ravb: add fallback compatibility strings
[deliverable/linux.git] / drivers / net / ethernet / renesas / ravb_main.c
1 /* Renesas Ethernet AVB device driver
2 *
3 * Copyright (C) 2014-2015 Renesas Electronics Corporation
4 * Copyright (C) 2015 Renesas Solutions Corp.
5 * Copyright (C) 2015 Cogent Embedded, Inc. <source@cogentembedded.com>
6 *
7 * Based on the SuperH Ethernet driver
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License version 2,
11 * as published by the Free Software Foundation.
12 */
13
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34
35 #include <asm/div64.h>
36
37 #include "ravb.h"
38
39 #define RAVB_DEF_MSG_ENABLE \
40 (NETIF_MSG_LINK | \
41 NETIF_MSG_TIMER | \
42 NETIF_MSG_RX_ERR | \
43 NETIF_MSG_TX_ERR)
44
45 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
46 {
47 int i;
48
49 for (i = 0; i < 10000; i++) {
50 if ((ravb_read(ndev, reg) & mask) == value)
51 return 0;
52 udelay(10);
53 }
54 return -ETIMEDOUT;
55 }
56
57 static int ravb_config(struct net_device *ndev)
58 {
59 int error;
60
61 /* Set config mode */
62 ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_CONFIG,
63 CCC);
64 /* Check if the operating mode is changed to the config mode */
65 error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
66 if (error)
67 netdev_err(ndev, "failed to switch device to config mode\n");
68
69 return error;
70 }
71
72 static void ravb_set_duplex(struct net_device *ndev)
73 {
74 struct ravb_private *priv = netdev_priv(ndev);
75 u32 ecmr = ravb_read(ndev, ECMR);
76
77 if (priv->duplex) /* Full */
78 ecmr |= ECMR_DM;
79 else /* Half */
80 ecmr &= ~ECMR_DM;
81 ravb_write(ndev, ecmr, ECMR);
82 }
83
84 static void ravb_set_rate(struct net_device *ndev)
85 {
86 struct ravb_private *priv = netdev_priv(ndev);
87
88 switch (priv->speed) {
89 case 100: /* 100BASE */
90 ravb_write(ndev, GECMR_SPEED_100, GECMR);
91 break;
92 case 1000: /* 1000BASE */
93 ravb_write(ndev, GECMR_SPEED_1000, GECMR);
94 break;
95 default:
96 break;
97 }
98 }
99
100 static void ravb_set_buffer_align(struct sk_buff *skb)
101 {
102 u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
103
104 if (reserve)
105 skb_reserve(skb, RAVB_ALIGN - reserve);
106 }
107
108 /* Get MAC address from the MAC address registers
109 *
110 * Ethernet AVB device doesn't have ROM for MAC address.
111 * This function gets the MAC address that was used by a bootloader.
112 */
113 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
114 {
115 if (mac) {
116 ether_addr_copy(ndev->dev_addr, mac);
117 } else {
118 ndev->dev_addr[0] = (ravb_read(ndev, MAHR) >> 24);
119 ndev->dev_addr[1] = (ravb_read(ndev, MAHR) >> 16) & 0xFF;
120 ndev->dev_addr[2] = (ravb_read(ndev, MAHR) >> 8) & 0xFF;
121 ndev->dev_addr[3] = (ravb_read(ndev, MAHR) >> 0) & 0xFF;
122 ndev->dev_addr[4] = (ravb_read(ndev, MALR) >> 8) & 0xFF;
123 ndev->dev_addr[5] = (ravb_read(ndev, MALR) >> 0) & 0xFF;
124 }
125 }
126
127 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
128 {
129 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
130 mdiobb);
131 u32 pir = ravb_read(priv->ndev, PIR);
132
133 if (set)
134 pir |= mask;
135 else
136 pir &= ~mask;
137 ravb_write(priv->ndev, pir, PIR);
138 }
139
140 /* MDC pin control */
141 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
142 {
143 ravb_mdio_ctrl(ctrl, PIR_MDC, level);
144 }
145
146 /* Data I/O pin control */
147 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
148 {
149 ravb_mdio_ctrl(ctrl, PIR_MMD, output);
150 }
151
152 /* Set data bit */
153 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
154 {
155 ravb_mdio_ctrl(ctrl, PIR_MDO, value);
156 }
157
158 /* Get data bit */
159 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
160 {
161 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
162 mdiobb);
163
164 return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
165 }
166
167 /* MDIO bus control struct */
168 static struct mdiobb_ops bb_ops = {
169 .owner = THIS_MODULE,
170 .set_mdc = ravb_set_mdc,
171 .set_mdio_dir = ravb_set_mdio_dir,
172 .set_mdio_data = ravb_set_mdio_data,
173 .get_mdio_data = ravb_get_mdio_data,
174 };
175
176 /* Free skb's and DMA buffers for Ethernet AVB */
177 static void ravb_ring_free(struct net_device *ndev, int q)
178 {
179 struct ravb_private *priv = netdev_priv(ndev);
180 int ring_size;
181 int i;
182
183 /* Free RX skb ringbuffer */
184 if (priv->rx_skb[q]) {
185 for (i = 0; i < priv->num_rx_ring[q]; i++)
186 dev_kfree_skb(priv->rx_skb[q][i]);
187 }
188 kfree(priv->rx_skb[q]);
189 priv->rx_skb[q] = NULL;
190
191 /* Free TX skb ringbuffer */
192 if (priv->tx_skb[q]) {
193 for (i = 0; i < priv->num_tx_ring[q]; i++)
194 dev_kfree_skb(priv->tx_skb[q][i]);
195 }
196 kfree(priv->tx_skb[q]);
197 priv->tx_skb[q] = NULL;
198
199 /* Free aligned TX buffers */
200 kfree(priv->tx_align[q]);
201 priv->tx_align[q] = NULL;
202
203 if (priv->rx_ring[q]) {
204 ring_size = sizeof(struct ravb_ex_rx_desc) *
205 (priv->num_rx_ring[q] + 1);
206 dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
207 priv->rx_desc_dma[q]);
208 priv->rx_ring[q] = NULL;
209 }
210
211 if (priv->tx_ring[q]) {
212 ring_size = sizeof(struct ravb_tx_desc) *
213 (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
214 dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
215 priv->tx_desc_dma[q]);
216 priv->tx_ring[q] = NULL;
217 }
218 }
219
220 /* Format skb and descriptor buffer for Ethernet AVB */
221 static void ravb_ring_format(struct net_device *ndev, int q)
222 {
223 struct ravb_private *priv = netdev_priv(ndev);
224 struct ravb_ex_rx_desc *rx_desc;
225 struct ravb_tx_desc *tx_desc;
226 struct ravb_desc *desc;
227 int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
228 int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
229 NUM_TX_DESC;
230 dma_addr_t dma_addr;
231 int i;
232
233 priv->cur_rx[q] = 0;
234 priv->cur_tx[q] = 0;
235 priv->dirty_rx[q] = 0;
236 priv->dirty_tx[q] = 0;
237
238 memset(priv->rx_ring[q], 0, rx_ring_size);
239 /* Build RX ring buffer */
240 for (i = 0; i < priv->num_rx_ring[q]; i++) {
241 /* RX descriptor */
242 rx_desc = &priv->rx_ring[q][i];
243 /* The size of the buffer should be on 16-byte boundary. */
244 rx_desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
245 dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
246 ALIGN(PKT_BUF_SZ, 16),
247 DMA_FROM_DEVICE);
248 /* We just set the data size to 0 for a failed mapping which
249 * should prevent DMA from happening...
