MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / drivers / net / ethernet / renesas / sh_eth.c
1 /* SuperH Ethernet device driver
2 *
3 * Copyright (C) 2014 Renesas Electronics Corporation
4 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 * Copyright (C) 2008-2014 Renesas Solutions Corp.
6 * Copyright (C) 2013-2014 Cogent Embedded, Inc.
7 * Copyright (C) 2014 Codethink Limited
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46
47 #include "sh_eth.h"
48
49 #define SH_ETH_DEF_MSG_ENABLE \
50 (NETIF_MSG_LINK | \
51 NETIF_MSG_TIMER | \
52 NETIF_MSG_RX_ERR| \
53 NETIF_MSG_TX_ERR)
54
55 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
56 [EDSR] = 0x0000,
57 [EDMR] = 0x0400,
58 [EDTRR] = 0x0408,
59 [EDRRR] = 0x0410,
60 [EESR] = 0x0428,
61 [EESIPR] = 0x0430,
62 [TDLAR] = 0x0010,
63 [TDFAR] = 0x0014,
64 [TDFXR] = 0x0018,
65 [TDFFR] = 0x001c,
66 [RDLAR] = 0x0030,
67 [RDFAR] = 0x0034,
68 [RDFXR] = 0x0038,
69 [RDFFR] = 0x003c,
70 [TRSCER] = 0x0438,
71 [RMFCR] = 0x0440,
72 [TFTR] = 0x0448,
73 [FDR] = 0x0450,
74 [RMCR] = 0x0458,
75 [RPADIR] = 0x0460,
76 [FCFTR] = 0x0468,
77 [CSMR] = 0x04E4,
78
79 [ECMR] = 0x0500,
80 [ECSR] = 0x0510,
81 [ECSIPR] = 0x0518,
82 [PIR] = 0x0520,
83 [PSR] = 0x0528,
84 [PIPR] = 0x052c,
85 [RFLR] = 0x0508,
86 [APR] = 0x0554,
87 [MPR] = 0x0558,
88 [PFTCR] = 0x055c,
89 [PFRCR] = 0x0560,
90 [TPAUSER] = 0x0564,
91 [GECMR] = 0x05b0,
92 [BCULR] = 0x05b4,
93 [MAHR] = 0x05c0,
94 [MALR] = 0x05c8,
95 [TROCR] = 0x0700,
96 [CDCR] = 0x0708,
97 [LCCR] = 0x0710,
98 [CEFCR] = 0x0740,
99 [FRECR] = 0x0748,
100 [TSFRCR] = 0x0750,
101 [TLFRCR] = 0x0758,
102 [RFCR] = 0x0760,
103 [CERCR] = 0x0768,
104 [CEECR] = 0x0770,
105 [MAFCR] = 0x0778,
106 [RMII_MII] = 0x0790,
107
108 [ARSTR] = 0x0000,
109 [TSU_CTRST] = 0x0004,
110 [TSU_FWEN0] = 0x0010,
111 [TSU_FWEN1] = 0x0014,
112 [TSU_FCM] = 0x0018,
113 [TSU_BSYSL0] = 0x0020,
114 [TSU_BSYSL1] = 0x0024,
115 [TSU_PRISL0] = 0x0028,
116 [TSU_PRISL1] = 0x002c,
117 [TSU_FWSL0] = 0x0030,
118 [TSU_FWSL1] = 0x0034,
119 [TSU_FWSLC] = 0x0038,
120 [TSU_QTAG0] = 0x0040,
121 [TSU_QTAG1] = 0x0044,
122 [TSU_FWSR] = 0x0050,
123 [TSU_FWINMK] = 0x0054,
124 [TSU_ADQT0] = 0x0048,
125 [TSU_ADQT1] = 0x004c,
126 [TSU_VTAG0] = 0x0058,
127 [TSU_VTAG1] = 0x005c,
128 [TSU_ADSBSY] = 0x0060,
129 [TSU_TEN] = 0x0064,
130 [TSU_POST1] = 0x0070,
131 [TSU_POST2] = 0x0074,
132 [TSU_POST3] = 0x0078,
133 [TSU_POST4] = 0x007c,
134 [TSU_ADRH0] = 0x0100,
135 [TSU_ADRL0] = 0x0104,
136 [TSU_ADRH31] = 0x01f8,
137 [TSU_ADRL31] = 0x01fc,
138
139 [TXNLCR0] = 0x0080,
140 [TXALCR0] = 0x0084,
141 [RXNLCR0] = 0x0088,
142 [RXALCR0] = 0x008c,
143 [FWNLCR0] = 0x0090,
144 [FWALCR0] = 0x0094,
145 [TXNLCR1] = 0x00a0,
146 [TXALCR1] = 0x00a0,
147 [RXNLCR1] = 0x00a8,
148 [RXALCR1] = 0x00ac,
149 [FWNLCR1] = 0x00b0,
150 [FWALCR1] = 0x00b4,
151 };
152
153 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
154 [EDSR] = 0x0000,
155 [EDMR] = 0x0400,
156 [EDTRR] = 0x0408,
157 [EDRRR] = 0x0410,
158 [EESR] = 0x0428,
159 [EESIPR] = 0x0430,
160 [TDLAR] = 0x0010,
161 [TDFAR] = 0x0014,
162 [TDFXR] = 0x0018,
163 [TDFFR] = 0x001c,
164 [RDLAR] = 0x0030,
165 [RDFAR] = 0x0034,
166 [RDFXR] = 0x0038,
167 [RDFFR] = 0x003c,
168 [TRSCER] = 0x0438,
169 [RMFCR] = 0x0440,
170 [TFTR] = 0x0448,
171 [FDR] = 0x0450,
172 [RMCR] = 0x0458,
173 [RPADIR] = 0x0460,
174 [FCFTR] = 0x0468,
175 [CSMR] = 0x04E4,
176
177 [ECMR] = 0x0500,
178 [RFLR] = 0x0508,
179 [ECSR] = 0x0510,
180 [ECSIPR] = 0x0518,
181 [PIR] = 0x0520,
182 [APR] = 0x0554,
183 [MPR] = 0x0558,
184 [PFTCR] = 0x055c,
185 [PFRCR] = 0x0560,
186 [TPAUSER] = 0x0564,
187 [MAHR] = 0x05c0,
188 [MALR] = 0x05c8,
189 [CEFCR] = 0x0740,
190 [FRECR] = 0x0748,
191 [TSFRCR] = 0x0750,
192 [TLFRCR] = 0x0758,
193 [RFCR] = 0x0760,
194 [MAFCR] = 0x0778,
195
196 [ARSTR] = 0x0000,
197 [TSU_CTRST] = 0x0004,
198 [TSU_VTAG0] = 0x0058,
199 [TSU_ADSBSY] = 0x0060,
200 [TSU_TEN] = 0x0064,
201 [TSU_ADRH0] = 0x0100,
202 [TSU_ADRL0] = 0x0104,
203 [TSU_ADRH31] = 0x01f8,
204 [TSU_ADRL31] = 0x01fc,
205
206 [TXNLCR0] = 0x0080,
207 [TXALCR0] = 0x0084,
208 [RXNLCR0] = 0x0088,
209 [RXALCR0] = 0x008C,
210 };
211
212 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
213 [ECMR] = 0x0300,
214 [RFLR] = 0x0308,
215 [ECSR] = 0x0310,
216 [ECSIPR] = 0x0318,
217 [PIR] = 0x0320,
218 [PSR] = 0x0328,
219 [RDMLR] = 0x0340,
220 [IPGR] = 0x0350,
221 [APR] = 0x0354,
222 [MPR] = 0x0358,
223 [RFCF] = 0x0360,
224 [TPAUSER] = 0x0364,
225 [TPAUSECR] = 0x0368,
226 [MAHR] = 0x03c0,
227 [MALR] = 0x03c8,
228 [TROCR] = 0x03d0,
229 [CDCR] = 0x03d4,
230 [LCCR] = 0x03d8,
231 [CNDCR] = 0x03dc,
232 [CEFCR] = 0x03e4,
233 [FRECR] = 0x03e8,
234 [TSFRCR] = 0x03ec,
235 [TLFRCR] = 0x03f0,
236 [RFCR] = 0x03f4,
237 [MAFCR] = 0x03f8,
238
239 [EDMR] = 0x0200,
240 [EDTRR] = 0x0208,
241 [EDRRR] = 0x0210,
242 [TDLAR] = 0x0218,
243 [RDLAR] = 0x0220,
244 [EESR] = 0x0228,
245 [EESIPR] = 0x0230,
246 [TRSCER] = 0x0238,
247 [RMFCR] = 0x0240,
248 [TFTR] = 0x0248,
249 [FDR] = 0x0250,
250 [RMCR] = 0x0258,
251 [TFUCR] = 0x0264,
252 [RFOCR] = 0x0268,
253 [RMIIMODE] = 0x026c,
254 [FCFTR] = 0x0270,
255 [TRIMD] = 0x027c,
256 };
257
258 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
259 [ECMR] = 0x0100,
260 [RFLR] = 0x0108,
261 [ECSR] = 0x0110,
262 [ECSIPR] = 0x0118,
263 [PIR] = 0x0120,
264 [PSR] = 0x0128,
265 [RDMLR] = 0x0140,
266 [IPGR] = 0x0150,
267 [APR] = 0x0154,
268 [MPR] = 0x0158,
269 [TPAUSER] = 0x0164,
270 [RFCF] = 0x0160,
271 [TPAUSECR] = 0x0168,
272 [BCFRR] = 0x016c,
273 [MAHR] = 0x01c0,
274 [MALR] = 0x01c8,
275 [TROCR] = 0x01d0,
276 [CDCR] = 0x01d4,
277 [LCCR] = 0x01d8,
278 [CNDCR] = 0x01dc,
279 [CEFCR] = 0x01e4,
280 [FRECR] = 0x01e8,
281 [TSFRCR] = 0x01ec,
282 [TLFRCR] = 0x01f0,
283 [RFCR] = 0x01f4,
284 [MAFCR] = 0x01f8,
285 [RTRATE] = 0x01fc,
286
287 [EDMR] = 0x0000,
288 [EDTRR] = 0x0008,
289 [EDRRR] = 0x0010,
290 [TDLAR] = 0x0018,
291 [RDLAR] = 0x0020,
292 [EESR] = 0x0028,
293 [EESIPR] = 0x0030,
294 [TRSCER] = 0x0038,
295 [RMFCR] = 0x0040,
296 [TFTR] = 0x0048,
297 [FDR] = 0x0050,
298 [RMCR] = 0x0058,
299 [TFUCR] = 0x0064,
300 [RFOCR] = 0x0068,
301 [FCFTR] = 0x0070,
302 [RPADIR] = 0x0078,
303 [TRIMD] = 0x007c,
304 [RBWAR] = 0x00c8,
305 [RDFAR] = 0x00cc,
306 [TBRAR] = 0x00d4,
307 [TDFAR] = 0x00d8,
308 };
309
310 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
311 [EDMR] = 0x0000,
312 [EDTRR] = 0x0004,
313 [EDRRR] = 0x0008,
314 [TDLAR] = 0x000c,
315 [RDLAR] = 0x0010,
316 [EESR] = 0x0014,
317 [EESIPR] = 0x0018,
318 [TRSCER] = 0x001c,
319 [RMFCR] = 0x0020,
320 [TFTR] = 0x0024,
321 [FDR] = 0x0028,
322 [RMCR] = 0x002c,
323 [EDOCR] = 0x0030,
324 [FCFTR] = 0x0034,
325 [RPADIR] = 0x0038,
326 [TRIMD] = 0x003c,
327 [RBWAR] = 0x0040,
328 [RDFAR] = 0x0044,
329 [TBRAR] = 0x004c,
330 [TDFAR] = 0x0050,
331
332 [ECMR] = 0x0160,
333 [ECSR] = 0x0164,
334 [ECSIPR] = 0x0168,
335 [PIR] = 0x016c,
336 [MAHR] = 0x0170,
337 [MALR] = 0x0174,
338 [RFLR] = 0x0178,
339 [PSR] = 0x017c,
340 [TROCR] = 0x0180,
341 [CDCR] = 0x0184,
342 [LCCR] = 0x0188,
343 [CNDCR] = 0x018c,
344 [CEFCR] = 0x0194,
345 [FRECR] = 0x0198,
346 [TSFRCR] = 0x019c,
347 [TLFRCR] = 0x01a0,
348 [RFCR] = 0x01a4,
349 [MAFCR] = 0x01a8,
350 [IPGR] = 0x01b4,
351 [APR] = 0x01b8,
352 [MPR] = 0x01bc,
353 [TPAUSER] = 0x01c4,
354 [BCFR] = 0x01cc,
355
356 [ARSTR] = 0x0000,
357 [TSU_CTRST] = 0x0004,
358 [TSU_FWEN0] = 0x0010,
359 [TSU_FWEN1] = 0x0014,
360 [TSU_FCM] = 0x0018,
361 [TSU_BSYSL0] = 0x0020,
362 [TSU_BSYSL1] = 0x0024,
363 [TSU_PRISL0] = 0x0028,
364 [TSU_PRISL1] = 0x002c,
365 [TSU_FWSL0] = 0x0030,
366 [TSU_FWSL1] = 0x0034,
367 [TSU_FWSLC] = 0x0038,
368 [TSU_QTAGM0] = 0x0040,
369 [TSU_QTAGM1] = 0x0044,
370 [TSU_ADQT0] = 0x0048,
371 [TSU_ADQT1] = 0x004c,
372 [TSU_FWSR] = 0x0050,
373 [TSU_FWINMK] = 0x0054,
374 [TSU_ADSBSY] = 0x0060,
375 [TSU_TEN] = 0x0064,
376 [TSU_POST1] = 0x0070,
377 [TSU_POST2] = 0x0074,
378 [TSU_POST3] = 0x0078,
379 [TSU_POST4] = 0x007c,
380
381 [TXNLCR0] = 0x0080,
382 [TXALCR0] = 0x0084,
383 [RXNLCR0] = 0x0088,
384 [RXALCR0] = 0x008c,
385 [FWNLCR0] = 0x0090,
386 [FWALCR0] = 0x0094,
387 [TXNLCR1] = 0x00a0,
388 [TXALCR1] = 0x00a0,
389 [RXNLCR1] = 0x00a8,
390 [RXALCR1] = 0x00ac,
391 [FWNLCR1] = 0x00b0,
392 [FWALCR1] = 0x00b4,
393
394 [TSU_ADRH0] = 0x0100,
395 [TSU_ADRL0] = 0x0104,
396 [TSU_ADRL31] = 0x01fc,
397 };
398
399 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
400 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
401
402 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
403 {
404 return mdp->reg_offset == sh_eth_offset_gigabit;
405 }
406
407 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
408 {
409 return mdp->reg_offset == sh_eth_offset_fast_rz;
410 }
411
412 static void sh_eth_select_mii(struct net_device *ndev)
413 {
414 u32 value = 0x0;
415 struct sh_eth_private *mdp = netdev_priv(ndev);
416
417 switch (mdp->phy_interface) {
418 case PHY_INTERFACE_MODE_GMII:
419 value = 0x2;
420 break;
421 case PHY_INTERFACE_MODE_MII:
422 value = 0x1;
423 break;
424 case PHY_INTERFACE_MODE_RMII:
425 value = 0x0;
426 break;
427 default:
428 netdev_warn(ndev,
429 "PHY interface mode was not setup. Set to MII.\n");
430 value = 0x1;
431 break;
432 }
433
434 sh_eth_write(ndev, value, RMII_MII);
435 }
436
437 static void sh_eth_set_duplex(struct net_device *ndev)
438 {
439 struct sh_eth_private *mdp = netdev_priv(ndev);
440
441 if (mdp->duplex) /* Full */
442 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
443 else /* Half */
444 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
445 }
446
447 /* There is CPU dependent code */
448 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
449 {
450 struct sh_eth_private *mdp = netdev_priv(ndev);
451
452 switch (mdp->speed) {
453 case 10: /* 10BASE */
454 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
455 break;
456 case 100:/* 100BASE */
457 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
458 break;
459 default:
460 break;
461 }
