f705aeeba767eec647670c8d9b1a0e210f9f5e40
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/bitops.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/pagemap.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/dmapool.h>
20 #include <linux/mempool.h>
21 #include <linux/spinlock.h>
22 #include <linux/kthread.h>
23 #include <linux/interrupt.h>
24 #include <linux/errno.h>
25 #include <linux/ioport.h>
26 #include <linux/in.h>
27 #include <linux/ip.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/if_arp.h>
33 #include <linux/if_ether.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_vlan.h>
38 #include <linux/skbuff.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/prefetch.h>
43 #include <net/ip6_checksum.h>
44
45 #include "qlge.h"
46
47 char qlge_driver_name[] = DRV_NAME;
48 const char qlge_driver_version[] = DRV_VERSION;
49
50 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51 MODULE_DESCRIPTION(DRV_STRING " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
54
55 static const u32 default_msg =
56 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57 /* NETIF_MSG_TIMER | */
58 NETIF_MSG_IFDOWN |
59 NETIF_MSG_IFUP |
60 NETIF_MSG_RX_ERR |
61 NETIF_MSG_TX_ERR |
62 /* NETIF_MSG_TX_QUEUED | */
63 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
64 /* NETIF_MSG_PKTDATA | */
65 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66
67 static int debug = -1; /* defaults above */
68 module_param(debug, int, 0664);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 #define MSIX_IRQ 0
72 #define MSI_IRQ 1
73 #define LEG_IRQ 2
74 static int qlge_irq_type = MSIX_IRQ;
75 module_param(qlge_irq_type, int, 0664);
76 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77
78 static int qlge_mpi_coredump;
79 module_param(qlge_mpi_coredump, int, 0);
80 MODULE_PARM_DESC(qlge_mpi_coredump,
81 "Option to enable MPI firmware dump. "
82 "Default is OFF - Do Not allocate memory. ");
83
84 static int qlge_force_coredump;
85 module_param(qlge_force_coredump, int, 0);
86 MODULE_PARM_DESC(qlge_force_coredump,
87 "Option to allow force of firmware core dump. "
88 "Default is OFF - Do not allow.");
89
90 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
92 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
93 /* required last entry */
94 {0,}
95 };
96
97 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98
99 static int ql_wol(struct ql_adapter *);
100 static void qlge_set_multicast_list(struct net_device *);
101 static int ql_adapter_down(struct ql_adapter *);
102 static int ql_adapter_up(struct ql_adapter *);
103
104 /* This hardware semaphore causes exclusive access to
105 * resources shared between the NIC driver, MPI firmware,
106 * FCOE firmware and the FC driver.
107 */
108 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
109 {
110 u32 sem_bits = 0;
111
112 switch (sem_mask) {
113 case SEM_XGMAC0_MASK:
114 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
115 break;
116 case SEM_XGMAC1_MASK:
117 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
118 break;
119 case SEM_ICB_MASK:
120 sem_bits = SEM_SET << SEM_ICB_SHIFT;
121 break;
122 case SEM_MAC_ADDR_MASK:
123 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
124 break;
125 case SEM_FLASH_MASK:
126 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
127 break;
128 case SEM_PROBE_MASK:
129 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
130 break;
131 case SEM_RT_IDX_MASK:
132 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
133 break;
134 case SEM_PROC_REG_MASK:
135 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
136 break;
137 default:
138 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
139 return -EINVAL;
140 }
141
142 ql_write32(qdev, SEM, sem_bits | sem_mask);
143 return !(ql_read32(qdev, SEM) & sem_bits);
144 }
145
146 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
147 {
148 unsigned int wait_count = 30;
149 do {
150 if (!ql_sem_trylock(qdev, sem_mask))
151 return 0;
152 udelay(100);
153 } while (--wait_count);
154 return -ETIMEDOUT;
155 }
156
157 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
158 {
159 ql_write32(qdev, SEM, sem_mask);
160 ql_read32(qdev, SEM); /* flush */
161 }
162
163 /* This function waits for a specific bit to come ready
164 * in a given register. It is used mostly by the initialize
165 * process, but is also used in kernel thread API such as
166 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
167 */
168 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
169 {
170 u32 temp;
171 int count = UDELAY_COUNT;
172
173 while (count) {
174 temp = ql_read32(qdev, reg);
175
176 /* check for errors */
177 if (temp & err_bit) {
178 netif_alert(qdev, probe, qdev->ndev,
179 "register 0x%.08x access error, value = 0x%.08x!.\n",
180 reg, temp);
181 return -EIO;
182 } else if (temp & bit)
183 return 0;
184 udelay(UDELAY_DELAY);
185 count--;
186 }
187 netif_alert(qdev, probe, qdev->ndev,
188 "Timed out waiting for reg %x to come ready.\n", reg);
189 return -ETIMEDOUT;
190 }
191
192 /* The CFG register is used to download TX and RX control blocks
193 * to the chip. This function waits for an operation to complete.
194 */
195 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
196 {
197 int count = UDELAY_COUNT;
198 u32 temp;
199
200 while (count) {
201 temp = ql_read32(qdev, CFG);
202 if (temp & CFG_LE)
203 return -EIO;
204 if (!(temp & bit))
205 return 0;
206 udelay(UDELAY_DELAY);
207 count--;
208 }
209 return -ETIMEDOUT;
210 }
211
212
213 /* Used to issue init control blocks to hw. Maps control block,
214 * sets address, triggers download, waits for completion.
215 */
216 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
217 u16 q_id)
218 {
219 u64 map;
220 int status = 0;
221 int direction;
222 u32 mask;
223 u32 value;
224
225 direction =
226 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
227 PCI_DMA_FROMDEVICE;
228
229 map = pci_map_single(qdev->pdev, ptr, size, direction);
230 if (pci_dma_mapping_error(qdev->pdev, map)) {
231 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
232 return -ENOMEM;
233 }
234
235 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
236 if (status)
237 return status;
238
239 status = ql_wait_cfg(qdev, bit);
240 if (status) {
241 netif_err(qdev, ifup, qdev->ndev,
242 "Timed out waiting for CFG to come ready.\n");
243 goto exit;
244 }
245
246 ql_write32(qdev, ICB_L, (u32) map);
247 ql_write32(qdev, ICB_H, (u32) (map >> 32));
248
249 mask = CFG_Q_MASK | (bit << 16);
250 value = bit | (q_id << CFG_Q_SHIFT);
251 ql_write32(qdev, CFG, (mask | value));
252
253 /*
254 * Wait for the bit to clear after signaling hw.
255 */
256 status = ql_wait_cfg(qdev, bit);
257 exit:
258 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
259 pci_unmap_single(qdev->pdev, map, size, direction);
260 return status;
261 }
262
263 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
264 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
265 u32 *value)
266 {
267 u32 offset = 0;
268 int status;
269
270 switch (type) {
271 case MAC_ADDR_TYPE_MULTI_MAC:
272 case MAC_ADDR_TYPE_CAM_MAC:
273 {
274 status =
275 ql_wait_reg_rdy(qdev,
276 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
277 if (status)
278 goto exit;
279 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
280 (index << MAC_ADDR_IDX_SHIFT) | /* index */
281 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
282 status =
283 ql_wait_reg_rdy(qdev,
284 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
285 if (status)
286 goto exit;
287 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
288 status =
289 ql_wait_reg_rdy(qdev,
290 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
291 if (status)
292 goto exit;
293 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
294 (index << MAC_ADDR_IDX_SHIFT) | /* index */
295 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
296 status =
297 ql_wait_reg_rdy(qdev,
298 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
299 if (status)
300 goto exit;
301 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
302 if (type == MAC_ADDR_TYPE_CAM_MAC) {
303 status =
304 ql_wait_reg_rdy(qdev,
305 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
306 if (status)
307 goto exit;
308 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
309 (index << MAC_ADDR_IDX_SHIFT) | /* index */
310 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
311 status =
312 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
313 MAC_ADDR_MR, 0);
314 if (status)
315 goto exit;
316 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
317 }
318 break;
319 }
320 case MAC_ADDR_TYPE_VLAN:
321 case MAC_ADDR_TYPE_MULTI_FLTR:
322 default:
323 netif_crit(qdev, ifup, qdev->ndev,
324 "Address type %d not yet supported.\n", type);
325 status = -EPERM;
326 }
327 exit:
328 return status;
329 }
330
331 /* Set up a MAC, multicast or VLAN address for the
332 * inbound frame matching.
333 */
334 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
335 u16 index)
336 {
337 u32 offset = 0;
338 int status = 0;
339
340 switch (type) {
341 case MAC_ADDR_TYPE_MULTI_MAC:
342 {
343 u32 upper = (addr[0] << 8) | addr[1];
344 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
345 (addr[4] << 8) | (addr[5]);
346
347 status =
348 ql_wait_reg_rdy(qdev,
349 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
350 if (status)
351 goto exit;
352 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
353 (index << MAC_ADDR_IDX_SHIFT) |
354 type | MAC_ADDR_E);
355 ql_write32(qdev, MAC_ADDR_DATA, lower);
356 status =
357 ql_wait_reg_rdy(qdev,
358 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
359 if (status)
360 goto exit;
361 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
362 (index << MAC_ADDR_IDX_SHIFT) |
363 type | MAC_ADDR_E);
364
365 ql_write32(qdev, MAC_ADDR_DATA, upper);
366 status =
367 ql_wait_reg_rdy(qdev,
368 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
369 if (status)
370 goto exit;
371 break;
372 }
373 case MAC_ADDR_TYPE_CAM_MAC:
374 {
375 u32 cam_output;
376 u32 upper = (addr[0] << 8) | addr[1];
377 u32 lower =
378 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
379 (addr[5]);
380 status =
381 ql_wait_reg_rdy(qdev,
382 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
383 if (status)
384 goto exit;
385 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
386 (index << MAC_ADDR_IDX_SHIFT) | /* index */
387 type); /* type */
388 ql_write32(qdev, MAC_ADDR_DATA, lower);
389 status =
390 ql_wait_reg_rdy(qdev,
391 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
392 if (status)
393 goto exit;
394 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
395 (index << MAC_ADDR_IDX_SHIFT) | /* index */
396 type); /* type */
397 ql_write32(qdev, MAC_ADDR_DATA, upper);
398 status =
399 ql_wait_reg_rdy(qdev,
400 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
401 if (status)
402 goto exit;
403 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
404 (index << MAC_ADDR_IDX_SHIFT) | /* index */
405 type); /* type */
406 /* This field should also include the queue id
407 and possibly the function id. Right now we hardcode
408 the route field to NIC core.
409 */
410 cam_output = (CAM_OUT_ROUTE_NIC |
411 (qdev->
412 func << CAM_OUT_FUNC_SHIFT) |
413 (0 << CAM_OUT_CQ_ID_SHIFT));
414 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
415 cam_output |= CAM_OUT_RV;
416 /* route to NIC core */
417 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
418 break;
419 }
420 case MAC_ADDR_TYPE_VLAN:
421 {
422 u32 enable_bit = *((u32 *) &addr[0]);
423 /* For VLAN, the addr actually holds a bit that
424 * either enables or disables the vlan id we are
425 * addressing. It's either MAC_ADDR_E on or off.
426 * That's bit-27 we're talking about.
427 */
428 status =
429 ql_wait_reg_rdy(qdev,
430 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
431 if (status)
432 goto exit;
433 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
434 (index << MAC_ADDR_IDX_SHIFT) | /* index */
435 type | /* type */
436 enable_bit); /* enable/disable */
437 break;
438 }
439 case MAC_ADDR_TYPE_MULTI_FLTR:
440 default:
441 netif_crit(qdev, ifup, qdev->ndev,
442 "Address type %d not yet supported.\n", type);
443 status = -EPERM;
444 }
445 exit:
446 return status;
447 }
448
449 /* Set or clear MAC address in hardware. We sometimes
450 * have to clear it to prevent wrong frame routing
451 * especially in a bonding environment.
452 */
453 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
454 {
455 int status;
456 char zero_mac_addr[ETH_ALEN];
457 char *addr;
458
459 if (set) {
460 addr = &qdev->current_mac_addr[0];
461 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
462 "Set Mac addr %pM\n", addr);
463 } else {
464 memset(zero_mac_addr, 0, ETH_ALEN);
465 addr = &zero_mac_addr[0];
466 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
467 "Clearing MAC address\n");
468 }
469 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
470 if (status)
471 return status;
472 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
473 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
474 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
475 if (status)
476 netif_err(qdev, ifup, qdev->ndev,
477 "Failed to init mac address.\n");
478 return status;
479 }
480
481 void ql_link_on(struct ql_adapter *qdev)
482 {
483 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
484 netif_carrier_on(qdev->ndev);
485 ql_set_mac_addr(qdev, 1);
486 }
487
488 void ql_link_off(struct ql_adapter *qdev)
489 {
490 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
491 netif_carrier_off(qdev->ndev);
492 ql_set_mac_addr(qdev, 0);
493 }
494
495 /* Get a specific frame routing value from the CAM.
496 * Used for debug and reg dump.
497 */
498 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
499 {
500 int status = 0;
501
502 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
503 if (status)
504 goto exit;
505
506 ql_write32(qdev, RT_IDX,
507 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
508 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
509 if (status)
510 goto exit;
511 *value = ql_read32(qdev, RT_DATA);
512 exit:
513 return status;
514 }
515
516 /* The NIC function for this chip has 16 routing indexes. Each one can be used
517 * to route different frame types to various inbound queues. We send broadcast/
518 * multicast/error frames to the default queue for slow handling,
519 * and CAM hit/RSS frames to the fast handling queues.
520 */
521 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
522 int enable)
523 {
524 int status = -EINVAL; /* Return error if no mask match. */
525 u32 value = 0;
526
527 switch (mask) {
528 case RT_IDX_CAM_HIT:
529 {
530 value = RT_IDX_DST_CAM_Q | /* dest */
531 RT_IDX_TYPE_NICQ | /* type */
532 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
533 break;
534 }
535 case RT_IDX_VALID: /* Promiscuous Mode frames. */
536 {
537 value = RT_IDX_DST_DFLT_Q | /* dest */
538 RT_IDX_TYPE_NICQ | /* type */
539 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
540 break;
541 }
542 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
543 {
544 value = RT_IDX_DST_DFLT_Q | /* dest */
545 RT_IDX_TYPE_NICQ | /* type */
546 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
547 break;
548 }
549 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
550 {
551 value = RT_IDX_DST_DFLT_Q | /* dest */
552 RT_IDX_TYPE_NICQ | /* type */
553 (RT_IDX_IP_CSUM_ERR_SLOT <<
554 RT_IDX_IDX_SHIFT); /* index */
555 break;
556 }
557 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
558 {
559 value = RT_IDX_DST_DFLT_Q | /* dest */
560 RT_IDX_TYPE_NICQ | /* type */
561 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
562 RT_IDX_IDX_SHIFT); /* index */
563 break;
564 }
565 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
566 {
567 value = RT_IDX_DST_DFLT_Q | /* dest */
568 RT_IDX_TYPE_NICQ | /* type */
569 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
570 break;
571 }
572 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
573 {
574 value = RT_IDX_DST_DFLT_Q | /* dest */
575 RT_IDX_TYPE_NICQ | /* type */
576 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
577 break;
578 }
579 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
580 {
581 value = RT_IDX_DST_DFLT_Q | /* dest */
582 RT_IDX_TYPE_NICQ | /* type */
583 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
584 break;
585 }
586 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
587 {
588 value = RT_IDX_DST_RSS | /* dest */
589 RT_IDX_TYPE_NICQ | /* type */
590 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
591 break;
592 }
593 case 0: /* Clear the E-bit on an entry. */
594 {
595 value = RT_IDX_DST_DFLT_Q | /* dest */
596 RT_IDX_TYPE_NICQ | /* type */
597 (index << RT_IDX_IDX_SHIFT);/* index */
598 break;
599 }
600 default:
601 netif_err(qdev, ifup, qdev->ndev,
602 "Mask type %d not yet supported.\n", mask);
603 status = -EPERM;
604 goto exit;
605 }
606
607 if (value) {
608 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
609 if (status)
610 goto exit;
611 value |= (enable ? RT_IDX_E : 0);
612 ql_write32(qdev, RT_IDX, value);
613 ql_write32(qdev, RT_DATA, enable ? mask : 0);
614 }
615 exit:
616 return status;
617 }
618
619 static void ql_enable_interrupts(struct ql_adapter *qdev)
620 {
621 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
622 }
623
624 static void ql_disable_interrupts(struct ql_adapter *qdev)
625 {
626 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
627 }
628
629 /* If we're running with multiple MSI-X vectors then we enable on the fly.
630 * Otherwise, we may have multiple outstanding workers and don't want to
631 * enable until the last one finishes. In this case, the irq_cnt gets
632 * incremented every time we queue a worker and decremented every time
633 * a worker finishes. Once it hits zero we enable the interrupt.
634 */
635 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
636 {
637 u32 var = 0;
638 unsigned long hw_flags = 0;
639 struct intr_context *ctx = qdev->intr_context + intr;
640
641 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
642 /* Always enable if we're MSIX multi interrupts and
643 * it's not the default (zeroeth) interrupt.
644 */
645 ql_write32(qdev, INTR_EN,
646 ctx->intr_en_mask);
647 var = ql_read32(qdev, STS);
648 return var;
649 }
650
651 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
652 if (atomic_dec_and_test(&ctx->irq_cnt)) {
653 ql_write32(qdev, INTR_EN,
654 ctx->intr_en_mask);
655 var = ql_read32(qdev, STS);
656 }
657 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
658 return var;
659 }
660
661 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
662 {
663 u32 var = 0;
664 struct intr_context *ctx;
665
666 /* HW disables for us if we're MSIX multi interrupts and
667 * it's not the default (zeroeth) interrupt.
668 */
669 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
670 return 0;
671
672 ctx = qdev->intr_context + intr;
673 spin_lock(&qdev->hw_lock);
674 if (!atomic_read(&ctx->irq_cnt)) {
675 ql_write32(qdev, INTR_EN,
676 ctx->intr_dis_mask);
677 var = ql_read32(qdev, STS);
678 }
679 atomic_inc(&ctx->irq_cnt);
680 spin_unlock(&qdev->hw_lock);
681 return var;
682 }
683
684 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
685 {
686 int i;
687 for (i = 0; i < qdev->intr_count; i++) {
688 /* The enable call does a atomic_dec_and_test
689 * and enables only if the result is zero.
690 * So we precharge it here.