250 */
251 if (dma_mapping_error(ndev->dev.parent, dma_addr))
252 rx_desc->ds_cc = cpu_to_le16(0);
253 rx_desc->dptr = cpu_to_le32(dma_addr);
254 rx_desc->die_dt = DT_FEMPTY;
255 }
256 rx_desc = &priv->rx_ring[q][i];
257 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
258 rx_desc->die_dt = DT_LINKFIX; /* type */
259
260 memset(priv->tx_ring[q], 0, tx_ring_size);
261 /* Build TX ring buffer */
262 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
263 i++, tx_desc++) {
264 tx_desc->die_dt = DT_EEMPTY;
265 tx_desc++;
266 tx_desc->die_dt = DT_EEMPTY;
267 }
268 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
269 tx_desc->die_dt = DT_LINKFIX; /* type */
270
271 /* RX descriptor base address for best effort */
272 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
273 desc->die_dt = DT_LINKFIX; /* type */
274 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
275
276 /* TX descriptor base address for best effort */
277 desc = &priv->desc_bat[q];
278 desc->die_dt = DT_LINKFIX; /* type */
279 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
280 }
281
282 /* Init skb and descriptor buffer for Ethernet AVB */
283 static int ravb_ring_init(struct net_device *ndev, int q)
284 {
285 struct ravb_private *priv = netdev_priv(ndev);
286 struct sk_buff *skb;
287 int ring_size;
288 int i;
289
290 /* Allocate RX and TX skb rings */
291 priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
292 sizeof(*priv->rx_skb[q]), GFP_KERNEL);
293 priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
294 sizeof(*priv->tx_skb[q]), GFP_KERNEL);
295 if (!priv->rx_skb[q] || !priv->tx_skb[q])
296 goto error;
297
298 for (i = 0; i < priv->num_rx_ring[q]; i++) {
299 skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
300 if (!skb)
301 goto error;
302 ravb_set_buffer_align(skb);
303 priv->rx_skb[q][i] = skb;
304 }
305
306 /* Allocate rings for the aligned buffers */
307 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
308 DPTR_ALIGN - 1, GFP_KERNEL);
309 if (!priv->tx_align[q])
310 goto error;
311
312 /* Allocate all RX descriptors. */
313 ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
314 priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
315 &priv->rx_desc_dma[q],
316 GFP_KERNEL);
317 if (!priv->rx_ring[q])
318 goto error;
319
320 priv->dirty_rx[q] = 0;
321
322 /* Allocate all TX descriptors. */
323 ring_size = sizeof(struct ravb_tx_desc) *
324 (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
325 priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
326 &priv->tx_desc_dma[q],
327 GFP_KERNEL);
328 if (!priv->tx_ring[q])
329 goto error;
330
331 return 0;
332
333 error:
334 ravb_ring_free(ndev, q);
335
336 return -ENOMEM;
337 }
338
339 /* E-MAC init function */
340 static void ravb_emac_init(struct net_device *ndev)
341 {
342 struct ravb_private *priv = netdev_priv(ndev);
343 u32 ecmr;
344
345 /* Receive frame limit set register */
346 ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
347
348 /* PAUSE prohibition */
349 ecmr = ravb_read(ndev, ECMR);
350 ecmr &= ECMR_DM;
351 ecmr |= ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
352 ravb_write(ndev, ecmr, ECMR);
353
354 ravb_set_rate(ndev);
355
356 /* Set MAC address */
357 ravb_write(ndev,
358 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
359 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
360 ravb_write(ndev,
361 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
362
363 ravb_write(ndev, 1, MPR);
364
365 /* E-MAC status register clear */
366 ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
367
368 /* E-MAC interrupt enable register */
369 ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
370 }
371
372 /* Device init function for Ethernet AVB */
373 static int ravb_dmac_init(struct net_device *ndev)
374 {
375 int error;
376
377 /* Set CONFIG mode */
378 error = ravb_config(ndev);
379 if (error)
380 return error;
381
382 error = ravb_ring_init(ndev, RAVB_BE);
383 if (error)
384 return error;
385 error = ravb_ring_init(ndev, RAVB_NC);
386 if (error) {
387 ravb_ring_free(ndev, RAVB_BE);
388 return error;
389 }
390
391 /* Descriptor format */
392 ravb_ring_format(ndev, RAVB_BE);
393 ravb_ring_format(ndev, RAVB_NC);
394
395 #if defined(__LITTLE_ENDIAN)
396 ravb_write(ndev, ravb_read(ndev, CCC) & ~CCC_BOC, CCC);
397 #else
398 ravb_write(ndev, ravb_read(ndev, CCC) | CCC_BOC, CCC);
399 #endif
400
401 /* Set AVB RX */
402 ravb_write(ndev, RCR_EFFS | RCR_ENCF | RCR_ETS0 | 0x18000000, RCR);
403
404 /* Set FIFO size */
405 ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
406
407 /* Timestamp enable */
408 ravb_write(ndev, TCCR_TFEN, TCCR);
409
410 /* Interrupt enable: */
411 /* Frame receive */
412 ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
413 /* Receive FIFO full error, descriptor empty */
414 ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
415 /* Frame transmitted, timestamp FIFO updated */
416 ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
417
418 /* Setting the control will start the AVB-DMAC process. */
419 ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_OPERATION,
420 CCC);
421
422 return 0;
423 }
424
425 /* Free TX skb function for AVB-IP */
426 static int ravb_tx_free(struct net_device *ndev, int q)
427 {
428 struct ravb_private *priv = netdev_priv(ndev);
429 struct net_device_stats *stats = &priv->stats[q];
430 struct ravb_tx_desc *desc;
431 int free_num = 0;
432 int entry;
433 u32 size;
434
435 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
436 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
437 NUM_TX_DESC);
438 desc = &priv->tx_ring[q][entry];
439 if (desc->die_dt != DT_FEMPTY)
440 break;
441 /* Descriptor type must be checked before all other reads */
442 dma_rmb();
443 size = le16_to_cpu(desc->ds_tagl) & TX_DS;
444 /* Free the original skb. */
445 if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
446 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
447 size, DMA_TO_DEVICE);
448 /* Last packet descriptor? */
449 if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
450 entry /= NUM_TX_DESC;
451 dev_kfree_skb_any(priv->tx_skb[q][entry]);
452 priv->tx_skb[q][entry] = NULL;
453 stats->tx_packets++;
454 }
455 free_num++;
456 }
457 stats->tx_bytes += size;
458 desc->die_dt = DT_EEMPTY;
459 }
460 return free_num;
461 }
462
463 static void ravb_get_tx_tstamp(struct net_device *ndev)
464 {
465 struct ravb_private *priv = netdev_priv(ndev);
466 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
467 struct skb_shared_hwtstamps shhwtstamps;
468 struct sk_buff *skb;
469 struct timespec64 ts;
470 u16 tag, tfa_tag;
471 int count;
472 u32 tfa2;
473
474 count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
475 while (count--) {
476 tfa2 = ravb_read(ndev, TFA2);
477 tfa_tag = (tfa2 & TFA2_TST) >> 16;
478 ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
479 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
480 ravb_read(ndev, TFA1);
481 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
482 shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
483 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
484 list) {
485 skb = ts_skb->skb;
486 tag = ts_skb->tag;
487 list_del(&ts_skb->list);
488 kfree(ts_skb);
489 if (tag == tfa_tag) {
490 skb_tstamp_tx(skb, &shhwtstamps);
491 break;
492 }
493 }
494 ravb_write(ndev, ravb_read(ndev, TCCR) | TCCR_TFR, TCCR);
495 }
496 }
497
498 /* Packet receive function for Ethernet AVB */
499 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
500 {
501 struct ravb_private *priv = netdev_priv(ndev);
502 int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
503 int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
504 priv->cur_rx[q];
505 struct net_device_stats *stats = &priv->stats[q];
506 struct ravb_ex_rx_desc *desc;
507 struct sk_buff *skb;
508 dma_addr_t dma_addr;
509 struct timespec64 ts;
510 u8 desc_status;
511 u16 pkt_len;
512 int limit;
513
514 boguscnt = min(boguscnt, *quota);
515 limit = boguscnt;
516 desc = &priv->rx_ring[q][entry];
517 while (desc->die_dt != DT_FEMPTY) {
518 /* Descriptor type must be checked before all other reads */
519 dma_rmb();
520 desc_status = desc->msc;
521 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
522
523 if (--boguscnt < 0)
524 break;
525
526 /* We use 0-byte descriptors to mark the DMA mapping errors */
527 if (!pkt_len)
528 continue;
529
530 if (desc_status & MSC_MC)
531 stats->multicast++;
532
533 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
534 MSC_CEEF)) {
535 stats->rx_errors++;
536 if (desc_status & MSC_CRC)
537 stats->rx_crc_errors++;
538 if (desc_status & MSC_RFE)
539 stats->rx_frame_errors++;
540 if (desc_status & (MSC_RTLF | MSC_RTSF))
541 stats->rx_length_errors++;
542 if (desc_status & MSC_CEEF)
543 stats->rx_missed_errors++;
544 } else {
545 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
546
547 skb = priv->rx_skb[q][entry];
548 priv->rx_skb[q][entry] = NULL;
549 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
550 ALIGN(PKT_BUF_SZ, 16),
551 DMA_FROM_DEVICE);
552 get_ts &= (q == RAVB_NC) ?
