Merge tag 'v4.0-rc1' into perf/core, to refresh the tree
[deliverable/linux.git] / drivers / net / ethernet / realtek / 8139cp.c
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
18
19 See the file COPYING in this distribution for more information.
20
21 Contributors:
22
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
26
27 TODO:
28 * Test Tx checksumming thoroughly
29
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
42
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
46
47 */
48
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50
51 #define DRV_NAME "8139cp"
52 #define DRV_VERSION "1.3"
53 #define DRV_RELDATE "Mar 22, 2004"
54
55
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <asm/uaccess.h>
80
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99
100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
101 NETIF_MSG_PROBE | \
102 NETIF_MSG_LINK)
103 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE (0xff + 1)
106 #define CP_REGS_VER 1 /* version 1 */
107 #define CP_RX_RING_SIZE 64
108 #define CP_TX_RING_SIZE 64
109 #define CP_RING_BYTES \
110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
112 CP_STATS_SIZE)
113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP) \
116 (((CP)->tx_tail <= (CP)->tx_head) ? \
117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
118 (CP)->tx_tail - (CP)->tx_head - 1)
119
120 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY 32
122
123 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
125 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
128
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT (6*HZ)
131
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
134 #define CP_MAX_MTU 4096
135
136 enum {
137 /* NIC register offsets */
138 MAC0 = 0x00, /* Ethernet hardware address. */
139 MAR0 = 0x08, /* Multicast filter. */
140 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
141 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
142 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
143 Cmd = 0x37, /* Command register */
144 IntrMask = 0x3C, /* Interrupt mask */
145 IntrStatus = 0x3E, /* Interrupt status */
146 TxConfig = 0x40, /* Tx configuration */
147 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
148 RxConfig = 0x44, /* Rx configuration */
149 RxMissed = 0x4C, /* 24 bits valid, write clears */
150 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 Config1 = 0x52, /* Config1 */
152 Config3 = 0x59, /* Config3 */
153 Config4 = 0x5A, /* Config4 */
154 MultiIntr = 0x5C, /* Multiple interrupt select */
155 BasicModeCtrl = 0x62, /* MII BMCR */
156 BasicModeStatus = 0x64, /* MII BMSR */
157 NWayAdvert = 0x66, /* MII ADVERTISE */
158 NWayLPAR = 0x68, /* MII LPA */
159 NWayExpansion = 0x6A, /* MII Expansion */
160 Config5 = 0xD8, /* Config5 */
161 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
162 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
163 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
164 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
165 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
166 TxThresh = 0xEC, /* Early Tx threshold */
167 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
168 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
169
170 /* Tx and Rx status descriptors */
171 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
172 RingEnd = (1 << 30), /* End of descriptor ring */
173 FirstFrag = (1 << 29), /* First segment of a packet */
174 LastFrag = (1 << 28), /* Final segment of a packet */
175 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
176 MSSShift = 16, /* MSS value position */
177 MSSMask = 0xfff, /* MSS value: 11 bits */
178 TxError = (1 << 23), /* Tx error summary */
179 RxError = (1 << 20), /* Rx error summary */
180 IPCS = (1 << 18), /* Calculate IP checksum */
181 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
182 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
183 TxVlanTag = (1 << 17), /* Add VLAN tag */
184 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
185 IPFail = (1 << 15), /* IP checksum failed */
186 UDPFail = (1 << 14), /* UDP/IP checksum failed */
187 TCPFail = (1 << 13), /* TCP/IP checksum failed */
188 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
189 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
190 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
191 RxProtoTCP = 1,
192 RxProtoUDP = 2,
193 RxProtoIP = 3,
194 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
195 TxOWC = (1 << 22), /* Tx Out-of-window collision */
196 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
197 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
198 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
199 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
200 RxErrFrame = (1 << 27), /* Rx frame alignment error */
201 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
202 RxErrCRC = (1 << 18), /* Rx CRC error */
203 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
204 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
205 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
206
207 /* StatsAddr register */
208 DumpStats = (1 << 3), /* Begin stats dump */
209
210 /* RxConfig register */
211 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
212 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
213 AcceptErr = 0x20, /* Accept packets with CRC errors */
214 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
215 AcceptBroadcast = 0x08, /* Accept broadcast packets */
216 AcceptMulticast = 0x04, /* Accept multicast packets */
217 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
218 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
219
220 /* IntrMask / IntrStatus registers */
221 PciErr = (1 << 15), /* System error on the PCI bus */
222 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
223 LenChg = (1 << 13), /* Cable length change */
224 SWInt = (1 << 8), /* Software-requested interrupt */
225 TxEmpty = (1 << 7), /* No Tx descriptors available */
226 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
227 LinkChg = (1 << 5), /* Packet underrun, or link change */
228 RxEmpty = (1 << 4), /* No Rx descriptors available */
229 TxErr = (1 << 3), /* Tx error */
230 TxOK = (1 << 2), /* Tx packet sent */
231 RxErr = (1 << 1), /* Rx error */
232 RxOK = (1 << 0), /* Rx packet received */
233 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
234 but hardware likes to raise it */
235
236 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
237 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
238 RxErr | RxOK | IntrResvd,
239
240 /* C mode command register */
241 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
242 RxOn = (1 << 3), /* Rx mode enable */
243 TxOn = (1 << 2), /* Tx mode enable */
244
245 /* C+ mode command register */
246 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
247 RxChkSum = (1 << 5), /* Rx checksum offload enable */
248 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
249 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
250 CpRxOn = (1 << 1), /* Rx mode enable */
251 CpTxOn = (1 << 0), /* Tx mode enable */
252
253 /* Cfg9436 EEPROM control register */
254 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
255 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
256
257 /* TxConfig register */
258 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
259 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
260
261 /* Early Tx Threshold register */
262 TxThreshMask = 0x3f, /* Mask bits 5-0 */
263 TxThreshMax = 2048, /* Max early Tx threshold */
264
265 /* Config1 register */
266 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
267 LWACT = (1 << 4), /* LWAKE active mode */
268 PMEnable = (1 << 0), /* Enable various PM features of chip */
269
270 /* Config3 register */
271 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
272 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
273 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
274
275 /* Config4 register */
276 LWPTN = (1 << 1), /* LWAKE Pattern */
277 LWPME = (1 << 4), /* LANWAKE vs PMEB */
278
279 /* Config5 register */
280 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
281 MWF = (1 << 5), /* Accept Multicast wakeup frame */
282 UWF = (1 << 4), /* Accept Unicast wakeup frame */
283 LANWake = (1 << 1), /* Enable LANWake signal */
284 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
285
286 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
287 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
288 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
289 };
290
291 static const unsigned int cp_rx_config =
292 (RX_FIFO_THRESH << RxCfgFIFOShift) |
293 (RX_DMA_BURST << RxCfgDMAShift);
294
295 struct cp_desc {
296 __le32 opts1;
297 __le32 opts2;
298 __le64 addr;
299 };
300
