | /* type */
568 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 break;
570 }
571 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
572 {
573 value = RT_IDX_DST_DFLT_Q | /* dest */
574 RT_IDX_TYPE_NICQ | /* type */
575 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 break;
577 }
578 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
579 {
580 value = RT_IDX_DST_DFLT_Q | /* dest */
581 RT_IDX_TYPE_NICQ | /* type */
582 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 break;
584 }
585 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
586 {
587 value = RT_IDX_DST_RSS | /* dest */
588 RT_IDX_TYPE_NICQ | /* type */
589 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 break;
591 }
592 case 0: /* Clear the E-bit on an entry. */
593 {
594 value = RT_IDX_DST_DFLT_Q | /* dest */
595 RT_IDX_TYPE_NICQ | /* type */
596 (index << RT_IDX_IDX_SHIFT);/* index */
597 break;
598 }
599 default:
600 netif_err(qdev, ifup, qdev->ndev,
601 "Mask type %d not yet supported.\n", mask);
602 status = -EPERM;
603 goto exit;
604 }
605
606 if (value) {
607 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608 if (status)
609 goto exit;
610 value |= (enable ? RT_IDX_E : 0);
611 ql_write32(qdev, RT_IDX, value);
612 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613 }
614 exit:
615 return status;
616 }
617
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629 * Otherwise, we may have multiple outstanding workers and don't want to
630 * enable until the last one finishes. In this case, the irq_cnt gets
631 * incremented every time we queue a worker and decremented every time
632 * a worker finishes. Once it hits zero we enable the interrupt.
633 */
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636 u32 var = 0;
637 unsigned long hw_flags = 0;
638 struct intr_context *ctx = qdev->intr_context + intr;
639
640 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 /* Always enable if we're MSIX multi interrupts and
642 * it's not the default (zeroeth) interrupt.
643 */
644 ql_write32(qdev, INTR_EN,
645 ctx->intr_en_mask);
646 var = ql_read32(qdev, STS);
647 return var;
648 }
649
650 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 ql_write32(qdev, INTR_EN,
653 ctx->intr_en_mask);
654 var = ql_read32(qdev, STS);
655 }
656 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657 return var;
658 }
659
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662 u32 var = 0;
663 struct intr_context *ctx;
664
665 /* HW disables for us if we're MSIX multi interrupts and
666 * it's not the default (zeroeth) interrupt.
667 */
668 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669 return 0;
670
671 ctx = qdev->intr_context + intr;
672 spin_lock(&qdev->hw_lock);
673 if (!atomic_read(&ctx->irq_cnt)) {
674 ql_write32(qdev, INTR_EN,
675 ctx->intr_dis_mask);
676 var = ql_read32(qdev, STS);
677 }
678 atomic_inc(&ctx->irq_cnt);
679 spin_unlock(&qdev->hw_lock);
680 return var;
681 }
682
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685 int i;
686 for (i = 0; i < qdev->intr_count; i++) {
687 /* The enable call does a atomic_dec_and_test
688 * and enables only if the result is zero.
689 * So we precharge it here.
690 */
691 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692 i == 0))
693 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694 ql_enable_completion_interrupt(qdev, i);
695 }
696
697 }
698
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701 int status, i;
702 u16 csum = 0;
703 __le16 *flash = (__le16 *)&qdev->flash;
704
705 status = strncmp((char *)&qdev->flash, str, 4);
706 if (status) {
707 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708 return status;
709 }
710
711 for (i = 0; i < size; i++)
712 csum += le16_to_cpu(*flash++);
713
714 if (csum)
715 netif_err(qdev, ifup, qdev->ndev,
716 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717
718 return csum;
719 }
720
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723 int status = 0;
724 /* wait for reg to come ready */
725 status = ql_wait_reg_rdy(qdev,
726 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727 if (status)
728 goto exit;
729 /* set up for reg read */
730 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 /* wait for reg to come ready */
732 status = ql_wait_reg_rdy(qdev,
733 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 if (status)
735 goto exit;
736 /* This data is stored on flash as an array of
737 * __le32. Since ql_read32() returns cpu endian
738 * we need to swap it back.
739 */
740 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742 return status;
743 }
744
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747 u32 i, size;
748 int status;
749 __le32 *p = (__le32 *)&qdev->flash;
750 u32 offset;
751 u8 mac_addr[6];
752
753 /* Get flash offset for function and adjust
754 * for dword access.
755 */
756 if (!qdev->port)
757 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758 else
759 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762 return -ETIMEDOUT;
763
764 size = sizeof(struct flash_params_8000) / sizeof(u32);
765 for (i = 0; i < size; i++, p++) {
766 status = ql_read_flash_word(qdev, i+offset, p);
767 if (status) {
768 netif_err(qdev, ifup, qdev->ndev,
769 "Error reading flash.\n");
770 goto exit;
771 }
772 }
773
774 status = ql_validate_flash(qdev,
775 sizeof(struct flash_params_8000) / sizeof(u16),
776 "8000");
777 if (status) {
778 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779 status = -EINVAL;
780 goto exit;
781 }
782
783 /* Extract either manufacturer or BOFM modified
784 * MAC address.
785 */
786 if (qdev->flash.flash_params_8000.data_type1 == 2)
787 memcpy(mac_addr,
788 qdev->flash.flash_params_8000.mac_addr1,
789 qdev->ndev->addr_len);
790 else
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr,
793 qdev->ndev->addr_len);
794
795 if (!is_valid_ether_addr(mac_addr)) {
796 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797 status = -EINVAL;
798 goto exit;
799 }
800
801 memcpy(qdev->ndev->dev_addr,
802 mac_addr,
803 qdev->ndev->addr_len);
804
805 exit:
806 ql_sem_unlock(qdev, SEM_FLASH_MASK);
807 return status;
808 }
809
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812 int i;
813 int status;
814 __le32 *p = (__le32 *)&qdev->flash;
815 u32 offset = 0;
816 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817
818 /* Second function's parameters follow the first
819 * function's.
820 */
821 if (qdev->port)
822 offset = size;
823
824 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825 return -ETIMEDOUT;
826
827 for (i = 0; i < size; i++, p++) {
828 status = ql_read_flash_word(qdev, i+offset, p);
829 if (status) {
830 netif_err(qdev, ifup, qdev->ndev,
831 "Error reading flash.\n");
832 goto exit;
833 }
834
835 }
836
837 status = ql_validate_flash(qdev,
838 sizeof(struct flash_params_8012) / sizeof(u16),
839 "8012");
840 if (status) {
841 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842 status = -EINVAL;
843 goto exit;
844 }
845
846 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847 status = -EINVAL;
848 goto exit;
849 }
850
851 memcpy(qdev->ndev->dev_addr,
852 qdev->flash.flash_params_8012.mac_addr,
853 qdev->ndev->addr_len);
854
855 exit:
856 ql_sem_unlock(qdev, SEM_FLASH_MASK);
857 return status;
858 }
859
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861 * register pair. Each read/write requires us to wait for the ready
862 * bit before reading/writing the data.
863 */
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866 int status;
867 /* wait for reg to come ready */
868 status = ql_wait_reg_rdy(qdev,
869 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870 if (status)
871 return status;
872 /* write the data to the data reg */
873 ql_write32(qdev, XGMAC_DATA, data);
874 /* trigger the write */
875 ql_write32(qdev, XGMAC_ADDR, reg);
876 return status;
877 }
878
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880 * register pair. Each read/write requires us to wait for the ready
881 * bit before reading/writing the data.
882 */
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885 int status = 0;
886 /* wait for reg to come ready */
887 status = ql_wait_reg_rdy(qdev,
888 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889 if (status)
890 goto exit;
891 /* set up for reg read */
892 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 /* wait for reg to come ready */
894 status = ql_wait_reg_rdy(qdev,
895 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896 if (status)
897 goto exit;
898 /* get the data */
899 *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901 return status;
902 }
903
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907 int status = 0;
908 u32 hi = 0;
909 u32 lo = 0;
910
911 status = ql_read_xgmac_reg(qdev, reg, &lo);
912 if (status)
913 goto exit;
914
915 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916 if (status)
917 goto exit;
918
919 *data = (u64) lo | ((u64) hi << 32);
920
921 exit:
922 return status;
923 }
924
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927 int status;
928 /*
929 * Get MPI firmware version for driver banner
930 * and ethool info.
931 */
932 status = ql_mb_about_fw(qdev);
933 if (status)
934 goto exit;
935 status = ql_mb_get_fw_state(qdev);
936 if (status)
937 goto exit;
938 /* Wake up a worker to get/set the TX/RX frame sizes. */
939 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941 return status;
942 }
943
944 /* Take the MAC Core out of reset.
945 * Enable statistics counting.
946 * Take the transmitter/receiver out of reset.
947 * This functionality may be done in the MPI firmware at a
948 * later date.
949 */
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952 int status = 0;
953 u32 data;
954
955 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 /* Another function has the semaphore, so
957 * wait for the port init bit to come ready.
958 */
959 netif_info(qdev, link, qdev->ndev,
960 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962 if (status) {
963 netif_crit(qdev, link, qdev->ndev,
964 "Port initialize timed out.\n");
965 }
966 return status;
967 }
968
969 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970 /* Set the core reset. */
971 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972 if (status)
973 goto end;
974 data |= GLOBAL_CFG_RESET;
975 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976 if (status)
977 goto end;
978
979 /* Clear the core reset and turn on jumbo for receiver. */
980 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
981 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
982 data |= GLOBAL_CFG_TX_STAT_EN;
983 data |= GLOBAL_CFG_RX_STAT_EN;
984 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985 if (status)
986 goto end;
987
988 /* Enable transmitter, and clear it's reset. */
989 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990 if (status)
991 goto end;
992 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
993 data |= TX_CFG_EN; /* Enable the transmitter. */
994 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995 if (status)
996 goto end;
997
998 /* Enable receiver and clear it's reset. */
999 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000 if (status)
1001 goto end;
1002 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1003 data |= RX_CFG_EN; /* Enable the receiver. */
1004 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005 if (status)
1006 goto end;
1007
1008 /* Turn on jumbo. */
1009 status =
1010 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011 if (status)
1012 goto end;
1013 status =
1014 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015 if (status)
1016 goto end;
1017
1018 /* Signal to the world that the port is enabled. */
1019 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022 return status;
1023 }
1024
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027 return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 rx_ring->lbq_curr_idx++;
1035 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 rx_ring->lbq_curr_idx = 0;
1037 rx_ring->lbq_free_cnt++;
1038 return lbq_desc;
1039 }
1040
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 struct rx_ring *rx_ring)
1043 {
1044 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046 pci_dma_sync_single_for_cpu(qdev->pdev,
1047 dma_unmap_addr(lbq_desc, mapaddr),
1048 rx_ring->lbq_buf_size,
1049 PCI_DMA_FROMDEVICE);
1050
1051 /* If it's the last chunk of our master page then
1052 * we unmap it.
1053 */
1054 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 == ql_lbq_block_size(qdev))
1056 pci_unmap_page(qdev->pdev,
1057 lbq_desc->p.pg_chunk.map,
1058 ql_lbq_block_size(qdev),
1059 PCI_DMA_FROMDEVICE);
1060 return lbq_desc;
1061 }
1062
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 rx_ring->sbq_curr_idx++;
1068 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 rx_ring->sbq_curr_idx = 0;
1070 rx_ring->sbq_free_cnt++;
1071 return sbq_desc;
1072 }
1073
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077 rx_ring->cnsmr_idx++;
1078 rx_ring->curr_entry++;
1079 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 rx_ring->cnsmr_idx = 0;
1081 rx_ring->curr_entry = rx_ring->cq_base;
1082 }
1083 }
1084
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 struct bq_desc *lbq_desc)
1092 {
1093 if (!rx_ring->pg_chunk.page) {
1094 u64 map;
1095 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096 GFP_ATOMIC,
1097 qdev->lbq_buf_order);
1098 if (unlikely(!rx_ring->pg_chunk.page)) {
1099 netif_err(qdev, drv, qdev->ndev,
1100 "page allocation failed.\n");
1101 return -ENOMEM;
1102 }
1103 rx_ring->pg_chunk.offset = 0;
1104 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105 0, ql_lbq_block_size(qdev),
1106 PCI_DMA_FROMDEVICE);
1107 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108 __free_pages(rx_ring->pg_chunk.page,
1109 qdev->lbq_buf_order);
1110 rx_ring->pg_chunk.page = NULL;
1111 netif_err(qdev, drv, qdev->ndev,
1112 "PCI mapping failed.\n");
1113 return -ENOMEM;
1114 }
1115 rx_ring->pg_chunk.map = map;
1116 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117 }
1118
1119 /* Copy the current master pg_chunk info
1120 * to the current descriptor.
1121 */
1122 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123
1124 /* Adjust the master page chunk for next
1125 * buffer get.
1126 */
1127 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129 rx_ring->pg_chunk.page = NULL;
1130 lbq_desc->p.pg_chunk.last_flag = 1;
1131 } else {
1132 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133 get_page(rx_ring->pg_chunk.page);
1134 lbq_desc->p.pg_chunk.last_flag = 0;
1135 }
1136 return 0;
1137 }
1138 /* Process (refill) a large buffer queue. */
1139 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140 {
1141 u32 clean_idx = rx_ring->lbq_clean_idx;
1142 u32 start_idx = clean_idx;
1143 struct bq_desc *lbq_desc;
1144 u64 map;
1145 int i;
1146
1147 while (rx_ring->lbq_free_cnt > 32) {
1148 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1149 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150 "lbq: try cleaning clean_idx = %d.\n",
1151 clean_idx);
1152 lbq_desc = &rx_ring->lbq[clean_idx];
1153 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1154 rx_ring->lbq_clean_idx = clean_idx;
1155 netif_err(qdev, ifup, qdev->ndev,
1156 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157 i, clean_idx);
1158 return;
1159 }
1160
1161 map = lbq_desc->p.pg_chunk.map +
1162 lbq_desc->p.pg_chunk.offset;
1163 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164 dma_unmap_len_set(lbq_desc, maplen,
1165 rx_ring->lbq_buf_size);
1166 *lbq_desc->addr = cpu_to_le64(map);
1167
1168 pci_dma_sync_single_for_device(qdev->pdev, map,
1169 rx_ring->lbq_buf_size,
1170 PCI_DMA_FROMDEVICE);
1171 clean_idx++;
1172 if (clean_idx == rx_ring->lbq_len)
1173 clean_idx = 0;
1174 }
1175
1176 rx_ring->lbq_clean_idx = clean_idx;
1177 rx_ring->lbq_prod_idx += 16;
1178 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179 rx_ring->lbq_prod_idx = 0;
1180 rx_ring->lbq_free_cnt -= 16;
1181 }
1182
1183 if (start_idx != clean_idx) {
1184 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185 "lbq: updating prod idx = %d.\n",
1186 rx_ring->lbq_prod_idx);
1187 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188 rx_ring->lbq_prod_idx_db_reg);
1189 }
1190 }
1191
1192 /* Process (refill) a small buffer queue. */
1193 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194 {
1195 u32 clean_idx = rx_ring->sbq_clean_idx;
1196 u32 start_idx = clean_idx;
1197 struct bq_desc *sbq_desc;
1198 u64 map;
1199 int i;
1200
1201 while (rx_ring->sbq_free_cnt > 16) {
1202 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1203 sbq_desc = &rx_ring->sbq[clean_idx];
1204 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205 "sbq: try cleaning clean_idx = %d.\n",
1206 clean_idx);
1207 if (sbq_desc->p.skb == NULL) {
1208 netif_printk(qdev, rx_status, KERN_DEBUG,
1209 qdev->ndev,
1210 "sbq: getting new skb for index %d.\n",
1211 sbq_desc->index);
1212 sbq_desc->p.skb =
1213 netdev_alloc_skb(qdev->ndev,
1214 SMALL_BUFFER_SIZE);
1215 if (sbq_desc->p.skb == NULL) {
1216 rx_ring->sbq_clean_idx = clean_idx;
1217 return;
1218 }
1219 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 map = pci_map_single(qdev->pdev,
1221 sbq_desc->p.skb->data,
1222 rx_ring->sbq_buf_size,
1223 PCI_DMA_FROMDEVICE);
1224 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225 netif_err(qdev, ifup, qdev->ndev,
1226 "PCI mapping failed.\n");
1227 rx_ring->sbq_clean_idx = clean_idx;
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
1230 return;
1231 }
1232 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 dma_unmap_len_set(sbq_desc, maplen,
1234 rx_ring->sbq_buf_size);
1235 *sbq_desc->addr = cpu_to_le64(map);
1236 }
1237
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1241 }
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
1246 rx_ring->sbq_free_cnt -= 16;
1247 }
1248
1249 if (start_idx != clean_idx) {
1250 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
1255 }
1256 }
1257
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1260 {
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1263 }
1264
1265 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1274 /*
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1282 */
1283 if (i == 7) {
1284 netif_printk(qdev, tx_done, KERN_DEBUG,
1285 qdev->ndev,
1286 "unmapping OAL area.\n");
1287 }
1288 pci_unmap_single(qdev->pdev,
1289 dma_unmap_addr(&tx_ring_desc->map[i],
1290 mapaddr),
1291 dma_unmap_len(&tx_ring_desc->map[i],
1292 maplen),
1293 PCI_DMA_TODEVICE);
1294 } else {
1295 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 "unmapping frag %d.\n", i);
1297 pci_unmap_page(qdev->pdev,
1298 dma_unmap_addr(&tx_ring_desc->map[i],
1299 mapaddr),
1300 dma_unmap_len(&tx_ring_desc->map[i],
1301 maplen), PCI_DMA_TODEVICE);
1302 }
1303 }
1304
1305 }
1306
1307 /* Map the buffers for this transmit. This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309 */
1310 static int ql_map_send(struct ql_adapter *qdev,
1311 struct ob_mac_iocb_req *mac_iocb_ptr,
1312 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314 int len = skb_headlen(skb);
1315 dma_addr_t map;
1316 int frag_idx, err, map_idx = 0;
1317 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320 if (frag_cnt) {
1321 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 "frag_cnt = %d.\n", frag_cnt);
1323 }
1324 /*
1325 * Map the skb buffer first.
