net: vlan: rename NETIF_F_HW_VLAN_* feature flags to NETIF_F_HW_VLAN_CTAG_*
[deliverable/linux.git] / drivers / net / ethernet / renesas / sh_eth.c
1 /*
2 * SuperH Ethernet device driver
3 *
4 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 * Copyright (C) 2008-2013 Renesas Solutions Corp.
6 * Copyright (C) 2013 Cogent Embedded, Inc.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * The full GNU General Public License is included in this distribution in
21 * the file called "COPYING".
22 */
23
24 #include <linux/init.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/spinlock.h>
28 #include <linux/interrupt.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/etherdevice.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <linux/mdio-bitbang.h>
34 #include <linux/netdevice.h>
35 #include <linux/phy.h>
36 #include <linux/cache.h>
37 #include <linux/io.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/clk.h>
43 #include <linux/sh_eth.h>
44
45 #include "sh_eth.h"
46
47 #define SH_ETH_DEF_MSG_ENABLE \
48 (NETIF_MSG_LINK | \
49 NETIF_MSG_TIMER | \
50 NETIF_MSG_RX_ERR| \
51 NETIF_MSG_TX_ERR)
52
53 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
54 [EDSR] = 0x0000,
55 [EDMR] = 0x0400,
56 [EDTRR] = 0x0408,
57 [EDRRR] = 0x0410,
58 [EESR] = 0x0428,
59 [EESIPR] = 0x0430,
60 [TDLAR] = 0x0010,
61 [TDFAR] = 0x0014,
62 [TDFXR] = 0x0018,
63 [TDFFR] = 0x001c,
64 [RDLAR] = 0x0030,
65 [RDFAR] = 0x0034,
66 [RDFXR] = 0x0038,
67 [RDFFR] = 0x003c,
68 [TRSCER] = 0x0438,
69 [RMFCR] = 0x0440,
70 [TFTR] = 0x0448,
71 [FDR] = 0x0450,
72 [RMCR] = 0x0458,
73 [RPADIR] = 0x0460,
74 [FCFTR] = 0x0468,
75 [CSMR] = 0x04E4,
76
77 [ECMR] = 0x0500,
78 [ECSR] = 0x0510,
79 [ECSIPR] = 0x0518,
80 [PIR] = 0x0520,
81 [PSR] = 0x0528,
82 [PIPR] = 0x052c,
83 [RFLR] = 0x0508,
84 [APR] = 0x0554,
85 [MPR] = 0x0558,
86 [PFTCR] = 0x055c,
87 [PFRCR] = 0x0560,
88 [TPAUSER] = 0x0564,
89 [GECMR] = 0x05b0,
90 [BCULR] = 0x05b4,
91 [MAHR] = 0x05c0,
92 [MALR] = 0x05c8,
93 [TROCR] = 0x0700,
94 [CDCR] = 0x0708,
95 [LCCR] = 0x0710,
96 [CEFCR] = 0x0740,
97 [FRECR] = 0x0748,
98 [TSFRCR] = 0x0750,
99 [TLFRCR] = 0x0758,
100 [RFCR] = 0x0760,
101 [CERCR] = 0x0768,
102 [CEECR] = 0x0770,
103 [MAFCR] = 0x0778,
104 [RMII_MII] = 0x0790,
105
106 [ARSTR] = 0x0000,
107 [TSU_CTRST] = 0x0004,
108 [TSU_FWEN0] = 0x0010,
109 [TSU_FWEN1] = 0x0014,
110 [TSU_FCM] = 0x0018,
111 [TSU_BSYSL0] = 0x0020,
112 [TSU_BSYSL1] = 0x0024,
113 [TSU_PRISL0] = 0x0028,
114 [TSU_PRISL1] = 0x002c,
115 [TSU_FWSL0] = 0x0030,
116 [TSU_FWSL1] = 0x0034,
117 [TSU_FWSLC] = 0x0038,
118 [TSU_QTAG0] = 0x0040,
119 [TSU_QTAG1] = 0x0044,
120 [TSU_FWSR] = 0x0050,
121 [TSU_FWINMK] = 0x0054,
122 [TSU_ADQT0] = 0x0048,
123 [TSU_ADQT1] = 0x004c,
124 [TSU_VTAG0] = 0x0058,
125 [TSU_VTAG1] = 0x005c,
126 [TSU_ADSBSY] = 0x0060,
127 [TSU_TEN] = 0x0064,
128 [TSU_POST1] = 0x0070,
129 [TSU_POST2] = 0x0074,
130 [TSU_POST3] = 0x0078,
131 [TSU_POST4] = 0x007c,
132 [TSU_ADRH0] = 0x0100,
133 [TSU_ADRL0] = 0x0104,
134 [TSU_ADRH31] = 0x01f8,
135 [TSU_ADRL31] = 0x01fc,
136
137 [TXNLCR0] = 0x0080,
138 [TXALCR0] = 0x0084,
139 [RXNLCR0] = 0x0088,
140 [RXALCR0] = 0x008c,
141 [FWNLCR0] = 0x0090,
142 [FWALCR0] = 0x0094,
143 [TXNLCR1] = 0x00a0,
144 [TXALCR1] = 0x00a0,
145 [RXNLCR1] = 0x00a8,
146 [RXALCR1] = 0x00ac,
147 [FWNLCR1] = 0x00b0,
148 [FWALCR1] = 0x00b4,
149 };
150
151 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
152 [ECMR] = 0x0300,
153 [RFLR] = 0x0308,
154 [ECSR] = 0x0310,
155 [ECSIPR] = 0x0318,
156 [PIR] = 0x0320,
157 [PSR] = 0x0328,
158 [RDMLR] = 0x0340,
159 [IPGR] = 0x0350,
160 [APR] = 0x0354,
161 [MPR] = 0x0358,
162 [RFCF] = 0x0360,
163 [TPAUSER] = 0x0364,
164 [TPAUSECR] = 0x0368,
165 [MAHR] = 0x03c0,
166 [MALR] = 0x03c8,
167 [TROCR] = 0x03d0,
168 [CDCR] = 0x03d4,
169 [LCCR] = 0x03d8,
170 [CNDCR] = 0x03dc,
171 [CEFCR] = 0x03e4,
172 [FRECR] = 0x03e8,
173 [TSFRCR] = 0x03ec,
174 [TLFRCR] = 0x03f0,
175 [RFCR] = 0x03f4,
176 [MAFCR] = 0x03f8,
177
178 [EDMR] = 0x0200,
179 [EDTRR] = 0x0208,
180 [EDRRR] = 0x0210,
181 [TDLAR] = 0x0218,
182 [RDLAR] = 0x0220,
183 [EESR] = 0x0228,
184 [EESIPR] = 0x0230,
185 [TRSCER] = 0x0238,
186 [RMFCR] = 0x0240,
187 [TFTR] = 0x0248,
188 [FDR] = 0x0250,
189 [RMCR] = 0x0258,
190 [TFUCR] = 0x0264,
191 [RFOCR] = 0x0268,
192 [FCFTR] = 0x0270,
193 [TRIMD] = 0x027c,
194 };
195
196 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
197 [ECMR] = 0x0100,
198 [RFLR] = 0x0108,
199 [ECSR] = 0x0110,
200 [ECSIPR] = 0x0118,
201 [PIR] = 0x0120,
202 [PSR] = 0x0128,
203 [RDMLR] = 0x0140,
204 [IPGR] = 0x0150,
205 [APR] = 0x0154,
206 [MPR] = 0x0158,
207 [TPAUSER] = 0x0164,
208 [RFCF] = 0x0160,
209 [TPAUSECR] = 0x0168,
210 [BCFRR] = 0x016c,
211 [MAHR] = 0x01c0,
212 [MALR] = 0x01c8,
213 [TROCR] = 0x01d0,
214 [CDCR] = 0x01d4,
215 [LCCR] = 0x01d8,
216 [CNDCR] = 0x01dc,
217 [CEFCR] = 0x01e4,
218 [FRECR] = 0x01e8,
219 [TSFRCR] = 0x01ec,
220 [TLFRCR] = 0x01f0,
221 [RFCR] = 0x01f4,
222 [MAFCR] = 0x01f8,
223 [RTRATE] = 0x01fc,
224
225 [EDMR] = 0x0000,
226 [EDTRR] = 0x0008,
227 [EDRRR] = 0x0010,
228 [TDLAR] = 0x0018,
229 [RDLAR] = 0x0020,
230 [EESR] = 0x0028,
231 [EESIPR] = 0x0030,
232 [TRSCER] = 0x0038,
233 [RMFCR] = 0x0040,
234 [TFTR] = 0x0048,
235 [FDR] = 0x0050,
236 [RMCR] = 0x0058,
237 [TFUCR] = 0x0064,
238 [RFOCR] = 0x0068,
239 [FCFTR] = 0x0070,
240 [RPADIR] = 0x0078,
241 [TRIMD] = 0x007c,
242 [RBWAR] = 0x00c8,
243 [RDFAR] = 0x00cc,
244 [TBRAR] = 0x00d4,
245 [TDFAR] = 0x00d8,
246 };
247
248 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
249 [ECMR] = 0x0160,
250 [ECSR] = 0x0164,
251 [ECSIPR] = 0x0168,
252 [PIR] = 0x016c,
253 [MAHR] = 0x0170,
254 [MALR] = 0x0174,
255 [RFLR] = 0x0178,
256 [PSR] = 0x017c,
257 [TROCR] = 0x0180,
258 [CDCR] = 0x0184,
259 [LCCR] = 0x0188,
260 [CNDCR] = 0x018c,
261 [CEFCR] = 0x0194,
262 [FRECR] = 0x0198,
263 [TSFRCR] = 0x019c,
264 [TLFRCR] = 0x01a0,
265 [RFCR] = 0x01a4,
266 [MAFCR] = 0x01a8,
267 [IPGR] = 0x01b4,
268 [APR] = 0x01b8,
269 [MPR] = 0x01bc,
270 [TPAUSER] = 0x01c4,
271 [BCFR] = 0x01cc,
272
273 [ARSTR] = 0x0000,
274 [TSU_CTRST] = 0x0004,
275 [TSU_FWEN0] = 0x0010,
276 [TSU_FWEN1] = 0x0014,
277 [TSU_FCM] = 0x0018,
278 [TSU_BSYSL0] = 0x0020,
279 [TSU_BSYSL1] = 0x0024,
280 [TSU_PRISL0] = 0x0028,
281 [TSU_PRISL1] = 0x002c,
282 [TSU_FWSL0] = 0x0030,
283 [TSU_FWSL1] = 0x0034,
284 [TSU_FWSLC] = 0x0038,
285 [TSU_QTAGM0] = 0x0040,
286 [TSU_QTAGM1] = 0x0044,
287 [TSU_ADQT0] = 0x0048,
288 [TSU_ADQT1] = 0x004c,
289 [TSU_FWSR] = 0x0050,
290 [TSU_FWINMK] = 0x0054,
291 [TSU_ADSBSY] = 0x0060,
292 [TSU_TEN] = 0x0064,
293 [TSU_POST1] = 0x0070,
294 [TSU_POST2] = 0x0074,
295 [TSU_POST3] = 0x0078,
296 [TSU_POST4] = 0x007c,
297
298 [TXNLCR0] = 0x0080,
299 [TXALCR0] = 0x0084,
300 [RXNLCR0] = 0x0088,
301 [RXALCR0] = 0x008c,
302 [FWNLCR0] = 0x0090,
303 [FWALCR0] = 0x0094,
304 [TXNLCR1] = 0x00a0,
305 [TXALCR1] = 0x00a0,
306 [RXNLCR1] = 0x00a8,
307 [RXALCR1] = 0x00ac,
308 [FWNLCR1] = 0x00b0,
309 [FWALCR1] = 0x00b4,
310
311 [TSU_ADRH0] = 0x0100,
312 [TSU_ADRL0] = 0x0104,
313 [TSU_ADRL31] = 0x01fc,
314 };
315
316 #if defined(CONFIG_CPU_SUBTYPE_SH7734) || \
317 defined(CONFIG_CPU_SUBTYPE_SH7763) || \
318 defined(CONFIG_ARCH_R8A7740)
319 static void sh_eth_select_mii(struct net_device *ndev)
320 {
321 u32 value = 0x0;
322 struct sh_eth_private *mdp = netdev_priv(ndev);
323
324 switch (mdp->phy_interface) {
325 case PHY_INTERFACE_MODE_GMII:
326 value = 0x2;
327 break;
328 case PHY_INTERFACE_MODE_MII:
329 value = 0x1;
330 break;
331 case PHY_INTERFACE_MODE_RMII:
332 value = 0x0;
333 break;
334 default:
335 pr_warn("PHY interface mode was not setup. Set to MII.\n");
336 value = 0x1;
337 break;
338 }
339
340 sh_eth_write(ndev, value, RMII_MII);
341 }
342 #endif
343
344 /* There is CPU dependent code */
345 #if defined(CONFIG_ARCH_R8A7779)
346 #define SH_ETH_RESET_DEFAULT 1
347 static void sh_eth_set_duplex(struct net_device *ndev)
348 {
349 struct sh_eth_private *mdp = netdev_priv(ndev);
350
351 if (mdp->duplex) /* Full */
352 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
353 else /* Half */
354 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
355 }
356
357 static void sh_eth_set_rate(struct net_device *ndev)
