60e9c2cd051e98bd9a1466f32e7344c52f241572
[deliverable/linux.git] / drivers / net / ethernet / renesas / sh_eth.c
1 /* SuperH Ethernet device driver
2 *
3 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
4 * Copyright (C) 2008-2014 Renesas Solutions Corp.
5 * Copyright (C) 2013-2014 Cogent Embedded, Inc.
6 * Copyright (C) 2014 Codethink Limited
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * The full GNU General Public License is included in this distribution in
18 * the file called "COPYING".
19 */
20
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/etherdevice.h>
27 #include <linux/delay.h>
28 #include <linux/platform_device.h>
29 #include <linux/mdio-bitbang.h>
30 #include <linux/netdevice.h>
31 #include <linux/of.h>
32 #include <linux/of_device.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_net.h>
35 #include <linux/phy.h>
36 #include <linux/cache.h>
37 #include <linux/io.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/clk.h>
43 #include <linux/sh_eth.h>
44 #include <linux/of_mdio.h>
45
46 #include "sh_eth.h"
47
48 #define SH_ETH_DEF_MSG_ENABLE \
49 (NETIF_MSG_LINK | \
50 NETIF_MSG_TIMER | \
51 NETIF_MSG_RX_ERR| \
52 NETIF_MSG_TX_ERR)
53
54 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
55 [EDSR] = 0x0000,
56 [EDMR] = 0x0400,
57 [EDTRR] = 0x0408,
58 [EDRRR] = 0x0410,
59 [EESR] = 0x0428,
60 [EESIPR] = 0x0430,
61 [TDLAR] = 0x0010,
62 [TDFAR] = 0x0014,
63 [TDFXR] = 0x0018,
64 [TDFFR] = 0x001c,
65 [RDLAR] = 0x0030,
66 [RDFAR] = 0x0034,
67 [RDFXR] = 0x0038,
68 [RDFFR] = 0x003c,
69 [TRSCER] = 0x0438,
70 [RMFCR] = 0x0440,
71 [TFTR] = 0x0448,
72 [FDR] = 0x0450,
73 [RMCR] = 0x0458,
74 [RPADIR] = 0x0460,
75 [FCFTR] = 0x0468,
76 [CSMR] = 0x04E4,
77
78 [ECMR] = 0x0500,
79 [ECSR] = 0x0510,
80 [ECSIPR] = 0x0518,
81 [PIR] = 0x0520,
82 [PSR] = 0x0528,
83 [PIPR] = 0x052c,
84 [RFLR] = 0x0508,
85 [APR] = 0x0554,
86 [MPR] = 0x0558,
87 [PFTCR] = 0x055c,
88 [PFRCR] = 0x0560,
89 [TPAUSER] = 0x0564,
90 [GECMR] = 0x05b0,
91 [BCULR] = 0x05b4,
92 [MAHR] = 0x05c0,
93 [MALR] = 0x05c8,
94 [TROCR] = 0x0700,
95 [CDCR] = 0x0708,
96 [LCCR] = 0x0710,
97 [CEFCR] = 0x0740,
98 [FRECR] = 0x0748,
99 [TSFRCR] = 0x0750,
100 [TLFRCR] = 0x0758,
101 [RFCR] = 0x0760,
102 [CERCR] = 0x0768,
103 [CEECR] = 0x0770,
104 [MAFCR] = 0x0778,
105 [RMII_MII] = 0x0790,
106
107 [ARSTR] = 0x0000,
108 [TSU_CTRST] = 0x0004,
109 [TSU_FWEN0] = 0x0010,
110 [TSU_FWEN1] = 0x0014,
111 [TSU_FCM] = 0x0018,
112 [TSU_BSYSL0] = 0x0020,
113 [TSU_BSYSL1] = 0x0024,
114 [TSU_PRISL0] = 0x0028,
115 [TSU_PRISL1] = 0x002c,
116 [TSU_FWSL0] = 0x0030,
117 [TSU_FWSL1] = 0x0034,
118 [TSU_FWSLC] = 0x0038,
119 [TSU_QTAG0] = 0x0040,
120 [TSU_QTAG1] = 0x0044,
121 [TSU_FWSR] = 0x0050,
122 [TSU_FWINMK] = 0x0054,
123 [TSU_ADQT0] = 0x0048,
124 [TSU_ADQT1] = 0x004c,
125 [TSU_VTAG0] = 0x0058,
126 [TSU_VTAG1] = 0x005c,
127 [TSU_ADSBSY] = 0x0060,
128 [TSU_TEN] = 0x0064,
129 [TSU_POST1] = 0x0070,
130 [TSU_POST2] = 0x0074,
131 [TSU_POST3] = 0x0078,
132 [TSU_POST4] = 0x007c,
133 [TSU_ADRH0] = 0x0100,
134 [TSU_ADRL0] = 0x0104,
135 [TSU_ADRH31] = 0x01f8,
136 [TSU_ADRL31] = 0x01fc,
137
138 [TXNLCR0] = 0x0080,
139 [TXALCR0] = 0x0084,
140 [RXNLCR0] = 0x0088,
141 [RXALCR0] = 0x008c,
142 [FWNLCR0] = 0x0090,
143 [FWALCR0] = 0x0094,
144 [TXNLCR1] = 0x00a0,
145 [TXALCR1] = 0x00a0,
146 [RXNLCR1] = 0x00a8,
147 [RXALCR1] = 0x00ac,
148 [FWNLCR1] = 0x00b0,
149 [FWALCR1] = 0x00b4,
150 };
151
152 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
153 [EDSR] = 0x0000,
154 [EDMR] = 0x0400,
155 [EDTRR] = 0x0408,
156 [EDRRR] = 0x0410,
157 [EESR] = 0x0428,
158 [EESIPR] = 0x0430,
159 [TDLAR] = 0x0010,
160 [TDFAR] = 0x0014,
161 [TDFXR] = 0x0018,
162 [TDFFR] = 0x001c,
163 [RDLAR] = 0x0030,
164 [RDFAR] = 0x0034,
165 [RDFXR] = 0x0038,
166 [RDFFR] = 0x003c,
167 [TRSCER] = 0x0438,
168 [RMFCR] = 0x0440,
169 [TFTR] = 0x0448,
170 [FDR] = 0x0450,
171 [RMCR] = 0x0458,
172 [RPADIR] = 0x0460,
173 [FCFTR] = 0x0468,
174 [CSMR] = 0x04E4,
175
176 [ECMR] = 0x0500,
177 [RFLR] = 0x0508,
178 [ECSR] = 0x0510,
179 [ECSIPR] = 0x0518,
180 [PIR] = 0x0520,
181 [APR] = 0x0554,
182 [MPR] = 0x0558,
183 [PFTCR] = 0x055c,
184 [PFRCR] = 0x0560,
185 [TPAUSER] = 0x0564,
186 [MAHR] = 0x05c0,
187 [MALR] = 0x05c8,
188 [CEFCR] = 0x0740,
189 [FRECR] = 0x0748,
190 [TSFRCR] = 0x0750,
191 [TLFRCR] = 0x0758,
192 [RFCR] = 0x0760,
193 [MAFCR] = 0x0778,
194
195 [ARSTR] = 0x0000,
196 [TSU_CTRST] = 0x0004,
197 [TSU_VTAG0] = 0x0058,
198 [TSU_ADSBSY] = 0x0060,
199 [TSU_TEN] = 0x0064,
200 [TSU_ADRH0] = 0x0100,
201 [TSU_ADRL0] = 0x0104,
202 [TSU_ADRH31] = 0x01f8,
203 [TSU_ADRL31] = 0x01fc,
204
205 [TXNLCR0] = 0x0080,
206 [TXALCR0] = 0x0084,
207 [RXNLCR0] = 0x0088,
208 [RXALCR0] = 0x008C,
209 };
210
211 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
212 [ECMR] = 0x0300,
213 [RFLR] = 0x0308,
214 [ECSR] = 0x0310,
215 [ECSIPR] = 0x0318,
216 [PIR] = 0x0320,
217 [PSR] = 0x0328,
218 [RDMLR] = 0x0340,
219 [IPGR] = 0x0350,
220 [APR] = 0x0354,
221 [MPR] = 0x0358,
222 [RFCF] = 0x0360,
223 [TPAUSER] = 0x0364,
224 [TPAUSECR] = 0x0368,
225 [MAHR] = 0x03c0,
226 [MALR] = 0x03c8,
227 [TROCR] = 0x03d0,
228 [CDCR] = 0x03d4,
229 [LCCR] = 0x03d8,
230 [CNDCR] = 0x03dc,
231 [CEFCR] = 0x03e4,
232 [FRECR] = 0x03e8,
233 [TSFRCR] = 0x03ec,
234 [TLFRCR] = 0x03f0,
235 [RFCR] = 0x03f4,
236 [MAFCR] = 0x03f8,
237
238 [EDMR] = 0x0200,
239 [EDTRR] = 0x0208,
240 [EDRRR] = 0x0210,
241 [TDLAR] = 0x0218,
242 [RDLAR] = 0x0220,
243 [EESR] = 0x0228,
244 [EESIPR] = 0x0230,
245 [TRSCER] = 0x0238,
246 [RMFCR] = 0x0240,
247 [TFTR] = 0x0248,
248 [FDR] = 0x0250,
249 [RMCR] = 0x0258,
250 [TFUCR] = 0x0264,
251 [RFOCR] = 0x0268,
252 [RMIIMODE] = 0x026c,
253 [FCFTR] = 0x0270,
254 [TRIMD] = 0x027c,
255 };
256
257 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
258 [ECMR] = 0x0100,
259 [RFLR] = 0x0108,
260 [ECSR] = 0x0110,
261 [ECSIPR] = 0x0118,
262 [PIR] = 0x0120,
263 [PSR] = 0x0128,
264 [RDMLR] = 0x0140,
265 [IPGR] = 0x0150,
266 [APR] = 0x0154,
267 [MPR] = 0x0158,
268 [TPAUSER] = 0x0164,
269 [RFCF] = 0x0160,
270 [TPAUSECR] = 0x0168,
271 [BCFRR] = 0x016c,
272 [MAHR] = 0x01c0,
273 [MALR] = 0x01c8,
274 [TROCR] = 0x01d0,
275 [CDCR] = 0x01d4,
276 [LCCR] = 0x01d8,
277 [CNDCR] = 0x01dc,
278 [CEFCR] = 0x01e4,
279 [FRECR] = 0x01e8,
280 [TSFRCR] = 0x01ec,
281 [TLFRCR] = 0x01f0,
282 [RFCR] = 0x01f4,
283 [MAFCR] = 0x01f8,
284 [RTRATE] = 0x01fc,
285
286 [EDMR] = 0x0000,
287 [EDTRR] = 0x0008,
288 [EDRRR] = 0x0010,
289 [TDLAR] = 0x0018,
290 [RDLAR] = 0x0020,
291 [EESR] = 0x0028,
292 [EESIPR] = 0x0030,
293 [TRSCER] = 0x0038,
294 [RMFCR] = 0x0040,
295 [TFTR] = 0x0048,
296 [FDR] = 0x0050,
297 [RMCR] = 0x0058,
298 [TFUCR] = 0x0064,
299 [RFOCR] = 0x0068,
300 [FCFTR] = 0x0070,
301 [RPADIR] = 0x0078,
302 [TRIMD] = 0x007c,
303 [RBWAR] = 0x00c8,
304 [RDFAR] = 0x00cc,
305 [TBRAR] = 0x00d4,
306 [TDFAR] = 0x00d8,
307 };
308
309 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
310 [EDMR] = 0x0000,
311 [EDTRR] = 0x0004,
312 [EDRRR] = 0x0008,
313 [TDLAR] = 0x000c,
314 [RDLAR] = 0x0010,
315 [EESR] = 0x0014,
316 [EESIPR] = 0x0018,
317 [TRSCER] = 0x001c,
318 [RMFCR] = 0x0020,
319 [TFTR] = 0x0024,
320 [FDR] = 0x0028,
321 [RMCR] = 0x002c,
322 [EDOCR] = 0x0030,
323 [FCFTR] = 0x0034,
324 [RPADIR] = 0x0038,
325 [TRIMD] = 0x003c,
326 [RBWAR] = 0x0040,
327 [RDFAR] = 0x0044,
328 [TBRAR] = 0x004c,
329 [TDFAR] = 0x0050,
330
331 [ECMR] = 0x0160,
332 [ECSR] = 0x0164,
333 [ECSIPR] = 0x0168,
334 [PIR] = 0x016c,
335 [MAHR] = 0x0170,
336 [MALR] = 0x0174,
337 [RFLR] = 0x0178,
338 [PSR] = 0x017c,