553 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
554 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
555 if (get_ts) {
556 struct skb_shared_hwtstamps *shhwtstamps;
557
558 shhwtstamps = skb_hwtstamps(skb);
559 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
560 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
561 32) | le32_to_cpu(desc->ts_sl);
562 ts.tv_nsec = le32_to_cpu(desc->ts_n);
563 shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
564 }
565 skb_put(skb, pkt_len);
566 skb->protocol = eth_type_trans(skb, ndev);
567 napi_gro_receive(&priv->napi[q], skb);
568 stats->rx_packets++;
569 stats->rx_bytes += pkt_len;
570 }
571
572 entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
573 desc = &priv->rx_ring[q][entry];
574 }
575
576 /* Refill the RX ring buffers. */
577 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
578 entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
579 desc = &priv->rx_ring[q][entry];
580 /* The size of the buffer should be on 16-byte boundary. */
581 desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
582
583 if (!priv->rx_skb[q][entry]) {
584 skb = netdev_alloc_skb(ndev,
585 PKT_BUF_SZ + RAVB_ALIGN - 1);
586 if (!skb)
587 break; /* Better luck next round. */
588 ravb_set_buffer_align(skb);
589 dma_addr = dma_map_single(ndev->dev.parent, skb->data,
590 le16_to_cpu(desc->ds_cc),
591 DMA_FROM_DEVICE);
592 skb_checksum_none_assert(skb);
593 /* We just set the data size to 0 for a failed mapping
594 * which should prevent DMA from happening...
595 */
596 if (dma_mapping_error(ndev->dev.parent, dma_addr))
597 desc->ds_cc = cpu_to_le16(0);
598 desc->dptr = cpu_to_le32(dma_addr);
599 priv->rx_skb[q][entry] = skb;
600 }
601 /* Descriptor type must be set after all the above writes */
602 dma_wmb();
603 desc->die_dt = DT_FEMPTY;
604 }
605
606 *quota -= limit - (++boguscnt);
607
608 return boguscnt <= 0;
609 }
610
611 static void ravb_rcv_snd_disable(struct net_device *ndev)
612 {
613 /* Disable TX and RX */
614 ravb_write(ndev, ravb_read(ndev, ECMR) & ~(ECMR_RE | ECMR_TE), ECMR);
615 }
616
617 static void ravb_rcv_snd_enable(struct net_device *ndev)
618 {
619 /* Enable TX and RX */
620 ravb_write(ndev, ravb_read(ndev, ECMR) | ECMR_RE | ECMR_TE, ECMR);
621 }
622
623 /* function for waiting dma process finished */
624 static int ravb_stop_dma(struct net_device *ndev)
625 {
626 int error;
627
628 /* Wait for stopping the hardware TX process */
629 error = ravb_wait(ndev, TCCR,
630 TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
631 if (error)
632 return error;
633
634 error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
635 0);
636 if (error)
637 return error;
638
639 /* Stop the E-MAC's RX/TX processes. */
640 ravb_rcv_snd_disable(ndev);
641
642 /* Wait for stopping the RX DMA process */
643 error = ravb_wait(ndev, CSR, CSR_RPO, 0);
644 if (error)
645 return error;
646
647 /* Stop AVB-DMAC process */
648 return ravb_config(ndev);
649 }
650
651 /* E-MAC interrupt handler */
652 static void ravb_emac_interrupt(struct net_device *ndev)
653 {
654 struct ravb_private *priv = netdev_priv(ndev);
655 u32 ecsr, psr;
656
657 ecsr = ravb_read(ndev, ECSR);
658 ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
659 if (ecsr & ECSR_ICD)
660 ndev->stats.tx_carrier_errors++;
661 if (ecsr & ECSR_LCHNG) {
662 /* Link changed */
663 if (priv->no_avb_link)
664 return;
665 psr = ravb_read(ndev, PSR);
666 if (priv->avb_link_active_low)
667 psr ^= PSR_LMON;
668 if (!(psr & PSR_LMON)) {
669 /* DIsable RX and TX */
670 ravb_rcv_snd_disable(ndev);
671 } else {
672 /* Enable RX and TX */
673 ravb_rcv_snd_enable(ndev);
674 }
675 }
676 }
677
678 /* Error interrupt handler */
679 static void ravb_error_interrupt(struct net_device *ndev)
680 {
681 struct ravb_private *priv = netdev_priv(ndev);
682 u32 eis, ris2;
683
684 eis = ravb_read(ndev, EIS);
685 ravb_write(ndev, ~EIS_QFS, EIS);
686 if (eis & EIS_QFS) {
687 ris2 = ravb_read(ndev, RIS2);
688 ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
689
690 /* Receive Descriptor Empty int */
691 if (ris2 & RIS2_QFF0)
692 priv->stats[RAVB_BE].rx_over_errors++;
693
694 /* Receive Descriptor Empty int */
695 if (ris2 & RIS2_QFF1)
696 priv->stats[RAVB_NC].rx_over_errors++;
697
698 /* Receive FIFO Overflow int */
699 if (ris2 & RIS2_RFFF)
700 priv->rx_fifo_errors++;
701 }
702 }
703
704 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
705 {
706 struct net_device *ndev = dev_id;
707 struct ravb_private *priv = netdev_priv(ndev);
708 irqreturn_t result = IRQ_NONE;
709 u32 iss;
710
711 spin_lock(&priv->lock);
712 /* Get interrupt status */
713 iss = ravb_read(ndev, ISS);
714
715 /* Received and transmitted interrupts */
716 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
717 u32 ris0 = ravb_read(ndev, RIS0);
718 u32 ric0 = ravb_read(ndev, RIC0);
719 u32 tis = ravb_read(ndev, TIS);
720 u32 tic = ravb_read(ndev, TIC);
721 int q;
722
723 /* Timestamp updated */
724 if (tis & TIS_TFUF) {
725 ravb_write(ndev, ~TIS_TFUF, TIS);
726 ravb_get_tx_tstamp(ndev);
727 result = IRQ_HANDLED;
728 }
729
730 /* Network control and best effort queue RX/TX */
731 for (q = RAVB_NC; q >= RAVB_BE; q--) {
732 if (((ris0 & ric0) & BIT(q)) ||
733 ((tis & tic) & BIT(q))) {
734 if (napi_schedule_prep(&priv->napi[q])) {
735 /* Mask RX and TX interrupts */
736 ric0 &= ~BIT(q);
737 tic &= ~BIT(q);
738 ravb_write(ndev, ric0, RIC0);
739 ravb_write(ndev, tic, TIC);
740 __napi_schedule(&priv->napi[q]);
741 } else {
742 netdev_warn(ndev,
743 "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
744 ris0, ric0);
745 netdev_warn(ndev,
746 " tx status 0x%08x, tx mask 0x%08x.\n",
747 tis, tic);
748 }
749 result = IRQ_HANDLED;
750 }
751 }
752 }
753
754 /* E-MAC status summary */
755 if (iss & ISS_MS) {
756 ravb_emac_interrupt(ndev);
757 result = IRQ_HANDLED;
758 }
759
760 /* Error status summary */
761 if (iss & ISS_ES) {
762 ravb_error_interrupt(ndev);
763 result = IRQ_HANDLED;
764 }
765
766 if (iss & ISS_CGIS)
767 result = ravb_ptp_interrupt(ndev);
768
769 mmiowb();
770 spin_unlock(&priv->lock);
771 return result;
772 }
773
774 static int ravb_poll(struct napi_struct *napi, int budget)
775 {
776 struct net_device *ndev = napi->dev;
777 struct ravb_private *priv = netdev_priv(ndev);
778 unsigned long flags;
779 int q = napi - priv->napi;
780 int mask = BIT(q);
781 int quota = budget;
782 u32 ris0, tis;
783
784 for (;;) {
785 tis = ravb_read(ndev, TIS);
786 ris0 = ravb_read(ndev, RIS0);
787 if (!((ris0 & mask) || (tis & mask)))
788 break;
789
790 /* Processing RX Descriptor Ring */
791 if (ris0 & mask) {
792 /* Clear RX interrupt */