301 struct cp_dma_stats {
302 __le64 tx_ok;
303 __le64 rx_ok;
304 __le64 tx_err;
305 __le32 rx_err;
306 __le16 rx_fifo;
307 __le16 frame_align;
308 __le32 tx_ok_1col;
309 __le32 tx_ok_mcol;
310 __le64 rx_ok_phys;
311 __le64 rx_ok_bcast;
312 __le32 rx_ok_mcast;
313 __le16 tx_abort;
314 __le16 tx_underrun;
315 } __packed;
316
317 struct cp_extra_stats {
318 unsigned long rx_frags;
319 };
320
321 struct cp_private {
322 void __iomem *regs;
323 struct net_device *dev;
324 spinlock_t lock;
325 u32 msg_enable;
326
327 struct napi_struct napi;
328
329 struct pci_dev *pdev;
330 u32 rx_config;
331 u16 cpcmd;
332
333 struct cp_extra_stats cp_stats;
334
335 unsigned rx_head ____cacheline_aligned;
336 unsigned rx_tail;
337 struct cp_desc *rx_ring;
338 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
339
340 unsigned tx_head ____cacheline_aligned;
341 unsigned tx_tail;
342 struct cp_desc *tx_ring;
343 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
344
345 unsigned rx_buf_sz;
346 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
347
348 dma_addr_t ring_dma;
349
350 struct mii_if_info mii_if;
351 };
352
353 #define cpr8(reg) readb(cp->regs + (reg))
354 #define cpr16(reg) readw(cp->regs + (reg))
355 #define cpr32(reg) readl(cp->regs + (reg))
356 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
357 #define cpw16(reg,val) writew((val), cp->regs + (reg))
358 #define cpw32(reg,val) writel((val), cp->regs + (reg))
359 #define cpw8_f(reg,val) do { \
360 writeb((val), cp->regs + (reg)); \
361 readb(cp->regs + (reg)); \
362 } while (0)
363 #define cpw16_f(reg,val) do { \
364 writew((val), cp->regs + (reg)); \
365 readw(cp->regs + (reg)); \
366 } while (0)
367 #define cpw32_f(reg,val) do { \
368 writel((val), cp->regs + (reg)); \
369 readl(cp->regs + (reg)); \
370 } while (0)
371
372
373 static void __cp_set_rx_mode (struct net_device *dev);
374 static void cp_tx (struct cp_private *cp);
375 static void cp_clean_rings (struct cp_private *cp);
376 #ifdef CONFIG_NET_POLL_CONTROLLER
377 static void cp_poll_controller(struct net_device *dev);
378 #endif
379 static int cp_get_eeprom_len(struct net_device *dev);
380 static int cp_get_eeprom(struct net_device *dev,
381 struct ethtool_eeprom *eeprom, u8 *data);
382 static int cp_set_eeprom(struct net_device *dev,
383 struct ethtool_eeprom *eeprom, u8 *data);
384
385 static struct {
386 const char str[ETH_GSTRING_LEN];
387 } ethtool_stats_keys[] = {
388 { "tx_ok" },
389 { "rx_ok" },
390 { "tx_err" },
391 { "rx_err" },
392 { "rx_fifo" },
393 { "frame_align" },
394 { "tx_ok_1col" },
395 { "tx_ok_mcol" },
396 { "rx_ok_phys" },
397 { "rx_ok_bcast" },
398 { "rx_ok_mcast" },
399 { "tx_abort" },
400 { "tx_underrun" },
401 { "rx_frags" },
402 };
403
404
405 static inline void cp_set_rxbufsize (struct cp_private *cp)
406 {
407 unsigned int mtu = cp->dev->mtu;
408
409 if (mtu > ETH_DATA_LEN)
410 /* MTU + ethernet header + FCS + optional VLAN tag */
411 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
412 else
413 cp->rx_buf_sz = PKT_BUF_SZ;
414 }
415
416 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
417 struct cp_desc *desc)
418 {
419 u32 opts2 = le32_to_cpu(desc->opts2);
420
421 skb->protocol = eth_type_trans (skb, cp->dev);
422
423 cp->dev->stats.rx_packets++;
424 cp->dev->stats.rx_bytes += skb->len;
425
426 if (opts2 & RxVlanTagged)
427 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
428
429 napi_gro_receive(&cp->napi, skb);
430 }
431
432 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
433 u32 status, u32 len)
434 {
435 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
436 rx_tail, status, len);
437 cp->dev->stats.rx_errors++;
438 if (status & RxErrFrame)
439 cp->dev->stats.rx_frame_errors++;
440 if (status & RxErrCRC)
441 cp->dev->stats.rx_crc_errors++;
442 if ((status & RxErrRunt) || (status & RxErrLong))
443 cp->dev->stats.rx_length_errors++;
444 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
445 cp->dev->stats.rx_length_errors++;
446 if (status & RxErrFIFO)
447 cp->dev->stats.rx_fifo_errors++;
448 }
449
450 static inline unsigned int cp_rx_csum_ok (u32 status)
451 {
452 unsigned int protocol = (status >> 16) & 0x3;
453
454 if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
455 ((protocol == RxProtoUDP) && !(status & UDPFail)))
456 return 1;
457 else
458 return 0;
459 }
460
461 static int cp_rx_poll(struct napi_struct *napi, int budget)
462 {
463 struct cp_private *cp = container_of(napi, struct cp_private, napi);
464 struct net_device *dev = cp->dev;
465 unsigned int rx_tail = cp->rx_tail;
466 int rx;
467
468 rx_status_loop:
469 rx = 0;
470 cpw16(IntrStatus, cp_rx_intr_mask);
471
472 while (rx < budget) {
473 u32 status, len;
474 dma_addr_t mapping, new_mapping;
475 struct sk_buff *skb, *new_skb;
476 struct cp_desc *desc;
477 const unsigned buflen = cp->rx_buf_sz;
478
479 skb = cp->rx_skb[rx_tail];
480 BUG_ON(!skb);
481
482 desc = &cp->rx_ring[rx_tail];
483 status = le32_to_cpu(desc->opts1);
484 if (status & DescOwn)
485 break;
486
487 len = (status & 0x1fff) - 4;
488 mapping = le64_to_cpu(desc->addr);
489
490 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
491 /* we don't support incoming fragmented frames.
492 * instead, we attempt to ensure that the
493 * pre-allocated RX skbs are properly sized such
494 * that RX fragments are never encountered
495 */
496 cp_rx_err_acct(cp, rx_tail, status, len);
497 dev->stats.rx_dropped++;
498 cp->cp_stats.rx_frags++;
499 goto rx_next;
500 }
501
502 if (status & (RxError | RxErrFIFO)) {
503 cp_rx_err_acct(cp, rx_tail, status, len);
504 goto rx_next;
505 }
506
507 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
508 rx_tail, status, len);
509
510 new_skb = napi_alloc_skb(napi, buflen);
511 if (!new_skb) {
512 dev->stats.rx_dropped++;
513 goto rx_next;
514 }
515
516 new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
517 PCI_DMA_FROMDEVICE);
518 if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
519 dev->stats.rx_dropped++;
520 kfree_skb(new_skb);
521 goto rx_next;
522 }
523
524 dma_unmap_single(&cp->pdev->dev, mapping,
525 buflen, PCI_DMA_FROMDEVICE);
526
527 /* Handle checksum offloading for incoming packets. */
528 if (cp_rx_csum_ok(status))
529 skb->ip_summed = CHECKSUM_UNNECESSARY;
530 else
531 skb_checksum_none_assert(skb);
532
533 skb_put(skb, len);
534
535 cp->rx_skb[rx_tail] = new_skb;
536
537 cp_rx_skb(cp, skb, desc);
538 rx++;
539 mapping = new_mapping;
540
541 rx_next:
542 cp->rx_ring[rx_tail].opts2 = 0;
543 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
544 if (rx_tail == (CP_RX_RING_SIZE - 1))
545 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
546 cp->rx_buf_sz);
547 else
548 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
549 rx_tail = NEXT_RX(rx_tail);
550 }
551
552 cp->rx_tail = rx_tail;
553
554 /* if we did not reach work limit, then we're done with
555 * this round of polling
556 */
557 if (rx < budget) {
558 unsigned long flags;
559
560 if (cpr16(IntrStatus) & cp_rx_intr_mask)
561 goto rx_status_loop;
562
563 napi_gro_flush(napi, false);
564 spin_lock_irqsave(&cp->lock, flags);
565 __napi_complete(napi);
566 cpw16_f(IntrMask, cp_intr_mask);
567 spin_unlock_irqrestore(&cp->lock, flags);
568 }
569
570 return rx;
571 }
572
573 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
574 {
575 struct net_device *dev = dev_instance;
576 struct cp_private *cp;
577 int handled = 0;
578 u16 status;
579
580 if (unlikely(dev == NULL))
581 return IRQ_NONE;
582 cp = netdev_priv(dev);
583
584 spin_lock(&cp->lock);
585
586 status = cpr16(IntrStatus);
587 if (!status || (status == 0xFFFF))
588 goto out_unlock;
589
590 handled = 1;
591
592 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
593 status, cpr8(Cmd), cpr16(CpCmd));
594
595 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
596
597 /* close possible race's with dev_close */
598 if (unlikely(!netif_running(dev))) {
599 cpw16(IntrMask, 0);
600 goto out_unlock;
601 }
602
603 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
604 if (napi_schedule_prep(&cp->napi)) {
605 cpw16_f(IntrMask, cp_norx_intr_mask);
606 __napi_schedule(&cp->napi);
607 }
608
609 if (status & (TxOK | TxErr | TxEmpty | SWInt))
610 cp_tx(cp);
611 if (status & LinkChg)
612 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
613
614
615 if (status & PciErr) {
616 u16 pci_status;
617
618 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
619 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
620 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
621 status, pci_status);
622
623 /* TODO: reset hardware */
624 }
625
626 out_unlock:
627 spin_unlock(&cp->lock);
628
629 return IRQ_RETVAL(handled);
630 }
631
632 #ifdef CONFIG_NET_POLL_CONTROLLER
633 /*
634 * Polling receive - used by netconsole and other diagnostic tools
635 * to allow network i/o with interrupts disabled.