462 }
463
464 /* R8A7778/9 */
465 static struct sh_eth_cpu_data r8a777x_data = {
466 .set_duplex = sh_eth_set_duplex,
467 .set_rate = sh_eth_set_rate_r8a777x,
468
469 .register_type = SH_ETH_REG_FAST_RCAR,
470
471 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
472 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
473 .eesipr_value = 0x01ff009f,
474
475 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
476 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
477 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
478 EESR_ECI,
479 .fdr_value = 0x00000f0f,
480
481 .apr = 1,
482 .mpr = 1,
483 .tpauser = 1,
484 .hw_swap = 1,
485 };
486
487 /* R8A7790/1 */
488 static struct sh_eth_cpu_data r8a779x_data = {
489 .set_duplex = sh_eth_set_duplex,
490 .set_rate = sh_eth_set_rate_r8a777x,
491
492 .register_type = SH_ETH_REG_FAST_RCAR,
493
494 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
495 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
496 .eesipr_value = 0x01ff009f,
497
498 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
499 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
500 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
501 EESR_ECI,
502 .fdr_value = 0x00000f0f,
503
504 .trscer_err_mask = DESC_I_RINT8,
505
506 .apr = 1,
507 .mpr = 1,
508 .tpauser = 1,
509 .hw_swap = 1,
510 .rmiimode = 1,
511 .shift_rd0 = 1,
512 };
513
514 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
515 {
516 struct sh_eth_private *mdp = netdev_priv(ndev);
517
518 switch (mdp->speed) {
519 case 10: /* 10BASE */
520 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
521 break;
522 case 100:/* 100BASE */
523 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
524 break;
525 default:
526 break;
527 }
528 }
529
530 /* SH7724 */
531 static struct sh_eth_cpu_data sh7724_data = {
532 .set_duplex = sh_eth_set_duplex,
533 .set_rate = sh_eth_set_rate_sh7724,
534
535 .register_type = SH_ETH_REG_FAST_SH4,
536
537 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
538 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
539 .eesipr_value = 0x01ff009f,
540
541 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
542 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
543 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
544 EESR_ECI,
545
546 .apr = 1,
547 .mpr = 1,
548 .tpauser = 1,
549 .hw_swap = 1,
550 .rpadir = 1,
551 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
552 };
553
554 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
555 {
556 struct sh_eth_private *mdp = netdev_priv(ndev);
557
558 switch (mdp->speed) {
559 case 10: /* 10BASE */
560 sh_eth_write(ndev, 0, RTRATE);
561 break;
562 case 100:/* 100BASE */
563 sh_eth_write(ndev, 1, RTRATE);
564 break;
565 default:
566 break;
567 }
568 }
569
570 /* SH7757 */
571 static struct sh_eth_cpu_data sh7757_data = {
572 .set_duplex = sh_eth_set_duplex,
573 .set_rate = sh_eth_set_rate_sh7757,
574
575 .register_type = SH_ETH_REG_FAST_SH4,
576
577 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
578
579 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
580 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
581 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
582 EESR_ECI,
583
584 .irq_flags = IRQF_SHARED,
585 .apr = 1,
586 .mpr = 1,
587 .tpauser = 1,
588 .hw_swap = 1,
589 .no_ade = 1,
590 .rpadir = 1,
591 .rpadir_value = 2 << 16,
592 };
593
594 #define SH_GIGA_ETH_BASE 0xfee00000UL
595 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
596 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
597 static void sh_eth_chip_reset_giga(struct net_device *ndev)
598 {
599 int i;
600 u32 mahr[2], malr[2];
601
602 /* save MAHR and MALR */
603 for (i = 0; i < 2; i++) {
604 malr[i] = ioread32((void *)GIGA_MALR(i));
605 mahr[i] = ioread32((void *)GIGA_MAHR(i));
606 }
607
608 /* reset device */
609 iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
610 mdelay(1);
611
612 /* restore MAHR and MALR */
613 for (i = 0; i < 2; i++) {
614 iowrite32(malr[i], (void *)GIGA_MALR(i));
615 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
616 }
617 }
618
619 static void sh_eth_set_rate_giga(struct net_device *ndev)
620 {
621 struct sh_eth_private *mdp = netdev_priv(ndev);
622
623 switch (mdp->speed) {
624 case 10: /* 10BASE */
625 sh_eth_write(ndev, 0x00000000, GECMR);
626 break;
627 case 100:/* 100BASE */
628 sh_eth_write(ndev, 0x00000010, GECMR);
629 break;
630 case 1000: /* 1000BASE */
631 sh_eth_write(ndev, 0x00000020, GECMR);
632 break;
633 default:
634 break;
635 }
636 }
637
638 /* SH7757(GETHERC) */
639 static struct sh_eth_cpu_data sh7757_data_giga = {
640 .chip_reset = sh_eth_chip_reset_giga,
641 .set_duplex = sh_eth_set_duplex,
642 .set_rate = sh_eth_set_rate_giga,
643
644 .register_type = SH_ETH_REG_GIGABIT,
645
646 .ecsr_value = ECSR_ICD | ECSR_MPD,
647 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
648 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
649
650 .tx_check = EESR_TC1 | EESR_FTC,
651 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
652 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
653 EESR_TDE | EESR_ECI,
654 .fdr_value = 0x0000072f,
655
656 .irq_flags = IRQF_SHARED,
657 .apr = 1,
658 .mpr = 1,
659 .tpauser = 1,
660 .bculr = 1,
661 .hw_swap = 1,
662 .rpadir = 1,
663 .rpadir_value = 2 << 16,
664 .no_trimd = 1,
665 .no_ade = 1,
666 .tsu = 1,
667 };
668
669 static void sh_eth_chip_reset(struct net_device *ndev)
670 {
671 struct sh_eth_private *mdp = netdev_priv(ndev);
672
673 /* reset device */
674 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
675 mdelay(1);
676 }
677
678 static void sh_eth_set_rate_gether(struct net_device *ndev)
679 {
680 struct sh_eth_private *mdp = netdev_priv(ndev);
681
682 switch (mdp->speed) {
683 case 10: /* 10BASE */
684 sh_eth_write(ndev, GECMR_10, GECMR);
685 break;
686 case 100:/* 100BASE */
687 sh_eth_write(ndev, GECMR_100, GECMR);
688 break;
689 case 1000: /* 1000BASE */
690 sh_eth_write(ndev, GECMR_1000, GECMR);
691 break;
692 default:
693 break;
694 }
695 }
696
697 /* SH7734 */
698 static struct sh_eth_cpu_data sh7734_data = {
699 .chip_reset = sh_eth_chip_reset,
700 .set_duplex = sh_eth_set_duplex,
701 .set_rate = sh_eth_set_rate_gether,
702
703 .register_type = SH_ETH_REG_GIGABIT,
704
705 .ecsr_value = ECSR_ICD | ECSR_MPD,
706 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
707 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
708
709 .tx_check = EESR_TC1 | EESR_FTC,
710 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
711 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
712 EESR_TDE | EESR_ECI,
713
714 .apr = 1,
715 .mpr = 1,
716 .tpauser = 1,
717 .bculr = 1,
718 .hw_swap = 1,
719 .no_trimd = 1,
720 .no_ade = 1,
721 .tsu = 1,
722 .hw_crc = 1,
723 .select_mii = 1,
724 };
725
726 /* SH7763 */
727 static struct sh_eth_cpu_data sh7763_data = {
728 .chip_reset = sh_eth_chip_reset,
729 .set_duplex = sh_eth_set_duplex,
730 .set_rate = sh_eth_set_rate_gether,
731
732 .register_type = SH_ETH_REG_GIGABIT,
733
734 .ecsr_value = ECSR_ICD | ECSR_MPD,
735 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
736 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
737
738 .tx_check = EESR_TC1 | EESR_FTC,
739 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
740 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
741 EESR_ECI,
742
743 .apr = 1,
744 .mpr = 1,
745 .tpauser = 1,
746 .bculr = 1,
747 .hw_swap = 1,
748 .no_trimd = 1,
749 .no_ade = 1,
750 .tsu = 1,
751 .irq_flags = IRQF_SHARED,
752 };
753
754 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
755 {
756 struct sh_eth_private *mdp = netdev_priv(ndev);
757
758 /* reset device */
759 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
760 mdelay(1);
761
762 sh_eth_select_mii(ndev);
763 }
764
765 /* R8A7740 */
766 static struct sh_eth_cpu_data r8a7740_data = {
767 .chip_reset = sh_eth_chip_reset_r8a7740,
768 .set_duplex = sh_eth_set_duplex,
769 .set_rate = sh_eth_set_rate_gether,
770
771 .register_type = SH_ETH_REG_GIGABIT,
772
773 .ecsr_value = ECSR_ICD | ECSR_MPD,
774 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
775 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
776
777 .tx_check = EESR_TC1 | EESR_FTC,
778 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
779 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
780 EESR_TDE | EESR_ECI,
781 .fdr_value = 0x0000070f,
782
783 .apr = 1,
784 .mpr = 1,
785 .tpauser = 1,
786 .bculr = 1,
787 .hw_swap = 1,
788 .rpadir = 1,
789 .rpadir_value = 2 << 16,
790 .no_trimd = 1,
791 .no_ade = 1,
792 .tsu = 1,
793 .select_mii = 1,
794 .shift_rd0 = 1,
795 };
796
797 /* R7S72100 */
798 static struct sh_eth_cpu_data r7s72100_data = {
799 .chip_reset = sh_eth_chip_reset,
800 .set_duplex = sh_eth_set_duplex,
801
802 .register_type = SH_ETH_REG_FAST_RZ,
803
804 .ecsr_value = ECSR_ICD,
805 .ecsipr_value = ECSIPR_ICDIP,
806 .eesipr_value = 0xff7f009f,
807
808 .tx_check = EESR_TC1 | EESR_FTC,
809 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
810 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
811 EESR_TDE | EESR_ECI,
812 .fdr_value = 0x0000070f,
813
814 .no_psr = 1,
815 .apr = 1,
816 .mpr = 1,
817 .tpauser = 1,
818 .hw_swap = 1,
819 .rpadir = 1,
820 .rpadir_value = 2 << 16,
821 .no_trimd = 1,
822 .no_ade = 1,
823 .hw_crc = 1,
824 .tsu = 1,
825 .shift_rd0 = 1,
826 };
827
828 static struct sh_eth_cpu_data sh7619_data = {
829 .register_type = SH_ETH_REG_FAST_SH3_SH2,
830
831 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
832
833 .apr = 1,
834 .mpr = 1,
835 .tpauser = 1,
836 .hw_swap = 1,
837 };
838
839 static struct sh_eth_cpu_data sh771x_data = {
840 .register_type = SH_ETH_REG_FAST_SH3_SH2,
841
842 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
843 .tsu = 1,
844 };
845
846 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