793 ravb_write(ndev, ~mask, RIS0);
794 if (ravb_rx(ndev, &quota, q))
795 goto out;
796 }
797 /* Processing TX Descriptor Ring */
798 if (tis & mask) {
799 spin_lock_irqsave(&priv->lock, flags);
800 /* Clear TX interrupt */
801 ravb_write(ndev, ~mask, TIS);
802 ravb_tx_free(ndev, q);
803 netif_wake_subqueue(ndev, q);
804 mmiowb();
805 spin_unlock_irqrestore(&priv->lock, flags);
806 }
807 }
808
809 napi_complete(napi);
810
811 /* Re-enable RX/TX interrupts */
812 spin_lock_irqsave(&priv->lock, flags);
813 ravb_write(ndev, ravb_read(ndev, RIC0) | mask, RIC0);
814 ravb_write(ndev, ravb_read(ndev, TIC) | mask, TIC);
815 mmiowb();
816 spin_unlock_irqrestore(&priv->lock, flags);
817
818 /* Receive error message handling */
819 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
820 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
821 if (priv->rx_over_errors != ndev->stats.rx_over_errors) {
822 ndev->stats.rx_over_errors = priv->rx_over_errors;
823 netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n");
824 }
825 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) {
826 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
827 netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n");
828 }
829 out:
830 return budget - quota;
831 }
832
833 /* PHY state control function */
834 static void ravb_adjust_link(struct net_device *ndev)
835 {
836 struct ravb_private *priv = netdev_priv(ndev);
837 struct phy_device *phydev = priv->phydev;
838 bool new_state = false;
839
840 if (phydev->link) {
841 if (phydev->duplex != priv->duplex) {
842 new_state = true;
843 priv->duplex = phydev->duplex;
844 ravb_set_duplex(ndev);
845 }
846
847 if (phydev->speed != priv->speed) {
848 new_state = true;
849 priv->speed = phydev->speed;
850 ravb_set_rate(ndev);
851 }
852 if (!priv->link) {
853 ravb_write(ndev, ravb_read(ndev, ECMR) & ~ECMR_TXF,
854 ECMR);
855 new_state = true;
856 priv->link = phydev->link;
857 if (priv->no_avb_link)
858 ravb_rcv_snd_enable(ndev);
859 }
860 } else if (priv->link) {
861 new_state = true;
862 priv->link = 0;
863 priv->speed = 0;
864 priv->duplex = -1;
865 if (priv->no_avb_link)
866 ravb_rcv_snd_disable(ndev);
867 }
868
869 if (new_state && netif_msg_link(priv))
870 phy_print_status(phydev);
871 }
872
873 /* PHY init function */
874 static int ravb_phy_init(struct net_device *ndev)
875 {
876 struct device_node *np = ndev->dev.parent->of_node;
877 struct ravb_private *priv = netdev_priv(ndev);
878 struct phy_device *phydev;
879 struct device_node *pn;
880
881 priv->link = 0;
882 priv->speed = 0;
883 priv->duplex = -1;
884
885 /* Try connecting to PHY */
886 pn = of_parse_phandle(np, "phy-handle", 0);
887 phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
888 priv->phy_interface);
889 if (!phydev) {
890 netdev_err(ndev, "failed to connect PHY\n");
891 return -ENOENT;
892 }
893
894 /* This driver only support 10/100Mbit speeds on Gen3
895 * at this time.
896 */
897 if (priv->chip_id == RCAR_GEN3) {
898 int err;
899
900 err = phy_set_max_speed(phydev, SPEED_100);
901 if (err) {
902 netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
903 phy_disconnect(phydev);
904 return err;
905 }
906
907 netdev_info(ndev, "limited PHY to 100Mbit/s\n");
908 }
909
910 netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
911 phydev->addr, phydev->irq, phydev->drv->name);
912
913 priv->phydev = phydev;
914
915 return 0;
916 }
917
918 /* PHY control start function */
919 static int ravb_phy_start(struct net_device *ndev)
920 {
921 struct ravb_private *priv = netdev_priv(ndev);
922 int error;
923
924 error = ravb_phy_init(ndev);
925 if (error)
926 return error;
927
928 phy_start(priv->phydev);
929
930 return 0;
931 }
932
933 static int ravb_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
934 {
935 struct ravb_private *priv = netdev_priv(ndev);
936 int error = -ENODEV;
937 unsigned long flags;
938
939 if (priv->phydev) {
940 spin_lock_irqsave(&priv->lock, flags);
941 error = phy_ethtool_gset(priv->phydev, ecmd);
942 spin_unlock_irqrestore(&priv->lock, flags);
943 }
944
945 return error;
946 }
947
948 static int ravb_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
949 {
950 struct ravb_private *priv = netdev_priv(ndev);
951 unsigned long flags;
952 int error;
953
954 if (!priv->phydev)
955 return -ENODEV;
956
957 spin_lock_irqsave(&priv->lock, flags);
958
959 /* Disable TX and RX */
960 ravb_rcv_snd_disable(ndev);
961
962 error = phy_ethtool_sset(priv->phydev, ecmd);
963 if (error)
964 goto error_exit;
965
966 if (ecmd->duplex == DUPLEX_FULL)
967 priv->duplex = 1;
968 else
969 priv->duplex = 0;
970
971 ravb_set_duplex(ndev);
972
973 error_exit:
974 mdelay(1);
975
976 /* Enable TX and RX */
977 ravb_rcv_snd_enable(ndev);
978
979 mmiowb();
980 spin_unlock_irqrestore(&priv->lock, flags);
981
982 return error;
983 }
984
985 static int ravb_nway_reset(struct net_device *ndev)
986 {
987 struct ravb_private *priv = netdev_priv(ndev);
988 int error = -ENODEV;
989 unsigned long flags;
990
991 if (priv->phydev) {
992 spin_lock_irqsave(&priv->lock, flags);
993 error = phy_start_aneg(priv->phydev);
994 spin_unlock_irqrestore(&priv->lock, flags);
995 }
996
997 return error;
998 }
999
1000 static u32 ravb_get_msglevel(struct net_device *ndev)
1001 {
1002 struct ravb_private *priv = netdev_priv(ndev);
1003
1004 return priv->msg_enable;
1005 }
1006
1007 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1008 {
1009 struct ravb_private *priv = netdev_priv(ndev);
1010
1011 priv->msg_enable = value;
1012 }
1013
1014 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1015 "rx_queue_0_current",
1016 "tx_queue_0_current",
1017 "rx_queue_0_dirty",
1018 "tx_queue_0_dirty",
1019 "rx_queue_0_packets",
1020 "tx_queue_0_packets",
1021 "rx_queue_0_bytes",
1022 "tx_queue_0_bytes",
1023 "rx_queue_0_mcast_packets",
1024 "rx_queue_0_errors",
1025 "rx_queue_0_crc_errors",
1026 "rx_queue_0_frame_errors",
1027 "rx_queue_0_length_errors",
1028 "rx_queue_0_missed_errors",
1029 "rx_queue_0_over_errors",
1030
1031 "rx_queue_1_current",
1032 "tx_queue_1_current",
1033 "rx_queue_1_dirty",
1034 "tx_queue_1_dirty",
1035 "rx_queue_1_packets",
1036 "tx_queue_1_packets",
1037 "rx_queue_1_bytes",
1038 "tx_queue_1_bytes",
1039 "rx_queue_1_mcast_packets",
1040 "rx_queue_1_errors",
1041 "rx_queue_1_crc_errors",
1042 "rx_queue_1_frame_errors_",
1043 "rx_queue_1_length_errors",
1044 "rx_queue_1_missed_errors",
1045 "rx_queue_1_over_errors",
1046 };
1047
1048 #define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats)
1049
1050 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1051 {
