net: rename vlan_tx_* helpers since "tx" is misleading there
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = -1; /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80 "Option to enable MPI firmware dump. "
81 "Default is OFF - Do Not allocate memory. ");
82
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86 "Option to allow force of firmware core dump. "
87 "Default is OFF - Do not allow.");
88
89 static const struct pci_device_id qlge_pci_tbl[] = {
90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92 /* required last entry */
93 {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102
103 /* This hardware semaphore causes exclusive access to
104 * resources shared between the NIC driver, MPI firmware,
105 * FCOE firmware and the FC driver.
106 */
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109 u32 sem_bits = 0;
110
111 switch (sem_mask) {
112 case SEM_XGMAC0_MASK:
113 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114 break;
115 case SEM_XGMAC1_MASK:
116 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117 break;
118 case SEM_ICB_MASK:
119 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120 break;
121 case SEM_MAC_ADDR_MASK:
122 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123 break;
124 case SEM_FLASH_MASK:
125 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126 break;
127 case SEM_PROBE_MASK:
128 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129 break;
130 case SEM_RT_IDX_MASK:
131 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132 break;
133 case SEM_PROC_REG_MASK:
134 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135 break;
136 default:
137 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138 return -EINVAL;
139 }
140
141 ql_write32(qdev, SEM, sem_bits | sem_mask);
142 return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147 unsigned int wait_count = 30;
148 do {
149 if (!ql_sem_trylock(qdev, sem_mask))
150 return 0;
151 udelay(100);
152 } while (--wait_count);
153 return -ETIMEDOUT;
154 }
155
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158 ql_write32(qdev, SEM, sem_mask);
159 ql_read32(qdev, SEM); /* flush */
160 }
161
162 /* This function waits for a specific bit to come ready
163 * in a given register. It is used mostly by the initialize
164 * process, but is also used in kernel thread API such as
165 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166 */
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169 u32 temp;
170 int count = UDELAY_COUNT;
171
172 while (count) {
173 temp = ql_read32(qdev, reg);
174
175 /* check for errors */
176 if (temp & err_bit) {
177 netif_alert(qdev, probe, qdev->ndev,
178 "register 0x%.08x access error, value = 0x%.08x!.\n",
179 reg, temp);
180 return -EIO;
181 } else if (temp & bit)
182 return 0;
183 udelay(UDELAY_DELAY);
184 count--;
185 }
186 netif_alert(qdev, probe, qdev->ndev,
187 "Timed out waiting for reg %x to come ready.\n", reg);
188 return -ETIMEDOUT;
189 }
190
191 /* The CFG register is used to download TX and RX control blocks
192 * to the chip. This function waits for an operation to complete.
193 */
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196 int count = UDELAY_COUNT;
197 u32 temp;
198
199 while (count) {
200 temp = ql_read32(qdev, CFG);
201 if (temp & CFG_LE)
202 return -EIO;
203 if (!(temp & bit))
204 return 0;
205 udelay(UDELAY_DELAY);
206 count--;
207 }
208 return -ETIMEDOUT;
209 }
210
211
212 /* Used to issue init control blocks to hw. Maps control block,
213 * sets address, triggers download, waits for completion.
214 */
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216 u16 q_id)
217 {
218 u64 map;
219 int status = 0;
220 int direction;
221 u32 mask;
222 u32 value;
223
224 direction =
225 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226 PCI_DMA_FROMDEVICE;
227
228 map = pci_map_single(qdev->pdev, ptr, size, direction);
229 if (pci_dma_mapping_error(qdev->pdev, map)) {
230 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231 return -ENOMEM;
232 }
233
234 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235 if (status)
236 return status;
237
238 status = ql_wait_cfg(qdev, bit);
239 if (status) {
240 netif_err(qdev, ifup, qdev->ndev,
241 "Timed out waiting for CFG to come ready.\n");
242 goto exit;
243 }
244
245 ql_write32(qdev, ICB_L, (u32) map);
246 ql_write32(qdev, ICB_H, (u32) (map >> 32));
247
248 mask = CFG_Q_MASK | (bit << 16);
249 value = bit | (q_id << CFG_Q_SHIFT);
250 ql_write32(qdev, CFG, (mask | value));
251
252 /*
253 * Wait for the bit to clear after signaling hw.
254 */
255 status = ql_wait_cfg(qdev, bit);
256 exit:
257 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
258 pci_unmap_single(qdev->pdev, map, size, direction);
259 return status;
260 }
261
262 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264 u32 *value)
265 {
266 u32 offset = 0;
267 int status;
268
269 switch (type) {
270 case MAC_ADDR_TYPE_MULTI_MAC:
271 case MAC_ADDR_TYPE_CAM_MAC:
272 {
273 status =
274 ql_wait_reg_rdy(qdev,
275 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276 if (status)
277 goto exit;
278 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281 status =
282 ql_wait_reg_rdy(qdev,
283 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284 if (status)
285 goto exit;
286 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287 status =
288 ql_wait_reg_rdy(qdev,
289 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290 if (status)
291 goto exit;
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 status =
296 ql_wait_reg_rdy(qdev,
297 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298 if (status)
299 goto exit;
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 if (type == MAC_ADDR_TYPE_CAM_MAC) {
302 status =
303 ql_wait_reg_rdy(qdev,
304 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305 if (status)
306 goto exit;
307 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310 status =
311 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312 MAC_ADDR_MR, 0);
313 if (status)
314 goto exit;
315 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316 }
317 break;
318 }
319 case MAC_ADDR_TYPE_VLAN:
320 case MAC_ADDR_TYPE_MULTI_FLTR:
321 default:
322 netif_crit(qdev, ifup, qdev->ndev,
323 "Address type %d not yet supported.\n", type);
324 status = -EPERM;
325 }
326 exit:
327 return status;
328 }
329
330 /* Set up a MAC, multicast or VLAN address for the
331 * inbound frame matching.
332 */
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334 u16 index)
335 {
336 u32 offset = 0;
337 int status = 0;
338
339 switch (type) {
340 case MAC_ADDR_TYPE_MULTI_MAC:
341 {
342 u32 upper = (addr[0] << 8) | addr[1];
343 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 (addr[4] << 8) | (addr[5]);
345
346 status =
347 ql_wait_reg_rdy(qdev,
348 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 if (status)
350 goto exit;
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 (index << MAC_ADDR_IDX_SHIFT) |
353 type | MAC_ADDR_E);
354 ql_write32(qdev, MAC_ADDR_DATA, lower);
355 status =
356 ql_wait_reg_rdy(qdev,
357 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 if (status)
359 goto exit;
360 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 (index << MAC_ADDR_IDX_SHIFT) |
362 type | MAC_ADDR_E);
363
364 ql_write32(qdev, MAC_ADDR_DATA, upper);
365 status =
366 ql_wait_reg_rdy(qdev,
367 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368 if (status)
369 goto exit;
370 break;
371 }
372 case MAC_ADDR_TYPE_CAM_MAC:
373 {
374 u32 cam_output;
375 u32 upper = (addr[0] << 8) | addr[1];
376 u32 lower =
377 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378 (addr[5]);
379 status =
380 ql_wait_reg_rdy(qdev,
381 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382 if (status)
383 goto exit;
384 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 type); /* type */
387 ql_write32(qdev, MAC_ADDR_DATA, lower);
388 status =
389 ql_wait_reg_rdy(qdev,
390 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391 if (status)
392 goto exit;
393 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 type); /* type */
396 ql_write32(qdev, MAC_ADDR_DATA, upper);
397 status =
398 ql_wait_reg_rdy(qdev,
399 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400 if (status)
401 goto exit;
402 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
403 (index << MAC_ADDR_IDX_SHIFT) | /* index */
404 type); /* type */
405 /* This field should also include the queue id
406 and possibly the function id. Right now we hardcode
407 the route field to NIC core.
408 */
409 cam_output = (CAM_OUT_ROUTE_NIC |
410 (qdev->
411 func << CAM_OUT_FUNC_SHIFT) |
412 (0 << CAM_OUT_CQ_ID_SHIFT));
413 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414 cam_output |= CAM_OUT_RV;
415 /* route to NIC core */
416 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417 break;
418 }
419 case MAC_ADDR_TYPE_VLAN:
420 {
421 u32 enable_bit = *((u32 *) &addr[0]);
422 /* For VLAN, the addr actually holds a bit that
423 * either enables or disables the vlan id we are
424 * addressing. It's either MAC_ADDR_E on or off.
425 * That's bit-27 we're talking about.
426 */
427 status =
428 ql_wait_reg_rdy(qdev,
429 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430 if (status)
431 goto exit;
432 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433 (index << MAC_ADDR_IDX_SHIFT) | /* index */
434 type | /* type */
435 enable_bit); /* enable/disable */
436 break;
437 }
438 case MAC_ADDR_TYPE_MULTI_FLTR:
439 default:
440 netif_crit(qdev, ifup, qdev->ndev,
441 "Address type %d not yet supported.\n", type);
442 status = -EPERM;
443 }
444 exit:
445 return status;
446 }
447
448 /* Set or clear MAC address in hardware. We sometimes
449 * have to clear it to prevent wrong frame routing
450 * especially in a bonding environment.
451 */
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454 int status;
455 char zero_mac_addr[ETH_ALEN];
456 char *addr;
457
458 if (set) {
459 addr = &qdev->current_mac_addr[0];
460 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 "Set Mac addr %pM\n", addr);
462 } else {
463 memset(zero_mac_addr, 0, ETH_ALEN);
464 addr = &zero_mac_addr[0];
465 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 "Clearing MAC address\n");
467 }
468 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469 if (status)
470 return status;
471 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474 if (status)
475 netif_err(qdev, ifup, qdev->ndev,
476 "Failed to init mac address.\n");
477 return status;
478 }
479
480 void ql_link_on(struct ql_adapter *qdev)
481 {
482 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483 netif_carrier_on(qdev->ndev);
484 ql_set_mac_addr(qdev, 1);
485 }
486
487 void ql_link_off(struct ql_adapter *qdev)
488 {
489 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490 netif_carrier_off(qdev->ndev);
491 ql_set_mac_addr(qdev, 0);
492 }
493
494 /* Get a specific frame routing value from the CAM.
495 * Used for debug and reg dump.
496 */
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499 int status = 0;
500
501 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502 if (status)
503 goto exit;
504
505 ql_write32(qdev, RT_IDX,
506 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508 if (status)
509 goto exit;
510 *value = ql_read32(qdev, RT_DATA);
511 exit:
512 return status;
513 }
514
515 /* The NIC function for this chip has 16 routing indexes. Each one can be used
516 * to route different frame types to various inbound queues. We send broadcast/
517 * multicast/error frames to the default queue for slow handling,
518 * and CAM hit/RSS frames to the fast handling queues.
519 */
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521 int enable)
522 {
523 int status = -EINVAL; /* Return error if no mask match. */
524 u32 value = 0;
525
526 switch (mask) {
527 case RT_IDX_CAM_HIT:
528 {
529 value = RT_IDX_DST_CAM_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 break;
533 }
534 case RT_IDX_VALID: /* Promiscuous Mode frames. */
535 {
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 break;
540 }
541 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
542 {
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 break;
547 }
548 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549 {
550 value = RT_IDX_DST_DFLT_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_IP_CSUM_ERR_SLOT <<
553 RT_IDX_IDX_SHIFT); /* index */
554 break;
555 }
556 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557 {
558 value = RT_IDX_DST_DFLT_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 RT_IDX_IDX_SHIFT); /* index */
562 break;
563 }
564 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
565 {
566 value = RT_IDX_DST_DFLT_Q | /* dest */
567 RT_IDX_TYPE_NICQ | /* type */
568 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 break;
570 }
571 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
572 {
573 value = RT_IDX_DST_DFLT_Q | /* dest */
574 RT_IDX_TYPE_NICQ | /* type */
575 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 break;
577 }
578 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
579 {
580 value = RT_IDX_DST_DFLT_Q | /* dest */
581 RT_IDX_TYPE_NICQ | /* type */
582 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 break;
584 }
585 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
586 {
587 value = RT_IDX_DST_RSS | /* dest */
588 RT_IDX_TYPE_NICQ | /* type */
589 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 break;
591 }
592 case 0: /* Clear the E-bit on an entry. */
593 {
594 value = RT_IDX_DST_DFLT_Q | /* dest */
595 RT_IDX_TYPE_NICQ | /* type */
596 (index << RT_IDX_IDX_SHIFT);/* index */
597 break;
598 }
599 default:
600 netif_err(qdev, ifup, qdev->ndev,
601 "Mask type %d not yet supported.\n", mask);
602 status = -EPERM;
603 goto exit;
604 }
605
606 if (value) {
607 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608 if (status)
609 goto exit;
610 value |= (enable ? RT_IDX_E : 0);
611 ql_write32(qdev, RT_IDX, value);
612 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613 }
614 exit:
615 return status;
616 }
617
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629 * Otherwise, we may have multiple outstanding workers and don't want to
630 * enable until the last one finishes. In this case, the irq_cnt gets
631 * incremented every time we queue a worker and decremented every time
632 * a worker finishes. Once it hits zero we enable the interrupt.
633 */
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636 u32 var = 0;
637 unsigned long hw_flags = 0;
638 struct intr_context *ctx = qdev->intr_context + intr;
639
640 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 /* Always enable if we're MSIX multi interrupts and
642 * it's not the default (zeroeth) interrupt.
643 */
644 ql_write32(qdev, INTR_EN,
645 ctx->intr_en_mask);
646 var = ql_read32(qdev, STS);
647 return var;
648 }
649
650 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 ql_write32(qdev, INTR_EN,
653 ctx->intr_en_mask);
654 var = ql_read32(qdev, STS);
655 }
656 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657 return var;
658 }
659
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662 u32 var = 0;
663 struct intr_context *ctx;
664
665 /* HW disables for us if we're MSIX multi interrupts and
666 * it's not the default (zeroeth) interrupt.
667 */
668 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669 return 0;
670
671 ctx = qdev->intr_context + intr;
672 spin_lock(&qdev->hw_lock);
673 if (!atomic_read(&ctx->irq_cnt)) {
674 ql_write32(qdev, INTR_EN,
675 ctx->intr_dis_mask);
676 var = ql_read32(qdev, STS);
677 }
678 atomic_inc(&ctx->irq_cnt);
679 spin_unlock(&qdev->hw_lock);
680 return var;
681 }
682
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685 int i;
686 for (i = 0; i < qdev->intr_count; i++) {
687 /* The enable call does a atomic_dec_and_test
688 * and enables only if the result is zero.
689 * So we precharge it here.
690 */
691 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692 i == 0))
693 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694 ql_enable_completion_interrupt(qdev, i);
695 }
696
697 }
698
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701 int status, i;
702 u16 csum = 0;
703 __le16 *flash = (__le16 *)&qdev->flash;
704
705 status = strncmp((char *)&qdev->flash, str, 4);
706 if (status) {
707 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708 return status;
709 }
710
711 for (i = 0; i < size; i++)
712 csum += le16_to_cpu(*flash++);
713
714 if (csum)
715 netif_err(qdev, ifup, qdev->ndev,
716 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717
718 return csum;
719 }
720
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723 int status = 0;
724 /* wait for reg to come ready */
725 status = ql_wait_reg_rdy(qdev,
726 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727 if (status)
728 goto exit;
729 /* set up for reg read */
730 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 /* wait for reg to come ready */
732 status = ql_wait_reg_rdy(qdev,
733 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 if (status)
735 goto exit;
736 /* This data is stored on flash as an array of
737 * __le32. Since ql_read32() returns cpu endian
738 * we need to swap it back.
739 */
740 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742 return status;
743 }
744
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747 u32 i, size;
748 int status;
749 __le32 *p = (__le32 *)&qdev->flash;
750 u32 offset;
751 u8 mac_addr[6];
752
753 /* Get flash offset for function and adjust
754 * for dword access.
755 */
756 if (!qdev->port)
757 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758 else
759 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762 return -ETIMEDOUT;
763
764 size = sizeof(struct flash_params_8000) / sizeof(u32);
765 for (i = 0; i < size; i++, p++) {
766 status = ql_read_flash_word(qdev, i+offset, p);
767 if (status) {
768 netif_err(qdev, ifup, qdev->ndev,
769 "Error reading flash.\n");
770 goto exit;
771 }
772 }
773
774 status = ql_validate_flash(qdev,
775 sizeof(struct flash_params_8000) / sizeof(u16),
776 "8000");
777 if (status) {
778 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779 status = -EINVAL;
780 goto exit;
781 }
782
783 /* Extract either manufacturer or BOFM modified
784 * MAC address.
785 */
786 if (qdev->flash.flash_params_8000.data_type1 == 2)
787 memcpy(mac_addr,
788 qdev->flash.flash_params_8000.mac_addr1,
789 qdev->ndev->addr_len);
790 else
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr,
793 qdev->ndev->addr_len);
794
795 if (!is_valid_ether_addr(mac_addr)) {
796 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797 status = -EINVAL;
798 goto exit;
799 }
800
801 memcpy(qdev->ndev->dev_addr,
802 mac_addr,
803 qdev->ndev->addr_len);
804
805 exit:
806 ql_sem_unlock(qdev, SEM_FLASH_MASK);
807 return status;
808 }
809
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812 int i;
813 int status;
814 __le32 *p = (__le32 *)&qdev->flash;
815 u32 offset = 0;
816 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817
818 /* Second function's parameters follow the first
819 * function's.