847 {
848 if (!cd->ecsr_value)
849 cd->ecsr_value = DEFAULT_ECSR_INIT;
850
851 if (!cd->ecsipr_value)
852 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
853
854 if (!cd->fcftr_value)
855 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
856 DEFAULT_FIFO_F_D_RFD;
857
858 if (!cd->fdr_value)
859 cd->fdr_value = DEFAULT_FDR_INIT;
860
861 if (!cd->tx_check)
862 cd->tx_check = DEFAULT_TX_CHECK;
863
864 if (!cd->eesr_err_check)
865 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
866
867 if (!cd->trscer_err_mask)
868 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
869 }
870
871 static int sh_eth_check_reset(struct net_device *ndev)
872 {
873 int ret = 0;
874 int cnt = 100;
875
876 while (cnt > 0) {
877 if (!(sh_eth_read(ndev, EDMR) & 0x3))
878 break;
879 mdelay(1);
880 cnt--;
881 }
882 if (cnt <= 0) {
883 netdev_err(ndev, "Device reset failed\n");
884 ret = -ETIMEDOUT;
885 }
886 return ret;
887 }
888
889 static int sh_eth_reset(struct net_device *ndev)
890 {
891 struct sh_eth_private *mdp = netdev_priv(ndev);
892 int ret = 0;
893
894 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
895 sh_eth_write(ndev, EDSR_ENALL, EDSR);
896 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
897 EDMR);
898
899 ret = sh_eth_check_reset(ndev);
900 if (ret)
901 return ret;
902
903 /* Table Init */
904 sh_eth_write(ndev, 0x0, TDLAR);
905 sh_eth_write(ndev, 0x0, TDFAR);
906 sh_eth_write(ndev, 0x0, TDFXR);
907 sh_eth_write(ndev, 0x0, TDFFR);
908 sh_eth_write(ndev, 0x0, RDLAR);
909 sh_eth_write(ndev, 0x0, RDFAR);
910 sh_eth_write(ndev, 0x0, RDFXR);
911 sh_eth_write(ndev, 0x0, RDFFR);
912
913 /* Reset HW CRC register */
914 if (mdp->cd->hw_crc)
915 sh_eth_write(ndev, 0x0, CSMR);
916
917 /* Select MII mode */
918 if (mdp->cd->select_mii)
919 sh_eth_select_mii(ndev);
920 } else {
921 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
922 EDMR);
923 mdelay(3);
924 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
925 EDMR);
926 }
927
928 return ret;
929 }
930
931 static void sh_eth_set_receive_align(struct sk_buff *skb)
932 {
933 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
934
935 if (reserve)
936 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
937 }
938
939
940 /* CPU <-> EDMAC endian convert */
941 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
942 {
943 switch (mdp->edmac_endian) {
944 case EDMAC_LITTLE_ENDIAN:
945 return cpu_to_le32(x);
946 case EDMAC_BIG_ENDIAN:
947 return cpu_to_be32(x);
948 }
949 return x;
950 }
951
952 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
953 {
954 switch (mdp->edmac_endian) {
955 case EDMAC_LITTLE_ENDIAN:
956 return le32_to_cpu(x);
957 case EDMAC_BIG_ENDIAN:
958 return be32_to_cpu(x);
959 }
960 return x;
961 }
962
963 /* Program the hardware MAC address from dev->dev_addr. */
964 static void update_mac_address(struct net_device *ndev)
965 {
966 sh_eth_write(ndev,
967 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
968 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
969 sh_eth_write(ndev,
970 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
971 }
972
973 /* Get MAC address from SuperH MAC address register
974 *
975 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
976 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
977 * When you want use this device, you must set MAC address in bootloader.
978 *
979 */
980 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
981 {
982 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
983 memcpy(ndev->dev_addr, mac, ETH_ALEN);
984 } else {
985 ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
986 ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
987 ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
988 ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
989 ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
990 ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
991 }
992 }
993
994 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
995 {
996 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
997 return EDTRR_TRNS_GETHER;
998 else
999 return EDTRR_TRNS_ETHER;
1000 }
1001
1002 struct bb_info {
1003 void (*set_gate)(void *addr);
1004 struct mdiobb_ctrl ctrl;
1005 void *addr;
1006 u32 mmd_msk;/* MMD */
1007 u32 mdo_msk;
1008 u32 mdi_msk;
1009 u32 mdc_msk;
1010 };
1011
1012 /* PHY bit set */
1013 static void bb_set(void *addr, u32 msk)
1014 {
1015 iowrite32(ioread32(addr) | msk, addr);
1016 }
1017
1018 /* PHY bit clear */
1019 static void bb_clr(void *addr, u32 msk)
1020 {
1021 iowrite32((ioread32(addr) & ~msk), addr);
1022 }
1023
1024 /* PHY bit read */
1025 static int bb_read(void *addr, u32 msk)
1026 {
1027 return (ioread32(addr) & msk) != 0;
1028 }
1029
1030 /* Data I/O pin control */
1031 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1032 {
1033 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1034
1035 if (bitbang->set_gate)
1036 bitbang->set_gate(bitbang->addr);
1037
1038 if (bit)
1039 bb_set(bitbang->addr, bitbang->mmd_msk);
1040 else
1041 bb_clr(bitbang->addr, bitbang->mmd_msk);
1042 }
1043
1044 /* Set bit data*/
1045 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1046 {
1047 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1048
1049 if (bitbang->set_gate)
1050 bitbang->set_gate(bitbang->addr);
1051
1052 if (bit)
1053 bb_set(bitbang->addr, bitbang->mdo_msk);
1054 else
1055 bb_clr(bitbang->addr, bitbang->mdo_msk);
1056 }
1057
1058 /* Get bit data*/
1059 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1060 {
1061 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1062
1063 if (bitbang->set_gate)
1064 bitbang->set_gate(bitbang->addr);
1065
1066 return bb_read(bitbang->addr, bitbang->mdi_msk);
1067 }
1068
1069 /* MDC pin control */
1070 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1071 {
1072 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1073
1074 if (bitbang->set_gate)
1075 bitbang->set_gate(bitbang->addr);
1076
1077 if (bit)
1078 bb_set(bitbang->addr, bitbang->mdc_msk);
1079 else
1080 bb_clr(bitbang->addr, bitbang->mdc_msk);
1081 }
1082
1083 /* mdio bus control struct */
1084 static struct mdiobb_ops bb_ops = {
1085 .owner = THIS_MODULE,
1086 .set_mdc = sh_mdc_ctrl,
1087 .set_mdio_dir = sh_mmd_ctrl,
1088 .set_mdio_data = sh_set_mdio,
1089 .get_mdio_data = sh_get_mdio,
1090 };
1091
1092 /* free skb and descriptor buffer */
1093 static void sh_eth_ring_free(struct net_device *ndev)
1094 {
1095 struct sh_eth_private *mdp = netdev_priv(ndev);
1096 int i;
1097
1098 /* Free Rx skb ringbuffer */
1099 if (mdp->rx_skbuff) {
1100 for (i = 0; i < mdp->num_rx_ring; i++)
1101 dev_kfree_skb(mdp->rx_skbuff[i]);
1102 }
1103 kfree(mdp->rx_skbuff);
1104 mdp->rx_skbuff = NULL;
1105
1106 /* Free Tx skb ringbuffer */
1107 if (mdp->tx_skbuff) {
1108 for (i = 0; i < mdp->num_tx_ring; i++)
1109 dev_kfree_skb(mdp->tx_skbuff[i]);
1110 }
1111 kfree(mdp->tx_skbuff);
1112 mdp->tx_skbuff = NULL;
1113 }
1114
1115 /* format skb and descriptor buffer */
1116 static void sh_eth_ring_format(struct net_device *ndev)
1117 {
1118 struct sh_eth_private *mdp = netdev_priv(ndev);
1119 int i;
1120 struct sk_buff *skb;
1121 struct sh_eth_rxdesc *rxdesc = NULL;
1122 struct sh_eth_txdesc *txdesc = NULL;
1123 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1124 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1125 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN - 1;
1126 dma_addr_t dma_addr;
1127
1128 mdp->cur_rx = 0;
1129 mdp->cur_tx = 0;
1130 mdp->dirty_rx = 0;
1131 mdp->dirty_tx = 0;
1132
1133 memset(mdp->rx_ring, 0, rx_ringsize);
1134
1135 /* build Rx ring buffer */
1136 for (i = 0; i < mdp->num_rx_ring; i++) {
1137 /* skb */
1138 mdp->rx_skbuff[i] = NULL;
1139 skb = netdev_alloc_skb(ndev, skbuff_size);
1140 if (skb == NULL)
1141 break;
1142 sh_eth_set_receive_align(skb);
1143
1144 /* RX descriptor */
1145 rxdesc = &mdp->rx_ring[i];
1146 /* The size of the buffer is a multiple of 16 bytes. */
1147 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1148 dma_addr = dma_map_single(&ndev->dev, skb->data,
1149 rxdesc->buffer_length,
1150 DMA_FROM_DEVICE);
1151 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1152 kfree_skb(skb);
1153 break;
1154 }
1155 mdp->rx_skbuff[i] = skb;
1156 rxdesc->addr = dma_addr;
1157 rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1158
1159 /* Rx descriptor address set */
1160 if (i == 0) {
1161 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1162 if (sh_eth_is_gether(mdp) ||
1163 sh_eth_is_rz_fast_ether(mdp))
1164 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1165 }
1166 }
1167
1168 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1169
1170 /* Mark the last entry as wrapping the ring. */
1171 rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1172
1173 memset(mdp->tx_ring, 0, tx_ringsize);
1174
1175 /* build Tx ring buffer */
1176 for (i = 0; i < mdp->num_tx_ring; i++) {
1177 mdp->tx_skbuff[i] = NULL;
1178 txdesc = &mdp->tx_ring[i];
1179 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1180 txdesc->buffer_length = 0;
1181 if (i == 0) {
1182 /* Tx descriptor address set */
1183 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1184 if (sh_eth_is_gether(mdp) ||
1185 sh_eth_is_rz_fast_ether(mdp))
1186 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1187 }
1188 }
1189
1190 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1191 }
1192
1193 /* Get skb and descriptor buffer */
1194 static int sh_eth_ring_init(struct net_device *ndev)
1195 {
1196 struct sh_eth_private *mdp = netdev_priv(ndev);
1197 int rx_ringsize, tx_ringsize, ret = 0;
1198
1199 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1200 * card needs room to do 8 byte alignment, +2 so we can reserve
1201 * the first 2 bytes, and +16 gets room for the status word from the
1202 * card.