1326 */
1327 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329 err = pci_dma_mapping_error(qdev->pdev, map);
1330 if (err) {
1331 netif_err(qdev, tx_queued, qdev->ndev,
1332 "PCI mapping failed with error: %d\n", err);
1333
1334 return NETDEV_TX_BUSY;
1335 }
1336
1337 tbd->len = cpu_to_le32(len);
1338 tbd->addr = cpu_to_le64(map);
1339 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341 map_idx++;
1342
1343 /*
1344 * This loop fills the remainder of the 8 address descriptors
1345 * in the IOCB. If there are more than 7 fragments, then the
1346 * eighth address desc will point to an external list (OAL).
1347 * When this happens, the remainder of the frags will be stored
1348 * in this list.
1349 */
1350 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 tbd++;
1353 if (frag_idx == 6 && frag_cnt > 7) {
1354 /* Let's tack on an sglist.
1355 * Our control block will now
1356 * look like this:
1357 * iocb->seg[0] = skb->data
1358 * iocb->seg[1] = frag[0]
1359 * iocb->seg[2] = frag[1]
1360 * iocb->seg[3] = frag[2]
1361 * iocb->seg[4] = frag[3]
1362 * iocb->seg[5] = frag[4]
1363 * iocb->seg[6] = frag[5]
1364 * iocb->seg[7] = ptr to OAL (external sglist)
1365 * oal->seg[0] = frag[6]
1366 * oal->seg[1] = frag[7]
1367 * oal->seg[2] = frag[8]
1368 * oal->seg[3] = frag[9]
1369 * oal->seg[4] = frag[10]
1370 * etc...
1371 */
1372 /* Tack on the OAL in the eighth segment of IOCB. */
1373 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 sizeof(struct oal),
1375 PCI_DMA_TODEVICE);
1376 err = pci_dma_mapping_error(qdev->pdev, map);
1377 if (err) {
1378 netif_err(qdev, tx_queued, qdev->ndev,
1379 "PCI mapping outbound address list with error: %d\n",
1380 err);
1381 goto map_error;
1382 }
1383
1384 tbd->addr = cpu_to_le64(map);
1385 /*
1386 * The length is the number of fragments
1387 * that remain to be mapped times the length
1388 * of our sglist (OAL).
1389 */
1390 tbd->len =
1391 cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 (frag_cnt - frag_idx)) | TX_DESC_C);
1393 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394 map);
1395 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396 sizeof(struct oal));
1397 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 map_idx++;
1399 }
1400
1401 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402 DMA_TO_DEVICE);
1403
1404 err = dma_mapping_error(&qdev->pdev->dev, map);
1405 if (err) {
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
1413 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416 skb_frag_size(frag));
1417
1418 }
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1424
1425 map_error:
1426 /*
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1431 */
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1434 }
1435
1436 /* Categorizing receive firmware frame errors */
1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438 struct rx_ring *rx_ring)
1439 {
1440 struct nic_stats *stats = &qdev->nic_stats;
1441
1442 stats->rx_err_count++;
1443 rx_ring->rx_errors++;
1444
1445 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447 stats->rx_code_err++;
1448 break;
1449 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450 stats->rx_oversize_err++;
1451 break;
1452 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453 stats->rx_undersize_err++;
1454 break;
1455 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456 stats->rx_preamble_err++;
1457 break;
1458 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459 stats->rx_frame_len_err++;
1460 break;
1461 case IB_MAC_IOCB_RSP_ERR_CRC:
1462 stats->rx_crc_err++;
1463 default:
1464 break;
1465 }
1466 }
1467
1468 /**
1469 * ql_update_mac_hdr_len - helper routine to update the mac header length
1470 * based on vlan tags if present
1471 */
1472 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473 struct ib_mac_iocb_rsp *ib_mac_rsp,
1474 void *page, size_t *len)
1475 {
1476 u16 *tags;
1477
1478 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479 return;
1480 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481 tags = (u16 *)page;
1482 /* Look for stacked vlan tags in ethertype field */
1483 if (tags[6] == ETH_P_8021Q &&
1484 tags[8] == ETH_P_8021Q)
1485 *len += 2 * VLAN_HLEN;
1486 else
1487 *len += VLAN_HLEN;
1488 }
1489 }
1490
1491 /* Process an inbound completion from an rx ring. */
1492 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493 struct rx_ring *rx_ring,
1494 struct ib_mac_iocb_rsp *ib_mac_rsp,
1495 u32 length,
1496 u16 vlan_id)
1497 {
1498 struct sk_buff *skb;
1499 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1500 struct napi_struct *napi = &rx_ring->napi;
1501
1502 /* Frame error, so drop the packet. */
1503 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505 put_page(lbq_desc->p.pg_chunk.page);
1506 return;
1507 }
1508 napi->dev = qdev->ndev;
1509
1510 skb = napi_get_frags(napi);
1511 if (!skb) {
1512 netif_err(qdev, drv, qdev->ndev,
1513 "Couldn't get an skb, exiting.\n");
1514 rx_ring->rx_dropped++;
1515 put_page(lbq_desc->p.pg_chunk.page);
1516 return;
1517 }
1518 prefetch(lbq_desc->p.pg_chunk.va);
1519 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520 lbq_desc->p.pg_chunk.page,
1521 lbq_desc->p.pg_chunk.offset,
1522 length);
1523
1524 skb->len += length;
1525 skb->data_len += length;
1526 skb->truesize += length;
1527 skb_shinfo(skb)->nr_frags++;
1528
1529 rx_ring->rx_packets++;
1530 rx_ring->rx_bytes += length;
1531 skb->ip_summed = CHECKSUM_UNNECESSARY;
1532 skb_record_rx_queue(skb, rx_ring->cq_id);
1533 if (vlan_id != 0xffff)
1534 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1535 napi_gro_frags(napi);
1536 }
1537
1538 /* Process an inbound completion from an rx ring. */
1539 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540 struct rx_ring *rx_ring,
1541 struct ib_mac_iocb_rsp *ib_mac_rsp,
1542 u32 length,
1543 u16 vlan_id)
1544 {
1545 struct net_device *ndev = qdev->ndev;
1546 struct sk_buff *skb = NULL;
1547 void *addr;
1548 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549 struct napi_struct *napi = &rx_ring->napi;
1550 size_t hlen = ETH_HLEN;
1551
1552 skb = netdev_alloc_skb(ndev, length);
1553 if (!skb) {
1554 rx_ring->rx_dropped++;
1555 put_page(lbq_desc->p.pg_chunk.page);
1556 return;
1557 }
1558
1559 addr = lbq_desc->p.pg_chunk.va;
1560 prefetch(addr);
1561
1562 /* Frame error, so drop the packet. */
1563 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565 goto err_out;
1566 }
1567
1568 /* Update the MAC header length*/
1569 ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570
1571 /* The max framesize filter on this chip is set higher than
1572 * MTU since FCoE uses 2k frames.
1573 */
1574 if (skb->len > ndev->mtu + hlen) {
1575 netif_err(qdev, drv, qdev->ndev,
1576 "Segment too small, dropping.\n");
1577 rx_ring->rx_dropped++;
1578 goto err_out;
1579 }
1580 memcpy(skb_put(skb, hlen), addr, hlen);
1581 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583 length);
1584 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1585 lbq_desc->p.pg_chunk.offset + hlen,
1586 length - hlen);
1587 skb->len += length - hlen;
1588 skb->data_len += length - hlen;
1589 skb->truesize += length - hlen;
1590
1591 rx_ring->rx_packets++;
1592 rx_ring->rx_bytes += skb->len;
1593 skb->protocol = eth_type_trans(skb, ndev);
1594 skb_checksum_none_assert(skb);
1595
1596 if ((ndev->features & NETIF_F_RXCSUM) &&
1597 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598 /* TCP frame. */
1599 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1600 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601 "TCP checksum done!\n");
1602 skb->ip_summed = CHECKSUM_UNNECESSARY;
1603 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605 /* Unfragmented ipv4 UDP frame. */
1606 struct iphdr *iph =
1607 (struct iphdr *)((u8 *)addr + hlen);
1608 if (!(iph->frag_off &
1609 htons(IP_MF|IP_OFFSET))) {
1610 skb->ip_summed = CHECKSUM_UNNECESSARY;
1611 netif_printk(qdev, rx_status, KERN_DEBUG,
1612 qdev->ndev,
1613 "UDP checksum done!\n");
1614 }
1615 }
1616 }
1617
1618 skb_record_rx_queue(skb, rx_ring->cq_id);
1619 if (vlan_id != 0xffff)
1620 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1621 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622 napi_gro_receive(napi, skb);
1623 else
1624 netif_receive_skb(skb);
1625 return;
1626 err_out:
1627 dev_kfree_skb_any(skb);
1628 put_page(lbq_desc->p.pg_chunk.page);
1629 }
1630
1631 /* Process an inbound completion from an rx ring. */
1632 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633 struct rx_ring *rx_ring,
1634 struct ib_mac_iocb_rsp *ib_mac_rsp,
1635 u32 length,
1636 u16 vlan_id)
1637 {
1638 struct net_device *ndev = qdev->ndev;
1639 struct sk_buff *skb = NULL;
1640 struct sk_buff *new_skb = NULL;
1641 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642
1643 skb = sbq_desc->p.skb;
1644 /* Allocate new_skb and copy */
1645 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646 if (new_skb == NULL) {
1647 rx_ring->rx_dropped++;
1648 return;
1649 }
1650 skb_reserve(new_skb, NET_IP_ALIGN);
1651
1652 pci_dma_sync_single_for_cpu(qdev->pdev,
1653 dma_unmap_addr(sbq_desc, mapaddr),
1654 dma_unmap_len(sbq_desc, maplen),
1655 PCI_DMA_FROMDEVICE);
1656
1657 memcpy(skb_put(new_skb, length), skb->data, length);
1658
1659 pci_dma_sync_single_for_device(qdev->pdev,
1660 dma_unmap_addr(sbq_desc, mapaddr),
1661 dma_unmap_len(sbq_desc, maplen),
1662 PCI_DMA_FROMDEVICE);
1663 skb = new_skb;
1664
1665 /* Frame error, so drop the packet. */
1666 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1667 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1668 dev_kfree_skb_any(skb);
1669 return;
1670 }
1671
1672 /* loopback self test for ethtool */
1673 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1674 ql_check_lb_frame(qdev, skb);
1675 dev_kfree_skb_any(skb);
1676 return;
1677 }
1678
1679 /* The max framesize filter on this chip is set higher than
1680 * MTU since FCoE uses 2k frames.
1681 */
1682 if (skb->len > ndev->mtu + ETH_HLEN) {
1683 dev_kfree_skb_any(skb);
1684 rx_ring->rx_dropped++;
1685 return;
1686 }
1687
1688 prefetch(skb->data);
1689 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1690 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1691 "%s Multicast.\n",
1692 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1693 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1694 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1695 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1696 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1697 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1698 }
1699 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1700 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1701 "Promiscuous Packet.\n");
1702
1703 rx_ring->rx_packets++;
1704 rx_ring->rx_bytes += skb->len;
1705 skb->protocol = eth_type_trans(skb, ndev);
1706 skb_checksum_none_assert(skb);
1707
1708 /* If rx checksum is on, and there are no
1709 * csum or frame errors.
1710 */
1711 if ((ndev->features & NETIF_F_RXCSUM) &&
1712 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1713 /* TCP frame. */
1714 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1715 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1716 "TCP checksum done!\n");
1717 skb->ip_summed = CHECKSUM_UNNECESSARY;
1718 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1719 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1720 /* Unfragmented ipv4 UDP frame. */
1721 struct iphdr *iph = (struct iphdr *) skb->data;
1722 if (!(iph->frag_off &
1723 htons(IP_MF|IP_OFFSET))) {
1724 skb->ip_summed = CHECKSUM_UNNECESSARY;
1725 netif_printk(qdev, rx_status, KERN_DEBUG,
1726 qdev->ndev,
1727 "UDP checksum done!\n");
1728 }
1729 }
1730 }
1731
1732 skb_record_rx_queue(skb, rx_ring->cq_id);
1733 if (vlan_id != 0xffff)
1734 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1735 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1736 napi_gro_receive(&rx_ring->napi, skb);
1737 else
1738 netif_receive_skb(skb);
1739 }
1740
1741 static void ql_realign_skb(struct sk_buff *skb, int len)
1742 {
1743 void *temp_addr = skb->data;
1744
1745 /* Undo the skb_reserve(skb,32) we did before
1746 * giving to hardware, and realign data on
1747 * a 2-byte boundary.
1748 */
1749 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1750 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1751 skb_copy_to_linear_data(skb, temp_addr,
1752 (unsigned int)len);
1753 }
1754
1755 /*
1756 * This function builds an skb for the given inbound
1757 * completion. It will be rewritten for readability in the near
1758 * future, but for not it works well.
1759 */
1760 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1761 struct rx_ring *rx_ring,
1762 struct ib_mac_iocb_rsp *ib_mac_rsp)
1763 {
1764 struct bq_desc *lbq_desc;
1765 struct bq_desc *sbq_desc;
1766 struct sk_buff *skb = NULL;
1767 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1768 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1769 size_t hlen = ETH_HLEN;
1770
1771 /*
1772 * Handle the header buffer if present.
1773 */
1774 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1775 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1776 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1777 "Header of %d bytes in small buffer.\n", hdr_len);
1778 /*
1779 * Headers fit nicely into a small buffer.
1780 */
1781 sbq_desc = ql_get_curr_sbuf(rx_ring);
1782 pci_unmap_single(qdev->pdev,
1783 dma_unmap_addr(sbq_desc, mapaddr),
1784 dma_unmap_len(sbq_desc, maplen),
1785 PCI_DMA_FROMDEVICE);
1786 skb = sbq_desc->p.skb;
1787 ql_realign_skb(skb, hdr_len);
1788 skb_put(skb, hdr_len);
1789 sbq_desc->p.skb = NULL;
1790 }
1791
1792 /*
1793 * Handle the data buffer(s).
1794 */
1795 if (unlikely(!length)) { /* Is there data too? */
1796 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1797 "No Data buffer in this packet.\n");
1798 return skb;
1799 }
1800
1801 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1802 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1803 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1804 "Headers in small, data of %d bytes in small, combine them.\n",
1805 length);
1806 /*
1807 * Data is less than small buffer size so it's
1808 * stuffed in a small buffer.
1809 * For this case we append the data
1810 * from the "data" small buffer to the "header" small
1811 * buffer.