820 */
821 if (qdev->port)
822 offset = size;
823
824 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825 return -ETIMEDOUT;
826
827 for (i = 0; i < size; i++, p++) {
828 status = ql_read_flash_word(qdev, i+offset, p);
829 if (status) {
830 netif_err(qdev, ifup, qdev->ndev,
831 "Error reading flash.\n");
832 goto exit;
833 }
834
835 }
836
837 status = ql_validate_flash(qdev,
838 sizeof(struct flash_params_8012) / sizeof(u16),
839 "8012");
840 if (status) {
841 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842 status = -EINVAL;
843 goto exit;
844 }
845
846 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847 status = -EINVAL;
848 goto exit;
849 }
850
851 memcpy(qdev->ndev->dev_addr,
852 qdev->flash.flash_params_8012.mac_addr,
853 qdev->ndev->addr_len);
854
855 exit:
856 ql_sem_unlock(qdev, SEM_FLASH_MASK);
857 return status;
858 }
859
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861 * register pair. Each read/write requires us to wait for the ready
862 * bit before reading/writing the data.
863 */
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866 int status;
867 /* wait for reg to come ready */
868 status = ql_wait_reg_rdy(qdev,
869 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870 if (status)
871 return status;
872 /* write the data to the data reg */
873 ql_write32(qdev, XGMAC_DATA, data);
874 /* trigger the write */
875 ql_write32(qdev, XGMAC_ADDR, reg);
876 return status;
877 }
878
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880 * register pair. Each read/write requires us to wait for the ready
881 * bit before reading/writing the data.
882 */
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885 int status = 0;
886 /* wait for reg to come ready */
887 status = ql_wait_reg_rdy(qdev,
888 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889 if (status)
890 goto exit;
891 /* set up for reg read */
892 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 /* wait for reg to come ready */
894 status = ql_wait_reg_rdy(qdev,
895 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896 if (status)
897 goto exit;
898 /* get the data */
899 *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901 return status;
902 }
903
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907 int status = 0;
908 u32 hi = 0;
909 u32 lo = 0;
910
911 status = ql_read_xgmac_reg(qdev, reg, &lo);
912 if (status)
913 goto exit;
914
915 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916 if (status)
917 goto exit;
918
919 *data = (u64) lo | ((u64) hi << 32);
920
921 exit:
922 return status;
923 }
924
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927 int status;
928 /*
929 * Get MPI firmware version for driver banner
930 * and ethool info.
931 */
932 status = ql_mb_about_fw(qdev);
933 if (status)
934 goto exit;
935 status = ql_mb_get_fw_state(qdev);
936 if (status)
937 goto exit;
938 /* Wake up a worker to get/set the TX/RX frame sizes. */
939 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941 return status;
942 }
943
944 /* Take the MAC Core out of reset.
945 * Enable statistics counting.
946 * Take the transmitter/receiver out of reset.
947 * This functionality may be done in the MPI firmware at a
948 * later date.
949 */
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952 int status = 0;
953 u32 data;
954
955 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 /* Another function has the semaphore, so
957 * wait for the port init bit to come ready.
958 */
959 netif_info(qdev, link, qdev->ndev,
960 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962 if (status) {
963 netif_crit(qdev, link, qdev->ndev,
964 "Port initialize timed out.\n");
965 }
966 return status;
967 }
968
969 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970 /* Set the core reset. */
971 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972 if (status)
973 goto end;
974 data |= GLOBAL_CFG_RESET;
975 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976 if (status)
977 goto end;
978
979 /* Clear the core reset and turn on jumbo for receiver. */
980 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
981 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
982 data |= GLOBAL_CFG_TX_STAT_EN;
983 data |= GLOBAL_CFG_RX_STAT_EN;
984 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985 if (status)
986 goto end;
987
988 /* Enable transmitter, and clear it's reset. */
989 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990 if (status)
991 goto end;
992 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
993 data |= TX_CFG_EN; /* Enable the transmitter. */
994 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995 if (status)
996 goto end;
997
998 /* Enable receiver and clear it's reset. */
999 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000 if (status)
1001 goto end;
1002 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1003 data |= RX_CFG_EN; /* Enable the receiver. */
1004 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005 if (status)
1006 goto end;
1007
1008 /* Turn on jumbo. */
1009 status =
1010 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011 if (status)
1012 goto end;
1013 status =
1014 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015 if (status)
1016 goto end;
1017
1018 /* Signal to the world that the port is enabled. */
1019 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022 return status;
1023 }
1024
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027 return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 rx_ring->lbq_curr_idx++;
1035 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 rx_ring->lbq_curr_idx = 0;
1037 rx_ring->lbq_free_cnt++;
1038 return lbq_desc;
1039 }
1040
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 struct rx_ring *rx_ring)
1043 {
1044 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046 pci_dma_sync_single_for_cpu(qdev->pdev,
1047 dma_unmap_addr(lbq_desc, mapaddr),
1048 rx_ring->lbq_buf_size,
1049 PCI_DMA_FROMDEVICE);
1050
1051 /* If it's the last chunk of our master page then
1052 * we unmap it.
1053 */
1054 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 == ql_lbq_block_size(qdev))
1056 pci_unmap_page(qdev->pdev,
1057 lbq_desc->p.pg_chunk.map,
1058 ql_lbq_block_size(qdev),
1059 PCI_DMA_FROMDEVICE);
1060 return lbq_desc;
1061 }
1062
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 rx_ring->sbq_curr_idx++;
1068 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 rx_ring->sbq_curr_idx = 0;
1070 rx_ring->sbq_free_cnt++;
1071 return sbq_desc;
1072 }
1073
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077 rx_ring->cnsmr_idx++;
1078 rx_ring->curr_entry++;
1079 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 rx_ring->cnsmr_idx = 0;
1081 rx_ring->curr_entry = rx_ring->cq_base;
1082 }
1083 }
1084
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 struct bq_desc *lbq_desc)
1092 {
1093 if (!rx_ring->pg_chunk.page) {
1094 u64 map;
1095 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096 GFP_ATOMIC,
1097 qdev->lbq_buf_order);
1098 if (unlikely(!rx_ring->pg_chunk.page)) {
1099 netif_err(qdev, drv, qdev->ndev,
1100 "page allocation failed.\n");
1101 return -ENOMEM;
1102 }
1103 rx_ring->pg_chunk.offset = 0;
1104 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105 0, ql_lbq_block_size(qdev),
1106 PCI_DMA_FROMDEVICE);
1107 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108 __free_pages(rx_ring->pg_chunk.page,
1109 qdev->lbq_buf_order);
1110 rx_ring->pg_chunk.page = NULL;
1111 netif_err(qdev, drv, qdev->ndev,
1112 "PCI mapping failed.\n");
1113 return -ENOMEM;
1114 }
1115 rx_ring->pg_chunk.map = map;
1116 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117 }
1118
1119 /* Copy the current master pg_chunk info
1120 * to the current descriptor.
1121 */
1122 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123
1124 /* Adjust the master page chunk for next
1125 * buffer get.
1126 */
1127 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129 rx_ring->pg_chunk.page = NULL;
1130 lbq_desc->p.pg_chunk.last_flag = 1;
1131 } else {
1132 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133 get_page(rx_ring->pg_chunk.page);
1134 lbq_desc->p.pg_chunk.last_flag = 0;
1135 }
1136 return 0;
1137 }
1138 /* Process (refill) a large buffer queue. */
1139 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140 {
1141 u32 clean_idx = rx_ring->lbq_clean_idx;
1142 u32 start_idx = clean_idx;
1143 struct bq_desc *lbq_desc;
1144 u64 map;
1145 int i;
1146
1147 while (rx_ring->lbq_free_cnt > 32) {
1148 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1149 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150 "lbq: try cleaning clean_idx = %d.\n",
1151 clean_idx);
1152 lbq_desc = &rx_ring->lbq[clean_idx];
1153 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1154 rx_ring->lbq_clean_idx = clean_idx;
1155 netif_err(qdev, ifup, qdev->ndev,
1156 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157 i, clean_idx);
1158 return;
1159 }
1160
1161 map = lbq_desc->p.pg_chunk.map +
1162 lbq_desc->p.pg_chunk.offset;
1163 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164 dma_unmap_len_set(lbq_desc, maplen,
1165 rx_ring->lbq_buf_size);
1166 *lbq_desc->addr = cpu_to_le64(map);
1167
1168 pci_dma_sync_single_for_device(qdev->pdev, map,
1169 rx_ring->lbq_buf_size,
1170 PCI_DMA_FROMDEVICE);
1171 clean_idx++;
1172 if (clean_idx == rx_ring->lbq_len)
1173 clean_idx = 0;
1174 }
1175
1176 rx_ring->lbq_clean_idx = clean_idx;
1177 rx_ring->lbq_prod_idx += 16;
1178 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179 rx_ring->lbq_prod_idx = 0;
1180 rx_ring->lbq_free_cnt -= 16;
1181 }
1182
1183 if (start_idx != clean_idx) {
1184 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185 "lbq: updating prod idx = %d.\n",
1186 rx_ring->lbq_prod_idx);
1187 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188 rx_ring->lbq_prod_idx_db_reg);
1189 }
1190 }
1191
1192 /* Process (refill) a small buffer queue. */
1193 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194 {
1195 u32 clean_idx = rx_ring->sbq_clean_idx;
1196 u32 start_idx = clean_idx;
1197 struct bq_desc *sbq_desc;
1198 u64 map;
1199 int i;
1200
1201 while (rx_ring->sbq_free_cnt > 16) {
1202 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1203 sbq_desc = &rx_ring->sbq[clean_idx];
1204 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205 "sbq: try cleaning clean_idx = %d.\n",
1206 clean_idx);
1207 if (sbq_desc->p.skb == NULL) {
1208 netif_printk(qdev, rx_status, KERN_DEBUG,
1209 qdev->ndev,
1210 "sbq: getting new skb for index %d.\n",
1211 sbq_desc->index);
1212 sbq_desc->p.skb =
1213 netdev_alloc_skb(qdev->ndev,
1214 SMALL_BUFFER_SIZE);
1215 if (sbq_desc->p.skb == NULL) {
1216 rx_ring->sbq_clean_idx = clean_idx;
1217 return;
1218 }
1219 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 map = pci_map_single(qdev->pdev,
1221 sbq_desc->p.skb->data,
1222 rx_ring->sbq_buf_size,
1223 PCI_DMA_FROMDEVICE);
1224 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225 netif_err(qdev, ifup, qdev->ndev,
1226 "PCI mapping failed.\n");
1227 rx_ring->sbq_clean_idx = clean_idx;
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
1230 return;
1231 }
1232 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 dma_unmap_len_set(sbq_desc, maplen,
1234 rx_ring->sbq_buf_size);
1235 *sbq_desc->addr = cpu_to_le64(map);
1236 }
1237
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1241 }
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
1246 rx_ring->sbq_free_cnt -= 16;
1247 }
1248
1249 if (start_idx != clean_idx) {
1250 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
1255 }
1256 }
1257
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1260 {
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1263 }
1264
1265 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1274 /*
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1282 */
1283 if (i == 7) {
1284 netif_printk(qdev, tx_done, KERN_DEBUG,
1285 qdev->ndev,
1286 "unmapping OAL area.\n");
1287 }
1288 pci_unmap_single(qdev->pdev,
1289 dma_unmap_addr(&tx_ring_desc->map[i],
1290 mapaddr),
1291 dma_unmap_len(&tx_ring_desc->map[i],
1292 maplen),
1293 PCI_DMA_TODEVICE);
1294 } else {
1295 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 "unmapping frag %d.\n", i);
1297 pci_unmap_page(qdev->pdev,
1298 dma_unmap_addr(&tx_ring_desc->map[i],
1299 mapaddr),
1300 dma_unmap_len(&tx_ring_desc->map[i],
1301 maplen), PCI_DMA_TODEVICE);
1302 }
1303 }
1304
1305 }
1306
1307 /* Map the buffers for this transmit. This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309 */
1310 static int ql_map_send(struct ql_adapter *qdev,
1311 struct ob_mac_iocb_req *mac_iocb_ptr,
1312 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314 int len = skb_headlen(skb);
1315 dma_addr_t map;
1316 int frag_idx, err, map_idx = 0;
1317 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320 if (frag_cnt) {
1321 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 "frag_cnt = %d.\n", frag_cnt);
1323 }
1324 /*
1325 * Map the skb buffer first.
1326 */
1327 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329 err = pci_dma_mapping_error(qdev->pdev, map);
1330 if (err) {
1331 netif_err(qdev, tx_queued, qdev->ndev,
1332 "PCI mapping failed with error: %d\n", err);
1333
1334 return NETDEV_TX_BUSY;
1335 }
1336
1337 tbd->len = cpu_to_le32(len);
1338 tbd->addr = cpu_to_le64(map);
1339 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341 map_idx++;
1342
1343 /*
1344 * This loop fills the remainder of the 8 address descriptors
1345 * in the IOCB. If there are more than 7 fragments, then the
1346 * eighth address desc will point to an external list (OAL).
1347 * When this happens, the remainder of the frags will be stored
1348 * in this list.
1349 */
1350 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 tbd++;
1353 if (frag_idx == 6 && frag_cnt > 7) {
1354 /* Let's tack on an sglist.
1355 * Our control block will now
1356 * look like this:
1357 * iocb->seg[0] = skb->data
1358 * iocb->seg[1] = frag[0]
1359 * iocb->seg[2] = frag[1]
1360 * iocb->seg[3] = frag[2]
1361 * iocb->seg[4] = frag[3]
1362 * iocb->seg[5] = frag[4]
1363 * iocb->seg[6] = frag[5]
1364 * iocb->seg[7] = ptr to OAL (external sglist)
1365 * oal->seg[0] = frag[6]
1366 * oal->seg[1] = frag[7]
1367 * oal->seg[2] = frag[8]
1368 * oal->seg[3] = frag[9]
1369 * oal->seg[4] = frag[10]
1370 * etc...
1371 */
1372 /* Tack on the OAL in the eighth segment of IOCB. */
1373 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 sizeof(struct oal),
1375 PCI_DMA_TODEVICE);
1376 err = pci_dma_mapping_error(qdev->pdev, map);
1377 if (err) {
1378 netif_err(qdev, tx_queued, qdev->ndev,
1379 "PCI mapping outbound address list with error: %d\n",
1380 err);
1381 goto map_error;
1382 }
1383
1384 tbd->addr = cpu_to_le64(map);
1385 /*
1386 * The length is the number of fragments
1387 * that remain to be mapped times the length
1388 * of our sglist (OAL).
1389 */
1390 tbd->len =
1391 cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 (frag_cnt - frag_idx)) | TX_DESC_C);
1393 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394 map);
1395 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396 sizeof(struct oal));
1397 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 map_idx++;
1399 }
1400
1401 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402 DMA_TO_DEVICE);
1403
1404 err = dma_mapping_error(&qdev->pdev->dev, map);
1405 if (err) {
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
1413 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416 skb_frag_size(frag));
1417
1418 }
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1424
1425 map_error:
1426 /*
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1431 */
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1434 }
1435
1436 /* Categorizing receive firmware frame errors */
1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438 struct rx_ring *rx_ring)
1439 {
1440 struct nic_stats *stats = &qdev->nic_stats;
1441
1442 stats->rx_err_count++;
1443 rx_ring->rx_errors++;
1444
1445 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447 stats->rx_code_err++;
1448 break;
1449 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450 stats->rx_oversize_err++;
1451 break;
1452 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453 stats->rx_undersize_err++;
1454 break;
1455 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456 stats->rx_preamble_err++;
1457 break;
1458 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459 stats->rx_frame_len_err++;
1460 break;
1461 case IB_MAC_IOCB_RSP_ERR_CRC:
1462 stats->rx_crc_err++;
1463 default:
1464 break;
1465 }
1466 }
1467
1468 /**
1469 * ql_update_mac_hdr_len - helper routine to update the mac header length
1470 * based on vlan tags if present
1471 */
1472 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473 struct ib_mac_iocb_rsp *ib_mac_rsp,
1474 void *page, size_t *len)
1475 {
1476 u16 *tags;
1477
1478 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479 return;
1480 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481 tags = (u16 *)page;
1482 /* Look for stacked vlan tags in ethertype field */
1483 if (tags[6] == ETH_P_8021Q &&
1484 tags[8] == ETH_P_8021Q)
1485 *len += 2 * VLAN_HLEN;
1486 else
1487 *len += VLAN_HLEN;
1488 }
1489 }
1490
1491 /* Process an inbound completion from an rx ring. */
1492 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493 struct rx_ring *rx_ring,
1494 struct ib_mac_iocb_rsp *ib_mac_rsp,
1495 u32 length,
1496 u16 vlan_id)
1497 {
1498 struct sk_buff *skb;
1499 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1500 struct napi_struct *napi = &rx_ring->napi;
1501
1502 /* Frame error, so drop the packet. */
1503 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505 put_page(lbq_desc->p.pg_chunk.page);
1506 return;
1507 }
1508 napi->dev = qdev->ndev;
1509
1510 skb = napi_get_frags(napi);
1511 if (!skb) {
1512 netif_err(qdev, drv, qdev->ndev,
1513 "Couldn't get an skb, exiting.\n");
1514 rx_ring->rx_dropped++;
1515 put_page(lbq_desc->p.pg_chunk.page);
1516 return;
1517 }
1518 prefetch(lbq_desc->p.pg_chunk.va);
1519 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520 lbq_desc->p.pg_chunk.page,
1521 lbq_desc->p.pg_chunk.offset,
1522 length);
1523
1524 skb->len += length;
1525 skb->data_len += length;
1526 skb->truesize += length;
1527 skb_shinfo(skb)->nr_frags++;
1528
1529 rx_ring->rx_packets++;
1530 rx_ring->rx_bytes += length;
1531 skb->ip_summed = CHECKSUM_UNNECESSARY;
1532 skb_record_rx_queue(skb, rx_ring->cq_id);
1533 if (vlan_id != 0xffff)
1534 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1535 napi_gro_frags(napi);
1536 }
1537
1538 /* Process an inbound completion from an rx ring. */
1539 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540 struct rx_ring *rx_ring,
1541 struct ib_mac_iocb_rsp *ib_mac_rsp,
1542 u32 length,
1543 u16 vlan_id)
1544 {
1545 struct net_device *ndev = qdev->ndev;
1546 struct sk_buff *skb = NULL;
1547 void *addr;
1548 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549 struct napi_struct *napi = &rx_ring->napi;
1550 size_t hlen = ETH_HLEN;
1551
1552 skb = netdev_alloc_skb(ndev, length);
1553 if (!skb) {
1554 rx_ring->rx_dropped++;
1555 put_page(lbq_desc->p.pg_chunk.page);
1556 return;
1557 }
1558
1559 addr = lbq_desc->p.pg_chunk.va;
1560 prefetch(addr);
1561
1562 /* Frame error, so drop the packet. */
1563 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565 goto err_out;
1566 }
1567
1568 /* Update the MAC header length*/
1569 ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570
1571 /* The max framesize filter on this chip is set higher than
1572 * MTU since FCoE uses 2k frames.