339 [TROCR] = 0x0180,
340 [CDCR] = 0x0184,
341 [LCCR] = 0x0188,
342 [CNDCR] = 0x018c,
343 [CEFCR] = 0x0194,
344 [FRECR] = 0x0198,
345 [TSFRCR] = 0x019c,
346 [TLFRCR] = 0x01a0,
347 [RFCR] = 0x01a4,
348 [MAFCR] = 0x01a8,
349 [IPGR] = 0x01b4,
350 [APR] = 0x01b8,
351 [MPR] = 0x01bc,
352 [TPAUSER] = 0x01c4,
353 [BCFR] = 0x01cc,
354
355 [ARSTR] = 0x0000,
356 [TSU_CTRST] = 0x0004,
357 [TSU_FWEN0] = 0x0010,
358 [TSU_FWEN1] = 0x0014,
359 [TSU_FCM] = 0x0018,
360 [TSU_BSYSL0] = 0x0020,
361 [TSU_BSYSL1] = 0x0024,
362 [TSU_PRISL0] = 0x0028,
363 [TSU_PRISL1] = 0x002c,
364 [TSU_FWSL0] = 0x0030,
365 [TSU_FWSL1] = 0x0034,
366 [TSU_FWSLC] = 0x0038,
367 [TSU_QTAGM0] = 0x0040,
368 [TSU_QTAGM1] = 0x0044,
369 [TSU_ADQT0] = 0x0048,
370 [TSU_ADQT1] = 0x004c,
371 [TSU_FWSR] = 0x0050,
372 [TSU_FWINMK] = 0x0054,
373 [TSU_ADSBSY] = 0x0060,
374 [TSU_TEN] = 0x0064,
375 [TSU_POST1] = 0x0070,
376 [TSU_POST2] = 0x0074,
377 [TSU_POST3] = 0x0078,
378 [TSU_POST4] = 0x007c,
379
380 [TXNLCR0] = 0x0080,
381 [TXALCR0] = 0x0084,
382 [RXNLCR0] = 0x0088,
383 [RXALCR0] = 0x008c,
384 [FWNLCR0] = 0x0090,
385 [FWALCR0] = 0x0094,
386 [TXNLCR1] = 0x00a0,
387 [TXALCR1] = 0x00a0,
388 [RXNLCR1] = 0x00a8,
389 [RXALCR1] = 0x00ac,
390 [FWNLCR1] = 0x00b0,
391 [FWALCR1] = 0x00b4,
392
393 [TSU_ADRH0] = 0x0100,
394 [TSU_ADRL0] = 0x0104,
395 [TSU_ADRL31] = 0x01fc,
396 };
397
398 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
399 {
400 return mdp->reg_offset == sh_eth_offset_gigabit;
401 }
402
403 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
404 {
405 return mdp->reg_offset == sh_eth_offset_fast_rz;
406 }
407
408 static void sh_eth_select_mii(struct net_device *ndev)
409 {
410 u32 value = 0x0;
411 struct sh_eth_private *mdp = netdev_priv(ndev);
412
413 switch (mdp->phy_interface) {
414 case PHY_INTERFACE_MODE_GMII:
415 value = 0x2;
416 break;
417 case PHY_INTERFACE_MODE_MII:
418 value = 0x1;
419 break;
420 case PHY_INTERFACE_MODE_RMII:
421 value = 0x0;
422 break;
423 default:
424 netdev_warn(ndev,
425 "PHY interface mode was not setup. Set to MII.\n");
426 value = 0x1;
427 break;
428 }
429
430 sh_eth_write(ndev, value, RMII_MII);
431 }
432
433 static void sh_eth_set_duplex(struct net_device *ndev)
434 {
435 struct sh_eth_private *mdp = netdev_priv(ndev);
436
437 if (mdp->duplex) /* Full */
438 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
439 else /* Half */
440 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
441 }
442
443 /* There is CPU dependent code */
444 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
445 {
446 struct sh_eth_private *mdp = netdev_priv(ndev);
447
448 switch (mdp->speed) {
449 case 10: /* 10BASE */
450 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
451 break;
452 case 100:/* 100BASE */
453 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
454 break;
455 default:
456 break;
457 }
458 }
459
460 /* R8A7778/9 */
461 static struct sh_eth_cpu_data r8a777x_data = {
462 .set_duplex = sh_eth_set_duplex,
463 .set_rate = sh_eth_set_rate_r8a777x,
464
465 .register_type = SH_ETH_REG_FAST_RCAR,
466
467 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
468 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
469 .eesipr_value = 0x01ff009f,
470
471 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
472 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
473 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
474 EESR_ECI,
475
476 .apr = 1,
477 .mpr = 1,
478 .tpauser = 1,
479 .hw_swap = 1,
480 };
481
482 /* R8A7790/1 */
483 static struct sh_eth_cpu_data r8a779x_data = {
484 .set_duplex = sh_eth_set_duplex,
485 .set_rate = sh_eth_set_rate_r8a777x,
486
487 .register_type = SH_ETH_REG_FAST_RCAR,
488
489 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
490 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
491 .eesipr_value = 0x01ff009f,
492
493 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
494 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
495 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
496 EESR_ECI,
497
498 .apr = 1,
499 .mpr = 1,
500 .tpauser = 1,
501 .hw_swap = 1,
502 .rmiimode = 1,
503 .shift_rd0 = 1,
504 };
505
506 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
507 {
508 struct sh_eth_private *mdp = netdev_priv(ndev);
509
510 switch (mdp->speed) {
511 case 10: /* 10BASE */
512 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
513 break;
514 case 100:/* 100BASE */
515 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
516 break;
517 default:
518 break;
519 }
520 }
521
522 /* SH7724 */
523 static struct sh_eth_cpu_data sh7724_data = {
524 .set_duplex = sh_eth_set_duplex,
525 .set_rate = sh_eth_set_rate_sh7724,
526
527 .register_type = SH_ETH_REG_FAST_SH4,
528
529 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
530 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
531 .eesipr_value = 0x01ff009f,
532
533 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
534 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
535 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
536 EESR_ECI,
537
538 .apr = 1,
539 .mpr = 1,
540 .tpauser = 1,
541 .hw_swap = 1,
542 .rpadir = 1,
543 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
544 };
545
546 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
547 {
548 struct sh_eth_private *mdp = netdev_priv(ndev);
549
550 switch (mdp->speed) {
551 case 10: /* 10BASE */
552 sh_eth_write(ndev, 0, RTRATE);
553 break;
554 case 100:/* 100BASE */
555 sh_eth_write(ndev, 1, RTRATE);
556 break;
557 default:
558 break;
559 }
560 }
561
562 /* SH7757 */
563 static struct sh_eth_cpu_data sh7757_data = {
564 .set_duplex = sh_eth_set_duplex,
565 .set_rate = sh_eth_set_rate_sh7757,
566
567 .register_type = SH_ETH_REG_FAST_SH4,
568
569 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
570
571 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
572 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
573 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
574 EESR_ECI,
575
576 .irq_flags = IRQF_SHARED,
577 .apr = 1,
578 .mpr = 1,
579 .tpauser = 1,
580 .hw_swap = 1,
581 .no_ade = 1,
582 .rpadir = 1,
583 .rpadir_value = 2 << 16,
584 };
585
586 #define SH_GIGA_ETH_BASE 0xfee00000UL
587 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
588 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
589 static void sh_eth_chip_reset_giga(struct net_device *ndev)
590 {
591 int i;
592 unsigned long mahr[2], malr[2];
593
594 /* save MAHR and MALR */
595 for (i = 0; i < 2; i++) {
596 malr[i] = ioread32((void *)GIGA_MALR(i));
597 mahr[i] = ioread32((void *)GIGA_MAHR(i));
598 }
599
600 /* reset device */
601 iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
602 mdelay(1);
603
604 /* restore MAHR and MALR */
605 for (i = 0; i < 2; i++) {
606 iowrite32(malr[i], (void *)GIGA_MALR(i));
607 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
608 }
609 }
610
611 static void sh_eth_set_rate_giga(struct net_device *ndev)
612 {
613 struct sh_eth_private *mdp = netdev_priv(ndev);
614
615 switch (mdp->speed) {
616 case 10: /* 10BASE */
617 sh_eth_write(ndev, 0x00000000, GECMR);
618 break;
619 case 100:/* 100BASE */
620 sh_eth_write(ndev, 0x00000010, GECMR);
621 break;
622 case 1000: /* 1000BASE */
623 sh_eth_write(ndev, 0x00000020, GECMR);
624 break;
625 default:
626 break;
627 }
628 }
629
630 /* SH7757(GETHERC) */
631 static struct sh_eth_cpu_data sh7757_data_giga = {
632 .chip_reset = sh_eth_chip_reset_giga,