358 {
359 struct sh_eth_private *mdp = netdev_priv(ndev);
360
361 switch (mdp->speed) {
362 case 10: /* 10BASE */
363 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
364 break;
365 case 100:/* 100BASE */
366 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
367 break;
368 default:
369 break;
370 }
371 }
372
373 /* R8A7779 */
374 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
375 .set_duplex = sh_eth_set_duplex,
376 .set_rate = sh_eth_set_rate,
377
378 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
379 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
380 .eesipr_value = 0x01ff009f,
381
382 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
383 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
384 EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
385 .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
386
387 .apr = 1,
388 .mpr = 1,
389 .tpauser = 1,
390 .hw_swap = 1,
391 };
392 #elif defined(CONFIG_CPU_SUBTYPE_SH7724)
393 #define SH_ETH_RESET_DEFAULT 1
394 static void sh_eth_set_duplex(struct net_device *ndev)
395 {
396 struct sh_eth_private *mdp = netdev_priv(ndev);
397
398 if (mdp->duplex) /* Full */
399 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
400 else /* Half */
401 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
402 }
403
404 static void sh_eth_set_rate(struct net_device *ndev)
405 {
406 struct sh_eth_private *mdp = netdev_priv(ndev);
407
408 switch (mdp->speed) {
409 case 10: /* 10BASE */
410 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
411 break;
412 case 100:/* 100BASE */
413 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
414 break;
415 default:
416 break;
417 }
418 }
419
420 /* SH7724 */
421 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
422 .set_duplex = sh_eth_set_duplex,
423 .set_rate = sh_eth_set_rate,
424
425 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
426 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
427 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
428
429 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
430 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
431 EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
432 .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
433
434 .apr = 1,
435 .mpr = 1,
436 .tpauser = 1,
437 .hw_swap = 1,
438 .rpadir = 1,
439 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
440 };
441 #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
442 #define SH_ETH_HAS_BOTH_MODULES 1
443 #define SH_ETH_HAS_TSU 1
444 static int sh_eth_check_reset(struct net_device *ndev);
445
446 static void sh_eth_set_duplex(struct net_device *ndev)
447 {
448 struct sh_eth_private *mdp = netdev_priv(ndev);
449
450 if (mdp->duplex) /* Full */
451 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
452 else /* Half */
453 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
454 }
455
456 static void sh_eth_set_rate(struct net_device *ndev)
457 {
458 struct sh_eth_private *mdp = netdev_priv(ndev);
459
460 switch (mdp->speed) {
461 case 10: /* 10BASE */
462 sh_eth_write(ndev, 0, RTRATE);
463 break;
464 case 100:/* 100BASE */
465 sh_eth_write(ndev, 1, RTRATE);
466 break;
467 default:
468 break;
469 }
470 }
471
472 /* SH7757 */
473 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
474 .set_duplex = sh_eth_set_duplex,
475 .set_rate = sh_eth_set_rate,
476
477 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
478 .rmcr_value = 0x00000001,
479
480 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
481 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
482 EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
483 .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
484
485 .apr = 1,
486 .mpr = 1,
487 .tpauser = 1,
488 .hw_swap = 1,
489 .no_ade = 1,
490 .rpadir = 1,
491 .rpadir_value = 2 << 16,
492 };
493
494 #define SH_GIGA_ETH_BASE 0xfee00000
495 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
496 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
497 static void sh_eth_chip_reset_giga(struct net_device *ndev)
498 {
499 int i;
500 unsigned long mahr[2], malr[2];
501
502 /* save MAHR and MALR */
503 for (i = 0; i < 2; i++) {
504 malr[i] = ioread32((void *)GIGA_MALR(i));
505 mahr[i] = ioread32((void *)GIGA_MAHR(i));
506 }
507
508 /* reset device */
509 iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
510 mdelay(1);
511
512 /* restore MAHR and MALR */
513 for (i = 0; i < 2; i++) {
514 iowrite32(malr[i], (void *)GIGA_MALR(i));
515 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
516 }
517 }
518
519 static int sh_eth_is_gether(struct sh_eth_private *mdp);
520 static int sh_eth_reset(struct net_device *ndev)
521 {
522 struct sh_eth_private *mdp = netdev_priv(ndev);
523 int ret = 0;
524
525 if (sh_eth_is_gether(mdp)) {
526 sh_eth_write(ndev, 0x03, EDSR);
527 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
528 EDMR);
529
530 ret = sh_eth_check_reset(ndev);
531 if (ret)
532 goto out;
533
534 /* Table Init */
535 sh_eth_write(ndev, 0x0, TDLAR);
536 sh_eth_write(ndev, 0x0, TDFAR);
537 sh_eth_write(ndev, 0x0, TDFXR);
538 sh_eth_write(ndev, 0x0, TDFFR);
539 sh_eth_write(ndev, 0x0, RDLAR);
540 sh_eth_write(ndev, 0x0, RDFAR);
541 sh_eth_write(ndev, 0x0, RDFXR);
542 sh_eth_write(ndev, 0x0, RDFFR);
543 } else {
544 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
545 EDMR);
546 mdelay(3);
547 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
548 EDMR);
549 }
550
551 out:
552 return ret;
553 }
554
555 static void sh_eth_set_duplex_giga(struct net_device *ndev)
556 {
557 struct sh_eth_private *mdp = netdev_priv(ndev);
558
559 if (mdp->duplex) /* Full */
560 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
561 else /* Half */
562 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
563 }
564
565 static void sh_eth_set_rate_giga(struct net_device *ndev)
566 {
567 struct sh_eth_private *mdp = netdev_priv(ndev);
568
569 switch (mdp->speed) {
570 case 10: /* 10BASE */
571 sh_eth_write(ndev, 0x00000000, GECMR);
572 break;
573 case 100:/* 100BASE */
574 sh_eth_write(ndev, 0x00000010, GECMR);
575 break;
576 case 1000: /* 1000BASE */
577 sh_eth_write(ndev, 0x00000020, GECMR);
578 break;
579 default:
580 break;
581 }
582 }
583
584 /* SH7757(GETHERC) */
585 static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
586 .chip_reset = sh_eth_chip_reset_giga,
587 .set_duplex = sh_eth_set_duplex_giga,
588 .set_rate = sh_eth_set_rate_giga,
589
590 .ecsr_value = ECSR_ICD | ECSR_MPD,
591 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
592 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
593
594 .tx_check = EESR_TC1 | EESR_FTC,
595 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
596 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
597 EESR_ECI,
598 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
599 EESR_TFE,
600 .fdr_value = 0x0000072f,
601 .rmcr_value = 0x00000001,
602
603 .apr = 1,
604 .mpr = 1,
605 .tpauser = 1,
606 .bculr = 1,
607 .hw_swap = 1,
608 .rpadir = 1,
609 .rpadir_value = 2 << 16,
610 .no_trimd = 1,
611 .no_ade = 1,
612 .tsu = 1,
613 };
614
615 static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
616 {
617 if (sh_eth_is_gether(mdp))
618 return &sh_eth_my_cpu_data_giga;
619 else
620 return &sh_eth_my_cpu_data;
621 }
622
623 #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
624 #define SH_ETH_HAS_TSU 1
625 static int sh_eth_check_reset(struct net_device *ndev);
626 static void sh_eth_reset_hw_crc(struct net_device *ndev);
627
628 static void sh_eth_chip_reset(struct net_device *ndev)
629 {
630 struct sh_eth_private *mdp = netdev_priv(ndev);
631
632 /* reset device */
633 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
634 mdelay(1);
635 }
636
637 static void sh_eth_set_duplex(struct net_device *ndev)
638 {
639 struct sh_eth_private *mdp = netdev_priv(ndev);
640
641 if (mdp->duplex) /* Full */
642 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
643 else /* Half */
644 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
645 }
646
647 static void sh_eth_set_rate(struct net_device *ndev)