691 */
692 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
693 i == 0))
694 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
695 ql_enable_completion_interrupt(qdev, i);
696 }
697
698 }
699
700 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
701 {
702 int status, i;
703 u16 csum = 0;
704 __le16 *flash = (__le16 *)&qdev->flash;
705
706 status = strncmp((char *)&qdev->flash, str, 4);
707 if (status) {
708 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
709 return status;
710 }
711
712 for (i = 0; i < size; i++)
713 csum += le16_to_cpu(*flash++);
714
715 if (csum)
716 netif_err(qdev, ifup, qdev->ndev,
717 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
718
719 return csum;
720 }
721
722 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
723 {
724 int status = 0;
725 /* wait for reg to come ready */
726 status = ql_wait_reg_rdy(qdev,
727 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
728 if (status)
729 goto exit;
730 /* set up for reg read */
731 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
732 /* wait for reg to come ready */
733 status = ql_wait_reg_rdy(qdev,
734 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
735 if (status)
736 goto exit;
737 /* This data is stored on flash as an array of
738 * __le32. Since ql_read32() returns cpu endian
739 * we need to swap it back.
740 */
741 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
742 exit:
743 return status;
744 }
745
746 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
747 {
748 u32 i, size;
749 int status;
750 __le32 *p = (__le32 *)&qdev->flash;
751 u32 offset;
752 u8 mac_addr[6];
753
754 /* Get flash offset for function and adjust
755 * for dword access.
756 */
757 if (!qdev->port)
758 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
759 else
760 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
761
762 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
763 return -ETIMEDOUT;
764
765 size = sizeof(struct flash_params_8000) / sizeof(u32);
766 for (i = 0; i < size; i++, p++) {
767 status = ql_read_flash_word(qdev, i+offset, p);
768 if (status) {
769 netif_err(qdev, ifup, qdev->ndev,
770 "Error reading flash.\n");
771 goto exit;
772 }
773 }
774
775 status = ql_validate_flash(qdev,
776 sizeof(struct flash_params_8000) / sizeof(u16),
777 "8000");
778 if (status) {
779 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
780 status = -EINVAL;
781 goto exit;
782 }
783
784 /* Extract either manufacturer or BOFM modified
785 * MAC address.
786 */
787 if (qdev->flash.flash_params_8000.data_type1 == 2)
788 memcpy(mac_addr,
789 qdev->flash.flash_params_8000.mac_addr1,
790 qdev->ndev->addr_len);
791 else
792 memcpy(mac_addr,
793 qdev->flash.flash_params_8000.mac_addr,
794 qdev->ndev->addr_len);
795
796 if (!is_valid_ether_addr(mac_addr)) {
797 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
798 status = -EINVAL;
799 goto exit;
800 }
801
802 memcpy(qdev->ndev->dev_addr,
803 mac_addr,
804 qdev->ndev->addr_len);
805
806 exit:
807 ql_sem_unlock(qdev, SEM_FLASH_MASK);
808 return status;
809 }
810
811 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
812 {
813 int i;
814 int status;
815 __le32 *p = (__le32 *)&qdev->flash;
816 u32 offset = 0;
817 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
818
819 /* Second function's parameters follow the first
820 * function's.
821 */
822 if (qdev->port)
823 offset = size;
824
825 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
826 return -ETIMEDOUT;
827
828 for (i = 0; i < size; i++, p++) {
829 status = ql_read_flash_word(qdev, i+offset, p);
830 if (status) {
831 netif_err(qdev, ifup, qdev->ndev,
832 "Error reading flash.\n");
833 goto exit;
834 }
835
836 }
837
838 status = ql_validate_flash(qdev,
839 sizeof(struct flash_params_8012) / sizeof(u16),
840 "8012");
841 if (status) {
842 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
843 status = -EINVAL;
844 goto exit;
845 }
846
847 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
848 status = -EINVAL;
849 goto exit;
850 }
851
852 memcpy(qdev->ndev->dev_addr,
853 qdev->flash.flash_params_8012.mac_addr,
854 qdev->ndev->addr_len);
855
856 exit:
857 ql_sem_unlock(qdev, SEM_FLASH_MASK);
858 return status;
859 }
860
861 /* xgmac register are located behind the xgmac_addr and xgmac_data
862 * register pair. Each read/write requires us to wait for the ready
863 * bit before reading/writing the data.
864 */
865 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
866 {
867 int status;
868 /* wait for reg to come ready */
869 status = ql_wait_reg_rdy(qdev,
870 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
871 if (status)
872 return status;
873 /* write the data to the data reg */
874 ql_write32(qdev, XGMAC_DATA, data);
875 /* trigger the write */
876 ql_write32(qdev, XGMAC_ADDR, reg);
877 return status;
878 }
879
880 /* xgmac register are located behind the xgmac_addr and xgmac_data
881 * register pair. Each read/write requires us to wait for the ready
882 * bit before reading/writing the data.
883 */
884 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
885 {
886 int status = 0;
887 /* wait for reg to come ready */
888 status = ql_wait_reg_rdy(qdev,
889 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
890 if (status)
891 goto exit;
892 /* set up for reg read */
893 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
894 /* wait for reg to come ready */
895 status = ql_wait_reg_rdy(qdev,
896 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
897 if (status)
898 goto exit;
899 /* get the data */
900 *data = ql_read32(qdev, XGMAC_DATA);
901 exit:
902 return status;
903 }
904
905 /* This is used for reading the 64-bit statistics regs. */
906 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
907 {
908 int status = 0;
909 u32 hi = 0;
910 u32 lo = 0;
911
912 status = ql_read_xgmac_reg(qdev, reg, &lo);
913 if (status)
914 goto exit;
915
916 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
917 if (status)
918 goto exit;
919
920 *data = (u64) lo | ((u64) hi << 32);
921
922 exit:
923 return status;
924 }
925
926 static int ql_8000_port_initialize(struct ql_adapter *qdev)
927 {
928 int status;
929 /*
930 * Get MPI firmware version for driver banner
931 * and ethool info.
932 */
933 status = ql_mb_about_fw(qdev);
934 if (status)
935 goto exit;
936 status = ql_mb_get_fw_state(qdev);
937 if (status)
938 goto exit;
939 /* Wake up a worker to get/set the TX/RX frame sizes. */
940 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
941 exit:
942 return status;
943 }
944
945 /* Take the MAC Core out of reset.
946 * Enable statistics counting.
947 * Take the transmitter/receiver out of reset.
948 * This functionality may be done in the MPI firmware at a
949 * later date.
950 */
951 static int ql_8012_port_initialize(struct ql_adapter *qdev)
952 {
953 int status = 0;
954 u32 data;
955
956 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
957 /* Another function has the semaphore, so
958 * wait for the port init bit to come ready.
959 */
960 netif_info(qdev, link, qdev->ndev,
961 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
962 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
963 if (status) {
964 netif_crit(qdev, link, qdev->ndev,
965 "Port initialize timed out.\n");
966 }
967 return status;
968 }
969
970 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
971 /* Set the core reset. */
972 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
973 if (status)
974 goto end;
975 data |= GLOBAL_CFG_RESET;
976 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
977 if (status)
978 goto end;
979
980 /* Clear the core reset and turn on jumbo for receiver. */
981 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
982 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
983 data |= GLOBAL_CFG_TX_STAT_EN;
984 data |= GLOBAL_CFG_RX_STAT_EN;
985 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
986 if (status)
987 goto end;
988
989 /* Enable transmitter, and clear it's reset. */
990 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
991 if (status)
992 goto end;
993 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
994 data |= TX_CFG_EN; /* Enable the transmitter. */
995 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
996 if (status)
997 goto end;
998
999 /* Enable receiver and clear it's reset. */
1000 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1001 if (status)
1002 goto end;
1003 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1004 data |= RX_CFG_EN; /* Enable the receiver. */
1005 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1006 if (status)
1007 goto end;
1008
1009 /* Turn on jumbo. */
1010 status =
1011 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1012 if (status)
1013 goto end;
1014 status =
1015 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1016 if (status)
1017 goto end;
1018
1019 /* Signal to the world that the port is enabled. */
1020 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1021 end:
1022 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1023 return status;
1024 }
1025
1026 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1027 {
1028 return PAGE_SIZE << qdev->lbq_buf_order;
1029 }
1030
1031 /* Get the next large buffer. */
1032 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1033 {
1034 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1035 rx_ring->lbq_curr_idx++;
1036 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1037 rx_ring->lbq_curr_idx = 0;
1038 rx_ring->lbq_free_cnt++;
1039 return lbq_desc;
1040 }
1041
1042 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1043 struct rx_ring *rx_ring)
1044 {
1045 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1046
1047 pci_dma_sync_single_for_cpu(qdev->pdev,
1048 dma_unmap_addr(lbq_desc, mapaddr),
1049 rx_ring->lbq_buf_size,
1050 PCI_DMA_FROMDEVICE);
1051
1052 /* If it's the last chunk of our master page then
1053 * we unmap it.
1054 */
1055 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1056 == ql_lbq_block_size(qdev))
1057 pci_unmap_page(qdev->pdev,
1058 lbq_desc->p.pg_chunk.map,
1059 ql_lbq_block_size(qdev),
1060 PCI_DMA_FROMDEVICE);
1061 return lbq_desc;
1062 }
1063
1064 /* Get the next small buffer. */
1065 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1066 {
1067 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1068 rx_ring->sbq_curr_idx++;
1069 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1070 rx_ring->sbq_curr_idx = 0;
1071 rx_ring->sbq_free_cnt++;
1072 return sbq_desc;
1073 }
1074
1075 /* Update an rx ring index. */
1076 static void ql_update_cq(struct rx_ring *rx_ring)
1077 {
1078 rx_ring->cnsmr_idx++;
1079 rx_ring->curr_entry++;
1080 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1081 rx_ring->cnsmr_idx = 0;
1082 rx_ring->curr_entry = rx_ring->cq_base;
1083 }
1084 }
1085
1086 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1087 {
1088 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1089 }
1090
1091 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1092 struct bq_desc *lbq_desc)
1093 {
1094 if (!rx_ring->pg_chunk.page) {
1095 u64 map;
1096 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1097 GFP_ATOMIC,
1098 qdev->lbq_buf_order);
1099 if (unlikely(!rx_ring->pg_chunk.page)) {
1100 netif_err(qdev, drv, qdev->ndev,
1101 "page allocation failed.\n");
1102 return -ENOMEM;
1103 }
1104 rx_ring->pg_chunk.offset = 0;
1105 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1106 0, ql_lbq_block_size(qdev),
1107 PCI_DMA_FROMDEVICE);
1108 if (pci_dma_mapping_error(qdev->pdev, map)) {
1109 __free_pages(rx_ring->pg_chunk.page,
1110 qdev->lbq_buf_order);
1111 rx_ring->pg_chunk.page = NULL;
1112 netif_err(qdev, drv, qdev->ndev,
1113 "PCI mapping failed.\n");
1114 return -ENOMEM;
1115 }
1116 rx_ring->pg_chunk.map = map;
1117 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1118 }
1119
1120 /* Copy the current master pg_chunk info
1121 * to the current descriptor.
1122 */
1123 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1124
1125 /* Adjust the master page chunk for next
1126 * buffer get.
1127 */
1128 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1129 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1130 rx_ring->pg_chunk.page = NULL;
1131 lbq_desc->p.pg_chunk.last_flag = 1;
1132 } else {
1133 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1134 get_page(rx_ring->pg_chunk.page);
1135 lbq_desc->p.pg_chunk.last_flag = 0;
1136 }
1137 return 0;
1138 }
1139 /* Process (refill) a large buffer queue. */
1140 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1141 {
1142 u32 clean_idx = rx_ring->lbq_clean_idx;
1143 u32 start_idx = clean_idx;
1144 struct bq_desc *lbq_desc;
1145 u64 map;
1146 int i;
1147
1148 while (rx_ring->lbq_free_cnt > 32) {
1149 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1150 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1151 "lbq: try cleaning clean_idx = %d.\n",
1152 clean_idx);
1153 lbq_desc = &rx_ring->lbq[clean_idx];
1154 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1155 rx_ring->lbq_clean_idx = clean_idx;
1156 netif_err(qdev, ifup, qdev->ndev,
1157 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1158 i, clean_idx);
1159 return;
1160 }
1161
1162 map = lbq_desc->p.pg_chunk.map +
1163 lbq_desc->p.pg_chunk.offset;
1164 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1165 dma_unmap_len_set(lbq_desc, maplen,
1166 rx_ring->lbq_buf_size);
1167 *lbq_desc->addr = cpu_to_le64(map);
1168
1169 pci_dma_sync_single_for_device(qdev->pdev, map,
1170 rx_ring->lbq_buf_size,
1171 PCI_DMA_FROMDEVICE);
1172 clean_idx++;
1173 if (clean_idx == rx_ring->lbq_len)
1174 clean_idx = 0;
1175 }
1176
1177 rx_ring->lbq_clean_idx = clean_idx;
1178 rx_ring->lbq_prod_idx += 16;
1179 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1180 rx_ring->lbq_prod_idx = 0;
1181 rx_ring->lbq_free_cnt -= 16;
1182 }
1183
1184 if (start_idx != clean_idx) {
1185 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1186 "lbq: updating prod idx = %d.\n",
1187 rx_ring->lbq_prod_idx);
1188 ql_write_db_reg(rx_ring->lbq_prod_idx,
1189 rx_ring->lbq_prod_idx_db_reg);
1190 }
1191 }
1192
1193 /* Process (refill) a small buffer queue. */
1194 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1195 {
1196 u32 clean_idx = rx_ring->sbq_clean_idx;
1197 u32 start_idx = clean_idx;
1198 struct bq_desc *sbq_desc;
1199 u64 map;
1200 int i;
1201
1202 while (rx_ring->sbq_free_cnt > 16) {
1203 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1204 sbq_desc = &rx_ring->sbq[clean_idx];
1205 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1206 "sbq: try cleaning clean_idx = %d.\n",
1207 clean_idx);
1208 if (sbq_desc->p.skb == NULL) {
1209 netif_printk(qdev, rx_status, KERN_DEBUG,
1210 qdev->ndev,
1211 "sbq: getting new skb for index %d.\n",
1212 sbq_desc->index);
1213 sbq_desc->p.skb =
1214 netdev_alloc_skb(qdev->ndev,
1215 SMALL_BUFFER_SIZE);
1216 if (sbq_desc->p.skb == NULL) {
1217 rx_ring->sbq_clean_idx = clean_idx;
1218 return;
1219 }
1220 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1221 map = pci_map_single(qdev->pdev,
1222 sbq_desc->p.skb->data,
1223 rx_ring->sbq_buf_size,
1224 PCI_DMA_FROMDEVICE);
1225 if (pci_dma_mapping_error(qdev->pdev, map)) {
1226 netif_err(qdev, ifup, qdev->ndev,
1227 "PCI mapping failed.\n");
1228 rx_ring->sbq_clean_idx = clean_idx;
1229 dev_kfree_skb_any(sbq_desc->p.skb);
1230 sbq_desc->p.skb = NULL;
1231 return;
1232 }
1233 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1234 dma_unmap_len_set(sbq_desc, maplen,
1235 rx_ring->sbq_buf_size);
1236 *sbq_desc->addr = cpu_to_le64(map);
1237 }
1238
1239 clean_idx++;
1240 if (clean_idx == rx_ring->sbq_len)
1241 clean_idx = 0;
1242 }
1243 rx_ring->sbq_clean_idx = clean_idx;
1244 rx_ring->sbq_prod_idx += 16;
1245 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1246 rx_ring->sbq_prod_idx = 0;
1247 rx_ring->sbq_free_cnt -= 16;
1248 }
1249
1250 if (start_idx != clean_idx) {
1251 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1252 "sbq: updating prod idx = %d.\n",
1253 rx_ring->sbq_prod_idx);
1254 ql_write_db_reg(rx_ring->sbq_prod_idx,
1255 rx_ring->sbq_prod_idx_db_reg);
1256 }
1257 }
1258
1259 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1260 struct rx_ring *rx_ring)
1261 {
1262 ql_update_sbq(qdev, rx_ring);
1263 ql_update_lbq(qdev, rx_ring);
1264 }
1265
1266 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1267 * fails at some stage, or from the interrupt when a tx completes.
1268 */
1269 static void ql_unmap_send(struct ql_adapter *qdev,
1270 struct tx_ring_desc *tx_ring_desc, int mapped)
1271 {
1272 int i;
1273 for (i = 0; i < mapped; i++) {
1274 if (i == 0 || (i == 7 && mapped > 7)) {
1275 /*
1276 * Unmap the skb->data area, or the
1277 * external sglist (AKA the Outbound
1278 * Address List (OAL)).
1279 * If its the zeroeth element, then it's
1280 * the skb->data area. If it's the 7th
1281 * element and there is more than 6 frags,
1282 * then its an OAL.
1283 */
1284 if (i == 7) {
1285 netif_printk(qdev, tx_done, KERN_DEBUG,
1286 qdev->ndev,
1287 "unmapping OAL area.\n");
1288 }
1289 pci_unmap_single(qdev->pdev,
1290 dma_unmap_addr(&tx_ring_desc->map[i],
1291 mapaddr),
1292 dma_unmap_len(&tx_ring_desc->map[i],
1293 maplen),
1294 PCI_DMA_TODEVICE);
1295 } else {
1296 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1297 "unmapping frag %d.\n", i);
1298 pci_unmap_page(qdev->pdev,
1299 dma_unmap_addr(&tx_ring_desc->map[i],
1300 mapaddr),
1301 dma_unmap_len(&tx_ring_desc->map[i],
1302 maplen), PCI_DMA_TODEVICE);
1303 }
1304 }
1305
1306 }
1307
1308 /* Map the buffers for this transmit. This will return
1309 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1310 */
1311 static int ql_map_send(struct ql_adapter *qdev,
1312 struct ob_mac_iocb_req *mac_iocb_ptr,
1313 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1314 {
1315 int len = skb_headlen(skb);
1316 dma_addr_t map;
1317 int frag_idx, err, map_idx = 0;
1318 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1319 int frag_cnt = skb_shinfo(skb)->nr_frags;
1320
1321 if (frag_cnt) {
1322 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1323 "frag_cnt = %d.\n", frag_cnt);
1324 }
1325 /*
1326 * Map the skb buffer first.
1327 */
1328 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1329
1330 err = pci_dma_mapping_error(qdev->pdev, map);
1331 if (err) {
1332 netif_err(qdev, tx_queued, qdev->ndev,
1333 "PCI mapping failed with error: %d\n", err);
1334
1335 return NETDEV_TX_BUSY;
1336 }
1337
1338 tbd->len = cpu_to_le32(len);
1339 tbd->addr = cpu_to_le64(map);
1340 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1341 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1342 map_idx++;
1343
1344 /*
1345 * This loop fills the remainder of the 8 address descriptors
1346 * in the IOCB. If there are more than 7 fragments, then the
1347 * eighth address desc will point to an external list (OAL).