1812 */
1813 sbq_desc = ql_get_curr_sbuf(rx_ring);
1814 pci_dma_sync_single_for_cpu(qdev->pdev,
1815 dma_unmap_addr
1816 (sbq_desc, mapaddr),
1817 dma_unmap_len
1818 (sbq_desc, maplen),
1819 PCI_DMA_FROMDEVICE);
1820 memcpy(skb_put(skb, length),
1821 sbq_desc->p.skb->data, length);
1822 pci_dma_sync_single_for_device(qdev->pdev,
1823 dma_unmap_addr
1824 (sbq_desc,
1825 mapaddr),
1826 dma_unmap_len
1827 (sbq_desc,
1828 maplen),
1829 PCI_DMA_FROMDEVICE);
1830 } else {
1831 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1832 "%d bytes in a single small buffer.\n",
1833 length);
1834 sbq_desc = ql_get_curr_sbuf(rx_ring);
1835 skb = sbq_desc->p.skb;
1836 ql_realign_skb(skb, length);
1837 skb_put(skb, length);
1838 pci_unmap_single(qdev->pdev,
1839 dma_unmap_addr(sbq_desc,
1840 mapaddr),
1841 dma_unmap_len(sbq_desc,
1842 maplen),
1843 PCI_DMA_FROMDEVICE);
1844 sbq_desc->p.skb = NULL;
1845 }
1846 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1847 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1848 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1849 "Header in small, %d bytes in large. Chain large to small!\n",
1850 length);
1851 /*
1852 * The data is in a single large buffer. We
1853 * chain it to the header buffer's skb and let
1854 * it rip.
1855 */
1856 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1857 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1858 "Chaining page at offset = %d, for %d bytes to skb.\n",
1859 lbq_desc->p.pg_chunk.offset, length);
1860 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1861 lbq_desc->p.pg_chunk.offset,
1862 length);
1863 skb->len += length;
1864 skb->data_len += length;
1865 skb->truesize += length;
1866 } else {
1867 /*
1868 * The headers and data are in a single large buffer. We
1869 * copy it to a new skb and let it go. This can happen with
1870 * jumbo mtu on a non-TCP/UDP frame.
1871 */
1872 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1873 skb = netdev_alloc_skb(qdev->ndev, length);
1874 if (skb == NULL) {
1875 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1876 "No skb available, drop the packet.\n");
1877 return NULL;
1878 }
1879 pci_unmap_page(qdev->pdev,
1880 dma_unmap_addr(lbq_desc,
1881 mapaddr),
1882 dma_unmap_len(lbq_desc, maplen),
1883 PCI_DMA_FROMDEVICE);
1884 skb_reserve(skb, NET_IP_ALIGN);
1885 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1886 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1887 length);
1888 skb_fill_page_desc(skb, 0,
1889 lbq_desc->p.pg_chunk.page,
1890 lbq_desc->p.pg_chunk.offset,
1891 length);
1892 skb->len += length;
1893 skb->data_len += length;
1894 skb->truesize += length;
1895 length -= length;
1896 ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1897 lbq_desc->p.pg_chunk.va,
1898 &hlen);
1899 __pskb_pull_tail(skb, hlen);
1900 }
1901 } else {
1902 /*
1903 * The data is in a chain of large buffers
1904 * pointed to by a small buffer. We loop
1905 * thru and chain them to the our small header
1906 * buffer's skb.
1907 * frags: There are 18 max frags and our small
1908 * buffer will hold 32 of them. The thing is,
1909 * we'll use 3 max for our 9000 byte jumbo
1910 * frames. If the MTU goes up we could
1911 * eventually be in trouble.
1912 */
1913 int size, i = 0;
1914 sbq_desc = ql_get_curr_sbuf(rx_ring);
1915 pci_unmap_single(qdev->pdev,
1916 dma_unmap_addr(sbq_desc, mapaddr),
1917 dma_unmap_len(sbq_desc, maplen),
1918 PCI_DMA_FROMDEVICE);
1919 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1920 /*
1921 * This is an non TCP/UDP IP frame, so
1922 * the headers aren't split into a small
1923 * buffer. We have to use the small buffer
1924 * that contains our sg list as our skb to
1925 * send upstairs. Copy the sg list here to
1926 * a local buffer and use it to find the
1927 * pages to chain.
1928 */
1929 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1930 "%d bytes of headers & data in chain of large.\n",
1931 length);
1932 skb = sbq_desc->p.skb;
1933 sbq_desc->p.skb = NULL;
1934 skb_reserve(skb, NET_IP_ALIGN);
1935 }
1936 do {
1937 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1938 size = (length < rx_ring->lbq_buf_size) ? length :
1939 rx_ring->lbq_buf_size;
1940
1941 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1942 "Adding page %d to skb for %d bytes.\n",
1943 i, size);
1944 skb_fill_page_desc(skb, i,
1945 lbq_desc->p.pg_chunk.page,
1946 lbq_desc->p.pg_chunk.offset,
1947 size);
1948 skb->len += size;
1949 skb->data_len += size;
1950 skb->truesize += size;
1951 length -= size;
1952 i++;
1953 } while (length > 0);
1954 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1955 &hlen);
1956 __pskb_pull_tail(skb, hlen);
1957 }
1958 return skb;
1959 }
1960
1961 /* Process an inbound completion from an rx ring. */
1962 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1963 struct rx_ring *rx_ring,
1964 struct ib_mac_iocb_rsp *ib_mac_rsp,
1965 u16 vlan_id)
1966 {
1967 struct net_device *ndev = qdev->ndev;
1968 struct sk_buff *skb = NULL;
1969
1970 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1971
1972 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1973 if (unlikely(!skb)) {
1974 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1975 "No skb available, drop packet.\n");
1976 rx_ring->rx_dropped++;
1977 return;
1978 }
1979
1980 /* Frame error, so drop the packet. */
1981 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1982 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1983 dev_kfree_skb_any(skb);
1984 return;
1985 }
1986
1987 /* The max framesize filter on this chip is set higher than
1988 * MTU since FCoE uses 2k frames.
1989 */
1990 if (skb->len > ndev->mtu + ETH_HLEN) {
1991 dev_kfree_skb_any(skb);
1992 rx_ring->rx_dropped++;
1993 return;
1994 }
1995
1996 /* loopback self test for ethtool */
1997 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1998 ql_check_lb_frame(qdev, skb);
1999 dev_kfree_skb_any(skb);
2000 return;
2001 }
2002
2003 prefetch(skb->data);
2004 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
2005 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
2006 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2007 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
2008 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2009 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2010 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2011 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2012 rx_ring->rx_multicast++;
2013 }
2014 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2015 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2016 "Promiscuous Packet.\n");
2017 }
2018
2019 skb->protocol = eth_type_trans(skb, ndev);
2020 skb_checksum_none_assert(skb);
2021
2022 /* If rx checksum is on, and there are no
2023 * csum or frame errors.
2024 */
2025 if ((ndev->features & NETIF_F_RXCSUM) &&
2026 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2027 /* TCP frame. */
2028 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2029 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2030 "TCP checksum done!\n");
2031 skb->ip_summed = CHECKSUM_UNNECESSARY;
2032 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2033 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2034 /* Unfragmented ipv4 UDP frame. */
2035 struct iphdr *iph = (struct iphdr *) skb->data;
2036 if (!(iph->frag_off &
2037 htons(IP_MF|IP_OFFSET))) {
2038 skb->ip_summed = CHECKSUM_UNNECESSARY;
2039 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2040 "TCP checksum done!\n");
2041 }
2042 }
2043 }
2044
2045 rx_ring->rx_packets++;
2046 rx_ring->rx_bytes += skb->len;
2047 skb_record_rx_queue(skb, rx_ring->cq_id);
2048 if (vlan_id != 0xffff)
2049 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2050 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2051 napi_gro_receive(&rx_ring->napi, skb);
2052 else
2053 netif_receive_skb(skb);
2054 }
2055
2056 /* Process an inbound completion from an rx ring. */
2057 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2058 struct rx_ring *rx_ring,
2059 struct ib_mac_iocb_rsp *ib_mac_rsp)
2060 {
2061 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2062 u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2063 (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2064 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2065 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2066
2067 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2068
2069 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2070 /* The data and headers are split into
2071 * separate buffers.
2072 */
2073 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2074 vlan_id);
2075 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2076 /* The data fit in a single small buffer.
2077 * Allocate a new skb, copy the data and
2078 * return the buffer to the free pool.
2079 */
2080 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2081 length, vlan_id);
2082 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2083 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2084 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2085 /* TCP packet in a page chunk that's been checksummed.
2086 * Tack it on to our GRO skb and let it go.
2087 */
2088 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2089 length, vlan_id);
2090 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2091 /* Non-TCP packet in a page chunk. Allocate an
2092 * skb, tack it on frags, and send it up.
2093 */
2094 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2095 length, vlan_id);
2096 } else {
2097 /* Non-TCP/UDP large frames that span multiple buffers
2098 * can be processed corrrectly by the split frame logic.
2099 */
2100 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2101 vlan_id);
2102 }
2103
2104 return (unsigned long)length;
2105 }
2106
2107 /* Process an outbound completion from an rx ring. */
2108 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2109 struct ob_mac_iocb_rsp *mac_rsp)
2110 {
2111 struct tx_ring *tx_ring;
2112 struct tx_ring_desc *tx_ring_desc;
2113
2114 QL_DUMP_OB_MAC_RSP(mac_rsp);
2115 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2116 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2117 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2118 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2119 tx_ring->tx_packets++;
2120 dev_kfree_skb(tx_ring_desc->skb);
2121 tx_ring_desc->skb = NULL;
2122
2123 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2124 OB_MAC_IOCB_RSP_S |
2125 OB_MAC_IOCB_RSP_L |
2126 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2127 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2128 netif_warn(qdev, tx_done, qdev->ndev,
2129 "Total descriptor length did not match transfer length.\n");
2130 }
2131 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2132 netif_warn(qdev, tx_done, qdev->ndev,
2133 "Frame too short to be valid, not sent.\n");
2134 }
2135 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2136 netif_warn(qdev, tx_done, qdev->ndev,
2137 "Frame too long, but sent anyway.\n");
2138 }
2139 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2140 netif_warn(qdev, tx_done, qdev->ndev,
2141 "PCI backplane error. Frame not sent.\n");
2142 }
2143 }
2144 atomic_inc(&tx_ring->tx_count);
2145 }
2146
2147 /* Fire up a handler to reset the MPI processor. */
2148 void ql_queue_fw_error(struct ql_adapter *qdev)
2149 {
2150 ql_link_off(qdev);
2151 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2152 }
2153
2154 void ql_queue_asic_error(struct ql_adapter *qdev)
2155 {
2156 ql_link_off(qdev);
2157 ql_disable_interrupts(qdev);
2158 /* Clear adapter up bit to signal the recovery
2159 * process that it shouldn't kill the reset worker
2160 * thread
2161 */
2162 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2163 /* Set asic recovery bit to indicate reset process that we are
2164 * in fatal error recovery process rather than normal close
2165 */
2166 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2167 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2168 }
2169
2170 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2171 struct ib_ae_iocb_rsp *ib_ae_rsp)
2172 {
2173 switch (ib_ae_rsp->event) {
2174 case MGMT_ERR_EVENT:
2175 netif_err(qdev, rx_err, qdev->ndev,
2176 "Management Processor Fatal Error.\n");
2177 ql_queue_fw_error(qdev);
2178 return;
2179
2180 case CAM_LOOKUP_ERR_EVENT:
2181 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2182 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2183 ql_queue_asic_error(qdev);
2184 return;
2185
2186 case SOFT_ECC_ERROR_EVENT:
2187 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2188 ql_queue_asic_error(qdev);
2189 break;
2190
2191 case PCI_ERR_ANON_BUF_RD:
2192 netdev_err(qdev->ndev, "PCI error occurred when reading "
2193 "anonymous buffers from rx_ring %d.\n",
2194 ib_ae_rsp->q_id);
2195 ql_queue_asic_error(qdev);
2196 break;
2197
2198 default:
2199 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2200 ib_ae_rsp->event);
2201 ql_queue_asic_error(qdev);
2202 break;
2203 }
2204 }
2205
2206 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2207 {
2208 struct ql_adapter *qdev = rx_ring->qdev;
2209 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2210 struct ob_mac_iocb_rsp *net_rsp = NULL;
2211 int count = 0;
2212
2213 struct tx_ring *tx_ring;
2214 /* While there are entries in the completion queue. */
2215 while (prod != rx_ring->cnsmr_idx) {
2216
2217 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2218 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2219 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2220
2221 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2222 rmb();
2223 switch (net_rsp->opcode) {
2224
2225 case OPCODE_OB_MAC_TSO_IOCB:
2226 case OPCODE_OB_MAC_IOCB:
2227 ql_process_mac_tx_intr(qdev, net_rsp);
2228 break;
2229 default:
2230 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2231 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2232 net_rsp->opcode);
2233 }
2234 count++;
2235 ql_update_cq(rx_ring);
2236 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2237 }
2238 if (!net_rsp)
2239 return 0;
2240 ql_write_cq_idx(rx_ring);
2241 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2242 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2243 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2244 /*
2245 * The queue got stopped because the tx_ring was full.
2246 * Wake it up, because it's now at least 25% empty.
2247 */
2248 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2249 }
2250
2251 return count;
2252 }
2253
2254 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2255 {
2256 struct ql_adapter *qdev = rx_ring->qdev;
2257 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2258 struct ql_net_rsp_iocb *net_rsp;
2259 int count = 0;
2260
2261 /* While there are entries in the completion queue. */
2262 while (prod != rx_ring->cnsmr_idx) {
2263
2264 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2265 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2266 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2267
2268 net_rsp = rx_ring->curr_entry;
2269 rmb();
2270 switch (net_rsp->opcode) {
2271 case OPCODE_IB_MAC_IOCB:
2272 ql_process_mac_rx_intr(qdev, rx_ring,
2273 (struct ib_mac_iocb_rsp *)
2274 net_rsp);
2275 break;
2276
2277 case OPCODE_IB_AE_IOCB:
2278 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2279 net_rsp);
2280 break;
2281 default:
2282 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2283 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2284 net_rsp->opcode);
2285 break;
2286 }
2287 count++;
2288 ql_update_cq(rx_ring);
2289 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2290 if (count == budget)
2291 break;
2292 }
2293 ql_update_buffer_queues(qdev, rx_ring);
2294 ql_write_cq_idx(rx_ring);
2295 return count;
2296 }
2297
2298 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2299 {
2300 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2301 struct ql_adapter *qdev = rx_ring->qdev;
2302 struct rx_ring *trx_ring;
2303 int i, work_done = 0;
2304 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2305
2306 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2307 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2308
2309 /* Service the TX rings first. They start
2310 * right after the RSS rings. */
2311 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2312 trx_ring = &qdev->rx_ring[i];
2313 /* If this TX completion ring belongs to this vector and
2314 * it's not empty then service it.
2315 */
2316 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2317 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2318 trx_ring->cnsmr_idx)) {
2319 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2320 "%s: Servicing TX completion ring %d.\n",
2321 __func__, trx_ring->cq_id);
2322 ql_clean_outbound_rx_ring(trx_ring);
2323 }
2324 }
2325
2326 /*
2327 * Now service the RSS ring if it's active.