633 .set_duplex = sh_eth_set_duplex,
634 .set_rate = sh_eth_set_rate_giga,
635
636 .register_type = SH_ETH_REG_GIGABIT,
637
638 .ecsr_value = ECSR_ICD | ECSR_MPD,
639 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
640 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
641
642 .tx_check = EESR_TC1 | EESR_FTC,
643 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
644 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
645 EESR_TDE | EESR_ECI,
646 .fdr_value = 0x0000072f,
647
648 .irq_flags = IRQF_SHARED,
649 .apr = 1,
650 .mpr = 1,
651 .tpauser = 1,
652 .bculr = 1,
653 .hw_swap = 1,
654 .rpadir = 1,
655 .rpadir_value = 2 << 16,
656 .no_trimd = 1,
657 .no_ade = 1,
658 .tsu = 1,
659 };
660
661 static void sh_eth_chip_reset(struct net_device *ndev)
662 {
663 struct sh_eth_private *mdp = netdev_priv(ndev);
664
665 /* reset device */
666 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
667 mdelay(1);
668 }
669
670 static void sh_eth_set_rate_gether(struct net_device *ndev)
671 {
672 struct sh_eth_private *mdp = netdev_priv(ndev);
673
674 switch (mdp->speed) {
675 case 10: /* 10BASE */
676 sh_eth_write(ndev, GECMR_10, GECMR);
677 break;
678 case 100:/* 100BASE */
679 sh_eth_write(ndev, GECMR_100, GECMR);
680 break;
681 case 1000: /* 1000BASE */
682 sh_eth_write(ndev, GECMR_1000, GECMR);
683 break;
684 default:
685 break;
686 }
687 }
688
689 /* SH7734 */
690 static struct sh_eth_cpu_data sh7734_data = {
691 .chip_reset = sh_eth_chip_reset,
692 .set_duplex = sh_eth_set_duplex,
693 .set_rate = sh_eth_set_rate_gether,
694
695 .register_type = SH_ETH_REG_GIGABIT,
696
697 .ecsr_value = ECSR_ICD | ECSR_MPD,
698 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
699 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
700
701 .tx_check = EESR_TC1 | EESR_FTC,
702 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
703 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
704 EESR_TDE | EESR_ECI,
705
706 .apr = 1,
707 .mpr = 1,
708 .tpauser = 1,
709 .bculr = 1,
710 .hw_swap = 1,
711 .no_trimd = 1,
712 .no_ade = 1,
713 .tsu = 1,
714 .hw_crc = 1,
715 .select_mii = 1,
716 };
717
718 /* SH7763 */
719 static struct sh_eth_cpu_data sh7763_data = {
720 .chip_reset = sh_eth_chip_reset,
721 .set_duplex = sh_eth_set_duplex,
722 .set_rate = sh_eth_set_rate_gether,
723
724 .register_type = SH_ETH_REG_GIGABIT,
725
726 .ecsr_value = ECSR_ICD | ECSR_MPD,
727 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
728 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
729
730 .tx_check = EESR_TC1 | EESR_FTC,
731 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
732 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
733 EESR_ECI,
734
735 .apr = 1,
736 .mpr = 1,
737 .tpauser = 1,
738 .bculr = 1,
739 .hw_swap = 1,
740 .no_trimd = 1,
741 .no_ade = 1,
742 .tsu = 1,
743 .irq_flags = IRQF_SHARED,
744 };
745
746 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
747 {
748 struct sh_eth_private *mdp = netdev_priv(ndev);
749
750 /* reset device */
751 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
752 mdelay(1);
753
754 sh_eth_select_mii(ndev);
755 }
756
757 /* R8A7740 */
758 static struct sh_eth_cpu_data r8a7740_data = {
759 .chip_reset = sh_eth_chip_reset_r8a7740,
760 .set_duplex = sh_eth_set_duplex,
761 .set_rate = sh_eth_set_rate_gether,
762
763 .register_type = SH_ETH_REG_GIGABIT,
764
765 .ecsr_value = ECSR_ICD | ECSR_MPD,
766 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
767 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
768
769 .tx_check = EESR_TC1 | EESR_FTC,
770 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
771 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
772 EESR_TDE | EESR_ECI,
773 .fdr_value = 0x0000070f,
774
775 .apr = 1,
776 .mpr = 1,
777 .tpauser = 1,
778 .bculr = 1,
779 .hw_swap = 1,
780 .rpadir = 1,
781 .rpadir_value = 2 << 16,
782 .no_trimd = 1,
783 .no_ade = 1,
784 .tsu = 1,
785 .select_mii = 1,
786 .shift_rd0 = 1,
787 };
788
789 /* R7S72100 */
790 static struct sh_eth_cpu_data r7s72100_data = {
791 .chip_reset = sh_eth_chip_reset,
792 .set_duplex = sh_eth_set_duplex,
793
794 .register_type = SH_ETH_REG_FAST_RZ,
795
796 .ecsr_value = ECSR_ICD,
797 .ecsipr_value = ECSIPR_ICDIP,
798 .eesipr_value = 0xff7f009f,
799
800 .tx_check = EESR_TC1 | EESR_FTC,
801 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
802 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
803 EESR_TDE | EESR_ECI,
804 .fdr_value = 0x0000070f,
805
806 .no_psr = 1,
807 .apr = 1,
808 .mpr = 1,
809 .tpauser = 1,
810 .hw_swap = 1,
811 .rpadir = 1,
812 .rpadir_value = 2 << 16,
813 .no_trimd = 1,
814 .no_ade = 1,
815 .hw_crc = 1,
816 .tsu = 1,
817 .shift_rd0 = 1,
818 };
819
820 static struct sh_eth_cpu_data sh7619_data = {
821 .register_type = SH_ETH_REG_FAST_SH3_SH2,
822
823 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
824
825 .apr = 1,
826 .mpr = 1,
827 .tpauser = 1,
828 .hw_swap = 1,
829 };
830
831 static struct sh_eth_cpu_data sh771x_data = {
832 .register_type = SH_ETH_REG_FAST_SH3_SH2,
833
834 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
835 .tsu = 1,
836 };
837
838 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
839 {
840 if (!cd->ecsr_value)
841 cd->ecsr_value = DEFAULT_ECSR_INIT;
842
843 if (!cd->ecsipr_value)
844 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
845
846 if (!cd->fcftr_value)
847 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
848 DEFAULT_FIFO_F_D_RFD;
849
850 if (!cd->fdr_value)
851 cd->fdr_value = DEFAULT_FDR_INIT;
852
853 if (!cd->tx_check)
854 cd->tx_check = DEFAULT_TX_CHECK;
855
856 if (!cd->eesr_err_check)
857 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
858 }
859
860 static int sh_eth_check_reset(struct net_device *ndev)
861 {
862 int ret = 0;
863 int cnt = 100;
864
865 while (cnt > 0) {
866 if (!(sh_eth_read(ndev, EDMR) & 0x3))
867 break;
868 mdelay(1);
869 cnt--;
870 }
871 if (cnt <= 0) {
872 netdev_err(ndev, "Device reset failed\n");
873 ret = -ETIMEDOUT;
874 }
875 return ret;
876 }
877
878 static int sh_eth_reset(struct net_device *ndev)
879 {
880 struct sh_eth_private *mdp = netdev_priv(ndev);
881 int ret = 0;
882
883 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
884 sh_eth_write(ndev, EDSR_ENALL, EDSR);
885 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
886 EDMR);
887
888 ret = sh_eth_check_reset(ndev);
889 if (ret)
890 return ret;
891
892 /* Table Init */
893 sh_eth_write(ndev, 0x0, TDLAR);
894 sh_eth_write(ndev, 0x0, TDFAR);
895 sh_eth_write(ndev, 0x0, TDFXR);
896 sh_eth_write(ndev, 0x0, TDFFR);
897 sh_eth_write(ndev, 0x0, RDLAR);
898 sh_eth_write(ndev, 0x0, RDFAR);
899 sh_eth_write(ndev, 0x0, RDFXR);
900 sh_eth_write(ndev, 0x0, RDFFR);
901
902 /* Reset HW CRC register */
903 if (mdp->cd->hw_crc)
904 sh_eth_write(ndev, 0x0, CSMR);
905
906 /* Select MII mode */
907 if (mdp->cd->select_mii)
908 sh_eth_select_mii(ndev);
909 } else {
910 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
911 EDMR);
912 mdelay(3);
913 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
914 EDMR);
915 }
916
917 return ret;
918 }
919
920 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
921 static void sh_eth_set_receive_align(struct sk_buff *skb)
922 {
923 int reserve;
924
925 reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
926 if (reserve)
927 skb_reserve(skb, reserve);
928 }
929 #else
930 static void sh_eth_set_receive_align(struct sk_buff *skb)
931 {
932 skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