636 */
637 static void cp_poll_controller(struct net_device *dev)
638 {
639 struct cp_private *cp = netdev_priv(dev);
640 const int irq = cp->pdev->irq;
641
642 disable_irq(irq);
643 cp_interrupt(irq, dev);
644 enable_irq(irq);
645 }
646 #endif
647
648 static void cp_tx (struct cp_private *cp)
649 {
650 unsigned tx_head = cp->tx_head;
651 unsigned tx_tail = cp->tx_tail;
652 unsigned bytes_compl = 0, pkts_compl = 0;
653
654 while (tx_tail != tx_head) {
655 struct cp_desc *txd = cp->tx_ring + tx_tail;
656 struct sk_buff *skb;
657 u32 status;
658
659 rmb();
660 status = le32_to_cpu(txd->opts1);
661 if (status & DescOwn)
662 break;
663
664 skb = cp->tx_skb[tx_tail];
665 BUG_ON(!skb);
666
667 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
668 le32_to_cpu(txd->opts1) & 0xffff,
669 PCI_DMA_TODEVICE);
670
671 if (status & LastFrag) {
672 if (status & (TxError | TxFIFOUnder)) {
673 netif_dbg(cp, tx_err, cp->dev,
674 "tx err, status 0x%x\n", status);
675 cp->dev->stats.tx_errors++;
676 if (status & TxOWC)
677 cp->dev->stats.tx_window_errors++;
678 if (status & TxMaxCol)
679 cp->dev->stats.tx_aborted_errors++;
680 if (status & TxLinkFail)
681 cp->dev->stats.tx_carrier_errors++;
682 if (status & TxFIFOUnder)
683 cp->dev->stats.tx_fifo_errors++;
684 } else {
685 cp->dev->stats.collisions +=
686 ((status >> TxColCntShift) & TxColCntMask);
687 cp->dev->stats.tx_packets++;
688 cp->dev->stats.tx_bytes += skb->len;
689 netif_dbg(cp, tx_done, cp->dev,
690 "tx done, slot %d\n", tx_tail);
691 }
692 bytes_compl += skb->len;
693 pkts_compl++;
694 dev_kfree_skb_irq(skb);
695 }
696
697 cp->tx_skb[tx_tail] = NULL;
698
699 tx_tail = NEXT_TX(tx_tail);
700 }
701
702 cp->tx_tail = tx_tail;
703
704 netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
705 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
706 netif_wake_queue(cp->dev);
707 }
708
709 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
710 {
711 return skb_vlan_tag_present(skb) ?
712 TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
713 }
714
715 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
716 int first, int entry_last)
717 {
718 int frag, index;
719 struct cp_desc *txd;
720 skb_frag_t *this_frag;
721 for (frag = 0; frag+first < entry_last; frag++) {
722 index = first+frag;
723 cp->tx_skb[index] = NULL;
724 txd = &cp->tx_ring[index];
725 this_frag = &skb_shinfo(skb)->frags[frag];
726 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
727 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
728 }
729 }
730
731 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
732 struct net_device *dev)
733 {
734 struct cp_private *cp = netdev_priv(dev);
735 unsigned entry;
736 u32 eor, flags;
737 unsigned long intr_flags;
738 __le32 opts2;
739 int mss = 0;
740
741 spin_lock_irqsave(&cp->lock, intr_flags);
742
743 /* This is a hard error, log it. */
744 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
745 netif_stop_queue(dev);
746 spin_unlock_irqrestore(&cp->lock, intr_flags);
747 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
748 return NETDEV_TX_BUSY;
749 }
750
751 entry = cp->tx_head;
752 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
753 mss = skb_shinfo(skb)->gso_size;
754
755 opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
756
757 if (skb_shinfo(skb)->nr_frags == 0) {
758 struct cp_desc *txd = &cp->tx_ring[entry];
759 u32 len;
760 dma_addr_t mapping;
761
762 len = skb->len;
763 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
764 if (dma_mapping_error(&cp->pdev->dev, mapping))
765 goto out_dma_error;
766
767 txd->opts2 = opts2;
768 txd->addr = cpu_to_le64(mapping);
769 wmb();
770
771 flags = eor | len | DescOwn | FirstFrag | LastFrag;
772
773 if (mss)
774 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
775 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
776 const struct iphdr *ip = ip_hdr(skb);
777 if (ip->protocol == IPPROTO_TCP)
778 flags |= IPCS | TCPCS;
779 else if (ip->protocol == IPPROTO_UDP)
780 flags |= IPCS | UDPCS;
781 else
782 WARN_ON(1); /* we need a WARN() */
783 }
784
785 txd->opts1 = cpu_to_le32(flags);
786 wmb();
787
788 cp->tx_skb[entry] = skb;
789 entry = NEXT_TX(entry);
790 } else {
791 struct cp_desc *txd;
792 u32 first_len, first_eor;
793 dma_addr_t first_mapping;
794 int frag, first_entry = entry;
795 const struct iphdr *ip = ip_hdr(skb);
796
797 /* We must give this initial chunk to the device last.
798 * Otherwise we could race with the device.