1348 * When this happens, the remainder of the frags will be stored
1349 * in this list.
1350 */
1351 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1352 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1353 tbd++;
1354 if (frag_idx == 6 && frag_cnt > 7) {
1355 /* Let's tack on an sglist.
1356 * Our control block will now
1357 * look like this:
1358 * iocb->seg[0] = skb->data
1359 * iocb->seg[1] = frag[0]
1360 * iocb->seg[2] = frag[1]
1361 * iocb->seg[3] = frag[2]
1362 * iocb->seg[4] = frag[3]
1363 * iocb->seg[5] = frag[4]
1364 * iocb->seg[6] = frag[5]
1365 * iocb->seg[7] = ptr to OAL (external sglist)
1366 * oal->seg[0] = frag[6]
1367 * oal->seg[1] = frag[7]
1368 * oal->seg[2] = frag[8]
1369 * oal->seg[3] = frag[9]
1370 * oal->seg[4] = frag[10]
1371 * etc...
1372 */
1373 /* Tack on the OAL in the eighth segment of IOCB. */
1374 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1375 sizeof(struct oal),
1376 PCI_DMA_TODEVICE);
1377 err = pci_dma_mapping_error(qdev->pdev, map);
1378 if (err) {
1379 netif_err(qdev, tx_queued, qdev->ndev,
1380 "PCI mapping outbound address list with error: %d\n",
1381 err);
1382 goto map_error;
1383 }
1384
1385 tbd->addr = cpu_to_le64(map);
1386 /*
1387 * The length is the number of fragments
1388 * that remain to be mapped times the length
1389 * of our sglist (OAL).
1390 */
1391 tbd->len =
1392 cpu_to_le32((sizeof(struct tx_buf_desc) *
1393 (frag_cnt - frag_idx)) | TX_DESC_C);
1394 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1395 map);
1396 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1397 sizeof(struct oal));
1398 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1399 map_idx++;
1400 }
1401
1402 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1403 DMA_TO_DEVICE);
1404
1405 err = dma_mapping_error(&qdev->pdev->dev, map);
1406 if (err) {
1407 netif_err(qdev, tx_queued, qdev->ndev,
1408 "PCI mapping frags failed with error: %d.\n",
1409 err);
1410 goto map_error;
1411 }
1412
1413 tbd->addr = cpu_to_le64(map);
1414 tbd->len = cpu_to_le32(skb_frag_size(frag));
1415 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1416 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1417 skb_frag_size(frag));
1418
1419 }
1420 /* Save the number of segments we've mapped. */
1421 tx_ring_desc->map_cnt = map_idx;
1422 /* Terminate the last segment. */
1423 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1424 return NETDEV_TX_OK;
1425
1426 map_error:
1427 /*
1428 * If the first frag mapping failed, then i will be zero.
1429 * This causes the unmap of the skb->data area. Otherwise
1430 * we pass in the number of frags that mapped successfully
1431 * so they can be umapped.
1432 */
1433 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1434 return NETDEV_TX_BUSY;
1435 }
1436
1437 /* Categorizing receive firmware frame errors */
1438 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1439 struct rx_ring *rx_ring)
1440 {
1441 struct nic_stats *stats = &qdev->nic_stats;
1442
1443 stats->rx_err_count++;
1444 rx_ring->rx_errors++;
1445
1446 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1447 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1448 stats->rx_code_err++;
1449 break;
1450 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1451 stats->rx_oversize_err++;
1452 break;
1453 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1454 stats->rx_undersize_err++;
1455 break;
1456 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1457 stats->rx_preamble_err++;
1458 break;
1459 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1460 stats->rx_frame_len_err++;
1461 break;
1462 case IB_MAC_IOCB_RSP_ERR_CRC:
1463 stats->rx_crc_err++;
1464 default:
1465 break;
1466 }
1467 }
1468
1469 /**
1470 * ql_update_mac_hdr_len - helper routine to update the mac header length
1471 * based on vlan tags if present
1472 */
1473 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1474 struct ib_mac_iocb_rsp *ib_mac_rsp,
1475 void *page, size_t *len)
1476 {
1477 u16 *tags;
1478
1479 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1480 return;
1481 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1482 tags = (u16 *)page;
1483 /* Look for stacked vlan tags in ethertype field */
1484 if (tags[6] == ETH_P_8021Q &&
1485 tags[8] == ETH_P_8021Q)
1486 *len += 2 * VLAN_HLEN;
1487 else
1488 *len += VLAN_HLEN;
1489 }
1490 }
1491
1492 /* Process an inbound completion from an rx ring. */
1493 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1494 struct rx_ring *rx_ring,
1495 struct ib_mac_iocb_rsp *ib_mac_rsp,
1496 u32 length,
1497 u16 vlan_id)
1498 {
1499 struct sk_buff *skb;
1500 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1501 struct napi_struct *napi = &rx_ring->napi;
1502
1503 /* Frame error, so drop the packet. */
1504 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1505 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1506 put_page(lbq_desc->p.pg_chunk.page);
1507 return;
1508 }
1509 napi->dev = qdev->ndev;
1510
1511 skb = napi_get_frags(napi);
1512 if (!skb) {
1513 netif_err(qdev, drv, qdev->ndev,
1514 "Couldn't get an skb, exiting.\n");
1515 rx_ring->rx_dropped++;
1516 put_page(lbq_desc->p.pg_chunk.page);
1517 return;
1518 }
1519 prefetch(lbq_desc->p.pg_chunk.va);
1520 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1521 lbq_desc->p.pg_chunk.page,
1522 lbq_desc->p.pg_chunk.offset,
1523 length);
1524
1525 skb->len += length;
1526 skb->data_len += length;
1527 skb->truesize += length;
1528 skb_shinfo(skb)->nr_frags++;
1529
1530 rx_ring->rx_packets++;
1531 rx_ring->rx_bytes += length;
1532 skb->ip_summed = CHECKSUM_UNNECESSARY;
1533 skb_record_rx_queue(skb, rx_ring->cq_id);
1534 if (vlan_id != 0xffff)
1535 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1536 napi_gro_frags(napi);
1537 }
1538
1539 /* Process an inbound completion from an rx ring. */
1540 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1541 struct rx_ring *rx_ring,
1542 struct ib_mac_iocb_rsp *ib_mac_rsp,
1543 u32 length,
1544 u16 vlan_id)
1545 {
1546 struct net_device *ndev = qdev->ndev;
1547 struct sk_buff *skb = NULL;
1548 void *addr;
1549 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1550 struct napi_struct *napi = &rx_ring->napi;
1551 size_t hlen = ETH_HLEN;
1552
1553 skb = netdev_alloc_skb(ndev, length);
1554 if (!skb) {
1555 rx_ring->rx_dropped++;
1556 put_page(lbq_desc->p.pg_chunk.page);
1557 return;
1558 }
1559
1560 addr = lbq_desc->p.pg_chunk.va;
1561 prefetch(addr);
1562
1563 /* Frame error, so drop the packet. */
1564 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1565 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1566 goto err_out;
1567 }
1568
1569 /* Update the MAC header length*/
1570 ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1571
1572 /* The max framesize filter on this chip is set higher than
1573 * MTU since FCoE uses 2k frames.
1574 */
1575 if (skb->len > ndev->mtu + hlen) {
1576 netif_err(qdev, drv, qdev->ndev,
1577 "Segment too small, dropping.\n");
1578 rx_ring->rx_dropped++;
1579 goto err_out;
1580 }
1581 memcpy(skb_put(skb, hlen), addr, hlen);
1582 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1583 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1584 length);
1585 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1586 lbq_desc->p.pg_chunk.offset + hlen,
1587 length - hlen);
1588 skb->len += length - hlen;
1589 skb->data_len += length - hlen;
1590 skb->truesize += length - hlen;
1591
1592 rx_ring->rx_packets++;
1593 rx_ring->rx_bytes += skb->len;
1594 skb->protocol = eth_type_trans(skb, ndev);
1595 skb_checksum_none_assert(skb);
1596
1597 if ((ndev->features & NETIF_F_RXCSUM) &&
1598 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1599 /* TCP frame. */
1600 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1601 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1602 "TCP checksum done!\n");
1603 skb->ip_summed = CHECKSUM_UNNECESSARY;
1604 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1605 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1606 /* Unfragmented ipv4 UDP frame. */
1607 struct iphdr *iph =
1608 (struct iphdr *)((u8 *)addr + hlen);
1609 if (!(iph->frag_off &
1610 htons(IP_MF|IP_OFFSET))) {
1611 skb->ip_summed = CHECKSUM_UNNECESSARY;
1612 netif_printk(qdev, rx_status, KERN_DEBUG,
1613 qdev->ndev,
1614 "UDP checksum done!\n");
1615 }
1616 }
1617 }
1618
1619 skb_record_rx_queue(skb, rx_ring->cq_id);
1620 if (vlan_id != 0xffff)
1621 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1622 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1623 napi_gro_receive(napi, skb);
1624 else
1625 netif_receive_skb(skb);
1626 return;
1627 err_out:
1628 dev_kfree_skb_any(skb);
1629 put_page(lbq_desc->p.pg_chunk.page);
1630 }
1631
1632 /* Process an inbound completion from an rx ring. */
1633 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1634 struct rx_ring *rx_ring,
1635 struct ib_mac_iocb_rsp *ib_mac_rsp,
1636 u32 length,
1637 u16 vlan_id)
1638 {
1639 struct net_device *ndev = qdev->ndev;
1640 struct sk_buff *skb = NULL;
1641 struct sk_buff *new_skb = NULL;
1642 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1643
1644 skb = sbq_desc->p.skb;
1645 /* Allocate new_skb and copy */
1646 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1647 if (new_skb == NULL) {
1648 rx_ring->rx_dropped++;
1649 return;
1650 }
1651 skb_reserve(new_skb, NET_IP_ALIGN);
1652 memcpy(skb_put(new_skb, length), skb->data, length);
1653 skb = new_skb;
1654
1655 /* Frame error, so drop the packet. */
1656 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1657 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1658 dev_kfree_skb_any(skb);
1659 return;
1660 }
1661
1662 /* loopback self test for ethtool */
1663 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1664 ql_check_lb_frame(qdev, skb);
1665 dev_kfree_skb_any(skb);
1666 return;
1667 }
1668
1669 /* The max framesize filter on this chip is set higher than
1670 * MTU since FCoE uses 2k frames.
1671 */
1672 if (skb->len > ndev->mtu + ETH_HLEN) {
1673 dev_kfree_skb_any(skb);
1674 rx_ring->rx_dropped++;
1675 return;
1676 }
1677
1678 prefetch(skb->data);
1679 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1680 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1681 "%s Multicast.\n",
1682 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1683 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1684 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1685 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1686 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1687 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1688 }
1689 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1690 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1691 "Promiscuous Packet.\n");
1692
1693 rx_ring->rx_packets++;
1694 rx_ring->rx_bytes += skb->len;
1695 skb->protocol = eth_type_trans(skb, ndev);
1696 skb_checksum_none_assert(skb);
1697
1698 /* If rx checksum is on, and there are no
1699 * csum or frame errors.
1700 */
1701 if ((ndev->features & NETIF_F_RXCSUM) &&
1702 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1703 /* TCP frame. */
1704 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1705 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1706 "TCP checksum done!\n");
1707 skb->ip_summed = CHECKSUM_UNNECESSARY;
1708 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1709 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1710 /* Unfragmented ipv4 UDP frame. */
1711 struct iphdr *iph = (struct iphdr *) skb->data;
1712 if (!(iph->frag_off &
1713 htons(IP_MF|IP_OFFSET))) {
1714 skb->ip_summed = CHECKSUM_UNNECESSARY;
1715 netif_printk(qdev, rx_status, KERN_DEBUG,
1716 qdev->ndev,
1717 "UDP checksum done!\n");
1718 }
1719 }
1720 }
1721
1722 skb_record_rx_queue(skb, rx_ring->cq_id);
1723 if (vlan_id != 0xffff)
1724 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1725 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1726 napi_gro_receive(&rx_ring->napi, skb);
1727 else
1728 netif_receive_skb(skb);
1729 }
1730
1731 static void ql_realign_skb(struct sk_buff *skb, int len)
1732 {
1733 void *temp_addr = skb->data;
1734
1735 /* Undo the skb_reserve(skb,32) we did before
1736 * giving to hardware, and realign data on
1737 * a 2-byte boundary.
1738 */
1739 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1740 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1741 skb_copy_to_linear_data(skb, temp_addr,
1742 (unsigned int)len);
1743 }
1744
1745 /*
1746 * This function builds an skb for the given inbound
1747 * completion. It will be rewritten for readability in the near
1748 * future, but for not it works well.
1749 */
1750 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1751 struct rx_ring *rx_ring,
1752 struct ib_mac_iocb_rsp *ib_mac_rsp)
1753 {
1754 struct bq_desc *lbq_desc;
1755 struct bq_desc *sbq_desc;
1756 struct sk_buff *skb = NULL;
1757 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1758 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1759 size_t hlen = ETH_HLEN;
1760
1761 /*
1762 * Handle the header buffer if present.
1763 */
1764 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1765 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1766 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1767 "Header of %d bytes in small buffer.\n", hdr_len);
1768 /*
1769 * Headers fit nicely into a small buffer.
1770 */
1771 sbq_desc = ql_get_curr_sbuf(rx_ring);
1772 pci_unmap_single(qdev->pdev,
1773 dma_unmap_addr(sbq_desc, mapaddr),
1774 dma_unmap_len(sbq_desc, maplen),
1775 PCI_DMA_FROMDEVICE);
1776 skb = sbq_desc->p.skb;
1777 ql_realign_skb(skb, hdr_len);
1778 skb_put(skb, hdr_len);
1779 sbq_desc->p.skb = NULL;
1780 }
1781
1782 /*
1783 * Handle the data buffer(s).
1784 */
1785 if (unlikely(!length)) { /* Is there data too? */
1786 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1787 "No Data buffer in this packet.\n");
1788 return skb;
1789 }
1790
1791 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1792 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1793 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1794 "Headers in small, data of %d bytes in small, combine them.\n",
1795 length);
1796 /*
1797 * Data is less than small buffer size so it's
1798 * stuffed in a small buffer.
1799 * For this case we append the data
1800 * from the "data" small buffer to the "header" small
1801 * buffer.
1802 */
1803 sbq_desc = ql_get_curr_sbuf(rx_ring);
1804 pci_dma_sync_single_for_cpu(qdev->pdev,
1805 dma_unmap_addr
1806 (sbq_desc, mapaddr),
1807 dma_unmap_len
1808 (sbq_desc, maplen),
1809 PCI_DMA_FROMDEVICE);
1810 memcpy(skb_put(skb, length),
1811 sbq_desc->p.skb->data, length);
1812 pci_dma_sync_single_for_device(qdev->pdev,
1813 dma_unmap_addr
1814 (sbq_desc,
1815 mapaddr),
1816 dma_unmap_len
1817 (sbq_desc,
1818 maplen),
1819 PCI_DMA_FROMDEVICE);
1820 } else {
1821 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1822 "%d bytes in a single small buffer.\n",
1823 length);
1824 sbq_desc = ql_get_curr_sbuf(rx_ring);
1825 skb = sbq_desc->p.skb;
1826 ql_realign_skb(skb, length);
1827 skb_put(skb, length);
1828 pci_unmap_single(qdev->pdev,
1829 dma_unmap_addr(sbq_desc,
1830 mapaddr),
1831 dma_unmap_len(sbq_desc,
1832 maplen),
1833 PCI_DMA_FROMDEVICE);
1834 sbq_desc->p.skb = NULL;
1835 }
1836 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1837 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1838 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1839 "Header in small, %d bytes in large. Chain large to small!\n",
1840 length);
1841 /*
1842 * The data is in a single large buffer. We
1843 * chain it to the header buffer's skb and let
1844 * it rip.
1845 */
1846 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1847 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1848 "Chaining page at offset = %d, for %d bytes to skb.\n",
1849 lbq_desc->p.pg_chunk.offset, length);
1850 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1851 lbq_desc->p.pg_chunk.offset,
1852 length);
1853 skb->len += length;
1854 skb->data_len += length;
1855 skb->truesize += length;
1856 } else {
1857 /*
1858 * The headers and data are in a single large buffer. We
1859 * copy it to a new skb and let it go. This can happen with
1860 * jumbo mtu on a non-TCP/UDP frame.
1861 */
1862 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1863 skb = netdev_alloc_skb(qdev->ndev, length);
1864 if (skb == NULL) {
1865 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1866 "No skb available, drop the packet.\n");
1867 return NULL;
1868 }
1869 pci_unmap_page(qdev->pdev,
1870 dma_unmap_addr(lbq_desc,
1871 mapaddr),
1872 dma_unmap_len(lbq_desc, maplen),
1873 PCI_DMA_FROMDEVICE);
1874 skb_reserve(skb, NET_IP_ALIGN);
1875 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1876 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1877 length);
1878 skb_fill_page_desc(skb, 0,
1879 lbq_desc->p.pg_chunk.page,
1880 lbq_desc->p.pg_chunk.offset,
1881 length);
1882 skb->len += length;
1883 skb->data_len += length;
1884 skb->truesize += length;
1885 length -= length;
1886 ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1887 lbq_desc->p.pg_chunk.va,
1888 &hlen);
1889 __pskb_pull_tail(skb, hlen);
1890 }
1891 } else {
1892 /*
1893 * The data is in a chain of large buffers
1894 * pointed to by a small buffer. We loop
1895 * thru and chain them to the our small header
1896 * buffer's skb.
1897 * frags: There are 18 max frags and our small
1898 * buffer will hold 32 of them. The thing is,
1899 * we'll use 3 max for our 9000 byte jumbo
1900 * frames. If the MTU goes up we could
1901 * eventually be in trouble.
1902 */
1903 int size, i = 0;
1904 sbq_desc = ql_get_curr_sbuf(rx_ring);
1905 pci_unmap_single(qdev->pdev,
1906 dma_unmap_addr(sbq_desc, mapaddr),
1907 dma_unmap_len(sbq_desc, maplen),
1908 PCI_DMA_FROMDEVICE);
1909 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1910 /*
1911 * This is an non TCP/UDP IP frame, so
1912 * the headers aren't split into a small
1913 * buffer. We have to use the small buffer
1914 * that contains our sg list as our skb to
1915 * send upstairs. Copy the sg list here to
1916 * a local buffer and use it to find the
1917 * pages to chain.