933 }
934 #endif
935
936
937 /* CPU <-> EDMAC endian convert */
938 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
939 {
940 switch (mdp->edmac_endian) {
941 case EDMAC_LITTLE_ENDIAN:
942 return cpu_to_le32(x);
943 case EDMAC_BIG_ENDIAN:
944 return cpu_to_be32(x);
945 }
946 return x;
947 }
948
949 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
950 {
951 switch (mdp->edmac_endian) {
952 case EDMAC_LITTLE_ENDIAN:
953 return le32_to_cpu(x);
954 case EDMAC_BIG_ENDIAN:
955 return be32_to_cpu(x);
956 }
957 return x;
958 }
959
960 /* Program the hardware MAC address from dev->dev_addr. */
961 static void update_mac_address(struct net_device *ndev)
962 {
963 sh_eth_write(ndev,
964 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
965 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
966 sh_eth_write(ndev,
967 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
968 }
969
970 /* Get MAC address from SuperH MAC address register
971 *
972 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
973 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
974 * When you want use this device, you must set MAC address in bootloader.
975 *
976 */
977 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
978 {
979 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
980 memcpy(ndev->dev_addr, mac, ETH_ALEN);
981 } else {
982 ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
983 ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
984 ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
985 ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
986 ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
987 ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
988 }
989 }
990
991 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
992 {
993 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
994 return EDTRR_TRNS_GETHER;
995 else
996 return EDTRR_TRNS_ETHER;
997 }
998
999 struct bb_info {
1000 void (*set_gate)(void *addr);
1001 struct mdiobb_ctrl ctrl;
1002 void *addr;
1003 u32 mmd_msk;/* MMD */
1004 u32 mdo_msk;
1005 u32 mdi_msk;
1006 u32 mdc_msk;
1007 };
1008
1009 /* PHY bit set */
1010 static void bb_set(void *addr, u32 msk)
1011 {
1012 iowrite32(ioread32(addr) | msk, addr);
1013 }
1014
1015 /* PHY bit clear */
1016 static void bb_clr(void *addr, u32 msk)
1017 {
1018 iowrite32((ioread32(addr) & ~msk), addr);
1019 }
1020
1021 /* PHY bit read */
1022 static int bb_read(void *addr, u32 msk)
1023 {
1024 return (ioread32(addr) & msk) != 0;
1025 }
1026
1027 /* Data I/O pin control */
1028 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1029 {
1030 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1031
1032 if (bitbang->set_gate)
1033 bitbang->set_gate(bitbang->addr);
1034
1035 if (bit)
1036 bb_set(bitbang->addr, bitbang->mmd_msk);
1037 else
1038 bb_clr(bitbang->addr, bitbang->mmd_msk);
1039 }
1040
1041 /* Set bit data*/
1042 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1043 {
1044 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1045
1046 if (bitbang->set_gate)
1047 bitbang->set_gate(bitbang->addr);
1048
1049 if (bit)
1050 bb_set(bitbang->addr, bitbang->mdo_msk);
1051 else
1052 bb_clr(bitbang->addr, bitbang->mdo_msk);
1053 }
1054
1055 /* Get bit data*/
1056 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1057 {
1058 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1059
1060 if (bitbang->set_gate)
1061 bitbang->set_gate(bitbang->addr);
1062
1063 return bb_read(bitbang->addr, bitbang->mdi_msk);
1064 }
1065
1066 /* MDC pin control */
1067 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1068 {
1069 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1070
1071 if (bitbang->set_gate)
1072 bitbang->set_gate(bitbang->addr);
1073
1074 if (bit)
1075 bb_set(bitbang->addr, bitbang->mdc_msk);
1076 else
1077 bb_clr(bitbang->addr, bitbang->mdc_msk);
1078 }
1079
1080 /* mdio bus control struct */
1081 static struct mdiobb_ops bb_ops = {
1082 .owner = THIS_MODULE,
1083 .set_mdc = sh_mdc_ctrl,
1084 .set_mdio_dir = sh_mmd_ctrl,
1085 .set_mdio_data = sh_set_mdio,
1086 .get_mdio_data = sh_get_mdio,
1087 };
1088
1089 /* free skb and descriptor buffer */
1090 static void sh_eth_ring_free(struct net_device *ndev)
1091 {
1092 struct sh_eth_private *mdp = netdev_priv(ndev);
1093 int i;
1094
1095 /* Free Rx skb ringbuffer */
1096 if (mdp->rx_skbuff) {
1097 for (i = 0; i < mdp->num_rx_ring; i++)
1098 dev_kfree_skb(mdp->rx_skbuff[i]);
1099 }
1100 kfree(mdp->rx_skbuff);
1101 mdp->rx_skbuff = NULL;
1102
1103 /* Free Tx skb ringbuffer */
1104 if (mdp->tx_skbuff) {
1105 for (i = 0; i < mdp->num_tx_ring; i++)
1106 dev_kfree_skb(mdp->tx_skbuff[i]);
1107 }
1108 kfree(mdp->tx_skbuff);
1109 mdp->tx_skbuff = NULL;
1110 }
1111
1112 /* format skb and descriptor buffer */
1113 static void sh_eth_ring_format(struct net_device *ndev)
1114 {
1115 struct sh_eth_private *mdp = netdev_priv(ndev);
1116 int i;
1117 struct sk_buff *skb;
1118 struct sh_eth_rxdesc *rxdesc = NULL;
1119 struct sh_eth_txdesc *txdesc = NULL;
1120 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1121 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1122
1123 mdp->cur_rx = 0;
1124 mdp->cur_tx = 0;
1125 mdp->dirty_rx = 0;
1126 mdp->dirty_tx = 0;
1127
1128 memset(mdp->rx_ring, 0, rx_ringsize);
1129
1130 /* build Rx ring buffer */
1131 for (i = 0; i < mdp->num_rx_ring; i++) {
1132 /* skb */
1133 mdp->rx_skbuff[i] = NULL;
1134 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1135 mdp->rx_skbuff[i] = skb;
1136 if (skb == NULL)
1137 break;
1138 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1139 DMA_FROM_DEVICE);
1140 sh_eth_set_receive_align(skb);
1141
1142 /* RX descriptor */
1143 rxdesc = &mdp->rx_ring[i];
1144 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1145 rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1146
1147 /* The size of the buffer is 16 byte boundary. */
1148 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1149 /* Rx descriptor address set */
1150 if (i == 0) {
1151 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1152 if (sh_eth_is_gether(mdp) ||
1153 sh_eth_is_rz_fast_ether(mdp))
1154 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1155 }
1156 }
1157
1158 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1159
1160 /* Mark the last entry as wrapping the ring. */
1161 rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1162
1163 memset(mdp->tx_ring, 0, tx_ringsize);
1164
1165 /* build Tx ring buffer */
1166 for (i = 0; i < mdp->num_tx_ring; i++) {
1167 mdp->tx_skbuff[i] = NULL;
1168 txdesc = &mdp->tx_ring[i];
1169 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1170 txdesc->buffer_length = 0;
1171 if (i == 0) {
1172 /* Tx descriptor address set */
1173 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1174 if (sh_eth_is_gether(mdp) ||
1175 sh_eth_is_rz_fast_ether(mdp))
1176 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1177 }
1178 }
1179
1180 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1181 }
1182
1183 /* Get skb and descriptor buffer */
1184 static int sh_eth_ring_init(struct net_device *ndev)
1185 {
1186 struct sh_eth_private *mdp = netdev_priv(ndev);
1187 int rx_ringsize, tx_ringsize, ret = 0;
1188
1189 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1190 * card needs room to do 8 byte alignment, +2 so we can reserve
1191 * the first 2 bytes, and +16 gets room for the status word from the
1192 * card.