799 */
800 first_eor = eor;
801 first_len = skb_headlen(skb);
802 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
803 first_len, PCI_DMA_TODEVICE);
804 if (dma_mapping_error(&cp->pdev->dev, first_mapping))
805 goto out_dma_error;
806
807 cp->tx_skb[entry] = skb;
808 entry = NEXT_TX(entry);
809
810 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
811 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
812 u32 len;
813 u32 ctrl;
814 dma_addr_t mapping;
815
816 len = skb_frag_size(this_frag);
817 mapping = dma_map_single(&cp->pdev->dev,
818 skb_frag_address(this_frag),
819 len, PCI_DMA_TODEVICE);
820 if (dma_mapping_error(&cp->pdev->dev, mapping)) {
821 unwind_tx_frag_mapping(cp, skb, first_entry, entry);
822 goto out_dma_error;
823 }
824
825 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
826
827 ctrl = eor | len | DescOwn;
828
829 if (mss)
830 ctrl |= LargeSend |
831 ((mss & MSSMask) << MSSShift);
832 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
833 if (ip->protocol == IPPROTO_TCP)
834 ctrl |= IPCS | TCPCS;
835 else if (ip->protocol == IPPROTO_UDP)
836 ctrl |= IPCS | UDPCS;
837 else
838 BUG();
839 }
840
841 if (frag == skb_shinfo(skb)->nr_frags - 1)
842 ctrl |= LastFrag;
843
844 txd = &cp->tx_ring[entry];
845 txd->opts2 = opts2;
846 txd->addr = cpu_to_le64(mapping);
847 wmb();
848
849 txd->opts1 = cpu_to_le32(ctrl);
850 wmb();
851
852 cp->tx_skb[entry] = skb;
853 entry = NEXT_TX(entry);
854 }
855
856 txd = &cp->tx_ring[first_entry];
857 txd->opts2 = opts2;
858 txd->addr = cpu_to_le64(first_mapping);
859 wmb();
860
861 if (skb->ip_summed == CHECKSUM_PARTIAL) {
862 if (ip->protocol == IPPROTO_TCP)
863 txd->opts1 = cpu_to_le32(first_eor | first_len |
864 FirstFrag | DescOwn |
865 IPCS | TCPCS);
866 else if (ip->protocol == IPPROTO_UDP)
867 txd->opts1 = cpu_to_le32(first_eor | first_len |
868 FirstFrag | DescOwn |
869 IPCS | UDPCS);
870 else
871 BUG();
872 } else
873 txd->opts1 = cpu_to_le32(first_eor | first_len |
874 FirstFrag | DescOwn);
875 wmb();
876 }
877 cp->tx_head = entry;
878
879 netdev_sent_queue(dev, skb->len);
880 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
881 entry, skb->len);
882 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
883 netif_stop_queue(dev);
884
885 out_unlock:
886 spin_unlock_irqrestore(&cp->lock, intr_flags);
887
888 cpw8(TxPoll, NormalTxPoll);
889
890 return NETDEV_TX_OK;
891 out_dma_error:
892 dev_kfree_skb_any(skb);
893 cp->dev->stats.tx_dropped++;
894 goto out_unlock;
895 }
896
897 /* Set or clear the multicast filter for this adaptor.
898 This routine is not state sensitive and need not be SMP locked. */
899
900 static void __cp_set_rx_mode (struct net_device *dev)
901 {
902 struct cp_private *cp = netdev_priv(dev);
903 u32 mc_filter[2]; /* Multicast hash filter */
904 int rx_mode;
905
906 /* Note: do not reorder, GCC is clever about common statements. */
907 if (dev->flags & IFF_PROMISC) {
908 /* Unconditionally log net taps. */
909 rx_mode =
910 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
911 AcceptAllPhys;
912 mc_filter[1] = mc_filter[0] = 0xffffffff;
913 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
914 (dev->flags & IFF_ALLMULTI)) {
915 /* Too many to filter perfectly -- accept all multicasts. */
916 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
917 mc_filter[1] = mc_filter[0] = 0xffffffff;
918 } else {
919 struct netdev_hw_addr *ha;
920 rx_mode = AcceptBroadcast | AcceptMyPhys;
921 mc_filter[1] = mc_filter[0] = 0;
922 netdev_for_each_mc_addr(ha, dev) {
923 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
924
925 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
926 rx_mode |= AcceptMulticast;
927 }
928 }
929
930 /* We can safely update without stopping the chip. */
931 cp->rx_config = cp_rx_config | rx_mode;
932 cpw32_f(RxConfig, cp->rx_config);
933
934 cpw32_f (MAR0 + 0, mc_filter[0]);
935 cpw32_f (MAR0 + 4, mc_filter[1]);
936 }
937
938 static void cp_set_rx_mode (struct net_device *dev)
939 {
940 unsigned long flags;
941 struct cp_private *cp = netdev_priv(dev);
942
943 spin_lock_irqsave (&cp->lock, flags);
944 __cp_set_rx_mode(dev);
945 spin_unlock_irqrestore (&cp->lock, flags);
946 }
947
948 static void __cp_get_stats(struct cp_private *cp)
949 {
950 /* only lower 24 bits valid; write any value to clear */
951 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
952 cpw32 (RxMissed, 0);
953 }
954
955 static struct net_device_stats *cp_get_stats(struct net_device *dev)
956 {
957 struct cp_private *cp = netdev_priv(dev);
958 unsigned long flags;
959
960 /* The chip only need report frame silently dropped. */
961 spin_lock_irqsave(&cp->lock, flags);
962 if (netif_running(dev) && netif_device_present(dev))
963 __cp_get_stats(cp);
964 spin_unlock_irqrestore(&cp->lock, flags);
965
966 return &dev->stats;
967 }
968
969 static void cp_stop_hw (struct cp_private *cp)
970 {
971 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
972 cpw16_f(IntrMask, 0);
973 cpw8(Cmd, 0);
974 cpw16_f(CpCmd, 0);
975 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
976
977 cp->rx_tail = 0;
978 cp->tx_head = cp->tx_tail = 0;
979
980 netdev_reset_queue(cp->dev);
981 }
982
983 static void cp_reset_hw (struct cp_private *cp)
984 {
985 unsigned work = 1000;
986
987 cpw8(Cmd, CmdReset);
988
989 while (work--) {
990 if (!(cpr8(Cmd) & CmdReset))
991 return;
992
993 schedule_timeout_uninterruptible(10);
994 }
995
996 netdev_err(cp->dev, "hardware reset timeout\n");
997 }
998
999 static inline void cp_start_hw (struct cp_private *cp)
1000 {
1001 dma_addr_t ring_dma;
1002
1003 cpw16(CpCmd, cp->cpcmd);
1004
1005 /*
1006 * These (at least TxRingAddr) need to be configured after the
1007 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
1008 * (C+ Command Register) recommends that these and more be configured
1009 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
1010 * it's been observed that the TxRingAddr is actually reset to garbage
1011 * when C+ mode Tx is enabled in CpCmd.
1012 */
1013 cpw32_f(HiTxRingAddr, 0);
1014 cpw32_f(HiTxRingAddr + 4, 0);
1015
1016 ring_dma = cp->ring_dma;
1017 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1018 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1019
1020 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1021 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1022 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1023
1024 /*
1025 * Strictly speaking, the datasheet says this should be enabled
1026 * *before* setting the descriptor addresses. But what, then, would
1027 * prevent it from doing DMA to random unconfigured addresses?
1028 * This variant appears to work fine.