1052 switch (sset) {
1053 case ETH_SS_STATS:
1054 return RAVB_STATS_LEN;
1055 default:
1056 return -EOPNOTSUPP;
1057 }
1058 }
1059
1060 static void ravb_get_ethtool_stats(struct net_device *ndev,
1061 struct ethtool_stats *stats, u64 *data)
1062 {
1063 struct ravb_private *priv = netdev_priv(ndev);
1064 int i = 0;
1065 int q;
1066
1067 /* Device-specific stats */
1068 for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1069 struct net_device_stats *stats = &priv->stats[q];
1070
1071 data[i++] = priv->cur_rx[q];
1072 data[i++] = priv->cur_tx[q];
1073 data[i++] = priv->dirty_rx[q];
1074 data[i++] = priv->dirty_tx[q];
1075 data[i++] = stats->rx_packets;
1076 data[i++] = stats->tx_packets;
1077 data[i++] = stats->rx_bytes;
1078 data[i++] = stats->tx_bytes;
1079 data[i++] = stats->multicast;
1080 data[i++] = stats->rx_errors;
1081 data[i++] = stats->rx_crc_errors;
1082 data[i++] = stats->rx_frame_errors;
1083 data[i++] = stats->rx_length_errors;
1084 data[i++] = stats->rx_missed_errors;
1085 data[i++] = stats->rx_over_errors;
1086 }
1087 }
1088
1089 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1090 {
1091 switch (stringset) {
1092 case ETH_SS_STATS:
1093 memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1094 break;
1095 }
1096 }
1097
1098 static void ravb_get_ringparam(struct net_device *ndev,
1099 struct ethtool_ringparam *ring)
1100 {
1101 struct ravb_private *priv = netdev_priv(ndev);
1102
1103 ring->rx_max_pending = BE_RX_RING_MAX;
1104 ring->tx_max_pending = BE_TX_RING_MAX;
1105 ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1106 ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1107 }
1108
1109 static int ravb_set_ringparam(struct net_device *ndev,
1110 struct ethtool_ringparam *ring)
1111 {
1112 struct ravb_private *priv = netdev_priv(ndev);
1113 int error;
1114
1115 if (ring->tx_pending > BE_TX_RING_MAX ||
1116 ring->rx_pending > BE_RX_RING_MAX ||
1117 ring->tx_pending < BE_TX_RING_MIN ||
1118 ring->rx_pending < BE_RX_RING_MIN)
1119 return -EINVAL;
1120 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1121 return -EINVAL;
1122
1123 if (netif_running(ndev)) {
1124 netif_device_detach(ndev);
1125 /* Stop PTP Clock driver */
1126 ravb_ptp_stop(ndev);
1127 /* Wait for DMA stopping */
1128 error = ravb_stop_dma(ndev);
1129 if (error) {
1130 netdev_err(ndev,
1131 "cannot set ringparam! Any AVB processes are still running?\n");
1132 return error;
1133 }
1134 synchronize_irq(ndev->irq);
1135
1136 /* Free all the skb's in the RX queue and the DMA buffers. */
1137 ravb_ring_free(ndev, RAVB_BE);
1138 ravb_ring_free(ndev, RAVB_NC);
1139 }
1140
1141 /* Set new parameters */
1142 priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1143 priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1144
1145 if (netif_running(ndev)) {
1146 error = ravb_dmac_init(ndev);
1147 if (error) {
1148 netdev_err(ndev,
1149 "%s: ravb_dmac_init() failed, error %d\n",
1150 __func__, error);
1151 return error;
1152 }
1153
1154 ravb_emac_init(ndev);
1155
1156 /* Initialise PTP Clock driver */
1157 ravb_ptp_init(ndev, priv->pdev);
1158
1159 netif_device_attach(ndev);
1160 }
1161
1162 return 0;
1163 }
1164
1165 static int ravb_get_ts_info(struct net_device *ndev,
1166 struct ethtool_ts_info *info)
1167 {
1168 struct ravb_private *priv = netdev_priv(ndev);
1169
1170 info->so_timestamping =
1171 SOF_TIMESTAMPING_TX_SOFTWARE |
1172 SOF_TIMESTAMPING_RX_SOFTWARE |
1173 SOF_TIMESTAMPING_SOFTWARE |
1174 SOF_TIMESTAMPING_TX_HARDWARE |
1175 SOF_TIMESTAMPING_RX_HARDWARE |
1176 SOF_TIMESTAMPING_RAW_HARDWARE;
1177 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1178 info->rx_filters =
1179 (1 << HWTSTAMP_FILTER_NONE) |
1180 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1181 (1 << HWTSTAMP_FILTER_ALL);
1182 info->phc_index = ptp_clock_index(priv->ptp.clock);
1183
1184 return 0;
1185 }
1186
1187 static const struct ethtool_ops ravb_ethtool_ops = {
1188 .get_settings = ravb_get_settings,
1189 .set_settings = ravb_set_settings,
1190 .nway_reset = ravb_nway_reset,
1191 .get_msglevel = ravb_get_msglevel,
1192 .set_msglevel = ravb_set_msglevel,
1193 .get_link = ethtool_op_get_link,
1194 .get_strings = ravb_get_strings,
1195 .get_ethtool_stats = ravb_get_ethtool_stats,
1196 .get_sset_count = ravb_get_sset_count,
1197 .get_ringparam = ravb_get_ringparam,
1198 .set_ringparam = ravb_set_ringparam,
1199 .get_ts_info = ravb_get_ts_info,
1200 };
1201
1202 /* Network device open function for Ethernet AVB */
1203 static int ravb_open(struct net_device *ndev)
1204 {
1205 struct ravb_private *priv = netdev_priv(ndev);
1206 int error;
1207
1208 napi_enable(&priv->napi[RAVB_BE]);
1209 napi_enable(&priv->napi[RAVB_NC]);
1210
1211 error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED, ndev->name,
1212 ndev);
1213 if (error) {
1214 netdev_err(ndev, "cannot request IRQ\n");
1215 goto out_napi_off;
1216 }
1217
1218 if (priv->chip_id == RCAR_GEN3) {
1219 error = request_irq(priv->emac_irq, ravb_interrupt,
1220 IRQF_SHARED, ndev->name, ndev);
1221 if (error) {
1222 netdev_err(ndev, "cannot request IRQ\n");
1223 goto out_free_irq;
1224 }
1225 }
1226
1227 /* Device init */
1228 error = ravb_dmac_init(ndev);
1229 if (error)
1230 goto out_free_irq;
1231 ravb_emac_init(ndev);
1232
1233 /* Initialise PTP Clock driver */
1234 if (priv->chip_id == RCAR_GEN2)
1235 ravb_ptp_init(ndev, priv->pdev);
1236
1237 netif_tx_start_all_queues(ndev);
1238
1239 /* PHY control start */
1240 error = ravb_phy_start(ndev);
1241 if (error)
1242 goto out_ptp_stop;
1243
1244 return 0;
1245
1246 out_ptp_stop:
1247 /* Stop PTP Clock driver */
1248 if (priv->chip_id == RCAR_GEN2)
1249 ravb_ptp_stop(ndev);
1250 out_free_irq:
1251 free_irq(ndev->irq, ndev);
1252 free_irq(priv->emac_irq, ndev);
1253 out_napi_off:
1254 napi_disable(&priv->napi[RAVB_NC]);
1255 napi_disable(&priv->napi[RAVB_BE]);
1256 return error;
1257 }
1258
1259 /* Timeout function for Ethernet AVB */
1260 static void ravb_tx_timeout(struct net_device *ndev)
1261 {
1262 struct ravb_private *priv = netdev_priv(ndev);
1263
1264 netif_err(priv, tx_err, ndev,
1265 "transmit timed out, status %08x, resetting...\n",
1266 ravb_read(ndev, ISS));
1267
1268 /* tx_errors count up */
1269 ndev->stats.tx_errors++;
1270
1271 schedule_work(&priv->work);
1272 }
1273
1274 static void ravb_tx_timeout_work(struct work_struct *work)
1275 {
1276 struct ravb_private *priv = container_of(work, struct ravb_private,
1277 work);
1278 struct net_device *ndev = priv->ndev;
1279
1280 netif_tx_stop_all_queues(ndev);
1281
1282 /* Stop PTP Clock driver */
1283 ravb_ptp_stop(ndev);
1284
1285 /* Wait for DMA stopping */