1193 */
1194 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1195 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1196 if (mdp->cd->rpadir)
1197 mdp->rx_buf_sz += NET_IP_ALIGN;
1198
1199 /* Allocate RX and TX skb rings */
1200 mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1201 sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1202 if (!mdp->rx_skbuff) {
1203 ret = -ENOMEM;
1204 return ret;
1205 }
1206
1207 mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1208 sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1209 if (!mdp->tx_skbuff) {
1210 ret = -ENOMEM;
1211 goto skb_ring_free;
1212 }
1213
1214 /* Allocate all Rx descriptors. */
1215 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1216 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1217 GFP_KERNEL);
1218 if (!mdp->rx_ring) {
1219 ret = -ENOMEM;
1220 goto desc_ring_free;
1221 }
1222
1223 mdp->dirty_rx = 0;
1224
1225 /* Allocate all Tx descriptors. */
1226 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1227 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1228 GFP_KERNEL);
1229 if (!mdp->tx_ring) {
1230 ret = -ENOMEM;
1231 goto desc_ring_free;
1232 }
1233 return ret;
1234
1235 desc_ring_free:
1236 /* free DMA buffer */
1237 dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1238
1239 skb_ring_free:
1240 /* Free Rx and Tx skb ring buffer */
1241 sh_eth_ring_free(ndev);
1242 mdp->tx_ring = NULL;
1243 mdp->rx_ring = NULL;
1244
1245 return ret;
1246 }
1247
1248 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1249 {
1250 int ringsize;
1251
1252 if (mdp->rx_ring) {
1253 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1254 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1255 mdp->rx_desc_dma);
1256 mdp->rx_ring = NULL;
1257 }
1258
1259 if (mdp->tx_ring) {
1260 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1261 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1262 mdp->tx_desc_dma);
1263 mdp->tx_ring = NULL;
1264 }
1265 }
1266
1267 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1268 {
1269 int ret = 0;
1270 struct sh_eth_private *mdp = netdev_priv(ndev);
1271 u32 val;
1272
1273 /* Soft Reset */
1274 ret = sh_eth_reset(ndev);
1275 if (ret)
1276 return ret;
1277
1278 if (mdp->cd->rmiimode)
1279 sh_eth_write(ndev, 0x1, RMIIMODE);
1280
1281 /* Descriptor format */
1282 sh_eth_ring_format(ndev);
1283 if (mdp->cd->rpadir)
1284 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1285
1286 /* all sh_eth int mask */
1287 sh_eth_write(ndev, 0, EESIPR);
1288
1289 #if defined(__LITTLE_ENDIAN)
1290 if (mdp->cd->hw_swap)
1291 sh_eth_write(ndev, EDMR_EL, EDMR);
1292 else
1293 #endif
1294 sh_eth_write(ndev, 0, EDMR);
1295
1296 /* FIFO size set */
1297 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1298 sh_eth_write(ndev, 0, TFTR);
1299
1300 /* Frame recv control (enable multiple-packets per rx irq) */
1301 sh_eth_write(ndev, RMCR_RNC, RMCR);
1302
1303 sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1304
1305 if (mdp->cd->bculr)
1306 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
1307
1308 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1309
1310 if (!mdp->cd->no_trimd)
1311 sh_eth_write(ndev, 0, TRIMD);
1312
1313 /* Recv frame limit set register */
1314 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1315 RFLR);
1316
1317 sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1318 if (start)
1319 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1320
1321 /* PAUSE Prohibition */
1322 val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1323 ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1324
1325 sh_eth_write(ndev, val, ECMR);
1326
1327 if (mdp->cd->set_rate)
1328 mdp->cd->set_rate(ndev);
1329
1330 /* E-MAC Status Register clear */
1331 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1332
1333 /* E-MAC Interrupt Enable register */
1334 if (start)
1335 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1336
1337 /* Set MAC address */
1338 update_mac_address(ndev);
1339
1340 /* mask reset */
1341 if (mdp->cd->apr)
1342 sh_eth_write(ndev, APR_AP, APR);
1343 if (mdp->cd->mpr)
1344 sh_eth_write(ndev, MPR_MP, MPR);
1345 if (mdp->cd->tpauser)
1346 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1347
1348 if (start) {
1349 /* Setting the Rx mode will start the Rx process. */
1350 sh_eth_write(ndev, EDRRR_R, EDRRR);
1351
1352 netif_start_queue(ndev);
1353 }
1354
1355 return ret;
1356 }
1357
1358 /* free Tx skb function */
1359 static int sh_eth_txfree(struct net_device *ndev)
1360 {
1361 struct sh_eth_private *mdp = netdev_priv(ndev);
1362 struct sh_eth_txdesc *txdesc;
1363 int free_num = 0;
1364 int entry = 0;
1365
1366 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1367 entry = mdp->dirty_tx % mdp->num_tx_ring;
1368 txdesc = &mdp->tx_ring[entry];
1369 if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1370 break;
1371 /* Free the original skb. */
1372 if (mdp->tx_skbuff[entry]) {
1373 dma_unmap_single(&ndev->dev, txdesc->addr,
1374 txdesc->buffer_length, DMA_TO_DEVICE);
1375 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1376 mdp->tx_skbuff[entry] = NULL;
1377 free_num++;
1378 }
1379 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1380 if (entry >= mdp->num_tx_ring - 1)
1381 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1382
1383 ndev->stats.tx_packets++;
1384 ndev->stats.tx_bytes += txdesc->buffer_length;
1385 }
1386 return free_num;
1387 }
1388
1389 /* Packet receive function */
1390 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1391 {
1392 struct sh_eth_private *mdp = netdev_priv(ndev);
1393 struct sh_eth_rxdesc *rxdesc;
1394
1395 int entry = mdp->cur_rx % mdp->num_rx_ring;
1396 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1397 struct sk_buff *skb;
1398 u16 pkt_len = 0;
1399 u32 desc_status;
1400
1401 rxdesc = &mdp->rx_ring[entry];
1402 while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1403 desc_status = edmac_to_cpu(mdp, rxdesc->status);
1404 pkt_len = rxdesc->frame_length;
1405
1406 if (--boguscnt < 0)
1407 break;
1408
1409 if (*quota <= 0)
1410 break;
1411
1412 (*quota)--;
1413
1414 if (!(desc_status & RDFEND))
1415 ndev->stats.rx_length_errors++;
1416
1417 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1418 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1419 * bit 0. However, in case of the R8A7740, R8A779x, and
1420 * R7S72100 the RFS bits are from bit 25 to bit 16. So, the
1421 * driver needs right shifting by 16.