1029 */
1030 cpw8(Cmd, RxOn | TxOn);
1031
1032 netdev_reset_queue(cp->dev);
1033 }
1034
1035 static void cp_enable_irq(struct cp_private *cp)
1036 {
1037 cpw16_f(IntrMask, cp_intr_mask);
1038 }
1039
1040 static void cp_init_hw (struct cp_private *cp)
1041 {
1042 struct net_device *dev = cp->dev;
1043
1044 cp_reset_hw(cp);
1045
1046 cpw8_f (Cfg9346, Cfg9346_Unlock);
1047
1048 /* Restore our idea of the MAC address. */
1049 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1050 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1051
1052 cp_start_hw(cp);
1053 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1054
1055 __cp_set_rx_mode(dev);
1056 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1057
1058 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1059 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1060 cpw8(Config3, PARMEnable);
1061 cp->wol_enabled = 0;
1062
1063 cpw8(Config5, cpr8(Config5) & PMEStatus);
1064
1065 cpw16(MultiIntr, 0);
1066
1067 cpw8_f(Cfg9346, Cfg9346_Lock);
1068 }
1069
1070 static int cp_refill_rx(struct cp_private *cp)
1071 {
1072 struct net_device *dev = cp->dev;
1073 unsigned i;
1074
1075 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1076 struct sk_buff *skb;
1077 dma_addr_t mapping;
1078
1079 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1080 if (!skb)
1081 goto err_out;
1082
1083 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1084 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1085 if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1086 kfree_skb(skb);
1087 goto err_out;
1088 }
1089 cp->rx_skb[i] = skb;
1090
1091 cp->rx_ring[i].opts2 = 0;
1092 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1093 if (i == (CP_RX_RING_SIZE - 1))
1094 cp->rx_ring[i].opts1 =
1095 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1096 else
1097 cp->rx_ring[i].opts1 =
1098 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1099 }
1100
1101 return 0;
1102
1103 err_out:
1104 cp_clean_rings(cp);
1105 return -ENOMEM;
1106 }
1107
1108 static void cp_init_rings_index (struct cp_private *cp)
1109 {
1110 cp->rx_tail = 0;
1111 cp->tx_head = cp->tx_tail = 0;
1112 }
1113
1114 static int cp_init_rings (struct cp_private *cp)
1115 {
1116 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1117 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1118
1119 cp_init_rings_index(cp);
1120
1121 return cp_refill_rx (cp);
1122 }
1123
1124 static int cp_alloc_rings (struct cp_private *cp)
1125 {
1126 struct device *d = &cp->pdev->dev;
1127 void *mem;
1128 int rc;
1129
1130 mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1131 if (!mem)
1132 return -ENOMEM;
1133
1134 cp->rx_ring = mem;
1135 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1136
1137 rc = cp_init_rings(cp);
1138 if (rc < 0)
1139 dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1140
1141 return rc;
1142 }
1143
1144 static void cp_clean_rings (struct cp_private *cp)
1145 {
1146 struct cp_desc *desc;
1147 unsigned i;
1148
1149 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1150 if (cp->rx_skb[i]) {
1151 desc = cp->rx_ring + i;
1152 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1153 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1154 dev_kfree_skb(cp->rx_skb[i]);
1155 }
1156 }
1157
1158 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1159 if (cp->tx_skb[i]) {
1160 struct sk_buff *skb = cp->tx_skb[i];
1161
1162 desc = cp->tx_ring + i;
1163 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1164 le32_to_cpu(desc->opts1) & 0xffff,
1165 PCI_DMA_TODEVICE);
1166 if (le32_to_cpu(desc->opts1) & LastFrag)
1167 dev_kfree_skb(skb);
1168 cp->dev->stats.tx_dropped++;
1169 }
1170 }
1171 netdev_reset_queue(cp->dev);
1172
1173 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1174 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1175
1176 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1177 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1178 }
1179
1180 static void cp_free_rings (struct cp_private *cp)
1181 {
1182 cp_clean_rings(cp);
1183 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1184 cp->ring_dma);
1185 cp->rx_ring = NULL;
1186 cp->tx_ring = NULL;
1187 }
1188
1189 static int cp_open (struct net_device *dev)
1190 {
1191 struct cp_private *cp = netdev_priv(dev);
1192 const int irq = cp->pdev->irq;
1193 int rc;
1194
1195 netif_dbg(cp, ifup, dev, "enabling interface\n");
1196
1197 rc = cp_alloc_rings(cp);
1198 if (rc)
1199 return rc;
1200
1201 napi_enable(&cp->napi);
1202
1203 cp_init_hw(cp);
1204
1205 rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1206 if (rc)
1207 goto err_out_hw;
1208
1209 cp_enable_irq(cp);
1210
1211 netif_carrier_off(dev);
1212 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1213 netif_start_queue(dev);
1214
1215 return 0;
1216
1217 err_out_hw:
1218 napi_disable(&cp->napi);
1219 cp_stop_hw(cp);
1220 cp_free_rings(cp);
1221 return rc;
1222 }
1223
1224 static int cp_close (struct net_device *dev)
1225 {
1226 struct cp_private *cp = netdev_priv(dev);
1227 unsigned long flags;
1228
1229 napi_disable(&cp->napi);
1230
1231 netif_dbg(cp, ifdown, dev, "disabling interface\n");
1232
1233 spin_lock_irqsave(&cp->lock, flags);
1234
1235 netif_stop_queue(dev);
1236 netif_carrier_off(dev);
1237
1238 cp_stop_hw(cp);
1239
1240 spin_unlock_irqrestore(&cp->lock, flags);
1241
1242 free_irq(cp->pdev->irq, dev);
1243
1244 cp_free_rings(cp);
1245 return 0;
1246 }
1247
1248 static void cp_tx_timeout(struct net_device *dev)
1249 {
1250 struct cp_private *cp = netdev_priv(dev);
1251 unsigned long flags;
1252 int rc;
1253
1254 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1255 cpr8(Cmd), cpr16(CpCmd),
1256 cpr16(IntrStatus), cpr16(IntrMask));
1257
1258 spin_lock_irqsave(&cp->lock, flags);
1259
1260 cp_stop_hw(cp);
1261 cp_clean_rings(cp);
1262 rc = cp_init_rings(cp);
1263 cp_start_hw(cp);
1264 cp_enable_irq(cp);
1265
1266 netif_wake_queue(dev);
1267
1268 spin_unlock_irqrestore(&cp->lock, flags);
1269 }
1270
1271 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1272 {
1273 struct cp_private *cp = netdev_priv(dev);
1274
1275 /* check for invalid MTU, according to hardware limits */
1276 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1277 return -EINVAL;
1278
1279 /* if network interface not up, no need for complexity */
1280 if (!netif_running(dev)) {
1281 dev->mtu = new_mtu;
1282 cp_set_rxbufsize(cp); /* set new rx buf size */
1283 return 0;
1284 }
1285
1286 /* network IS up, close it, reset MTU, and come up again. */
1287 cp_close(dev);
1288 dev->mtu = new_mtu;
1289 cp_set_rxbufsize(cp);
1290 return cp_open(dev);
1291 }
1292
1293 static const char mii_2_8139_map[8] = {
1294 BasicModeCtrl,
1295 BasicModeStatus,
1296 0,
1297 0,
1298 NWayAdvert,
1299 NWayLPAR,
1300 NWayExpansion,
1301 0
1302 };
1303
1304 static int mdio_read(struct net_device *dev, int phy_id, int location)
1305 {
1306 struct cp_private *cp = netdev_priv(dev);
1307
1308 return location < 8 && mii_2_8139_map[location] ?