1573 */
1574 if (skb->len > ndev->mtu + hlen) {
1575 netif_err(qdev, drv, qdev->ndev,
1576 "Segment too small, dropping.\n");
1577 rx_ring->rx_dropped++;
1578 goto err_out;
1579 }
1580 memcpy(skb_put(skb, hlen), addr, hlen);
1581 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583 length);
1584 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1585 lbq_desc->p.pg_chunk.offset + hlen,
1586 length - hlen);
1587 skb->len += length - hlen;
1588 skb->data_len += length - hlen;
1589 skb->truesize += length - hlen;
1590
1591 rx_ring->rx_packets++;
1592 rx_ring->rx_bytes += skb->len;
1593 skb->protocol = eth_type_trans(skb, ndev);
1594 skb_checksum_none_assert(skb);
1595
1596 if ((ndev->features & NETIF_F_RXCSUM) &&
1597 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598 /* TCP frame. */
1599 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1600 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601 "TCP checksum done!\n");
1602 skb->ip_summed = CHECKSUM_UNNECESSARY;
1603 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605 /* Unfragmented ipv4 UDP frame. */
1606 struct iphdr *iph =
1607 (struct iphdr *)((u8 *)addr + hlen);
1608 if (!(iph->frag_off &
1609 htons(IP_MF|IP_OFFSET))) {
1610 skb->ip_summed = CHECKSUM_UNNECESSARY;
1611 netif_printk(qdev, rx_status, KERN_DEBUG,
1612 qdev->ndev,
1613 "UDP checksum done!\n");
1614 }
1615 }
1616 }
1617
1618 skb_record_rx_queue(skb, rx_ring->cq_id);
1619 if (vlan_id != 0xffff)
1620 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1621 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622 napi_gro_receive(napi, skb);
1623 else
1624 netif_receive_skb(skb);
1625 return;
1626 err_out:
1627 dev_kfree_skb_any(skb);
1628 put_page(lbq_desc->p.pg_chunk.page);
1629 }
1630
1631 /* Process an inbound completion from an rx ring. */
1632 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633 struct rx_ring *rx_ring,
1634 struct ib_mac_iocb_rsp *ib_mac_rsp,
1635 u32 length,
1636 u16 vlan_id)
1637 {
1638 struct net_device *ndev = qdev->ndev;
1639 struct sk_buff *skb = NULL;
1640 struct sk_buff *new_skb = NULL;
1641 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642
1643 skb = sbq_desc->p.skb;
1644 /* Allocate new_skb and copy */
1645 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646 if (new_skb == NULL) {
1647 rx_ring->rx_dropped++;
1648 return;
1649 }
1650 skb_reserve(new_skb, NET_IP_ALIGN);
1651 memcpy(skb_put(new_skb, length), skb->data, length);
1652 skb = new_skb;
1653
1654 /* Frame error, so drop the packet. */
1655 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1656 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1657 dev_kfree_skb_any(skb);
1658 return;
1659 }
1660
1661 /* loopback self test for ethtool */
1662 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1663 ql_check_lb_frame(qdev, skb);
1664 dev_kfree_skb_any(skb);
1665 return;
1666 }
1667
1668 /* The max framesize filter on this chip is set higher than
1669 * MTU since FCoE uses 2k frames.
1670 */
1671 if (skb->len > ndev->mtu + ETH_HLEN) {
1672 dev_kfree_skb_any(skb);
1673 rx_ring->rx_dropped++;
1674 return;
1675 }
1676
1677 prefetch(skb->data);
1678 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1679 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1680 "%s Multicast.\n",
1681 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1682 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1683 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1684 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1685 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1686 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1687 }
1688 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1689 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1690 "Promiscuous Packet.\n");
1691
1692 rx_ring->rx_packets++;
1693 rx_ring->rx_bytes += skb->len;
1694 skb->protocol = eth_type_trans(skb, ndev);
1695 skb_checksum_none_assert(skb);
1696
1697 /* If rx checksum is on, and there are no
1698 * csum or frame errors.
1699 */
1700 if ((ndev->features & NETIF_F_RXCSUM) &&
1701 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1702 /* TCP frame. */
1703 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1704 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1705 "TCP checksum done!\n");
1706 skb->ip_summed = CHECKSUM_UNNECESSARY;
1707 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1708 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1709 /* Unfragmented ipv4 UDP frame. */
1710 struct iphdr *iph = (struct iphdr *) skb->data;
1711 if (!(iph->frag_off &
1712 htons(IP_MF|IP_OFFSET))) {
1713 skb->ip_summed = CHECKSUM_UNNECESSARY;
1714 netif_printk(qdev, rx_status, KERN_DEBUG,
1715 qdev->ndev,
1716 "UDP checksum done!\n");
1717 }
1718 }
1719 }
1720
1721 skb_record_rx_queue(skb, rx_ring->cq_id);
1722 if (vlan_id != 0xffff)
1723 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1724 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1725 napi_gro_receive(&rx_ring->napi, skb);
1726 else
1727 netif_receive_skb(skb);
1728 }
1729
1730 static void ql_realign_skb(struct sk_buff *skb, int len)
1731 {
1732 void *temp_addr = skb->data;
1733
1734 /* Undo the skb_reserve(skb,32) we did before
1735 * giving to hardware, and realign data on
1736 * a 2-byte boundary.
1737 */
1738 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1739 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1740 skb_copy_to_linear_data(skb, temp_addr,
1741 (unsigned int)len);
1742 }
1743
1744 /*
1745 * This function builds an skb for the given inbound
1746 * completion. It will be rewritten for readability in the near
1747 * future, but for not it works well.
1748 */
1749 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1750 struct rx_ring *rx_ring,
1751 struct ib_mac_iocb_rsp *ib_mac_rsp)
1752 {
1753 struct bq_desc *lbq_desc;
1754 struct bq_desc *sbq_desc;
1755 struct sk_buff *skb = NULL;
1756 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1757 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1758 size_t hlen = ETH_HLEN;
1759
1760 /*
1761 * Handle the header buffer if present.
1762 */
1763 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1764 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1765 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1766 "Header of %d bytes in small buffer.\n", hdr_len);
1767 /*
1768 * Headers fit nicely into a small buffer.
1769 */
1770 sbq_desc = ql_get_curr_sbuf(rx_ring);
1771 pci_unmap_single(qdev->pdev,
1772 dma_unmap_addr(sbq_desc, mapaddr),
1773 dma_unmap_len(sbq_desc, maplen),
1774 PCI_DMA_FROMDEVICE);
1775 skb = sbq_desc->p.skb;
1776 ql_realign_skb(skb, hdr_len);
1777 skb_put(skb, hdr_len);
1778 sbq_desc->p.skb = NULL;
1779 }
1780
1781 /*
1782 * Handle the data buffer(s).
1783 */
1784 if (unlikely(!length)) { /* Is there data too? */
1785 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1786 "No Data buffer in this packet.\n");
1787 return skb;
1788 }
1789
1790 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1791 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1792 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1793 "Headers in small, data of %d bytes in small, combine them.\n",
1794 length);
1795 /*
1796 * Data is less than small buffer size so it's
1797 * stuffed in a small buffer.
1798 * For this case we append the data
1799 * from the "data" small buffer to the "header" small
1800 * buffer.
1801 */
1802 sbq_desc = ql_get_curr_sbuf(rx_ring);
1803 pci_dma_sync_single_for_cpu(qdev->pdev,
1804 dma_unmap_addr
1805 (sbq_desc, mapaddr),
1806 dma_unmap_len
1807 (sbq_desc, maplen),
1808 PCI_DMA_FROMDEVICE);
1809 memcpy(skb_put(skb, length),
1810 sbq_desc->p.skb->data, length);
1811 pci_dma_sync_single_for_device(qdev->pdev,
1812 dma_unmap_addr
1813 (sbq_desc,
1814 mapaddr),
1815 dma_unmap_len
1816 (sbq_desc,
1817 maplen),
1818 PCI_DMA_FROMDEVICE);
1819 } else {
1820 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1821 "%d bytes in a single small buffer.\n",
1822 length);
1823 sbq_desc = ql_get_curr_sbuf(rx_ring);
1824 skb = sbq_desc->p.skb;
1825 ql_realign_skb(skb, length);
1826 skb_put(skb, length);
1827 pci_unmap_single(qdev->pdev,
1828 dma_unmap_addr(sbq_desc,
1829 mapaddr),
1830 dma_unmap_len(sbq_desc,
1831 maplen),
1832 PCI_DMA_FROMDEVICE);
1833 sbq_desc->p.skb = NULL;
1834 }
1835 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1836 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1837 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1838 "Header in small, %d bytes in large. Chain large to small!\n",
1839 length);
1840 /*
1841 * The data is in a single large buffer. We
1842 * chain it to the header buffer's skb and let
1843 * it rip.
1844 */
1845 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1846 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1847 "Chaining page at offset = %d, for %d bytes to skb.\n",
1848 lbq_desc->p.pg_chunk.offset, length);
1849 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1850 lbq_desc->p.pg_chunk.offset,
1851 length);
1852 skb->len += length;
1853 skb->data_len += length;
1854 skb->truesize += length;
1855 } else {
1856 /*
1857 * The headers and data are in a single large buffer. We
1858 * copy it to a new skb and let it go. This can happen with
1859 * jumbo mtu on a non-TCP/UDP frame.
1860 */
1861 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1862 skb = netdev_alloc_skb(qdev->ndev, length);
1863 if (skb == NULL) {
1864 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1865 "No skb available, drop the packet.\n");
1866 return NULL;
1867 }
1868 pci_unmap_page(qdev->pdev,
1869 dma_unmap_addr(lbq_desc,
1870 mapaddr),
1871 dma_unmap_len(lbq_desc, maplen),
1872 PCI_DMA_FROMDEVICE);
1873 skb_reserve(skb, NET_IP_ALIGN);
1874 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1875 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1876 length);
1877 skb_fill_page_desc(skb, 0,
1878 lbq_desc->p.pg_chunk.page,
1879 lbq_desc->p.pg_chunk.offset,
1880 length);
1881 skb->len += length;
1882 skb->data_len += length;
1883 skb->truesize += length;
1884 length -= length;
1885 ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1886 lbq_desc->p.pg_chunk.va,
1887 &hlen);
1888 __pskb_pull_tail(skb, hlen);
1889 }
1890 } else {
1891 /*
1892 * The data is in a chain of large buffers
1893 * pointed to by a small buffer. We loop
1894 * thru and chain them to the our small header
1895 * buffer's skb.
1896 * frags: There are 18 max frags and our small
1897 * buffer will hold 32 of them. The thing is,
1898 * we'll use 3 max for our 9000 byte jumbo
1899 * frames. If the MTU goes up we could
1900 * eventually be in trouble.
1901 */
1902 int size, i = 0;
1903 sbq_desc = ql_get_curr_sbuf(rx_ring);
1904 pci_unmap_single(qdev->pdev,
1905 dma_unmap_addr(sbq_desc, mapaddr),
1906 dma_unmap_len(sbq_desc, maplen),
1907 PCI_DMA_FROMDEVICE);
1908 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1909 /*
1910 * This is an non TCP/UDP IP frame, so
1911 * the headers aren't split into a small
1912 * buffer. We have to use the small buffer
1913 * that contains our sg list as our skb to
1914 * send upstairs. Copy the sg list here to
1915 * a local buffer and use it to find the
1916 * pages to chain.
1917 */
1918 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1919 "%d bytes of headers & data in chain of large.\n",
1920 length);
1921 skb = sbq_desc->p.skb;
1922 sbq_desc->p.skb = NULL;
1923 skb_reserve(skb, NET_IP_ALIGN);
1924 }
1925 do {
1926 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1927 size = (length < rx_ring->lbq_buf_size) ? length :
1928 rx_ring->lbq_buf_size;
1929
1930 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1931 "Adding page %d to skb for %d bytes.\n",
1932 i, size);
1933 skb_fill_page_desc(skb, i,
1934 lbq_desc->p.pg_chunk.page,
1935 lbq_desc->p.pg_chunk.offset,
1936 size);
1937 skb->len += size;
1938 skb->data_len += size;
1939 skb->truesize += size;
1940 length -= size;
1941 i++;
1942 } while (length > 0);
1943 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1944 &hlen);
1945 __pskb_pull_tail(skb, hlen);
1946 }
1947 return skb;
1948 }
1949
1950 /* Process an inbound completion from an rx ring. */
1951 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1952 struct rx_ring *rx_ring,
1953 struct ib_mac_iocb_rsp *ib_mac_rsp,
1954 u16 vlan_id)
1955 {
1956 struct net_device *ndev = qdev->ndev;
1957 struct sk_buff *skb = NULL;
1958
1959 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1960
1961 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1962 if (unlikely(!skb)) {
1963 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1964 "No skb available, drop packet.\n");
1965 rx_ring->rx_dropped++;
1966 return;
1967 }
1968
1969 /* Frame error, so drop the packet. */
1970 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1971 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1972 dev_kfree_skb_any(skb);
1973 return;
1974 }
1975
1976 /* The max framesize filter on this chip is set higher than
1977 * MTU since FCoE uses 2k frames.
1978 */
1979 if (skb->len > ndev->mtu + ETH_HLEN) {
1980 dev_kfree_skb_any(skb);
1981 rx_ring->rx_dropped++;
1982 return;
1983 }
1984
1985 /* loopback self test for ethtool */
1986 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1987 ql_check_lb_frame(qdev, skb);
1988 dev_kfree_skb_any(skb);
1989 return;
1990 }
1991
1992 prefetch(skb->data);
1993 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1994 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1995 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1996 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1997 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1998 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1999 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2000 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2001 rx_ring->rx_multicast++;
2002 }
2003 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2004 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2005 "Promiscuous Packet.\n");
2006 }
2007
2008 skb->protocol = eth_type_trans(skb, ndev);
2009 skb_checksum_none_assert(skb);
2010
2011 /* If rx checksum is on, and there are no
2012 * csum or frame errors.
2013 */
2014 if ((ndev->features & NETIF_F_RXCSUM) &&
2015 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2016 /* TCP frame. */
2017 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2018 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2019 "TCP checksum done!\n");
2020 skb->ip_summed = CHECKSUM_UNNECESSARY;
2021 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2022 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2023 /* Unfragmented ipv4 UDP frame. */
2024 struct iphdr *iph = (struct iphdr *) skb->data;
2025 if (!(iph->frag_off &
2026 htons(IP_MF|IP_OFFSET))) {
2027 skb->ip_summed = CHECKSUM_UNNECESSARY;
2028 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2029 "TCP checksum done!\n");
2030 }
2031 }
2032 }
2033
2034 rx_ring->rx_packets++;
2035 rx_ring->rx_bytes += skb->len;
2036 skb_record_rx_queue(skb, rx_ring->cq_id);
2037 if (vlan_id != 0xffff)
2038 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2039 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2040 napi_gro_receive(&rx_ring->napi, skb);
2041 else
2042 netif_receive_skb(skb);
2043 }
2044
2045 /* Process an inbound completion from an rx ring. */
2046 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2047 struct rx_ring *rx_ring,
2048 struct ib_mac_iocb_rsp *ib_mac_rsp)
2049 {
2050 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2051 u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2052 (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2053 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2054 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2055
2056 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2057
2058 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2059 /* The data and headers are split into
2060 * separate buffers.
2061 */
2062 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2063 vlan_id);
2064 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2065 /* The data fit in a single small buffer.
2066 * Allocate a new skb, copy the data and
2067 * return the buffer to the free pool.
2068 */
2069 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2070 length, vlan_id);
2071 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2072 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2073 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2074 /* TCP packet in a page chunk that's been checksummed.
2075 * Tack it on to our GRO skb and let it go.
2076 */
2077 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2078 length, vlan_id);
2079 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2080 /* Non-TCP packet in a page chunk. Allocate an
2081 * skb, tack it on frags, and send it up.
2082 */
2083 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2084 length, vlan_id);
2085 } else {
2086 /* Non-TCP/UDP large frames that span multiple buffers
2087 * can be processed corrrectly by the split frame logic.