1422 */
1423 if (mdp->cd->shift_rd0)
1424 desc_status >>= 16;
1425
1426 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1427 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1428 ndev->stats.rx_errors++;
1429 if (desc_status & RD_RFS1)
1430 ndev->stats.rx_crc_errors++;
1431 if (desc_status & RD_RFS2)
1432 ndev->stats.rx_frame_errors++;
1433 if (desc_status & RD_RFS3)
1434 ndev->stats.rx_length_errors++;
1435 if (desc_status & RD_RFS4)
1436 ndev->stats.rx_length_errors++;
1437 if (desc_status & RD_RFS6)
1438 ndev->stats.rx_missed_errors++;
1439 if (desc_status & RD_RFS10)
1440 ndev->stats.rx_over_errors++;
1441 } else {
1442 if (!mdp->cd->hw_swap)
1443 sh_eth_soft_swap(
1444 phys_to_virt(ALIGN(rxdesc->addr, 4)),
1445 pkt_len + 2);
1446 skb = mdp->rx_skbuff[entry];
1447 mdp->rx_skbuff[entry] = NULL;
1448 if (mdp->cd->rpadir)
1449 skb_reserve(skb, NET_IP_ALIGN);
1450 dma_sync_single_for_cpu(&ndev->dev, rxdesc->addr,
1451 mdp->rx_buf_sz,
1452 DMA_FROM_DEVICE);
1453 skb_put(skb, pkt_len);
1454 skb->protocol = eth_type_trans(skb, ndev);
1455 netif_receive_skb(skb);
1456 ndev->stats.rx_packets++;
1457 ndev->stats.rx_bytes += pkt_len;
1458 }
1459 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1460 rxdesc = &mdp->rx_ring[entry];
1461 }
1462
1463 /* Refill the Rx ring buffers. */
1464 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1465 entry = mdp->dirty_rx % mdp->num_rx_ring;
1466 rxdesc = &mdp->rx_ring[entry];
1467 /* The size of the buffer is 16 byte boundary. */
1468 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1469
1470 if (mdp->rx_skbuff[entry] == NULL) {
1471 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1472 mdp->rx_skbuff[entry] = skb;
1473 if (skb == NULL)
1474 break; /* Better luck next round. */
1475 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1476 DMA_FROM_DEVICE);
1477 sh_eth_set_receive_align(skb);
1478
1479 skb_checksum_none_assert(skb);
1480 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1481 }
1482 if (entry >= mdp->num_rx_ring - 1)
1483 rxdesc->status |=
1484 cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1485 else
1486 rxdesc->status |=
1487 cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1488 }
1489
1490 /* Restart Rx engine if stopped. */
1491 /* If we don't need to check status, don't. -KDU */
1492 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1493 /* fix the values for the next receiving if RDE is set */
1494 if (intr_status & EESR_RDE) {
1495 u32 count = (sh_eth_read(ndev, RDFAR) -
1496 sh_eth_read(ndev, RDLAR)) >> 4;
1497
1498 mdp->cur_rx = count;
1499 mdp->dirty_rx = count;
1500 }
1501 sh_eth_write(ndev, EDRRR_R, EDRRR);
1502 }
1503
1504 return *quota <= 0;
1505 }
1506
1507 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1508 {
1509 /* disable tx and rx */
1510 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1511 ~(ECMR_RE | ECMR_TE), ECMR);
1512 }
1513
1514 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1515 {
1516 /* enable tx and rx */
1517 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1518 (ECMR_RE | ECMR_TE), ECMR);
1519 }
1520
1521 /* error control function */
1522 static void sh_eth_error(struct net_device *ndev, int intr_status)
1523 {
1524 struct sh_eth_private *mdp = netdev_priv(ndev);
1525 u32 felic_stat;
1526 u32 link_stat;
1527 u32 mask;
1528
1529 if (intr_status & EESR_ECI) {
1530 felic_stat = sh_eth_read(ndev, ECSR);
1531 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1532 if (felic_stat & ECSR_ICD)
1533 ndev->stats.tx_carrier_errors++;
1534 if (felic_stat & ECSR_LCHNG) {
1535 /* Link Changed */
1536 if (mdp->cd->no_psr || mdp->no_ether_link) {
1537 goto ignore_link;
1538 } else {
1539 link_stat = (sh_eth_read(ndev, PSR));
1540 if (mdp->ether_link_active_low)
1541 link_stat = ~link_stat;
1542 }
1543 if (!(link_stat & PHY_ST_LINK)) {
1544 sh_eth_rcv_snd_disable(ndev);
1545 } else {
1546 /* Link Up */
1547 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1548 ~DMAC_M_ECI, EESIPR);
1549 /* clear int */
1550 sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1551 ECSR);
1552 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1553 DMAC_M_ECI, EESIPR);
1554 /* enable tx and rx */
1555 sh_eth_rcv_snd_enable(ndev);
1556 }
1557 }
1558 }
1559
1560 ignore_link:
1561 if (intr_status & EESR_TWB) {
1562 /* Unused write back interrupt */
1563 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1564 ndev->stats.tx_aborted_errors++;
1565 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1566 }
1567 }
1568
1569 if (intr_status & EESR_RABT) {
1570 /* Receive Abort int */
1571 if (intr_status & EESR_RFRMER) {
1572 /* Receive Frame Overflow int */
1573 ndev->stats.rx_frame_errors++;
1574 netif_err(mdp, rx_err, ndev, "Receive Abort\n");
1575 }
1576 }
1577
1578 if (intr_status & EESR_TDE) {
1579 /* Transmit Descriptor Empty int */
1580 ndev->stats.tx_fifo_errors++;
1581 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1582 }
1583
1584 if (intr_status & EESR_TFE) {
1585 /* FIFO under flow */
1586 ndev->stats.tx_fifo_errors++;
1587 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1588 }
1589
1590 if (intr_status & EESR_RDE) {
1591 /* Receive Descriptor Empty int */
1592 ndev->stats.rx_over_errors++;
1593 netif_err(mdp, rx_err, ndev, "Receive Descriptor Empty\n");
1594 }
1595
1596 if (intr_status & EESR_RFE) {
1597 /* Receive FIFO Overflow int */
1598 ndev->stats.rx_fifo_errors++;
1599 netif_err(mdp, rx_err, ndev, "Receive FIFO Overflow\n");
1600 }
1601
1602 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1603 /* Address Error */
1604 ndev->stats.tx_fifo_errors++;
1605 netif_err(mdp, tx_err, ndev, "Address Error\n");
1606 }
1607
1608 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1609 if (mdp->cd->no_ade)
1610 mask &= ~EESR_ADE;
1611 if (intr_status & mask) {
1612 /* Tx error */
1613 u32 edtrr = sh_eth_read(ndev, EDTRR);
1614
1615 /* dmesg */
1616 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1617 intr_status, mdp->cur_tx, mdp->dirty_tx,
1618 (u32)ndev->state, edtrr);
1619 /* dirty buffer free */
1620 sh_eth_txfree(ndev);
1621
1622 /* SH7712 BUG */
1623 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1624 /* tx dma start */
1625 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1626 }
1627 /* wakeup */
1628 netif_wake_queue(ndev);
1629 }
1630 }
1631
1632 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1633 {
1634 struct net_device *ndev = netdev;
1635 struct sh_eth_private *mdp = netdev_priv(ndev);
1636 struct sh_eth_cpu_data *cd = mdp->cd;
1637 irqreturn_t ret = IRQ_NONE;
1638 unsigned long intr_status, intr_enable;
1639
1640 spin_lock(&mdp->lock);
1641
1642 /* Get interrupt status */
1643 intr_status = sh_eth_read(ndev, EESR);
1644 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1645 * enabled since it's the one that comes thru regardless of the mask,
1646 * and we need to fully handle it in sh_eth_error() in order to quench
1647 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1648 */
1649 intr_enable = sh_eth_read(ndev, EESIPR);
1650 intr_status &= intr_enable | DMAC_M_ECI;
1651 if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1652 ret = IRQ_HANDLED;
1653 else
1654 goto other_irq;
1655
1656 if (intr_status & EESR_RX_CHECK) {
1657 if (napi_schedule_prep(&mdp->napi)) {
1658 /* Mask Rx interrupts */
1659 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1660 EESIPR);
1661 __napi_schedule(&mdp->napi);
1662 } else {
1663 netdev_warn(ndev,
1664 "ignoring interrupt, status 0x%08lx, mask 0x%08lx.\n",
1665 intr_status, intr_enable);
1666 }
1667 }
1668
1669 /* Tx Check */
1670 if (intr_status & cd->tx_check) {
1671 /* Clear Tx interrupts */
1672 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1673
1674 sh_eth_txfree(ndev);
1675 netif_wake_queue(ndev);
1676 }
1677
1678 if (intr_status & cd->eesr_err_check) {
1679 /* Clear error interrupts */
1680 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1681
1682 sh_eth_error(ndev, intr_status);
1683 }
1684
1685 other_irq:
1686 spin_unlock(&mdp->lock);
1687
1688 return ret;
1689 }
1690
1691 static int sh_eth_poll(struct napi_struct *napi, int budget)
1692 {
1693 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1694 napi);
1695 struct net_device *ndev = napi->dev;
1696 int quota = budget;
1697 unsigned long intr_status;
1698
1699 for (;;) {
1700 intr_status = sh_eth_read(ndev, EESR);