1918 */
1919 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1920 "%d bytes of headers & data in chain of large.\n",
1921 length);
1922 skb = sbq_desc->p.skb;
1923 sbq_desc->p.skb = NULL;
1924 skb_reserve(skb, NET_IP_ALIGN);
1925 }
1926 while (length > 0) {
1927 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1928 size = (length < rx_ring->lbq_buf_size) ? length :
1929 rx_ring->lbq_buf_size;
1930
1931 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1932 "Adding page %d to skb for %d bytes.\n",
1933 i, size);
1934 skb_fill_page_desc(skb, i,
1935 lbq_desc->p.pg_chunk.page,
1936 lbq_desc->p.pg_chunk.offset,
1937 size);
1938 skb->len += size;
1939 skb->data_len += size;
1940 skb->truesize += size;
1941 length -= size;
1942 i++;
1943 }
1944 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1945 &hlen);
1946 __pskb_pull_tail(skb, hlen);
1947 }
1948 return skb;
1949 }
1950
1951 /* Process an inbound completion from an rx ring. */
1952 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1953 struct rx_ring *rx_ring,
1954 struct ib_mac_iocb_rsp *ib_mac_rsp,
1955 u16 vlan_id)
1956 {
1957 struct net_device *ndev = qdev->ndev;
1958 struct sk_buff *skb = NULL;
1959
1960 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1961
1962 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1963 if (unlikely(!skb)) {
1964 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1965 "No skb available, drop packet.\n");
1966 rx_ring->rx_dropped++;
1967 return;
1968 }
1969
1970 /* Frame error, so drop the packet. */
1971 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1972 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1973 dev_kfree_skb_any(skb);
1974 return;
1975 }
1976
1977 /* The max framesize filter on this chip is set higher than
1978 * MTU since FCoE uses 2k frames.
1979 */
1980 if (skb->len > ndev->mtu + ETH_HLEN) {
1981 dev_kfree_skb_any(skb);
1982 rx_ring->rx_dropped++;
1983 return;
1984 }
1985
1986 /* loopback self test for ethtool */
1987 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1988 ql_check_lb_frame(qdev, skb);
1989 dev_kfree_skb_any(skb);
1990 return;
1991 }
1992
1993 prefetch(skb->data);
1994 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1995 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1996 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1997 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1998 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1999 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2000 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2001 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2002 rx_ring->rx_multicast++;
2003 }
2004 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2005 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2006 "Promiscuous Packet.\n");
2007 }
2008
2009 skb->protocol = eth_type_trans(skb, ndev);
2010 skb_checksum_none_assert(skb);
2011
2012 /* If rx checksum is on, and there are no
2013 * csum or frame errors.
2014 */
2015 if ((ndev->features & NETIF_F_RXCSUM) &&
2016 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2017 /* TCP frame. */
2018 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2019 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2020 "TCP checksum done!\n");
2021 skb->ip_summed = CHECKSUM_UNNECESSARY;
2022 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2023 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2024 /* Unfragmented ipv4 UDP frame. */
2025 struct iphdr *iph = (struct iphdr *) skb->data;
2026 if (!(iph->frag_off &
2027 htons(IP_MF|IP_OFFSET))) {
2028 skb->ip_summed = CHECKSUM_UNNECESSARY;
2029 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2030 "TCP checksum done!\n");
2031 }
2032 }
2033 }
2034
2035 rx_ring->rx_packets++;
2036 rx_ring->rx_bytes += skb->len;
2037 skb_record_rx_queue(skb, rx_ring->cq_id);
2038 if (vlan_id != 0xffff)
2039 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2040 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2041 napi_gro_receive(&rx_ring->napi, skb);
2042 else
2043 netif_receive_skb(skb);
2044 }
2045
2046 /* Process an inbound completion from an rx ring. */
2047 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2048 struct rx_ring *rx_ring,
2049 struct ib_mac_iocb_rsp *ib_mac_rsp)
2050 {
2051 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2052 u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2053 (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2054 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2055 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2056
2057 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2058
2059 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2060 /* The data and headers are split into
2061 * separate buffers.
2062 */
2063 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2064 vlan_id);
2065 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2066 /* The data fit in a single small buffer.
2067 * Allocate a new skb, copy the data and
2068 * return the buffer to the free pool.
2069 */
2070 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2071 length, vlan_id);
2072 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2073 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2074 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2075 /* TCP packet in a page chunk that's been checksummed.
2076 * Tack it on to our GRO skb and let it go.
2077 */
2078 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2079 length, vlan_id);
2080 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2081 /* Non-TCP packet in a page chunk. Allocate an
2082 * skb, tack it on frags, and send it up.
2083 */
2084 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2085 length, vlan_id);
2086 } else {
2087 /* Non-TCP/UDP large frames that span multiple buffers
2088 * can be processed corrrectly by the split frame logic.
2089 */
2090 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2091 vlan_id);
2092 }
2093
2094 return (unsigned long)length;
2095 }
2096
2097 /* Process an outbound completion from an rx ring. */
2098 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2099 struct ob_mac_iocb_rsp *mac_rsp)
2100 {
2101 struct tx_ring *tx_ring;
2102 struct tx_ring_desc *tx_ring_desc;
2103
2104 QL_DUMP_OB_MAC_RSP(mac_rsp);
2105 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2106 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2107 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2108 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2109 tx_ring->tx_packets++;
2110 dev_kfree_skb(tx_ring_desc->skb);
2111 tx_ring_desc->skb = NULL;
2112
2113 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2114 OB_MAC_IOCB_RSP_S |
2115 OB_MAC_IOCB_RSP_L |
2116 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2117 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2118 netif_warn(qdev, tx_done, qdev->ndev,
2119 "Total descriptor length did not match transfer length.\n");
2120 }
2121 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2122 netif_warn(qdev, tx_done, qdev->ndev,
2123 "Frame too short to be valid, not sent.\n");
2124 }
2125 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2126 netif_warn(qdev, tx_done, qdev->ndev,
2127 "Frame too long, but sent anyway.\n");
2128 }
2129 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2130 netif_warn(qdev, tx_done, qdev->ndev,
2131 "PCI backplane error. Frame not sent.\n");
2132 }
2133 }
2134 atomic_inc(&tx_ring->tx_count);
2135 }
2136
2137 /* Fire up a handler to reset the MPI processor. */
2138 void ql_queue_fw_error(struct ql_adapter *qdev)
2139 {
2140 ql_link_off(qdev);
2141 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2142 }
2143
2144 void ql_queue_asic_error(struct ql_adapter *qdev)
2145 {
2146 ql_link_off(qdev);
2147 ql_disable_interrupts(qdev);
2148 /* Clear adapter up bit to signal the recovery
2149 * process that it shouldn't kill the reset worker
2150 * thread
2151 */
2152 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2153 /* Set asic recovery bit to indicate reset process that we are
2154 * in fatal error recovery process rather than normal close
2155 */
2156 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2157 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2158 }
2159
2160 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2161 struct ib_ae_iocb_rsp *ib_ae_rsp)
2162 {
2163 switch (ib_ae_rsp->event) {
2164 case MGMT_ERR_EVENT:
2165 netif_err(qdev, rx_err, qdev->ndev,
2166 "Management Processor Fatal Error.\n");
2167 ql_queue_fw_error(qdev);
2168 return;
2169
2170 case CAM_LOOKUP_ERR_EVENT:
2171 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2172 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2173 ql_queue_asic_error(qdev);
2174 return;
2175
2176 case SOFT_ECC_ERROR_EVENT:
2177 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2178 ql_queue_asic_error(qdev);
2179 break;
2180
2181 case PCI_ERR_ANON_BUF_RD:
2182 netdev_err(qdev->ndev, "PCI error occurred when reading "
2183 "anonymous buffers from rx_ring %d.\n",
2184 ib_ae_rsp->q_id);
2185 ql_queue_asic_error(qdev);
2186 break;
2187
2188 default:
2189 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2190 ib_ae_rsp->event);
2191 ql_queue_asic_error(qdev);
2192 break;
2193 }
2194 }
2195
2196 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2197 {
2198 struct ql_adapter *qdev = rx_ring->qdev;
2199 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2200 struct ob_mac_iocb_rsp *net_rsp = NULL;
2201 int count = 0;
2202
2203 struct tx_ring *tx_ring;
2204 /* While there are entries in the completion queue. */
2205 while (prod != rx_ring->cnsmr_idx) {
2206
2207 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2208 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2209 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2210
2211 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2212 rmb();
2213 switch (net_rsp->opcode) {
2214
2215 case OPCODE_OB_MAC_TSO_IOCB:
2216 case OPCODE_OB_MAC_IOCB:
2217 ql_process_mac_tx_intr(qdev, net_rsp);
2218 break;
2219 default:
2220 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2221 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2222 net_rsp->opcode);
2223 }
2224 count++;
2225 ql_update_cq(rx_ring);
2226 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2227 }
2228 if (!net_rsp)
2229 return 0;
2230 ql_write_cq_idx(rx_ring);
2231 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2232 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2233 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2234 /*
2235 * The queue got stopped because the tx_ring was full.
2236 * Wake it up, because it's now at least 25% empty.
2237 */
2238 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2239 }
2240
2241 return count;
2242 }
2243
2244 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2245 {
2246 struct ql_adapter *qdev = rx_ring->qdev;
2247 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2248 struct ql_net_rsp_iocb *net_rsp;
2249 int count = 0;
2250
2251 /* While there are entries in the completion queue. */
2252 while (prod != rx_ring->cnsmr_idx) {
2253
2254 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2255 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2256 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2257
2258 net_rsp = rx_ring->curr_entry;
2259 rmb();
2260 switch (net_rsp->opcode) {
2261 case OPCODE_IB_MAC_IOCB:
2262 ql_process_mac_rx_intr(qdev, rx_ring,
2263 (struct ib_mac_iocb_rsp *)
2264 net_rsp);
2265 break;
2266
2267 case OPCODE_IB_AE_IOCB:
2268 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2269 net_rsp);
2270 break;
2271 default:
2272 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2273 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2274 net_rsp->opcode);
2275 break;
2276 }
2277 count++;
2278 ql_update_cq(rx_ring);
2279 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2280 if (count == budget)
2281 break;
2282 }
2283 ql_update_buffer_queues(qdev, rx_ring);
2284 ql_write_cq_idx(rx_ring);
2285 return count;
2286 }
2287
2288 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2289 {
2290 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2291 struct ql_adapter *qdev = rx_ring->qdev;
2292 struct rx_ring *trx_ring;
2293 int i, work_done = 0;
2294 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2295
2296 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2297 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2298
2299 /* Service the TX rings first. They start
2300 * right after the RSS rings. */
2301 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2302 trx_ring = &qdev->rx_ring[i];
2303 /* If this TX completion ring belongs to this vector and
2304 * it's not empty then service it.
2305 */
2306 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2307 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2308 trx_ring->cnsmr_idx)) {
2309 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2310 "%s: Servicing TX completion ring %d.\n",
2311 __func__, trx_ring->cq_id);
2312 ql_clean_outbound_rx_ring(trx_ring);
2313 }
2314 }
2315
2316 /*
2317 * Now service the RSS ring if it's active.
2318 */
2319 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2320 rx_ring->cnsmr_idx) {
2321 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2322 "%s: Servicing RX completion ring %d.\n",
2323 __func__, rx_ring->cq_id);
2324 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2325 }
2326
2327 if (work_done < budget) {
2328 napi_complete(napi);
2329 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2330 }
2331 return work_done;
2332 }
2333
2334 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2335 {
2336 struct ql_adapter *qdev = netdev_priv(ndev);
2337
2338 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2339 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2340 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2341 } else {
2342 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2343 }
2344 }
2345
2346 /**
2347 * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2348 * based on the features to enable/disable hardware vlan accel
2349 */
2350 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2351 netdev_features_t features)
2352 {
2353 struct ql_adapter *qdev = netdev_priv(ndev);
2354 int status = 0;
2355
2356 status = ql_adapter_down(qdev);
2357 if (status) {
2358 netif_err(qdev, link, qdev->ndev,
2359 "Failed to bring down the adapter\n");
2360 return status;
2361 }
2362
2363 /* update the features with resent change */
2364 ndev->features = features;
2365
2366 status = ql_adapter_up(qdev);
2367 if (status) {
2368 netif_err(qdev, link, qdev->ndev,
2369 "Failed to bring up the adapter\n");
2370 return status;
2371 }
2372 return status;
2373 }
2374
2375 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2376 netdev_features_t features)
2377 {
2378 int err;
2379
2380 /* Update the behavior of vlan accel in the adapter */
2381 err = qlge_update_hw_vlan_features(ndev, features);
2382 if (err)
2383 return err;
2384
2385 return features;
2386 }
2387
2388 static int qlge_set_features(struct net_device *ndev,
2389 netdev_features_t features)
2390 {
2391 netdev_features_t changed = ndev->features ^ features;
2392
2393 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2394 qlge_vlan_mode(ndev, features);
2395
2396 return 0;
2397 }
2398
2399 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2400 {
2401 u32 enable_bit = MAC_ADDR_E;
2402 int err;
2403
2404 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2405 MAC_ADDR_TYPE_VLAN, vid);
2406 if (err)
2407 netif_err(qdev, ifup, qdev->ndev,
2408 "Failed to init vlan address.\n");
2409 return err;
2410 }
2411
2412 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2413 {
2414 struct ql_adapter *qdev = netdev_priv(ndev);
2415 int status;
2416 int err;
2417
2418 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2419 if (status)
2420 return status;
2421
2422 err = __qlge_vlan_rx_add_vid(qdev, vid);
2423 set_bit(vid, qdev->active_vlans);
2424
2425 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2426
2427 return err;
2428 }
2429
2430 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2431 {
2432 u32 enable_bit = 0;
2433 int err;
2434
2435 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2436 MAC_ADDR_TYPE_VLAN, vid);
2437 if (err)
2438 netif_err(qdev, ifup, qdev->ndev,
2439 "Failed to clear vlan address.\n");
2440 return err;
2441 }
2442
2443 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2444 {
2445 struct ql_adapter *qdev = netdev_priv(ndev);
2446 int status;
2447 int err;
2448
2449 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2450 if (status)
2451 return status;
2452
2453 err = __qlge_vlan_rx_kill_vid(qdev, vid);
2454 clear_bit(vid, qdev->active_vlans);
2455
2456 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2457
2458 return err;
2459 }
2460
2461 static void qlge_restore_vlan(struct ql_adapter *qdev)
2462 {
2463 int status;
2464 u16 vid;
2465
2466 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2467 if (status)
2468 return;
2469
2470 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2471 __qlge_vlan_rx_add_vid(qdev, vid);
2472
2473 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2474 }
2475
2476 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2477 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2478 {
2479 struct rx_ring *rx_ring = dev_id;
2480 napi_schedule(&rx_ring->napi);
2481 return IRQ_HANDLED;
2482 }
2483
2484 /* This handles a fatal error, MPI activity, and the default
2485 * rx_ring in an MSI-X multiple vector environment.
2486 * In MSI/Legacy environment it also process the rest of
2487 * the rx_rings.
2488 */
2489 static irqreturn_t qlge_isr(int irq, void *dev_id)
2490 {
2491 struct rx_ring *rx_ring = dev_id;
2492 struct ql_adapter *qdev = rx_ring->qdev;
2493 struct intr_context *intr_context = &qdev->intr_context[0];
2494 u32 var;
2495 int work_done = 0;
2496
2497 spin_lock(&qdev->hw_lock);
2498 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2499 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2500 "Shared Interrupt, Not ours!\n");
2501 spin_unlock(&qdev->hw_lock);
2502 return IRQ_NONE;
2503 }
2504 spin_unlock(&qdev->hw_lock);
2505
2506 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2507
2508 /*
2509 * Check for fatal error.
2510 */
2511 if (var & STS_FE) {
2512 ql_queue_asic_error(qdev);
2513 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2514 var = ql_read32(qdev, ERR_STS);
2515 netdev_err(qdev->ndev, "Resetting chip. "
2516 "Error Status Register = 0x%x\n", var);
2517 return IRQ_HANDLED;
2518 }
2519
2520 /*
2521 * Check MPI processor activity.
2522 */
2523 if ((var & STS_PI) &&
2524 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2525 /*
2526 * We've got an async event or mailbox completion.
2527 * Handle it and clear the source of the interrupt.
2528 */
2529 netif_err(qdev, intr, qdev->ndev,
2530 "Got MPI processor interrupt.\n");
2531 ql_disable_completion_interrupt(qdev, intr_context->intr);
2532 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2533 queue_delayed_work_on(smp_processor_id(),
2534 qdev->workqueue, &qdev->mpi_work, 0);
2535 work_done++;
2536 }
2537
2538 /*
2539 * Get the bit-mask that shows the active queues for this
2540 * pass. Compare it to the queues that this irq services
2541 * and call napi if there's a match.
2542 */
2543 var = ql_read32(qdev, ISR1);
2544 if (var & intr_context->irq_mask) {
2545 netif_info(qdev, intr, qdev->ndev,
2546 "Waking handler for rx_ring[0].\n");
2547 ql_disable_completion_interrupt(qdev, intr_context->intr);
2548 napi_schedule(&rx_ring->napi);
2549 work_done++;
2550 }
2551 ql_enable_completion_interrupt(qdev, intr_context->intr);
2552 return work_done ? IRQ_HANDLED : IRQ_NONE;
2553 }
2554
2555 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2556 {
2557
2558 if (skb_is_gso(skb)) {
2559 int err;
2560 if (skb_header_cloned(skb)) {
2561 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2562 if (err)
2563 return err;
2564 }
2565
2566 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2567 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2568 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2569 mac_iocb_ptr->total_hdrs_len =
2570 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2571 mac_iocb_ptr->net_trans_offset =
2572 cpu_to_le16(skb_network_offset(skb) |
2573 skb_transport_offset(skb)
2574 << OB_MAC_TRANSPORT_HDR_SHIFT);
2575 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2576 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2577 if (likely(skb->protocol == htons(ETH_P_IP))) {
2578 struct iphdr *iph = ip_hdr(skb);
2579 iph->check = 0;
2580 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2581 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2582 iph->daddr, 0,
2583 IPPROTO_TCP,
2584 0);
2585 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2586 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2587 tcp_hdr(skb)->check =
2588 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2589 &ipv6_hdr(skb)->daddr,
2590 0, IPPROTO_TCP, 0);
2591 }
2592 return 1;
2593 }
2594 return 0;
2595 }
2596
2597 static void ql_hw_csum_setup(struct sk_buff *skb,
2598 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2599 {
2600 int len;
2601 struct iphdr *iph = ip_hdr(skb);
2602 __sum16 *check;
2603 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2604 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2605 mac_iocb_ptr->net_trans_offset =
2606 cpu_to_le16(skb_network_offset(skb) |
2607 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2608
2609 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2610 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2611 if (likely(iph->protocol == IPPROTO_TCP)) {
2612 check = &(tcp_hdr(skb)->check);
2613 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2614 mac_iocb_ptr->total_hdrs_len =
2615 cpu_to_le16(skb_transport_offset(skb) +
2616 (tcp_hdr(skb)->doff << 2));
2617 } else {
2618 check = &(udp_hdr(skb)->check);
2619 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2620 mac_iocb_ptr->total_hdrs_len =
2621 cpu_to_le16(skb_transport_offset(skb) +
2622 sizeof(struct udphdr));
2623 }
2624 *check = ~csum_tcpudp_magic(iph->saddr,
2625 iph->daddr, len, iph->protocol, 0);
2626 }
2627
2628 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2629 {
2630 struct tx_ring_desc *tx_ring_desc;
2631 struct ob_mac_iocb_req *mac_iocb_ptr;
2632 struct ql_adapter *qdev = netdev_priv(ndev);
2633 int tso;
2634 struct tx_ring *tx_ring;
2635 u32 tx_ring_idx = (u32) skb->queue_mapping;
2636
2637 tx_ring = &qdev->tx_ring[tx_ring_idx];
2638
2639 if (skb_padto(skb, ETH_ZLEN))
2640 return NETDEV_TX_OK;
2641
2642 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2643 netif_info(qdev, tx_queued, qdev->ndev,
2644 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2645 __func__, tx_ring_idx);
2646 netif_stop_subqueue(ndev, tx_ring->wq_id);
2647 tx_ring->tx_errors++;
2648 return NETDEV_TX_BUSY;
2649 }
2650 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2651 mac_iocb_ptr = tx_ring_desc->queue_entry;
2652 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2653
2654 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2655 mac_iocb_ptr->tid = tx_ring_desc->index;
2656 /* We use the upper 32-bits to store the tx queue for this IO.