2088 */
2089 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2090 vlan_id);
2091 }
2092
2093 return (unsigned long)length;
2094 }
2095
2096 /* Process an outbound completion from an rx ring. */
2097 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2098 struct ob_mac_iocb_rsp *mac_rsp)
2099 {
2100 struct tx_ring *tx_ring;
2101 struct tx_ring_desc *tx_ring_desc;
2102
2103 QL_DUMP_OB_MAC_RSP(mac_rsp);
2104 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2105 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2106 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2107 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2108 tx_ring->tx_packets++;
2109 dev_kfree_skb(tx_ring_desc->skb);
2110 tx_ring_desc->skb = NULL;
2111
2112 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2113 OB_MAC_IOCB_RSP_S |
2114 OB_MAC_IOCB_RSP_L |
2115 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2116 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2117 netif_warn(qdev, tx_done, qdev->ndev,
2118 "Total descriptor length did not match transfer length.\n");
2119 }
2120 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2121 netif_warn(qdev, tx_done, qdev->ndev,
2122 "Frame too short to be valid, not sent.\n");
2123 }
2124 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2125 netif_warn(qdev, tx_done, qdev->ndev,
2126 "Frame too long, but sent anyway.\n");
2127 }
2128 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2129 netif_warn(qdev, tx_done, qdev->ndev,
2130 "PCI backplane error. Frame not sent.\n");
2131 }
2132 }
2133 atomic_inc(&tx_ring->tx_count);
2134 }
2135
2136 /* Fire up a handler to reset the MPI processor. */
2137 void ql_queue_fw_error(struct ql_adapter *qdev)
2138 {
2139 ql_link_off(qdev);
2140 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2141 }
2142
2143 void ql_queue_asic_error(struct ql_adapter *qdev)
2144 {
2145 ql_link_off(qdev);
2146 ql_disable_interrupts(qdev);
2147 /* Clear adapter up bit to signal the recovery
2148 * process that it shouldn't kill the reset worker
2149 * thread
2150 */
2151 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2152 /* Set asic recovery bit to indicate reset process that we are
2153 * in fatal error recovery process rather than normal close
2154 */
2155 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2156 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2157 }
2158
2159 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2160 struct ib_ae_iocb_rsp *ib_ae_rsp)
2161 {
2162 switch (ib_ae_rsp->event) {
2163 case MGMT_ERR_EVENT:
2164 netif_err(qdev, rx_err, qdev->ndev,
2165 "Management Processor Fatal Error.\n");
2166 ql_queue_fw_error(qdev);
2167 return;
2168
2169 case CAM_LOOKUP_ERR_EVENT:
2170 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2171 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2172 ql_queue_asic_error(qdev);
2173 return;
2174
2175 case SOFT_ECC_ERROR_EVENT:
2176 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2177 ql_queue_asic_error(qdev);
2178 break;
2179
2180 case PCI_ERR_ANON_BUF_RD:
2181 netdev_err(qdev->ndev, "PCI error occurred when reading "
2182 "anonymous buffers from rx_ring %d.\n",
2183 ib_ae_rsp->q_id);
2184 ql_queue_asic_error(qdev);
2185 break;
2186
2187 default:
2188 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2189 ib_ae_rsp->event);
2190 ql_queue_asic_error(qdev);
2191 break;
2192 }
2193 }
2194
2195 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2196 {
2197 struct ql_adapter *qdev = rx_ring->qdev;
2198 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2199 struct ob_mac_iocb_rsp *net_rsp = NULL;
2200 int count = 0;
2201
2202 struct tx_ring *tx_ring;
2203 /* While there are entries in the completion queue. */
2204 while (prod != rx_ring->cnsmr_idx) {
2205
2206 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2207 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2208 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2209
2210 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2211 rmb();
2212 switch (net_rsp->opcode) {
2213
2214 case OPCODE_OB_MAC_TSO_IOCB:
2215 case OPCODE_OB_MAC_IOCB:
2216 ql_process_mac_tx_intr(qdev, net_rsp);
2217 break;
2218 default:
2219 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2220 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2221 net_rsp->opcode);
2222 }
2223 count++;
2224 ql_update_cq(rx_ring);
2225 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2226 }
2227 if (!net_rsp)
2228 return 0;
2229 ql_write_cq_idx(rx_ring);
2230 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2231 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2232 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2233 /*
2234 * The queue got stopped because the tx_ring was full.
2235 * Wake it up, because it's now at least 25% empty.
2236 */
2237 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2238 }
2239
2240 return count;
2241 }
2242
2243 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2244 {
2245 struct ql_adapter *qdev = rx_ring->qdev;
2246 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2247 struct ql_net_rsp_iocb *net_rsp;
2248 int count = 0;
2249
2250 /* While there are entries in the completion queue. */
2251 while (prod != rx_ring->cnsmr_idx) {
2252
2253 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2254 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2255 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2256
2257 net_rsp = rx_ring->curr_entry;
2258 rmb();
2259 switch (net_rsp->opcode) {
2260 case OPCODE_IB_MAC_IOCB:
2261 ql_process_mac_rx_intr(qdev, rx_ring,
2262 (struct ib_mac_iocb_rsp *)
2263 net_rsp);
2264 break;
2265
2266 case OPCODE_IB_AE_IOCB:
2267 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2268 net_rsp);
2269 break;
2270 default:
2271 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2272 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2273 net_rsp->opcode);
2274 break;
2275 }
2276 count++;
2277 ql_update_cq(rx_ring);
2278 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2279 if (count == budget)
2280 break;
2281 }
2282 ql_update_buffer_queues(qdev, rx_ring);
2283 ql_write_cq_idx(rx_ring);
2284 return count;
2285 }
2286
2287 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2288 {
2289 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2290 struct ql_adapter *qdev = rx_ring->qdev;
2291 struct rx_ring *trx_ring;
2292 int i, work_done = 0;
2293 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2294
2295 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2296 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2297
2298 /* Service the TX rings first. They start
2299 * right after the RSS rings. */
2300 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2301 trx_ring = &qdev->rx_ring[i];
2302 /* If this TX completion ring belongs to this vector and
2303 * it's not empty then service it.
2304 */
2305 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2306 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2307 trx_ring->cnsmr_idx)) {
2308 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2309 "%s: Servicing TX completion ring %d.\n",
2310 __func__, trx_ring->cq_id);
2311 ql_clean_outbound_rx_ring(trx_ring);
2312 }
2313 }
2314
2315 /*
2316 * Now service the RSS ring if it's active.
2317 */
2318 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2319 rx_ring->cnsmr_idx) {
2320 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2321 "%s: Servicing RX completion ring %d.\n",
2322 __func__, rx_ring->cq_id);
2323 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2324 }
2325
2326 if (work_done < budget) {
2327 napi_complete(napi);
2328 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2329 }
2330 return work_done;
2331 }
2332
2333 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2334 {
2335 struct ql_adapter *qdev = netdev_priv(ndev);
2336
2337 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2338 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2339 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2340 } else {
2341 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2342 }
2343 }
2344
2345 /**
2346 * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2347 * based on the features to enable/disable hardware vlan accel
2348 */
2349 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2350 netdev_features_t features)
2351 {
2352 struct ql_adapter *qdev = netdev_priv(ndev);
2353 int status = 0;
2354
2355 status = ql_adapter_down(qdev);
2356 if (status) {
2357 netif_err(qdev, link, qdev->ndev,
2358 "Failed to bring down the adapter\n");
2359 return status;
2360 }
2361
2362 /* update the features with resent change */
2363 ndev->features = features;
2364
2365 status = ql_adapter_up(qdev);
2366 if (status) {
2367 netif_err(qdev, link, qdev->ndev,
2368 "Failed to bring up the adapter\n");
2369 return status;
2370 }
2371 return status;
2372 }
2373
2374 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2375 netdev_features_t features)
2376 {
2377 int err;
2378
2379 /* Update the behavior of vlan accel in the adapter */
2380 err = qlge_update_hw_vlan_features(ndev, features);
2381 if (err)
2382 return err;
2383
2384 return features;
2385 }
2386
2387 static int qlge_set_features(struct net_device *ndev,
2388 netdev_features_t features)
2389 {
2390 netdev_features_t changed = ndev->features ^ features;
2391
2392 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2393 qlge_vlan_mode(ndev, features);
2394
2395 return 0;
2396 }
2397
2398 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2399 {
2400 u32 enable_bit = MAC_ADDR_E;
2401 int err;
2402
2403 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2404 MAC_ADDR_TYPE_VLAN, vid);
2405 if (err)
2406 netif_err(qdev, ifup, qdev->ndev,
2407 "Failed to init vlan address.\n");
2408 return err;
2409 }
2410
2411 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2412 {
2413 struct ql_adapter *qdev = netdev_priv(ndev);
2414 int status;
2415 int err;
2416
2417 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2418 if (status)
2419 return status;
2420
2421 err = __qlge_vlan_rx_add_vid(qdev, vid);
2422 set_bit(vid, qdev->active_vlans);
2423
2424 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2425
2426 return err;
2427 }
2428
2429 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2430 {
2431 u32 enable_bit = 0;
2432 int err;
2433
2434 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2435 MAC_ADDR_TYPE_VLAN, vid);
2436 if (err)
2437 netif_err(qdev, ifup, qdev->ndev,
2438 "Failed to clear vlan address.\n");
2439 return err;
2440 }
2441
2442 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2443 {
2444 struct ql_adapter *qdev = netdev_priv(ndev);
2445 int status;
2446 int err;
2447
2448 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2449 if (status)
2450 return status;
2451
2452 err = __qlge_vlan_rx_kill_vid(qdev, vid);
2453 clear_bit(vid, qdev->active_vlans);
2454
2455 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2456
2457 return err;
2458 }
2459
2460 static void qlge_restore_vlan(struct ql_adapter *qdev)
2461 {
2462 int status;
2463 u16 vid;
2464
2465 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2466 if (status)
2467 return;
2468
2469 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2470 __qlge_vlan_rx_add_vid(qdev, vid);
2471
2472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2473 }
2474
2475 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2476 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2477 {
2478 struct rx_ring *rx_ring = dev_id;
2479 napi_schedule(&rx_ring->napi);
2480 return IRQ_HANDLED;
2481 }
2482
2483 /* This handles a fatal error, MPI activity, and the default
2484 * rx_ring in an MSI-X multiple vector environment.
2485 * In MSI/Legacy environment it also process the rest of
2486 * the rx_rings.
2487 */
2488 static irqreturn_t qlge_isr(int irq, void *dev_id)
2489 {
2490 struct rx_ring *rx_ring = dev_id;
2491 struct ql_adapter *qdev = rx_ring->qdev;
2492 struct intr_context *intr_context = &qdev->intr_context[0];
2493 u32 var;
2494 int work_done = 0;
2495
2496 spin_lock(&qdev->hw_lock);
2497 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2498 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2499 "Shared Interrupt, Not ours!\n");
2500 spin_unlock(&qdev->hw_lock);
2501 return IRQ_NONE;
2502 }
2503 spin_unlock(&qdev->hw_lock);
2504
2505 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2506
2507 /*
2508 * Check for fatal error.
2509 */
2510 if (var & STS_FE) {
2511 ql_queue_asic_error(qdev);
2512 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2513 var = ql_read32(qdev, ERR_STS);
2514 netdev_err(qdev->ndev, "Resetting chip. "
2515 "Error Status Register = 0x%x\n", var);
2516 return IRQ_HANDLED;
2517 }
2518
2519 /*
2520 * Check MPI processor activity.
2521 */
2522 if ((var & STS_PI) &&
2523 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2524 /*
2525 * We've got an async event or mailbox completion.
2526 * Handle it and clear the source of the interrupt.
2527 */
2528 netif_err(qdev, intr, qdev->ndev,
2529 "Got MPI processor interrupt.\n");
2530 ql_disable_completion_interrupt(qdev, intr_context->intr);
2531 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2532 queue_delayed_work_on(smp_processor_id(),
2533 qdev->workqueue, &qdev->mpi_work, 0);
2534 work_done++;
2535 }
2536
2537 /*
2538 * Get the bit-mask that shows the active queues for this
2539 * pass. Compare it to the queues that this irq services
2540 * and call napi if there's a match.
2541 */
2542 var = ql_read32(qdev, ISR1);
2543 if (var & intr_context->irq_mask) {
2544 netif_info(qdev, intr, qdev->ndev,
2545 "Waking handler for rx_ring[0].\n");
2546 ql_disable_completion_interrupt(qdev, intr_context->intr);
2547 napi_schedule(&rx_ring->napi);
2548 work_done++;
2549 }
2550 ql_enable_completion_interrupt(qdev, intr_context->intr);
2551 return work_done ? IRQ_HANDLED : IRQ_NONE;
2552 }
2553
2554 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2555 {
2556
2557 if (skb_is_gso(skb)) {
2558 int err;
2559 __be16 l3_proto = vlan_get_protocol(skb);
2560
2561 err = skb_cow_head(skb, 0);
2562 if (err < 0)
2563 return err;
2564
2565 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2566 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2567 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2568 mac_iocb_ptr->total_hdrs_len =
2569 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2570 mac_iocb_ptr->net_trans_offset =
2571 cpu_to_le16(skb_network_offset(skb) |
2572 skb_transport_offset(skb)
2573 << OB_MAC_TRANSPORT_HDR_SHIFT);
2574 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2575 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2576 if (likely(l3_proto == htons(ETH_P_IP))) {
2577 struct iphdr *iph = ip_hdr(skb);
2578 iph->check = 0;
2579 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2580 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2581 iph->daddr, 0,
2582 IPPROTO_TCP,
2583 0);
2584 } else if (l3_proto == htons(ETH_P_IPV6)) {
2585 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2586 tcp_hdr(skb)->check =
2587 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2588 &ipv6_hdr(skb)->daddr,
2589 0, IPPROTO_TCP, 0);
2590 }
2591 return 1;
2592 }
2593 return 0;
2594 }
2595
2596 static void ql_hw_csum_setup(struct sk_buff *skb,
2597 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2598 {
2599 int len;
2600 struct iphdr *iph = ip_hdr(skb);
2601 __sum16 *check;
2602 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2603 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2604 mac_iocb_ptr->net_trans_offset =
2605 cpu_to_le16(skb_network_offset(skb) |
2606 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2607
2608 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2609 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2610 if (likely(iph->protocol == IPPROTO_TCP)) {
2611 check = &(tcp_hdr(skb)->check);
2612 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2613 mac_iocb_ptr->total_hdrs_len =
2614 cpu_to_le16(skb_transport_offset(skb) +
2615 (tcp_hdr(skb)->doff << 2));
2616 } else {
2617 check = &(udp_hdr(skb)->check);
2618 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2619 mac_iocb_ptr->total_hdrs_len =
2620 cpu_to_le16(skb_transport_offset(skb) +
2621 sizeof(struct udphdr));
2622 }
2623 *check = ~csum_tcpudp_magic(iph->saddr,
2624 iph->daddr, len, iph->protocol, 0);
2625 }
2626
2627 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2628 {
2629 struct tx_ring_desc *tx_ring_desc;
2630 struct ob_mac_iocb_req *mac_iocb_ptr;
2631 struct ql_adapter *qdev = netdev_priv(ndev);
2632 int tso;
2633 struct tx_ring *tx_ring;
2634 u32 tx_ring_idx = (u32) skb->queue_mapping;
2635
2636 tx_ring = &qdev->tx_ring[tx_ring_idx];
2637
2638 if (skb_padto(skb, ETH_ZLEN))
2639 return NETDEV_TX_OK;
2640
2641 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2642 netif_info(qdev, tx_queued, qdev->ndev,
2643 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2644 __func__, tx_ring_idx);
2645 netif_stop_subqueue(ndev, tx_ring->wq_id);
2646 tx_ring->tx_errors++;
2647 return NETDEV_TX_BUSY;
2648 }
2649 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2650 mac_iocb_ptr = tx_ring_desc->queue_entry;
2651 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2652
2653 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2654 mac_iocb_ptr->tid = tx_ring_desc->index;
2655 /* We use the upper 32-bits to store the tx queue for this IO.
2656 * When we get the completion we can use it to establish the context.
2657 */
2658 mac_iocb_ptr->txq_idx = tx_ring_idx;
2659 tx_ring_desc->skb = skb;
2660
2661 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2662
2663 if (skb_vlan_tag_present(skb)) {
2664 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2665 "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
2666 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2667 mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
2668 }
2669 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2670 if (tso < 0) {
2671 dev_kfree_skb_any(skb);
2672 return NETDEV_TX_OK;
2673 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2674 ql_hw_csum_setup(skb,
2675 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2676 }
2677 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2678 NETDEV_TX_OK) {
2679 netif_err(qdev, tx_queued, qdev->ndev,
2680 "Could not map the segments.\n");
2681 tx_ring->tx_errors++;
2682 return NETDEV_TX_BUSY;
2683 }
2684 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2685 tx_ring->prod_idx++;
2686 if (tx_ring->prod_idx == tx_ring->wq_len)
2687 tx_ring->prod_idx = 0;
2688 wmb();
2689
2690 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2691 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2692 "tx queued, slot %d, len %d\n",
2693 tx_ring->prod_idx, skb->len);
2694
2695 atomic_dec(&tx_ring->tx_count);
2696
2697 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2698 netif_stop_subqueue(ndev, tx_ring->wq_id);
2699 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2700 /*
2701 * The queue got stopped because the tx_ring was full.
2702 * Wake it up, because it's now at least 25% empty.