1701 if (!(intr_status & EESR_RX_CHECK))
1702 break;
1703 /* Clear Rx interrupts */
1704 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1705
1706 if (sh_eth_rx(ndev, intr_status, &quota))
1707 goto out;
1708 }
1709
1710 napi_complete(napi);
1711
1712 /* Reenable Rx interrupts */
1713 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1714 out:
1715 return budget - quota;
1716 }
1717
1718 /* PHY state control function */
1719 static void sh_eth_adjust_link(struct net_device *ndev)
1720 {
1721 struct sh_eth_private *mdp = netdev_priv(ndev);
1722 struct phy_device *phydev = mdp->phydev;
1723 int new_state = 0;
1724
1725 if (phydev->link) {
1726 if (phydev->duplex != mdp->duplex) {
1727 new_state = 1;
1728 mdp->duplex = phydev->duplex;
1729 if (mdp->cd->set_duplex)
1730 mdp->cd->set_duplex(ndev);
1731 }
1732
1733 if (phydev->speed != mdp->speed) {
1734 new_state = 1;
1735 mdp->speed = phydev->speed;
1736 if (mdp->cd->set_rate)
1737 mdp->cd->set_rate(ndev);
1738 }
1739 if (!mdp->link) {
1740 sh_eth_write(ndev,
1741 sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1742 ECMR);
1743 new_state = 1;
1744 mdp->link = phydev->link;
1745 if (mdp->cd->no_psr || mdp->no_ether_link)
1746 sh_eth_rcv_snd_enable(ndev);
1747 }
1748 } else if (mdp->link) {
1749 new_state = 1;
1750 mdp->link = 0;
1751 mdp->speed = 0;
1752 mdp->duplex = -1;
1753 if (mdp->cd->no_psr || mdp->no_ether_link)
1754 sh_eth_rcv_snd_disable(ndev);
1755 }
1756
1757 if (new_state && netif_msg_link(mdp))
1758 phy_print_status(phydev);
1759 }
1760
1761 /* PHY init function */
1762 static int sh_eth_phy_init(struct net_device *ndev)
1763 {
1764 struct device_node *np = ndev->dev.parent->of_node;
1765 struct sh_eth_private *mdp = netdev_priv(ndev);
1766 struct phy_device *phydev = NULL;
1767
1768 mdp->link = 0;
1769 mdp->speed = 0;
1770 mdp->duplex = -1;
1771
1772 /* Try connect to PHY */
1773 if (np) {
1774 struct device_node *pn;
1775
1776 pn = of_parse_phandle(np, "phy-handle", 0);
1777 phydev = of_phy_connect(ndev, pn,
1778 sh_eth_adjust_link, 0,
1779 mdp->phy_interface);
1780
1781 if (!phydev)
1782 phydev = ERR_PTR(-ENOENT);
1783 } else {
1784 char phy_id[MII_BUS_ID_SIZE + 3];
1785
1786 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1787 mdp->mii_bus->id, mdp->phy_id);
1788
1789 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1790 mdp->phy_interface);
1791 }
1792
1793 if (IS_ERR(phydev)) {
1794 netdev_err(ndev, "failed to connect PHY\n");
1795 return PTR_ERR(phydev);
1796 }
1797
1798 netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1799 phydev->addr, phydev->irq, phydev->drv->name);
1800
1801 mdp->phydev = phydev;
1802
1803 return 0;
1804 }
1805
1806 /* PHY control start function */
1807 static int sh_eth_phy_start(struct net_device *ndev)
1808 {
1809 struct sh_eth_private *mdp = netdev_priv(ndev);
1810 int ret;
1811
1812 ret = sh_eth_phy_init(ndev);
1813 if (ret)
1814 return ret;
1815
1816 phy_start(mdp->phydev);
1817
1818 return 0;
1819 }
1820
1821 static int sh_eth_get_settings(struct net_device *ndev,
1822 struct ethtool_cmd *ecmd)
1823 {
1824 struct sh_eth_private *mdp = netdev_priv(ndev);
1825 unsigned long flags;
1826 int ret;
1827
1828 spin_lock_irqsave(&mdp->lock, flags);
1829 ret = phy_ethtool_gset(mdp->phydev, ecmd);
1830 spin_unlock_irqrestore(&mdp->lock, flags);
1831
1832 return ret;
1833 }
1834
1835 static int sh_eth_set_settings(struct net_device *ndev,
1836 struct ethtool_cmd *ecmd)
1837 {
1838 struct sh_eth_private *mdp = netdev_priv(ndev);
1839 unsigned long flags;
1840 int ret;
1841
1842 spin_lock_irqsave(&mdp->lock, flags);
1843
1844 /* disable tx and rx */
1845 sh_eth_rcv_snd_disable(ndev);
1846
1847 ret = phy_ethtool_sset(mdp->phydev, ecmd);
1848 if (ret)
1849 goto error_exit;
1850
1851 if (ecmd->duplex == DUPLEX_FULL)
1852 mdp->duplex = 1;
1853 else
1854 mdp->duplex = 0;
1855
1856 if (mdp->cd->set_duplex)
1857 mdp->cd->set_duplex(ndev);
1858
1859 error_exit:
1860 mdelay(1);
1861
1862 /* enable tx and rx */
1863 sh_eth_rcv_snd_enable(ndev);
1864
1865 spin_unlock_irqrestore(&mdp->lock, flags);
1866
1867 return ret;
1868 }
1869
1870 static int sh_eth_nway_reset(struct net_device *ndev)
1871 {
1872 struct sh_eth_private *mdp = netdev_priv(ndev);
1873 unsigned long flags;
1874 int ret;
1875
1876 spin_lock_irqsave(&mdp->lock, flags);
1877 ret = phy_start_aneg(mdp->phydev);
1878 spin_unlock_irqrestore(&mdp->lock, flags);
1879
1880 return ret;
1881 }
1882
1883 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1884 {
1885 struct sh_eth_private *mdp = netdev_priv(ndev);
1886 return mdp->msg_enable;
1887 }
1888
1889 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1890 {
1891 struct sh_eth_private *mdp = netdev_priv(ndev);
1892 mdp->msg_enable = value;
1893 }
1894
1895 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1896 "rx_current", "tx_current",
1897 "rx_dirty", "tx_dirty",
1898 };
1899 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
1900
1901 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1902 {
1903 switch (sset) {
1904 case ETH_SS_STATS:
1905 return SH_ETH_STATS_LEN;
1906 default:
1907 return -EOPNOTSUPP;
1908 }
1909 }
1910
1911 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1912 struct ethtool_stats *stats, u64 *data)
1913 {
1914 struct sh_eth_private *mdp = netdev_priv(ndev);
1915 int i = 0;
1916
1917 /* device-specific stats */
1918 data[i++] = mdp->cur_rx;
1919 data[i++] = mdp->cur_tx;
1920 data[i++] = mdp->dirty_rx;
1921 data[i++] = mdp->dirty_tx;
1922 }
1923
1924 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1925 {
1926 switch (stringset) {
1927 case ETH_SS_STATS:
1928 memcpy(data, *sh_eth_gstrings_stats,
1929 sizeof(sh_eth_gstrings_stats));
1930 break;
1931 }
1932 }
1933
1934 static void sh_eth_get_ringparam(struct net_device *ndev,
1935 struct ethtool_ringparam *ring)
1936 {
1937 struct sh_eth_private *mdp = netdev_priv(ndev);
1938
1939 ring->rx_max_pending = RX_RING_MAX;
1940 ring->tx_max_pending = TX_RING_MAX;
1941 ring->rx_pending = mdp->num_rx_ring;
1942 ring->tx_pending = mdp->num_tx_ring;
1943 }
1944
1945 static int sh_eth_set_ringparam(struct net_device *ndev,
1946 struct ethtool_ringparam *ring)
1947 {
1948 struct sh_eth_private *mdp = netdev_priv(ndev);
1949 int ret;
1950
1951 if (ring->tx_pending > TX_RING_MAX ||
1952 ring->rx_pending > RX_RING_MAX ||
1953 ring->tx_pending < TX_RING_MIN ||
1954 ring->rx_pending < RX_RING_MIN)
1955 return -EINVAL;
1956 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1957 return -EINVAL;
1958
1959 if (netif_running(ndev)) {
1960 netif_tx_disable(ndev);
1961 /* Disable interrupts by clearing the interrupt mask. */
1962 sh_eth_write(ndev, 0x0000, EESIPR);
1963 /* Stop the chip's Tx and Rx processes. */
1964 sh_eth_write(ndev, 0, EDTRR);
1965 sh_eth_write(ndev, 0, EDRRR);
1966 synchronize_irq(ndev->irq);
1967 }
1968
1969 /* Free all the skbuffs in the Rx queue. */
1970 sh_eth_ring_free(ndev);
1971 /* Free DMA buffer */
1972 sh_eth_free_dma_buffer(mdp);
1973
1974 /* Set new parameters */
1975 mdp->num_rx_ring = ring->rx_pending;
1976 mdp->num_tx_ring = ring->tx_pending;
1977
1978 ret = sh_eth_ring_init(ndev);
1979 if (ret < 0) {
1980 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n", __func__);
1981 return ret;
1982 }
1983 ret = sh_eth_dev_init(ndev, false);
1984 if (ret < 0) {
1985 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n", __func__);
1986 return ret;
1987 }
1988
1989 if (netif_running(ndev)) {
1990 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1991 /* Setting the Rx mode will start the Rx process. */
1992 sh_eth_write(ndev, EDRRR_R, EDRRR);
1993 netif_wake_queue(ndev);
1994 }
1995
1996 return 0;
1997 }
1998
1999 static const struct ethtool_ops sh_eth_ethtool_ops = {
2000 .get_settings = sh_eth_get_settings,
2001 .set_settings = sh_eth_set_settings,
2002 .nway_reset = sh_eth_nway_reset,
2003 .get_msglevel = sh_eth_get_msglevel,
2004 .set_msglevel = sh_eth_set_msglevel,
2005 .get_link = ethtool_op_get_link,
2006 .get_strings = sh_eth_get_strings,
2007 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2008 .get_sset_count = sh_eth_get_sset_count,
2009 .get_ringparam = sh_eth_get_ringparam,
2010 .set_ringparam = sh_eth_set_ringparam,
2011 };
2012
2013 /* network device open function */
2014 static int sh_eth_open(struct net_device *ndev)
2015 {
2016 int ret = 0;
2017 struct sh_eth_private *mdp = netdev_priv(ndev);
2018