2328 */
2329 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2330 rx_ring->cnsmr_idx) {
2331 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2332 "%s: Servicing RX completion ring %d.\n",
2333 __func__, rx_ring->cq_id);
2334 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2335 }
2336
2337 if (work_done < budget) {
2338 napi_complete(napi);
2339 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2340 }
2341 return work_done;
2342 }
2343
2344 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2345 {
2346 struct ql_adapter *qdev = netdev_priv(ndev);
2347
2348 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2349 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2350 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2351 } else {
2352 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2353 }
2354 }
2355
2356 /**
2357 * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2358 * based on the features to enable/disable hardware vlan accel
2359 */
2360 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2361 netdev_features_t features)
2362 {
2363 struct ql_adapter *qdev = netdev_priv(ndev);
2364 int status = 0;
2365 bool need_restart = netif_running(ndev);
2366
2367 if (need_restart) {
2368 status = ql_adapter_down(qdev);
2369 if (status) {
2370 netif_err(qdev, link, qdev->ndev,
2371 "Failed to bring down the adapter\n");
2372 return status;
2373 }
2374 }
2375
2376 /* update the features with resent change */
2377 ndev->features = features;
2378
2379 if (need_restart) {
2380 status = ql_adapter_up(qdev);
2381 if (status) {
2382 netif_err(qdev, link, qdev->ndev,
2383 "Failed to bring up the adapter\n");
2384 return status;
2385 }
2386 }
2387
2388 return status;
2389 }
2390
2391 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2392 netdev_features_t features)
2393 {
2394 int err;
2395
2396 /* Update the behavior of vlan accel in the adapter */
2397 err = qlge_update_hw_vlan_features(ndev, features);
2398 if (err)
2399 return err;
2400
2401 return features;
2402 }
2403
2404 static int qlge_set_features(struct net_device *ndev,
2405 netdev_features_t features)
2406 {
2407 netdev_features_t changed = ndev->features ^ features;
2408
2409 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2410 qlge_vlan_mode(ndev, features);
2411
2412 return 0;
2413 }
2414
2415 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2416 {
2417 u32 enable_bit = MAC_ADDR_E;
2418 int err;
2419
2420 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2421 MAC_ADDR_TYPE_VLAN, vid);
2422 if (err)
2423 netif_err(qdev, ifup, qdev->ndev,
2424 "Failed to init vlan address.\n");
2425 return err;
2426 }
2427
2428 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2429 {
2430 struct ql_adapter *qdev = netdev_priv(ndev);
2431 int status;
2432 int err;
2433
2434 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2435 if (status)
2436 return status;
2437
2438 err = __qlge_vlan_rx_add_vid(qdev, vid);
2439 set_bit(vid, qdev->active_vlans);
2440
2441 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2442
2443 return err;
2444 }
2445
2446 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2447 {
2448 u32 enable_bit = 0;
2449 int err;
2450
2451 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2452 MAC_ADDR_TYPE_VLAN, vid);
2453 if (err)
2454 netif_err(qdev, ifup, qdev->ndev,
2455 "Failed to clear vlan address.\n");
2456 return err;
2457 }
2458
2459 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2460 {
2461 struct ql_adapter *qdev = netdev_priv(ndev);
2462 int status;
2463 int err;
2464
2465 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2466 if (status)
2467 return status;
2468
2469 err = __qlge_vlan_rx_kill_vid(qdev, vid);
2470 clear_bit(vid, qdev->active_vlans);
2471
2472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2473
2474 return err;
2475 }
2476
2477 static void qlge_restore_vlan(struct ql_adapter *qdev)
2478 {
2479 int status;
2480 u16 vid;
2481
2482 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2483 if (status)
2484 return;
2485
2486 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2487 __qlge_vlan_rx_add_vid(qdev, vid);
2488
2489 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2490 }
2491
2492 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2493 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2494 {
2495 struct rx_ring *rx_ring = dev_id;
2496 napi_schedule(&rx_ring->napi);
2497 return IRQ_HANDLED;
2498 }
2499
2500 /* This handles a fatal error, MPI activity, and the default
2501 * rx_ring in an MSI-X multiple vector environment.
2502 * In MSI/Legacy environment it also process the rest of
2503 * the rx_rings.
2504 */
2505 static irqreturn_t qlge_isr(int irq, void *dev_id)
2506 {
2507 struct rx_ring *rx_ring = dev_id;
2508 struct ql_adapter *qdev = rx_ring->qdev;
2509 struct intr_context *intr_context = &qdev->intr_context[0];
2510 u32 var;
2511 int work_done = 0;
2512
2513 spin_lock(&qdev->hw_lock);
2514 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2515 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2516 "Shared Interrupt, Not ours!\n");
2517 spin_unlock(&qdev->hw_lock);
2518 return IRQ_NONE;
2519 }
2520 spin_unlock(&qdev->hw_lock);
2521
2522 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2523
2524 /*
2525 * Check for fatal error.
2526 */
2527 if (var & STS_FE) {
2528 ql_queue_asic_error(qdev);
2529 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2530 var = ql_read32(qdev, ERR_STS);
2531 netdev_err(qdev->ndev, "Resetting chip. "
2532 "Error Status Register = 0x%x\n", var);
2533 return IRQ_HANDLED;
2534 }
2535
2536 /*
2537 * Check MPI processor activity.
2538 */
2539 if ((var & STS_PI) &&
2540 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2541 /*
2542 * We've got an async event or mailbox completion.
2543 * Handle it and clear the source of the interrupt.
2544 */
2545 netif_err(qdev, intr, qdev->ndev,
2546 "Got MPI processor interrupt.\n");
2547 ql_disable_completion_interrupt(qdev, intr_context->intr);
2548 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2549 queue_delayed_work_on(smp_processor_id(),
2550 qdev->workqueue, &qdev->mpi_work, 0);
2551 work_done++;
2552 }
2553
2554 /*
2555 * Get the bit-mask that shows the active queues for this
2556 * pass. Compare it to the queues that this irq services
2557 * and call napi if there's a match.
2558 */
2559 var = ql_read32(qdev, ISR1);
2560 if (var & intr_context->irq_mask) {
2561 netif_info(qdev, intr, qdev->ndev,
2562 "Waking handler for rx_ring[0].\n");
2563 ql_disable_completion_interrupt(qdev, intr_context->intr);
2564 napi_schedule(&rx_ring->napi);
2565 work_done++;
2566 }
2567 ql_enable_completion_interrupt(qdev, intr_context->intr);
2568 return work_done ? IRQ_HANDLED : IRQ_NONE;
2569 }
2570
2571 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2572 {
2573
2574 if (skb_is_gso(skb)) {
2575 int err;
2576 __be16 l3_proto = vlan_get_protocol(skb);
2577
2578 err = skb_cow_head(skb, 0);
2579 if (err < 0)
2580 return err;
2581
2582 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2583 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2584 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2585 mac_iocb_ptr->total_hdrs_len =
2586 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2587 mac_iocb_ptr->net_trans_offset =
2588 cpu_to_le16(skb_network_offset(skb) |
2589 skb_transport_offset(skb)
2590 << OB_MAC_TRANSPORT_HDR_SHIFT);
2591 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2592 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2593 if (likely(l3_proto == htons(ETH_P_IP))) {
2594 struct iphdr *iph = ip_hdr(skb);
2595 iph->check = 0;
2596 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2597 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2598 iph->daddr, 0,
2599 IPPROTO_TCP,
2600 0);
2601 } else if (l3_proto == htons(ETH_P_IPV6)) {
2602 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2603 tcp_hdr(skb)->check =
2604 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2605 &ipv6_hdr(skb)->daddr,
2606 0, IPPROTO_TCP, 0);
2607 }
2608 return 1;
2609 }
2610 return 0;
2611 }
2612
2613 static void ql_hw_csum_setup(struct sk_buff *skb,
2614 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2615 {
2616 int len;
2617 struct iphdr *iph = ip_hdr(skb);
2618 __sum16 *check;
2619 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2620 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2621 mac_iocb_ptr->net_trans_offset =
2622 cpu_to_le16(skb_network_offset(skb) |
2623 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2624
2625 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2626 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2627 if (likely(iph->protocol == IPPROTO_TCP)) {
2628 check = &(tcp_hdr(skb)->check);
2629 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2630 mac_iocb_ptr->total_hdrs_len =
2631 cpu_to_le16(skb_transport_offset(skb) +
2632 (tcp_hdr(skb)->doff << 2));
2633 } else {
2634 check = &(udp_hdr(skb)->check);
2635 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2636 mac_iocb_ptr->total_hdrs_len =
2637 cpu_to_le16(skb_transport_offset(skb) +
2638 sizeof(struct udphdr));
2639 }
2640 *check = ~csum_tcpudp_magic(iph->saddr,
2641 iph->daddr, len, iph->protocol, 0);
2642 }
2643
2644 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2645 {
2646 struct tx_ring_desc *tx_ring_desc;
2647 struct ob_mac_iocb_req *mac_iocb_ptr;
2648 struct ql_adapter *qdev = netdev_priv(ndev);
2649 int tso;
2650 struct tx_ring *tx_ring;
2651 u32 tx_ring_idx = (u32) skb->queue_mapping;
2652
2653 tx_ring = &qdev->tx_ring[tx_ring_idx];
2654
2655 if (skb_padto(skb, ETH_ZLEN))
2656 return NETDEV_TX_OK;
2657
2658 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2659 netif_info(qdev, tx_queued, qdev->ndev,
2660 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2661 __func__, tx_ring_idx);
2662 netif_stop_subqueue(ndev, tx_ring->wq_id);
2663 tx_ring->tx_errors++;
2664 return NETDEV_TX_BUSY;
2665 }
2666 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2667 mac_iocb_ptr = tx_ring_desc->queue_entry;
2668 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2669
2670 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2671 mac_iocb_ptr->tid = tx_ring_desc->index;
2672 /* We use the upper 32-bits to store the tx queue for this IO.
2673 * When we get the completion we can use it to establish the context.
2674 */
2675 mac_iocb_ptr->txq_idx = tx_ring_idx;
2676 tx_ring_desc->skb = skb;
2677
2678 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2679
2680 if (skb_vlan_tag_present(skb)) {
2681 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2682 "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
2683 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2684 mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
2685 }
2686 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2687 if (tso < 0) {
2688 dev_kfree_skb_any(skb);
2689 return NETDEV_TX_OK;
2690 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2691 ql_hw_csum_setup(skb,
2692 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2693 }
2694 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2695 NETDEV_TX_OK) {
2696 netif_err(qdev, tx_queued, qdev->ndev,
2697 "Could not map the segments.\n");
2698 tx_ring->tx_errors++;
2699 return NETDEV_TX_BUSY;
2700 }
2701 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2702 tx_ring->prod_idx++;
2703 if (tx_ring->prod_idx == tx_ring->wq_len)
2704 tx_ring->prod_idx = 0;
2705 wmb();
2706
2707 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2708 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2709 "tx queued, slot %d, len %d\n",
2710 tx_ring->prod_idx, skb->len);
2711
2712 atomic_dec(&tx_ring->tx_count);
2713
2714 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2715 netif_stop_subqueue(ndev, tx_ring->wq_id);
2716 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2717 /*
2718 * The queue got stopped because the tx_ring was full.
2719 * Wake it up, because it's now at least 25% empty.
2720 */
2721 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2722 }
2723 return NETDEV_TX_OK;
2724 }
2725
2726
2727 static void ql_free_shadow_space(struct ql_adapter *qdev)
2728 {
2729 if (qdev->rx_ring_shadow_reg_area) {
2730 pci_free_consistent(qdev->pdev,
2731 PAGE_SIZE,
2732 qdev->rx_ring_shadow_reg_area,
2733 qdev->rx_ring_shadow_reg_dma);
2734 qdev->rx_ring_shadow_reg_area = NULL;
2735 }
2736 if (qdev->tx_ring_shadow_reg_area) {
2737 pci_free_consistent(qdev->pdev,
2738 PAGE_SIZE,
2739 qdev->tx_ring_shadow_reg_area,
2740 qdev->tx_ring_shadow_reg_dma);
2741 qdev->tx_ring_shadow_reg_area = NULL;
2742 }
2743 }
2744
2745 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2746 {
2747 qdev->rx_ring_shadow_reg_area =
2748 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2749 &qdev->rx_ring_shadow_reg_dma);
2750 if (qdev->rx_ring_shadow_reg_area == NULL) {
2751 netif_err(qdev, ifup, qdev->ndev,
2752 "Allocation of RX shadow space failed.\n");
2753 return -ENOMEM;
2754 }
2755
2756 qdev->tx_ring_shadow_reg_area =
2757 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2758 &qdev->tx_ring_shadow_reg_dma);
2759 if (qdev->tx_ring_shadow_reg_area == NULL) {
2760 netif_err(qdev, ifup, qdev->ndev,
2761 "Allocation of TX shadow space failed.\n");
2762 goto err_wqp_sh_area;
2763 }
2764 return 0;
2765
2766 err_wqp_sh_area:
2767 pci_free_consistent(qdev->pdev,
2768 PAGE_SIZE,
2769 qdev->rx_ring_shadow_reg_area,
2770 qdev->rx_ring_shadow_reg_dma);
2771 return -ENOMEM;
2772 }
2773
2774 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2775 {
2776 struct tx_ring_desc *tx_ring_desc;
2777 int i;
2778 struct ob_mac_iocb_req *mac_iocb_ptr;
2779
2780 mac_iocb_ptr = tx_ring->wq_base;
2781 tx_ring_desc = tx_ring->q;
2782 for (i = 0; i < tx_ring->wq_len; i++) {
2783 tx_ring_desc->index = i;
2784 tx_ring_desc->skb = NULL;
2785 tx_ring_desc->queue_entry = mac_iocb_ptr;
2786 mac_iocb_ptr++;
2787 tx_ring_desc++;
2788 }
2789 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2790 }
2791
2792 static void ql_free_tx_resources(struct ql_adapter *qdev,
2793 struct tx_ring *tx_ring)
2794 {
2795 if (tx_ring->wq_base) {
2796 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2797 tx_ring->wq_base, tx_ring->wq_base_dma);
2798 tx_ring->wq_base = NULL;
2799 }
2800 kfree(tx_ring->q);
2801 tx_ring->q = NULL;
2802 }
2803
2804 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2805 struct tx_ring *tx_ring)
2806 {
2807 tx_ring->wq_base =
2808 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2809 &tx_ring->wq_base_dma);
2810
2811 if ((tx_ring->wq_base == NULL) ||
2812 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2813 goto pci_alloc_err;
2814
2815 tx_ring->q =
2816 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2817 if (tx_ring->q == NULL)
2818 goto err;
2819
2820 return 0;
2821 err:
2822 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2823 tx_ring->wq_base, tx_ring->wq_base_dma);
2824 tx_ring->wq_base = NULL;
2825 pci_alloc_err:
2826 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2827 return -ENOMEM;
2828 }
2829
2830 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2831 {
2832 struct bq_desc *lbq_desc;
2833
2834 uint32_t curr_idx, clean_idx;
2835
2836 curr_idx = rx_ring->lbq_curr_idx;
2837 clean_idx = rx_ring->lbq_clean_idx;
2838 while (curr_idx != clean_idx) {
2839 lbq_desc = &rx_ring->lbq[curr_idx];
2840
2841 if (lbq_desc->p.pg_chunk.last_flag) {
2842 pci_unmap_page(qdev->pdev,
2843 lbq_desc->p.pg_chunk.map,
2844 ql_lbq_block_size(qdev),
2845 PCI_DMA_FROMDEVICE);
2846 lbq_desc->p.pg_chunk.last_flag = 0;
2847 }
2848
2849 put_page(lbq_desc->p.pg_chunk.page);
2850 lbq_desc->p.pg_chunk.page = NULL;
2851
2852 if (++curr_idx == rx_ring->lbq_len)
2853 curr_idx = 0;
2854
2855 }
2856 if (rx_ring->pg_chunk.page) {
2857 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2858 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2859 put_page(rx_ring->pg_chunk.page);
2860 rx_ring->pg_chunk.page = NULL;
2861 }
2862 }
2863
2864 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2865 {
2866 int i;
2867 struct bq_desc *sbq_desc;
2868
2869 for (i = 0; i < rx_ring->sbq_len; i++) {
2870 sbq_desc = &rx_ring->sbq[i];
2871 if (sbq_desc == NULL) {
2872 netif_err(qdev, ifup, qdev->ndev,
2873 "sbq_desc %d is NULL.\n", i);
2874 return;
2875 }
2876 if (sbq_desc->p.skb) {
2877 pci_unmap_single(qdev->pdev,
2878 dma_unmap_addr(sbq_desc, mapaddr),
2879 dma_unmap_len(sbq_desc, maplen),
2880 PCI_DMA_FROMDEVICE);
2881 dev_kfree_skb(sbq_desc->p.skb);
2882 sbq_desc->p.skb = NULL;
2883 }
2884 }
2885 }
2886
2887 /* Free all large and small rx buffers associated
2888 * with the completion queues for this device.