1203 */
1204 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1205 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1206 if (mdp->cd->rpadir)
1207 mdp->rx_buf_sz += NET_IP_ALIGN;
1208
1209 /* Allocate RX and TX skb rings */
1210 mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1211 sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1212 if (!mdp->rx_skbuff) {
1213 ret = -ENOMEM;
1214 return ret;
1215 }
1216
1217 mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1218 sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1219 if (!mdp->tx_skbuff) {
1220 ret = -ENOMEM;
1221 goto skb_ring_free;
1222 }
1223
1224 /* Allocate all Rx descriptors. */
1225 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1226 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1227 GFP_KERNEL);
1228 if (!mdp->rx_ring) {
1229 ret = -ENOMEM;
1230 goto desc_ring_free;
1231 }
1232
1233 mdp->dirty_rx = 0;
1234
1235 /* Allocate all Tx descriptors. */
1236 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1237 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1238 GFP_KERNEL);
1239 if (!mdp->tx_ring) {
1240 ret = -ENOMEM;
1241 goto desc_ring_free;
1242 }
1243 return ret;
1244
1245 desc_ring_free:
1246 /* free DMA buffer */
1247 dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1248
1249 skb_ring_free:
1250 /* Free Rx and Tx skb ring buffer */
1251 sh_eth_ring_free(ndev);
1252 mdp->tx_ring = NULL;
1253 mdp->rx_ring = NULL;
1254
1255 return ret;
1256 }
1257
1258 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1259 {
1260 int ringsize;
1261
1262 if (mdp->rx_ring) {
1263 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1264 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1265 mdp->rx_desc_dma);
1266 mdp->rx_ring = NULL;
1267 }
1268
1269 if (mdp->tx_ring) {
1270 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1271 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1272 mdp->tx_desc_dma);
1273 mdp->tx_ring = NULL;
1274 }
1275 }
1276
1277 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1278 {
1279 int ret = 0;
1280 struct sh_eth_private *mdp = netdev_priv(ndev);
1281 u32 val;
1282
1283 /* Soft Reset */
1284 ret = sh_eth_reset(ndev);
1285 if (ret)
1286 return ret;
1287
1288 if (mdp->cd->rmiimode)
1289 sh_eth_write(ndev, 0x1, RMIIMODE);
1290
1291 /* Descriptor format */
1292 sh_eth_ring_format(ndev);
1293 if (mdp->cd->rpadir)
1294 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1295
1296 /* all sh_eth int mask */
1297 sh_eth_write(ndev, 0, EESIPR);
1298
1299 #if defined(__LITTLE_ENDIAN)
1300 if (mdp->cd->hw_swap)
1301 sh_eth_write(ndev, EDMR_EL, EDMR);
1302 else
1303 #endif
1304 sh_eth_write(ndev, 0, EDMR);
1305
1306 /* FIFO size set */
1307 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1308 sh_eth_write(ndev, 0, TFTR);
1309
1310 /* Frame recv control (enable multiple-packets per rx irq) */
1311 sh_eth_write(ndev, RMCR_RNC, RMCR);
1312
1313 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1314
1315 if (mdp->cd->bculr)
1316 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
1317
1318 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1319
1320 if (!mdp->cd->no_trimd)
1321 sh_eth_write(ndev, 0, TRIMD);
1322
1323 /* Recv frame limit set register */
1324 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1325 RFLR);
1326
1327 sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1328 if (start) {
1329 mdp->irq_enabled = true;
1330 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1331 }
1332
1333 /* PAUSE Prohibition */
1334 val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1335 ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1336
1337 sh_eth_write(ndev, val, ECMR);
1338
1339 if (mdp->cd->set_rate)
1340 mdp->cd->set_rate(ndev);
1341
1342 /* E-MAC Status Register clear */
1343 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1344
1345 /* E-MAC Interrupt Enable register */
1346 if (start)
1347 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1348
1349 /* Set MAC address */
1350 update_mac_address(ndev);
1351
1352 /* mask reset */
1353 if (mdp->cd->apr)
1354 sh_eth_write(ndev, APR_AP, APR);
1355 if (mdp->cd->mpr)
1356 sh_eth_write(ndev, MPR_MP, MPR);
1357 if (mdp->cd->tpauser)
1358 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1359
1360 if (start) {
1361 /* Setting the Rx mode will start the Rx process. */
1362 sh_eth_write(ndev, EDRRR_R, EDRRR);
1363
1364 netif_start_queue(ndev);
1365 }
1366
1367 return ret;
1368 }
1369
1370 static void sh_eth_dev_exit(struct net_device *ndev)
1371 {
1372 struct sh_eth_private *mdp = netdev_priv(ndev);
1373 int i;
1374
1375 /* Deactivate all TX descriptors, so DMA should stop at next
1376 * packet boundary if it's currently running
1377 */
1378 for (i = 0; i < mdp->num_tx_ring; i++)
1379 mdp->tx_ring[i].status &= ~cpu_to_edmac(mdp, TD_TACT);
1380
1381 /* Disable TX FIFO egress to MAC */
1382 sh_eth_rcv_snd_disable(ndev);
1383
1384 /* Stop RX DMA at next packet boundary */
1385 sh_eth_write(ndev, 0, EDRRR);
1386
1387 /* Aside from TX DMA, we can't tell when the hardware is
1388 * really stopped, so we need to reset to make sure.
1389 * Before doing that, wait for long enough to *probably*
1390 * finish transmitting the last packet and poll stats.
1391 */
1392 msleep(2); /* max frame time at 10 Mbps < 1250 us */
1393 sh_eth_get_stats(ndev);
1394 sh_eth_reset(ndev);
1395 }
1396
1397 /* free Tx skb function */
1398 static int sh_eth_txfree(struct net_device *ndev)
1399 {
1400 struct sh_eth_private *mdp = netdev_priv(ndev);
1401 struct sh_eth_txdesc *txdesc;
1402 int free_num = 0;
1403 int entry = 0;
1404
1405 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1406 entry = mdp->dirty_tx % mdp->num_tx_ring;
1407 txdesc = &mdp->tx_ring[entry];
1408 if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1409 break;
1410 /* Free the original skb. */
1411 if (mdp->tx_skbuff[entry]) {
1412 dma_unmap_single(&ndev->dev, txdesc->addr,
1413 txdesc->buffer_length, DMA_TO_DEVICE);
1414 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1415 mdp->tx_skbuff[entry] = NULL;
1416 free_num++;
1417 }
1418 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1419 if (entry >= mdp->num_tx_ring - 1)
1420 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1421
1422 ndev->stats.tx_packets++;
1423 ndev->stats.tx_bytes += txdesc->buffer_length;
1424 }
1425 return free_num;
1426 }
1427
1428 /* Packet receive function */
1429 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1430 {
1431 struct sh_eth_private *mdp = netdev_priv(ndev);
1432 struct sh_eth_rxdesc *rxdesc;
1433
1434 int entry = mdp->cur_rx % mdp->num_rx_ring;
1435 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1436 int limit;
1437 struct sk_buff *skb;
1438 u16 pkt_len = 0;
1439 u32 desc_status;
1440 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN - 1;
1441 dma_addr_t dma_addr;
1442
1443 boguscnt = min(boguscnt, *quota);
1444 limit = boguscnt;
1445 rxdesc = &mdp->rx_ring[entry];
1446 while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1447 desc_status = edmac_to_cpu(mdp, rxdesc->status);
1448 pkt_len = rxdesc->frame_length;
1449
1450 if (--boguscnt < 0)
1451 break;
1452
1453 if (!(desc_status & RDFEND))
1454 ndev->stats.rx_length_errors++;
1455
1456 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1457 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1458 * bit 0. However, in case of the R8A7740, R8A779x, and
1459 * R7S72100 the RFS bits are from bit 25 to bit 16. So, the
1460 * driver needs right shifting by 16.