2703 */
2704 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2705 }
2706 return NETDEV_TX_OK;
2707 }
2708
2709
2710 static void ql_free_shadow_space(struct ql_adapter *qdev)
2711 {
2712 if (qdev->rx_ring_shadow_reg_area) {
2713 pci_free_consistent(qdev->pdev,
2714 PAGE_SIZE,
2715 qdev->rx_ring_shadow_reg_area,
2716 qdev->rx_ring_shadow_reg_dma);
2717 qdev->rx_ring_shadow_reg_area = NULL;
2718 }
2719 if (qdev->tx_ring_shadow_reg_area) {
2720 pci_free_consistent(qdev->pdev,
2721 PAGE_SIZE,
2722 qdev->tx_ring_shadow_reg_area,
2723 qdev->tx_ring_shadow_reg_dma);
2724 qdev->tx_ring_shadow_reg_area = NULL;
2725 }
2726 }
2727
2728 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2729 {
2730 qdev->rx_ring_shadow_reg_area =
2731 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2732 &qdev->rx_ring_shadow_reg_dma);
2733 if (qdev->rx_ring_shadow_reg_area == NULL) {
2734 netif_err(qdev, ifup, qdev->ndev,
2735 "Allocation of RX shadow space failed.\n");
2736 return -ENOMEM;
2737 }
2738
2739 qdev->tx_ring_shadow_reg_area =
2740 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2741 &qdev->tx_ring_shadow_reg_dma);
2742 if (qdev->tx_ring_shadow_reg_area == NULL) {
2743 netif_err(qdev, ifup, qdev->ndev,
2744 "Allocation of TX shadow space failed.\n");
2745 goto err_wqp_sh_area;
2746 }
2747 return 0;
2748
2749 err_wqp_sh_area:
2750 pci_free_consistent(qdev->pdev,
2751 PAGE_SIZE,
2752 qdev->rx_ring_shadow_reg_area,
2753 qdev->rx_ring_shadow_reg_dma);
2754 return -ENOMEM;
2755 }
2756
2757 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2758 {
2759 struct tx_ring_desc *tx_ring_desc;
2760 int i;
2761 struct ob_mac_iocb_req *mac_iocb_ptr;
2762
2763 mac_iocb_ptr = tx_ring->wq_base;
2764 tx_ring_desc = tx_ring->q;
2765 for (i = 0; i < tx_ring->wq_len; i++) {
2766 tx_ring_desc->index = i;
2767 tx_ring_desc->skb = NULL;
2768 tx_ring_desc->queue_entry = mac_iocb_ptr;
2769 mac_iocb_ptr++;
2770 tx_ring_desc++;
2771 }
2772 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2773 }
2774
2775 static void ql_free_tx_resources(struct ql_adapter *qdev,
2776 struct tx_ring *tx_ring)
2777 {
2778 if (tx_ring->wq_base) {
2779 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2780 tx_ring->wq_base, tx_ring->wq_base_dma);
2781 tx_ring->wq_base = NULL;
2782 }
2783 kfree(tx_ring->q);
2784 tx_ring->q = NULL;
2785 }
2786
2787 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2788 struct tx_ring *tx_ring)
2789 {
2790 tx_ring->wq_base =
2791 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2792 &tx_ring->wq_base_dma);
2793
2794 if ((tx_ring->wq_base == NULL) ||
2795 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2796 goto pci_alloc_err;
2797
2798 tx_ring->q =
2799 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2800 if (tx_ring->q == NULL)
2801 goto err;
2802
2803 return 0;
2804 err:
2805 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2806 tx_ring->wq_base, tx_ring->wq_base_dma);
2807 tx_ring->wq_base = NULL;
2808 pci_alloc_err:
2809 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2810 return -ENOMEM;
2811 }
2812
2813 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2814 {
2815 struct bq_desc *lbq_desc;
2816
2817 uint32_t curr_idx, clean_idx;
2818
2819 curr_idx = rx_ring->lbq_curr_idx;
2820 clean_idx = rx_ring->lbq_clean_idx;
2821 while (curr_idx != clean_idx) {
2822 lbq_desc = &rx_ring->lbq[curr_idx];
2823
2824 if (lbq_desc->p.pg_chunk.last_flag) {
2825 pci_unmap_page(qdev->pdev,
2826 lbq_desc->p.pg_chunk.map,
2827 ql_lbq_block_size(qdev),
2828 PCI_DMA_FROMDEVICE);
2829 lbq_desc->p.pg_chunk.last_flag = 0;
2830 }
2831
2832 put_page(lbq_desc->p.pg_chunk.page);
2833 lbq_desc->p.pg_chunk.page = NULL;
2834
2835 if (++curr_idx == rx_ring->lbq_len)
2836 curr_idx = 0;
2837
2838 }
2839 if (rx_ring->pg_chunk.page) {
2840 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2841 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2842 put_page(rx_ring->pg_chunk.page);
2843 rx_ring->pg_chunk.page = NULL;
2844 }
2845 }
2846
2847 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2848 {
2849 int i;
2850 struct bq_desc *sbq_desc;
2851
2852 for (i = 0; i < rx_ring->sbq_len; i++) {
2853 sbq_desc = &rx_ring->sbq[i];
2854 if (sbq_desc == NULL) {
2855 netif_err(qdev, ifup, qdev->ndev,
2856 "sbq_desc %d is NULL.\n", i);
2857 return;
2858 }
2859 if (sbq_desc->p.skb) {
2860 pci_unmap_single(qdev->pdev,
2861 dma_unmap_addr(sbq_desc, mapaddr),
2862 dma_unmap_len(sbq_desc, maplen),
2863 PCI_DMA_FROMDEVICE);
2864 dev_kfree_skb(sbq_desc->p.skb);
2865 sbq_desc->p.skb = NULL;
2866 }
2867 }
2868 }
2869
2870 /* Free all large and small rx buffers associated
2871 * with the completion queues for this device.
2872 */
2873 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2874 {
2875 int i;
2876 struct rx_ring *rx_ring;
2877
2878 for (i = 0; i < qdev->rx_ring_count; i++) {
2879 rx_ring = &qdev->rx_ring[i];
2880 if (rx_ring->lbq)
2881 ql_free_lbq_buffers(qdev, rx_ring);
2882 if (rx_ring->sbq)
2883 ql_free_sbq_buffers(qdev, rx_ring);
2884 }
2885 }
2886
2887 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2888 {
2889 struct rx_ring *rx_ring;
2890 int i;
2891
2892 for (i = 0; i < qdev->rx_ring_count; i++) {
2893 rx_ring = &qdev->rx_ring[i];
2894 if (rx_ring->type != TX_Q)
2895 ql_update_buffer_queues(qdev, rx_ring);
2896 }
2897 }
2898
2899 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2900 struct rx_ring *rx_ring)
2901 {
2902 int i;
2903 struct bq_desc *lbq_desc;
2904 __le64 *bq = rx_ring->lbq_base;
2905
2906 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2907 for (i = 0; i < rx_ring->lbq_len; i++) {
2908 lbq_desc = &rx_ring->lbq[i];
2909 memset(lbq_desc, 0, sizeof(*lbq_desc));
2910 lbq_desc->index = i;
2911 lbq_desc->addr = bq;
2912 bq++;
2913 }
2914 }
2915
2916 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2917 struct rx_ring *rx_ring)
2918 {
2919 int i;
2920 struct bq_desc *sbq_desc;
2921 __le64 *bq = rx_ring->sbq_base;
2922
2923 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2924 for (i = 0; i < rx_ring->sbq_len; i++) {
2925 sbq_desc = &rx_ring->sbq[i];
2926 memset(sbq_desc, 0, sizeof(*sbq_desc));
2927 sbq_desc->index = i;
2928 sbq_desc->addr = bq;
2929 bq++;
2930 }
2931 }
2932
2933 static void ql_free_rx_resources(struct ql_adapter *qdev,
2934 struct rx_ring *rx_ring)
2935 {
2936 /* Free the small buffer queue. */
2937 if (rx_ring->sbq_base) {
2938 pci_free_consistent(qdev->pdev,
2939 rx_ring->sbq_size,
2940 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2941 rx_ring->sbq_base = NULL;
2942 }
2943
2944 /* Free the small buffer queue control blocks. */
2945 kfree(rx_ring->sbq);
2946 rx_ring->sbq = NULL;
2947
2948 /* Free the large buffer queue. */
2949 if (rx_ring->lbq_base) {
2950 pci_free_consistent(qdev->pdev,
2951 rx_ring->lbq_size,
2952 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2953 rx_ring->lbq_base = NULL;
2954 }
2955
2956 /* Free the large buffer queue control blocks. */
2957 kfree(rx_ring->lbq);
2958 rx_ring->lbq = NULL;
2959
2960 /* Free the rx queue. */
2961 if (rx_ring->cq_base) {
2962 pci_free_consistent(qdev->pdev,
2963 rx_ring->cq_size,
2964 rx_ring->cq_base, rx_ring->cq_base_dma);
2965 rx_ring->cq_base = NULL;
2966 }
2967 }
2968
2969 /* Allocate queues and buffers for this completions queue based
2970 * on the values in the parameter structure. */
2971 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2972 struct rx_ring *rx_ring)
2973 {
2974
2975 /*
2976 * Allocate the completion queue for this rx_ring.
2977 */
2978 rx_ring->cq_base =
2979 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2980 &rx_ring->cq_base_dma);
2981
2982 if (rx_ring->cq_base == NULL) {
2983 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2984 return -ENOMEM;
2985 }
2986
2987 if (rx_ring->sbq_len) {
2988 /*
2989 * Allocate small buffer queue.
2990 */
2991 rx_ring->sbq_base =
2992 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2993 &rx_ring->sbq_base_dma);
2994
2995 if (rx_ring->sbq_base == NULL) {
2996 netif_err(qdev, ifup, qdev->ndev,
2997 "Small buffer queue allocation failed.\n");
2998 goto err_mem;
2999 }
3000
3001 /*
3002 * Allocate small buffer queue control blocks.
3003 */
3004 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3005 sizeof(struct bq_desc),
3006 GFP_KERNEL);
3007 if (rx_ring->sbq == NULL)
3008 goto err_mem;
3009
3010 ql_init_sbq_ring(qdev, rx_ring);
3011 }
3012
3013 if (rx_ring->lbq_len) {
3014 /*
3015 * Allocate large buffer queue.
3016 */
3017 rx_ring->lbq_base =
3018 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3019 &rx_ring->lbq_base_dma);
3020
3021 if (rx_ring->lbq_base == NULL) {
3022 netif_err(qdev, ifup, qdev->ndev,
3023 "Large buffer queue allocation failed.\n");
3024 goto err_mem;
3025 }
3026 /*
3027 * Allocate large buffer queue control blocks.
3028 */
3029 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3030 sizeof(struct bq_desc),
3031 GFP_KERNEL);
3032 if (rx_ring->lbq == NULL)
3033 goto err_mem;
3034
3035 ql_init_lbq_ring(qdev, rx_ring);
3036 }
3037
3038 return 0;
3039
3040 err_mem:
3041 ql_free_rx_resources(qdev, rx_ring);
3042 return -ENOMEM;
3043 }
3044
3045 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3046 {
3047 struct tx_ring *tx_ring;
3048 struct tx_ring_desc *tx_ring_desc;
3049 int i, j;
3050
3051 /*
3052 * Loop through all queues and free
3053 * any resources.
3054 */
3055 for (j = 0; j < qdev->tx_ring_count; j++) {
3056 tx_ring = &qdev->tx_ring[j];
3057 for (i = 0; i < tx_ring->wq_len; i++) {
3058 tx_ring_desc = &tx_ring->q[i];
3059 if (tx_ring_desc && tx_ring_desc->skb) {
3060 netif_err(qdev, ifdown, qdev->ndev,
3061 "Freeing lost SKB %p, from queue %d, index %d.\n",
3062 tx_ring_desc->skb, j,
3063 tx_ring_desc->index);
3064 ql_unmap_send(qdev, tx_ring_desc,
3065 tx_ring_desc->map_cnt);
3066 dev_kfree_skb(tx_ring_desc->skb);
3067 tx_ring_desc->skb = NULL;
3068 }
3069 }
3070 }
3071 }
3072
3073 static void ql_free_mem_resources(struct ql_adapter *qdev)
3074 {
3075 int i;
3076
3077 for (i = 0; i < qdev->tx_ring_count; i++)
3078 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3079 for (i = 0; i < qdev->rx_ring_count; i++)
3080 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3081 ql_free_shadow_space(qdev);
3082 }
3083
3084 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3085 {
3086 int i;
3087
3088 /* Allocate space for our shadow registers and such. */
3089 if (ql_alloc_shadow_space(qdev))
3090 return -ENOMEM;
3091
3092 for (i = 0; i < qdev->rx_ring_count; i++) {
3093 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3094 netif_err(qdev, ifup, qdev->ndev,
3095 "RX resource allocation failed.\n");
3096 goto err_mem;
3097 }
3098 }
3099 /* Allocate tx queue resources */
3100 for (i = 0; i < qdev->tx_ring_count; i++) {
3101 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3102 netif_err(qdev, ifup, qdev->ndev,
3103 "TX resource allocation failed.\n");
3104 goto err_mem;
3105 }
3106 }
3107 return 0;
3108
3109 err_mem:
3110 ql_free_mem_resources(qdev);
3111 return -ENOMEM;
3112 }
3113
3114 /* Set up the rx ring control block and pass it to the chip.
3115 * The control block is defined as
3116 * "Completion Queue Initialization Control Block", or cqicb.
3117 */
3118 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3119 {
3120 struct cqicb *cqicb = &rx_ring->cqicb;
3121 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3122 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3123 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3124 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3125 void __iomem *doorbell_area =
3126 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3127 int err = 0;
3128 u16 bq_len;
3129 u64 tmp;
3130 __le64 *base_indirect_ptr;
3131 int page_entries;
3132
3133 /* Set up the shadow registers for this ring. */
3134 rx_ring->prod_idx_sh_reg = shadow_reg;
3135 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3136 *rx_ring->prod_idx_sh_reg = 0;
3137 shadow_reg += sizeof(u64);
3138 shadow_reg_dma += sizeof(u64);
3139 rx_ring->lbq_base_indirect = shadow_reg;
3140 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3141 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3142 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3143 rx_ring->sbq_base_indirect = shadow_reg;
3144 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3145
3146 /* PCI doorbell mem area + 0x00 for consumer index register */
3147 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3148 rx_ring->cnsmr_idx = 0;
3149 rx_ring->curr_entry = rx_ring->cq_base;
3150
3151 /* PCI doorbell mem area + 0x04 for valid register */
3152 rx_ring->valid_db_reg = doorbell_area + 0x04;
3153
3154 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3155 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3156
3157 /* PCI doorbell mem area + 0x1c */
3158 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3159
3160 memset((void *)cqicb, 0, sizeof(struct cqicb));
3161 cqicb->msix_vect = rx_ring->irq;
3162
3163 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3164 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3165
3166 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3167
3168 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3169
3170 /*
3171 * Set up the control block load flags.
3172 */
3173 cqicb->flags = FLAGS_LC | /* Load queue base address */
3174 FLAGS_LV | /* Load MSI-X vector */
3175 FLAGS_LI; /* Load irq delay values */
3176 if (rx_ring->lbq_len) {
3177 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3178 tmp = (u64)rx_ring->lbq_base_dma;
3179 base_indirect_ptr = rx_ring->lbq_base_indirect;
3180 page_entries = 0;
3181 do {
3182 *base_indirect_ptr = cpu_to_le64(tmp);
3183 tmp += DB_PAGE_SIZE;
3184 base_indirect_ptr++;
3185 page_entries++;
3186 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3187 cqicb->lbq_addr =
3188 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3189 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3190 (u16) rx_ring->lbq_buf_size;
3191 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3192 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3193 (u16) rx_ring->lbq_len;
3194 cqicb->lbq_len = cpu_to_le16(bq_len);
3195 rx_ring->lbq_prod_idx = 0;
3196 rx_ring->lbq_curr_idx = 0;
3197 rx_ring->lbq_clean_idx = 0;
3198 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3199 }
3200 if (rx_ring->sbq_len) {
3201 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3202 tmp = (u64)rx_ring->sbq_base_dma;
3203 base_indirect_ptr = rx_ring->sbq_base_indirect;
3204 page_entries = 0;
3205 do {
3206 *base_indirect_ptr = cpu_to_le64(tmp);
3207 tmp += DB_PAGE_SIZE;
3208 base_indirect_ptr++;
3209 page_entries++;
3210 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3211 cqicb->sbq_addr =
3212 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3213 cqicb->sbq_buf_size =
3214 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3215 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3216 (u16) rx_ring->sbq_len;
3217 cqicb->sbq_len = cpu_to_le16(bq_len);
3218 rx_ring->sbq_prod_idx = 0;
3219 rx_ring->sbq_curr_idx = 0;
3220 rx_ring->sbq_clean_idx = 0;
3221 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3222 }
3223 switch (rx_ring->type) {
3224 case TX_Q:
3225 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3226 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3227 break;
3228 case RX_Q:
3229 /* Inbound completion handling rx_rings run in
3230 * separate NAPI contexts.
3231 */
3232 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3233 64);
3234 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3235 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3236 break;
3237 default:
3238 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3239 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3240 }
3241 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3242 CFG_LCQ, rx_ring->cq_id);
3243 if (err) {
3244 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3245 return err;
3246 }
3247 return err;
3248 }
3249
3250 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3251 {
3252 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3253 void __iomem *doorbell_area =
3254 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3255 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3256 (tx_ring->wq_id * sizeof(u64));
3257 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3258 (tx_ring->wq_id * sizeof(u64));
3259 int err = 0;
3260
3261 /*
3262 * Assign doorbell registers for this tx_ring.
3263 */
3264 /* TX PCI doorbell mem area for tx producer index */
3265 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3266 tx_ring->prod_idx = 0;
3267 /* TX PCI doorbell mem area + 0x04 */
3268 tx_ring->valid_db_reg = doorbell_area + 0x04;
3269
3270 /*
3271 * Assign shadow registers for this tx_ring.