1309 readw(cp->regs + mii_2_8139_map[location]) : 0;
1310 }
1311
1312
1313 static void mdio_write(struct net_device *dev, int phy_id, int location,
1314 int value)
1315 {
1316 struct cp_private *cp = netdev_priv(dev);
1317
1318 if (location == 0) {
1319 cpw8(Cfg9346, Cfg9346_Unlock);
1320 cpw16(BasicModeCtrl, value);
1321 cpw8(Cfg9346, Cfg9346_Lock);
1322 } else if (location < 8 && mii_2_8139_map[location])
1323 cpw16(mii_2_8139_map[location], value);
1324 }
1325
1326 /* Set the ethtool Wake-on-LAN settings */
1327 static int netdev_set_wol (struct cp_private *cp,
1328 const struct ethtool_wolinfo *wol)
1329 {
1330 u8 options;
1331
1332 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1333 /* If WOL is being disabled, no need for complexity */
1334 if (wol->wolopts) {
1335 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1336 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1337 }
1338
1339 cpw8 (Cfg9346, Cfg9346_Unlock);
1340 cpw8 (Config3, options);
1341 cpw8 (Cfg9346, Cfg9346_Lock);
1342
1343 options = 0; /* Paranoia setting */
1344 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1345 /* If WOL is being disabled, no need for complexity */
1346 if (wol->wolopts) {
1347 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1348 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1349 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1350 }
1351
1352 cpw8 (Config5, options);
1353
1354 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1355
1356 return 0;
1357 }
1358
1359 /* Get the ethtool Wake-on-LAN settings */
1360 static void netdev_get_wol (struct cp_private *cp,
1361 struct ethtool_wolinfo *wol)
1362 {
1363 u8 options;
1364
1365 wol->wolopts = 0; /* Start from scratch */
1366 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1367 WAKE_MCAST | WAKE_UCAST;
1368 /* We don't need to go on if WOL is disabled */
1369 if (!cp->wol_enabled) return;
1370
1371 options = cpr8 (Config3);
1372 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1373 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1374
1375 options = 0; /* Paranoia setting */
1376 options = cpr8 (Config5);
1377 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1378 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1379 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1380 }
1381
1382 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1383 {
1384 struct cp_private *cp = netdev_priv(dev);
1385
1386 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1387 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1388 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1389 }
1390
1391 static void cp_get_ringparam(struct net_device *dev,
1392 struct ethtool_ringparam *ring)
1393 {
1394 ring->rx_max_pending = CP_RX_RING_SIZE;
1395 ring->tx_max_pending = CP_TX_RING_SIZE;
1396 ring->rx_pending = CP_RX_RING_SIZE;
1397 ring->tx_pending = CP_TX_RING_SIZE;
1398 }
1399
1400 static int cp_get_regs_len(struct net_device *dev)
1401 {
1402 return CP_REGS_SIZE;
1403 }
1404
1405 static int cp_get_sset_count (struct net_device *dev, int sset)
1406 {
1407 switch (sset) {
1408 case ETH_SS_STATS:
1409 return CP_NUM_STATS;
1410 default:
1411 return -EOPNOTSUPP;
1412 }
1413 }
1414
1415 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1416 {
1417 struct cp_private *cp = netdev_priv(dev);
1418 int rc;
1419 unsigned long flags;
1420
1421 spin_lock_irqsave(&cp->lock, flags);
1422 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1423 spin_unlock_irqrestore(&cp->lock, flags);
1424
1425 return rc;
1426 }
1427
1428 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1429 {
1430 struct cp_private *cp = netdev_priv(dev);
1431 int rc;
1432 unsigned long flags;
1433
1434 spin_lock_irqsave(&cp->lock, flags);
1435 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1436 spin_unlock_irqrestore(&cp->lock, flags);
1437
1438 return rc;
1439 }
1440
1441 static int cp_nway_reset(struct net_device *dev)
1442 {
1443 struct cp_private *cp = netdev_priv(dev);
1444 return mii_nway_restart(&cp->mii_if);
1445 }
1446
1447 static u32 cp_get_msglevel(struct net_device *dev)
1448 {
1449 struct cp_private *cp = netdev_priv(dev);
1450 return cp->msg_enable;
1451 }
1452
1453 static void cp_set_msglevel(struct net_device *dev, u32 value)
1454 {
1455 struct cp_private *cp = netdev_priv(dev);
1456 cp->msg_enable = value;
1457 }
1458
1459 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1460 {
1461 struct cp_private *cp = netdev_priv(dev);
1462 unsigned long flags;
1463
1464 if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1465 return 0;
1466
1467 spin_lock_irqsave(&cp->lock, flags);
1468
1469 if (features & NETIF_F_RXCSUM)
1470 cp->cpcmd |= RxChkSum;
1471 else
1472 cp->cpcmd &= ~RxChkSum;
1473
1474 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1475 cp->cpcmd |= RxVlanOn;
1476 else
1477 cp->cpcmd &= ~RxVlanOn;
1478
1479 cpw16_f(CpCmd, cp->cpcmd);
1480 spin_unlock_irqrestore(&cp->lock, flags);
1481
1482 return 0;
1483 }
1484
1485 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1486 void *p)
1487 {
1488 struct cp_private *cp = netdev_priv(dev);
1489 unsigned long flags;
1490
1491 if (regs->len < CP_REGS_SIZE)
1492 return /* -EINVAL */;
1493
1494 regs->version = CP_REGS_VER;
1495
1496 spin_lock_irqsave(&cp->lock, flags);
1497 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1498 spin_unlock_irqrestore(&cp->lock, flags);
1499 }
1500
1501 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1502 {
1503 struct cp_private *cp = netdev_priv(dev);
1504 unsigned long flags;
1505
1506 spin_lock_irqsave (&cp->lock, flags);
1507 netdev_get_wol (cp, wol);
1508 spin_unlock_irqrestore (&cp->lock, flags);
1509 }
1510
1511 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1512 {
1513 struct cp_private *cp = netdev_priv(dev);
1514 unsigned long flags;
1515 int rc;
1516
1517 spin_lock_irqsave (&cp->lock, flags);
1518 rc = netdev_set_wol (cp, wol);
1519 spin_unlock_irqrestore (&cp->lock, flags);
1520
1521 return rc;
1522 }
1523
1524 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1525 {
1526 switch (stringset) {
1527 case ETH_SS_STATS:
1528 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1529 break;
1530 default:
1531 BUG();
1532 break;
1533 }
1534 }
1535
1536 static void cp_get_ethtool_stats (struct net_device *dev,
1537 struct ethtool_stats *estats, u64 *tmp_stats)
1538 {
1539 struct cp_private *cp = netdev_priv(dev);
1540 struct cp_dma_stats *nic_stats;
1541 dma_addr_t dma;
1542 int i;
1543
1544 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1545 &dma, GFP_KERNEL);
1546 if (!nic_stats)
1547 return;
1548
1549 /* begin NIC statistics dump */
1550 cpw32(StatsAddr + 4, (u64)dma >> 32);
1551 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1552 cpr32(StatsAddr);
1553
1554 for (i = 0; i < 1000; i++) {
1555 if ((cpr32(StatsAddr) & DumpStats) == 0)
1556 break;
1557 udelay(10);
1558 }
1559 cpw32(StatsAddr, 0);
1560 cpw32(StatsAddr + 4, 0);
1561 cpr32(StatsAddr);
1562
1563 i = 0;
1564 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1565 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1566 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1567 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1568 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1569 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1570 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1571 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1572 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1573 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1574 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1575 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1576 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1577 tmp_stats[i++] = cp->cp_stats.rx_frags;
1578 BUG_ON(i != CP_NUM_STATS);
1579
1580 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1581 }
1582
1583 static const struct ethtool_ops cp_ethtool_ops = {
1584 .get_drvinfo = cp_get_drvinfo,
1585 .get_regs_len = cp_get_regs_len,
1586 .get_sset_count = cp_get_sset_count,
1587 .get_settings = cp_get_settings,
1588 .set_settings = cp_set_settings,
1589 .nway_reset = cp_nway_reset,
1590 .get_link = ethtool_op_get_link,
1591 .get_msglevel = cp_get_msglevel,
1592 .set_msglevel = cp_set_msglevel,
1593 .get_regs = cp_get_regs,
1594 .get_wol = cp_get_wol,
1595 .set_wol = cp_set_wol,
1596 .get_strings = cp_get_strings,
1597 .get_ethtool_stats = cp_get_ethtool_stats,
1598 .get_eeprom_len = cp_get_eeprom_len,
1599 .get_eeprom = cp_get_eeprom,
1600 .set_eeprom = cp_set_eeprom,
1601 .get_ringparam = cp_get_ringparam,
1602 };
1603
1604 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1605 {
1606 struct cp_private *cp = netdev_priv(dev);
1607 int rc;
1608 unsigned long flags;
1609
1610 if (!netif_running(dev))
1611 return -EINVAL;
1612
1613 spin_lock_irqsave(&cp->lock, flags);
1614 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1615 spin_unlock_irqrestore(&cp->lock, flags);
1616 return rc;
1617 }
1618
1619 static int cp_set_mac_address(struct net_device *dev, void *p)
1620 {
1621 struct cp_private *cp = netdev_priv(dev);
1622 struct sockaddr *addr = p;
1623
1624 if (!is_valid_ether_addr(addr->sa_data))
1625 return -EADDRNOTAVAIL;
1626
1627 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1628
1629 spin_lock_irq(&cp->lock);
1630
1631 cpw8_f(Cfg9346, Cfg9346_Unlock);
1632 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1633 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1634 cpw8_f(Cfg9346, Cfg9346_Lock);
1635
1636 spin_unlock_irq(&cp->lock);
1637
1638 return 0;
1639 }
1640
1641 /* Serial EEPROM section. */
1642
1643 /* EEPROM_Ctrl bits. */
1644 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1645 #define EE_CS 0x08 /* EEPROM chip select. */
1646 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1647 #define EE_WRITE_0 0x00
1648 #define EE_WRITE_1 0x02
1649 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1650 #define EE_ENB (0x80 | EE_CS)
1651
1652 /* Delay between EEPROM clock transitions.