2889 */
2890 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2891 {
2892 int i;
2893 struct rx_ring *rx_ring;
2894
2895 for (i = 0; i < qdev->rx_ring_count; i++) {
2896 rx_ring = &qdev->rx_ring[i];
2897 if (rx_ring->lbq)
2898 ql_free_lbq_buffers(qdev, rx_ring);
2899 if (rx_ring->sbq)
2900 ql_free_sbq_buffers(qdev, rx_ring);
2901 }
2902 }
2903
2904 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2905 {
2906 struct rx_ring *rx_ring;
2907 int i;
2908
2909 for (i = 0; i < qdev->rx_ring_count; i++) {
2910 rx_ring = &qdev->rx_ring[i];
2911 if (rx_ring->type != TX_Q)
2912 ql_update_buffer_queues(qdev, rx_ring);
2913 }
2914 }
2915
2916 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2917 struct rx_ring *rx_ring)
2918 {
2919 int i;
2920 struct bq_desc *lbq_desc;
2921 __le64 *bq = rx_ring->lbq_base;
2922
2923 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2924 for (i = 0; i < rx_ring->lbq_len; i++) {
2925 lbq_desc = &rx_ring->lbq[i];
2926 memset(lbq_desc, 0, sizeof(*lbq_desc));
2927 lbq_desc->index = i;
2928 lbq_desc->addr = bq;
2929 bq++;
2930 }
2931 }
2932
2933 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2934 struct rx_ring *rx_ring)
2935 {
2936 int i;
2937 struct bq_desc *sbq_desc;
2938 __le64 *bq = rx_ring->sbq_base;
2939
2940 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2941 for (i = 0; i < rx_ring->sbq_len; i++) {
2942 sbq_desc = &rx_ring->sbq[i];
2943 memset(sbq_desc, 0, sizeof(*sbq_desc));
2944 sbq_desc->index = i;
2945 sbq_desc->addr = bq;
2946 bq++;
2947 }
2948 }
2949
2950 static void ql_free_rx_resources(struct ql_adapter *qdev,
2951 struct rx_ring *rx_ring)
2952 {
2953 /* Free the small buffer queue. */
2954 if (rx_ring->sbq_base) {
2955 pci_free_consistent(qdev->pdev,
2956 rx_ring->sbq_size,
2957 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2958 rx_ring->sbq_base = NULL;
2959 }
2960
2961 /* Free the small buffer queue control blocks. */
2962 kfree(rx_ring->sbq);
2963 rx_ring->sbq = NULL;
2964
2965 /* Free the large buffer queue. */
2966 if (rx_ring->lbq_base) {
2967 pci_free_consistent(qdev->pdev,
2968 rx_ring->lbq_size,
2969 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2970 rx_ring->lbq_base = NULL;
2971 }
2972
2973 /* Free the large buffer queue control blocks. */
2974 kfree(rx_ring->lbq);
2975 rx_ring->lbq = NULL;
2976
2977 /* Free the rx queue. */
2978 if (rx_ring->cq_base) {
2979 pci_free_consistent(qdev->pdev,
2980 rx_ring->cq_size,
2981 rx_ring->cq_base, rx_ring->cq_base_dma);
2982 rx_ring->cq_base = NULL;
2983 }
2984 }
2985
2986 /* Allocate queues and buffers for this completions queue based
2987 * on the values in the parameter structure. */
2988 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2989 struct rx_ring *rx_ring)
2990 {
2991
2992 /*
2993 * Allocate the completion queue for this rx_ring.
2994 */
2995 rx_ring->cq_base =
2996 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2997 &rx_ring->cq_base_dma);
2998
2999 if (rx_ring->cq_base == NULL) {
3000 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
3001 return -ENOMEM;
3002 }
3003
3004 if (rx_ring->sbq_len) {
3005 /*
3006 * Allocate small buffer queue.
3007 */
3008 rx_ring->sbq_base =
3009 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
3010 &rx_ring->sbq_base_dma);
3011
3012 if (rx_ring->sbq_base == NULL) {
3013 netif_err(qdev, ifup, qdev->ndev,
3014 "Small buffer queue allocation failed.\n");
3015 goto err_mem;
3016 }
3017
3018 /*
3019 * Allocate small buffer queue control blocks.
3020 */
3021 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3022 sizeof(struct bq_desc),
3023 GFP_KERNEL);
3024 if (rx_ring->sbq == NULL)
3025 goto err_mem;
3026
3027 ql_init_sbq_ring(qdev, rx_ring);
3028 }
3029
3030 if (rx_ring->lbq_len) {
3031 /*
3032 * Allocate large buffer queue.
3033 */
3034 rx_ring->lbq_base =
3035 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3036 &rx_ring->lbq_base_dma);
3037
3038 if (rx_ring->lbq_base == NULL) {
3039 netif_err(qdev, ifup, qdev->ndev,
3040 "Large buffer queue allocation failed.\n");
3041 goto err_mem;
3042 }
3043 /*
3044 * Allocate large buffer queue control blocks.
3045 */
3046 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3047 sizeof(struct bq_desc),
3048 GFP_KERNEL);
3049 if (rx_ring->lbq == NULL)
3050 goto err_mem;
3051
3052 ql_init_lbq_ring(qdev, rx_ring);
3053 }
3054
3055 return 0;
3056
3057 err_mem:
3058 ql_free_rx_resources(qdev, rx_ring);
3059 return -ENOMEM;
3060 }
3061
3062 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3063 {
3064 struct tx_ring *tx_ring;
3065 struct tx_ring_desc *tx_ring_desc;
3066 int i, j;
3067
3068 /*
3069 * Loop through all queues and free
3070 * any resources.
3071 */
3072 for (j = 0; j < qdev->tx_ring_count; j++) {
3073 tx_ring = &qdev->tx_ring[j];
3074 for (i = 0; i < tx_ring->wq_len; i++) {
3075 tx_ring_desc = &tx_ring->q[i];
3076 if (tx_ring_desc && tx_ring_desc->skb) {
3077 netif_err(qdev, ifdown, qdev->ndev,
3078 "Freeing lost SKB %p, from queue %d, index %d.\n",
3079 tx_ring_desc->skb, j,
3080 tx_ring_desc->index);
3081 ql_unmap_send(qdev, tx_ring_desc,
3082 tx_ring_desc->map_cnt);
3083 dev_kfree_skb(tx_ring_desc->skb);
3084 tx_ring_desc->skb = NULL;
3085 }
3086 }
3087 }
3088 }
3089
3090 static void ql_free_mem_resources(struct ql_adapter *qdev)
3091 {
3092 int i;
3093
3094 for (i = 0; i < qdev->tx_ring_count; i++)
3095 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3096 for (i = 0; i < qdev->rx_ring_count; i++)
3097 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3098 ql_free_shadow_space(qdev);
3099 }
3100
3101 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3102 {
3103 int i;
3104
3105 /* Allocate space for our shadow registers and such. */
3106 if (ql_alloc_shadow_space(qdev))
3107 return -ENOMEM;
3108
3109 for (i = 0; i < qdev->rx_ring_count; i++) {
3110 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3111 netif_err(qdev, ifup, qdev->ndev,
3112 "RX resource allocation failed.\n");
3113 goto err_mem;
3114 }
3115 }
3116 /* Allocate tx queue resources */
3117 for (i = 0; i < qdev->tx_ring_count; i++) {
3118 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3119 netif_err(qdev, ifup, qdev->ndev,
3120 "TX resource allocation failed.\n");
3121 goto err_mem;
3122 }
3123 }
3124 return 0;
3125
3126 err_mem:
3127 ql_free_mem_resources(qdev);
3128 return -ENOMEM;
3129 }
3130
3131 /* Set up the rx ring control block and pass it to the chip.
3132 * The control block is defined as
3133 * "Completion Queue Initialization Control Block", or cqicb.
3134 */
3135 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3136 {
3137 struct cqicb *cqicb = &rx_ring->cqicb;
3138 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3139 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3140 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3141 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3142 void __iomem *doorbell_area =
3143 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3144 int err = 0;
3145 u16 bq_len;
3146 u64 tmp;
3147 __le64 *base_indirect_ptr;
3148 int page_entries;
3149
3150 /* Set up the shadow registers for this ring. */
3151 rx_ring->prod_idx_sh_reg = shadow_reg;
3152 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3153 *rx_ring->prod_idx_sh_reg = 0;
3154 shadow_reg += sizeof(u64);
3155 shadow_reg_dma += sizeof(u64);
3156 rx_ring->lbq_base_indirect = shadow_reg;
3157 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3158 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3159 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3160 rx_ring->sbq_base_indirect = shadow_reg;
3161 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3162
3163 /* PCI doorbell mem area + 0x00 for consumer index register */
3164 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3165 rx_ring->cnsmr_idx = 0;
3166 rx_ring->curr_entry = rx_ring->cq_base;
3167
3168 /* PCI doorbell mem area + 0x04 for valid register */
3169 rx_ring->valid_db_reg = doorbell_area + 0x04;
3170
3171 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3172 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3173
3174 /* PCI doorbell mem area + 0x1c */
3175 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3176
3177 memset((void *)cqicb, 0, sizeof(struct cqicb));
3178 cqicb->msix_vect = rx_ring->irq;
3179
3180 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3181 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3182
3183 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3184
3185 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3186
3187 /*
3188 * Set up the control block load flags.
3189 */
3190 cqicb->flags = FLAGS_LC | /* Load queue base address */
3191 FLAGS_LV | /* Load MSI-X vector */
3192 FLAGS_LI; /* Load irq delay values */
3193 if (rx_ring->lbq_len) {
3194 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3195 tmp = (u64)rx_ring->lbq_base_dma;
3196 base_indirect_ptr = rx_ring->lbq_base_indirect;
3197 page_entries = 0;
3198 do {
3199 *base_indirect_ptr = cpu_to_le64(tmp);
3200 tmp += DB_PAGE_SIZE;
3201 base_indirect_ptr++;
3202 page_entries++;
3203 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3204 cqicb->lbq_addr =
3205 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3206 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3207 (u16) rx_ring->lbq_buf_size;
3208 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3209 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3210 (u16) rx_ring->lbq_len;
3211 cqicb->lbq_len = cpu_to_le16(bq_len);
3212 rx_ring->lbq_prod_idx = 0;
3213 rx_ring->lbq_curr_idx = 0;
3214 rx_ring->lbq_clean_idx = 0;
3215 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3216 }
3217 if (rx_ring->sbq_len) {
3218 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3219 tmp = (u64)rx_ring->sbq_base_dma;
3220 base_indirect_ptr = rx_ring->sbq_base_indirect;
3221 page_entries = 0;
3222 do {
3223 *base_indirect_ptr = cpu_to_le64(tmp);
3224 tmp += DB_PAGE_SIZE;
3225 base_indirect_ptr++;
3226 page_entries++;
3227 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3228 cqicb->sbq_addr =
3229 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3230 cqicb->sbq_buf_size =
3231 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3232 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3233 (u16) rx_ring->sbq_len;
3234 cqicb->sbq_len = cpu_to_le16(bq_len);
3235 rx_ring->sbq_prod_idx = 0;
3236 rx_ring->sbq_curr_idx = 0;
3237 rx_ring->sbq_clean_idx = 0;
3238 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3239 }
3240 switch (rx_ring->type) {
3241 case TX_Q:
3242 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3243 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3244 break;
3245 case RX_Q:
3246 /* Inbound completion handling rx_rings run in
3247 * separate NAPI contexts.
3248 */
3249 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3250 64);
3251 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3252 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3253 break;
3254 default:
3255 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3256 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3257 }
3258 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3259 CFG_LCQ, rx_ring->cq_id);
3260 if (err) {
3261 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3262 return err;
3263 }
3264 return err;
3265 }
3266
3267 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3268 {
3269 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3270 void __iomem *doorbell_area =
3271 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3272 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3273 (tx_ring->wq_id * sizeof(u64));
3274 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3275 (tx_ring->wq_id * sizeof(u64));
3276 int err = 0;
3277
3278 /*
3279 * Assign doorbell registers for this tx_ring.
3280 */
3281 /* TX PCI doorbell mem area for tx producer index */
3282 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3283 tx_ring->prod_idx = 0;
3284 /* TX PCI doorbell mem area + 0x04 */
3285 tx_ring->valid_db_reg = doorbell_area + 0x04;
3286
3287 /*
3288 * Assign shadow registers for this tx_ring.
3289 */
3290 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3291 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3292
3293 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3294 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3295 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3296 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3297 wqicb->rid = 0;
3298 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3299
3300 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3301
3302 ql_init_tx_ring(qdev, tx_ring);
3303
3304 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3305 (u16) tx_ring->wq_id);
3306 if (err) {
3307 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3308 return err;
3309 }
3310 return err;
3311 }
3312
3313 static void ql_disable_msix(struct ql_adapter *qdev)
3314 {
3315 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3316 pci_disable_msix(qdev->pdev);
3317 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3318 kfree(qdev->msi_x_entry);
3319 qdev->msi_x_entry = NULL;
3320 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3321 pci_disable_msi(qdev->pdev);
3322 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3323 }
3324 }
3325
3326 /* We start by trying to get the number of vectors
3327 * stored in qdev->intr_count. If we don't get that
3328 * many then we reduce the count and try again.
3329 */
3330 static void ql_enable_msix(struct ql_adapter *qdev)
3331 {
3332 int i, err;
3333
3334 /* Get the MSIX vectors. */
3335 if (qlge_irq_type == MSIX_IRQ) {
3336 /* Try to alloc space for the msix struct,
3337 * if it fails then go to MSI/legacy.
3338 */
3339 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3340 sizeof(struct msix_entry),
3341 GFP_KERNEL);
3342 if (!qdev->msi_x_entry) {
3343 qlge_irq_type = MSI_IRQ;
3344 goto msi;
3345 }
3346
3347 for (i = 0; i < qdev->intr_count; i++)
3348 qdev->msi_x_entry[i].entry = i;
3349
3350 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3351 1, qdev->intr_count);
3352 if (err < 0) {
3353 kfree(qdev->msi_x_entry);
3354 qdev->msi_x_entry = NULL;
3355 netif_warn(qdev, ifup, qdev->ndev,
3356 "MSI-X Enable failed, trying MSI.\n");
3357 qlge_irq_type = MSI_IRQ;
3358 } else {
3359 qdev->intr_count = err;
3360 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3361 netif_info(qdev, ifup, qdev->ndev,
3362 "MSI-X Enabled, got %d vectors.\n",
3363 qdev->intr_count);
3364 return;
3365 }
3366 }
3367 msi:
3368 qdev->intr_count = 1;
3369 if (qlge_irq_type == MSI_IRQ) {
3370 if (!pci_enable_msi(qdev->pdev)) {
3371 set_bit(QL_MSI_ENABLED, &qdev->flags);
3372 netif_info(qdev, ifup, qdev->ndev,
3373 "Running with MSI interrupts.\n");
3374 return;
3375 }
3376 }
3377 qlge_irq_type = LEG_IRQ;
3378 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3379 "Running with legacy interrupts.\n");
3380 }
3381
3382 /* Each vector services 1 RSS ring and and 1 or more
3383 * TX completion rings. This function loops through
3384 * the TX completion rings and assigns the vector that
3385 * will service it. An example would be if there are
3386 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3387 * This would mean that vector 0 would service RSS ring 0
3388 * and TX completion rings 0,1,2 and 3. Vector 1 would
3389 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3390 */
3391 static void ql_set_tx_vect(struct ql_adapter *qdev)
3392 {
3393 int i, j, vect;
3394 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3395
3396 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3397 /* Assign irq vectors to TX rx_rings.*/
3398 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3399 i < qdev->rx_ring_count; i++) {
3400 if (j == tx_rings_per_vector) {
3401 vect++;
3402 j = 0;
3403 }
3404 qdev->rx_ring[i].irq = vect;
3405 j++;
3406 }
3407 } else {
3408 /* For single vector all rings have an irq
3409 * of zero.
3410 */
3411 for (i = 0; i < qdev->rx_ring_count; i++)
3412 qdev->rx_ring[i].irq = 0;
3413 }
3414 }
3415
3416 /* Set the interrupt mask for this vector. Each vector
3417 * will service 1 RSS ring and 1 or more TX completion
3418 * rings. This function sets up a bit mask per vector
3419 * that indicates which rings it services.
3420 */
3421 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3422 {
3423 int j, vect = ctx->intr;
3424 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3425
3426 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3427 /* Add the RSS ring serviced by this vector
3428 * to the mask.
3429 */
3430 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3431 /* Add the TX ring(s) serviced by this vector
3432 * to the mask. */
3433 for (j = 0; j < tx_rings_per_vector; j++) {
3434 ctx->irq_mask |=
3435 (1 << qdev->rx_ring[qdev->rss_ring_count +
3436 (vect * tx_rings_per_vector) + j].cq_id);
3437 }
3438 } else {
3439 /* For single vector we just shift each queue's
3440 * ID into the mask.