2657 * When we get the completion we can use it to establish the context.
2658 */
2659 mac_iocb_ptr->txq_idx = tx_ring_idx;
2660 tx_ring_desc->skb = skb;
2661
2662 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2663
2664 if (vlan_tx_tag_present(skb)) {
2665 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2666 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2667 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2668 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2669 }
2670 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2671 if (tso < 0) {
2672 dev_kfree_skb_any(skb);
2673 return NETDEV_TX_OK;
2674 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2675 ql_hw_csum_setup(skb,
2676 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2677 }
2678 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2679 NETDEV_TX_OK) {
2680 netif_err(qdev, tx_queued, qdev->ndev,
2681 "Could not map the segments.\n");
2682 tx_ring->tx_errors++;
2683 return NETDEV_TX_BUSY;
2684 }
2685 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2686 tx_ring->prod_idx++;
2687 if (tx_ring->prod_idx == tx_ring->wq_len)
2688 tx_ring->prod_idx = 0;
2689 wmb();
2690
2691 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2692 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2693 "tx queued, slot %d, len %d\n",
2694 tx_ring->prod_idx, skb->len);
2695
2696 atomic_dec(&tx_ring->tx_count);
2697
2698 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2699 netif_stop_subqueue(ndev, tx_ring->wq_id);
2700 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2701 /*
2702 * The queue got stopped because the tx_ring was full.
2703 * Wake it up, because it's now at least 25% empty.
2704 */
2705 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2706 }
2707 return NETDEV_TX_OK;
2708 }
2709
2710
2711 static void ql_free_shadow_space(struct ql_adapter *qdev)
2712 {
2713 if (qdev->rx_ring_shadow_reg_area) {
2714 pci_free_consistent(qdev->pdev,
2715 PAGE_SIZE,
2716 qdev->rx_ring_shadow_reg_area,
2717 qdev->rx_ring_shadow_reg_dma);
2718 qdev->rx_ring_shadow_reg_area = NULL;
2719 }
2720 if (qdev->tx_ring_shadow_reg_area) {
2721 pci_free_consistent(qdev->pdev,
2722 PAGE_SIZE,
2723 qdev->tx_ring_shadow_reg_area,
2724 qdev->tx_ring_shadow_reg_dma);
2725 qdev->tx_ring_shadow_reg_area = NULL;
2726 }
2727 }
2728
2729 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2730 {
2731 qdev->rx_ring_shadow_reg_area =
2732 pci_alloc_consistent(qdev->pdev,
2733 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2734 if (qdev->rx_ring_shadow_reg_area == NULL) {
2735 netif_err(qdev, ifup, qdev->ndev,
2736 "Allocation of RX shadow space failed.\n");
2737 return -ENOMEM;
2738 }
2739 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2740 qdev->tx_ring_shadow_reg_area =
2741 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2742 &qdev->tx_ring_shadow_reg_dma);
2743 if (qdev->tx_ring_shadow_reg_area == NULL) {
2744 netif_err(qdev, ifup, qdev->ndev,
2745 "Allocation of TX shadow space failed.\n");
2746 goto err_wqp_sh_area;
2747 }
2748 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2749 return 0;
2750
2751 err_wqp_sh_area:
2752 pci_free_consistent(qdev->pdev,
2753 PAGE_SIZE,
2754 qdev->rx_ring_shadow_reg_area,
2755 qdev->rx_ring_shadow_reg_dma);
2756 return -ENOMEM;
2757 }
2758
2759 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2760 {
2761 struct tx_ring_desc *tx_ring_desc;
2762 int i;
2763 struct ob_mac_iocb_req *mac_iocb_ptr;
2764
2765 mac_iocb_ptr = tx_ring->wq_base;
2766 tx_ring_desc = tx_ring->q;
2767 for (i = 0; i < tx_ring->wq_len; i++) {
2768 tx_ring_desc->index = i;
2769 tx_ring_desc->skb = NULL;
2770 tx_ring_desc->queue_entry = mac_iocb_ptr;
2771 mac_iocb_ptr++;
2772 tx_ring_desc++;
2773 }
2774 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2775 }
2776
2777 static void ql_free_tx_resources(struct ql_adapter *qdev,
2778 struct tx_ring *tx_ring)
2779 {
2780 if (tx_ring->wq_base) {
2781 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2782 tx_ring->wq_base, tx_ring->wq_base_dma);
2783 tx_ring->wq_base = NULL;
2784 }
2785 kfree(tx_ring->q);
2786 tx_ring->q = NULL;
2787 }
2788
2789 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2790 struct tx_ring *tx_ring)
2791 {
2792 tx_ring->wq_base =
2793 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2794 &tx_ring->wq_base_dma);
2795
2796 if ((tx_ring->wq_base == NULL) ||
2797 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2798 goto pci_alloc_err;
2799
2800 tx_ring->q =
2801 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2802 if (tx_ring->q == NULL)
2803 goto err;
2804
2805 return 0;
2806 err:
2807 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2808 tx_ring->wq_base, tx_ring->wq_base_dma);
2809 tx_ring->wq_base = NULL;
2810 pci_alloc_err:
2811 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2812 return -ENOMEM;
2813 }
2814
2815 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2816 {
2817 struct bq_desc *lbq_desc;
2818
2819 uint32_t curr_idx, clean_idx;
2820
2821 curr_idx = rx_ring->lbq_curr_idx;
2822 clean_idx = rx_ring->lbq_clean_idx;
2823 while (curr_idx != clean_idx) {
2824 lbq_desc = &rx_ring->lbq[curr_idx];
2825
2826 if (lbq_desc->p.pg_chunk.last_flag) {
2827 pci_unmap_page(qdev->pdev,
2828 lbq_desc->p.pg_chunk.map,
2829 ql_lbq_block_size(qdev),
2830 PCI_DMA_FROMDEVICE);
2831 lbq_desc->p.pg_chunk.last_flag = 0;
2832 }
2833
2834 put_page(lbq_desc->p.pg_chunk.page);
2835 lbq_desc->p.pg_chunk.page = NULL;
2836
2837 if (++curr_idx == rx_ring->lbq_len)
2838 curr_idx = 0;
2839
2840 }
2841 if (rx_ring->pg_chunk.page) {
2842 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2843 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2844 put_page(rx_ring->pg_chunk.page);
2845 rx_ring->pg_chunk.page = NULL;
2846 }
2847 }
2848
2849 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2850 {
2851 int i;
2852 struct bq_desc *sbq_desc;
2853
2854 for (i = 0; i < rx_ring->sbq_len; i++) {
2855 sbq_desc = &rx_ring->sbq[i];
2856 if (sbq_desc == NULL) {
2857 netif_err(qdev, ifup, qdev->ndev,
2858 "sbq_desc %d is NULL.\n", i);
2859 return;
2860 }
2861 if (sbq_desc->p.skb) {
2862 pci_unmap_single(qdev->pdev,
2863 dma_unmap_addr(sbq_desc, mapaddr),
2864 dma_unmap_len(sbq_desc, maplen),
2865 PCI_DMA_FROMDEVICE);
2866 dev_kfree_skb(sbq_desc->p.skb);
2867 sbq_desc->p.skb = NULL;
2868 }
2869 }
2870 }
2871
2872 /* Free all large and small rx buffers associated
2873 * with the completion queues for this device.
2874 */
2875 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2876 {
2877 int i;
2878 struct rx_ring *rx_ring;
2879
2880 for (i = 0; i < qdev->rx_ring_count; i++) {
2881 rx_ring = &qdev->rx_ring[i];
2882 if (rx_ring->lbq)
2883 ql_free_lbq_buffers(qdev, rx_ring);
2884 if (rx_ring->sbq)
2885 ql_free_sbq_buffers(qdev, rx_ring);
2886 }
2887 }
2888
2889 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2890 {
2891 struct rx_ring *rx_ring;
2892 int i;
2893
2894 for (i = 0; i < qdev->rx_ring_count; i++) {
2895 rx_ring = &qdev->rx_ring[i];
2896 if (rx_ring->type != TX_Q)
2897 ql_update_buffer_queues(qdev, rx_ring);
2898 }
2899 }
2900
2901 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2902 struct rx_ring *rx_ring)
2903 {
2904 int i;
2905 struct bq_desc *lbq_desc;
2906 __le64 *bq = rx_ring->lbq_base;
2907
2908 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2909 for (i = 0; i < rx_ring->lbq_len; i++) {
2910 lbq_desc = &rx_ring->lbq[i];
2911 memset(lbq_desc, 0, sizeof(*lbq_desc));
2912 lbq_desc->index = i;
2913 lbq_desc->addr = bq;
2914 bq++;
2915 }
2916 }
2917
2918 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2919 struct rx_ring *rx_ring)
2920 {
2921 int i;
2922 struct bq_desc *sbq_desc;
2923 __le64 *bq = rx_ring->sbq_base;
2924
2925 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2926 for (i = 0; i < rx_ring->sbq_len; i++) {
2927 sbq_desc = &rx_ring->sbq[i];
2928 memset(sbq_desc, 0, sizeof(*sbq_desc));
2929 sbq_desc->index = i;
2930 sbq_desc->addr = bq;
2931 bq++;
2932 }
2933 }
2934
2935 static void ql_free_rx_resources(struct ql_adapter *qdev,
2936 struct rx_ring *rx_ring)
2937 {
2938 /* Free the small buffer queue. */
2939 if (rx_ring->sbq_base) {
2940 pci_free_consistent(qdev->pdev,
2941 rx_ring->sbq_size,
2942 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2943 rx_ring->sbq_base = NULL;
2944 }
2945
2946 /* Free the small buffer queue control blocks. */
2947 kfree(rx_ring->sbq);
2948 rx_ring->sbq = NULL;
2949
2950 /* Free the large buffer queue. */
2951 if (rx_ring->lbq_base) {
2952 pci_free_consistent(qdev->pdev,
2953 rx_ring->lbq_size,
2954 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2955 rx_ring->lbq_base = NULL;
2956 }
2957
2958 /* Free the large buffer queue control blocks. */
2959 kfree(rx_ring->lbq);
2960 rx_ring->lbq = NULL;
2961
2962 /* Free the rx queue. */
2963 if (rx_ring->cq_base) {
2964 pci_free_consistent(qdev->pdev,
2965 rx_ring->cq_size,
2966 rx_ring->cq_base, rx_ring->cq_base_dma);
2967 rx_ring->cq_base = NULL;
2968 }
2969 }
2970
2971 /* Allocate queues and buffers for this completions queue based
2972 * on the values in the parameter structure. */
2973 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2974 struct rx_ring *rx_ring)
2975 {
2976
2977 /*
2978 * Allocate the completion queue for this rx_ring.
2979 */
2980 rx_ring->cq_base =
2981 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2982 &rx_ring->cq_base_dma);
2983
2984 if (rx_ring->cq_base == NULL) {
2985 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2986 return -ENOMEM;
2987 }
2988
2989 if (rx_ring->sbq_len) {
2990 /*
2991 * Allocate small buffer queue.
2992 */
2993 rx_ring->sbq_base =
2994 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2995 &rx_ring->sbq_base_dma);
2996
2997 if (rx_ring->sbq_base == NULL) {
2998 netif_err(qdev, ifup, qdev->ndev,
2999 "Small buffer queue allocation failed.\n");
3000 goto err_mem;
3001 }
3002
3003 /*
3004 * Allocate small buffer queue control blocks.
3005 */
3006 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3007 sizeof(struct bq_desc),
3008 GFP_KERNEL);
3009 if (rx_ring->sbq == NULL)
3010 goto err_mem;
3011
3012 ql_init_sbq_ring(qdev, rx_ring);
3013 }
3014
3015 if (rx_ring->lbq_len) {
3016 /*
3017 * Allocate large buffer queue.
3018 */
3019 rx_ring->lbq_base =
3020 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3021 &rx_ring->lbq_base_dma);
3022
3023 if (rx_ring->lbq_base == NULL) {
3024 netif_err(qdev, ifup, qdev->ndev,
3025 "Large buffer queue allocation failed.\n");
3026 goto err_mem;
3027 }
3028 /*
3029 * Allocate large buffer queue control blocks.
3030 */
3031 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3032 sizeof(struct bq_desc),
3033 GFP_KERNEL);
3034 if (rx_ring->lbq == NULL)
3035 goto err_mem;
3036
3037 ql_init_lbq_ring(qdev, rx_ring);
3038 }
3039
3040 return 0;
3041
3042 err_mem:
3043 ql_free_rx_resources(qdev, rx_ring);
3044 return -ENOMEM;
3045 }
3046
3047 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3048 {
3049 struct tx_ring *tx_ring;
3050 struct tx_ring_desc *tx_ring_desc;
3051 int i, j;
3052
3053 /*
3054 * Loop through all queues and free
3055 * any resources.
3056 */
3057 for (j = 0; j < qdev->tx_ring_count; j++) {
3058 tx_ring = &qdev->tx_ring[j];
3059 for (i = 0; i < tx_ring->wq_len; i++) {
3060 tx_ring_desc = &tx_ring->q[i];
3061 if (tx_ring_desc && tx_ring_desc->skb) {
3062 netif_err(qdev, ifdown, qdev->ndev,
3063 "Freeing lost SKB %p, from queue %d, index %d.\n",
3064 tx_ring_desc->skb, j,
3065 tx_ring_desc->index);
3066 ql_unmap_send(qdev, tx_ring_desc,
3067 tx_ring_desc->map_cnt);
3068 dev_kfree_skb(tx_ring_desc->skb);
3069 tx_ring_desc->skb = NULL;
3070 }
3071 }
3072 }
3073 }
3074
3075 static void ql_free_mem_resources(struct ql_adapter *qdev)
3076 {
3077 int i;
3078
3079 for (i = 0; i < qdev->tx_ring_count; i++)
3080 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3081 for (i = 0; i < qdev->rx_ring_count; i++)
3082 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3083 ql_free_shadow_space(qdev);
3084 }
3085
3086 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3087 {
3088 int i;
3089
3090 /* Allocate space for our shadow registers and such. */
3091 if (ql_alloc_shadow_space(qdev))
3092 return -ENOMEM;
3093
3094 for (i = 0; i < qdev->rx_ring_count; i++) {
3095 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3096 netif_err(qdev, ifup, qdev->ndev,
3097 "RX resource allocation failed.\n");
3098 goto err_mem;
3099 }
3100 }
3101 /* Allocate tx queue resources */
3102 for (i = 0; i < qdev->tx_ring_count; i++) {
3103 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3104 netif_err(qdev, ifup, qdev->ndev,
3105 "TX resource allocation failed.\n");
3106 goto err_mem;
3107 }
3108 }
3109 return 0;
3110
3111 err_mem:
3112 ql_free_mem_resources(qdev);
3113 return -ENOMEM;
3114 }
3115
3116 /* Set up the rx ring control block and pass it to the chip.
3117 * The control block is defined as
3118 * "Completion Queue Initialization Control Block", or cqicb.
3119 */
3120 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3121 {
3122 struct cqicb *cqicb = &rx_ring->cqicb;
3123 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3124 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3125 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3126 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3127 void __iomem *doorbell_area =
3128 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3129 int err = 0;
3130 u16 bq_len;
3131 u64 tmp;
3132 __le64 *base_indirect_ptr;
3133 int page_entries;
3134
3135 /* Set up the shadow registers for this ring. */
3136 rx_ring->prod_idx_sh_reg = shadow_reg;
3137 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3138 *rx_ring->prod_idx_sh_reg = 0;
3139 shadow_reg += sizeof(u64);
3140 shadow_reg_dma += sizeof(u64);
3141 rx_ring->lbq_base_indirect = shadow_reg;
3142 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3143 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3144 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3145 rx_ring->sbq_base_indirect = shadow_reg;
3146 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3147
3148 /* PCI doorbell mem area + 0x00 for consumer index register */
3149 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3150 rx_ring->cnsmr_idx = 0;
3151 rx_ring->curr_entry = rx_ring->cq_base;
3152
3153 /* PCI doorbell mem area + 0x04 for valid register */
3154 rx_ring->valid_db_reg = doorbell_area + 0x04;
3155
3156 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3157 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3158
3159 /* PCI doorbell mem area + 0x1c */
3160 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3161
3162 memset((void *)cqicb, 0, sizeof(struct cqicb));
3163 cqicb->msix_vect = rx_ring->irq;
3164
3165 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3166 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3167
3168 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3169
3170 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3171
3172 /*
3173 * Set up the control block load flags.