1653 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1654 */
1655
1656 #define eeprom_delay() readb(ee_addr)
1657
1658 /* The EEPROM commands include the alway-set leading bit. */
1659 #define EE_EXTEND_CMD (4)
1660 #define EE_WRITE_CMD (5)
1661 #define EE_READ_CMD (6)
1662 #define EE_ERASE_CMD (7)
1663
1664 #define EE_EWDS_ADDR (0)
1665 #define EE_WRAL_ADDR (1)
1666 #define EE_ERAL_ADDR (2)
1667 #define EE_EWEN_ADDR (3)
1668
1669 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1670
1671 static void eeprom_cmd_start(void __iomem *ee_addr)
1672 {
1673 writeb (EE_ENB & ~EE_CS, ee_addr);
1674 writeb (EE_ENB, ee_addr);
1675 eeprom_delay ();
1676 }
1677
1678 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1679 {
1680 int i;
1681
1682 /* Shift the command bits out. */
1683 for (i = cmd_len - 1; i >= 0; i--) {
1684 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1685 writeb (EE_ENB | dataval, ee_addr);
1686 eeprom_delay ();
1687 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1688 eeprom_delay ();
1689 }
1690 writeb (EE_ENB, ee_addr);
1691 eeprom_delay ();
1692 }
1693
1694 static void eeprom_cmd_end(void __iomem *ee_addr)
1695 {
1696 writeb(0, ee_addr);
1697 eeprom_delay ();
1698 }
1699
1700 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1701 int addr_len)
1702 {
1703 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1704
1705 eeprom_cmd_start(ee_addr);
1706 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1707 eeprom_cmd_end(ee_addr);
1708 }
1709
1710 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1711 {
1712 int i;
1713 u16 retval = 0;
1714 void __iomem *ee_addr = ioaddr + Cfg9346;
1715 int read_cmd = location | (EE_READ_CMD << addr_len);
1716
1717 eeprom_cmd_start(ee_addr);
1718 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1719
1720 for (i = 16; i > 0; i--) {
1721 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1722 eeprom_delay ();
1723 retval =
1724 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1725 0);
1726 writeb (EE_ENB, ee_addr);
1727 eeprom_delay ();
1728 }
1729
1730 eeprom_cmd_end(ee_addr);
1731
1732 return retval;
1733 }
1734
1735 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1736 int addr_len)
1737 {
1738 int i;
1739 void __iomem *ee_addr = ioaddr + Cfg9346;
1740 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1741
1742 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1743
1744 eeprom_cmd_start(ee_addr);
1745 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1746 eeprom_cmd(ee_addr, val, 16);
1747 eeprom_cmd_end(ee_addr);
1748
1749 eeprom_cmd_start(ee_addr);
1750 for (i = 0; i < 20000; i++)
1751 if (readb(ee_addr) & EE_DATA_READ)
1752 break;
1753 eeprom_cmd_end(ee_addr);
1754
1755 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1756 }
1757
1758 static int cp_get_eeprom_len(struct net_device *dev)
1759 {
1760 struct cp_private *cp = netdev_priv(dev);
1761 int size;
1762
1763 spin_lock_irq(&cp->lock);
1764 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1765 spin_unlock_irq(&cp->lock);
1766
1767 return size;
1768 }
1769
1770 static int cp_get_eeprom(struct net_device *dev,
1771 struct ethtool_eeprom *eeprom, u8 *data)
1772 {
1773 struct cp_private *cp = netdev_priv(dev);
1774 unsigned int addr_len;
1775 u16 val;
1776 u32 offset = eeprom->offset >> 1;
1777 u32 len = eeprom->len;
1778 u32 i = 0;
1779
1780 eeprom->magic = CP_EEPROM_MAGIC;
1781
1782 spin_lock_irq(&cp->lock);
1783
1784 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1785
1786 if (eeprom->offset & 1) {
1787 val = read_eeprom(cp->regs, offset, addr_len);
1788 data[i++] = (u8)(val >> 8);
1789 offset++;
1790 }
1791
1792 while (i < len - 1) {
1793 val = read_eeprom(cp->regs, offset, addr_len);
1794 data[i++] = (u8)val;
1795 data[i++] = (u8)(val >> 8);
1796 offset++;
1797 }
1798
1799 if (i < len) {
1800 val = read_eeprom(cp->regs, offset, addr_len);
1801 data[i] = (u8)val;
1802 }
1803
1804 spin_unlock_irq(&cp->lock);
1805 return 0;
1806 }
1807
1808 static int cp_set_eeprom(struct net_device *dev,
1809 struct ethtool_eeprom *eeprom, u8 *data)
1810 {
1811 struct cp_private *cp = netdev_priv(dev);
1812 unsigned int addr_len;
1813 u16 val;
1814 u32 offset = eeprom->offset >> 1;
1815 u32 len = eeprom->len;
1816 u32 i = 0;
1817
1818 if (eeprom->magic != CP_EEPROM_MAGIC)
1819 return -EINVAL;
1820
1821 spin_lock_irq(&cp->lock);
1822
1823 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1824
1825 if (eeprom->offset & 1) {
1826 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1827 val |= (u16)data[i++] << 8;
1828 write_eeprom(cp->regs, offset, val, addr_len);
1829 offset++;
1830 }
1831
1832 while (i < len - 1) {
1833 val = (u16)data[i++];
1834 val |= (u16)data[i++] << 8;
1835 write_eeprom(cp->regs, offset, val, addr_len);
1836 offset++;
1837 }
1838
1839 if (i < len) {
1840 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1841 val |= (u16)data[i];
1842 write_eeprom(cp->regs, offset, val, addr_len);
1843 }
1844
1845 spin_unlock_irq(&cp->lock);
1846 return 0;
1847 }
1848
1849 /* Put the board into D3cold state and wait for WakeUp signal */
1850 static void cp_set_d3_state (struct cp_private *cp)
1851 {
1852 pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1853 pci_set_power_state (cp->pdev, PCI_D3hot);
1854 }
1855
1856 static const struct net_device_ops cp_netdev_ops = {
1857 .ndo_open = cp_open,
1858 .ndo_stop = cp_close,
1859 .ndo_validate_addr = eth_validate_addr,
1860 .ndo_set_mac_address = cp_set_mac_address,
1861 .ndo_set_rx_mode = cp_set_rx_mode,
1862 .ndo_get_stats = cp_get_stats,
1863 .ndo_do_ioctl = cp_ioctl,
1864 .ndo_start_xmit = cp_start_xmit,
1865 .ndo_tx_timeout = cp_tx_timeout,
1866 .ndo_set_features = cp_set_features,
1867 .ndo_change_mtu = cp_change_mtu,
1868
1869 #ifdef CONFIG_NET_POLL_CONTROLLER
1870 .ndo_poll_controller = cp_poll_controller,
1871 #endif
1872 };
1873
1874 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1875 {
1876 struct net_device *dev;
1877 struct cp_private *cp;
1878 int rc;
1879 void __iomem *regs;
1880 resource_size_t pciaddr;
1881 unsigned int addr_len, i, pci_using_dac;
1882
1883 pr_info_once("%s", version);
1884
1885 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1886 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1887 dev_info(&pdev->dev,
1888 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1889 pdev->vendor, pdev->device, pdev->revision);