3441 */
3442 for (j = 0; j < qdev->rx_ring_count; j++)
3443 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3444 }
3445 }
3446
3447 /*
3448 * Here we build the intr_context structures based on
3449 * our rx_ring count and intr vector count.
3450 * The intr_context structure is used to hook each vector
3451 * to possibly different handlers.
3452 */
3453 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3454 {
3455 int i = 0;
3456 struct intr_context *intr_context = &qdev->intr_context[0];
3457
3458 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3459 /* Each rx_ring has it's
3460 * own intr_context since we have separate
3461 * vectors for each queue.
3462 */
3463 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3464 qdev->rx_ring[i].irq = i;
3465 intr_context->intr = i;
3466 intr_context->qdev = qdev;
3467 /* Set up this vector's bit-mask that indicates
3468 * which queues it services.
3469 */
3470 ql_set_irq_mask(qdev, intr_context);
3471 /*
3472 * We set up each vectors enable/disable/read bits so
3473 * there's no bit/mask calculations in the critical path.
3474 */
3475 intr_context->intr_en_mask =
3476 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3477 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3478 | i;
3479 intr_context->intr_dis_mask =
3480 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3481 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3482 INTR_EN_IHD | i;
3483 intr_context->intr_read_mask =
3484 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3485 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3486 i;
3487 if (i == 0) {
3488 /* The first vector/queue handles
3489 * broadcast/multicast, fatal errors,
3490 * and firmware events. This in addition
3491 * to normal inbound NAPI processing.
3492 */
3493 intr_context->handler = qlge_isr;
3494 sprintf(intr_context->name, "%s-rx-%d",
3495 qdev->ndev->name, i);
3496 } else {
3497 /*
3498 * Inbound queues handle unicast frames only.
3499 */
3500 intr_context->handler = qlge_msix_rx_isr;
3501 sprintf(intr_context->name, "%s-rx-%d",
3502 qdev->ndev->name, i);
3503 }
3504 }
3505 } else {
3506 /*
3507 * All rx_rings use the same intr_context since
3508 * there is only one vector.
3509 */
3510 intr_context->intr = 0;
3511 intr_context->qdev = qdev;
3512 /*
3513 * We set up each vectors enable/disable/read bits so
3514 * there's no bit/mask calculations in the critical path.
3515 */
3516 intr_context->intr_en_mask =
3517 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3518 intr_context->intr_dis_mask =
3519 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3520 INTR_EN_TYPE_DISABLE;
3521 intr_context->intr_read_mask =
3522 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3523 /*
3524 * Single interrupt means one handler for all rings.
3525 */
3526 intr_context->handler = qlge_isr;
3527 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3528 /* Set up this vector's bit-mask that indicates
3529 * which queues it services. In this case there is
3530 * a single vector so it will service all RSS and
3531 * TX completion rings.
3532 */
3533 ql_set_irq_mask(qdev, intr_context);
3534 }
3535 /* Tell the TX completion rings which MSIx vector
3536 * they will be using.
3537 */
3538 ql_set_tx_vect(qdev);
3539 }
3540
3541 static void ql_free_irq(struct ql_adapter *qdev)
3542 {
3543 int i;
3544 struct intr_context *intr_context = &qdev->intr_context[0];
3545
3546 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3547 if (intr_context->hooked) {
3548 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3549 free_irq(qdev->msi_x_entry[i].vector,
3550 &qdev->rx_ring[i]);
3551 } else {
3552 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3553 }
3554 }
3555 }
3556 ql_disable_msix(qdev);
3557 }
3558
3559 static int ql_request_irq(struct ql_adapter *qdev)
3560 {
3561 int i;
3562 int status = 0;
3563 struct pci_dev *pdev = qdev->pdev;
3564 struct intr_context *intr_context = &qdev->intr_context[0];
3565
3566 ql_resolve_queues_to_irqs(qdev);
3567
3568 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3569 atomic_set(&intr_context->irq_cnt, 0);
3570 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3571 status = request_irq(qdev->msi_x_entry[i].vector,
3572 intr_context->handler,
3573 0,
3574 intr_context->name,
3575 &qdev->rx_ring[i]);
3576 if (status) {
3577 netif_err(qdev, ifup, qdev->ndev,
3578 "Failed request for MSIX interrupt %d.\n",
3579 i);
3580 goto err_irq;
3581 }
3582 } else {
3583 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3584 "trying msi or legacy interrupts.\n");
3585 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3586 "%s: irq = %d.\n", __func__, pdev->irq);
3587 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3588 "%s: context->name = %s.\n", __func__,
3589 intr_context->name);
3590 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3591 "%s: dev_id = 0x%p.\n", __func__,
3592 &qdev->rx_ring[0]);
3593 status =
3594 request_irq(pdev->irq, qlge_isr,
3595 test_bit(QL_MSI_ENABLED,
3596 &qdev->
3597 flags) ? 0 : IRQF_SHARED,
3598 intr_context->name, &qdev->rx_ring[0]);
3599 if (status)
3600 goto err_irq;
3601
3602 netif_err(qdev, ifup, qdev->ndev,
3603 "Hooked intr %d, queue type %s, with name %s.\n",
3604 i,
3605 qdev->rx_ring[0].type == DEFAULT_Q ?
3606 "DEFAULT_Q" :
3607 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3608 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3609 intr_context->name);
3610 }
3611 intr_context->hooked = 1;
3612 }
3613 return status;
3614 err_irq:
3615 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3616 ql_free_irq(qdev);
3617 return status;
3618 }
3619
3620 static int ql_start_rss(struct ql_adapter *qdev)
3621 {
3622 static const u8 init_hash_seed[] = {
3623 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3624 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3625 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3626 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3627 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3628 };
3629 struct ricb *ricb = &qdev->ricb;
3630 int status = 0;
3631 int i;
3632 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3633
3634 memset((void *)ricb, 0, sizeof(*ricb));
3635
3636 ricb->base_cq = RSS_L4K;
3637 ricb->flags =
3638 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3639 ricb->mask = cpu_to_le16((u16)(0x3ff));
3640
3641 /*
3642 * Fill out the Indirection Table.
3643 */
3644 for (i = 0; i < 1024; i++)
3645 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3646
3647 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3648 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3649
3650 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3651 if (status) {
3652 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3653 return status;
3654 }
3655 return status;
3656 }
3657
3658 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3659 {
3660 int i, status = 0;
3661
3662 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3663 if (status)
3664 return status;
3665 /* Clear all the entries in the routing table. */
3666 for (i = 0; i < 16; i++) {
3667 status = ql_set_routing_reg(qdev, i, 0, 0);
3668 if (status) {
3669 netif_err(qdev, ifup, qdev->ndev,
3670 "Failed to init routing register for CAM packets.\n");
3671 break;
3672 }
3673 }
3674 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3675 return status;
3676 }
3677
3678 /* Initialize the frame-to-queue routing. */
3679 static int ql_route_initialize(struct ql_adapter *qdev)
3680 {
3681 int status = 0;
3682
3683 /* Clear all the entries in the routing table. */
3684 status = ql_clear_routing_entries(qdev);
3685 if (status)
3686 return status;
3687
3688 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3689 if (status)
3690 return status;
3691
3692 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3693 RT_IDX_IP_CSUM_ERR, 1);
3694 if (status) {
3695 netif_err(qdev, ifup, qdev->ndev,
3696 "Failed to init routing register "
3697 "for IP CSUM error packets.\n");
3698 goto exit;
3699 }
3700 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3701 RT_IDX_TU_CSUM_ERR, 1);
3702 if (status) {
3703 netif_err(qdev, ifup, qdev->ndev,
3704 "Failed to init routing register "
3705 "for TCP/UDP CSUM error packets.\n");
3706 goto exit;
3707 }
3708 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3709 if (status) {
3710 netif_err(qdev, ifup, qdev->ndev,
3711 "Failed to init routing register for broadcast packets.\n");
3712 goto exit;
3713 }
3714 /* If we have more than one inbound queue, then turn on RSS in the
3715 * routing block.
3716 */
3717 if (qdev->rss_ring_count > 1) {
3718 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3719 RT_IDX_RSS_MATCH, 1);
3720 if (status) {
3721 netif_err(qdev, ifup, qdev->ndev,
3722 "Failed to init routing register for MATCH RSS packets.\n");
3723 goto exit;
3724 }
3725 }
3726
3727 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3728 RT_IDX_CAM_HIT, 1);
3729 if (status)
3730 netif_err(qdev, ifup, qdev->ndev,
3731 "Failed to init routing register for CAM packets.\n");
3732 exit:
3733 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3734 return status;
3735 }
3736
3737 int ql_cam_route_initialize(struct ql_adapter *qdev)
3738 {
3739 int status, set;
3740
3741 /* If check if the link is up and use to
3742 * determine if we are setting or clearing
3743 * the MAC address in the CAM.
3744 */
3745 set = ql_read32(qdev, STS);
3746 set &= qdev->port_link_up;
3747 status = ql_set_mac_addr(qdev, set);
3748 if (status) {
3749 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3750 return status;
3751 }
3752
3753 status = ql_route_initialize(qdev);
3754 if (status)
3755 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3756
3757 return status;
3758 }
3759
3760 static int ql_adapter_initialize(struct ql_adapter *qdev)
3761 {
3762 u32 value, mask;
3763 int i;
3764 int status = 0;
3765
3766 /*
3767 * Set up the System register to halt on errors.
3768 */
3769 value = SYS_EFE | SYS_FAE;
3770 mask = value << 16;
3771 ql_write32(qdev, SYS, mask | value);
3772
3773 /* Set the default queue, and VLAN behavior. */
3774 value = NIC_RCV_CFG_DFQ;
3775 mask = NIC_RCV_CFG_DFQ_MASK;
3776 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3777 value |= NIC_RCV_CFG_RV;
3778 mask |= (NIC_RCV_CFG_RV << 16);
3779 }
3780 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3781
3782 /* Set the MPI interrupt to enabled. */
3783 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3784
3785 /* Enable the function, set pagesize, enable error checking. */
3786 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3787 FSC_EC | FSC_VM_PAGE_4K;
3788 value |= SPLT_SETTING;
3789
3790 /* Set/clear header splitting. */
3791 mask = FSC_VM_PAGESIZE_MASK |
3792 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3793 ql_write32(qdev, FSC, mask | value);
3794
3795 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3796
3797 /* Set RX packet routing to use port/pci function on which the
3798 * packet arrived on in addition to usual frame routing.
3799 * This is helpful on bonding where both interfaces can have
3800 * the same MAC address.
3801 */
3802 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3803 /* Reroute all packets to our Interface.
3804 * They may have been routed to MPI firmware
3805 * due to WOL.
3806 */
3807 value = ql_read32(qdev, MGMT_RCV_CFG);
3808 value &= ~MGMT_RCV_CFG_RM;
3809 mask = 0xffff0000;
3810
3811 /* Sticky reg needs clearing due to WOL. */
3812 ql_write32(qdev, MGMT_RCV_CFG, mask);
3813 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3814
3815 /* Default WOL is enable on Mezz cards */
3816 if (qdev->pdev->subsystem_device == 0x0068 ||
3817 qdev->pdev->subsystem_device == 0x0180)
3818 qdev->wol = WAKE_MAGIC;
3819
3820 /* Start up the rx queues. */
3821 for (i = 0; i < qdev->rx_ring_count; i++) {
3822 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3823 if (status) {
3824 netif_err(qdev, ifup, qdev->ndev,
3825 "Failed to start rx ring[%d].\n", i);
3826 return status;
3827 }
3828 }
3829
3830 /* If there is more than one inbound completion queue
3831 * then download a RICB to configure RSS.
3832 */
3833 if (qdev->rss_ring_count > 1) {
3834 status = ql_start_rss(qdev);
3835 if (status) {
3836 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3837 return status;
3838 }
3839 }
3840
3841 /* Start up the tx queues. */
3842 for (i = 0; i < qdev->tx_ring_count; i++) {
3843 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3844 if (status) {
3845 netif_err(qdev, ifup, qdev->ndev,
3846 "Failed to start tx ring[%d].\n", i);
3847 return status;
3848 }
3849 }
3850
3851 /* Initialize the port and set the max framesize. */
3852 status = qdev->nic_ops->port_initialize(qdev);
3853 if (status)
3854 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3855
3856 /* Set up the MAC address and frame routing filter. */
3857 status = ql_cam_route_initialize(qdev);
3858 if (status) {
3859 netif_err(qdev, ifup, qdev->ndev,
3860 "Failed to init CAM/Routing tables.\n");
3861 return status;
3862 }
3863
3864 /* Start NAPI for the RSS queues. */
3865 for (i = 0; i < qdev->rss_ring_count; i++)
3866 napi_enable(&qdev->rx_ring[i].napi);
3867
3868 return status;
3869 }
3870
3871 /* Issue soft reset to chip. */
3872 static int ql_adapter_reset(struct ql_adapter *qdev)
3873 {
3874 u32 value;
3875 int status = 0;
3876 unsigned long end_jiffies;
3877
3878 /* Clear all the entries in the routing table. */
3879 status = ql_clear_routing_entries(qdev);
3880 if (status) {
3881 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3882 return status;
3883 }
3884
3885 /* Check if bit is set then skip the mailbox command and
3886 * clear the bit, else we are in normal reset process.
3887 */
3888 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3889 /* Stop management traffic. */
3890 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3891
3892 /* Wait for the NIC and MGMNT FIFOs to empty. */
3893 ql_wait_fifo_empty(qdev);
3894 } else
3895 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3896
3897 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3898
3899 end_jiffies = jiffies + usecs_to_jiffies(30);
3900 do {
3901 value = ql_read32(qdev, RST_FO);
3902 if ((value & RST_FO_FR) == 0)
3903 break;
3904 cpu_relax();
3905 } while (time_before(jiffies, end_jiffies));
3906
3907 if (value & RST_FO_FR) {
3908 netif_err(qdev, ifdown, qdev->ndev,
3909 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3910 status = -ETIMEDOUT;
3911 }
3912
3913 /* Resume management traffic. */
3914 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3915 return status;
3916 }
3917
3918 static void ql_display_dev_info(struct net_device *ndev)
3919 {
3920 struct ql_adapter *qdev = netdev_priv(ndev);
3921
3922 netif_info(qdev, probe, qdev->ndev,
3923 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3924 "XG Roll = %d, XG Rev = %d.\n",
3925 qdev->func,
3926 qdev->port,
3927 qdev->chip_rev_id & 0x0000000f,
3928 qdev->chip_rev_id >> 4 & 0x0000000f,
3929 qdev->chip_rev_id >> 8 & 0x0000000f,
3930 qdev->chip_rev_id >> 12 & 0x0000000f);
3931 netif_info(qdev, probe, qdev->ndev,
3932 "MAC address %pM\n", ndev->dev_addr);
3933 }
3934
3935 static int ql_wol(struct ql_adapter *qdev)
3936 {
3937 int status = 0;
3938 u32 wol = MB_WOL_DISABLE;
3939
3940 /* The CAM is still intact after a reset, but if we
3941 * are doing WOL, then we may need to program the
3942 * routing regs. We would also need to issue the mailbox
3943 * commands to instruct the MPI what to do per the ethtool
3944 * settings.
3945 */
3946
3947 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3948 WAKE_MCAST | WAKE_BCAST)) {
3949 netif_err(qdev, ifdown, qdev->ndev,
3950 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3951 qdev->wol);
3952 return -EINVAL;
3953 }
3954
3955 if (qdev->wol & WAKE_MAGIC) {
3956 status = ql_mb_wol_set_magic(qdev, 1);
3957 if (status) {
3958 netif_err(qdev, ifdown, qdev->ndev,
3959 "Failed to set magic packet on %s.\n",
3960 qdev->ndev->name);
3961 return status;
3962 } else
3963 netif_info(qdev, drv, qdev->ndev,
3964 "Enabled magic packet successfully on %s.\n",
3965 qdev->ndev->name);
3966
3967 wol |= MB_WOL_MAGIC_PKT;
3968 }
3969
3970 if (qdev->wol) {
3971 wol |= MB_WOL_MODE_ON;
3972 status = ql_mb_wol_mode(qdev, wol);
3973 netif_err(qdev, drv, qdev->ndev,
3974 "WOL %s (wol code 0x%x) on %s\n",
3975 (status == 0) ? "Successfully set" : "Failed",
3976 wol, qdev->ndev->name);
3977 }
3978
3979 return status;
3980 }
3981
3982 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3983 {
3984
3985 /* Don't kill the reset worker thread if we
3986 * are in the process of recovery.