3272 */
3273 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3274 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3275
3276 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3277 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3278 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3279 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3280 wqicb->rid = 0;
3281 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3282
3283 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3284
3285 ql_init_tx_ring(qdev, tx_ring);
3286
3287 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3288 (u16) tx_ring->wq_id);
3289 if (err) {
3290 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3291 return err;
3292 }
3293 return err;
3294 }
3295
3296 static void ql_disable_msix(struct ql_adapter *qdev)
3297 {
3298 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3299 pci_disable_msix(qdev->pdev);
3300 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3301 kfree(qdev->msi_x_entry);
3302 qdev->msi_x_entry = NULL;
3303 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3304 pci_disable_msi(qdev->pdev);
3305 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3306 }
3307 }
3308
3309 /* We start by trying to get the number of vectors
3310 * stored in qdev->intr_count. If we don't get that
3311 * many then we reduce the count and try again.
3312 */
3313 static void ql_enable_msix(struct ql_adapter *qdev)
3314 {
3315 int i, err;
3316
3317 /* Get the MSIX vectors. */
3318 if (qlge_irq_type == MSIX_IRQ) {
3319 /* Try to alloc space for the msix struct,
3320 * if it fails then go to MSI/legacy.
3321 */
3322 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3323 sizeof(struct msix_entry),
3324 GFP_KERNEL);
3325 if (!qdev->msi_x_entry) {
3326 qlge_irq_type = MSI_IRQ;
3327 goto msi;
3328 }
3329
3330 for (i = 0; i < qdev->intr_count; i++)
3331 qdev->msi_x_entry[i].entry = i;
3332
3333 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3334 1, qdev->intr_count);
3335 if (err < 0) {
3336 kfree(qdev->msi_x_entry);
3337 qdev->msi_x_entry = NULL;
3338 netif_warn(qdev, ifup, qdev->ndev,
3339 "MSI-X Enable failed, trying MSI.\n");
3340 qlge_irq_type = MSI_IRQ;
3341 } else {
3342 qdev->intr_count = err;
3343 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3344 netif_info(qdev, ifup, qdev->ndev,
3345 "MSI-X Enabled, got %d vectors.\n",
3346 qdev->intr_count);
3347 return;
3348 }
3349 }
3350 msi:
3351 qdev->intr_count = 1;
3352 if (qlge_irq_type == MSI_IRQ) {
3353 if (!pci_enable_msi(qdev->pdev)) {
3354 set_bit(QL_MSI_ENABLED, &qdev->flags);
3355 netif_info(qdev, ifup, qdev->ndev,
3356 "Running with MSI interrupts.\n");
3357 return;
3358 }
3359 }
3360 qlge_irq_type = LEG_IRQ;
3361 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3362 "Running with legacy interrupts.\n");
3363 }
3364
3365 /* Each vector services 1 RSS ring and and 1 or more
3366 * TX completion rings. This function loops through
3367 * the TX completion rings and assigns the vector that
3368 * will service it. An example would be if there are
3369 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3370 * This would mean that vector 0 would service RSS ring 0
3371 * and TX completion rings 0,1,2 and 3. Vector 1 would
3372 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3373 */
3374 static void ql_set_tx_vect(struct ql_adapter *qdev)
3375 {
3376 int i, j, vect;
3377 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3378
3379 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3380 /* Assign irq vectors to TX rx_rings.*/
3381 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3382 i < qdev->rx_ring_count; i++) {
3383 if (j == tx_rings_per_vector) {
3384 vect++;
3385 j = 0;
3386 }
3387 qdev->rx_ring[i].irq = vect;
3388 j++;
3389 }
3390 } else {
3391 /* For single vector all rings have an irq
3392 * of zero.
3393 */
3394 for (i = 0; i < qdev->rx_ring_count; i++)
3395 qdev->rx_ring[i].irq = 0;
3396 }
3397 }
3398
3399 /* Set the interrupt mask for this vector. Each vector
3400 * will service 1 RSS ring and 1 or more TX completion
3401 * rings. This function sets up a bit mask per vector
3402 * that indicates which rings it services.
3403 */
3404 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3405 {
3406 int j, vect = ctx->intr;
3407 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3408
3409 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3410 /* Add the RSS ring serviced by this vector
3411 * to the mask.
3412 */
3413 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3414 /* Add the TX ring(s) serviced by this vector
3415 * to the mask. */
3416 for (j = 0; j < tx_rings_per_vector; j++) {
3417 ctx->irq_mask |=
3418 (1 << qdev->rx_ring[qdev->rss_ring_count +
3419 (vect * tx_rings_per_vector) + j].cq_id);
3420 }
3421 } else {
3422 /* For single vector we just shift each queue's
3423 * ID into the mask.
3424 */
3425 for (j = 0; j < qdev->rx_ring_count; j++)
3426 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3427 }
3428 }
3429
3430 /*
3431 * Here we build the intr_context structures based on
3432 * our rx_ring count and intr vector count.
3433 * The intr_context structure is used to hook each vector
3434 * to possibly different handlers.
3435 */
3436 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3437 {
3438 int i = 0;
3439 struct intr_context *intr_context = &qdev->intr_context[0];
3440
3441 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3442 /* Each rx_ring has it's
3443 * own intr_context since we have separate
3444 * vectors for each queue.
3445 */
3446 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3447 qdev->rx_ring[i].irq = i;
3448 intr_context->intr = i;
3449 intr_context->qdev = qdev;
3450 /* Set up this vector's bit-mask that indicates
3451 * which queues it services.
3452 */
3453 ql_set_irq_mask(qdev, intr_context);
3454 /*
3455 * We set up each vectors enable/disable/read bits so
3456 * there's no bit/mask calculations in the critical path.
3457 */
3458 intr_context->intr_en_mask =
3459 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3460 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3461 | i;
3462 intr_context->intr_dis_mask =
3463 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3464 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3465 INTR_EN_IHD | i;
3466 intr_context->intr_read_mask =
3467 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3468 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3469 i;
3470 if (i == 0) {
3471 /* The first vector/queue handles
3472 * broadcast/multicast, fatal errors,
3473 * and firmware events. This in addition
3474 * to normal inbound NAPI processing.
3475 */
3476 intr_context->handler = qlge_isr;
3477 sprintf(intr_context->name, "%s-rx-%d",
3478 qdev->ndev->name, i);
3479 } else {
3480 /*
3481 * Inbound queues handle unicast frames only.
3482 */
3483 intr_context->handler = qlge_msix_rx_isr;
3484 sprintf(intr_context->name, "%s-rx-%d",
3485 qdev->ndev->name, i);
3486 }
3487 }
3488 } else {
3489 /*
3490 * All rx_rings use the same intr_context since
3491 * there is only one vector.
3492 */
3493 intr_context->intr = 0;
3494 intr_context->qdev = qdev;
3495 /*
3496 * We set up each vectors enable/disable/read bits so
3497 * there's no bit/mask calculations in the critical path.
3498 */
3499 intr_context->intr_en_mask =
3500 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3501 intr_context->intr_dis_mask =
3502 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3503 INTR_EN_TYPE_DISABLE;
3504 intr_context->intr_read_mask =
3505 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3506 /*
3507 * Single interrupt means one handler for all rings.
3508 */
3509 intr_context->handler = qlge_isr;
3510 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3511 /* Set up this vector's bit-mask that indicates
3512 * which queues it services. In this case there is
3513 * a single vector so it will service all RSS and
3514 * TX completion rings.
3515 */
3516 ql_set_irq_mask(qdev, intr_context);
3517 }
3518 /* Tell the TX completion rings which MSIx vector
3519 * they will be using.
3520 */
3521 ql_set_tx_vect(qdev);
3522 }
3523
3524 static void ql_free_irq(struct ql_adapter *qdev)
3525 {
3526 int i;
3527 struct intr_context *intr_context = &qdev->intr_context[0];
3528
3529 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3530 if (intr_context->hooked) {
3531 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3532 free_irq(qdev->msi_x_entry[i].vector,
3533 &qdev->rx_ring[i]);
3534 } else {
3535 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3536 }
3537 }
3538 }
3539 ql_disable_msix(qdev);
3540 }
3541
3542 static int ql_request_irq(struct ql_adapter *qdev)
3543 {
3544 int i;
3545 int status = 0;
3546 struct pci_dev *pdev = qdev->pdev;
3547 struct intr_context *intr_context = &qdev->intr_context[0];
3548
3549 ql_resolve_queues_to_irqs(qdev);
3550
3551 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3552 atomic_set(&intr_context->irq_cnt, 0);
3553 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3554 status = request_irq(qdev->msi_x_entry[i].vector,
3555 intr_context->handler,
3556 0,
3557 intr_context->name,
3558 &qdev->rx_ring[i]);
3559 if (status) {
3560 netif_err(qdev, ifup, qdev->ndev,
3561 "Failed request for MSIX interrupt %d.\n",
3562 i);
3563 goto err_irq;
3564 }
3565 } else {
3566 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3567 "trying msi or legacy interrupts.\n");
3568 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3569 "%s: irq = %d.\n", __func__, pdev->irq);
3570 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3571 "%s: context->name = %s.\n", __func__,
3572 intr_context->name);
3573 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3574 "%s: dev_id = 0x%p.\n", __func__,
3575 &qdev->rx_ring[0]);
3576 status =
3577 request_irq(pdev->irq, qlge_isr,
3578 test_bit(QL_MSI_ENABLED,
3579 &qdev->
3580 flags) ? 0 : IRQF_SHARED,
3581 intr_context->name, &qdev->rx_ring[0]);
3582 if (status)
3583 goto err_irq;
3584
3585 netif_err(qdev, ifup, qdev->ndev,
3586 "Hooked intr %d, queue type %s, with name %s.\n",
3587 i,
3588 qdev->rx_ring[0].type == DEFAULT_Q ?
3589 "DEFAULT_Q" :
3590 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3591 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3592 intr_context->name);
3593 }
3594 intr_context->hooked = 1;
3595 }
3596 return status;
3597 err_irq:
3598 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3599 ql_free_irq(qdev);
3600 return status;
3601 }
3602
3603 static int ql_start_rss(struct ql_adapter *qdev)
3604 {
3605 static const u8 init_hash_seed[] = {
3606 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3607 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3608 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3609 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3610 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3611 };
3612 struct ricb *ricb = &qdev->ricb;
3613 int status = 0;
3614 int i;
3615 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3616
3617 memset((void *)ricb, 0, sizeof(*ricb));
3618
3619 ricb->base_cq = RSS_L4K;
3620 ricb->flags =
3621 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3622 ricb->mask = cpu_to_le16((u16)(0x3ff));
3623
3624 /*
3625 * Fill out the Indirection Table.
3626 */
3627 for (i = 0; i < 1024; i++)
3628 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3629
3630 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3631 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3632
3633 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3634 if (status) {
3635 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3636 return status;
3637 }
3638 return status;
3639 }
3640
3641 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3642 {
3643 int i, status = 0;
3644
3645 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3646 if (status)
3647 return status;
3648 /* Clear all the entries in the routing table. */
3649 for (i = 0; i < 16; i++) {
3650 status = ql_set_routing_reg(qdev, i, 0, 0);
3651 if (status) {
3652 netif_err(qdev, ifup, qdev->ndev,
3653 "Failed to init routing register for CAM packets.\n");
3654 break;
3655 }
3656 }
3657 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3658 return status;
3659 }
3660
3661 /* Initialize the frame-to-queue routing. */
3662 static int ql_route_initialize(struct ql_adapter *qdev)
3663 {
3664 int status = 0;
3665
3666 /* Clear all the entries in the routing table. */
3667 status = ql_clear_routing_entries(qdev);
3668 if (status)
3669 return status;
3670
3671 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3672 if (status)
3673 return status;
3674
3675 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3676 RT_IDX_IP_CSUM_ERR, 1);
3677 if (status) {
3678 netif_err(qdev, ifup, qdev->ndev,
3679 "Failed to init routing register "
3680 "for IP CSUM error packets.\n");
3681 goto exit;
3682 }
3683 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3684 RT_IDX_TU_CSUM_ERR, 1);
3685 if (status) {
3686 netif_err(qdev, ifup, qdev->ndev,
3687 "Failed to init routing register "
3688 "for TCP/UDP CSUM error packets.\n");
3689 goto exit;
3690 }
3691 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3692 if (status) {
3693 netif_err(qdev, ifup, qdev->ndev,
3694 "Failed to init routing register for broadcast packets.\n");
3695 goto exit;
3696 }
3697 /* If we have more than one inbound queue, then turn on RSS in the
3698 * routing block.
3699 */
3700 if (qdev->rss_ring_count > 1) {
3701 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3702 RT_IDX_RSS_MATCH, 1);
3703 if (status) {
3704 netif_err(qdev, ifup, qdev->ndev,
3705 "Failed to init routing register for MATCH RSS packets.\n");
3706 goto exit;
3707 }
3708 }
3709
3710 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3711 RT_IDX_CAM_HIT, 1);
3712 if (status)
3713 netif_err(qdev, ifup, qdev->ndev,
3714 "Failed to init routing register for CAM packets.\n");
3715 exit:
3716 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3717 return status;
3718 }
3719
3720 int ql_cam_route_initialize(struct ql_adapter *qdev)
3721 {
3722 int status, set;
3723
3724 /* If check if the link is up and use to
3725 * determine if we are setting or clearing
3726 * the MAC address in the CAM.
3727 */
3728 set = ql_read32(qdev, STS);
3729 set &= qdev->port_link_up;
3730 status = ql_set_mac_addr(qdev, set);
3731 if (status) {
3732 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3733 return status;
3734 }
3735
3736 status = ql_route_initialize(qdev);
3737 if (status)
3738 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3739
3740 return status;
3741 }
3742
3743 static int ql_adapter_initialize(struct ql_adapter *qdev)
3744 {
3745 u32 value, mask;
3746 int i;
3747 int status = 0;
3748
3749 /*
3750 * Set up the System register to halt on errors.
3751 */
3752 value = SYS_EFE | SYS_FAE;
3753 mask = value << 16;
3754 ql_write32(qdev, SYS, mask | value);
3755
3756 /* Set the default queue, and VLAN behavior. */
3757 value = NIC_RCV_CFG_DFQ;
3758 mask = NIC_RCV_CFG_DFQ_MASK;
3759 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3760 value |= NIC_RCV_CFG_RV;
3761 mask |= (NIC_RCV_CFG_RV << 16);
3762 }
3763 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3764
3765 /* Set the MPI interrupt to enabled. */
3766 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3767
3768 /* Enable the function, set pagesize, enable error checking. */
3769 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3770 FSC_EC | FSC_VM_PAGE_4K;
3771 value |= SPLT_SETTING;
3772
3773 /* Set/clear header splitting. */
3774 mask = FSC_VM_PAGESIZE_MASK |
3775 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3776 ql_write32(qdev, FSC, mask | value);
3777
3778 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3779
3780 /* Set RX packet routing to use port/pci function on which the
3781 * packet arrived on in addition to usual frame routing.
3782 * This is helpful on bonding where both interfaces can have
3783 * the same MAC address.
3784 */
3785 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3786 /* Reroute all packets to our Interface.
3787 * They may have been routed to MPI firmware
3788 * due to WOL.
3789 */
3790 value = ql_read32(qdev, MGMT_RCV_CFG);
3791 value &= ~MGMT_RCV_CFG_RM;
3792 mask = 0xffff0000;
3793
3794 /* Sticky reg needs clearing due to WOL. */
3795 ql_write32(qdev, MGMT_RCV_CFG, mask);
3796 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3797
3798 /* Default WOL is enable on Mezz cards */
3799 if (qdev->pdev->subsystem_device == 0x0068 ||
3800 qdev->pdev->subsystem_device == 0x0180)
3801 qdev->wol = WAKE_MAGIC;
3802
3803 /* Start up the rx queues. */
3804 for (i = 0; i < qdev->rx_ring_count; i++) {
3805 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3806 if (status) {
3807 netif_err(qdev, ifup, qdev->ndev,
3808 "Failed to start rx ring[%d].\n", i);
3809 return status;
3810 }
3811 }
3812
3813 /* If there is more than one inbound completion queue
3814 * then download a RICB to configure RSS.
3815 */
3816 if (qdev->rss_ring_count > 1) {
3817 status = ql_start_rss(qdev);
3818 if (status) {
3819 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3820 return status;
3821 }
3822 }
3823
3824 /* Start up the tx queues. */
3825 for (i = 0; i < qdev->tx_ring_count; i++) {
3826 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3827 if (status) {
3828 netif_err(qdev, ifup, qdev->ndev,
3829 "Failed to start tx ring[%d].\n", i);
3830 return status;
3831 }
3832 }
3833
3834 /* Initialize the port and set the max framesize. */
3835 status = qdev->nic_ops->port_initialize(qdev);
3836 if (status)
3837 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3838
3839 /* Set up the MAC address and frame routing filter. */
3840 status = ql_cam_route_initialize(qdev);
3841 if (status) {
3842 netif_err(qdev, ifup, qdev->ndev,
3843 "Failed to init CAM/Routing tables.\n");
3844 return status;
3845 }
3846
3847 /* Start NAPI for the RSS queues. */
3848 for (i = 0; i < qdev->rss_ring_count; i++)
3849 napi_enable(&qdev->rx_ring[i].napi);
3850
3851 return status;
3852 }
3853
3854 /* Issue soft reset to chip. */
3855 static int ql_adapter_reset(struct ql_adapter *qdev)
3856 {
3857 u32 value;
3858 int status = 0;
3859 unsigned long end_jiffies;
3860
3861 /* Clear all the entries in the routing table. */
3862 status = ql_clear_routing_entries(qdev);
3863 if (status) {
3864 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3865 return status;
3866 }
3867
3868 end_jiffies = jiffies +
3869 max((unsigned long)1, usecs_to_jiffies(30));
3870
3871 /* Check if bit is set then skip the mailbox command and
3872 * clear the bit, else we are in normal reset process.