1286 ravb_stop_dma(ndev);
1287
1288 ravb_ring_free(ndev, RAVB_BE);
1289 ravb_ring_free(ndev, RAVB_NC);
1290
1291 /* Device init */
1292 ravb_dmac_init(ndev);
1293 ravb_emac_init(ndev);
1294
1295 /* Initialise PTP Clock driver */
1296 ravb_ptp_init(ndev, priv->pdev);
1297
1298 netif_tx_start_all_queues(ndev);
1299 }
1300
1301 /* Packet transmit function for Ethernet AVB */
1302 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1303 {
1304 struct ravb_private *priv = netdev_priv(ndev);
1305 u16 q = skb_get_queue_mapping(skb);
1306 struct ravb_tstamp_skb *ts_skb;
1307 struct ravb_tx_desc *desc;
1308 unsigned long flags;
1309 u32 dma_addr;
1310 void *buffer;
1311 u32 entry;
1312 u32 len;
1313
1314 spin_lock_irqsave(&priv->lock, flags);
1315 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1316 NUM_TX_DESC) {
1317 netif_err(priv, tx_queued, ndev,
1318 "still transmitting with the full ring!\n");
1319 netif_stop_subqueue(ndev, q);
1320 spin_unlock_irqrestore(&priv->lock, flags);
1321 return NETDEV_TX_BUSY;
1322 }
1323 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1324 priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1325
1326 if (skb_put_padto(skb, ETH_ZLEN))
1327 goto drop;
1328
1329 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1330 entry / NUM_TX_DESC * DPTR_ALIGN;
1331 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1332 memcpy(buffer, skb->data, len);
1333 dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1334 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1335 goto drop;
1336
1337 desc = &priv->tx_ring[q][entry];
1338 desc->ds_tagl = cpu_to_le16(len);
1339 desc->dptr = cpu_to_le32(dma_addr);
1340
1341 buffer = skb->data + len;
1342 len = skb->len - len;
1343 dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1344 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1345 goto unmap;
1346
1347 desc++;
1348 desc->ds_tagl = cpu_to_le16(len);
1349 desc->dptr = cpu_to_le32(dma_addr);
1350
1351 /* TX timestamp required */
1352 if (q == RAVB_NC) {
1353 ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1354 if (!ts_skb) {
1355 desc--;
1356 dma_unmap_single(ndev->dev.parent, dma_addr, len,
1357 DMA_TO_DEVICE);
1358 goto unmap;
1359 }
1360 ts_skb->skb = skb;
1361 ts_skb->tag = priv->ts_skb_tag++;
1362 priv->ts_skb_tag &= 0x3ff;
1363 list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1364
1365 /* TAG and timestamp required flag */
1366 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1367 skb_tx_timestamp(skb);
1368 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1369 desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
1370 }
1371
1372 /* Descriptor type must be set after all the above writes */
1373 dma_wmb();
1374 desc->die_dt = DT_FEND;
1375 desc--;
1376 desc->die_dt = DT_FSTART;
1377
1378 ravb_write(ndev, ravb_read(ndev, TCCR) | (TCCR_TSRQ0 << q), TCCR);
1379
1380 priv->cur_tx[q] += NUM_TX_DESC;
1381 if (priv->cur_tx[q] - priv->dirty_tx[q] >
1382 (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q))
1383 netif_stop_subqueue(ndev, q);
1384
1385 exit:
1386 mmiowb();
1387 spin_unlock_irqrestore(&priv->lock, flags);
1388 return NETDEV_TX_OK;
1389
1390 unmap:
1391 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1392 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1393 drop:
1394 dev_kfree_skb_any(skb);
1395 priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1396 goto exit;
1397 }
1398
1399 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1400 void *accel_priv, select_queue_fallback_t fallback)
1401 {
1402 /* If skb needs TX timestamp, it is handled in network control queue */
1403 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1404 RAVB_BE;
1405
1406 }
1407
1408 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1409 {
1410 struct ravb_private *priv = netdev_priv(ndev);
1411 struct net_device_stats *nstats, *stats0, *stats1;
1412
1413 nstats = &ndev->stats;
1414 stats0 = &priv->stats[RAVB_BE];
1415 stats1 = &priv->stats[RAVB_NC];
1416
1417 nstats->tx_dropped += ravb_read(ndev, TROCR);
1418 ravb_write(ndev, 0, TROCR); /* (write clear) */
1419 nstats->collisions += ravb_read(ndev, CDCR);
1420 ravb_write(ndev, 0, CDCR); /* (write clear) */
1421 nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1422 ravb_write(ndev, 0, LCCR); /* (write clear) */
1423
1424 nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1425 ravb_write(ndev, 0, CERCR); /* (write clear) */
1426 nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1427 ravb_write(ndev, 0, CEECR); /* (write clear) */
1428
1429 nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1430 nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1431 nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1432 nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1433 nstats->multicast = stats0->multicast + stats1->multicast;
1434 nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1435 nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1436 nstats->rx_frame_errors =
1437 stats0->rx_frame_errors + stats1->rx_frame_errors;
1438 nstats->rx_length_errors =
1439 stats0->rx_length_errors + stats1->rx_length_errors;
1440 nstats->rx_missed_errors =
1441 stats0->rx_missed_errors + stats1->rx_missed_errors;
1442 nstats->rx_over_errors =
1443 stats0->rx_over_errors + stats1->rx_over_errors;
1444
1445 return nstats;
1446 }
1447
1448 /* Update promiscuous bit */
1449 static void ravb_set_rx_mode(struct net_device *ndev)
1450 {
1451 struct ravb_private *priv = netdev_priv(ndev);
1452 unsigned long flags;
1453 u32 ecmr;
1454
1455 spin_lock_irqsave(&priv->lock, flags);
1456 ecmr = ravb_read(ndev, ECMR);
1457 if (ndev->flags & IFF_PROMISC)
1458 ecmr |= ECMR_PRM;
1459 else
1460 ecmr &= ~ECMR_PRM;
1461 ravb_write(ndev, ecmr, ECMR);
1462 mmiowb();
1463 spin_unlock_irqrestore(&priv->lock, flags);
1464 }
1465
1466 /* Device close function for Ethernet AVB */
1467 static int ravb_close(struct net_device *ndev)
1468 {
1469 struct ravb_private *priv = netdev_priv(ndev);
1470 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1471
1472 netif_tx_stop_all_queues(ndev);
1473
1474 /* Disable interrupts by clearing the interrupt masks. */
1475 ravb_write(ndev, 0, RIC0);
1476 ravb_write(ndev, 0, RIC1);
1477 ravb_write(ndev, 0, RIC2);
1478 ravb_write(ndev, 0, TIC);
1479
1480 /* Stop PTP Clock driver */
1481 if (priv->chip_id == RCAR_GEN2)
1482 ravb_ptp_stop(ndev);
1483
1484 /* Set the config mode to stop the AVB-DMAC's processes */
1485 if (ravb_stop_dma(ndev) < 0)
1486 netdev_err(ndev,
1487 "device will be stopped after h/w processes are done.\n");
1488