1461 */
1462 if (mdp->cd->shift_rd0)
1463 desc_status >>= 16;
1464
1465 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1466 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1467 ndev->stats.rx_errors++;
1468 if (desc_status & RD_RFS1)
1469 ndev->stats.rx_crc_errors++;
1470 if (desc_status & RD_RFS2)
1471 ndev->stats.rx_frame_errors++;
1472 if (desc_status & RD_RFS3)
1473 ndev->stats.rx_length_errors++;
1474 if (desc_status & RD_RFS4)
1475 ndev->stats.rx_length_errors++;
1476 if (desc_status & RD_RFS6)
1477 ndev->stats.rx_missed_errors++;
1478 if (desc_status & RD_RFS10)
1479 ndev->stats.rx_over_errors++;
1480 } else {
1481 if (!mdp->cd->hw_swap)
1482 sh_eth_soft_swap(
1483 phys_to_virt(ALIGN(rxdesc->addr, 4)),
1484 pkt_len + 2);
1485 skb = mdp->rx_skbuff[entry];
1486 mdp->rx_skbuff[entry] = NULL;
1487 if (mdp->cd->rpadir)
1488 skb_reserve(skb, NET_IP_ALIGN);
1489 dma_unmap_single(&ndev->dev, rxdesc->addr,
1490 ALIGN(mdp->rx_buf_sz, 16),
1491 DMA_FROM_DEVICE);
1492 skb_put(skb, pkt_len);
1493 skb->protocol = eth_type_trans(skb, ndev);
1494 netif_receive_skb(skb);
1495 ndev->stats.rx_packets++;
1496 ndev->stats.rx_bytes += pkt_len;
1497 }
1498 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1499 rxdesc = &mdp->rx_ring[entry];
1500 }
1501
1502 /* Refill the Rx ring buffers. */
1503 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1504 entry = mdp->dirty_rx % mdp->num_rx_ring;
1505 rxdesc = &mdp->rx_ring[entry];
1506 /* The size of the buffer is 16 byte boundary. */
1507 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1508
1509 if (mdp->rx_skbuff[entry] == NULL) {
1510 skb = netdev_alloc_skb(ndev, skbuff_size);
1511 if (skb == NULL)
1512 break; /* Better luck next round. */
1513 sh_eth_set_receive_align(skb);
1514 dma_addr = dma_map_single(&ndev->dev, skb->data,
1515 rxdesc->buffer_length,
1516 DMA_FROM_DEVICE);
1517 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1518 kfree_skb(skb);
1519 break;
1520 }
1521 mdp->rx_skbuff[entry] = skb;
1522
1523 skb_checksum_none_assert(skb);
1524 rxdesc->addr = dma_addr;
1525 }
1526 if (entry >= mdp->num_rx_ring - 1)
1527 rxdesc->status |=
1528 cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1529 else
1530 rxdesc->status |=
1531 cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1532 }
1533
1534 /* Restart Rx engine if stopped. */
1535 /* If we don't need to check status, don't. -KDU */
1536 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1537 /* fix the values for the next receiving if RDE is set */
1538 if (intr_status & EESR_RDE) {
1539 u32 count = (sh_eth_read(ndev, RDFAR) -
1540 sh_eth_read(ndev, RDLAR)) >> 4;
1541
1542 mdp->cur_rx = count;
1543 mdp->dirty_rx = count;
1544 }
1545 sh_eth_write(ndev, EDRRR_R, EDRRR);
1546 }
1547
1548 *quota -= limit - boguscnt - 1;
1549
1550 return *quota <= 0;
1551 }
1552
1553 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1554 {
1555 /* disable tx and rx */
1556 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1557 ~(ECMR_RE | ECMR_TE), ECMR);
1558 }
1559
1560 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1561 {
1562 /* enable tx and rx */
1563 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1564 (ECMR_RE | ECMR_TE), ECMR);
1565 }
1566
1567 /* error control function */
1568 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1569 {
1570 struct sh_eth_private *mdp = netdev_priv(ndev);
1571 u32 felic_stat;
1572 u32 link_stat;
1573 u32 mask;
1574
1575 if (intr_status & EESR_ECI) {
1576 felic_stat = sh_eth_read(ndev, ECSR);
1577 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1578 if (felic_stat & ECSR_ICD)
1579 ndev->stats.tx_carrier_errors++;
1580 if (felic_stat & ECSR_LCHNG) {
1581 /* Link Changed */
1582 if (mdp->cd->no_psr || mdp->no_ether_link) {
1583 goto ignore_link;
1584 } else {
1585 link_stat = (sh_eth_read(ndev, PSR));
1586 if (mdp->ether_link_active_low)
1587 link_stat = ~link_stat;
1588 }
1589 if (!(link_stat & PHY_ST_LINK)) {
1590 sh_eth_rcv_snd_disable(ndev);
1591 } else {
1592 /* Link Up */
1593 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1594 ~DMAC_M_ECI, EESIPR);
1595 /* clear int */
1596 sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1597 ECSR);
1598 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1599 DMAC_M_ECI, EESIPR);
1600 /* enable tx and rx */
1601 sh_eth_rcv_snd_enable(ndev);
1602 }
1603 }
1604 }
1605
1606 ignore_link:
1607 if (intr_status & EESR_TWB) {
1608 /* Unused write back interrupt */
1609 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1610 ndev->stats.tx_aborted_errors++;
1611 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1612 }
1613 }
1614
1615 if (intr_status & EESR_RABT) {
1616 /* Receive Abort int */
1617 if (intr_status & EESR_RFRMER) {
1618 /* Receive Frame Overflow int */
1619 ndev->stats.rx_frame_errors++;
1620 }
1621 }
1622
1623 if (intr_status & EESR_TDE) {
1624 /* Transmit Descriptor Empty int */
1625 ndev->stats.tx_fifo_errors++;
1626 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1627 }
1628
1629 if (intr_status & EESR_TFE) {
1630 /* FIFO under flow */
1631 ndev->stats.tx_fifo_errors++;
1632 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1633 }
1634
1635 if (intr_status & EESR_RDE) {
1636 /* Receive Descriptor Empty int */
1637 ndev->stats.rx_over_errors++;
1638 }
1639
1640 if (intr_status & EESR_RFE) {
1641 /* Receive FIFO Overflow int */
1642 ndev->stats.rx_fifo_errors++;
1643 }
1644
1645 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1646 /* Address Error */
1647 ndev->stats.tx_fifo_errors++;
1648 netif_err(mdp, tx_err, ndev, "Address Error\n");
1649 }
1650
1651 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1652 if (mdp->cd->no_ade)
1653 mask &= ~EESR_ADE;
1654 if (intr_status & mask) {
1655 /* Tx error */
1656 u32 edtrr = sh_eth_read(ndev, EDTRR);
1657
1658 /* dmesg */
1659 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1660 intr_status, mdp->cur_tx, mdp->dirty_tx,
1661 (u32)ndev->state, edtrr);
1662 /* dirty buffer free */
1663 sh_eth_txfree(ndev);
1664
1665 /* SH7712 BUG */
1666 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1667 /* tx dma start */
1668 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1669 }
1670 /* wakeup */
1671 netif_wake_queue(ndev);
1672 }
1673 }
1674
1675 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1676 {
1677 struct net_device *ndev = netdev;
1678 struct sh_eth_private *mdp = netdev_priv(ndev);
1679 struct sh_eth_cpu_data *cd = mdp->cd;
1680 irqreturn_t ret = IRQ_NONE;
1681 u32 intr_status, intr_enable;
1682
1683 spin_lock(&mdp->lock);
1684
1685 /* Get interrupt status */
1686 intr_status = sh_eth_read(ndev, EESR);
1687 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1688 * enabled since it's the one that comes thru regardless of the mask,
1689 * and we need to fully handle it in sh_eth_error() in order to quench
1690 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1691 */
1692 intr_enable = sh_eth_read(ndev, EESIPR);
1693 intr_status &= intr_enable | DMAC_M_ECI;
1694 if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1695 ret = IRQ_HANDLED;
1696 else
1697 goto out;
1698
1699 if (!likely(mdp->irq_enabled)) {
1700 sh_eth_write(ndev, 0, EESIPR);
1701 goto out;
1702 }
1703
1704 if (intr_status & EESR_RX_CHECK) {
1705 if (napi_schedule_prep(&mdp->napi)) {
1706 /* Mask Rx interrupts */
1707 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1708 EESIPR);
1709 __napi_schedule(&mdp->napi);
1710 } else {
1711 netdev_warn(ndev,
1712 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1713 intr_status, intr_enable);
1714 }
1715 }
1716
1717 /* Tx Check */
1718 if (intr_status & cd->tx_check) {
1719 /* Clear Tx interrupts */
1720 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1721
1722 sh_eth_txfree(ndev);
1723 netif_wake_queue(ndev);
1724 }
1725
1726 if (intr_status & cd->eesr_err_check) {
1727 /* Clear error interrupts */
1728 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1729
1730 sh_eth_error(ndev, intr_status);
1731 }
1732
1733 out:
1734 spin_unlock(&mdp->lock);
1735
1736 return ret;
1737 }
1738
1739 static int sh_eth_poll(struct napi_struct *napi, int budget)
1740 {
1741 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1742 napi);
1743 struct net_device *ndev = napi->dev;
1744 int quota = budget;
1745 u32 intr_status;
1746
1747 for (;;) {
1748 intr_status = sh_eth_read(ndev, EESR);
1749 if (!(intr_status & EESR_RX_CHECK))
1750 break;
1751 /* Clear Rx interrupts */
1752 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1753
1754 if (sh_eth_rx(ndev, intr_status, &quota))
1755 goto out;
1756 }
1757
1758 napi_complete(napi);
1759
1760 /* Reenable Rx interrupts */
1761 if (mdp->irq_enabled)
1762 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1763 out:
1764 return budget - quota;
1765 }
1766
1767 /* PHY state control function */
1768 static void sh_eth_adjust_link(struct net_device *ndev)
1769 {
1770 struct sh_eth_private *mdp = netdev_priv(ndev);
1771 struct phy_device *phydev = mdp->phydev;
1772 int new_state = 0;
1773
1774 if (phydev->link) {
1775 if (phydev->duplex != mdp->duplex) {
1776 new_state = 1;
1777 mdp->duplex = phydev->duplex;
1778 if (mdp->cd->set_duplex)
1779 mdp->cd->set_duplex(ndev);
1780 }
1781
1782 if (phydev->speed != mdp->speed) {
1783 new_state = 1;
1784 mdp->speed = phydev->speed;
1785 if (mdp->cd->set_rate)
1786 mdp->cd->set_rate(ndev);
1787 }
1788 if (!mdp->link) {
1789 sh_eth_write(ndev,
1790 sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1791 ECMR);
1792 new_state = 1;
1793 mdp->link = phydev->link;
1794 if (mdp->cd->no_psr || mdp->no_ether_link)
1795 sh_eth_rcv_snd_enable(ndev);
1796 }
1797 } else if (mdp->link) {
1798 new_state = 1;
1799 mdp->link = 0;
1800 mdp->speed = 0;
1801 mdp->duplex = -1;
1802 if (mdp->cd->no_psr || mdp->no_ether_link)
1803 sh_eth_rcv_snd_disable(ndev);
1804 }
1805
1806 if (new_state && netif_msg_link(mdp))
1807 phy_print_status(phydev);
1808 }
1809
1810 /* PHY init function */
1811 static int sh_eth_phy_init(struct net_device *ndev)
1812 {
1813 struct device_node *np = ndev->dev.parent->of_node;
1814 struct sh_eth_private *mdp = netdev_priv(ndev);
1815 struct phy_device *phydev = NULL;
1816
1817 mdp->link = 0;
1818 mdp->speed = 0;
1819 mdp->duplex = -1;
1820
1821 /* Try connect to PHY */
1822 if (np) {
1823 struct device_node *pn;
1824
1825 pn = of_parse_phandle(np, "phy-handle", 0);
1826 phydev = of_phy_connect(ndev, pn,
1827 sh_eth_adjust_link, 0,
1828 mdp->phy_interface);
1829
1830 if (!phydev)
1831 phydev = ERR_PTR(-ENOENT);
1832 } else {
1833 char phy_id[MII_BUS_ID_SIZE + 3];
1834
1835 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1836 mdp->mii_bus->id, mdp->phy_id);
1837
1838 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1839 mdp->phy_interface);
1840 }
1841
1842 if (IS_ERR(phydev)) {
1843 netdev_err(ndev, "failed to connect PHY\n");
1844 return PTR_ERR(phydev);
1845 }
1846
1847 netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1848 phydev->addr, phydev->irq, phydev->drv->name);
1849
1850 mdp->phydev = phydev;
1851
1852 return 0;
1853 }
1854
1855 /* PHY control start function */
1856 static int sh_eth_phy_start(struct net_device *ndev)
1857 {
1858 struct sh_eth_private *mdp = netdev_priv(ndev);
1859 int ret;
1860
1861 ret = sh_eth_phy_init(ndev);
1862 if (ret)
1863 return ret;
1864
1865 phy_start(mdp->phydev);
1866
1867 return 0;
1868 }
1869
1870 static int sh_eth_get_settings(struct net_device *ndev,
1871 struct ethtool_cmd *ecmd)
1872 {
1873 struct sh_eth_private *mdp = netdev_priv(ndev);
1874 unsigned long flags;
1875 int ret;
1876
1877 if (!mdp->phydev)
1878 return -ENODEV;
1879
1880 spin_lock_irqsave(&mdp->lock, flags);
1881 ret = phy_ethtool_gset(mdp->phydev, ecmd);
1882 spin_unlock_irqrestore(&mdp->lock, flags);
1883
1884 return ret;
1885 }
1886
1887 static int sh_eth_set_settings(struct net_device *ndev,
1888 struct ethtool_cmd *ecmd)
1889 {
1890 struct sh_eth_private *mdp = netdev_priv(ndev);
1891 unsigned long flags;
1892 int ret;
1893
1894 if (!mdp->phydev)
1895 return -ENODEV;
1896
1897 spin_lock_irqsave(&mdp->lock, flags);
1898
1899 /* disable tx and rx */
1900 sh_eth_rcv_snd_disable(ndev);
1901
1902 ret = phy_ethtool_sset(mdp->phydev, ecmd);
1903 if (ret)
1904 goto error_exit;
1905
1906 if (ecmd->duplex == DUPLEX_FULL)
1907 mdp->duplex = 1;
1908 else
1909 mdp->duplex = 0;
1910
1911 if (mdp->cd->set_duplex)
1912 mdp->cd->set_duplex(ndev);
1913
1914 error_exit:
1915 mdelay(1);
1916
1917 /* enable tx and rx */
1918 sh_eth_rcv_snd_enable(ndev);
1919
1920 spin_unlock_irqrestore(&mdp->lock, flags);
1921
1922 return ret;
1923 }
1924
1925 static int sh_eth_nway_reset(struct net_device *ndev)
1926 {
1927 struct sh_eth_private *mdp = netdev_priv(ndev);
1928 unsigned long flags;
1929 int ret;
1930
1931 if (!mdp->phydev)
1932 return -ENODEV;
1933
1934 spin_lock_irqsave(&mdp->lock, flags);
1935 ret = phy_start_aneg(mdp->phydev);
1936 spin_unlock_irqrestore(&mdp->lock, flags);
1937
1938 return ret;
1939 }
1940
1941 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1942 {
1943 struct sh_eth_private *mdp = netdev_priv(ndev);
1944 return mdp->msg_enable;
1945 }
1946
1947 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1948 {
1949 struct sh_eth_private *mdp = netdev_priv(ndev);
1950 mdp->msg_enable = value;
1951 }
1952
1953 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1954 "rx_current", "tx_current",
1955 "rx_dirty", "tx_dirty",
1956 };
1957 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
1958
1959 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1960 {
1961 switch (sset) {
1962 case ETH_SS_STATS:
1963 return SH_ETH_STATS_LEN;
1964 default:
1965 return -EOPNOTSUPP;
1966 }
1967 }
1968
1969 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1970 struct ethtool_stats *stats, u64 *data)
1971 {
1972 struct sh_eth_private *mdp = netdev_priv(ndev);
1973 int i = 0;
1974
1975 /* device-specific stats */
1976 data[i++] = mdp->cur_rx;
1977 data[i++] = mdp->cur_tx;
1978 data[i++] = mdp->dirty_rx;
1979 data[i++] = mdp->dirty_tx;
1980 }
1981
1982 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1983 {
1984 switch (stringset) {
1985 case ETH_SS_STATS:
1986 memcpy(data, *sh_eth_gstrings_stats,
1987 sizeof(sh_eth_gstrings_stats));
1988 break;
1989 }
1990 }
1991
1992 static void sh_eth_get_ringparam(struct net_device *ndev,
1993 struct ethtool_ringparam *ring)
1994 {
1995 struct sh_eth_private *mdp = netdev_priv(ndev);
1996
1997 ring->rx_max_pending = RX_RING_MAX;
1998 ring->tx_max_pending = TX_RING_MAX;
1999 ring->rx_pending = mdp->num_rx_ring;
2000 ring->tx_pending = mdp->num_tx_ring;
2001 }
2002
2003 static int sh_eth_set_ringparam(struct net_device *ndev,
2004 struct ethtool_ringparam *ring)
2005 {
2006 struct sh_eth_private *mdp = netdev_priv(ndev);
2007 int ret;
2008
2009 if (ring->tx_pending > TX_RING_MAX ||
2010 ring->rx_pending > RX_RING_MAX ||
2011 ring->tx_pending < TX_RING_MIN ||
2012 ring->rx_pending < RX_RING_MIN)
2013 return -EINVAL;
2014 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2015 return -EINVAL;
2016
2017 if (netif_running(ndev)) {
2018 netif_device_detach(ndev);
2019 netif_tx_disable(ndev);
2020
2021 /* Serialise with the interrupt handler and NAPI, then
2022 * disable interrupts. We have to clear the
2023 * irq_enabled flag first to ensure that interrupts
2024 * won't be re-enabled.