648 {
649 struct sh_eth_private *mdp = netdev_priv(ndev);
650
651 switch (mdp->speed) {
652 case 10: /* 10BASE */
653 sh_eth_write(ndev, GECMR_10, GECMR);
654 break;
655 case 100:/* 100BASE */
656 sh_eth_write(ndev, GECMR_100, GECMR);
657 break;
658 case 1000: /* 1000BASE */
659 sh_eth_write(ndev, GECMR_1000, GECMR);
660 break;
661 default:
662 break;
663 }
664 }
665
666 /* sh7763 */
667 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
668 .chip_reset = sh_eth_chip_reset,
669 .set_duplex = sh_eth_set_duplex,
670 .set_rate = sh_eth_set_rate,
671
672 .ecsr_value = ECSR_ICD | ECSR_MPD,
673 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
674 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
675
676 .tx_check = EESR_TC1 | EESR_FTC,
677 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
678 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
679 EESR_ECI,
680 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
681 EESR_TFE,
682
683 .apr = 1,
684 .mpr = 1,
685 .tpauser = 1,
686 .bculr = 1,
687 .hw_swap = 1,
688 .no_trimd = 1,
689 .no_ade = 1,
690 .tsu = 1,
691 #if defined(CONFIG_CPU_SUBTYPE_SH7734)
692 .hw_crc = 1,
693 .select_mii = 1,
694 #endif
695 };
696
697 static int sh_eth_reset(struct net_device *ndev)
698 {
699 int ret = 0;
700
701 sh_eth_write(ndev, EDSR_ENALL, EDSR);
702 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
703
704 ret = sh_eth_check_reset(ndev);
705 if (ret)
706 goto out;
707
708 /* Table Init */
709 sh_eth_write(ndev, 0x0, TDLAR);
710 sh_eth_write(ndev, 0x0, TDFAR);
711 sh_eth_write(ndev, 0x0, TDFXR);
712 sh_eth_write(ndev, 0x0, TDFFR);
713 sh_eth_write(ndev, 0x0, RDLAR);
714 sh_eth_write(ndev, 0x0, RDFAR);
715 sh_eth_write(ndev, 0x0, RDFXR);
716 sh_eth_write(ndev, 0x0, RDFFR);
717
718 /* Reset HW CRC register */
719 sh_eth_reset_hw_crc(ndev);
720
721 /* Select MII mode */
722 if (sh_eth_my_cpu_data.select_mii)
723 sh_eth_select_mii(ndev);
724 out:
725 return ret;
726 }
727
728 static void sh_eth_reset_hw_crc(struct net_device *ndev)
729 {
730 if (sh_eth_my_cpu_data.hw_crc)
731 sh_eth_write(ndev, 0x0, CSMR);
732 }
733
734 #elif defined(CONFIG_ARCH_R8A7740)
735 #define SH_ETH_HAS_TSU 1
736 static int sh_eth_check_reset(struct net_device *ndev);
737
738 static void sh_eth_chip_reset(struct net_device *ndev)
739 {
740 struct sh_eth_private *mdp = netdev_priv(ndev);
741
742 /* reset device */
743 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
744 mdelay(1);
745
746 sh_eth_select_mii(ndev);
747 }
748
749 static int sh_eth_reset(struct net_device *ndev)
750 {
751 int ret = 0;
752
753 sh_eth_write(ndev, EDSR_ENALL, EDSR);
754 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
755
756 ret = sh_eth_check_reset(ndev);
757 if (ret)
758 goto out;
759
760 /* Table Init */
761 sh_eth_write(ndev, 0x0, TDLAR);
762 sh_eth_write(ndev, 0x0, TDFAR);
763 sh_eth_write(ndev, 0x0, TDFXR);
764 sh_eth_write(ndev, 0x0, TDFFR);
765 sh_eth_write(ndev, 0x0, RDLAR);
766 sh_eth_write(ndev, 0x0, RDFAR);
767 sh_eth_write(ndev, 0x0, RDFXR);
768 sh_eth_write(ndev, 0x0, RDFFR);
769
770 out:
771 return ret;
772 }
773
774 static void sh_eth_set_duplex(struct net_device *ndev)
775 {
776 struct sh_eth_private *mdp = netdev_priv(ndev);
777
778 if (mdp->duplex) /* Full */
779 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
780 else /* Half */
781 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
782 }
783
784 static void sh_eth_set_rate(struct net_device *ndev)
785 {
786 struct sh_eth_private *mdp = netdev_priv(ndev);
787
788 switch (mdp->speed) {
789 case 10: /* 10BASE */
790 sh_eth_write(ndev, GECMR_10, GECMR);
791 break;
792 case 100:/* 100BASE */
793 sh_eth_write(ndev, GECMR_100, GECMR);
794 break;
795 case 1000: /* 1000BASE */
796 sh_eth_write(ndev, GECMR_1000, GECMR);
797 break;
798 default:
799 break;
800 }
801 }
802
803 /* R8A7740 */
804 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
805 .chip_reset = sh_eth_chip_reset,
806 .set_duplex = sh_eth_set_duplex,
807 .set_rate = sh_eth_set_rate,
808
809 .ecsr_value = ECSR_ICD | ECSR_MPD,
810 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
811 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
812
813 .tx_check = EESR_TC1 | EESR_FTC,
814 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
815 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
816 EESR_ECI,
817 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
818 EESR_TFE,
819
820 .apr = 1,
821 .mpr = 1,
822 .tpauser = 1,
823 .bculr = 1,
824 .hw_swap = 1,
825 .no_trimd = 1,
826 .no_ade = 1,
827 .tsu = 1,
828 .select_mii = 1,
829 };
830
831 #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
832 #define SH_ETH_RESET_DEFAULT 1
833 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
834 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
835
836 .apr = 1,
837 .mpr = 1,
838 .tpauser = 1,
839 .hw_swap = 1,
840 };
841 #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
842 #define SH_ETH_RESET_DEFAULT 1
843 #define SH_ETH_HAS_TSU 1
844 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
845 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
846 .tsu = 1,
847 };
848 #endif
849
850 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
851 {
852 if (!cd->ecsr_value)
853 cd->ecsr_value = DEFAULT_ECSR_INIT;
854
855 if (!cd->ecsipr_value)
856 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
857
858 if (!cd->fcftr_value)
859 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
860 DEFAULT_FIFO_F_D_RFD;
861
862 if (!cd->fdr_value)
863 cd->fdr_value = DEFAULT_FDR_INIT;
864
865 if (!cd->rmcr_value)
866 cd->rmcr_value = DEFAULT_RMCR_VALUE;
867
868 if (!cd->tx_check)
869 cd->tx_check = DEFAULT_TX_CHECK;
870
871 if (!cd->eesr_err_check)
872 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
873
874 if (!cd->tx_error_check)
875 cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
876 }
877
878 #if defined(SH_ETH_RESET_DEFAULT)
879 /* Chip Reset */
880 static int sh_eth_reset(struct net_device *ndev)
881 {
882 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
883 mdelay(3);
884 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
885
886 return 0;
887 }
888 #else
889 static int sh_eth_check_reset(struct net_device *ndev)
890 {
891 int ret = 0;
892 int cnt = 100;
893
894 while (cnt > 0) {
895 if (!(sh_eth_read(ndev, EDMR) & 0x3))
896 break;
897 mdelay(1);
898 cnt--;
899 }
900 if (cnt < 0) {
901 pr_err("Device reset fail\n");
902 ret = -ETIMEDOUT;
903 }
904 return ret;
905 }
906 #endif
907
908 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
909 static void sh_eth_set_receive_align(struct sk_buff *skb)
910 {
911 int reserve;
912
913 reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
914 if (reserve)
915 skb_reserve(skb, reserve);
916 }
917 #else
918 static void sh_eth_set_receive_align(struct sk_buff *skb)
919 {
920 skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
921 }
922 #endif
923
924
925 /* CPU <-> EDMAC endian convert */
926 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
927 {
928 switch (mdp->edmac_endian) {
929 case EDMAC_LITTLE_ENDIAN:
930 return cpu_to_le32(x);
931 case EDMAC_BIG_ENDIAN:
932 return cpu_to_be32(x);
933 }
934 return x;
935 }
936
937 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
938 {
939 switch (mdp->edmac_endian) {
940 case EDMAC_LITTLE_ENDIAN:
941 return le32_to_cpu(x);
942 case EDMAC_BIG_ENDIAN:
943 return be32_to_cpu(x);
944 }
945 return x;
946 }
947
948 /*
949 * Program the hardware MAC address from dev->dev_addr.
950 */
951 static void update_mac_address(struct net_device *ndev)
952 {
953 sh_eth_write(ndev,
954 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
955 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
956 sh_eth_write(ndev,
957 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
958 }
959
960 /*
961 * Get MAC address from SuperH MAC address register
962 *
963 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
964 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
965 * When you want use this device, you must set MAC address in bootloader.