3987 */
3988 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3989 cancel_delayed_work_sync(&qdev->asic_reset_work);
3990 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3991 cancel_delayed_work_sync(&qdev->mpi_work);
3992 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3993 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3994 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3995 }
3996
3997 static int ql_adapter_down(struct ql_adapter *qdev)
3998 {
3999 int i, status = 0;
4000
4001 ql_link_off(qdev);
4002
4003 ql_cancel_all_work_sync(qdev);
4004
4005 for (i = 0; i < qdev->rss_ring_count; i++)
4006 napi_disable(&qdev->rx_ring[i].napi);
4007
4008 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4009
4010 ql_disable_interrupts(qdev);
4011
4012 ql_tx_ring_clean(qdev);
4013
4014 /* Call netif_napi_del() from common point.
4015 */
4016 for (i = 0; i < qdev->rss_ring_count; i++)
4017 netif_napi_del(&qdev->rx_ring[i].napi);
4018
4019 status = ql_adapter_reset(qdev);
4020 if (status)
4021 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4022 qdev->func);
4023 ql_free_rx_buffers(qdev);
4024
4025 return status;
4026 }
4027
4028 static int ql_adapter_up(struct ql_adapter *qdev)
4029 {
4030 int err = 0;
4031
4032 err = ql_adapter_initialize(qdev);
4033 if (err) {
4034 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4035 goto err_init;
4036 }
4037 set_bit(QL_ADAPTER_UP, &qdev->flags);
4038 ql_alloc_rx_buffers(qdev);
4039 /* If the port is initialized and the
4040 * link is up the turn on the carrier.
4041 */
4042 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4043 (ql_read32(qdev, STS) & qdev->port_link_up))
4044 ql_link_on(qdev);
4045 /* Restore rx mode. */
4046 clear_bit(QL_ALLMULTI, &qdev->flags);
4047 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4048 qlge_set_multicast_list(qdev->ndev);
4049
4050 /* Restore vlan setting. */
4051 qlge_restore_vlan(qdev);
4052
4053 ql_enable_interrupts(qdev);
4054 ql_enable_all_completion_interrupts(qdev);
4055 netif_tx_start_all_queues(qdev->ndev);
4056
4057 return 0;
4058 err_init:
4059 ql_adapter_reset(qdev);
4060 return err;
4061 }
4062
4063 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4064 {
4065 ql_free_mem_resources(qdev);
4066 ql_free_irq(qdev);
4067 }
4068
4069 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4070 {
4071 int status = 0;
4072
4073 if (ql_alloc_mem_resources(qdev)) {
4074 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
4075 return -ENOMEM;
4076 }
4077 status = ql_request_irq(qdev);
4078 return status;
4079 }
4080
4081 static int qlge_close(struct net_device *ndev)
4082 {
4083 struct ql_adapter *qdev = netdev_priv(ndev);
4084
4085 /* If we hit pci_channel_io_perm_failure
4086 * failure condition, then we already
4087 * brought the adapter down.
4088 */
4089 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4090 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4091 clear_bit(QL_EEH_FATAL, &qdev->flags);
4092 return 0;
4093 }
4094
4095 /*
4096 * Wait for device to recover from a reset.
4097 * (Rarely happens, but possible.)
4098 */
4099 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4100 msleep(1);
4101 ql_adapter_down(qdev);
4102 ql_release_adapter_resources(qdev);
4103 return 0;
4104 }
4105
4106 static int ql_configure_rings(struct ql_adapter *qdev)
4107 {
4108 int i;
4109 struct rx_ring *rx_ring;
4110 struct tx_ring *tx_ring;
4111 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4112 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4113 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4114
4115 qdev->lbq_buf_order = get_order(lbq_buf_len);
4116
4117 /* In a perfect world we have one RSS ring for each CPU
4118 * and each has it's own vector. To do that we ask for
4119 * cpu_cnt vectors. ql_enable_msix() will adjust the
4120 * vector count to what we actually get. We then
4121 * allocate an RSS ring for each.
4122 * Essentially, we are doing min(cpu_count, msix_vector_count).
4123 */
4124 qdev->intr_count = cpu_cnt;
4125 ql_enable_msix(qdev);
4126 /* Adjust the RSS ring count to the actual vector count. */
4127 qdev->rss_ring_count = qdev->intr_count;
4128 qdev->tx_ring_count = cpu_cnt;
4129 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4130
4131 for (i = 0; i < qdev->tx_ring_count; i++) {
4132 tx_ring = &qdev->tx_ring[i];
4133 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4134 tx_ring->qdev = qdev;
4135 tx_ring->wq_id = i;
4136 tx_ring->wq_len = qdev->tx_ring_size;
4137 tx_ring->wq_size =
4138 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4139
4140 /*
4141 * The completion queue ID for the tx rings start
4142 * immediately after the rss rings.
4143 */
4144 tx_ring->cq_id = qdev->rss_ring_count + i;
4145 }
4146
4147 for (i = 0; i < qdev->rx_ring_count; i++) {
4148 rx_ring = &qdev->rx_ring[i];
4149 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4150 rx_ring->qdev = qdev;
4151 rx_ring->cq_id = i;
4152 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4153 if (i < qdev->rss_ring_count) {
4154 /*
4155 * Inbound (RSS) queues.
4156 */
4157 rx_ring->cq_len = qdev->rx_ring_size;
4158 rx_ring->cq_size =
4159 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4160 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4161 rx_ring->lbq_size =
4162 rx_ring->lbq_len * sizeof(__le64);
4163 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4164 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4165 rx_ring->sbq_size =
4166 rx_ring->sbq_len * sizeof(__le64);
4167 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4168 rx_ring->type = RX_Q;
4169 } else {
4170 /*
4171 * Outbound queue handles outbound completions only.
4172 */
4173 /* outbound cq is same size as tx_ring it services. */
4174 rx_ring->cq_len = qdev->tx_ring_size;
4175 rx_ring->cq_size =
4176 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4177 rx_ring->lbq_len = 0;
4178 rx_ring->lbq_size = 0;
4179 rx_ring->lbq_buf_size = 0;
4180 rx_ring->sbq_len = 0;
4181 rx_ring->sbq_size = 0;
4182 rx_ring->sbq_buf_size = 0;
4183 rx_ring->type = TX_Q;
4184 }
4185 }
4186 return 0;
4187 }
4188
4189 static int qlge_open(struct net_device *ndev)
4190 {
4191 int err = 0;
4192 struct ql_adapter *qdev = netdev_priv(ndev);
4193
4194 err = ql_adapter_reset(qdev);
4195 if (err)
4196 return err;
4197
4198 err = ql_configure_rings(qdev);
4199 if (err)
4200 return err;
4201
4202 err = ql_get_adapter_resources(qdev);
4203 if (err)
4204 goto error_up;
4205
4206 err = ql_adapter_up(qdev);
4207 if (err)
4208 goto error_up;
4209
4210 return err;
4211
4212 error_up:
4213 ql_release_adapter_resources(qdev);
4214 return err;
4215 }
4216
4217 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4218 {
4219 struct rx_ring *rx_ring;
4220 int i, status;
4221 u32 lbq_buf_len;
4222
4223 /* Wait for an outstanding reset to complete. */
4224 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4225 int i = 4;
4226
4227 while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4228 netif_err(qdev, ifup, qdev->ndev,
4229 "Waiting for adapter UP...\n");
4230 ssleep(1);
4231 }
4232
4233 if (!i) {
4234 netif_err(qdev, ifup, qdev->ndev,
4235 "Timed out waiting for adapter UP\n");
4236 return -ETIMEDOUT;
4237 }
4238 }
4239
4240 status = ql_adapter_down(qdev);
4241 if (status)
4242 goto error;
4243
4244 /* Get the new rx buffer size. */
4245 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4246 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4247 qdev->lbq_buf_order = get_order(lbq_buf_len);
4248
4249 for (i = 0; i < qdev->rss_ring_count; i++) {
4250 rx_ring = &qdev->rx_ring[i];
4251 /* Set the new size. */
4252 rx_ring->lbq_buf_size = lbq_buf_len;
4253 }
4254
4255 status = ql_adapter_up(qdev);
4256 if (status)
4257 goto error;
4258
4259 return status;
4260 error:
4261 netif_alert(qdev, ifup, qdev->ndev,
4262 "Driver up/down cycle failed, closing device.\n");
4263 set_bit(QL_ADAPTER_UP, &qdev->flags);
4264 dev_close(qdev->ndev);
4265 return status;
4266 }
4267
4268 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4269 {
4270 struct ql_adapter *qdev = netdev_priv(ndev);
4271 int status;
4272
4273 if (ndev->mtu == 1500 && new_mtu == 9000) {
4274 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4275 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4276 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4277 } else
4278 return -EINVAL;
4279
4280 queue_delayed_work(qdev->workqueue,
4281 &qdev->mpi_port_cfg_work, 3*HZ);
4282
4283 ndev->mtu = new_mtu;
4284
4285 if (!netif_running(qdev->ndev)) {
4286 return 0;
4287 }
4288
4289 status = ql_change_rx_buffers(qdev);
4290 if (status) {
4291 netif_err(qdev, ifup, qdev->ndev,
4292 "Changing MTU failed.\n");
4293 }
4294
4295 return status;
4296 }
4297
4298 static struct net_device_stats *qlge_get_stats(struct net_device
4299 *ndev)
4300 {
4301 struct ql_adapter *qdev = netdev_priv(ndev);
4302 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4303 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4304 unsigned long pkts, mcast, dropped, errors, bytes;
4305 int i;
4306
4307 /* Get RX stats. */
4308 pkts = mcast = dropped = errors = bytes = 0;
4309 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4310 pkts += rx_ring->rx_packets;
4311 bytes += rx_ring->rx_bytes;
4312 dropped += rx_ring->rx_dropped;
4313 errors += rx_ring->rx_errors;
4314 mcast += rx_ring->rx_multicast;
4315 }
4316 ndev->stats.rx_packets = pkts;
4317 ndev->stats.rx_bytes = bytes;
4318 ndev->stats.rx_dropped = dropped;
4319 ndev->stats.rx_errors = errors;
4320 ndev->stats.multicast = mcast;
4321
4322 /* Get TX stats. */
4323 pkts = errors = bytes = 0;
4324 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4325 pkts += tx_ring->tx_packets;
4326 bytes += tx_ring->tx_bytes;
4327 errors += tx_ring->tx_errors;
4328 }
4329 ndev->stats.tx_packets = pkts;
4330 ndev->stats.tx_bytes = bytes;
4331 ndev->stats.tx_errors = errors;
4332 return &ndev->stats;
4333 }
4334
4335 static void qlge_set_multicast_list(struct net_device *ndev)
4336 {
4337 struct ql_adapter *qdev = netdev_priv(ndev);
4338 struct netdev_hw_addr *ha;
4339 int i, status;
4340
4341 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4342 if (status)
4343 return;
4344 /*
4345 * Set or clear promiscuous mode if a
4346 * transition is taking place.
4347 */
4348 if (ndev->flags & IFF_PROMISC) {
4349 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4350 if (ql_set_routing_reg
4351 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4352 netif_err(qdev, hw, qdev->ndev,
4353 "Failed to set promiscuous mode.\n");
4354 } else {
4355 set_bit(QL_PROMISCUOUS, &qdev->flags);
4356 }
4357 }
4358 } else {
4359 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4360 if (ql_set_routing_reg
4361 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4362 netif_err(qdev, hw, qdev->ndev,
4363 "Failed to clear promiscuous mode.\n");
4364 } else {
4365 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4366 }
4367 }
4368 }
4369
4370 /*
4371 * Set or clear all multicast mode if a
4372 * transition is taking place.
4373 */
4374 if ((ndev->flags & IFF_ALLMULTI) ||
4375 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4376 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4377 if (ql_set_routing_reg
4378 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4379 netif_err(qdev, hw, qdev->ndev,
4380 "Failed to set all-multi mode.\n");
4381 } else {
4382 set_bit(QL_ALLMULTI, &qdev->flags);
4383 }
4384 }
4385 } else {
4386 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4387 if (ql_set_routing_reg
4388 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4389 netif_err(qdev, hw, qdev->ndev,
4390 "Failed to clear all-multi mode.\n");
4391 } else {
4392 clear_bit(QL_ALLMULTI, &qdev->flags);
4393 }
4394 }
4395 }
4396
4397 if (!netdev_mc_empty(ndev)) {
4398 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4399 if (status)
4400 goto exit;
4401 i = 0;
4402 netdev_for_each_mc_addr(ha, ndev) {
4403 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4404 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4405 netif_err(qdev, hw, qdev->ndev,
4406 "Failed to loadmulticast address.\n");
4407 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4408 goto exit;
4409 }
4410 i++;
4411 }
4412 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4413 if (ql_set_routing_reg
4414 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4415 netif_err(qdev, hw, qdev->ndev,
4416 "Failed to set multicast match mode.\n");
4417 } else {
4418 set_bit(QL_ALLMULTI, &qdev->flags);
4419 }
4420 }
4421 exit:
4422 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4423 }
4424
4425 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4426 {
4427 struct ql_adapter *qdev = netdev_priv(ndev);
4428 struct sockaddr *addr = p;
4429 int status;
4430
4431 if (!is_valid_ether_addr(addr->sa_data))
4432 return -EADDRNOTAVAIL;
4433 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4434 /* Update local copy of current mac address. */
4435 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4436
4437 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4438 if (status)
4439 return status;
4440 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4441 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4442 if (status)
4443 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4444 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4445 return status;
4446 }
4447
4448 static void qlge_tx_timeout(struct net_device *ndev)
4449 {
4450 struct ql_adapter *qdev = netdev_priv(ndev);
4451 ql_queue_asic_error(qdev);
4452 }
4453
4454 static void ql_asic_reset_work(struct work_struct *work)
4455 {
4456 struct ql_adapter *qdev =
4457 container_of(work, struct ql_adapter, asic_reset_work.work);
4458 int status;
4459 rtnl_lock();
4460 status = ql_adapter_down(qdev);
4461 if (status)
4462 goto error;
4463
4464 status = ql_adapter_up(qdev);
4465 if (status)
4466 goto error;
4467
4468 /* Restore rx mode. */
4469 clear_bit(QL_ALLMULTI, &qdev->flags);
4470 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4471 qlge_set_multicast_list(qdev->ndev);
4472
4473 rtnl_unlock();
4474 return;
4475 error:
4476 netif_alert(qdev, ifup, qdev->ndev,
4477 "Driver up/down cycle failed, closing device\n");
4478
4479 set_bit(QL_ADAPTER_UP, &qdev->flags);
4480 dev_close(qdev->ndev);
4481 rtnl_unlock();
4482 }
4483
4484 static const struct nic_operations qla8012_nic_ops = {
4485 .get_flash = ql_get_8012_flash_params,
4486 .port_initialize = ql_8012_port_initialize,
4487 };
4488
4489 static const struct nic_operations qla8000_nic_ops = {
4490 .get_flash = ql_get_8000_flash_params,
4491 .port_initialize = ql_8000_port_initialize,
4492 };
4493
4494 /* Find the pcie function number for the other NIC
4495 * on this chip. Since both NIC functions share a
4496 * common firmware we have the lowest enabled function
4497 * do any common work. Examples would be resetting
4498 * after a fatal firmware error, or doing a firmware
4499 * coredump.