2025 */
2026 mdp->irq_enabled = false;
2027 synchronize_irq(ndev->irq);
2028 napi_synchronize(&mdp->napi);
2029 sh_eth_write(ndev, 0x0000, EESIPR);
2030
2031 sh_eth_dev_exit(ndev);
2032
2033 /* Free all the skbuffs in the Rx queue. */
2034 sh_eth_ring_free(ndev);
2035 /* Free DMA buffer */
2036 sh_eth_free_dma_buffer(mdp);
2037 }
2038
2039 /* Set new parameters */
2040 mdp->num_rx_ring = ring->rx_pending;
2041 mdp->num_tx_ring = ring->tx_pending;
2042
2043 if (netif_running(ndev)) {
2044 ret = sh_eth_ring_init(ndev);
2045 if (ret < 0) {
2046 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2047 __func__);
2048 return ret;
2049 }
2050 ret = sh_eth_dev_init(ndev, false);
2051 if (ret < 0) {
2052 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2053 __func__);
2054 return ret;
2055 }
2056
2057 mdp->irq_enabled = true;
2058 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
2059 /* Setting the Rx mode will start the Rx process. */
2060 sh_eth_write(ndev, EDRRR_R, EDRRR);
2061 netif_device_attach(ndev);
2062 }
2063
2064 return 0;
2065 }
2066
2067 static const struct ethtool_ops sh_eth_ethtool_ops = {
2068 .get_settings = sh_eth_get_settings,
2069 .set_settings = sh_eth_set_settings,
2070 .nway_reset = sh_eth_nway_reset,
2071 .get_msglevel = sh_eth_get_msglevel,
2072 .set_msglevel = sh_eth_set_msglevel,
2073 .get_link = ethtool_op_get_link,
2074 .get_strings = sh_eth_get_strings,
2075 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2076 .get_sset_count = sh_eth_get_sset_count,
2077 .get_ringparam = sh_eth_get_ringparam,
2078 .set_ringparam = sh_eth_set_ringparam,
2079 };
2080
2081 /* network device open function */
2082 static int sh_eth_open(struct net_device *ndev)
2083 {
2084 int ret = 0;
2085 struct sh_eth_private *mdp = netdev_priv(ndev);
2086
2087 pm_runtime_get_sync(&mdp->pdev->dev);
2088
2089 napi_enable(&mdp->napi);
2090
2091 ret = request_irq(ndev->irq, sh_eth_interrupt,
2092 mdp->cd->irq_flags, ndev->name, ndev);
2093 if (ret) {
2094 netdev_err(ndev, "Can not assign IRQ number\n");
2095 goto out_napi_off;
2096 }
2097
2098 /* Descriptor set */
2099 ret = sh_eth_ring_init(ndev);
2100 if (ret)
2101 goto out_free_irq;
2102
2103 /* device init */
2104 ret = sh_eth_dev_init(ndev, true);
2105 if (ret)
2106 goto out_free_irq;
2107
2108 /* PHY control start*/
2109 ret = sh_eth_phy_start(ndev);
2110 if (ret)
2111 goto out_free_irq;
2112
2113 mdp->is_opened = 1;
2114
2115 return ret;
2116
2117 out_free_irq:
2118 free_irq(ndev->irq, ndev);
2119 out_napi_off:
2120 napi_disable(&mdp->napi);
2121 pm_runtime_put_sync(&mdp->pdev->dev);
2122 return ret;
2123 }
2124
2125 /* Timeout function */
2126 static void sh_eth_tx_timeout(struct net_device *ndev)
2127 {
2128 struct sh_eth_private *mdp = netdev_priv(ndev);
2129 struct sh_eth_rxdesc *rxdesc;
2130 int i;
2131
2132 netif_stop_queue(ndev);
2133
2134 netif_err(mdp, timer, ndev,
2135 "transmit timed out, status %8.8x, resetting...\n",
2136 sh_eth_read(ndev, EESR));
2137
2138 /* tx_errors count up */
2139 ndev->stats.tx_errors++;
2140
2141 /* Free all the skbuffs in the Rx queue. */
2142 for (i = 0; i < mdp->num_rx_ring; i++) {
2143 rxdesc = &mdp->rx_ring[i];
2144 rxdesc->status = 0;
2145 rxdesc->addr = 0xBADF00D0;
2146 dev_kfree_skb(mdp->rx_skbuff[i]);
2147 mdp->rx_skbuff[i] = NULL;
2148 }
2149 for (i = 0; i < mdp->num_tx_ring; i++) {
2150 dev_kfree_skb(mdp->tx_skbuff[i]);
2151 mdp->tx_skbuff[i] = NULL;
2152 }
2153
2154 /* device init */
2155 sh_eth_dev_init(ndev, true);
2156 }
2157
2158 /* Packet transmit function */
2159 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2160 {
2161 struct sh_eth_private *mdp = netdev_priv(ndev);
2162 struct sh_eth_txdesc *txdesc;
2163 u32 entry;
2164 unsigned long flags;
2165
2166 spin_lock_irqsave(&mdp->lock, flags);
2167 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2168 if (!sh_eth_txfree(ndev)) {
2169 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2170 netif_stop_queue(ndev);
2171 spin_unlock_irqrestore(&mdp->lock, flags);
2172 return NETDEV_TX_BUSY;
2173 }
2174 }
2175 spin_unlock_irqrestore(&mdp->lock, flags);
2176
2177 if (skb_padto(skb, ETH_ZLEN))
2178 return NETDEV_TX_OK;
2179
2180 entry = mdp->cur_tx % mdp->num_tx_ring;
2181 mdp->tx_skbuff[entry] = skb;
2182 txdesc = &mdp->tx_ring[entry];
2183 /* soft swap. */
2184 if (!mdp->cd->hw_swap)
2185 sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2186 skb->len + 2);
2187 txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2188 DMA_TO_DEVICE);
2189 if (dma_mapping_error(&ndev->dev, txdesc->addr)) {
2190 kfree_skb(skb);
2191 return NETDEV_TX_OK;
2192 }
2193 txdesc->buffer_length = skb->len;
2194
2195 if (entry >= mdp->num_tx_ring - 1)
2196 txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2197 else
2198 txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2199
2200 mdp->cur_tx++;
2201
2202 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2203 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2204
2205 return NETDEV_TX_OK;
2206 }
2207
2208 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2209 {
2210 struct sh_eth_private *mdp = netdev_priv(ndev);
2211
2212 if (sh_eth_is_rz_fast_ether(mdp))
2213 return &ndev->stats;
2214
2215 if (!mdp->is_opened)
2216 return &ndev->stats;
2217
2218 ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2219 sh_eth_write(ndev, 0, TROCR); /* (write clear) */
2220 ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2221 sh_eth_write(ndev, 0, CDCR); /* (write clear) */
2222 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2223 sh_eth_write(ndev, 0, LCCR); /* (write clear) */
2224
2225 if (sh_eth_is_gether(mdp)) {
2226 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2227 sh_eth_write(ndev, 0, CERCR); /* (write clear) */
2228 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2229 sh_eth_write(ndev, 0, CEECR); /* (write clear) */
2230 } else {
2231 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2232 sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
2233 }
2234
2235 return &ndev->stats;
2236 }
2237
2238 /* device close function */
2239 static int sh_eth_close(struct net_device *ndev)
2240 {
2241 struct sh_eth_private *mdp = netdev_priv(ndev);
2242
2243 netif_stop_queue(ndev);
2244
2245 /* Serialise with the interrupt handler and NAPI, then disable
2246 * interrupts. We have to clear the irq_enabled flag first to
2247 * ensure that interrupts won't be re-enabled.