966 *
967 */
968 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
969 {
970 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
971 memcpy(ndev->dev_addr, mac, 6);
972 } else {
973 ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
974 ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
975 ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
976 ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
977 ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
978 ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
979 }
980 }
981
982 static int sh_eth_is_gether(struct sh_eth_private *mdp)
983 {
984 if (mdp->reg_offset == sh_eth_offset_gigabit)
985 return 1;
986 else
987 return 0;
988 }
989
990 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
991 {
992 if (sh_eth_is_gether(mdp))
993 return EDTRR_TRNS_GETHER;
994 else
995 return EDTRR_TRNS_ETHER;
996 }
997
998 struct bb_info {
999 void (*set_gate)(void *addr);
1000 struct mdiobb_ctrl ctrl;
1001 void *addr;
1002 u32 mmd_msk;/* MMD */
1003 u32 mdo_msk;
1004 u32 mdi_msk;
1005 u32 mdc_msk;
1006 };
1007
1008 /* PHY bit set */
1009 static void bb_set(void *addr, u32 msk)
1010 {
1011 iowrite32(ioread32(addr) | msk, addr);
1012 }
1013
1014 /* PHY bit clear */
1015 static void bb_clr(void *addr, u32 msk)
1016 {
1017 iowrite32((ioread32(addr) & ~msk), addr);
1018 }
1019
1020 /* PHY bit read */
1021 static int bb_read(void *addr, u32 msk)
1022 {
1023 return (ioread32(addr) & msk) != 0;
1024 }
1025
1026 /* Data I/O pin control */
1027 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1028 {
1029 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1030
1031 if (bitbang->set_gate)
1032 bitbang->set_gate(bitbang->addr);
1033
1034 if (bit)
1035 bb_set(bitbang->addr, bitbang->mmd_msk);
1036 else
1037 bb_clr(bitbang->addr, bitbang->mmd_msk);
1038 }
1039
1040 /* Set bit data*/
1041 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1042 {
1043 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1044
1045 if (bitbang->set_gate)
1046 bitbang->set_gate(bitbang->addr);
1047
1048 if (bit)
1049 bb_set(bitbang->addr, bitbang->mdo_msk);
1050 else
1051 bb_clr(bitbang->addr, bitbang->mdo_msk);
1052 }
1053
1054 /* Get bit data*/
1055 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1056 {
1057 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1058
1059 if (bitbang->set_gate)
1060 bitbang->set_gate(bitbang->addr);
1061
1062 return bb_read(bitbang->addr, bitbang->mdi_msk);
1063 }
1064
1065 /* MDC pin control */
1066 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1067 {
1068 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1069
1070 if (bitbang->set_gate)
1071 bitbang->set_gate(bitbang->addr);
1072
1073 if (bit)
1074 bb_set(bitbang->addr, bitbang->mdc_msk);
1075 else
1076 bb_clr(bitbang->addr, bitbang->mdc_msk);
1077 }
1078
1079 /* mdio bus control struct */
1080 static struct mdiobb_ops bb_ops = {
1081 .owner = THIS_MODULE,
1082 .set_mdc = sh_mdc_ctrl,
1083 .set_mdio_dir = sh_mmd_ctrl,
1084 .set_mdio_data = sh_set_mdio,
1085 .get_mdio_data = sh_get_mdio,
1086 };
1087
1088 /* free skb and descriptor buffer */
1089 static void sh_eth_ring_free(struct net_device *ndev)
1090 {
1091 struct sh_eth_private *mdp = netdev_priv(ndev);
1092 int i;
1093
1094 /* Free Rx skb ringbuffer */
1095 if (mdp->rx_skbuff) {
1096 for (i = 0; i < mdp->num_rx_ring; i++) {
1097 if (mdp->rx_skbuff[i])
1098 dev_kfree_skb(mdp->rx_skbuff[i]);
1099 }
1100 }
1101 kfree(mdp->rx_skbuff);
1102 mdp->rx_skbuff = NULL;
1103
1104 /* Free Tx skb ringbuffer */
1105 if (mdp->tx_skbuff) {
1106 for (i = 0; i < mdp->num_tx_ring; i++) {
1107 if (mdp->tx_skbuff[i])
1108 dev_kfree_skb(mdp->tx_skbuff[i]);
1109 }
1110 }
1111 kfree(mdp->tx_skbuff);
1112 mdp->tx_skbuff = NULL;
1113 }
1114
1115 /* format skb and descriptor buffer */
1116 static void sh_eth_ring_format(struct net_device *ndev)
1117 {
1118 struct sh_eth_private *mdp = netdev_priv(ndev);
1119 int i;
1120 struct sk_buff *skb;
1121 struct sh_eth_rxdesc *rxdesc = NULL;
1122 struct sh_eth_txdesc *txdesc = NULL;
1123 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1124 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1125
1126 mdp->cur_rx = mdp->cur_tx = 0;
1127 mdp->dirty_rx = mdp->dirty_tx = 0;
1128
1129 memset(mdp->rx_ring, 0, rx_ringsize);
1130
1131 /* build Rx ring buffer */
1132 for (i = 0; i < mdp->num_rx_ring; i++) {
1133 /* skb */
1134 mdp->rx_skbuff[i] = NULL;
1135 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1136 mdp->rx_skbuff[i] = skb;
1137 if (skb == NULL)
1138 break;
1139 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1140 DMA_FROM_DEVICE);
1141 sh_eth_set_receive_align(skb);
1142
1143 /* RX descriptor */
1144 rxdesc = &mdp->rx_ring[i];
1145 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1146 rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1147
1148 /* The size of the buffer is 16 byte boundary. */
1149 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1150 /* Rx descriptor address set */
1151 if (i == 0) {
1152 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1153 if (sh_eth_is_gether(mdp))
1154 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1155 }
1156 }
1157
1158 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1159
1160 /* Mark the last entry as wrapping the ring. */
1161 rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1162
1163 memset(mdp->tx_ring, 0, tx_ringsize);
1164
1165 /* build Tx ring buffer */
1166 for (i = 0; i < mdp->num_tx_ring; i++) {
1167 mdp->tx_skbuff[i] = NULL;
1168 txdesc = &mdp->tx_ring[i];
1169 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1170 txdesc->buffer_length = 0;
1171 if (i == 0) {
1172 /* Tx descriptor address set */
1173 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1174 if (sh_eth_is_gether(mdp))
1175 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1176 }
1177 }
1178
1179 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1180 }
1181
1182 /* Get skb and descriptor buffer */
1183 static int sh_eth_ring_init(struct net_device *ndev)
1184 {
1185 struct sh_eth_private *mdp = netdev_priv(ndev);
1186 int rx_ringsize, tx_ringsize, ret = 0;
1187
1188 /*
1189 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1190 * card needs room to do 8 byte alignment, +2 so we can reserve
1191 * the first 2 bytes, and +16 gets room for the status word from the
1192 * card.
1193 */
1194 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1195 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1196 if (mdp->cd->rpadir)
1197 mdp->rx_buf_sz += NET_IP_ALIGN;
1198
1199 /* Allocate RX and TX skb rings */
1200 mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1201 sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1202 if (!mdp->rx_skbuff) {
1203 ret = -ENOMEM;
1204 return ret;
1205 }
1206
1207 mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1208 sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1209 if (!mdp->tx_skbuff) {
1210 ret = -ENOMEM;
1211 goto skb_ring_free;
1212 }
1213
1214 /* Allocate all Rx descriptors. */
1215 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1216 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1217 GFP_KERNEL);
1218 if (!mdp->rx_ring) {
1219 ret = -ENOMEM;
1220 goto desc_ring_free;
1221 }
1222
1223 mdp->dirty_rx = 0;
1224
1225 /* Allocate all Tx descriptors. */
1226 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1227 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1228 GFP_KERNEL);
1229 if (!mdp->tx_ring) {
1230 ret = -ENOMEM;
1231 goto desc_ring_free;
1232 }
1233 return ret;
1234
1235 desc_ring_free:
1236 /* free DMA buffer */
1237 dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1238
1239 skb_ring_free:
1240 /* Free Rx and Tx skb ring buffer */
1241 sh_eth_ring_free(ndev);
1242 mdp->tx_ring = NULL;
1243 mdp->rx_ring = NULL;
1244
1245 return ret;
1246 }
1247
1248 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1249 {
1250 int ringsize;
1251
1252 if (mdp->rx_ring) {
1253 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1254 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1255 mdp->rx_desc_dma);
1256 mdp->rx_ring = NULL;
1257 }
1258
1259 if (mdp->tx_ring) {
1260 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1261 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1262 mdp->tx_desc_dma);
1263 mdp->tx_ring = NULL;
1264 }
1265 }
1266
1267 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1268 {
1269 int ret = 0;
1270 struct sh_eth_private *mdp = netdev_priv(ndev);
1271 u32 val;
1272
1273 /* Soft Reset */
1274 ret = sh_eth_reset(ndev);
1275 if (ret)
1276 goto out;
1277
1278 /* Descriptor format */
1279 sh_eth_ring_format(ndev);
1280 if (mdp->cd->rpadir)
1281 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1282
1283 /* all sh_eth int mask */
1284 sh_eth_write(ndev, 0, EESIPR);
1285
1286 #if defined(__LITTLE_ENDIAN)
1287 if (mdp->cd->hw_swap)
1288 sh_eth_write(ndev, EDMR_EL, EDMR);
1289 else
1290 #endif
1291 sh_eth_write(ndev, 0, EDMR);
1292
1293 /* FIFO size set */
1294 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1295 sh_eth_write(ndev, 0, TFTR);
1296
1297 /* Frame recv control */
1298 sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
1299
1300 sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1301
1302 if (mdp->cd->bculr)
1303 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
1304
1305 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1306
1307 if (!mdp->cd->no_trimd)
1308 sh_eth_write(ndev, 0, TRIMD);
1309
1310 /* Recv frame limit set register */
1311 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1312 RFLR);
1313
1314 sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1315 if (start)
1316 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1317
1318 /* PAUSE Prohibition */
1319 val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1320 ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1321
1322 sh_eth_write(ndev, val, ECMR);
1323
1324 if (mdp->cd->set_rate)
1325 mdp->cd->set_rate(ndev);
1326
1327 /* E-MAC Status Register clear */