1489 /* Clear the timestamp list */
1490 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1491 list_del(&ts_skb->list);
1492 kfree(ts_skb);
1493 }
1494
1495 /* PHY disconnect */
1496 if (priv->phydev) {
1497 phy_stop(priv->phydev);
1498 phy_disconnect(priv->phydev);
1499 priv->phydev = NULL;
1500 }
1501
1502 free_irq(ndev->irq, ndev);
1503
1504 napi_disable(&priv->napi[RAVB_NC]);
1505 napi_disable(&priv->napi[RAVB_BE]);
1506
1507 /* Free all the skb's in the RX queue and the DMA buffers. */
1508 ravb_ring_free(ndev, RAVB_BE);
1509 ravb_ring_free(ndev, RAVB_NC);
1510
1511 return 0;
1512 }
1513
1514 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1515 {
1516 struct ravb_private *priv = netdev_priv(ndev);
1517 struct hwtstamp_config config;
1518
1519 config.flags = 0;
1520 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1521 HWTSTAMP_TX_OFF;
1522 if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1523 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1524 else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1525 config.rx_filter = HWTSTAMP_FILTER_ALL;
1526 else
1527 config.rx_filter = HWTSTAMP_FILTER_NONE;
1528
1529 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1530 -EFAULT : 0;
1531 }
1532
1533 /* Control hardware time stamping */
1534 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1535 {
1536 struct ravb_private *priv = netdev_priv(ndev);
1537 struct hwtstamp_config config;
1538 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1539 u32 tstamp_tx_ctrl;
1540
1541 if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1542 return -EFAULT;
1543
1544 /* Reserved for future extensions */
1545 if (config.flags)
1546 return -EINVAL;
1547
1548 switch (config.tx_type) {
1549 case HWTSTAMP_TX_OFF:
1550 tstamp_tx_ctrl = 0;
1551 break;
1552 case HWTSTAMP_TX_ON:
1553 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1554 break;
1555 default:
1556 return -ERANGE;
1557 }
1558
1559 switch (config.rx_filter) {
1560 case HWTSTAMP_FILTER_NONE:
1561 tstamp_rx_ctrl = 0;
1562 break;
1563 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1564 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1565 break;
1566 default:
1567 config.rx_filter = HWTSTAMP_FILTER_ALL;
1568 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1569 }
1570
1571 priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1572 priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1573
1574 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1575 -EFAULT : 0;
1576 }
1577
1578 /* ioctl to device function */
1579 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1580 {
1581 struct ravb_private *priv = netdev_priv(ndev);
1582 struct phy_device *phydev = priv->phydev;
1583
1584 if (!netif_running(ndev))
1585 return -EINVAL;
1586
1587 if (!phydev)
1588 return -ENODEV;
1589
1590 switch (cmd) {
1591 case SIOCGHWTSTAMP:
1592 return ravb_hwtstamp_get(ndev, req);
1593 case SIOCSHWTSTAMP:
1594 return ravb_hwtstamp_set(ndev, req);
1595 }
1596
1597 return phy_mii_ioctl(phydev, req, cmd);
1598 }
1599
1600 static const struct net_device_ops ravb_netdev_ops = {
1601 .ndo_open = ravb_open,
1602 .ndo_stop = ravb_close,
1603 .ndo_start_xmit = ravb_start_xmit,
1604 .ndo_select_queue = ravb_select_queue,
1605 .ndo_get_stats = ravb_get_stats,
1606 .ndo_set_rx_mode = ravb_set_rx_mode,
1607 .ndo_tx_timeout = ravb_tx_timeout,
1608 .ndo_do_ioctl = ravb_do_ioctl,
1609 .ndo_validate_addr = eth_validate_addr,
1610 .ndo_set_mac_address = eth_mac_addr,
1611 .ndo_change_mtu = eth_change_mtu,
1612 };
1613
1614 /* MDIO bus init function */
1615 static int ravb_mdio_init(struct ravb_private *priv)
1616 {
1617 struct platform_device *pdev = priv->pdev;
1618 struct device *dev = &pdev->dev;
1619 int error;
1620
1621 /* Bitbang init */
1622 priv->mdiobb.ops = &bb_ops;
1623
1624 /* MII controller setting */
1625 priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1626 if (!priv->mii_bus)
1627 return -ENOMEM;
1628
1629 /* Hook up MII support for ethtool */
1630 priv->mii_bus->name = "ravb_mii";
1631 priv->mii_bus->parent = dev;
1632 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1633 pdev->name, pdev->id);
1634
1635 /* Register MDIO bus */
1636 error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1637 if (error)
1638 goto out_free_bus;
1639
1640 return 0;
1641
1642 out_free_bus:
1643 free_mdio_bitbang(priv->mii_bus);
1644 return error;
1645 }
1646
1647 /* MDIO bus release function */
1648 static int ravb_mdio_release(struct ravb_private *priv)
1649 {
1650 /* Unregister mdio bus */
1651 mdiobus_unregister(priv->mii_bus);
1652
1653 /* Free bitbang info */
1654 free_mdio_bitbang(priv->mii_bus);
1655
1656 return 0;
1657 }
1658
1659 static const struct of_device_id ravb_match_table[] = {
1660 { .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1661 { .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1662 { .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1663 { .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1664 { .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1665 { }
1666 };
1667 MODULE_DEVICE_TABLE(of, ravb_match_table);
1668
1669 static int ravb_set_gti(struct net_device *ndev)
1670 {
1671
1672 struct device *dev = ndev->dev.parent;
1673 struct device_node *np = dev->of_node;
1674 unsigned long rate;
1675 struct clk *clk;
1676 uint64_t inc;
1677
1678 clk = of_clk_get(np, 0);
1679 if (IS_ERR(clk)) {
1680 dev_err(dev, "could not get clock\n");
1681 return PTR_ERR(clk);
1682 }
1683
1684 rate = clk_get_rate(clk);
1685 clk_put(clk);
1686
1687 inc = 1000000000ULL << 20;
1688 do_div(inc, rate);
1689
1690 if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1691 dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1692 inc, GTI_TIV_MIN, GTI_TIV_MAX);
1693 return -EINVAL;
1694 }
1695
1696 ravb_write(ndev, inc, GTI);
1697
1698 return 0;
1699 }
1700
1701 static int ravb_probe(struct platform_device *pdev)
1702 {
1703 struct device_node *np = pdev->dev.of_node;
1704 const struct of_device_id *match;
1705 struct ravb_private *priv;
1706 enum ravb_chip_id chip_id;
1707 struct net_device *ndev;
1708 int error, irq, q;
1709 struct resource *res;
1710
1711 if (!np) {
1712 dev_err(&pdev->dev,
1713 "this driver is required to be instantiated from device tree\n");
1714 return -EINVAL;
1715 }
1716
1717 /* Get base address */
1718 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1719 if (!res) {
1720 dev_err(&pdev->dev, "invalid resource\n");
1721 return -EINVAL;
1722 }
1723
1724 ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1725 NUM_TX_QUEUE, NUM_RX_QUEUE);
1726 if (!ndev)
1727 return -ENOMEM;
1728