3873 */
3874 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3875 /* Stop management traffic. */
3876 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3877
3878 /* Wait for the NIC and MGMNT FIFOs to empty. */
3879 ql_wait_fifo_empty(qdev);
3880 } else
3881 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3882
3883 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3884
3885 do {
3886 value = ql_read32(qdev, RST_FO);
3887 if ((value & RST_FO_FR) == 0)
3888 break;
3889 cpu_relax();
3890 } while (time_before(jiffies, end_jiffies));
3891
3892 if (value & RST_FO_FR) {
3893 netif_err(qdev, ifdown, qdev->ndev,
3894 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3895 status = -ETIMEDOUT;
3896 }
3897
3898 /* Resume management traffic. */
3899 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3900 return status;
3901 }
3902
3903 static void ql_display_dev_info(struct net_device *ndev)
3904 {
3905 struct ql_adapter *qdev = netdev_priv(ndev);
3906
3907 netif_info(qdev, probe, qdev->ndev,
3908 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3909 "XG Roll = %d, XG Rev = %d.\n",
3910 qdev->func,
3911 qdev->port,
3912 qdev->chip_rev_id & 0x0000000f,
3913 qdev->chip_rev_id >> 4 & 0x0000000f,
3914 qdev->chip_rev_id >> 8 & 0x0000000f,
3915 qdev->chip_rev_id >> 12 & 0x0000000f);
3916 netif_info(qdev, probe, qdev->ndev,
3917 "MAC address %pM\n", ndev->dev_addr);
3918 }
3919
3920 static int ql_wol(struct ql_adapter *qdev)
3921 {
3922 int status = 0;
3923 u32 wol = MB_WOL_DISABLE;
3924
3925 /* The CAM is still intact after a reset, but if we
3926 * are doing WOL, then we may need to program the
3927 * routing regs. We would also need to issue the mailbox
3928 * commands to instruct the MPI what to do per the ethtool
3929 * settings.
3930 */
3931
3932 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3933 WAKE_MCAST | WAKE_BCAST)) {
3934 netif_err(qdev, ifdown, qdev->ndev,
3935 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3936 qdev->wol);
3937 return -EINVAL;
3938 }
3939
3940 if (qdev->wol & WAKE_MAGIC) {
3941 status = ql_mb_wol_set_magic(qdev, 1);
3942 if (status) {
3943 netif_err(qdev, ifdown, qdev->ndev,
3944 "Failed to set magic packet on %s.\n",
3945 qdev->ndev->name);
3946 return status;
3947 } else
3948 netif_info(qdev, drv, qdev->ndev,
3949 "Enabled magic packet successfully on %s.\n",
3950 qdev->ndev->name);
3951
3952 wol |= MB_WOL_MAGIC_PKT;
3953 }
3954
3955 if (qdev->wol) {
3956 wol |= MB_WOL_MODE_ON;
3957 status = ql_mb_wol_mode(qdev, wol);
3958 netif_err(qdev, drv, qdev->ndev,
3959 "WOL %s (wol code 0x%x) on %s\n",
3960 (status == 0) ? "Successfully set" : "Failed",
3961 wol, qdev->ndev->name);
3962 }
3963
3964 return status;
3965 }
3966
3967 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3968 {
3969
3970 /* Don't kill the reset worker thread if we
3971 * are in the process of recovery.
3972 */
3973 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3974 cancel_delayed_work_sync(&qdev->asic_reset_work);
3975 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3976 cancel_delayed_work_sync(&qdev->mpi_work);
3977 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3978 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3979 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3980 }
3981
3982 static int ql_adapter_down(struct ql_adapter *qdev)
3983 {
3984 int i, status = 0;
3985
3986 ql_link_off(qdev);
3987
3988 ql_cancel_all_work_sync(qdev);
3989
3990 for (i = 0; i < qdev->rss_ring_count; i++)
3991 napi_disable(&qdev->rx_ring[i].napi);
3992
3993 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3994
3995 ql_disable_interrupts(qdev);
3996
3997 ql_tx_ring_clean(qdev);
3998
3999 /* Call netif_napi_del() from common point.
4000 */
4001 for (i = 0; i < qdev->rss_ring_count; i++)
4002 netif_napi_del(&qdev->rx_ring[i].napi);
4003
4004 status = ql_adapter_reset(qdev);
4005 if (status)
4006 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4007 qdev->func);
4008 ql_free_rx_buffers(qdev);
4009
4010 return status;
4011 }
4012
4013 static int ql_adapter_up(struct ql_adapter *qdev)
4014 {
4015 int err = 0;
4016
4017 err = ql_adapter_initialize(qdev);
4018 if (err) {
4019 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4020 goto err_init;
4021 }
4022 set_bit(QL_ADAPTER_UP, &qdev->flags);
4023 ql_alloc_rx_buffers(qdev);
4024 /* If the port is initialized and the
4025 * link is up the turn on the carrier.
4026 */
4027 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4028 (ql_read32(qdev, STS) & qdev->port_link_up))
4029 ql_link_on(qdev);
4030 /* Restore rx mode. */
4031 clear_bit(QL_ALLMULTI, &qdev->flags);
4032 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4033 qlge_set_multicast_list(qdev->ndev);
4034
4035 /* Restore vlan setting. */
4036 qlge_restore_vlan(qdev);
4037
4038 ql_enable_interrupts(qdev);
4039 ql_enable_all_completion_interrupts(qdev);
4040 netif_tx_start_all_queues(qdev->ndev);
4041
4042 return 0;
4043 err_init:
4044 ql_adapter_reset(qdev);
4045 return err;
4046 }
4047
4048 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4049 {
4050 ql_free_mem_resources(qdev);
4051 ql_free_irq(qdev);
4052 }
4053
4054 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4055 {
4056 int status = 0;
4057
4058 if (ql_alloc_mem_resources(qdev)) {
4059 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
4060 return -ENOMEM;
4061 }
4062 status = ql_request_irq(qdev);
4063 return status;
4064 }
4065
4066 static int qlge_close(struct net_device *ndev)
4067 {
4068 struct ql_adapter *qdev = netdev_priv(ndev);
4069
4070 /* If we hit pci_channel_io_perm_failure
4071 * failure condition, then we already
4072 * brought the adapter down.
4073 */
4074 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4075 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4076 clear_bit(QL_EEH_FATAL, &qdev->flags);
4077 return 0;
4078 }
4079
4080 /*
4081 * Wait for device to recover from a reset.
4082 * (Rarely happens, but possible.)
4083 */
4084 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4085 msleep(1);
4086 ql_adapter_down(qdev);
4087 ql_release_adapter_resources(qdev);
4088 return 0;
4089 }
4090
4091 static int ql_configure_rings(struct ql_adapter *qdev)
4092 {
4093 int i;
4094 struct rx_ring *rx_ring;
4095 struct tx_ring *tx_ring;
4096 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4097 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4098 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4099
4100 qdev->lbq_buf_order = get_order(lbq_buf_len);
4101
4102 /* In a perfect world we have one RSS ring for each CPU
4103 * and each has it's own vector. To do that we ask for
4104 * cpu_cnt vectors. ql_enable_msix() will adjust the
4105 * vector count to what we actually get. We then
4106 * allocate an RSS ring for each.
4107 * Essentially, we are doing min(cpu_count, msix_vector_count).
4108 */
4109 qdev->intr_count = cpu_cnt;
4110 ql_enable_msix(qdev);
4111 /* Adjust the RSS ring count to the actual vector count. */
4112 qdev->rss_ring_count = qdev->intr_count;
4113 qdev->tx_ring_count = cpu_cnt;
4114 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4115
4116 for (i = 0; i < qdev->tx_ring_count; i++) {
4117 tx_ring = &qdev->tx_ring[i];
4118 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4119 tx_ring->qdev = qdev;
4120 tx_ring->wq_id = i;
4121 tx_ring->wq_len = qdev->tx_ring_size;
4122 tx_ring->wq_size =
4123 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4124
4125 /*
4126 * The completion queue ID for the tx rings start
4127 * immediately after the rss rings.
4128 */
4129 tx_ring->cq_id = qdev->rss_ring_count + i;
4130 }
4131
4132 for (i = 0; i < qdev->rx_ring_count; i++) {
4133 rx_ring = &qdev->rx_ring[i];
4134 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4135 rx_ring->qdev = qdev;
4136 rx_ring->cq_id = i;
4137 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4138 if (i < qdev->rss_ring_count) {
4139 /*
4140 * Inbound (RSS) queues.
4141 */
4142 rx_ring->cq_len = qdev->rx_ring_size;
4143 rx_ring->cq_size =
4144 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4145 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4146 rx_ring->lbq_size =
4147 rx_ring->lbq_len * sizeof(__le64);
4148 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4149 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4150 rx_ring->sbq_size =
4151 rx_ring->sbq_len * sizeof(__le64);
4152 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4153 rx_ring->type = RX_Q;
4154 } else {
4155 /*
4156 * Outbound queue handles outbound completions only.
4157 */
4158 /* outbound cq is same size as tx_ring it services. */
4159 rx_ring->cq_len = qdev->tx_ring_size;
4160 rx_ring->cq_size =
4161 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4162 rx_ring->lbq_len = 0;
4163 rx_ring->lbq_size = 0;
4164 rx_ring->lbq_buf_size = 0;
4165 rx_ring->sbq_len = 0;
4166 rx_ring->sbq_size = 0;
4167 rx_ring->sbq_buf_size = 0;
4168 rx_ring->type = TX_Q;
4169 }
4170 }
4171 return 0;
4172 }
4173
4174 static int qlge_open(struct net_device *ndev)
4175 {
4176 int err = 0;
4177 struct ql_adapter *qdev = netdev_priv(ndev);
4178
4179 err = ql_adapter_reset(qdev);
4180 if (err)
4181 return err;
4182
4183 err = ql_configure_rings(qdev);
4184 if (err)
4185 return err;
4186
4187 err = ql_get_adapter_resources(qdev);
4188 if (err)
4189 goto error_up;
4190
4191 err = ql_adapter_up(qdev);
4192 if (err)
4193 goto error_up;
4194
4195 return err;
4196
4197 error_up:
4198 ql_release_adapter_resources(qdev);
4199 return err;
4200 }
4201
4202 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4203 {
4204 struct rx_ring *rx_ring;
4205 int i, status;
4206 u32 lbq_buf_len;
4207
4208 /* Wait for an outstanding reset to complete. */
4209 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4210 int i = 3;
4211 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4212 netif_err(qdev, ifup, qdev->ndev,
4213 "Waiting for adapter UP...\n");
4214 ssleep(1);
4215 }
4216
4217 if (!i) {
4218 netif_err(qdev, ifup, qdev->ndev,
4219 "Timed out waiting for adapter UP\n");
4220 return -ETIMEDOUT;
4221 }
4222 }
4223
4224 status = ql_adapter_down(qdev);
4225 if (status)
4226 goto error;
4227
4228 /* Get the new rx buffer size. */
4229 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4230 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4231 qdev->lbq_buf_order = get_order(lbq_buf_len);
4232
4233 for (i = 0; i < qdev->rss_ring_count; i++) {
4234 rx_ring = &qdev->rx_ring[i];
4235 /* Set the new size. */
4236 rx_ring->lbq_buf_size = lbq_buf_len;
4237 }
4238
4239 status = ql_adapter_up(qdev);
4240 if (status)
4241 goto error;
4242
4243 return status;
4244 error:
4245 netif_alert(qdev, ifup, qdev->ndev,
4246 "Driver up/down cycle failed, closing device.\n");
4247 set_bit(QL_ADAPTER_UP, &qdev->flags);
4248 dev_close(qdev->ndev);
4249 return status;
4250 }
4251
4252 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4253 {
4254 struct ql_adapter *qdev = netdev_priv(ndev);
4255 int status;
4256
4257 if (ndev->mtu == 1500 && new_mtu == 9000) {
4258 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4259 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4260 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4261 } else
4262 return -EINVAL;
4263
4264 queue_delayed_work(qdev->workqueue,
4265 &qdev->mpi_port_cfg_work, 3*HZ);
4266
4267 ndev->mtu = new_mtu;
4268
4269 if (!netif_running(qdev->ndev)) {
4270 return 0;
4271 }
4272
4273 status = ql_change_rx_buffers(qdev);
4274 if (status) {
4275 netif_err(qdev, ifup, qdev->ndev,
4276 "Changing MTU failed.\n");
4277 }
4278
4279 return status;
4280 }
4281
4282 static struct net_device_stats *qlge_get_stats(struct net_device
4283 *ndev)
4284 {
4285 struct ql_adapter *qdev = netdev_priv(ndev);
4286 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4287 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4288 unsigned long pkts, mcast, dropped, errors, bytes;
4289 int i;
4290
4291 /* Get RX stats. */
4292 pkts = mcast = dropped = errors = bytes = 0;
4293 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4294 pkts += rx_ring->rx_packets;
4295 bytes += rx_ring->rx_bytes;
4296 dropped += rx_ring->rx_dropped;
4297 errors += rx_ring->rx_errors;
4298 mcast += rx_ring->rx_multicast;
4299 }
4300 ndev->stats.rx_packets = pkts;
4301 ndev->stats.rx_bytes = bytes;
4302 ndev->stats.rx_dropped = dropped;
4303 ndev->stats.rx_errors = errors;
4304 ndev->stats.multicast = mcast;
4305
4306 /* Get TX stats. */
4307 pkts = errors = bytes = 0;
4308 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4309 pkts += tx_ring->tx_packets;
4310 bytes += tx_ring->tx_bytes;
4311 errors += tx_ring->tx_errors;
4312 }
4313 ndev->stats.tx_packets = pkts;
4314 ndev->stats.tx_bytes = bytes;
4315 ndev->stats.tx_errors = errors;
4316 return &ndev->stats;
4317 }
4318
4319 static void qlge_set_multicast_list(struct net_device *ndev)
4320 {
4321 struct ql_adapter *qdev = netdev_priv(ndev);
4322 struct netdev_hw_addr *ha;
4323 int i, status;
4324
4325 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4326 if (status)
4327 return;
4328 /*
4329 * Set or clear promiscuous mode if a
4330 * transition is taking place.
4331 */
4332 if (ndev->flags & IFF_PROMISC) {
4333 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4334 if (ql_set_routing_reg
4335 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4336 netif_err(qdev, hw, qdev->ndev,
4337 "Failed to set promiscuous mode.\n");
4338 } else {
4339 set_bit(QL_PROMISCUOUS, &qdev->flags);
4340 }
4341 }
4342 } else {
4343 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4344 if (ql_set_routing_reg
4345 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4346 netif_err(qdev, hw, qdev->ndev,
4347 "Failed to clear promiscuous mode.\n");
4348 } else {
4349 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4350 }
4351 }
4352 }
4353
4354 /*
4355 * Set or clear all multicast mode if a
4356 * transition is taking place.
4357 */
4358 if ((ndev->flags & IFF_ALLMULTI) ||
4359 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4360 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4361 if (ql_set_routing_reg
4362 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4363 netif_err(qdev, hw, qdev->ndev,
4364 "Failed to set all-multi mode.\n");
4365 } else {
4366 set_bit(QL_ALLMULTI, &qdev->flags);
4367 }
4368 }
4369 } else {
4370 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4371 if (ql_set_routing_reg
4372 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4373 netif_err(qdev, hw, qdev->ndev,
4374 "Failed to clear all-multi mode.\n");
4375 } else {
4376 clear_bit(QL_ALLMULTI, &qdev->flags);
4377 }
4378 }
4379 }
4380
4381 if (!netdev_mc_empty(ndev)) {
4382 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4383 if (status)
4384 goto exit;
4385 i = 0;
4386 netdev_for_each_mc_addr(ha, ndev) {
4387 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4388 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4389 netif_err(qdev, hw, qdev->ndev,
4390 "Failed to loadmulticast address.\n");
4391 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4392 goto exit;
4393 }
4394 i++;
4395 }
4396 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4397 if (ql_set_routing_reg
4398 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4399 netif_err(qdev, hw, qdev->ndev,
4400 "Failed to set multicast match mode.\n");
4401 } else {
4402 set_bit(QL_ALLMULTI, &qdev->flags);
4403 }
4404 }
4405 exit:
4406 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4407 }
4408
4409 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4410 {
4411 struct ql_adapter *qdev = netdev_priv(ndev);
4412 struct sockaddr *addr = p;
4413 int status;
4414
4415 if (!is_valid_ether_addr(addr->sa_data))
4416 return -EADDRNOTAVAIL;
4417 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4418 /* Update local copy of current mac address. */
4419 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4420
4421 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4422 if (status)
4423 return status;
4424 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4425 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4426 if (status)
4427 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4428 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4429 return status;
4430 }
4431
4432 static void qlge_tx_timeout(struct net_device *ndev)
4433 {
4434 struct ql_adapter *qdev = netdev_priv(ndev);
4435 ql_queue_asic_error(qdev);
4436 }
4437
4438 static void ql_asic_reset_work(struct work_struct *work)
4439 {
4440 struct ql_adapter *qdev =
4441 container_of(work, struct ql_adapter, asic_reset_work.work);
4442 int status;
4443 rtnl_lock();
4444 status = ql_adapter_down(qdev);
4445 if (status)
4446 goto error;
4447
4448 status = ql_adapter_up(qdev);
4449 if (status)
4450 goto error;
4451
4452 /* Restore rx mode. */
4453 clear_bit(QL_ALLMULTI, &qdev->flags);
4454 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4455 qlge_set_multicast_list(qdev->ndev);
4456
4457 rtnl_unlock();
4458 return;
4459 error:
4460 netif_alert(qdev, ifup, qdev->ndev,
4461 "Driver up/down cycle failed, closing device\n");
4462
4463 set_bit(QL_ADAPTER_UP, &qdev->flags);
4464 dev_close(qdev->ndev);
4465 rtnl_unlock();
4466 }
4467
4468 static const struct nic_operations qla8012_nic_ops = {
4469 .get_flash = ql_get_8012_flash_params,
4470 .port_initialize = ql_8012_port_initialize,
4471 };
4472
4473 static const struct nic_operations qla8000_nic_ops = {
4474 .get_flash = ql_get_8000_flash_params,
4475 .port_initialize = ql_8000_port_initialize,
4476 };
4477
4478 /* Find the pcie function number for the other NIC
4479 * on this chip. Since both NIC functions share a
4480 * common firmware we have the lowest enabled function
4481 * do any common work. Examples would be resetting
4482 * after a fatal firmware error, or doing a firmware
4483 * coredump.