2248 */
2249 mdp->irq_enabled = false;
2250 synchronize_irq(ndev->irq);
2251 napi_disable(&mdp->napi);
2252 sh_eth_write(ndev, 0x0000, EESIPR);
2253
2254 sh_eth_dev_exit(ndev);
2255
2256 /* PHY Disconnect */
2257 if (mdp->phydev) {
2258 phy_stop(mdp->phydev);
2259 phy_disconnect(mdp->phydev);
2260 mdp->phydev = NULL;
2261 }
2262
2263 free_irq(ndev->irq, ndev);
2264
2265 /* Free all the skbuffs in the Rx queue. */
2266 sh_eth_ring_free(ndev);
2267
2268 /* free DMA buffer */
2269 sh_eth_free_dma_buffer(mdp);
2270
2271 pm_runtime_put_sync(&mdp->pdev->dev);
2272
2273 mdp->is_opened = 0;
2274
2275 return 0;
2276 }
2277
2278 /* ioctl to device function */
2279 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2280 {
2281 struct sh_eth_private *mdp = netdev_priv(ndev);
2282 struct phy_device *phydev = mdp->phydev;
2283
2284 if (!netif_running(ndev))
2285 return -EINVAL;
2286
2287 if (!phydev)
2288 return -ENODEV;
2289
2290 return phy_mii_ioctl(phydev, rq, cmd);
2291 }
2292
2293 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2294 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2295 int entry)
2296 {
2297 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2298 }
2299
2300 static u32 sh_eth_tsu_get_post_mask(int entry)
2301 {
2302 return 0x0f << (28 - ((entry % 8) * 4));
2303 }
2304
2305 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2306 {
2307 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2308 }
2309
2310 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2311 int entry)
2312 {
2313 struct sh_eth_private *mdp = netdev_priv(ndev);
2314 u32 tmp;
2315 void *reg_offset;
2316
2317 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2318 tmp = ioread32(reg_offset);
2319 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2320 }
2321
2322 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2323 int entry)
2324 {
2325 struct sh_eth_private *mdp = netdev_priv(ndev);
2326 u32 post_mask, ref_mask, tmp;
2327 void *reg_offset;
2328
2329 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2330 post_mask = sh_eth_tsu_get_post_mask(entry);
2331 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2332
2333 tmp = ioread32(reg_offset);
2334 iowrite32(tmp & ~post_mask, reg_offset);
2335
2336 /* If other port enables, the function returns "true" */
2337 return tmp & ref_mask;
2338 }
2339
2340 static int sh_eth_tsu_busy(struct net_device *ndev)
2341 {
2342 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2343 struct sh_eth_private *mdp = netdev_priv(ndev);
2344
2345 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2346 udelay(10);
2347 timeout--;
2348 if (timeout <= 0) {
2349 netdev_err(ndev, "%s: timeout\n", __func__);
2350 return -ETIMEDOUT;
2351 }
2352 }
2353
2354 return 0;
2355 }
2356
2357 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2358 const u8 *addr)
2359 {
2360 u32 val;
2361
2362 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2363 iowrite32(val, reg);
2364 if (sh_eth_tsu_busy(ndev) < 0)
2365 return -EBUSY;
2366
2367 val = addr[4] << 8 | addr[5];
2368 iowrite32(val, reg + 4);
2369 if (sh_eth_tsu_busy(ndev) < 0)
2370 return -EBUSY;
2371
2372 return 0;
2373 }
2374
2375 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2376 {
2377 u32 val;
2378
2379 val = ioread32(reg);
2380 addr[0] = (val >> 24) & 0xff;
2381 addr[1] = (val >> 16) & 0xff;
2382 addr[2] = (val >> 8) & 0xff;
2383 addr[3] = val & 0xff;
2384 val = ioread32(reg + 4);
2385 addr[4] = (val >> 8) & 0xff;
2386 addr[5] = val & 0xff;
2387 }
2388
2389
2390 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2391 {
2392 struct sh_eth_private *mdp = netdev_priv(ndev);
2393 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2394 int i;
2395 u8 c_addr[ETH_ALEN];
2396
2397 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2398 sh_eth_tsu_read_entry(reg_offset, c_addr);
2399 if (ether_addr_equal(addr, c_addr))
2400 return i;
2401 }
2402
2403 return -ENOENT;
2404 }
2405
2406 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2407 {
2408 u8 blank[ETH_ALEN];
2409 int entry;
2410
2411 memset(blank, 0, sizeof(blank));
2412 entry = sh_eth_tsu_find_entry(ndev, blank);
2413 return (entry < 0) ? -ENOMEM : entry;
2414 }
2415
2416 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2417 int entry)
2418 {
2419 struct sh_eth_private *mdp = netdev_priv(ndev);
2420 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2421 int ret;
2422 u8 blank[ETH_ALEN];
2423
2424 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2425 ~(1 << (31 - entry)), TSU_TEN);
2426
2427 memset(blank, 0, sizeof(blank));
2428 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2429 if (ret < 0)
2430 return ret;
2431 return 0;
2432 }
2433
2434 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2435 {
2436 struct sh_eth_private *mdp = netdev_priv(ndev);
2437 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2438 int i, ret;
2439
2440 if (!mdp->cd->tsu)
2441 return 0;
2442
2443 i = sh_eth_tsu_find_entry(ndev, addr);
2444 if (i < 0) {
2445 /* No entry found, create one */
2446 i = sh_eth_tsu_find_empty(ndev);
2447 if (i < 0)
2448 return -ENOMEM;
2449 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2450 if (ret < 0)
2451 return ret;
2452
2453 /* Enable the entry */
2454 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2455 (1 << (31 - i)), TSU_TEN);
2456 }
2457
2458 /* Entry found or created, enable POST */
2459 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2460
2461 return 0;
2462 }
2463
2464 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2465 {
2466 struct sh_eth_private *mdp = netdev_priv(ndev);
2467 int i, ret;
2468
2469 if (!mdp->cd->tsu)
2470 return 0;
2471
2472 i = sh_eth_tsu_find_entry(ndev, addr);
2473 if (i) {
2474 /* Entry found */
2475 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2476 goto done;
2477
2478 /* Disable the entry if both ports was disabled */
2479 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2480 if (ret < 0)
2481 return ret;
2482 }
2483 done:
2484 return 0;
2485 }
2486
2487 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2488 {
2489 struct sh_eth_private *mdp = netdev_priv(ndev);
2490 int i, ret;
2491
2492 if (!mdp->cd->tsu)
2493 return 0;
2494
2495 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2496 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2497 continue;
2498
2499 /* Disable the entry if both ports was disabled */
2500 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2501 if (ret < 0)
2502 return ret;
2503 }
2504
2505 return 0;
2506 }
2507
2508 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2509 {
2510 struct sh_eth_private *mdp = netdev_priv(ndev);
2511 u8 addr[ETH_ALEN];
2512 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2513 int i;
2514
2515 if (!mdp->cd->tsu)
2516 return;
2517
2518 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2519 sh_eth_tsu_read_entry(reg_offset, addr);
2520 if (is_multicast_ether_addr(addr))
2521 sh_eth_tsu_del_entry(ndev, addr);
2522 }
2523 }
2524
2525 /* Update promiscuous flag and multicast filter */
2526 static void sh_eth_set_rx_mode(struct net_device *ndev)
2527 {
2528 struct sh_eth_private *mdp = netdev_priv(ndev);
2529 u32 ecmr_bits;
2530 int mcast_all = 0;
2531 unsigned long flags;
2532
2533 spin_lock_irqsave(&mdp->lock, flags);
2534 /* Initial condition is MCT = 1, PRM = 0.
2535 * Depending on ndev->flags, set PRM or clear MCT
2536 */
2537 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2538 if (mdp->cd->tsu)
2539 ecmr_bits |= ECMR_MCT;
2540
2541 if (!(ndev->flags & IFF_MULTICAST)) {
2542 sh_eth_tsu_purge_mcast(ndev);
2543 mcast_all = 1;
2544 }
2545 if (ndev->flags & IFF_ALLMULTI) {
2546 sh_eth_tsu_purge_mcast(ndev);
2547 ecmr_bits &= ~ECMR_MCT;
2548 mcast_all = 1;
2549 }
2550
2551 if (ndev->flags & IFF_PROMISC) {
2552 sh_eth_tsu_purge_all(ndev);
2553 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2554 } else if (mdp->cd->tsu) {
2555 struct netdev_hw_addr *ha;
2556 netdev_for_each_mc_addr(ha, ndev) {
2557 if (mcast_all && is_multicast_ether_addr(ha->addr))
2558 continue;
2559
2560 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2561 if (!mcast_all) {
2562 sh_eth_tsu_purge_mcast(ndev);
2563 ecmr_bits &= ~ECMR_MCT;
2564 mcast_all = 1;
2565 }
2566 }
2567 }
2568 }
2569
2570 /* update the ethernet mode */
2571 sh_eth_write(ndev, ecmr_bits, ECMR);
2572
2573 spin_unlock_irqrestore(&mdp->lock, flags);
2574 }
2575
2576 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2577 {
2578 if (!mdp->port)
2579 return TSU_VTAG0;
2580 else
2581 return TSU_VTAG1;
2582 }
2583
2584 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2585 __be16 proto, u16 vid)
2586 {
2587 struct sh_eth_private *mdp = netdev_priv(ndev);
2588 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2589
2590 if (unlikely(!mdp->cd->tsu))
2591 return -EPERM;
2592
2593 /* No filtering if vid = 0 */
2594 if (!vid)
2595 return 0;
2596
2597 mdp->vlan_num_ids++;
2598
2599 /* The controller has one VLAN tag HW filter. So, if the filter is
2600 * already enabled, the driver disables it and the filte
2601 */
2602 if (mdp->vlan_num_ids > 1) {
2603 /* disable VLAN filter */
2604 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2605 return 0;
2606 }
2607
2608 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2609 vtag_reg_index);
2610
2611 return 0;
2612 }
2613
2614 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2615 __be16 proto, u16 vid)
2616 {
2617 struct sh_eth_private *mdp = netdev_priv(ndev);
2618 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2619
2620 if (unlikely(!mdp->cd->tsu))
2621 return -EPERM;
2622
2623 /* No filtering if vid = 0 */
2624 if (!vid)
2625 return 0;
2626
2627 mdp->vlan_num_ids--;
2628 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2629
2630 return 0;
2631 }
2632
2633 /* SuperH's TSU register init function */
2634 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2635 {
2636 if (sh_eth_is_rz_fast_ether(mdp)) {
2637 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2638 return;
2639 }
2640
2641 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2642 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2643 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2644 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2645 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2646 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2647 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2648 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2649 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2650 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2651 if (sh_eth_is_gether(mdp)) {
2652 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
2653 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
2654 } else {
2655 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
2656 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
2657 }
2658 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
2659 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
2660 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2661 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
2662 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
2663 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
2664 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
2665 }
2666
2667 /* MDIO bus release function */
2668 static int sh_mdio_release(struct sh_eth_private *mdp)
2669 {
2670 /* unregister mdio bus */
2671 mdiobus_unregister(mdp->mii_bus);
2672
2673 /* free bitbang info */
2674 free_mdio_bitbang(mdp->mii_bus);
2675
2676 return 0;
2677 }
2678
2679 /* MDIO bus init function */
2680 static int sh_mdio_init(struct sh_eth_private *mdp,
2681 struct sh_eth_plat_data *pd)
2682 {
2683 int ret, i;
2684 struct bb_info *bitbang;
2685 struct platform_device *pdev = mdp->pdev;
2686 struct device *dev = &mdp->pdev->dev;
2687
2688 /* create bit control struct for PHY */
2689 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2690 if (!bitbang)
2691 return -ENOMEM;
2692
2693 /* bitbang init */