1328 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1329
1330 /* E-MAC Interrupt Enable register */
1331 if (start)
1332 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1333
1334 /* Set MAC address */
1335 update_mac_address(ndev);
1336
1337 /* mask reset */
1338 if (mdp->cd->apr)
1339 sh_eth_write(ndev, APR_AP, APR);
1340 if (mdp->cd->mpr)
1341 sh_eth_write(ndev, MPR_MP, MPR);
1342 if (mdp->cd->tpauser)
1343 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1344
1345 if (start) {
1346 /* Setting the Rx mode will start the Rx process. */
1347 sh_eth_write(ndev, EDRRR_R, EDRRR);
1348
1349 netif_start_queue(ndev);
1350 }
1351
1352 out:
1353 return ret;
1354 }
1355
1356 /* free Tx skb function */
1357 static int sh_eth_txfree(struct net_device *ndev)
1358 {
1359 struct sh_eth_private *mdp = netdev_priv(ndev);
1360 struct sh_eth_txdesc *txdesc;
1361 int freeNum = 0;
1362 int entry = 0;
1363
1364 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1365 entry = mdp->dirty_tx % mdp->num_tx_ring;
1366 txdesc = &mdp->tx_ring[entry];
1367 if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1368 break;
1369 /* Free the original skb. */
1370 if (mdp->tx_skbuff[entry]) {
1371 dma_unmap_single(&ndev->dev, txdesc->addr,
1372 txdesc->buffer_length, DMA_TO_DEVICE);
1373 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1374 mdp->tx_skbuff[entry] = NULL;
1375 freeNum++;
1376 }
1377 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1378 if (entry >= mdp->num_tx_ring - 1)
1379 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1380
1381 ndev->stats.tx_packets++;
1382 ndev->stats.tx_bytes += txdesc->buffer_length;
1383 }
1384 return freeNum;
1385 }
1386
1387 /* Packet receive function */
1388 static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
1389 {
1390 struct sh_eth_private *mdp = netdev_priv(ndev);
1391 struct sh_eth_rxdesc *rxdesc;
1392
1393 int entry = mdp->cur_rx % mdp->num_rx_ring;
1394 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1395 struct sk_buff *skb;
1396 u16 pkt_len = 0;
1397 u32 desc_status;
1398
1399 rxdesc = &mdp->rx_ring[entry];
1400 while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1401 desc_status = edmac_to_cpu(mdp, rxdesc->status);
1402 pkt_len = rxdesc->frame_length;
1403
1404 #if defined(CONFIG_ARCH_R8A7740)
1405 desc_status >>= 16;
1406 #endif
1407
1408 if (--boguscnt < 0)
1409 break;
1410
1411 if (!(desc_status & RDFEND))
1412 ndev->stats.rx_length_errors++;
1413
1414 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1415 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1416 ndev->stats.rx_errors++;
1417 if (desc_status & RD_RFS1)
1418 ndev->stats.rx_crc_errors++;
1419 if (desc_status & RD_RFS2)
1420 ndev->stats.rx_frame_errors++;
1421 if (desc_status & RD_RFS3)
1422 ndev->stats.rx_length_errors++;
1423 if (desc_status & RD_RFS4)
1424 ndev->stats.rx_length_errors++;
1425 if (desc_status & RD_RFS6)
1426 ndev->stats.rx_missed_errors++;
1427 if (desc_status & RD_RFS10)
1428 ndev->stats.rx_over_errors++;
1429 } else {
1430 if (!mdp->cd->hw_swap)
1431 sh_eth_soft_swap(
1432 phys_to_virt(ALIGN(rxdesc->addr, 4)),
1433 pkt_len + 2);
1434 skb = mdp->rx_skbuff[entry];
1435 mdp->rx_skbuff[entry] = NULL;
1436 if (mdp->cd->rpadir)
1437 skb_reserve(skb, NET_IP_ALIGN);
1438 skb_put(skb, pkt_len);
1439 skb->protocol = eth_type_trans(skb, ndev);
1440 netif_rx(skb);
1441 ndev->stats.rx_packets++;
1442 ndev->stats.rx_bytes += pkt_len;
1443 }
1444 rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1445 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1446 rxdesc = &mdp->rx_ring[entry];
1447 }
1448
1449 /* Refill the Rx ring buffers. */
1450 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1451 entry = mdp->dirty_rx % mdp->num_rx_ring;
1452 rxdesc = &mdp->rx_ring[entry];
1453 /* The size of the buffer is 16 byte boundary. */
1454 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1455
1456 if (mdp->rx_skbuff[entry] == NULL) {
1457 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1458 mdp->rx_skbuff[entry] = skb;
1459 if (skb == NULL)
1460 break; /* Better luck next round. */
1461 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1462 DMA_FROM_DEVICE);
1463 sh_eth_set_receive_align(skb);
1464
1465 skb_checksum_none_assert(skb);
1466 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1467 }
1468 if (entry >= mdp->num_rx_ring - 1)
1469 rxdesc->status |=
1470 cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1471 else
1472 rxdesc->status |=
1473 cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1474 }
1475
1476 /* Restart Rx engine if stopped. */
1477 /* If we don't need to check status, don't. -KDU */
1478 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1479 /* fix the values for the next receiving if RDE is set */
1480 if (intr_status & EESR_RDE)
1481 mdp->cur_rx = mdp->dirty_rx =
1482 (sh_eth_read(ndev, RDFAR) -
1483 sh_eth_read(ndev, RDLAR)) >> 4;
1484 sh_eth_write(ndev, EDRRR_R, EDRRR);
1485 }
1486
1487 return 0;
1488 }
1489
1490 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1491 {
1492 /* disable tx and rx */
1493 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1494 ~(ECMR_RE | ECMR_TE), ECMR);
1495 }
1496
1497 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1498 {
1499 /* enable tx and rx */
1500 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1501 (ECMR_RE | ECMR_TE), ECMR);
1502 }
1503
1504 /* error control function */
1505 static void sh_eth_error(struct net_device *ndev, int intr_status)
1506 {
1507 struct sh_eth_private *mdp = netdev_priv(ndev);
1508 u32 felic_stat;
1509 u32 link_stat;
1510 u32 mask;
1511
1512 if (intr_status & EESR_ECI) {
1513 felic_stat = sh_eth_read(ndev, ECSR);
1514 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1515 if (felic_stat & ECSR_ICD)
1516 ndev->stats.tx_carrier_errors++;
1517 if (felic_stat & ECSR_LCHNG) {
1518 /* Link Changed */
1519 if (mdp->cd->no_psr || mdp->no_ether_link) {
1520 goto ignore_link;
1521 } else {
1522 link_stat = (sh_eth_read(ndev, PSR));
1523 if (mdp->ether_link_active_low)
1524 link_stat = ~link_stat;
1525 }
1526 if (!(link_stat & PHY_ST_LINK))
1527 sh_eth_rcv_snd_disable(ndev);
1528 else {
1529 /* Link Up */
1530 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1531 ~DMAC_M_ECI, EESIPR);
1532 /*clear int */
1533 sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1534 ECSR);
1535 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1536 DMAC_M_ECI, EESIPR);
1537 /* enable tx and rx */
1538 sh_eth_rcv_snd_enable(ndev);
1539 }
1540 }
1541 }
1542
1543 ignore_link:
1544 if (intr_status & EESR_TWB) {
1545 /* Write buck end. unused write back interrupt */
1546 if (intr_status & EESR_TABT) /* Transmit Abort int */
1547 ndev->stats.tx_aborted_errors++;
1548 if (netif_msg_tx_err(mdp))
1549 dev_err(&ndev->dev, "Transmit Abort\n");
1550 }
1551
1552 if (intr_status & EESR_RABT) {
1553 /* Receive Abort int */
1554 if (intr_status & EESR_RFRMER) {
1555 /* Receive Frame Overflow int */
1556 ndev->stats.rx_frame_errors++;
1557 if (netif_msg_rx_err(mdp))
1558 dev_err(&ndev->dev, "Receive Abort\n");
1559 }
1560 }
1561
1562 if (intr_status & EESR_TDE) {
1563 /* Transmit Descriptor Empty int */
1564 ndev->stats.tx_fifo_errors++;
1565 if (netif_msg_tx_err(mdp))
1566 dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1567 }
1568
1569 if (intr_status & EESR_TFE) {
1570 /* FIFO under flow */
1571 ndev->stats.tx_fifo_errors++;
1572 if (netif_msg_tx_err(mdp))
1573 dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1574 }
1575
1576 if (intr_status & EESR_RDE) {
1577 /* Receive Descriptor Empty int */
1578 ndev->stats.rx_over_errors++;
1579
1580 if (netif_msg_rx_err(mdp))
1581 dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1582 }
1583
1584 if (intr_status & EESR_RFE) {
1585 /* Receive FIFO Overflow int */
1586 ndev->stats.rx_fifo_errors++;
1587 if (netif_msg_rx_err(mdp))
1588 dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1589 }
1590
1591 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1592 /* Address Error */
1593 ndev->stats.tx_fifo_errors++;
1594 if (netif_msg_tx_err(mdp))
1595 dev_err(&ndev->dev, "Address Error\n");
1596 }
1597
1598 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1599 if (mdp->cd->no_ade)
1600 mask &= ~EESR_ADE;
1601 if (intr_status & mask) {
1602 /* Tx error */
1603 u32 edtrr = sh_eth_read(ndev, EDTRR);
1604 /* dmesg */
1605 dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1606 intr_status, mdp->cur_tx);
1607 dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1608 mdp->dirty_tx, (u32) ndev->state, edtrr);
1609 /* dirty buffer free */
1610 sh_eth_txfree(ndev);
1611
1612 /* SH7712 BUG */
1613 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1614 /* tx dma start */
1615 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1616 }
1617 /* wakeup */
1618 netif_wake_queue(ndev);
1619 }
1620 }
1621
1622 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1623 {
1624 struct net_device *ndev = netdev;
1625 struct sh_eth_private *mdp = netdev_priv(ndev);
1626 struct sh_eth_cpu_data *cd = mdp->cd;
1627 irqreturn_t ret = IRQ_NONE;
1628 unsigned long intr_status;
1629
1630 spin_lock(&mdp->lock);
1631
1632 /* Get interrupt status */
1633 intr_status = sh_eth_read(ndev, EESR);
1634 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1635 * enabled since it's the one that comes thru regardless of the mask,
1636 * and we need to fully handle it in sh_eth_error() in order to quench
1637 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1638 */
1639 intr_status &= sh_eth_read(ndev, EESIPR) | DMAC_M_ECI;
1640 /* Clear interrupt */
1641 if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1642 EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1643 cd->tx_check | cd->eesr_err_check)) {
1644 sh_eth_write(ndev, intr_status, EESR);
1645 ret = IRQ_HANDLED;
1646 } else
1647 goto other_irq;
1648
1649 if (intr_status & (EESR_FRC | /* Frame recv*/
1650 EESR_RMAF | /* Multi cast address recv*/
1651 EESR_RRF | /* Bit frame recv */
1652 EESR_RTLF | /* Long frame recv*/