3174 */
3175 cqicb->flags = FLAGS_LC | /* Load queue base address */
3176 FLAGS_LV | /* Load MSI-X vector */
3177 FLAGS_LI; /* Load irq delay values */
3178 if (rx_ring->lbq_len) {
3179 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3180 tmp = (u64)rx_ring->lbq_base_dma;
3181 base_indirect_ptr = rx_ring->lbq_base_indirect;
3182 page_entries = 0;
3183 do {
3184 *base_indirect_ptr = cpu_to_le64(tmp);
3185 tmp += DB_PAGE_SIZE;
3186 base_indirect_ptr++;
3187 page_entries++;
3188 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3189 cqicb->lbq_addr =
3190 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3191 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3192 (u16) rx_ring->lbq_buf_size;
3193 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3194 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3195 (u16) rx_ring->lbq_len;
3196 cqicb->lbq_len = cpu_to_le16(bq_len);
3197 rx_ring->lbq_prod_idx = 0;
3198 rx_ring->lbq_curr_idx = 0;
3199 rx_ring->lbq_clean_idx = 0;
3200 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3201 }
3202 if (rx_ring->sbq_len) {
3203 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3204 tmp = (u64)rx_ring->sbq_base_dma;
3205 base_indirect_ptr = rx_ring->sbq_base_indirect;
3206 page_entries = 0;
3207 do {
3208 *base_indirect_ptr = cpu_to_le64(tmp);
3209 tmp += DB_PAGE_SIZE;
3210 base_indirect_ptr++;
3211 page_entries++;
3212 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3213 cqicb->sbq_addr =
3214 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3215 cqicb->sbq_buf_size =
3216 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3217 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3218 (u16) rx_ring->sbq_len;
3219 cqicb->sbq_len = cpu_to_le16(bq_len);
3220 rx_ring->sbq_prod_idx = 0;
3221 rx_ring->sbq_curr_idx = 0;
3222 rx_ring->sbq_clean_idx = 0;
3223 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3224 }
3225 switch (rx_ring->type) {
3226 case TX_Q:
3227 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3228 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3229 break;
3230 case RX_Q:
3231 /* Inbound completion handling rx_rings run in
3232 * separate NAPI contexts.
3233 */
3234 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3235 64);
3236 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3237 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3238 break;
3239 default:
3240 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3241 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3242 }
3243 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3244 CFG_LCQ, rx_ring->cq_id);
3245 if (err) {
3246 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3247 return err;
3248 }
3249 return err;
3250 }
3251
3252 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3253 {
3254 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3255 void __iomem *doorbell_area =
3256 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3257 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3258 (tx_ring->wq_id * sizeof(u64));
3259 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3260 (tx_ring->wq_id * sizeof(u64));
3261 int err = 0;
3262
3263 /*
3264 * Assign doorbell registers for this tx_ring.
3265 */
3266 /* TX PCI doorbell mem area for tx producer index */
3267 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3268 tx_ring->prod_idx = 0;
3269 /* TX PCI doorbell mem area + 0x04 */
3270 tx_ring->valid_db_reg = doorbell_area + 0x04;
3271
3272 /*
3273 * Assign shadow registers for this tx_ring.
3274 */
3275 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3276 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3277
3278 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3279 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3280 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3281 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3282 wqicb->rid = 0;
3283 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3284
3285 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3286
3287 ql_init_tx_ring(qdev, tx_ring);
3288
3289 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3290 (u16) tx_ring->wq_id);
3291 if (err) {
3292 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3293 return err;
3294 }
3295 return err;
3296 }
3297
3298 static void ql_disable_msix(struct ql_adapter *qdev)
3299 {
3300 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3301 pci_disable_msix(qdev->pdev);
3302 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3303 kfree(qdev->msi_x_entry);
3304 qdev->msi_x_entry = NULL;
3305 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3306 pci_disable_msi(qdev->pdev);
3307 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3308 }
3309 }
3310
3311 /* We start by trying to get the number of vectors
3312 * stored in qdev->intr_count. If we don't get that
3313 * many then we reduce the count and try again.
3314 */
3315 static void ql_enable_msix(struct ql_adapter *qdev)
3316 {
3317 int i, err;
3318
3319 /* Get the MSIX vectors. */
3320 if (qlge_irq_type == MSIX_IRQ) {
3321 /* Try to alloc space for the msix struct,
3322 * if it fails then go to MSI/legacy.
3323 */
3324 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3325 sizeof(struct msix_entry),
3326 GFP_KERNEL);
3327 if (!qdev->msi_x_entry) {
3328 qlge_irq_type = MSI_IRQ;
3329 goto msi;
3330 }
3331
3332 for (i = 0; i < qdev->intr_count; i++)
3333 qdev->msi_x_entry[i].entry = i;
3334
3335 /* Loop to get our vectors. We start with
3336 * what we want and settle for what we get.
3337 */
3338 do {
3339 err = pci_enable_msix(qdev->pdev,
3340 qdev->msi_x_entry, qdev->intr_count);
3341 if (err > 0)
3342 qdev->intr_count = err;
3343 } while (err > 0);
3344
3345 if (err < 0) {
3346 kfree(qdev->msi_x_entry);
3347 qdev->msi_x_entry = NULL;
3348 netif_warn(qdev, ifup, qdev->ndev,
3349 "MSI-X Enable failed, trying MSI.\n");
3350 qdev->intr_count = 1;
3351 qlge_irq_type = MSI_IRQ;
3352 } else if (err == 0) {
3353 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3354 netif_info(qdev, ifup, qdev->ndev,
3355 "MSI-X Enabled, got %d vectors.\n",
3356 qdev->intr_count);
3357 return;
3358 }
3359 }
3360 msi:
3361 qdev->intr_count = 1;
3362 if (qlge_irq_type == MSI_IRQ) {
3363 if (!pci_enable_msi(qdev->pdev)) {
3364 set_bit(QL_MSI_ENABLED, &qdev->flags);
3365 netif_info(qdev, ifup, qdev->ndev,
3366 "Running with MSI interrupts.\n");
3367 return;
3368 }
3369 }
3370 qlge_irq_type = LEG_IRQ;
3371 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3372 "Running with legacy interrupts.\n");
3373 }
3374
3375 /* Each vector services 1 RSS ring and and 1 or more
3376 * TX completion rings. This function loops through
3377 * the TX completion rings and assigns the vector that
3378 * will service it. An example would be if there are
3379 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3380 * This would mean that vector 0 would service RSS ring 0
3381 * and TX completion rings 0,1,2 and 3. Vector 1 would
3382 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3383 */
3384 static void ql_set_tx_vect(struct ql_adapter *qdev)
3385 {
3386 int i, j, vect;
3387 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3388
3389 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3390 /* Assign irq vectors to TX rx_rings.*/
3391 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3392 i < qdev->rx_ring_count; i++) {
3393 if (j == tx_rings_per_vector) {
3394 vect++;
3395 j = 0;
3396 }
3397 qdev->rx_ring[i].irq = vect;
3398 j++;
3399 }
3400 } else {
3401 /* For single vector all rings have an irq
3402 * of zero.
3403 */
3404 for (i = 0; i < qdev->rx_ring_count; i++)
3405 qdev->rx_ring[i].irq = 0;
3406 }
3407 }
3408
3409 /* Set the interrupt mask for this vector. Each vector
3410 * will service 1 RSS ring and 1 or more TX completion
3411 * rings. This function sets up a bit mask per vector
3412 * that indicates which rings it services.
3413 */
3414 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3415 {
3416 int j, vect = ctx->intr;
3417 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3418
3419 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3420 /* Add the RSS ring serviced by this vector
3421 * to the mask.
3422 */
3423 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3424 /* Add the TX ring(s) serviced by this vector
3425 * to the mask. */
3426 for (j = 0; j < tx_rings_per_vector; j++) {
3427 ctx->irq_mask |=
3428 (1 << qdev->rx_ring[qdev->rss_ring_count +
3429 (vect * tx_rings_per_vector) + j].cq_id);
3430 }
3431 } else {
3432 /* For single vector we just shift each queue's
3433 * ID into the mask.
3434 */
3435 for (j = 0; j < qdev->rx_ring_count; j++)
3436 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3437 }
3438 }
3439
3440 /*
3441 * Here we build the intr_context structures based on
3442 * our rx_ring count and intr vector count.
3443 * The intr_context structure is used to hook each vector
3444 * to possibly different handlers.
3445 */
3446 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3447 {
3448 int i = 0;
3449 struct intr_context *intr_context = &qdev->intr_context[0];
3450
3451 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3452 /* Each rx_ring has it's
3453 * own intr_context since we have separate
3454 * vectors for each queue.
3455 */
3456 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3457 qdev->rx_ring[i].irq = i;
3458 intr_context->intr = i;
3459 intr_context->qdev = qdev;
3460 /* Set up this vector's bit-mask that indicates
3461 * which queues it services.
3462 */
3463 ql_set_irq_mask(qdev, intr_context);
3464 /*
3465 * We set up each vectors enable/disable/read bits so
3466 * there's no bit/mask calculations in the critical path.
3467 */
3468 intr_context->intr_en_mask =
3469 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3470 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3471 | i;
3472 intr_context->intr_dis_mask =
3473 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3474 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3475 INTR_EN_IHD | i;
3476 intr_context->intr_read_mask =
3477 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3478 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3479 i;
3480 if (i == 0) {
3481 /* The first vector/queue handles
3482 * broadcast/multicast, fatal errors,
3483 * and firmware events. This in addition
3484 * to normal inbound NAPI processing.
3485 */
3486 intr_context->handler = qlge_isr;
3487 sprintf(intr_context->name, "%s-rx-%d",
3488 qdev->ndev->name, i);
3489 } else {
3490 /*
3491 * Inbound queues handle unicast frames only.
3492 */
3493 intr_context->handler = qlge_msix_rx_isr;
3494 sprintf(intr_context->name, "%s-rx-%d",
3495 qdev->ndev->name, i);
3496 }
3497 }
3498 } else {
3499 /*
3500 * All rx_rings use the same intr_context since
3501 * there is only one vector.
3502 */
3503 intr_context->intr = 0;
3504 intr_context->qdev = qdev;
3505 /*
3506 * We set up each vectors enable/disable/read bits so
3507 * there's no bit/mask calculations in the critical path.
3508 */
3509 intr_context->intr_en_mask =
3510 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3511 intr_context->intr_dis_mask =
3512 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3513 INTR_EN_TYPE_DISABLE;
3514 intr_context->intr_read_mask =
3515 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3516 /*
3517 * Single interrupt means one handler for all rings.
3518 */
3519 intr_context->handler = qlge_isr;
3520 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3521 /* Set up this vector's bit-mask that indicates
3522 * which queues it services. In this case there is
3523 * a single vector so it will service all RSS and
3524 * TX completion rings.
3525 */
3526 ql_set_irq_mask(qdev, intr_context);
3527 }
3528 /* Tell the TX completion rings which MSIx vector
3529 * they will be using.
3530 */
3531 ql_set_tx_vect(qdev);
3532 }
3533
3534 static void ql_free_irq(struct ql_adapter *qdev)
3535 {
3536 int i;
3537 struct intr_context *intr_context = &qdev->intr_context[0];
3538
3539 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3540 if (intr_context->hooked) {
3541 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3542 free_irq(qdev->msi_x_entry[i].vector,
3543 &qdev->rx_ring[i]);
3544 } else {
3545 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3546 }
3547 }
3548 }
3549 ql_disable_msix(qdev);
3550 }
3551
3552 static int ql_request_irq(struct ql_adapter *qdev)
3553 {
3554 int i;
3555 int status = 0;
3556 struct pci_dev *pdev = qdev->pdev;
3557 struct intr_context *intr_context = &qdev->intr_context[0];
3558
3559 ql_resolve_queues_to_irqs(qdev);
3560
3561 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3562 atomic_set(&intr_context->irq_cnt, 0);
3563 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3564 status = request_irq(qdev->msi_x_entry[i].vector,
3565 intr_context->handler,
3566 0,
3567 intr_context->name,
3568 &qdev->rx_ring[i]);
3569 if (status) {
3570 netif_err(qdev, ifup, qdev->ndev,
3571 "Failed request for MSIX interrupt %d.\n",
3572 i);
3573 goto err_irq;
3574 }
3575 } else {
3576 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3577 "trying msi or legacy interrupts.\n");
3578 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3579 "%s: irq = %d.\n", __func__, pdev->irq);
3580 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3581 "%s: context->name = %s.\n", __func__,
3582 intr_context->name);
3583 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3584 "%s: dev_id = 0x%p.\n", __func__,
3585 &qdev->rx_ring[0]);
3586 status =
3587 request_irq(pdev->irq, qlge_isr,
3588 test_bit(QL_MSI_ENABLED,
3589 &qdev->
3590 flags) ? 0 : IRQF_SHARED,
3591 intr_context->name, &qdev->rx_ring[0]);
3592 if (status)
3593 goto err_irq;
3594
3595 netif_err(qdev, ifup, qdev->ndev,
3596 "Hooked intr %d, queue type %s, with name %s.\n",
3597 i,
3598 qdev->rx_ring[0].type == DEFAULT_Q ?
3599 "DEFAULT_Q" :
3600 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3601 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3602 intr_context->name);
3603 }
3604 intr_context->hooked = 1;
3605 }
3606 return status;
3607 err_irq:
3608 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3609 ql_free_irq(qdev);
3610 return status;
3611 }
3612
3613 static int ql_start_rss(struct ql_adapter *qdev)
3614 {
3615 static const u8 init_hash_seed[] = {
3616 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3617 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3618 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3619 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3620 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3621 };
3622 struct ricb *ricb = &qdev->ricb;
3623 int status = 0;
3624 int i;
3625 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3626
3627 memset((void *)ricb, 0, sizeof(*ricb));
3628
3629 ricb->base_cq = RSS_L4K;
3630 ricb->flags =
3631 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3632 ricb->mask = cpu_to_le16((u16)(0x3ff));
3633
3634 /*
3635 * Fill out the Indirection Table.
3636 */
3637 for (i = 0; i < 1024; i++)
3638 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3639
3640 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3641 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3642
3643 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3644 if (status) {
3645 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3646 return status;
3647 }
3648 return status;
3649 }
3650
3651 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3652 {
3653 int i, status = 0;
3654
3655 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3656 if (status)
3657 return status;
3658 /* Clear all the entries in the routing table. */
3659 for (i = 0; i < 16; i++) {
3660 status = ql_set_routing_reg(qdev, i, 0, 0);
3661 if (status) {
3662 netif_err(qdev, ifup, qdev->ndev,
3663 "Failed to init routing register for CAM packets.\n");
3664 break;
3665 }
3666 }
3667 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3668 return status;
3669 }
3670
3671 /* Initialize the frame-to-queue routing. */
3672 static int ql_route_initialize(struct ql_adapter *qdev)
3673 {
3674 int status = 0;
3675
3676 /* Clear all the entries in the routing table. */
3677 status = ql_clear_routing_entries(qdev);
3678 if (status)
3679 return status;
3680
3681 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3682 if (status)
3683 return status;
3684
3685 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3686 RT_IDX_IP_CSUM_ERR, 1);
3687 if (status) {
3688 netif_err(qdev, ifup, qdev->ndev,
3689 "Failed to init routing register "
3690 "for IP CSUM error packets.\n");
3691 goto exit;
3692 }
3693 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3694 RT_IDX_TU_CSUM_ERR, 1);
3695 if (status) {
3696 netif_err(qdev, ifup, qdev->ndev,
3697 "Failed to init routing register "
3698 "for TCP/UDP CSUM error packets.\n");
3699 goto exit;
3700 }
3701 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3702 if (status) {
3703 netif_err(qdev, ifup, qdev->ndev,
3704 "Failed to init routing register for broadcast packets.\n");
3705 goto exit;
3706 }
3707 /* If we have more than one inbound queue, then turn on RSS in the
3708 * routing block.
3709 */
3710 if (qdev->rss_ring_count > 1) {
3711 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3712 RT_IDX_RSS_MATCH, 1);
3713 if (status) {
3714 netif_err(qdev, ifup, qdev->ndev,
3715 "Failed to init routing register for MATCH RSS packets.\n");
3716 goto exit;
3717 }
3718 }
3719
3720 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3721 RT_IDX_CAM_HIT, 1);
3722 if (status)
3723 netif_err(qdev, ifup, qdev->ndev,
3724 "Failed to init routing register for CAM packets.\n");
3725 exit:
3726 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3727 return status;
3728 }
3729
3730 int ql_cam_route_initialize(struct ql_adapter *qdev)
3731 {
3732 int status, set;
3733
3734 /* If check if the link is up and use to
3735 * determine if we are setting or clearing
3736 * the MAC address in the CAM.
3737 */
3738 set = ql_read32(qdev, STS);
3739 set &= qdev->port_link_up;
3740 status = ql_set_mac_addr(qdev, set);
3741 if (status) {
3742 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3743 return status;
3744 }
3745
3746 status = ql_route_initialize(qdev);
3747 if (status)
3748 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3749
3750 return status;
3751 }
3752
3753 static int ql_adapter_initialize(struct ql_adapter *qdev)
3754 {
3755 u32 value, mask;
3756 int i;
3757 int status = 0;
3758
3759 /*
3760 * Set up the System register to halt on errors.
3761 */
3762 value = SYS_EFE | SYS_FAE;
3763 mask = value << 16;
3764 ql_write32(qdev, SYS, mask | value);
3765
3766 /* Set the default queue, and VLAN behavior. */
3767 value = NIC_RCV_CFG_DFQ;
3768 mask = NIC_RCV_CFG_DFQ_MASK;
3769 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3770 value |= NIC_RCV_CFG_RV;
3771 mask |= (NIC_RCV_CFG_RV << 16);
3772 }
3773 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3774
3775 /* Set the MPI interrupt to enabled. */
3776 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3777
3778 /* Enable the function, set pagesize, enable error checking. */
3779 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3780 FSC_EC | FSC_VM_PAGE_4K;
3781 value |= SPLT_SETTING;
3782
3783 /* Set/clear header splitting. */
3784 mask = FSC_VM_PAGESIZE_MASK |
3785 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3786 ql_write32(qdev, FSC, mask | value);
3787
3788 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3789
3790 /* Set RX packet routing to use port/pci function on which the
3791 * packet arrived on in addition to usual frame routing.
3792 * This is helpful on bonding where both interfaces can have
3793 * the same MAC address.
3794 */
3795 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3796 /* Reroute all packets to our Interface.
3797 * They may have been routed to MPI firmware
3798 * due to WOL.
3799 */
3800 value = ql_read32(qdev, MGMT_RCV_CFG);
3801 value &= ~MGMT_RCV_CFG_RM;
3802 mask = 0xffff0000;
3803
3804 /* Sticky reg needs clearing due to WOL. */
3805 ql_write32(qdev, MGMT_RCV_CFG, mask);
3806 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3807
3808 /* Default WOL is enable on Mezz cards */
3809 if (qdev->pdev->subsystem_device == 0x0068 ||
3810 qdev->pdev->subsystem_device == 0x0180)
3811 qdev->wol = WAKE_MAGIC;
3812
3813 /* Start up the rx queues. */
3814 for (i = 0; i < qdev->rx_ring_count; i++) {
3815 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3816 if (status) {
3817 netif_err(qdev, ifup, qdev->ndev,
3818 "Failed to start rx ring[%d].\n", i);
3819 return status;
3820 }
3821 }
3822
3823 /* If there is more than one inbound completion queue
3824 * then download a RICB to configure RSS.