4484 */
4485 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4486 {
4487 int status = 0;
4488 u32 temp;
4489 u32 nic_func1, nic_func2;
4490
4491 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4492 &temp);
4493 if (status)
4494 return status;
4495
4496 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4497 MPI_TEST_NIC_FUNC_MASK);
4498 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4499 MPI_TEST_NIC_FUNC_MASK);
4500
4501 if (qdev->func == nic_func1)
4502 qdev->alt_func = nic_func2;
4503 else if (qdev->func == nic_func2)
4504 qdev->alt_func = nic_func1;
4505 else
4506 status = -EIO;
4507
4508 return status;
4509 }
4510
4511 static int ql_get_board_info(struct ql_adapter *qdev)
4512 {
4513 int status;
4514 qdev->func =
4515 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4516 if (qdev->func > 3)
4517 return -EIO;
4518
4519 status = ql_get_alt_pcie_func(qdev);
4520 if (status)
4521 return status;
4522
4523 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4524 if (qdev->port) {
4525 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4526 qdev->port_link_up = STS_PL1;
4527 qdev->port_init = STS_PI1;
4528 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4529 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4530 } else {
4531 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4532 qdev->port_link_up = STS_PL0;
4533 qdev->port_init = STS_PI0;
4534 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4535 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4536 }
4537 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4538 qdev->device_id = qdev->pdev->device;
4539 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4540 qdev->nic_ops = &qla8012_nic_ops;
4541 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4542 qdev->nic_ops = &qla8000_nic_ops;
4543 return status;
4544 }
4545
4546 static void ql_release_all(struct pci_dev *pdev)
4547 {
4548 struct net_device *ndev = pci_get_drvdata(pdev);
4549 struct ql_adapter *qdev = netdev_priv(ndev);
4550
4551 if (qdev->workqueue) {
4552 destroy_workqueue(qdev->workqueue);
4553 qdev->workqueue = NULL;
4554 }
4555
4556 if (qdev->reg_base)
4557 iounmap(qdev->reg_base);
4558 if (qdev->doorbell_area)
4559 iounmap(qdev->doorbell_area);
4560 vfree(qdev->mpi_coredump);
4561 pci_release_regions(pdev);
4562 }
4563
4564 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4565 int cards_found)
4566 {
4567 struct ql_adapter *qdev = netdev_priv(ndev);
4568 int err = 0;
4569
4570 memset((void *)qdev, 0, sizeof(*qdev));
4571 err = pci_enable_device(pdev);
4572 if (err) {
4573 dev_err(&pdev->dev, "PCI device enable failed.\n");
4574 return err;
4575 }
4576
4577 qdev->ndev = ndev;
4578 qdev->pdev = pdev;
4579 pci_set_drvdata(pdev, ndev);
4580
4581 /* Set PCIe read request size */
4582 err = pcie_set_readrq(pdev, 4096);
4583 if (err) {
4584 dev_err(&pdev->dev, "Set readrq failed.\n");
4585 goto err_out1;
4586 }
4587
4588 err = pci_request_regions(pdev, DRV_NAME);
4589 if (err) {
4590 dev_err(&pdev->dev, "PCI region request failed.\n");
4591 return err;
4592 }
4593
4594 pci_set_master(pdev);
4595 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4596 set_bit(QL_DMA64, &qdev->flags);
4597 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4598 } else {
4599 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4600 if (!err)
4601 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4602 }
4603
4604 if (err) {
4605 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4606 goto err_out2;
4607 }
4608
4609 /* Set PCIe reset type for EEH to fundamental. */
4610 pdev->needs_freset = 1;
4611 pci_save_state(pdev);
4612 qdev->reg_base =
4613 ioremap_nocache(pci_resource_start(pdev, 1),
4614 pci_resource_len(pdev, 1));
4615 if (!qdev->reg_base) {
4616 dev_err(&pdev->dev, "Register mapping failed.\n");
4617 err = -ENOMEM;
4618 goto err_out2;
4619 }
4620
4621 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4622 qdev->doorbell_area =
4623 ioremap_nocache(pci_resource_start(pdev, 3),
4624 pci_resource_len(pdev, 3));
4625 if (!qdev->doorbell_area) {
4626 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4627 err = -ENOMEM;
4628 goto err_out2;
4629 }
4630
4631 err = ql_get_board_info(qdev);
4632 if (err) {
4633 dev_err(&pdev->dev, "Register access failed.\n");
4634 err = -EIO;
4635 goto err_out2;
4636 }
4637 qdev->msg_enable = netif_msg_init(debug, default_msg);
4638 spin_lock_init(&qdev->hw_lock);
4639 spin_lock_init(&qdev->stats_lock);
4640
4641 if (qlge_mpi_coredump) {
4642 qdev->mpi_coredump =
4643 vmalloc(sizeof(struct ql_mpi_coredump));
4644 if (qdev->mpi_coredump == NULL) {
4645 err = -ENOMEM;
4646 goto err_out2;
4647 }
4648 if (qlge_force_coredump)
4649 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4650 }
4651 /* make sure the EEPROM is good */
4652 err = qdev->nic_ops->get_flash(qdev);
4653 if (err) {
4654 dev_err(&pdev->dev, "Invalid FLASH.\n");
4655 goto err_out2;
4656 }
4657
4658 /* Keep local copy of current mac address. */
4659 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4660
4661 /* Set up the default ring sizes. */
4662 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4663 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4664
4665 /* Set up the coalescing parameters. */
4666 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4667 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4668 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4669 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4670
4671 /*
4672 * Set up the operating parameters.
4673 */
4674 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4675 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4676 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4677 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4678 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4679 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4680 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4681 init_completion(&qdev->ide_completion);
4682 mutex_init(&qdev->mpi_mutex);
4683
4684 if (!cards_found) {
4685 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4686 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4687 DRV_NAME, DRV_VERSION);
4688 }
4689 return 0;
4690 err_out2:
4691 ql_release_all(pdev);
4692 err_out1:
4693 pci_disable_device(pdev);
4694 return err;
4695 }
4696
4697 static const struct net_device_ops qlge_netdev_ops = {
4698 .ndo_open = qlge_open,
4699 .ndo_stop = qlge_close,
4700 .ndo_start_xmit = qlge_send,
4701 .ndo_change_mtu = qlge_change_mtu,
4702 .ndo_get_stats = qlge_get_stats,
4703 .ndo_set_rx_mode = qlge_set_multicast_list,
4704 .ndo_set_mac_address = qlge_set_mac_address,
4705 .ndo_validate_addr = eth_validate_addr,
4706 .ndo_tx_timeout = qlge_tx_timeout,
4707 .ndo_fix_features = qlge_fix_features,
4708 .ndo_set_features = qlge_set_features,
4709 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4710 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4711 };
4712
4713 static void ql_timer(unsigned long data)
4714 {
4715 struct ql_adapter *qdev = (struct ql_adapter *)data;
4716 u32 var = 0;
4717
4718 var = ql_read32(qdev, STS);
4719 if (pci_channel_offline(qdev->pdev)) {
4720 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4721 return;
4722 }
4723
4724 mod_timer(&qdev->timer, jiffies + (5*HZ));
4725 }
4726
4727 static int qlge_probe(struct pci_dev *pdev,
4728 const struct pci_device_id *pci_entry)
4729 {
4730 struct net_device *ndev = NULL;
4731 struct ql_adapter *qdev = NULL;
4732 static int cards_found = 0;
4733 int err = 0;
4734
4735 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4736 min(MAX_CPUS, netif_get_num_default_rss_queues()));
4737 if (!ndev)
4738 return -ENOMEM;
4739
4740 err = ql_init_device(pdev, ndev, cards_found);
4741 if (err < 0) {
4742 free_netdev(ndev);
4743 return err;
4744 }
4745
4746 qdev = netdev_priv(ndev);
4747 SET_NETDEV_DEV(ndev, &pdev->dev);
4748 ndev->hw_features = NETIF_F_SG |
4749 NETIF_F_IP_CSUM |
4750 NETIF_F_TSO |
4751 NETIF_F_TSO_ECN |
4752 NETIF_F_HW_VLAN_CTAG_TX |
4753 NETIF_F_HW_VLAN_CTAG_RX |
4754 NETIF_F_HW_VLAN_CTAG_FILTER |
4755 NETIF_F_RXCSUM;
4756 ndev->features = ndev->hw_features;
4757 ndev->vlan_features = ndev->hw_features;
4758 /* vlan gets same features (except vlan filter) */
4759 ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4760 NETIF_F_HW_VLAN_CTAG_TX |
4761 NETIF_F_HW_VLAN_CTAG_RX);
4762
4763 if (test_bit(QL_DMA64, &qdev->flags))
4764 ndev->features |= NETIF_F_HIGHDMA;
4765
4766 /*
4767 * Set up net_device structure.
4768 */
4769 ndev->tx_queue_len = qdev->tx_ring_size;
4770 ndev->irq = pdev->irq;
4771
4772 ndev->netdev_ops = &qlge_netdev_ops;
4773 ndev->ethtool_ops = &qlge_ethtool_ops;
4774 ndev->watchdog_timeo = 10 * HZ;
4775
4776 err = register_netdev(ndev);
4777 if (err) {
4778 dev_err(&pdev->dev, "net device registration failed.\n");
4779 ql_release_all(pdev);
4780 pci_disable_device(pdev);
4781 free_netdev(ndev);
4782 return err;
4783 }
4784 /* Start up the timer to trigger EEH if
4785 * the bus goes dead
4786 */
4787 init_timer_deferrable(&qdev->timer);
4788 qdev->timer.data = (unsigned long)qdev;
4789 qdev->timer.function = ql_timer;
4790 qdev->timer.expires = jiffies + (5*HZ);
4791 add_timer(&qdev->timer);
4792 ql_link_off(qdev);
4793 ql_display_dev_info(ndev);
4794 atomic_set(&qdev->lb_count, 0);
4795 cards_found++;
4796 return 0;
4797 }
4798
4799 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4800 {
4801 return qlge_send(skb, ndev);
4802 }
4803
4804 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4805 {
4806 return ql_clean_inbound_rx_ring(rx_ring, budget);
4807 }
4808
4809 static void qlge_remove(struct pci_dev *pdev)
4810 {
4811 struct net_device *ndev = pci_get_drvdata(pdev);
4812 struct ql_adapter *qdev = netdev_priv(ndev);
4813 del_timer_sync(&qdev->timer);
4814 ql_cancel_all_work_sync(qdev);
4815 unregister_netdev(ndev);
4816 ql_release_all(pdev);
4817 pci_disable_device(pdev);
4818 free_netdev(ndev);
4819 }
4820
4821 /* Clean up resources without touching hardware. */
4822 static void ql_eeh_close(struct net_device *ndev)
4823 {
4824 int i;
4825 struct ql_adapter *qdev = netdev_priv(ndev);
4826
4827 if (netif_carrier_ok(ndev)) {
4828 netif_carrier_off(ndev);
4829 netif_stop_queue(ndev);
4830 }
4831
4832 /* Disabling the timer */
4833 del_timer_sync(&qdev->timer);
4834 ql_cancel_all_work_sync(qdev);
4835
4836 for (i = 0; i < qdev->rss_ring_count; i++)
4837 netif_napi_del(&qdev->rx_ring[i].napi);
4838
4839 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4840 ql_tx_ring_clean(qdev);
4841 ql_free_rx_buffers(qdev);
4842 ql_release_adapter_resources(qdev);
4843 }
4844
4845 /*
4846 * This callback is called by the PCI subsystem whenever
4847 * a PCI bus error is detected.
4848 */
4849 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4850 enum pci_channel_state state)
4851 {
4852 struct net_device *ndev = pci_get_drvdata(pdev);
4853 struct ql_adapter *qdev = netdev_priv(ndev);
4854
4855 switch (state) {
4856 case pci_channel_io_normal:
4857 return PCI_ERS_RESULT_CAN_RECOVER;
4858 case pci_channel_io_frozen:
4859 netif_device_detach(ndev);
4860 if (netif_running(ndev))
4861 ql_eeh_close(ndev);
4862 pci_disable_device(pdev);
4863 return PCI_ERS_RESULT_NEED_RESET;
4864 case pci_channel_io_perm_failure:
4865 dev_err(&pdev->dev,
4866 "%s: pci_channel_io_perm_failure.\n", __func__);
4867 ql_eeh_close(ndev);
4868 set_bit(QL_EEH_FATAL, &qdev->flags);
4869 return PCI_ERS_RESULT_DISCONNECT;
4870 }
4871
4872 /* Request a slot reset. */
4873 return PCI_ERS_RESULT_NEED_RESET;
4874 }
4875
4876 /*
4877 * This callback is called after the PCI buss has been reset.
4878 * Basically, this tries to restart the card from scratch.
4879 * This is a shortened version of the device probe/discovery code,
4880 * it resembles the first-half of the () routine.
4881 */
4882 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4883 {
4884 struct net_device *ndev = pci_get_drvdata(pdev);
4885 struct ql_adapter *qdev = netdev_priv(ndev);
4886
4887 pdev->error_state = pci_channel_io_normal;
4888
4889 pci_restore_state(pdev);
4890 if (pci_enable_device(pdev)) {
4891 netif_err(qdev, ifup, qdev->ndev,
4892 "Cannot re-enable PCI device after reset.\n");
4893 return PCI_ERS_RESULT_DISCONNECT;
4894 }
4895 pci_set_master(pdev);
4896
4897 if (ql_adapter_reset(qdev)) {
4898 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4899 set_bit(QL_EEH_FATAL, &qdev->flags);
4900 return PCI_ERS_RESULT_DISCONNECT;
4901 }
4902
4903 return PCI_ERS_RESULT_RECOVERED;
4904 }
4905
4906 static void qlge_io_resume(struct pci_dev *pdev)
4907 {
4908 struct net_device *ndev = pci_get_drvdata(pdev);
4909 struct ql_adapter *qdev = netdev_priv(ndev);
4910 int err = 0;
4911
4912 if (netif_running(ndev)) {
4913 err = qlge_open(ndev);
4914 if (err) {
4915 netif_err(qdev, ifup, qdev->ndev,
4916 "Device initialization failed after reset.\n");
4917 return;
4918 }
4919 } else {
4920 netif_err(qdev, ifup, qdev->ndev,
4921 "Device was not running prior to EEH.\n");
4922 }
4923 mod_timer(&qdev->timer, jiffies + (5*HZ));
4924 netif_device_attach(ndev);
4925 }
4926
4927 static const struct pci_error_handlers qlge_err_handler = {
4928 .error_detected = qlge_io_error_detected,
4929 .slot_reset = qlge_io_slot_reset,
4930 .resume = qlge_io_resume,
4931 };
4932
4933 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4934 {
4935 struct net_device *ndev = pci_get_drvdata(pdev);
4936 struct ql_adapter *qdev = netdev_priv(ndev);
4937 int err;
4938
4939 netif_device_detach(ndev);
4940 del_timer_sync(&qdev->timer);
4941
4942 if (netif_running(ndev)) {
4943 err = ql_adapter_down(qdev);
4944 if (!err)
4945 return err;
4946 }
4947
4948 ql_wol(qdev);
4949 err = pci_save_state(pdev);
4950 if (err)
4951 return err;
4952
4953 pci_disable_device(pdev);
4954
4955 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4956
4957 return 0;
4958 }
4959
4960 #ifdef CONFIG_PM
4961 static int qlge_resume(struct pci_dev *pdev)
4962 {
4963 struct net_device *ndev = pci_get_drvdata(pdev);
4964 struct ql_adapter *qdev = netdev_priv(ndev);
4965 int err;
4966
4967 pci_set_power_state(pdev, PCI_D0);
4968 pci_restore_state(pdev);
4969 err = pci_enable_device(pdev);
4970 if (err) {
4971 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4972 return err;
4973 }
4974 pci_set_master(pdev);
4975
4976 pci_enable_wake(pdev, PCI_D3hot, 0);
4977 pci_enable_wake(pdev, PCI_D3cold, 0);
4978
4979 if (netif_running(ndev)) {
4980 err = ql_adapter_up(qdev);
4981 if (err)
4982 return err;
4983 }
4984
4985 mod_timer(&qdev->timer, jiffies + (5*HZ));
4986 netif_device_attach(ndev);
4987
4988 return 0;
4989 }
4990 #endif /* CONFIG_PM */
4991
4992 static void qlge_shutdown(struct pci_dev *pdev)
4993 {
4994 qlge_suspend(pdev, PMSG_SUSPEND);
4995 }
4996
4997 static struct pci_driver qlge_driver = {
4998 .name = DRV_NAME,
4999 .id_table = qlge_pci_tbl,
5000 .probe = qlge_probe,
5001 .remove = qlge_remove,
5002 #ifdef CONFIG_PM
5003 .suspend = qlge_suspend,
5004 .resume = qlge_resume,
5005 #endif
5006 .shutdown = qlge_shutdown,
5007 .err_handler = &qlge_err_handler
5008 };
5009
5010 module_pci_driver(qlge_driver);
This page took 0.205495 seconds and 5 git commands to generate.