1653 EESR_RTSF | /* short frame recv */
1654 EESR_PRE | /* PHY-LSI recv error */
1655 EESR_CERF)){ /* recv frame CRC error */
1656 sh_eth_rx(ndev, intr_status);
1657 }
1658
1659 /* Tx Check */
1660 if (intr_status & cd->tx_check) {
1661 sh_eth_txfree(ndev);
1662 netif_wake_queue(ndev);
1663 }
1664
1665 if (intr_status & cd->eesr_err_check)
1666 sh_eth_error(ndev, intr_status);
1667
1668 other_irq:
1669 spin_unlock(&mdp->lock);
1670
1671 return ret;
1672 }
1673
1674 /* PHY state control function */
1675 static void sh_eth_adjust_link(struct net_device *ndev)
1676 {
1677 struct sh_eth_private *mdp = netdev_priv(ndev);
1678 struct phy_device *phydev = mdp->phydev;
1679 int new_state = 0;
1680
1681 if (phydev->link) {
1682 if (phydev->duplex != mdp->duplex) {
1683 new_state = 1;
1684 mdp->duplex = phydev->duplex;
1685 if (mdp->cd->set_duplex)
1686 mdp->cd->set_duplex(ndev);
1687 }
1688
1689 if (phydev->speed != mdp->speed) {
1690 new_state = 1;
1691 mdp->speed = phydev->speed;
1692 if (mdp->cd->set_rate)
1693 mdp->cd->set_rate(ndev);
1694 }
1695 if (!mdp->link) {
1696 sh_eth_write(ndev,
1697 (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1698 new_state = 1;
1699 mdp->link = phydev->link;
1700 if (mdp->cd->no_psr || mdp->no_ether_link)
1701 sh_eth_rcv_snd_enable(ndev);
1702 }
1703 } else if (mdp->link) {
1704 new_state = 1;
1705 mdp->link = 0;
1706 mdp->speed = 0;
1707 mdp->duplex = -1;
1708 if (mdp->cd->no_psr || mdp->no_ether_link)
1709 sh_eth_rcv_snd_disable(ndev);
1710 }
1711
1712 if (new_state && netif_msg_link(mdp))
1713 phy_print_status(phydev);
1714 }
1715
1716 /* PHY init function */
1717 static int sh_eth_phy_init(struct net_device *ndev)
1718 {
1719 struct sh_eth_private *mdp = netdev_priv(ndev);
1720 char phy_id[MII_BUS_ID_SIZE + 3];
1721 struct phy_device *phydev = NULL;
1722
1723 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1724 mdp->mii_bus->id , mdp->phy_id);
1725
1726 mdp->link = 0;
1727 mdp->speed = 0;
1728 mdp->duplex = -1;
1729
1730 /* Try connect to PHY */
1731 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1732 mdp->phy_interface);
1733 if (IS_ERR(phydev)) {
1734 dev_err(&ndev->dev, "phy_connect failed\n");
1735 return PTR_ERR(phydev);
1736 }
1737
1738 dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1739 phydev->addr, phydev->drv->name);
1740
1741 mdp->phydev = phydev;
1742
1743 return 0;
1744 }
1745
1746 /* PHY control start function */
1747 static int sh_eth_phy_start(struct net_device *ndev)
1748 {
1749 struct sh_eth_private *mdp = netdev_priv(ndev);
1750 int ret;
1751
1752 ret = sh_eth_phy_init(ndev);
1753 if (ret)
1754 return ret;
1755
1756 /* reset phy - this also wakes it from PDOWN */
1757 phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1758 phy_start(mdp->phydev);
1759
1760 return 0;
1761 }
1762
1763 static int sh_eth_get_settings(struct net_device *ndev,
1764 struct ethtool_cmd *ecmd)
1765 {
1766 struct sh_eth_private *mdp = netdev_priv(ndev);
1767 unsigned long flags;
1768 int ret;
1769
1770 spin_lock_irqsave(&mdp->lock, flags);
1771 ret = phy_ethtool_gset(mdp->phydev, ecmd);
1772 spin_unlock_irqrestore(&mdp->lock, flags);
1773
1774 return ret;
1775 }
1776
1777 static int sh_eth_set_settings(struct net_device *ndev,
1778 struct ethtool_cmd *ecmd)
1779 {
1780 struct sh_eth_private *mdp = netdev_priv(ndev);
1781 unsigned long flags;
1782 int ret;
1783
1784 spin_lock_irqsave(&mdp->lock, flags);
1785
1786 /* disable tx and rx */
1787 sh_eth_rcv_snd_disable(ndev);
1788
1789 ret = phy_ethtool_sset(mdp->phydev, ecmd);
1790 if (ret)
1791 goto error_exit;
1792
1793 if (ecmd->duplex == DUPLEX_FULL)
1794 mdp->duplex = 1;
1795 else
1796 mdp->duplex = 0;
1797
1798 if (mdp->cd->set_duplex)
1799 mdp->cd->set_duplex(ndev);
1800
1801 error_exit:
1802 mdelay(1);
1803
1804 /* enable tx and rx */
1805 sh_eth_rcv_snd_enable(ndev);
1806
1807 spin_unlock_irqrestore(&mdp->lock, flags);
1808
1809 return ret;
1810 }
1811
1812 static int sh_eth_nway_reset(struct net_device *ndev)
1813 {
1814 struct sh_eth_private *mdp = netdev_priv(ndev);
1815 unsigned long flags;
1816 int ret;
1817
1818 spin_lock_irqsave(&mdp->lock, flags);
1819 ret = phy_start_aneg(mdp->phydev);
1820 spin_unlock_irqrestore(&mdp->lock, flags);
1821
1822 return ret;
1823 }
1824
1825 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1826 {
1827 struct sh_eth_private *mdp = netdev_priv(ndev);
1828 return mdp->msg_enable;
1829 }
1830
1831 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1832 {
1833 struct sh_eth_private *mdp = netdev_priv(ndev);
1834 mdp->msg_enable = value;
1835 }
1836
1837 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1838 "rx_current", "tx_current",
1839 "rx_dirty", "tx_dirty",
1840 };
1841 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
1842
1843 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1844 {
1845 switch (sset) {
1846 case ETH_SS_STATS:
1847 return SH_ETH_STATS_LEN;
1848 default:
1849 return -EOPNOTSUPP;
1850 }
1851 }
1852
1853 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1854 struct ethtool_stats *stats, u64 *data)
1855 {
1856 struct sh_eth_private *mdp = netdev_priv(ndev);
1857 int i = 0;
1858
1859 /* device-specific stats */
1860 data[i++] = mdp->cur_rx;
1861 data[i++] = mdp->cur_tx;
1862 data[i++] = mdp->dirty_rx;
1863 data[i++] = mdp->dirty_tx;
1864 }
1865
1866 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1867 {
1868 switch (stringset) {
1869 case ETH_SS_STATS:
1870 memcpy(data, *sh_eth_gstrings_stats,
1871 sizeof(sh_eth_gstrings_stats));
1872 break;
1873 }
1874 }
1875
1876 static void sh_eth_get_ringparam(struct net_device *ndev,
1877 struct ethtool_ringparam *ring)
1878 {
1879 struct sh_eth_private *mdp = netdev_priv(ndev);
1880
1881 ring->rx_max_pending = RX_RING_MAX;
1882 ring->tx_max_pending = TX_RING_MAX;
1883 ring->rx_pending = mdp->num_rx_ring;
1884 ring->tx_pending = mdp->num_tx_ring;
1885 }
1886
1887 static int sh_eth_set_ringparam(struct net_device *ndev,
1888 struct ethtool_ringparam *ring)
1889 {
1890 struct sh_eth_private *mdp = netdev_priv(ndev);
1891 int ret;
1892
1893 if (ring->tx_pending > TX_RING_MAX ||
1894 ring->rx_pending > RX_RING_MAX ||
1895 ring->tx_pending < TX_RING_MIN ||
1896 ring->rx_pending < RX_RING_MIN)
1897 return -EINVAL;
1898 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1899 return -EINVAL;
1900
1901 if (netif_running(ndev)) {
1902 netif_tx_disable(ndev);
1903 /* Disable interrupts by clearing the interrupt mask. */
1904 sh_eth_write(ndev, 0x0000, EESIPR);
1905 /* Stop the chip's Tx and Rx processes. */
1906 sh_eth_write(ndev, 0, EDTRR);
1907 sh_eth_write(ndev, 0, EDRRR);
1908 synchronize_irq(ndev->irq);
1909 }
1910
1911 /* Free all the skbuffs in the Rx queue. */
1912 sh_eth_ring_free(ndev);
1913 /* Free DMA buffer */
1914 sh_eth_free_dma_buffer(mdp);
1915
1916 /* Set new parameters */
1917 mdp->num_rx_ring = ring->rx_pending;
1918 mdp->num_tx_ring = ring->tx_pending;
1919
1920 ret = sh_eth_ring_init(ndev);
1921 if (ret < 0) {
1922 dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1923 return ret;
1924 }
1925 ret = sh_eth_dev_init(ndev, false);
1926 if (ret < 0) {
1927 dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1928 return ret;
1929 }
1930
1931 if (netif_running(ndev)) {
1932 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1933 /* Setting the Rx mode will start the Rx process. */
1934 sh_eth_write(ndev, EDRRR_R, EDRRR);
1935 netif_wake_queue(ndev);
1936 }
1937
1938 return 0;
1939 }
1940
1941 static const struct ethtool_ops sh_eth_ethtool_ops = {
1942 .get_settings = sh_eth_get_settings,
1943 .set_settings = sh_eth_set_settings,
1944 .nway_reset = sh_eth_nway_reset,
1945 .get_msglevel = sh_eth_get_msglevel,
1946 .set_msglevel = sh_eth_set_msglevel,
1947 .get_link = ethtool_op_get_link,
1948 .get_strings = sh_eth_get_strings,
1949 .get_ethtool_stats = sh_eth_get_ethtool_stats,
1950 .get_sset_count = sh_eth_get_sset_count,
1951 .get_ringparam = sh_eth_get_ringparam,
1952 .set_ringparam = sh_eth_set_ringparam,
1953 };
1954
1955 /* network device open function */
1956 static int sh_eth_open(struct net_device *ndev)
1957 {
1958 int ret = 0;
1959 struct sh_eth_private *mdp = netdev_priv(ndev);
1960
1961 pm_runtime_get_sync(&mdp->pdev->dev);
1962
1963 ret = request_irq(ndev->irq, sh_eth_interrupt,
1964 #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1965 defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1966 defined(CONFIG_CPU_SUBTYPE_SH7757)
1967 IRQF_SHARED,
1968 #else
1969 0,
1970 #endif
1971 ndev->name, ndev);
1972 if (ret) {
1973 dev_err(&ndev->dev, "Can not assign IRQ number\n");
1974 return ret;
1975 }
1976
1977 /* Descriptor set */
1978 ret = sh_eth_ring_init(ndev);
1979 if (ret)
1980 goto out_free_irq;
1981
1982 /* device init */
1983 ret = sh_eth_dev_init(ndev, true);
1984 if (ret)
1985 goto out_free_irq;
1986
1987 /* PHY control start*/
1988 ret = sh_eth_phy_start(ndev);
1989 if (ret)
1990 goto out_free_irq;
1991
1992 return ret;
1993
1994 out_free_irq:
1995 free_irq(ndev->irq, ndev);
1996 pm_runtime_put_sync(&mdp->pdev->dev);
1997 return ret;
1998 }
1999
2000 /* Timeout function */
2001 static void sh_eth_tx_timeout(struct net_device *ndev)
2002 {
2003 struct sh_eth_private *mdp = netdev_priv(ndev);
2004 struct sh_eth_rxdesc *rxdesc;
2005 int i;
2006
2007 netif_stop_queue(ndev);
2008
2009 if (netif_msg_timer(mdp))
2010 dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
2011 " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
2012
2013 /* tx_errors count up */
2014 ndev->stats.tx_errors++;
2015
2016 /* Free all the skbuffs in the Rx queue. */
2017 for (i = 0; i < mdp->num_rx_ring; i++) {
2018 rxdesc = &mdp->rx_ring[i];
2019 rxdesc->status = 0;
2020 rxdesc->addr = 0xBADF00D0;
2021 if (mdp->rx_skbuff[i])
2022 dev_kfree_skb(mdp->rx_skbuff[i]);
2023 mdp->rx_skbuff[i] = NULL;
2024 }
2025 for (i = 0; i < mdp->num_tx_ring; i++) {
2026 if (mdp->tx_skbuff[i])
2027 dev_kfree_skb(mdp->tx_skbuff[i]);
2028 mdp->tx_skbuff[i] = NULL;
2029 }
2030
2031 /* device init */