1890 return -ENODEV;
1891 }
1892
1893 dev = alloc_etherdev(sizeof(struct cp_private));
1894 if (!dev)
1895 return -ENOMEM;
1896 SET_NETDEV_DEV(dev, &pdev->dev);
1897
1898 cp = netdev_priv(dev);
1899 cp->pdev = pdev;
1900 cp->dev = dev;
1901 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1902 spin_lock_init (&cp->lock);
1903 cp->mii_if.dev = dev;
1904 cp->mii_if.mdio_read = mdio_read;
1905 cp->mii_if.mdio_write = mdio_write;
1906 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1907 cp->mii_if.phy_id_mask = 0x1f;
1908 cp->mii_if.reg_num_mask = 0x1f;
1909 cp_set_rxbufsize(cp);
1910
1911 rc = pci_enable_device(pdev);
1912 if (rc)
1913 goto err_out_free;
1914
1915 rc = pci_set_mwi(pdev);
1916 if (rc)
1917 goto err_out_disable;
1918
1919 rc = pci_request_regions(pdev, DRV_NAME);
1920 if (rc)
1921 goto err_out_mwi;
1922
1923 pciaddr = pci_resource_start(pdev, 1);
1924 if (!pciaddr) {
1925 rc = -EIO;
1926 dev_err(&pdev->dev, "no MMIO resource\n");
1927 goto err_out_res;
1928 }
1929 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1930 rc = -EIO;
1931 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1932 (unsigned long long)pci_resource_len(pdev, 1));
1933 goto err_out_res;
1934 }
1935
1936 /* Configure DMA attributes. */
1937 if ((sizeof(dma_addr_t) > 4) &&
1938 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1939 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1940 pci_using_dac = 1;
1941 } else {
1942 pci_using_dac = 0;
1943
1944 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1945 if (rc) {
1946 dev_err(&pdev->dev,
1947 "No usable DMA configuration, aborting\n");
1948 goto err_out_res;
1949 }
1950 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1951 if (rc) {
1952 dev_err(&pdev->dev,
1953 "No usable consistent DMA configuration, aborting\n");
1954 goto err_out_res;
1955 }
1956 }
1957
1958 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1959 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1960
1961 dev->features |= NETIF_F_RXCSUM;
1962 dev->hw_features |= NETIF_F_RXCSUM;
1963
1964 regs = ioremap(pciaddr, CP_REGS_SIZE);
1965 if (!regs) {
1966 rc = -EIO;
1967 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1968 (unsigned long long)pci_resource_len(pdev, 1),
1969 (unsigned long long)pciaddr);
1970 goto err_out_res;
1971 }
1972 cp->regs = regs;
1973
1974 cp_stop_hw(cp);
1975
1976 /* read MAC address from EEPROM */
1977 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1978 for (i = 0; i < 3; i++)
1979 ((__le16 *) (dev->dev_addr))[i] =
1980 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1981
1982 dev->netdev_ops = &cp_netdev_ops;
1983 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1984 dev->ethtool_ops = &cp_ethtool_ops;
1985 dev->watchdog_timeo = TX_TIMEOUT;
1986
1987 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1988
1989 if (pci_using_dac)
1990 dev->features |= NETIF_F_HIGHDMA;
1991
1992 /* disabled by default until verified */
1993 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1994 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1995 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1996 NETIF_F_HIGHDMA;
1997
1998 rc = register_netdev(dev);
1999 if (rc)
2000 goto err_out_iomap;
2001
2002 netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2003 regs, dev->dev_addr, pdev->irq);
2004
2005 pci_set_drvdata(pdev, dev);
2006
2007 /* enable busmastering and memory-write-invalidate */
2008 pci_set_master(pdev);
2009
2010 if (cp->wol_enabled)
2011 cp_set_d3_state (cp);
2012
2013 return 0;
2014
2015 err_out_iomap:
2016 iounmap(regs);
2017 err_out_res:
2018 pci_release_regions(pdev);
2019 err_out_mwi:
2020 pci_clear_mwi(pdev);
2021 err_out_disable:
2022 pci_disable_device(pdev);
2023 err_out_free:
2024 free_netdev(dev);
2025 return rc;
2026 }
2027
2028 static void cp_remove_one (struct pci_dev *pdev)
2029 {
2030 struct net_device *dev = pci_get_drvdata(pdev);
2031 struct cp_private *cp = netdev_priv(dev);
2032
2033 unregister_netdev(dev);
2034 iounmap(cp->regs);
2035 if (cp->wol_enabled)
2036 pci_set_power_state (pdev, PCI_D0);
2037 pci_release_regions(pdev);
2038 pci_clear_mwi(pdev);
2039 pci_disable_device(pdev);
2040 free_netdev(dev);
2041 }
2042
2043 #ifdef CONFIG_PM
2044 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2045 {
2046 struct net_device *dev = pci_get_drvdata(pdev);
2047 struct cp_private *cp = netdev_priv(dev);
2048 unsigned long flags;
2049
2050 if (!netif_running(dev))
2051 return 0;
2052
2053 netif_device_detach (dev);
2054 netif_stop_queue (dev);
2055
2056 spin_lock_irqsave (&cp->lock, flags);
2057
2058 /* Disable Rx and Tx */
2059 cpw16 (IntrMask, 0);
2060 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2061
2062 spin_unlock_irqrestore (&cp->lock, flags);
2063
2064 pci_save_state(pdev);
2065 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2066 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2067
2068 return 0;
2069 }
2070
2071 static int cp_resume (struct pci_dev *pdev)
2072 {
2073 struct net_device *dev = pci_get_drvdata (pdev);
2074 struct cp_private *cp = netdev_priv(dev);
2075 unsigned long flags;
2076
2077 if (!netif_running(dev))
2078 return 0;
2079
2080 netif_device_attach (dev);
2081
2082 pci_set_power_state(pdev, PCI_D0);
2083 pci_restore_state(pdev);
2084 pci_enable_wake(pdev, PCI_D0, 0);
2085
2086 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2087 cp_init_rings_index (cp);
2088 cp_init_hw (cp);
2089 cp_enable_irq(cp);
2090 netif_start_queue (dev);
2091
2092 spin_lock_irqsave (&cp->lock, flags);
2093
2094 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2095
2096 spin_unlock_irqrestore (&cp->lock, flags);
2097
2098 return 0;
2099 }
2100 #endif /* CONFIG_PM */
2101
2102 static const struct pci_device_id cp_pci_tbl[] = {
2103 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
2104 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
2105 { },
2106 };
2107 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2108
2109 static struct pci_driver cp_driver = {
2110 .name = DRV_NAME,
2111 .id_table = cp_pci_tbl,
2112 .probe = cp_init_one,
2113 .remove = cp_remove_one,
2114 #ifdef CONFIG_PM
2115 .resume = cp_resume,
2116 .suspend = cp_suspend,
2117 #endif
2118 };
2119
2120 module_pci_driver(cp_driver);
This page took 0.0952 seconds and 6 git commands to generate.