1729 pm_runtime_enable(&pdev->dev);
1730 pm_runtime_get_sync(&pdev->dev);
1731
1732 /* The Ether-specific entries in the device structure. */
1733 ndev->base_addr = res->start;
1734 ndev->dma = -1;
1735
1736 match = of_match_device(of_match_ptr(ravb_match_table), &pdev->dev);
1737 chip_id = (enum ravb_chip_id)match->data;
1738
1739 if (chip_id == RCAR_GEN3)
1740 irq = platform_get_irq_byname(pdev, "ch22");
1741 else
1742 irq = platform_get_irq(pdev, 0);
1743 if (irq < 0) {
1744 error = irq;
1745 goto out_release;
1746 }
1747 ndev->irq = irq;
1748
1749 SET_NETDEV_DEV(ndev, &pdev->dev);
1750
1751 priv = netdev_priv(ndev);
1752 priv->ndev = ndev;
1753 priv->pdev = pdev;
1754 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
1755 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
1756 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
1757 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
1758 priv->addr = devm_ioremap_resource(&pdev->dev, res);
1759 if (IS_ERR(priv->addr)) {
1760 error = PTR_ERR(priv->addr);
1761 goto out_release;
1762 }
1763
1764 spin_lock_init(&priv->lock);
1765 INIT_WORK(&priv->work, ravb_tx_timeout_work);
1766
1767 priv->phy_interface = of_get_phy_mode(np);
1768
1769 priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
1770 priv->avb_link_active_low =
1771 of_property_read_bool(np, "renesas,ether-link-active-low");
1772
1773 if (chip_id == RCAR_GEN3) {
1774 irq = platform_get_irq_byname(pdev, "ch24");
1775 if (irq < 0) {
1776 error = irq;
1777 goto out_release;
1778 }
1779 priv->emac_irq = irq;
1780 }
1781
1782 priv->chip_id = chip_id;
1783
1784 /* Set function */
1785 ndev->netdev_ops = &ravb_netdev_ops;
1786 ndev->ethtool_ops = &ravb_ethtool_ops;
1787
1788 /* Set AVB config mode */
1789 if (chip_id == RCAR_GEN2) {
1790 ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) |
1791 CCC_OPC_CONFIG, CCC);
1792 /* Set CSEL value */
1793 ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_CSEL) |
1794 CCC_CSEL_HPB, CCC);
1795 } else {
1796 ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) |
1797 CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB, CCC);
1798 }
1799
1800 /* Set CSEL value */
1801 ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_CSEL) | CCC_CSEL_HPB,
1802 CCC);
1803
1804 /* Set GTI value */
1805 error = ravb_set_gti(ndev);
1806 if (error)
1807 goto out_release;
1808
1809 /* Request GTI loading */
1810 ravb_write(ndev, ravb_read(ndev, GCCR) | GCCR_LTI, GCCR);
1811
1812 /* Allocate descriptor base address table */
1813 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
1814 priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
1815 &priv->desc_bat_dma, GFP_KERNEL);
1816 if (!priv->desc_bat) {
1817 dev_err(&pdev->dev,
1818 "Cannot allocate desc base address table (size %d bytes)\n",
1819 priv->desc_bat_size);
1820 error = -ENOMEM;
1821 goto out_release;
1822 }
1823 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
1824 priv->desc_bat[q].die_dt = DT_EOS;
1825 ravb_write(ndev, priv->desc_bat_dma, DBAT);
1826
1827 /* Initialise HW timestamp list */
1828 INIT_LIST_HEAD(&priv->ts_skb_list);
1829
1830 /* Initialise PTP Clock driver */
1831 if (chip_id != RCAR_GEN2)
1832 ravb_ptp_init(ndev, pdev);
1833
1834 /* Debug message level */
1835 priv->msg_enable = RAVB_DEF_MSG_ENABLE;
1836
1837 /* Read and set MAC address */
1838 ravb_read_mac_address(ndev, of_get_mac_address(np));
1839 if (!is_valid_ether_addr(ndev->dev_addr)) {
1840 dev_warn(&pdev->dev,
1841 "no valid MAC address supplied, using a random one\n");
1842 eth_hw_addr_random(ndev);
1843 }
1844
1845 /* MDIO bus init */
1846 error = ravb_mdio_init(priv);
1847 if (error) {
1848 dev_err(&pdev->dev, "failed to initialize MDIO\n");
1849 goto out_dma_free;
1850 }
1851
1852 netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
1853 netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
1854
1855 /* Network device register */
1856 error = register_netdev(ndev);
1857 if (error)
1858 goto out_napi_del;
1859
1860 /* Print device information */
1861 netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
1862 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
1863
1864 platform_set_drvdata(pdev, ndev);
1865
1866 return 0;
1867
1868 out_napi_del:
1869 netif_napi_del(&priv->napi[RAVB_NC]);
1870 netif_napi_del(&priv->napi[RAVB_BE]);
1871 ravb_mdio_release(priv);
1872 out_dma_free:
1873 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
1874 priv->desc_bat_dma);
1875
1876 /* Stop PTP Clock driver */
1877 if (chip_id != RCAR_GEN2)
1878 ravb_ptp_stop(ndev);
1879 out_release:
1880 if (ndev)
1881 free_netdev(ndev);
1882
1883 pm_runtime_put(&pdev->dev);
1884 pm_runtime_disable(&pdev->dev);
1885 return error;
1886 }
1887
1888 static int ravb_remove(struct platform_device *pdev)
1889 {
1890 struct net_device *ndev = platform_get_drvdata(pdev);
1891 struct ravb_private *priv = netdev_priv(ndev);
1892
1893 /* Stop PTP Clock driver */
1894 if (priv->chip_id != RCAR_GEN2)
1895 ravb_ptp_stop(ndev);
1896
1897 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
1898 priv->desc_bat_dma);
1899 /* Set reset mode */
1900 ravb_write(ndev, CCC_OPC_RESET, CCC);
1901 pm_runtime_put_sync(&pdev->dev);
1902 unregister_netdev(ndev);
1903 netif_napi_del(&priv->napi[RAVB_NC]);
1904 netif_napi_del(&priv->napi[RAVB_BE]);
1905 ravb_mdio_release(priv);
1906 pm_runtime_disable(&pdev->dev);
1907 free_netdev(ndev);
1908 platform_set_drvdata(pdev, NULL);
1909
1910 return 0;
1911 }
1912
1913 #ifdef CONFIG_PM
1914 static int ravb_runtime_nop(struct device *dev)
1915 {
1916 /* Runtime PM callback shared between ->runtime_suspend()
1917 * and ->runtime_resume(). Simply returns success.
1918 *
1919 * This driver re-initializes all registers after
1920 * pm_runtime_get_sync() anyway so there is no need
1921 * to save and restore registers here.
1922 */
1923 return 0;
1924 }
1925
1926 static const struct dev_pm_ops ravb_dev_pm_ops = {
1927 .runtime_suspend = ravb_runtime_nop,
1928 .runtime_resume = ravb_runtime_nop,
1929 };
1930
1931 #define RAVB_PM_OPS (&ravb_dev_pm_ops)
1932 #else
1933 #define RAVB_PM_OPS NULL
1934 #endif
1935
1936 static struct platform_driver ravb_driver = {
1937 .probe = ravb_probe,
1938 .remove = ravb_remove,
1939 .driver = {
1940 .name = "ravb",
1941 .pm = RAVB_PM_OPS,
1942 .of_match_table = ravb_match_table,
1943 },
1944 };
1945
1946 module_platform_driver(ravb_driver);
1947
1948 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
1949 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
1950 MODULE_LICENSE("GPL v2");
This page took 0.11363 seconds and 5 git commands to generate.