3825 */
3826 if (qdev->rss_ring_count > 1) {
3827 status = ql_start_rss(qdev);
3828 if (status) {
3829 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3830 return status;
3831 }
3832 }
3833
3834 /* Start up the tx queues. */
3835 for (i = 0; i < qdev->tx_ring_count; i++) {
3836 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3837 if (status) {
3838 netif_err(qdev, ifup, qdev->ndev,
3839 "Failed to start tx ring[%d].\n", i);
3840 return status;
3841 }
3842 }
3843
3844 /* Initialize the port and set the max framesize. */
3845 status = qdev->nic_ops->port_initialize(qdev);
3846 if (status)
3847 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3848
3849 /* Set up the MAC address and frame routing filter. */
3850 status = ql_cam_route_initialize(qdev);
3851 if (status) {
3852 netif_err(qdev, ifup, qdev->ndev,
3853 "Failed to init CAM/Routing tables.\n");
3854 return status;
3855 }
3856
3857 /* Start NAPI for the RSS queues. */
3858 for (i = 0; i < qdev->rss_ring_count; i++)
3859 napi_enable(&qdev->rx_ring[i].napi);
3860
3861 return status;
3862 }
3863
3864 /* Issue soft reset to chip. */
3865 static int ql_adapter_reset(struct ql_adapter *qdev)
3866 {
3867 u32 value;
3868 int status = 0;
3869 unsigned long end_jiffies;
3870
3871 /* Clear all the entries in the routing table. */
3872 status = ql_clear_routing_entries(qdev);
3873 if (status) {
3874 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3875 return status;
3876 }
3877
3878 end_jiffies = jiffies +
3879 max((unsigned long)1, usecs_to_jiffies(30));
3880
3881 /* Check if bit is set then skip the mailbox command and
3882 * clear the bit, else we are in normal reset process.
3883 */
3884 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3885 /* Stop management traffic. */
3886 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3887
3888 /* Wait for the NIC and MGMNT FIFOs to empty. */
3889 ql_wait_fifo_empty(qdev);
3890 } else
3891 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3892
3893 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3894
3895 do {
3896 value = ql_read32(qdev, RST_FO);
3897 if ((value & RST_FO_FR) == 0)
3898 break;
3899 cpu_relax();
3900 } while (time_before(jiffies, end_jiffies));
3901
3902 if (value & RST_FO_FR) {
3903 netif_err(qdev, ifdown, qdev->ndev,
3904 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3905 status = -ETIMEDOUT;
3906 }
3907
3908 /* Resume management traffic. */
3909 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3910 return status;
3911 }
3912
3913 static void ql_display_dev_info(struct net_device *ndev)
3914 {
3915 struct ql_adapter *qdev = netdev_priv(ndev);
3916
3917 netif_info(qdev, probe, qdev->ndev,
3918 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3919 "XG Roll = %d, XG Rev = %d.\n",
3920 qdev->func,
3921 qdev->port,
3922 qdev->chip_rev_id & 0x0000000f,
3923 qdev->chip_rev_id >> 4 & 0x0000000f,
3924 qdev->chip_rev_id >> 8 & 0x0000000f,
3925 qdev->chip_rev_id >> 12 & 0x0000000f);
3926 netif_info(qdev, probe, qdev->ndev,
3927 "MAC address %pM\n", ndev->dev_addr);
3928 }
3929
3930 static int ql_wol(struct ql_adapter *qdev)
3931 {
3932 int status = 0;
3933 u32 wol = MB_WOL_DISABLE;
3934
3935 /* The CAM is still intact after a reset, but if we
3936 * are doing WOL, then we may need to program the
3937 * routing regs. We would also need to issue the mailbox
3938 * commands to instruct the MPI what to do per the ethtool
3939 * settings.
3940 */
3941
3942 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3943 WAKE_MCAST | WAKE_BCAST)) {
3944 netif_err(qdev, ifdown, qdev->ndev,
3945 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3946 qdev->wol);
3947 return -EINVAL;
3948 }
3949
3950 if (qdev->wol & WAKE_MAGIC) {
3951 status = ql_mb_wol_set_magic(qdev, 1);
3952 if (status) {
3953 netif_err(qdev, ifdown, qdev->ndev,
3954 "Failed to set magic packet on %s.\n",
3955 qdev->ndev->name);
3956 return status;
3957 } else
3958 netif_info(qdev, drv, qdev->ndev,
3959 "Enabled magic packet successfully on %s.\n",
3960 qdev->ndev->name);
3961
3962 wol |= MB_WOL_MAGIC_PKT;
3963 }
3964
3965 if (qdev->wol) {
3966 wol |= MB_WOL_MODE_ON;
3967 status = ql_mb_wol_mode(qdev, wol);
3968 netif_err(qdev, drv, qdev->ndev,
3969 "WOL %s (wol code 0x%x) on %s\n",
3970 (status == 0) ? "Successfully set" : "Failed",
3971 wol, qdev->ndev->name);
3972 }
3973
3974 return status;
3975 }
3976
3977 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3978 {
3979
3980 /* Don't kill the reset worker thread if we
3981 * are in the process of recovery.
3982 */
3983 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3984 cancel_delayed_work_sync(&qdev->asic_reset_work);
3985 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3986 cancel_delayed_work_sync(&qdev->mpi_work);
3987 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3988 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3989 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3990 }
3991
3992 static int ql_adapter_down(struct ql_adapter *qdev)
3993 {
3994 int i, status = 0;
3995
3996 ql_link_off(qdev);
3997
3998 ql_cancel_all_work_sync(qdev);
3999
4000 for (i = 0; i < qdev->rss_ring_count; i++)
4001 napi_disable(&qdev->rx_ring[i].napi);
4002
4003 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4004
4005 ql_disable_interrupts(qdev);
4006
4007 ql_tx_ring_clean(qdev);
4008
4009 /* Call netif_napi_del() from common point.
4010 */
4011 for (i = 0; i < qdev->rss_ring_count; i++)
4012 netif_napi_del(&qdev->rx_ring[i].napi);
4013
4014 status = ql_adapter_reset(qdev);
4015 if (status)
4016 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4017 qdev->func);
4018 ql_free_rx_buffers(qdev);
4019
4020 return status;
4021 }
4022
4023 static int ql_adapter_up(struct ql_adapter *qdev)
4024 {
4025 int err = 0;
4026
4027 err = ql_adapter_initialize(qdev);
4028 if (err) {
4029 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4030 goto err_init;
4031 }
4032 set_bit(QL_ADAPTER_UP, &qdev->flags);
4033 ql_alloc_rx_buffers(qdev);
4034 /* If the port is initialized and the
4035 * link is up the turn on the carrier.
4036 */
4037 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4038 (ql_read32(qdev, STS) & qdev->port_link_up))
4039 ql_link_on(qdev);
4040 /* Restore rx mode. */
4041 clear_bit(QL_ALLMULTI, &qdev->flags);
4042 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4043 qlge_set_multicast_list(qdev->ndev);
4044
4045 /* Restore vlan setting. */
4046 qlge_restore_vlan(qdev);
4047
4048 ql_enable_interrupts(qdev);
4049 ql_enable_all_completion_interrupts(qdev);
4050 netif_tx_start_all_queues(qdev->ndev);
4051
4052 return 0;
4053 err_init:
4054 ql_adapter_reset(qdev);
4055 return err;
4056 }
4057
4058 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4059 {
4060 ql_free_mem_resources(qdev);
4061 ql_free_irq(qdev);
4062 }
4063
4064 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4065 {
4066 int status = 0;
4067
4068 if (ql_alloc_mem_resources(qdev)) {
4069 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
4070 return -ENOMEM;
4071 }
4072 status = ql_request_irq(qdev);
4073 return status;
4074 }
4075
4076 static int qlge_close(struct net_device *ndev)
4077 {
4078 struct ql_adapter *qdev = netdev_priv(ndev);
4079
4080 /* If we hit pci_channel_io_perm_failure
4081 * failure condition, then we already
4082 * brought the adapter down.
4083 */
4084 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4085 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4086 clear_bit(QL_EEH_FATAL, &qdev->flags);
4087 return 0;
4088 }
4089
4090 /*
4091 * Wait for device to recover from a reset.
4092 * (Rarely happens, but possible.)
4093 */
4094 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4095 msleep(1);
4096 ql_adapter_down(qdev);
4097 ql_release_adapter_resources(qdev);
4098 return 0;
4099 }
4100
4101 static int ql_configure_rings(struct ql_adapter *qdev)
4102 {
4103 int i;
4104 struct rx_ring *rx_ring;
4105 struct tx_ring *tx_ring;
4106 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4107 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4108 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4109
4110 qdev->lbq_buf_order = get_order(lbq_buf_len);
4111
4112 /* In a perfect world we have one RSS ring for each CPU
4113 * and each has it's own vector. To do that we ask for
4114 * cpu_cnt vectors. ql_enable_msix() will adjust the
4115 * vector count to what we actually get. We then
4116 * allocate an RSS ring for each.
4117 * Essentially, we are doing min(cpu_count, msix_vector_count).
4118 */
4119 qdev->intr_count = cpu_cnt;
4120 ql_enable_msix(qdev);
4121 /* Adjust the RSS ring count to the actual vector count. */
4122 qdev->rss_ring_count = qdev->intr_count;
4123 qdev->tx_ring_count = cpu_cnt;
4124 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4125
4126 for (i = 0; i < qdev->tx_ring_count; i++) {
4127 tx_ring = &qdev->tx_ring[i];
4128 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4129 tx_ring->qdev = qdev;
4130 tx_ring->wq_id = i;
4131 tx_ring->wq_len = qdev->tx_ring_size;
4132 tx_ring->wq_size =
4133 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4134
4135 /*
4136 * The completion queue ID for the tx rings start
4137 * immediately after the rss rings.
4138 */
4139 tx_ring->cq_id = qdev->rss_ring_count + i;
4140 }
4141
4142 for (i = 0; i < qdev->rx_ring_count; i++) {
4143 rx_ring = &qdev->rx_ring[i];
4144 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4145 rx_ring->qdev = qdev;
4146 rx_ring->cq_id = i;
4147 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4148 if (i < qdev->rss_ring_count) {
4149 /*
4150 * Inbound (RSS) queues.
4151 */
4152 rx_ring->cq_len = qdev->rx_ring_size;
4153 rx_ring->cq_size =
4154 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4155 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4156 rx_ring->lbq_size =
4157 rx_ring->lbq_len * sizeof(__le64);
4158 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4159 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4160 rx_ring->sbq_size =
4161 rx_ring->sbq_len * sizeof(__le64);
4162 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4163 rx_ring->type = RX_Q;
4164 } else {
4165 /*
4166 * Outbound queue handles outbound completions only.
4167 */
4168 /* outbound cq is same size as tx_ring it services. */
4169 rx_ring->cq_len = qdev->tx_ring_size;
4170 rx_ring->cq_size =
4171 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4172 rx_ring->lbq_len = 0;
4173 rx_ring->lbq_size = 0;
4174 rx_ring->lbq_buf_size = 0;
4175 rx_ring->sbq_len = 0;
4176 rx_ring->sbq_size = 0;
4177 rx_ring->sbq_buf_size = 0;
4178 rx_ring->type = TX_Q;
4179 }
4180 }
4181 return 0;
4182 }
4183
4184 static int qlge_open(struct net_device *ndev)
4185 {
4186 int err = 0;
4187 struct ql_adapter *qdev = netdev_priv(ndev);
4188
4189 err = ql_adapter_reset(qdev);
4190 if (err)
4191 return err;
4192
4193 err = ql_configure_rings(qdev);
4194 if (err)
4195 return err;
4196
4197 err = ql_get_adapter_resources(qdev);
4198 if (err)
4199 goto error_up;
4200
4201 err = ql_adapter_up(qdev);
4202 if (err)
4203 goto error_up;
4204
4205 return err;
4206
4207 error_up:
4208 ql_release_adapter_resources(qdev);
4209 return err;
4210 }
4211
4212 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4213 {
4214 struct rx_ring *rx_ring;
4215 int i, status;
4216 u32 lbq_buf_len;
4217
4218 /* Wait for an outstanding reset to complete. */
4219 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4220 int i = 3;
4221 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4222 netif_err(qdev, ifup, qdev->ndev,
4223 "Waiting for adapter UP...\n");
4224 ssleep(1);
4225 }
4226
4227 if (!i) {
4228 netif_err(qdev, ifup, qdev->ndev,
4229 "Timed out waiting for adapter UP\n");
4230 return -ETIMEDOUT;
4231 }
4232 }
4233
4234 status = ql_adapter_down(qdev);
4235 if (status)
4236 goto error;
4237
4238 /* Get the new rx buffer size. */
4239 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4240 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4241 qdev->lbq_buf_order = get_order(lbq_buf_len);
4242
4243 for (i = 0; i < qdev->rss_ring_count; i++) {
4244 rx_ring = &qdev->rx_ring[i];
4245 /* Set the new size. */
4246 rx_ring->lbq_buf_size = lbq_buf_len;
4247 }
4248
4249 status = ql_adapter_up(qdev);
4250 if (status)
4251 goto error;
4252
4253 return status;
4254 error:
4255 netif_alert(qdev, ifup, qdev->ndev,
4256 "Driver up/down cycle failed, closing device.\n");
4257 set_bit(QL_ADAPTER_UP, &qdev->flags);
4258 dev_close(qdev->ndev);
4259 return status;
4260 }
4261
4262 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4263 {
4264 struct ql_adapter *qdev = netdev_priv(ndev);
4265 int status;
4266
4267 if (ndev->mtu == 1500 && new_mtu == 9000) {
4268 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4269 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4270 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4271 } else
4272 return -EINVAL;
4273
4274 queue_delayed_work(qdev->workqueue,
4275 &qdev->mpi_port_cfg_work, 3*HZ);
4276
4277 ndev->mtu = new_mtu;
4278
4279 if (!netif_running(qdev->ndev)) {
4280 return 0;
4281 }
4282
4283 status = ql_change_rx_buffers(qdev);
4284 if (status) {
4285 netif_err(qdev, ifup, qdev->ndev,
4286 "Changing MTU failed.\n");
4287 }
4288
4289 return status;
4290 }
4291
4292 static struct net_device_stats *qlge_get_stats(struct net_device
4293 *ndev)
4294 {
4295 struct ql_adapter *qdev = netdev_priv(ndev);
4296 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4297 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4298 unsigned long pkts, mcast, dropped, errors, bytes;
4299 int i;
4300
4301 /* Get RX stats. */
4302 pkts = mcast = dropped = errors = bytes = 0;
4303 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4304 pkts += rx_ring->rx_packets;
4305 bytes += rx_ring->rx_bytes;
4306 dropped += rx_ring->rx_dropped;
4307 errors += rx_ring->rx_errors;
4308 mcast += rx_ring->rx_multicast;
4309 }
4310 ndev->stats.rx_packets = pkts;
4311 ndev->stats.rx_bytes = bytes;
4312 ndev->stats.rx_dropped = dropped;
4313 ndev->stats.rx_errors = errors;
4314 ndev->stats.multicast = mcast;
4315
4316 /* Get TX stats. */
4317 pkts = errors = bytes = 0;
4318 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4319 pkts += tx_ring->tx_packets;
4320 bytes += tx_ring->tx_bytes;
4321 errors += tx_ring->tx_errors;
4322 }
4323 ndev->stats.tx_packets = pkts;
4324 ndev->stats.tx_bytes = bytes;
4325 ndev->stats.tx_errors = errors;
4326 return &ndev->stats;
4327 }
4328
4329 static void qlge_set_multicast_list(struct net_device *ndev)
4330 {
4331 struct ql_adapter *qdev = netdev_priv(ndev);
4332 struct netdev_hw_addr *ha;
4333 int i, status;
4334
4335 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4336 if (status)
4337 return;
4338 /*
4339 * Set or clear promiscuous mode if a
4340 * transition is taking place.
4341 */
4342 if (ndev->flags & IFF_PROMISC) {
4343 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4344 if (ql_set_routing_reg
4345 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4346 netif_err(qdev, hw, qdev->ndev,
4347 "Failed to set promiscuous mode.\n");
4348 } else {
4349 set_bit(QL_PROMISCUOUS, &qdev->flags);
4350 }
4351 }
4352 } else {
4353 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4354 if (ql_set_routing_reg
4355 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4356 netif_err(qdev, hw, qdev->ndev,
4357 "Failed to clear promiscuous mode.\n");
4358 } else {
4359 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4360 }
4361 }
4362 }
4363
4364 /*
4365 * Set or clear all multicast mode if a
4366 * transition is taking place.
4367 */
4368 if ((ndev->flags & IFF_ALLMULTI) ||
4369 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4370 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4371 if (ql_set_routing_reg
4372 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4373 netif_err(qdev, hw, qdev->ndev,
4374 "Failed to set all-multi mode.\n");
4375 } else {
4376 set_bit(QL_ALLMULTI, &qdev->flags);
4377 }
4378 }
4379 } else {
4380 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4381 if (ql_set_routing_reg
4382 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4383 netif_err(qdev, hw, qdev->ndev,
4384 "Failed to clear all-multi mode.\n");
4385 } else {
4386 clear_bit(QL_ALLMULTI, &qdev->flags);
4387 }
4388 }
4389 }
4390
4391 if (!netdev_mc_empty(ndev)) {
4392 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4393 if (status)
4394 goto exit;
4395 i = 0;
4396 netdev_for_each_mc_addr(ha, ndev) {
4397 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4398 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4399 netif_err(qdev, hw, qdev->ndev,
4400 "Failed to loadmulticast address.\n");
4401 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4402 goto exit;
4403 }
4404 i++;
4405 }
4406 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4407 if (ql_set_routing_reg
4408 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4409 netif_err(qdev, hw, qdev->ndev,
4410 "Failed to set multicast match mode.\n");
4411 } else {
4412 set_bit(QL_ALLMULTI, &qdev->flags);
4413 }
4414 }
4415 exit:
4416 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4417 }
4418
4419 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4420 {
4421 struct ql_adapter *qdev = netdev_priv(ndev);
4422 struct sockaddr *addr = p;
4423 int status;
4424
4425 if (!is_valid_ether_addr(addr->sa_data))
4426 return -EADDRNOTAVAIL;
4427 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4428 /* Update local copy of current mac address. */
4429 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4430
4431 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4432 if (status)
4433 return status;
4434 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4435 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4436 if (status)
4437 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4438 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4439 return status;
4440 }
4441
4442 static void qlge_tx_timeout(struct net_device *ndev)
4443 {
4444 struct ql_adapter *qdev = netdev_priv(ndev);
4445 ql_queue_asic_error(qdev);
4446 }
4447
4448 static void ql_asic_reset_work(struct work_struct *work)
4449 {
4450 struct ql_adapter *qdev =
4451 container_of(work, struct ql_adapter, asic_reset_work.work);
4452 int status;
4453 rtnl_lock();
4454 status = ql_adapter_down(qdev);
4455 if (status)
4456 goto error;
4457
4458 status = ql_adapter_up(qdev);
4459 if (status)
4460 goto error;
4461
4462 /* Restore rx mode. */
4463 clear_bit(QL_ALLMULTI, &qdev->flags);
4464 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4465 qlge_set_multicast_list(qdev->ndev);
4466
4467 rtnl_unlock();
4468 return;
4469 error:
4470 netif_alert(qdev, ifup, qdev->ndev,
4471 "Driver up/down cycle failed, closing device\n");
4472
4473 set_bit(QL_ADAPTER_UP, &qdev->flags);
4474 dev_close(qdev->ndev);
4475 rtnl_unlock();
4476 }
4477
4478 static const struct nic_operations qla8012_nic_ops = {
4479 .get_flash = ql_get_8012_flash_params,
4480 .port_initialize = ql_8012_port_initialize,
4481 };
4482
4483 static const struct nic_operations qla8000_nic_ops = {
4484 .get_flash = ql_get_8000_flash_params,
4485 .port_initialize = ql_8000_port_initialize,
4486 };
4487
4488 /* Find the pcie function number for the other NIC
4489 * on this chip. Since both NIC functions share a
4490 * common firmware we have the lowest enabled function
4491 * do any common work. Examples would be resetting
4492 * after a fatal firmware error, or doing a firmware
4493 * coredump.