2032 sh_eth_dev_init(ndev, true);
2033 }
2034
2035 /* Packet transmit function */
2036 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2037 {
2038 struct sh_eth_private *mdp = netdev_priv(ndev);
2039 struct sh_eth_txdesc *txdesc;
2040 u32 entry;
2041 unsigned long flags;
2042
2043 spin_lock_irqsave(&mdp->lock, flags);
2044 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2045 if (!sh_eth_txfree(ndev)) {
2046 if (netif_msg_tx_queued(mdp))
2047 dev_warn(&ndev->dev, "TxFD exhausted.\n");
2048 netif_stop_queue(ndev);
2049 spin_unlock_irqrestore(&mdp->lock, flags);
2050 return NETDEV_TX_BUSY;
2051 }
2052 }
2053 spin_unlock_irqrestore(&mdp->lock, flags);
2054
2055 entry = mdp->cur_tx % mdp->num_tx_ring;
2056 mdp->tx_skbuff[entry] = skb;
2057 txdesc = &mdp->tx_ring[entry];
2058 /* soft swap. */
2059 if (!mdp->cd->hw_swap)
2060 sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2061 skb->len + 2);
2062 txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2063 DMA_TO_DEVICE);
2064 if (skb->len < ETHERSMALL)
2065 txdesc->buffer_length = ETHERSMALL;
2066 else
2067 txdesc->buffer_length = skb->len;
2068
2069 if (entry >= mdp->num_tx_ring - 1)
2070 txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2071 else
2072 txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2073
2074 mdp->cur_tx++;
2075
2076 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2077 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2078
2079 return NETDEV_TX_OK;
2080 }
2081
2082 /* device close function */
2083 static int sh_eth_close(struct net_device *ndev)
2084 {
2085 struct sh_eth_private *mdp = netdev_priv(ndev);
2086
2087 netif_stop_queue(ndev);
2088
2089 /* Disable interrupts by clearing the interrupt mask. */
2090 sh_eth_write(ndev, 0x0000, EESIPR);
2091
2092 /* Stop the chip's Tx and Rx processes. */
2093 sh_eth_write(ndev, 0, EDTRR);
2094 sh_eth_write(ndev, 0, EDRRR);
2095
2096 /* PHY Disconnect */
2097 if (mdp->phydev) {
2098 phy_stop(mdp->phydev);
2099 phy_disconnect(mdp->phydev);
2100 }
2101
2102 free_irq(ndev->irq, ndev);
2103
2104 /* Free all the skbuffs in the Rx queue. */
2105 sh_eth_ring_free(ndev);
2106
2107 /* free DMA buffer */
2108 sh_eth_free_dma_buffer(mdp);
2109
2110 pm_runtime_put_sync(&mdp->pdev->dev);
2111
2112 return 0;
2113 }
2114
2115 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2116 {
2117 struct sh_eth_private *mdp = netdev_priv(ndev);
2118
2119 pm_runtime_get_sync(&mdp->pdev->dev);
2120
2121 ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2122 sh_eth_write(ndev, 0, TROCR); /* (write clear) */
2123 ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2124 sh_eth_write(ndev, 0, CDCR); /* (write clear) */
2125 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2126 sh_eth_write(ndev, 0, LCCR); /* (write clear) */
2127 if (sh_eth_is_gether(mdp)) {
2128 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2129 sh_eth_write(ndev, 0, CERCR); /* (write clear) */
2130 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2131 sh_eth_write(ndev, 0, CEECR); /* (write clear) */
2132 } else {
2133 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2134 sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
2135 }
2136 pm_runtime_put_sync(&mdp->pdev->dev);
2137
2138 return &ndev->stats;
2139 }
2140
2141 /* ioctl to device function */
2142 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
2143 int cmd)
2144 {
2145 struct sh_eth_private *mdp = netdev_priv(ndev);
2146 struct phy_device *phydev = mdp->phydev;
2147
2148 if (!netif_running(ndev))
2149 return -EINVAL;
2150
2151 if (!phydev)
2152 return -ENODEV;
2153
2154 return phy_mii_ioctl(phydev, rq, cmd);
2155 }
2156
2157 #if defined(SH_ETH_HAS_TSU)
2158 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2159 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2160 int entry)
2161 {
2162 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2163 }
2164
2165 static u32 sh_eth_tsu_get_post_mask(int entry)
2166 {
2167 return 0x0f << (28 - ((entry % 8) * 4));
2168 }
2169
2170 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2171 {
2172 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2173 }
2174
2175 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2176 int entry)
2177 {
2178 struct sh_eth_private *mdp = netdev_priv(ndev);
2179 u32 tmp;
2180 void *reg_offset;
2181
2182 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2183 tmp = ioread32(reg_offset);
2184 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2185 }
2186
2187 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2188 int entry)
2189 {
2190 struct sh_eth_private *mdp = netdev_priv(ndev);
2191 u32 post_mask, ref_mask, tmp;
2192 void *reg_offset;
2193
2194 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2195 post_mask = sh_eth_tsu_get_post_mask(entry);
2196 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2197
2198 tmp = ioread32(reg_offset);
2199 iowrite32(tmp & ~post_mask, reg_offset);
2200
2201 /* If other port enables, the function returns "true" */
2202 return tmp & ref_mask;
2203 }
2204
2205 static int sh_eth_tsu_busy(struct net_device *ndev)
2206 {
2207 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2208 struct sh_eth_private *mdp = netdev_priv(ndev);
2209
2210 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2211 udelay(10);
2212 timeout--;
2213 if (timeout <= 0) {
2214 dev_err(&ndev->dev, "%s: timeout\n", __func__);
2215 return -ETIMEDOUT;
2216 }
2217 }
2218
2219 return 0;
2220 }
2221
2222 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2223 const u8 *addr)
2224 {
2225 u32 val;
2226
2227 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2228 iowrite32(val, reg);
2229 if (sh_eth_tsu_busy(ndev) < 0)
2230 return -EBUSY;
2231
2232 val = addr[4] << 8 | addr[5];
2233 iowrite32(val, reg + 4);
2234 if (sh_eth_tsu_busy(ndev) < 0)
2235 return -EBUSY;
2236
2237 return 0;
2238 }
2239
2240 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2241 {
2242 u32 val;
2243
2244 val = ioread32(reg);
2245 addr[0] = (val >> 24) & 0xff;
2246 addr[1] = (val >> 16) & 0xff;
2247 addr[2] = (val >> 8) & 0xff;
2248 addr[3] = val & 0xff;
2249 val = ioread32(reg + 4);
2250 addr[4] = (val >> 8) & 0xff;
2251 addr[5] = val & 0xff;
2252 }
2253
2254
2255 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2256 {
2257 struct sh_eth_private *mdp = netdev_priv(ndev);
2258 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2259 int i;
2260 u8 c_addr[ETH_ALEN];
2261
2262 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2263 sh_eth_tsu_read_entry(reg_offset, c_addr);
2264 if (memcmp(addr, c_addr, ETH_ALEN) == 0)
2265 return i;
2266 }
2267
2268 return -ENOENT;
2269 }
2270
2271 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2272 {
2273 u8 blank[ETH_ALEN];
2274 int entry;
2275
2276 memset(blank, 0, sizeof(blank));
2277 entry = sh_eth_tsu_find_entry(ndev, blank);
2278 return (entry < 0) ? -ENOMEM : entry;
2279 }
2280
2281 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2282 int entry)
2283 {
2284 struct sh_eth_private *mdp = netdev_priv(ndev);
2285 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2286 int ret;
2287 u8 blank[ETH_ALEN];
2288
2289 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2290 ~(1 << (31 - entry)), TSU_TEN);
2291
2292 memset(blank, 0, sizeof(blank));
2293 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2294 if (ret < 0)
2295 return ret;
2296 return 0;
2297 }
2298
2299 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2300 {
2301 struct sh_eth_private *mdp = netdev_priv(ndev);
2302 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2303 int i, ret;
2304
2305 if (!mdp->cd->tsu)
2306 return 0;
2307
2308 i = sh_eth_tsu_find_entry(ndev, addr);
2309 if (i < 0) {
2310 /* No entry found, create one */
2311 i = sh_eth_tsu_find_empty(ndev);
2312 if (i < 0)
2313 return -ENOMEM;
2314 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2315 if (ret < 0)
2316 return ret;
2317
2318 /* Enable the entry */
2319 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2320 (1 << (31 - i)), TSU_TEN);
2321 }
2322
2323 /* Entry found or created, enable POST */
2324 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2325
2326 return 0;
2327 }
2328
2329 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2330 {
2331 struct sh_eth_private *mdp = netdev_priv(ndev);
2332 int i, ret;
2333
2334 if (!mdp->cd->tsu)
2335 return 0;
2336
2337 i = sh_eth_tsu_find_entry(ndev, addr);
2338 if (i) {
2339 /* Entry found */
2340 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2341 goto done;
2342
2343 /* Disable the entry if both ports was disabled */
2344 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2345 if (ret < 0)
2346 return ret;
2347 }
2348 done:
2349 return 0;
2350 }
2351
2352 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2353 {
2354 struct sh_eth_private *mdp = netdev_priv(ndev);
2355 int i, ret;
2356
2357 if (unlikely(!mdp->cd->tsu))
2358 return 0;
2359
2360 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2361 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2362 continue;
2363
2364 /* Disable the entry if both ports was disabled */
2365 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2366 if (ret < 0)
2367 return ret;
2368 }
2369
2370 return 0;
2371 }
2372
2373 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2374 {
2375 struct sh_eth_private *mdp = netdev_priv(ndev);
2376 u8 addr[ETH_ALEN];
2377 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2378 int i;
2379
2380 if (unlikely(!mdp->cd->tsu))
2381 return;
2382
2383 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2384 sh_eth_tsu_read_entry(reg_offset, addr);
2385 if (is_multicast_ether_addr(addr))
2386 sh_eth_tsu_del_entry(ndev, addr);
2387 }
2388 }
2389
2390 /* Multicast reception directions set */
2391 static void sh_eth_set_multicast_list(struct net_device *ndev)
2392 {
2393 struct sh_eth_private *mdp = netdev_priv(ndev);
2394 u32 ecmr_bits;
2395 int mcast_all = 0;
2396 unsigned long flags;
2397
2398 spin_lock_irqsave(&mdp->lock, flags);
2399 /*
2400 * Initial condition is MCT = 1, PRM = 0.