2694 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2695 bitbang->set_gate = pd->set_mdio_gate;
2696 bitbang->mdi_msk = PIR_MDI;
2697 bitbang->mdo_msk = PIR_MDO;
2698 bitbang->mmd_msk = PIR_MMD;
2699 bitbang->mdc_msk = PIR_MDC;
2700 bitbang->ctrl.ops = &bb_ops;
2701
2702 /* MII controller setting */
2703 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2704 if (!mdp->mii_bus)
2705 return -ENOMEM;
2706
2707 /* Hook up MII support for ethtool */
2708 mdp->mii_bus->name = "sh_mii";
2709 mdp->mii_bus->parent = dev;
2710 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2711 pdev->name, pdev->id);
2712
2713 /* PHY IRQ */
2714 mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2715 GFP_KERNEL);
2716 if (!mdp->mii_bus->irq) {
2717 ret = -ENOMEM;
2718 goto out_free_bus;
2719 }
2720
2721 /* register MDIO bus */
2722 if (dev->of_node) {
2723 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2724 } else {
2725 for (i = 0; i < PHY_MAX_ADDR; i++)
2726 mdp->mii_bus->irq[i] = PHY_POLL;
2727 if (pd->phy_irq > 0)
2728 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2729
2730 ret = mdiobus_register(mdp->mii_bus);
2731 }
2732
2733 if (ret)
2734 goto out_free_bus;
2735
2736 return 0;
2737
2738 out_free_bus:
2739 free_mdio_bitbang(mdp->mii_bus);
2740 return ret;
2741 }
2742
2743 static const u16 *sh_eth_get_register_offset(int register_type)
2744 {
2745 const u16 *reg_offset = NULL;
2746
2747 switch (register_type) {
2748 case SH_ETH_REG_GIGABIT:
2749 reg_offset = sh_eth_offset_gigabit;
2750 break;
2751 case SH_ETH_REG_FAST_RZ:
2752 reg_offset = sh_eth_offset_fast_rz;
2753 break;
2754 case SH_ETH_REG_FAST_RCAR:
2755 reg_offset = sh_eth_offset_fast_rcar;
2756 break;
2757 case SH_ETH_REG_FAST_SH4:
2758 reg_offset = sh_eth_offset_fast_sh4;
2759 break;
2760 case SH_ETH_REG_FAST_SH3_SH2:
2761 reg_offset = sh_eth_offset_fast_sh3_sh2;
2762 break;
2763 default:
2764 break;
2765 }
2766
2767 return reg_offset;
2768 }
2769
2770 static const struct net_device_ops sh_eth_netdev_ops = {
2771 .ndo_open = sh_eth_open,
2772 .ndo_stop = sh_eth_close,
2773 .ndo_start_xmit = sh_eth_start_xmit,
2774 .ndo_get_stats = sh_eth_get_stats,
2775 .ndo_set_rx_mode = sh_eth_set_rx_mode,
2776 .ndo_tx_timeout = sh_eth_tx_timeout,
2777 .ndo_do_ioctl = sh_eth_do_ioctl,
2778 .ndo_validate_addr = eth_validate_addr,
2779 .ndo_set_mac_address = eth_mac_addr,
2780 .ndo_change_mtu = eth_change_mtu,
2781 };
2782
2783 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2784 .ndo_open = sh_eth_open,
2785 .ndo_stop = sh_eth_close,
2786 .ndo_start_xmit = sh_eth_start_xmit,
2787 .ndo_get_stats = sh_eth_get_stats,
2788 .ndo_set_rx_mode = sh_eth_set_rx_mode,
2789 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
2790 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
2791 .ndo_tx_timeout = sh_eth_tx_timeout,
2792 .ndo_do_ioctl = sh_eth_do_ioctl,
2793 .ndo_validate_addr = eth_validate_addr,
2794 .ndo_set_mac_address = eth_mac_addr,
2795 .ndo_change_mtu = eth_change_mtu,
2796 };
2797
2798 #ifdef CONFIG_OF
2799 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2800 {
2801 struct device_node *np = dev->of_node;
2802 struct sh_eth_plat_data *pdata;
2803 const char *mac_addr;
2804
2805 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2806 if (!pdata)
2807 return NULL;
2808
2809 pdata->phy_interface = of_get_phy_mode(np);
2810
2811 mac_addr = of_get_mac_address(np);
2812 if (mac_addr)
2813 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2814
2815 pdata->no_ether_link =
2816 of_property_read_bool(np, "renesas,no-ether-link");
2817 pdata->ether_link_active_low =
2818 of_property_read_bool(np, "renesas,ether-link-active-low");
2819
2820 return pdata;
2821 }
2822
2823 static const struct of_device_id sh_eth_match_table[] = {
2824 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2825 { .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2826 { .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2827 { .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2828 { .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2829 { .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
2830 { .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2831 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2832 { }
2833 };
2834 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2835 #else
2836 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2837 {
2838 return NULL;
2839 }
2840 #endif
2841
2842 static int sh_eth_drv_probe(struct platform_device *pdev)
2843 {
2844 int ret, devno = 0;
2845 struct resource *res;
2846 struct net_device *ndev = NULL;
2847 struct sh_eth_private *mdp = NULL;
2848 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2849 const struct platform_device_id *id = platform_get_device_id(pdev);
2850
2851 /* get base addr */
2852 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2853
2854 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2855 if (!ndev)
2856 return -ENOMEM;
2857
2858 pm_runtime_enable(&pdev->dev);
2859 pm_runtime_get_sync(&pdev->dev);
2860
2861 devno = pdev->id;
2862 if (devno < 0)
2863 devno = 0;
2864
2865 ndev->dma = -1;
2866 ret = platform_get_irq(pdev, 0);
2867 if (ret < 0) {
2868 ret = -ENODEV;
2869 goto out_release;
2870 }
2871 ndev->irq = ret;
2872
2873 SET_NETDEV_DEV(ndev, &pdev->dev);
2874
2875 mdp = netdev_priv(ndev);
2876 mdp->num_tx_ring = TX_RING_SIZE;
2877 mdp->num_rx_ring = RX_RING_SIZE;
2878 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2879 if (IS_ERR(mdp->addr)) {
2880 ret = PTR_ERR(mdp->addr);
2881 goto out_release;
2882 }
2883
2884 ndev->base_addr = res->start;
2885
2886 spin_lock_init(&mdp->lock);
2887 mdp->pdev = pdev;
2888
2889 if (pdev->dev.of_node)
2890 pd = sh_eth_parse_dt(&pdev->dev);
2891 if (!pd) {
2892 dev_err(&pdev->dev, "no platform data\n");
2893 ret = -EINVAL;
2894 goto out_release;
2895 }
2896
2897 /* get PHY ID */
2898 mdp->phy_id = pd->phy;
2899 mdp->phy_interface = pd->phy_interface;
2900 /* EDMAC endian */
2901 mdp->edmac_endian = pd->edmac_endian;
2902 mdp->no_ether_link = pd->no_ether_link;
2903 mdp->ether_link_active_low = pd->ether_link_active_low;
2904
2905 /* set cpu data */
2906 if (id) {
2907 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2908 } else {
2909 const struct of_device_id *match;
2910
2911 match = of_match_device(of_match_ptr(sh_eth_match_table),
2912 &pdev->dev);
2913 mdp->cd = (struct sh_eth_cpu_data *)match->data;
2914 }
2915 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2916 if (!mdp->reg_offset) {
2917 dev_err(&pdev->dev, "Unknown register type (%d)\n",
2918 mdp->cd->register_type);
2919 ret = -EINVAL;
2920 goto out_release;
2921 }
2922 sh_eth_set_default_cpu_data(mdp->cd);
2923
2924 /* set function */
2925 if (mdp->cd->tsu)
2926 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2927 else
2928 ndev->netdev_ops = &sh_eth_netdev_ops;
2929 ndev->ethtool_ops = &sh_eth_ethtool_ops;
2930 ndev->watchdog_timeo = TX_TIMEOUT;
2931
2932 /* debug message level */
2933 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2934
2935 /* read and set MAC address */
2936 read_mac_address(ndev, pd->mac_addr);
2937 if (!is_valid_ether_addr(ndev->dev_addr)) {
2938 dev_warn(&pdev->dev,
2939 "no valid MAC address supplied, using a random one.\n");
2940 eth_hw_addr_random(ndev);
2941 }
2942
2943 /* ioremap the TSU registers */
2944 if (mdp->cd->tsu) {
2945 struct resource *rtsu;
2946 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2947 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2948 if (IS_ERR(mdp->tsu_addr)) {
2949 ret = PTR_ERR(mdp->tsu_addr);
2950 goto out_release;
2951 }
2952 mdp->port = devno % 2;
2953 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2954 }
2955
2956 /* initialize first or needed device */
2957 if (!devno || pd->needs_init) {
2958 if (mdp->cd->chip_reset)
2959 mdp->cd->chip_reset(ndev);
2960
2961 if (mdp->cd->tsu) {
2962 /* TSU init (Init only)*/
2963 sh_eth_tsu_init(mdp);
2964 }
2965 }
2966
2967 if (mdp->cd->rmiimode)
2968 sh_eth_write(ndev, 0x1, RMIIMODE);
2969
2970 /* MDIO bus init */
2971 ret = sh_mdio_init(mdp, pd);
2972 if (ret) {
2973 dev_err(&ndev->dev, "failed to initialise MDIO\n");
2974 goto out_release;
2975 }
2976
2977 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2978
2979 /* network device register */
2980 ret = register_netdev(ndev);
2981 if (ret)
2982 goto out_napi_del;
2983
2984 /* print device information */
2985 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
2986 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2987
2988 pm_runtime_put(&pdev->dev);
2989 platform_set_drvdata(pdev, ndev);
2990
2991 return ret;
2992
2993 out_napi_del:
2994 netif_napi_del(&mdp->napi);
2995 sh_mdio_release(mdp);
2996
2997 out_release:
2998 /* net_dev free */
2999 if (ndev)
3000 free_netdev(ndev);
3001
3002 pm_runtime_put(&pdev->dev);
3003 pm_runtime_disable(&pdev->dev);
3004 return ret;
3005 }
3006
3007 static int sh_eth_drv_remove(struct platform_device *pdev)
3008 {
3009 struct net_device *ndev = platform_get_drvdata(pdev);
3010 struct sh_eth_private *mdp = netdev_priv(ndev);
3011
3012 unregister_netdev(ndev);
3013 netif_napi_del(&mdp->napi);
3014 sh_mdio_release(mdp);
3015 pm_runtime_disable(&pdev->dev);
3016 free_netdev(ndev);
3017
3018 return 0;
3019 }
3020
3021 #ifdef CONFIG_PM
3022 #ifdef CONFIG_PM_SLEEP
3023 static int sh_eth_suspend(struct device *dev)
3024 {
3025 struct net_device *ndev = dev_get_drvdata(dev);
3026 int ret = 0;
3027
3028 if (netif_running(ndev)) {
3029 netif_device_detach(ndev);
3030 ret = sh_eth_close(ndev);
3031 }
3032
3033 return ret;
3034 }
3035
3036 static int sh_eth_resume(struct device *dev)
3037 {
3038 struct net_device *ndev = dev_get_drvdata(dev);
3039 int ret = 0;
3040
3041 if (netif_running(ndev)) {
3042 ret = sh_eth_open(ndev);
3043 if (ret < 0)
3044 return ret;
3045 netif_device_attach(ndev);
3046 }
3047
3048 return ret;
3049 }
3050 #endif
3051
3052 static int sh_eth_runtime_nop(struct device *dev)
3053 {
3054 /* Runtime PM callback shared between ->runtime_suspend()
3055 * and ->runtime_resume(). Simply returns success.
3056 *
3057 * This driver re-initializes all registers after
3058 * pm_runtime_get_sync() anyway so there is no need
3059 * to save and restore registers here.
3060 */
3061 return 0;
3062 }
3063
3064 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3065 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3066 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3067 };
3068 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3069 #else
3070 #define SH_ETH_PM_OPS NULL
3071 #endif
3072
3073 static struct platform_device_id sh_eth_id_table[] = {
3074 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3075 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3076 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3077 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3078 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3079 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3080 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3081 { "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
3082 { "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
3083 { "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
3084 { "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
3085 { "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
3086 { "r8a7793-ether", (kernel_ulong_t)&r8a779x_data },
3087 { "r8a7794-ether", (kernel_ulong_t)&r8a779x_data },
3088 { }
3089 };
3090 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3091
3092 static struct platform_driver sh_eth_driver = {
3093 .probe = sh_eth_drv_probe,
3094 .remove = sh_eth_drv_remove,
3095 .id_table = sh_eth_id_table,
3096 .driver = {
3097 .name = CARDNAME,
3098 .pm = SH_ETH_PM_OPS,
3099 .of_match_table = of_match_ptr(sh_eth_match_table),
3100 },
3101 };
3102
3103 module_platform_driver(sh_eth_driver);
3104
3105 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3106 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3107 MODULE_LICENSE("GPL v2");
This page took 0.166888 seconds and 5 git commands to generate.