4494 */
4495 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4496 {
4497 int status = 0;
4498 u32 temp;
4499 u32 nic_func1, nic_func2;
4500
4501 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4502 &temp);
4503 if (status)
4504 return status;
4505
4506 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4507 MPI_TEST_NIC_FUNC_MASK);
4508 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4509 MPI_TEST_NIC_FUNC_MASK);
4510
4511 if (qdev->func == nic_func1)
4512 qdev->alt_func = nic_func2;
4513 else if (qdev->func == nic_func2)
4514 qdev->alt_func = nic_func1;
4515 else
4516 status = -EIO;
4517
4518 return status;
4519 }
4520
4521 static int ql_get_board_info(struct ql_adapter *qdev)
4522 {
4523 int status;
4524 qdev->func =
4525 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4526 if (qdev->func > 3)
4527 return -EIO;
4528
4529 status = ql_get_alt_pcie_func(qdev);
4530 if (status)
4531 return status;
4532
4533 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4534 if (qdev->port) {
4535 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4536 qdev->port_link_up = STS_PL1;
4537 qdev->port_init = STS_PI1;
4538 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4539 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4540 } else {
4541 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4542 qdev->port_link_up = STS_PL0;
4543 qdev->port_init = STS_PI0;
4544 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4545 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4546 }
4547 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4548 qdev->device_id = qdev->pdev->device;
4549 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4550 qdev->nic_ops = &qla8012_nic_ops;
4551 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4552 qdev->nic_ops = &qla8000_nic_ops;
4553 return status;
4554 }
4555
4556 static void ql_release_all(struct pci_dev *pdev)
4557 {
4558 struct net_device *ndev = pci_get_drvdata(pdev);
4559 struct ql_adapter *qdev = netdev_priv(ndev);
4560
4561 if (qdev->workqueue) {
4562 destroy_workqueue(qdev->workqueue);
4563 qdev->workqueue = NULL;
4564 }
4565
4566 if (qdev->reg_base)
4567 iounmap(qdev->reg_base);
4568 if (qdev->doorbell_area)
4569 iounmap(qdev->doorbell_area);
4570 vfree(qdev->mpi_coredump);
4571 pci_release_regions(pdev);
4572 }
4573
4574 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4575 int cards_found)
4576 {
4577 struct ql_adapter *qdev = netdev_priv(ndev);
4578 int err = 0;
4579
4580 memset((void *)qdev, 0, sizeof(*qdev));
4581 err = pci_enable_device(pdev);
4582 if (err) {
4583 dev_err(&pdev->dev, "PCI device enable failed.\n");
4584 return err;
4585 }
4586
4587 qdev->ndev = ndev;
4588 qdev->pdev = pdev;
4589 pci_set_drvdata(pdev, ndev);
4590
4591 /* Set PCIe read request size */
4592 err = pcie_set_readrq(pdev, 4096);
4593 if (err) {
4594 dev_err(&pdev->dev, "Set readrq failed.\n");
4595 goto err_out1;
4596 }
4597
4598 err = pci_request_regions(pdev, DRV_NAME);
4599 if (err) {
4600 dev_err(&pdev->dev, "PCI region request failed.\n");
4601 return err;
4602 }
4603
4604 pci_set_master(pdev);
4605 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4606 set_bit(QL_DMA64, &qdev->flags);
4607 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4608 } else {
4609 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4610 if (!err)
4611 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4612 }
4613
4614 if (err) {
4615 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4616 goto err_out2;
4617 }
4618
4619 /* Set PCIe reset type for EEH to fundamental. */
4620 pdev->needs_freset = 1;
4621 pci_save_state(pdev);
4622 qdev->reg_base =
4623 ioremap_nocache(pci_resource_start(pdev, 1),
4624 pci_resource_len(pdev, 1));
4625 if (!qdev->reg_base) {
4626 dev_err(&pdev->dev, "Register mapping failed.\n");
4627 err = -ENOMEM;
4628 goto err_out2;
4629 }
4630
4631 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4632 qdev->doorbell_area =
4633 ioremap_nocache(pci_resource_start(pdev, 3),
4634 pci_resource_len(pdev, 3));
4635 if (!qdev->doorbell_area) {
4636 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4637 err = -ENOMEM;
4638 goto err_out2;
4639 }
4640
4641 err = ql_get_board_info(qdev);
4642 if (err) {
4643 dev_err(&pdev->dev, "Register access failed.\n");
4644 err = -EIO;
4645 goto err_out2;
4646 }
4647 qdev->msg_enable = netif_msg_init(debug, default_msg);
4648 spin_lock_init(&qdev->hw_lock);
4649 spin_lock_init(&qdev->stats_lock);
4650
4651 if (qlge_mpi_coredump) {
4652 qdev->mpi_coredump =
4653 vmalloc(sizeof(struct ql_mpi_coredump));
4654 if (qdev->mpi_coredump == NULL) {
4655 err = -ENOMEM;
4656 goto err_out2;
4657 }
4658 if (qlge_force_coredump)
4659 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4660 }
4661 /* make sure the EEPROM is good */
4662 err = qdev->nic_ops->get_flash(qdev);
4663 if (err) {
4664 dev_err(&pdev->dev, "Invalid FLASH.\n");
4665 goto err_out2;
4666 }
4667
4668 /* Keep local copy of current mac address. */
4669 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4670
4671 /* Set up the default ring sizes. */
4672 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4673 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4674
4675 /* Set up the coalescing parameters. */
4676 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4677 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4678 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4679 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4680
4681 /*
4682 * Set up the operating parameters.
4683 */
4684 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4685 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4686 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4687 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4688 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4689 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4690 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4691 init_completion(&qdev->ide_completion);
4692 mutex_init(&qdev->mpi_mutex);
4693
4694 if (!cards_found) {
4695 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4696 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4697 DRV_NAME, DRV_VERSION);
4698 }
4699 return 0;
4700 err_out2:
4701 ql_release_all(pdev);
4702 err_out1:
4703 pci_disable_device(pdev);
4704 return err;
4705 }
4706
4707 static const struct net_device_ops qlge_netdev_ops = {
4708 .ndo_open = qlge_open,
4709 .ndo_stop = qlge_close,
4710 .ndo_start_xmit = qlge_send,
4711 .ndo_change_mtu = qlge_change_mtu,
4712 .ndo_get_stats = qlge_get_stats,
4713 .ndo_set_rx_mode = qlge_set_multicast_list,
4714 .ndo_set_mac_address = qlge_set_mac_address,
4715 .ndo_validate_addr = eth_validate_addr,
4716 .ndo_tx_timeout = qlge_tx_timeout,
4717 .ndo_fix_features = qlge_fix_features,
4718 .ndo_set_features = qlge_set_features,
4719 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4720 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4721 };
4722
4723 static void ql_timer(unsigned long data)
4724 {
4725 struct ql_adapter *qdev = (struct ql_adapter *)data;
4726 u32 var = 0;
4727
4728 var = ql_read32(qdev, STS);
4729 if (pci_channel_offline(qdev->pdev)) {
4730 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4731 return;
4732 }
4733
4734 mod_timer(&qdev->timer, jiffies + (5*HZ));
4735 }
4736
4737 static int qlge_probe(struct pci_dev *pdev,
4738 const struct pci_device_id *pci_entry)
4739 {
4740 struct net_device *ndev = NULL;
4741 struct ql_adapter *qdev = NULL;
4742 static int cards_found = 0;
4743 int err = 0;
4744
4745 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4746 min(MAX_CPUS, netif_get_num_default_rss_queues()));
4747 if (!ndev)
4748 return -ENOMEM;
4749
4750 err = ql_init_device(pdev, ndev, cards_found);
4751 if (err < 0) {
4752 free_netdev(ndev);
4753 return err;
4754 }
4755
4756 qdev = netdev_priv(ndev);
4757 SET_NETDEV_DEV(ndev, &pdev->dev);
4758 ndev->hw_features = NETIF_F_SG |
4759 NETIF_F_IP_CSUM |
4760 NETIF_F_TSO |
4761 NETIF_F_TSO_ECN |
4762 NETIF_F_HW_VLAN_CTAG_TX |
4763 NETIF_F_HW_VLAN_CTAG_RX |
4764 NETIF_F_HW_VLAN_CTAG_FILTER |
4765 NETIF_F_RXCSUM;
4766 ndev->features = ndev->hw_features;
4767 ndev->vlan_features = ndev->hw_features;
4768 /* vlan gets same features (except vlan filter) */
4769 ndev->vlan_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4770
4771 if (test_bit(QL_DMA64, &qdev->flags))
4772 ndev->features |= NETIF_F_HIGHDMA;
4773
4774 /*
4775 * Set up net_device structure.
4776 */
4777 ndev->tx_queue_len = qdev->tx_ring_size;
4778 ndev->irq = pdev->irq;
4779
4780 ndev->netdev_ops = &qlge_netdev_ops;
4781 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4782 ndev->watchdog_timeo = 10 * HZ;
4783
4784 err = register_netdev(ndev);
4785 if (err) {
4786 dev_err(&pdev->dev, "net device registration failed.\n");
4787 ql_release_all(pdev);
4788 pci_disable_device(pdev);
4789 free_netdev(ndev);
4790 return err;
4791 }
4792 /* Start up the timer to trigger EEH if
4793 * the bus goes dead
4794 */
4795 init_timer_deferrable(&qdev->timer);
4796 qdev->timer.data = (unsigned long)qdev;
4797 qdev->timer.function = ql_timer;
4798 qdev->timer.expires = jiffies + (5*HZ);
4799 add_timer(&qdev->timer);
4800 ql_link_off(qdev);
4801 ql_display_dev_info(ndev);
4802 atomic_set(&qdev->lb_count, 0);
4803 cards_found++;
4804 return 0;
4805 }
4806
4807 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4808 {
4809 return qlge_send(skb, ndev);
4810 }
4811
4812 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4813 {
4814 return ql_clean_inbound_rx_ring(rx_ring, budget);
4815 }
4816
4817 static void qlge_remove(struct pci_dev *pdev)
4818 {
4819 struct net_device *ndev = pci_get_drvdata(pdev);
4820 struct ql_adapter *qdev = netdev_priv(ndev);
4821 del_timer_sync(&qdev->timer);
4822 ql_cancel_all_work_sync(qdev);
4823 unregister_netdev(ndev);
4824 ql_release_all(pdev);
4825 pci_disable_device(pdev);
4826 free_netdev(ndev);
4827 }
4828
4829 /* Clean up resources without touching hardware. */
4830 static void ql_eeh_close(struct net_device *ndev)
4831 {
4832 int i;
4833 struct ql_adapter *qdev = netdev_priv(ndev);
4834
4835 if (netif_carrier_ok(ndev)) {
4836 netif_carrier_off(ndev);
4837 netif_stop_queue(ndev);
4838 }
4839
4840 /* Disabling the timer */
4841 del_timer_sync(&qdev->timer);
4842 ql_cancel_all_work_sync(qdev);
4843
4844 for (i = 0; i < qdev->rss_ring_count; i++)
4845 netif_napi_del(&qdev->rx_ring[i].napi);
4846
4847 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4848 ql_tx_ring_clean(qdev);
4849 ql_free_rx_buffers(qdev);
4850 ql_release_adapter_resources(qdev);
4851 }
4852
4853 /*
4854 * This callback is called by the PCI subsystem whenever
4855 * a PCI bus error is detected.
4856 */
4857 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4858 enum pci_channel_state state)
4859 {
4860 struct net_device *ndev = pci_get_drvdata(pdev);
4861 struct ql_adapter *qdev = netdev_priv(ndev);
4862
4863 switch (state) {
4864 case pci_channel_io_normal:
4865 return PCI_ERS_RESULT_CAN_RECOVER;
4866 case pci_channel_io_frozen:
4867 netif_device_detach(ndev);
4868 if (netif_running(ndev))
4869 ql_eeh_close(ndev);
4870 pci_disable_device(pdev);
4871 return PCI_ERS_RESULT_NEED_RESET;
4872 case pci_channel_io_perm_failure:
4873 dev_err(&pdev->dev,
4874 "%s: pci_channel_io_perm_failure.\n", __func__);
4875 ql_eeh_close(ndev);
4876 set_bit(QL_EEH_FATAL, &qdev->flags);
4877 return PCI_ERS_RESULT_DISCONNECT;
4878 }
4879
4880 /* Request a slot reset. */
4881 return PCI_ERS_RESULT_NEED_RESET;
4882 }
4883
4884 /*
4885 * This callback is called after the PCI buss has been reset.
4886 * Basically, this tries to restart the card from scratch.
4887 * This is a shortened version of the device probe/discovery code,
4888 * it resembles the first-half of the () routine.
4889 */
4890 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4891 {
4892 struct net_device *ndev = pci_get_drvdata(pdev);
4893 struct ql_adapter *qdev = netdev_priv(ndev);
4894
4895 pdev->error_state = pci_channel_io_normal;
4896
4897 pci_restore_state(pdev);
4898 if (pci_enable_device(pdev)) {
4899 netif_err(qdev, ifup, qdev->ndev,
4900 "Cannot re-enable PCI device after reset.\n");
4901 return PCI_ERS_RESULT_DISCONNECT;
4902 }
4903 pci_set_master(pdev);
4904
4905 if (ql_adapter_reset(qdev)) {
4906 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4907 set_bit(QL_EEH_FATAL, &qdev->flags);
4908 return PCI_ERS_RESULT_DISCONNECT;
4909 }
4910
4911 return PCI_ERS_RESULT_RECOVERED;
4912 }
4913
4914 static void qlge_io_resume(struct pci_dev *pdev)
4915 {
4916 struct net_device *ndev = pci_get_drvdata(pdev);
4917 struct ql_adapter *qdev = netdev_priv(ndev);
4918 int err = 0;
4919
4920 if (netif_running(ndev)) {
4921 err = qlge_open(ndev);
4922 if (err) {
4923 netif_err(qdev, ifup, qdev->ndev,
4924 "Device initialization failed after reset.\n");
4925 return;
4926 }
4927 } else {
4928 netif_err(qdev, ifup, qdev->ndev,
4929 "Device was not running prior to EEH.\n");
4930 }
4931 mod_timer(&qdev->timer, jiffies + (5*HZ));
4932 netif_device_attach(ndev);
4933 }
4934
4935 static const struct pci_error_handlers qlge_err_handler = {
4936 .error_detected = qlge_io_error_detected,
4937 .slot_reset = qlge_io_slot_reset,
4938 .resume = qlge_io_resume,
4939 };
4940
4941 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4942 {
4943 struct net_device *ndev = pci_get_drvdata(pdev);
4944 struct ql_adapter *qdev = netdev_priv(ndev);
4945 int err;
4946
4947 netif_device_detach(ndev);
4948 del_timer_sync(&qdev->timer);
4949
4950 if (netif_running(ndev)) {
4951 err = ql_adapter_down(qdev);
4952 if (!err)
4953 return err;
4954 }
4955
4956 ql_wol(qdev);
4957 err = pci_save_state(pdev);
4958 if (err)
4959 return err;
4960
4961 pci_disable_device(pdev);
4962
4963 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4964
4965 return 0;
4966 }
4967
4968 #ifdef CONFIG_PM
4969 static int qlge_resume(struct pci_dev *pdev)
4970 {
4971 struct net_device *ndev = pci_get_drvdata(pdev);
4972 struct ql_adapter *qdev = netdev_priv(ndev);
4973 int err;
4974
4975 pci_set_power_state(pdev, PCI_D0);
4976 pci_restore_state(pdev);
4977 err = pci_enable_device(pdev);
4978 if (err) {
4979 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4980 return err;
4981 }
4982 pci_set_master(pdev);
4983
4984 pci_enable_wake(pdev, PCI_D3hot, 0);
4985 pci_enable_wake(pdev, PCI_D3cold, 0);
4986
4987 if (netif_running(ndev)) {
4988 err = ql_adapter_up(qdev);
4989 if (err)
4990 return err;
4991 }
4992
4993 mod_timer(&qdev->timer, jiffies + (5*HZ));
4994 netif_device_attach(ndev);
4995
4996 return 0;
4997 }
4998 #endif /* CONFIG_PM */
4999
5000 static void qlge_shutdown(struct pci_dev *pdev)
5001 {
5002 qlge_suspend(pdev, PMSG_SUSPEND);
5003 }
5004
5005 static struct pci_driver qlge_driver = {
5006 .name = DRV_NAME,
5007 .id_table = qlge_pci_tbl,
5008 .probe = qlge_probe,
5009 .remove = qlge_remove,
5010 #ifdef CONFIG_PM
5011 .suspend = qlge_suspend,
5012 .resume = qlge_resume,
5013 #endif
5014 .shutdown = qlge_shutdown,
5015 .err_handler = &qlge_err_handler
5016 };
5017
5018 module_pci_driver(qlge_driver);
This page took 0.224452 seconds and 5 git commands to generate.