2401 * Depending on ndev->flags, set PRM or clear MCT
2402 */
2403 ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2404
2405 if (!(ndev->flags & IFF_MULTICAST)) {
2406 sh_eth_tsu_purge_mcast(ndev);
2407 mcast_all = 1;
2408 }
2409 if (ndev->flags & IFF_ALLMULTI) {
2410 sh_eth_tsu_purge_mcast(ndev);
2411 ecmr_bits &= ~ECMR_MCT;
2412 mcast_all = 1;
2413 }
2414
2415 if (ndev->flags & IFF_PROMISC) {
2416 sh_eth_tsu_purge_all(ndev);
2417 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2418 } else if (mdp->cd->tsu) {
2419 struct netdev_hw_addr *ha;
2420 netdev_for_each_mc_addr(ha, ndev) {
2421 if (mcast_all && is_multicast_ether_addr(ha->addr))
2422 continue;
2423
2424 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2425 if (!mcast_all) {
2426 sh_eth_tsu_purge_mcast(ndev);
2427 ecmr_bits &= ~ECMR_MCT;
2428 mcast_all = 1;
2429 }
2430 }
2431 }
2432 } else {
2433 /* Normal, unicast/broadcast-only mode. */
2434 ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2435 }
2436
2437 /* update the ethernet mode */
2438 sh_eth_write(ndev, ecmr_bits, ECMR);
2439
2440 spin_unlock_irqrestore(&mdp->lock, flags);
2441 }
2442
2443 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2444 {
2445 if (!mdp->port)
2446 return TSU_VTAG0;
2447 else
2448 return TSU_VTAG1;
2449 }
2450
2451 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2452 {
2453 struct sh_eth_private *mdp = netdev_priv(ndev);
2454 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2455
2456 if (unlikely(!mdp->cd->tsu))
2457 return -EPERM;
2458
2459 /* No filtering if vid = 0 */
2460 if (!vid)
2461 return 0;
2462
2463 mdp->vlan_num_ids++;
2464
2465 /*
2466 * The controller has one VLAN tag HW filter. So, if the filter is
2467 * already enabled, the driver disables it and the filte
2468 */
2469 if (mdp->vlan_num_ids > 1) {
2470 /* disable VLAN filter */
2471 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2472 return 0;
2473 }
2474
2475 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2476 vtag_reg_index);
2477
2478 return 0;
2479 }
2480
2481 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2482 {
2483 struct sh_eth_private *mdp = netdev_priv(ndev);
2484 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2485
2486 if (unlikely(!mdp->cd->tsu))
2487 return -EPERM;
2488
2489 /* No filtering if vid = 0 */
2490 if (!vid)
2491 return 0;
2492
2493 mdp->vlan_num_ids--;
2494 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2495
2496 return 0;
2497 }
2498 #endif /* SH_ETH_HAS_TSU */
2499
2500 /* SuperH's TSU register init function */
2501 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2502 {
2503 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2504 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2505 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2506 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2507 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2508 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2509 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2510 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2511 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2512 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2513 if (sh_eth_is_gether(mdp)) {
2514 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
2515 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
2516 } else {
2517 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
2518 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
2519 }
2520 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
2521 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
2522 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2523 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
2524 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
2525 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
2526 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
2527 }
2528
2529 /* MDIO bus release function */
2530 static int sh_mdio_release(struct net_device *ndev)
2531 {
2532 struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2533
2534 /* unregister mdio bus */
2535 mdiobus_unregister(bus);
2536
2537 /* remove mdio bus info from net_device */
2538 dev_set_drvdata(&ndev->dev, NULL);
2539
2540 /* free bitbang info */
2541 free_mdio_bitbang(bus);
2542
2543 return 0;
2544 }
2545
2546 /* MDIO bus init function */
2547 static int sh_mdio_init(struct net_device *ndev, int id,
2548 struct sh_eth_plat_data *pd)
2549 {
2550 int ret, i;
2551 struct bb_info *bitbang;
2552 struct sh_eth_private *mdp = netdev_priv(ndev);
2553
2554 /* create bit control struct for PHY */
2555 bitbang = devm_kzalloc(&ndev->dev, sizeof(struct bb_info),
2556 GFP_KERNEL);
2557 if (!bitbang) {
2558 ret = -ENOMEM;
2559 goto out;
2560 }
2561
2562 /* bitbang init */
2563 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2564 bitbang->set_gate = pd->set_mdio_gate;
2565 bitbang->mdi_msk = PIR_MDI;
2566 bitbang->mdo_msk = PIR_MDO;
2567 bitbang->mmd_msk = PIR_MMD;
2568 bitbang->mdc_msk = PIR_MDC;
2569 bitbang->ctrl.ops = &bb_ops;
2570
2571 /* MII controller setting */
2572 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2573 if (!mdp->mii_bus) {
2574 ret = -ENOMEM;
2575 goto out;
2576 }
2577
2578 /* Hook up MII support for ethtool */
2579 mdp->mii_bus->name = "sh_mii";
2580 mdp->mii_bus->parent = &ndev->dev;
2581 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2582 mdp->pdev->name, id);
2583
2584 /* PHY IRQ */
2585 mdp->mii_bus->irq = devm_kzalloc(&ndev->dev,
2586 sizeof(int) * PHY_MAX_ADDR,
2587 GFP_KERNEL);
2588 if (!mdp->mii_bus->irq) {
2589 ret = -ENOMEM;
2590 goto out_free_bus;
2591 }
2592
2593 for (i = 0; i < PHY_MAX_ADDR; i++)
2594 mdp->mii_bus->irq[i] = PHY_POLL;
2595
2596 /* register mdio bus */
2597 ret = mdiobus_register(mdp->mii_bus);
2598 if (ret)
2599 goto out_free_bus;
2600
2601 dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2602
2603 return 0;
2604
2605 out_free_bus:
2606 free_mdio_bitbang(mdp->mii_bus);
2607
2608 out:
2609 return ret;
2610 }
2611
2612 static const u16 *sh_eth_get_register_offset(int register_type)
2613 {
2614 const u16 *reg_offset = NULL;
2615
2616 switch (register_type) {
2617 case SH_ETH_REG_GIGABIT:
2618 reg_offset = sh_eth_offset_gigabit;
2619 break;
2620 case SH_ETH_REG_FAST_RCAR:
2621 reg_offset = sh_eth_offset_fast_rcar;
2622 break;
2623 case SH_ETH_REG_FAST_SH4:
2624 reg_offset = sh_eth_offset_fast_sh4;
2625 break;
2626 case SH_ETH_REG_FAST_SH3_SH2:
2627 reg_offset = sh_eth_offset_fast_sh3_sh2;
2628 break;
2629 default:
2630 pr_err("Unknown register type (%d)\n", register_type);
2631 break;
2632 }
2633
2634 return reg_offset;
2635 }
2636
2637 static const struct net_device_ops sh_eth_netdev_ops = {
2638 .ndo_open = sh_eth_open,
2639 .ndo_stop = sh_eth_close,
2640 .ndo_start_xmit = sh_eth_start_xmit,
2641 .ndo_get_stats = sh_eth_get_stats,
2642 #if defined(SH_ETH_HAS_TSU)
2643 .ndo_set_rx_mode = sh_eth_set_multicast_list,
2644 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
2645 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
2646 #endif
2647 .ndo_tx_timeout = sh_eth_tx_timeout,
2648 .ndo_do_ioctl = sh_eth_do_ioctl,
2649 .ndo_validate_addr = eth_validate_addr,
2650 .ndo_set_mac_address = eth_mac_addr,
2651 .ndo_change_mtu = eth_change_mtu,
2652 };
2653
2654 static int sh_eth_drv_probe(struct platform_device *pdev)
2655 {
2656 int ret, devno = 0;
2657 struct resource *res;
2658 struct net_device *ndev = NULL;
2659 struct sh_eth_private *mdp = NULL;
2660 struct sh_eth_plat_data *pd = pdev->dev.platform_data;
2661
2662 /* get base addr */
2663 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2664 if (unlikely(res == NULL)) {
2665 dev_err(&pdev->dev, "invalid resource\n");
2666 ret = -EINVAL;
2667 goto out;
2668 }
2669
2670 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2671 if (!ndev) {
2672 ret = -ENOMEM;
2673 goto out;
2674 }
2675
2676 /* The sh Ether-specific entries in the device structure. */
2677 ndev->base_addr = res->start;
2678 devno = pdev->id;
2679 if (devno < 0)
2680 devno = 0;
2681
2682 ndev->dma = -1;
2683 ret = platform_get_irq(pdev, 0);
2684 if (ret < 0) {
2685 ret = -ENODEV;
2686 goto out_release;
2687 }
2688 ndev->irq = ret;
2689
2690 SET_NETDEV_DEV(ndev, &pdev->dev);
2691
2692 /* Fill in the fields of the device structure with ethernet values. */
2693 ether_setup(ndev);
2694
2695 mdp = netdev_priv(ndev);
2696 mdp->num_tx_ring = TX_RING_SIZE;
2697 mdp->num_rx_ring = RX_RING_SIZE;
2698 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2699 if (IS_ERR(mdp->addr)) {
2700 ret = PTR_ERR(mdp->addr);
2701 goto out_release;
2702 }
2703
2704 spin_lock_init(&mdp->lock);
2705 mdp->pdev = pdev;
2706 pm_runtime_enable(&pdev->dev);
2707 pm_runtime_resume(&pdev->dev);
2708
2709 /* get PHY ID */
2710 mdp->phy_id = pd->phy;
2711 mdp->phy_interface = pd->phy_interface;
2712 /* EDMAC endian */
2713 mdp->edmac_endian = pd->edmac_endian;
2714 mdp->no_ether_link = pd->no_ether_link;
2715 mdp->ether_link_active_low = pd->ether_link_active_low;
2716 mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
2717
2718 /* set cpu data */
2719 #if defined(SH_ETH_HAS_BOTH_MODULES)
2720 mdp->cd = sh_eth_get_cpu_data(mdp);
2721 #else
2722 mdp->cd = &sh_eth_my_cpu_data;
2723 #endif
2724 sh_eth_set_default_cpu_data(mdp->cd);
2725
2726 /* set function */
2727 ndev->netdev_ops = &sh_eth_netdev_ops;
2728 SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2729 ndev->watchdog_timeo = TX_TIMEOUT;
2730
2731 /* debug message level */
2732 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2733
2734 /* read and set MAC address */
2735 read_mac_address(ndev, pd->mac_addr);
2736
2737 /* ioremap the TSU registers */
2738 if (mdp->cd->tsu) {
2739 struct resource *rtsu;
2740 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2741 if (!rtsu) {
2742 dev_err(&pdev->dev, "Not found TSU resource\n");
2743 ret = -ENODEV;
2744 goto out_release;
2745 }
2746 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2747 if (IS_ERR(mdp->tsu_addr)) {
2748 ret = PTR_ERR(mdp->tsu_addr);
2749 goto out_release;
2750 }
2751 mdp->port = devno % 2;
2752 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2753 }
2754
2755 /* initialize first or needed device */
2756 if (!devno || pd->needs_init) {
2757 if (mdp->cd->chip_reset)
2758 mdp->cd->chip_reset(ndev);
2759
2760 if (mdp->cd->tsu) {
2761 /* TSU init (Init only)*/
2762 sh_eth_tsu_init(mdp);
2763 }
2764 }
2765
2766 /* network device register */
2767 ret = register_netdev(ndev);
2768 if (ret)
2769 goto out_release;
2770
2771 /* mdio bus init */
2772 ret = sh_mdio_init(ndev, pdev->id, pd);
2773 if (ret)
2774 goto out_unregister;
2775
2776 /* print device information */
2777 pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2778 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2779
2780 platform_set_drvdata(pdev, ndev);
2781
2782 return ret;
2783
2784 out_unregister:
2785 unregister_netdev(ndev);
2786
2787 out_release:
2788 /* net_dev free */
2789 if (ndev)
2790 free_netdev(ndev);
2791
2792 out:
2793 return ret;
2794 }
2795
2796 static int sh_eth_drv_remove(struct platform_device *pdev)
2797 {
2798 struct net_device *ndev = platform_get_drvdata(pdev);
2799
2800 sh_mdio_release(ndev);
2801 unregister_netdev(ndev);
2802 pm_runtime_disable(&pdev->dev);
2803 free_netdev(ndev);
2804 platform_set_drvdata(pdev, NULL);
2805
2806 return 0;
2807 }
2808
2809 static int sh_eth_runtime_nop(struct device *dev)
2810 {
2811 /*
2812 * Runtime PM callback shared between ->runtime_suspend()
2813 * and ->runtime_resume(). Simply returns success.
2814 *
2815 * This driver re-initializes all registers after
2816 * pm_runtime_get_sync() anyway so there is no need
2817 * to save and restore registers here.
2818 */
2819 return 0;
2820 }
2821
2822 static struct dev_pm_ops sh_eth_dev_pm_ops = {
2823 .runtime_suspend = sh_eth_runtime_nop,
2824 .runtime_resume = sh_eth_runtime_nop,
2825 };
2826
2827 static struct platform_driver sh_eth_driver = {
2828 .probe = sh_eth_drv_probe,
2829 .remove = sh_eth_drv_remove,
2830 .driver = {
2831 .name = CARDNAME,
2832 .pm = &sh_eth_dev_pm_ops,
2833 },
2834 };
2835
2836 module_platform_driver(sh_eth_driver);
2837
2838 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2839 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2840 MODULE_LICENSE("GPL v2");
This page took 0.095547 seconds and 5 git commands to generate.