4500 */
4501 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4502 {
4503 int status = 0;
4504 u32 temp;
4505 u32 nic_func1, nic_func2;
4506
4507 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4508 &temp);
4509 if (status)
4510 return status;
4511
4512 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4513 MPI_TEST_NIC_FUNC_MASK);
4514 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4515 MPI_TEST_NIC_FUNC_MASK);
4516
4517 if (qdev->func == nic_func1)
4518 qdev->alt_func = nic_func2;
4519 else if (qdev->func == nic_func2)
4520 qdev->alt_func = nic_func1;
4521 else
4522 status = -EIO;
4523
4524 return status;
4525 }
4526
4527 static int ql_get_board_info(struct ql_adapter *qdev)
4528 {
4529 int status;
4530 qdev->func =
4531 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4532 if (qdev->func > 3)
4533 return -EIO;
4534
4535 status = ql_get_alt_pcie_func(qdev);
4536 if (status)
4537 return status;
4538
4539 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4540 if (qdev->port) {
4541 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4542 qdev->port_link_up = STS_PL1;
4543 qdev->port_init = STS_PI1;
4544 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4545 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4546 } else {
4547 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4548 qdev->port_link_up = STS_PL0;
4549 qdev->port_init = STS_PI0;
4550 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4551 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4552 }
4553 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4554 qdev->device_id = qdev->pdev->device;
4555 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4556 qdev->nic_ops = &qla8012_nic_ops;
4557 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4558 qdev->nic_ops = &qla8000_nic_ops;
4559 return status;
4560 }
4561
4562 static void ql_release_all(struct pci_dev *pdev)
4563 {
4564 struct net_device *ndev = pci_get_drvdata(pdev);
4565 struct ql_adapter *qdev = netdev_priv(ndev);
4566
4567 if (qdev->workqueue) {
4568 destroy_workqueue(qdev->workqueue);
4569 qdev->workqueue = NULL;
4570 }
4571
4572 if (qdev->reg_base)
4573 iounmap(qdev->reg_base);
4574 if (qdev->doorbell_area)
4575 iounmap(qdev->doorbell_area);
4576 vfree(qdev->mpi_coredump);
4577 pci_release_regions(pdev);
4578 }
4579
4580 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4581 int cards_found)
4582 {
4583 struct ql_adapter *qdev = netdev_priv(ndev);
4584 int err = 0;
4585
4586 memset((void *)qdev, 0, sizeof(*qdev));
4587 err = pci_enable_device(pdev);
4588 if (err) {
4589 dev_err(&pdev->dev, "PCI device enable failed.\n");
4590 return err;
4591 }
4592
4593 qdev->ndev = ndev;
4594 qdev->pdev = pdev;
4595 pci_set_drvdata(pdev, ndev);
4596
4597 /* Set PCIe read request size */
4598 err = pcie_set_readrq(pdev, 4096);
4599 if (err) {
4600 dev_err(&pdev->dev, "Set readrq failed.\n");
4601 goto err_out1;
4602 }
4603
4604 err = pci_request_regions(pdev, DRV_NAME);
4605 if (err) {
4606 dev_err(&pdev->dev, "PCI region request failed.\n");
4607 return err;
4608 }
4609
4610 pci_set_master(pdev);
4611 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4612 set_bit(QL_DMA64, &qdev->flags);
4613 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4614 } else {
4615 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4616 if (!err)
4617 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4618 }
4619
4620 if (err) {
4621 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4622 goto err_out2;
4623 }
4624
4625 /* Set PCIe reset type for EEH to fundamental. */
4626 pdev->needs_freset = 1;
4627 pci_save_state(pdev);
4628 qdev->reg_base =
4629 ioremap_nocache(pci_resource_start(pdev, 1),
4630 pci_resource_len(pdev, 1));
4631 if (!qdev->reg_base) {
4632 dev_err(&pdev->dev, "Register mapping failed.\n");
4633 err = -ENOMEM;
4634 goto err_out2;
4635 }
4636
4637 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4638 qdev->doorbell_area =
4639 ioremap_nocache(pci_resource_start(pdev, 3),
4640 pci_resource_len(pdev, 3));
4641 if (!qdev->doorbell_area) {
4642 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4643 err = -ENOMEM;
4644 goto err_out2;
4645 }
4646
4647 err = ql_get_board_info(qdev);
4648 if (err) {
4649 dev_err(&pdev->dev, "Register access failed.\n");
4650 err = -EIO;
4651 goto err_out2;
4652 }
4653 qdev->msg_enable = netif_msg_init(debug, default_msg);
4654 spin_lock_init(&qdev->hw_lock);
4655 spin_lock_init(&qdev->stats_lock);
4656
4657 if (qlge_mpi_coredump) {
4658 qdev->mpi_coredump =
4659 vmalloc(sizeof(struct ql_mpi_coredump));
4660 if (qdev->mpi_coredump == NULL) {
4661 err = -ENOMEM;
4662 goto err_out2;
4663 }
4664 if (qlge_force_coredump)
4665 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4666 }
4667 /* make sure the EEPROM is good */
4668 err = qdev->nic_ops->get_flash(qdev);
4669 if (err) {
4670 dev_err(&pdev->dev, "Invalid FLASH.\n");
4671 goto err_out2;
4672 }
4673
4674 /* Keep local copy of current mac address. */
4675 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4676
4677 /* Set up the default ring sizes. */
4678 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4679 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4680
4681 /* Set up the coalescing parameters. */
4682 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4683 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4684 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4685 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4686
4687 /*
4688 * Set up the operating parameters.
4689 */
4690 qdev->workqueue = alloc_ordered_workqueue(ndev->name, WQ_MEM_RECLAIM);
4691 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4692 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4693 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4694 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4695 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4696 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4697 init_completion(&qdev->ide_completion);
4698 mutex_init(&qdev->mpi_mutex);
4699
4700 if (!cards_found) {
4701 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4702 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4703 DRV_NAME, DRV_VERSION);
4704 }
4705 return 0;
4706 err_out2:
4707 ql_release_all(pdev);
4708 err_out1:
4709 pci_disable_device(pdev);
4710 return err;
4711 }
4712
4713 static const struct net_device_ops qlge_netdev_ops = {
4714 .ndo_open = qlge_open,
4715 .ndo_stop = qlge_close,
4716 .ndo_start_xmit = qlge_send,
4717 .ndo_change_mtu = qlge_change_mtu,
4718 .ndo_get_stats = qlge_get_stats,
4719 .ndo_set_rx_mode = qlge_set_multicast_list,
4720 .ndo_set_mac_address = qlge_set_mac_address,
4721 .ndo_validate_addr = eth_validate_addr,
4722 .ndo_tx_timeout = qlge_tx_timeout,
4723 .ndo_fix_features = qlge_fix_features,
4724 .ndo_set_features = qlge_set_features,
4725 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4726 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4727 };
4728
4729 static void ql_timer(unsigned long data)
4730 {
4731 struct ql_adapter *qdev = (struct ql_adapter *)data;
4732 u32 var = 0;
4733
4734 var = ql_read32(qdev, STS);
4735 if (pci_channel_offline(qdev->pdev)) {
4736 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4737 return;
4738 }
4739
4740 mod_timer(&qdev->timer, jiffies + (5*HZ));
4741 }
4742
4743 static int qlge_probe(struct pci_dev *pdev,
4744 const struct pci_device_id *pci_entry)
4745 {
4746 struct net_device *ndev = NULL;
4747 struct ql_adapter *qdev = NULL;
4748 static int cards_found = 0;
4749 int err = 0;
4750
4751 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4752 min(MAX_CPUS, netif_get_num_default_rss_queues()));
4753 if (!ndev)
4754 return -ENOMEM;
4755
4756 err = ql_init_device(pdev, ndev, cards_found);
4757 if (err < 0) {
4758 free_netdev(ndev);
4759 return err;
4760 }
4761
4762 qdev = netdev_priv(ndev);
4763 SET_NETDEV_DEV(ndev, &pdev->dev);
4764 ndev->hw_features = NETIF_F_SG |
4765 NETIF_F_IP_CSUM |
4766 NETIF_F_TSO |
4767 NETIF_F_TSO_ECN |
4768 NETIF_F_HW_VLAN_CTAG_TX |
4769 NETIF_F_HW_VLAN_CTAG_RX |
4770 NETIF_F_HW_VLAN_CTAG_FILTER |
4771 NETIF_F_RXCSUM;
4772 ndev->features = ndev->hw_features;
4773 ndev->vlan_features = ndev->hw_features;
4774 /* vlan gets same features (except vlan filter) */
4775 ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4776 NETIF_F_HW_VLAN_CTAG_TX |
4777 NETIF_F_HW_VLAN_CTAG_RX);
4778
4779 if (test_bit(QL_DMA64, &qdev->flags))
4780 ndev->features |= NETIF_F_HIGHDMA;
4781
4782 /*
4783 * Set up net_device structure.
4784 */
4785 ndev->tx_queue_len = qdev->tx_ring_size;
4786 ndev->irq = pdev->irq;
4787
4788 ndev->netdev_ops = &qlge_netdev_ops;
4789 ndev->ethtool_ops = &qlge_ethtool_ops;
4790 ndev->watchdog_timeo = 10 * HZ;
4791
4792 err = register_netdev(ndev);
4793 if (err) {
4794 dev_err(&pdev->dev, "net device registration failed.\n");
4795 ql_release_all(pdev);
4796 pci_disable_device(pdev);
4797 free_netdev(ndev);
4798 return err;
4799 }
4800 /* Start up the timer to trigger EEH if
4801 * the bus goes dead
4802 */
4803 init_timer_deferrable(&qdev->timer);
4804 qdev->timer.data = (unsigned long)qdev;
4805 qdev->timer.function = ql_timer;
4806 qdev->timer.expires = jiffies + (5*HZ);
4807 add_timer(&qdev->timer);
4808 ql_link_off(qdev);
4809 ql_display_dev_info(ndev);
4810 atomic_set(&qdev->lb_count, 0);
4811 cards_found++;
4812 return 0;
4813 }
4814
4815 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4816 {
4817 return qlge_send(skb, ndev);
4818 }
4819
4820 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4821 {
4822 return ql_clean_inbound_rx_ring(rx_ring, budget);
4823 }
4824
4825 static void qlge_remove(struct pci_dev *pdev)
4826 {
4827 struct net_device *ndev = pci_get_drvdata(pdev);
4828 struct ql_adapter *qdev = netdev_priv(ndev);
4829 del_timer_sync(&qdev->timer);
4830 ql_cancel_all_work_sync(qdev);
4831 unregister_netdev(ndev);
4832 ql_release_all(pdev);
4833 pci_disable_device(pdev);
4834 free_netdev(ndev);
4835 }
4836
4837 /* Clean up resources without touching hardware. */
4838 static void ql_eeh_close(struct net_device *ndev)
4839 {
4840 int i;
4841 struct ql_adapter *qdev = netdev_priv(ndev);
4842
4843 if (netif_carrier_ok(ndev)) {
4844 netif_carrier_off(ndev);
4845 netif_stop_queue(ndev);
4846 }
4847
4848 /* Disabling the timer */
4849 del_timer_sync(&qdev->timer);
4850 ql_cancel_all_work_sync(qdev);
4851
4852 for (i = 0; i < qdev->rss_ring_count; i++)
4853 netif_napi_del(&qdev->rx_ring[i].napi);
4854
4855 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4856 ql_tx_ring_clean(qdev);
4857 ql_free_rx_buffers(qdev);
4858 ql_release_adapter_resources(qdev);
4859 }
4860
4861 /*
4862 * This callback is called by the PCI subsystem whenever
4863 * a PCI bus error is detected.
4864 */
4865 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4866 enum pci_channel_state state)
4867 {
4868 struct net_device *ndev = pci_get_drvdata(pdev);
4869 struct ql_adapter *qdev = netdev_priv(ndev);
4870
4871 switch (state) {
4872 case pci_channel_io_normal:
4873 return PCI_ERS_RESULT_CAN_RECOVER;
4874 case pci_channel_io_frozen:
4875 netif_device_detach(ndev);
4876 if (netif_running(ndev))
4877 ql_eeh_close(ndev);
4878 pci_disable_device(pdev);
4879 return PCI_ERS_RESULT_NEED_RESET;
4880 case pci_channel_io_perm_failure:
4881 dev_err(&pdev->dev,
4882 "%s: pci_channel_io_perm_failure.\n", __func__);
4883 ql_eeh_close(ndev);
4884 set_bit(QL_EEH_FATAL, &qdev->flags);
4885 return PCI_ERS_RESULT_DISCONNECT;
4886 }
4887
4888 /* Request a slot reset. */
4889 return PCI_ERS_RESULT_NEED_RESET;
4890 }
4891
4892 /*
4893 * This callback is called after the PCI buss has been reset.
4894 * Basically, this tries to restart the card from scratch.
4895 * This is a shortened version of the device probe/discovery code,
4896 * it resembles the first-half of the () routine.
4897 */
4898 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4899 {
4900 struct net_device *ndev = pci_get_drvdata(pdev);
4901 struct ql_adapter *qdev = netdev_priv(ndev);
4902
4903 pdev->error_state = pci_channel_io_normal;
4904
4905 pci_restore_state(pdev);
4906 if (pci_enable_device(pdev)) {
4907 netif_err(qdev, ifup, qdev->ndev,
4908 "Cannot re-enable PCI device after reset.\n");
4909 return PCI_ERS_RESULT_DISCONNECT;
4910 }
4911 pci_set_master(pdev);
4912
4913 if (ql_adapter_reset(qdev)) {
4914 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4915 set_bit(QL_EEH_FATAL, &qdev->flags);
4916 return PCI_ERS_RESULT_DISCONNECT;
4917 }
4918
4919 return PCI_ERS_RESULT_RECOVERED;
4920 }
4921
4922 static void qlge_io_resume(struct pci_dev *pdev)
4923 {
4924 struct net_device *ndev = pci_get_drvdata(pdev);
4925 struct ql_adapter *qdev = netdev_priv(ndev);
4926 int err = 0;
4927
4928 if (netif_running(ndev)) {
4929 err = qlge_open(ndev);
4930 if (err) {
4931 netif_err(qdev, ifup, qdev->ndev,
4932 "Device initialization failed after reset.\n");
4933 return;
4934 }
4935 } else {
4936 netif_err(qdev, ifup, qdev->ndev,
4937 "Device was not running prior to EEH.\n");
4938 }
4939 mod_timer(&qdev->timer, jiffies + (5*HZ));
4940 netif_device_attach(ndev);
4941 }
4942
4943 static const struct pci_error_handlers qlge_err_handler = {
4944 .error_detected = qlge_io_error_detected,
4945 .slot_reset = qlge_io_slot_reset,
4946 .resume = qlge_io_resume,
4947 };
4948
4949 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4950 {
4951 struct net_device *ndev = pci_get_drvdata(pdev);
4952 struct ql_adapter *qdev = netdev_priv(ndev);
4953 int err;
4954
4955 netif_device_detach(ndev);
4956 del_timer_sync(&qdev->timer);
4957
4958 if (netif_running(ndev)) {
4959 err = ql_adapter_down(qdev);
4960 if (!err)
4961 return err;
4962 }
4963
4964 ql_wol(qdev);
4965 err = pci_save_state(pdev);
4966 if (err)
4967 return err;
4968
4969 pci_disable_device(pdev);
4970
4971 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4972
4973 return 0;
4974 }
4975
4976 #ifdef CONFIG_PM
4977 static int qlge_resume(struct pci_dev *pdev)
4978 {
4979 struct net_device *ndev = pci_get_drvdata(pdev);
4980 struct ql_adapter *qdev = netdev_priv(ndev);
4981 int err;
4982
4983 pci_set_power_state(pdev, PCI_D0);
4984 pci_restore_state(pdev);
4985 err = pci_enable_device(pdev);
4986 if (err) {
4987 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4988 return err;
4989 }
4990 pci_set_master(pdev);
4991
4992 pci_enable_wake(pdev, PCI_D3hot, 0);
4993 pci_enable_wake(pdev, PCI_D3cold, 0);
4994
4995 if (netif_running(ndev)) {
4996 err = ql_adapter_up(qdev);
4997 if (err)
4998 return err;
4999 }
5000
5001 mod_timer(&qdev->timer, jiffies + (5*HZ));
5002 netif_device_attach(ndev);
5003
5004 return 0;
5005 }
5006 #endif /* CONFIG_PM */
5007
5008 static void qlge_shutdown(struct pci_dev *pdev)
5009 {
5010 qlge_suspend(pdev, PMSG_SUSPEND);
5011 }
5012
5013 static struct pci_driver qlge_driver = {
5014 .name = DRV_NAME,
5015 .id_table = qlge_pci_tbl,
5016 .probe = qlge_probe,
5017 .remove = qlge_remove,
5018 #ifdef CONFIG_PM
5019 .suspend = qlge_suspend,
5020 .resume = qlge_resume,
5021 #endif
5022 .shutdown = qlge_shutdown,
5023 .err_handler = &qlge_err_handler
5024 };
5025
5026 module_pci_driver(qlge_driver);
This page took 0.171766 seconds and 5 git commands to generate.