2019 pm_runtime_get_sync(&mdp->pdev->dev);
2020
2021 napi_enable(&mdp->napi);
2022
2023 ret = request_irq(ndev->irq, sh_eth_interrupt,
2024 mdp->cd->irq_flags, ndev->name, ndev);
2025 if (ret) {
2026 netdev_err(ndev, "Can not assign IRQ number\n");
2027 goto out_napi_off;
2028 }
2029
2030 /* Descriptor set */
2031 ret = sh_eth_ring_init(ndev);
2032 if (ret)
2033 goto out_free_irq;
2034
2035 /* device init */
2036 ret = sh_eth_dev_init(ndev, true);
2037 if (ret)
2038 goto out_free_irq;
2039
2040 /* PHY control start*/
2041 ret = sh_eth_phy_start(ndev);
2042 if (ret)
2043 goto out_free_irq;
2044
2045 return ret;
2046
2047 out_free_irq:
2048 free_irq(ndev->irq, ndev);
2049 out_napi_off:
2050 napi_disable(&mdp->napi);
2051 pm_runtime_put_sync(&mdp->pdev->dev);
2052 return ret;
2053 }
2054
2055 /* Timeout function */
2056 static void sh_eth_tx_timeout(struct net_device *ndev)
2057 {
2058 struct sh_eth_private *mdp = netdev_priv(ndev);
2059 struct sh_eth_rxdesc *rxdesc;
2060 int i;
2061
2062 netif_stop_queue(ndev);
2063
2064 netif_err(mdp, timer, ndev,
2065 "transmit timed out, status %8.8x, resetting...\n",
2066 (int)sh_eth_read(ndev, EESR));
2067
2068 /* tx_errors count up */
2069 ndev->stats.tx_errors++;
2070
2071 /* Free all the skbuffs in the Rx queue. */
2072 for (i = 0; i < mdp->num_rx_ring; i++) {
2073 rxdesc = &mdp->rx_ring[i];
2074 rxdesc->status = 0;
2075 rxdesc->addr = 0xBADF00D0;
2076 dev_kfree_skb(mdp->rx_skbuff[i]);
2077 mdp->rx_skbuff[i] = NULL;
2078 }
2079 for (i = 0; i < mdp->num_tx_ring; i++) {
2080 dev_kfree_skb(mdp->tx_skbuff[i]);
2081 mdp->tx_skbuff[i] = NULL;
2082 }
2083
2084 /* device init */
2085 sh_eth_dev_init(ndev, true);
2086 }
2087
2088 /* Packet transmit function */
2089 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2090 {
2091 struct sh_eth_private *mdp = netdev_priv(ndev);
2092 struct sh_eth_txdesc *txdesc;
2093 u32 entry;
2094 unsigned long flags;
2095
2096 spin_lock_irqsave(&mdp->lock, flags);
2097 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2098 if (!sh_eth_txfree(ndev)) {
2099 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2100 netif_stop_queue(ndev);
2101 spin_unlock_irqrestore(&mdp->lock, flags);
2102 return NETDEV_TX_BUSY;
2103 }
2104 }
2105 spin_unlock_irqrestore(&mdp->lock, flags);
2106
2107 entry = mdp->cur_tx % mdp->num_tx_ring;
2108 mdp->tx_skbuff[entry] = skb;
2109 txdesc = &mdp->tx_ring[entry];
2110 /* soft swap. */
2111 if (!mdp->cd->hw_swap)
2112 sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2113 skb->len + 2);
2114 txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2115 DMA_TO_DEVICE);
2116 if (skb->len < ETH_ZLEN)
2117 txdesc->buffer_length = ETH_ZLEN;
2118 else
2119 txdesc->buffer_length = skb->len;
2120
2121 if (entry >= mdp->num_tx_ring - 1)
2122 txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2123 else
2124 txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2125
2126 mdp->cur_tx++;
2127
2128 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2129 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2130
2131 return NETDEV_TX_OK;
2132 }
2133
2134 /* device close function */
2135 static int sh_eth_close(struct net_device *ndev)
2136 {
2137 struct sh_eth_private *mdp = netdev_priv(ndev);
2138
2139 netif_stop_queue(ndev);
2140
2141 /* Disable interrupts by clearing the interrupt mask. */
2142 sh_eth_write(ndev, 0x0000, EESIPR);
2143
2144 /* Stop the chip's Tx and Rx processes. */
2145 sh_eth_write(ndev, 0, EDTRR);
2146 sh_eth_write(ndev, 0, EDRRR);
2147
2148 /* PHY Disconnect */
2149 if (mdp->phydev) {
2150 phy_stop(mdp->phydev);
2151 phy_disconnect(mdp->phydev);
2152 }
2153
2154 free_irq(ndev->irq, ndev);
2155
2156 napi_disable(&mdp->napi);
2157
2158 /* Free all the skbuffs in the Rx queue. */
2159 sh_eth_ring_free(ndev);
2160
2161 /* free DMA buffer */
2162 sh_eth_free_dma_buffer(mdp);
2163
2164 pm_runtime_put_sync(&mdp->pdev->dev);
2165
2166 return 0;
2167 }
2168
2169 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2170 {
2171 struct sh_eth_private *mdp = netdev_priv(ndev);
2172
2173 if (sh_eth_is_rz_fast_ether(mdp))
2174 return &ndev->stats;
2175
2176 pm_runtime_get_sync(&mdp->pdev->dev);
2177
2178 ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2179 sh_eth_write(ndev, 0, TROCR); /* (write clear) */
2180 ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2181 sh_eth_write(ndev, 0, CDCR); /* (write clear) */
2182 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2183 sh_eth_write(ndev, 0, LCCR); /* (write clear) */
2184 if (sh_eth_is_gether(mdp)) {
2185 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2186 sh_eth_write(ndev, 0, CERCR); /* (write clear) */
2187 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2188 sh_eth_write(ndev, 0, CEECR); /* (write clear) */
2189 } else {
2190 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2191 sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
2192 }
2193 pm_runtime_put_sync(&mdp->pdev->dev);
2194
2195 return &ndev->stats;
2196 }
2197
2198 /* ioctl to device function */
2199 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2200 {
2201 struct sh_eth_private *mdp = netdev_priv(ndev);
2202 struct phy_device *phydev = mdp->phydev;
2203
2204 if (!netif_running(ndev))
2205 return -EINVAL;
2206
2207 if (!phydev)
2208 return -ENODEV;
2209
2210 return phy_mii_ioctl(phydev, rq, cmd);
2211 }
2212
2213 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2214 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2215 int entry)
2216 {
2217 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2218 }
2219
2220 static u32 sh_eth_tsu_get_post_mask(int entry)
2221 {
2222 return 0x0f << (28 - ((entry % 8) * 4));
2223 }
2224
2225 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2226 {
2227 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2228 }
2229
2230 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2231 int entry)
2232 {
2233 struct sh_eth_private *mdp = netdev_priv(ndev);
2234 u32 tmp;
2235 void *reg_offset;
2236
2237 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2238 tmp = ioread32(reg_offset);
2239 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2240 }
2241
2242 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2243 int entry)
2244 {
2245 struct sh_eth_private *mdp = netdev_priv(ndev);
2246 u32 post_mask, ref_mask, tmp;
2247 void *reg_offset;
2248
2249 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2250 post_mask = sh_eth_tsu_get_post_mask(entry);
2251 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2252
2253 tmp = ioread32(reg_offset);
2254 iowrite32(tmp & ~post_mask, reg_offset);
2255
2256 /* If other port enables, the function returns "true" */
2257 return tmp & ref_mask;
2258 }
2259
2260 static int sh_eth_tsu_busy(struct net_device *ndev)
2261 {
2262 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2263 struct sh_eth_private *mdp = netdev_priv(ndev);
2264
2265 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2266 udelay(10);
2267 timeout--;
2268 if (timeout <= 0) {
2269 netdev_err(ndev, "%s: timeout\n", __func__);
2270 return -ETIMEDOUT;
2271 }
2272 }
2273
2274 return 0;
2275 }
2276
2277 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2278 const u8 *addr)
2279 {
2280 u32 val;
2281
2282 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2283 iowrite32(val, reg);
2284 if (sh_eth_tsu_busy(ndev) < 0)
2285 return -EBUSY;
2286
2287 val = addr[4] << 8 | addr[5];
2288 iowrite32(val, reg + 4);
2289 if (sh_eth_tsu_busy(ndev) < 0)
2290 return -EBUSY;
2291
2292 return 0;
2293 }
2294
2295 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2296 {
2297 u32 val;
2298
2299 val = ioread32(reg);
2300 addr[0] = (val >> 24) & 0xff;
2301 addr[1] = (val >> 16) & 0xff;
2302 addr[2] = (val >> 8) & 0xff;
2303 addr[3] = val & 0xff;
2304 val = ioread32(reg + 4);
2305 addr[4] = (val >> 8) & 0xff;
2306 addr[5] = val & 0xff;
2307 }
2308
2309
2310 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2311 {
2312 struct sh_eth_private *mdp = netdev_priv(ndev);
2313 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2314 int i;
2315 u8 c_addr[ETH_ALEN];
2316
2317 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2318 sh_eth_tsu_read_entry(reg_offset, c_addr);
2319 if (ether_addr_equal(addr, c_addr))
2320 return i;
2321 }
2322
2323 return -ENOENT;
2324 }
2325
2326 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2327 {
2328 u8 blank[ETH_ALEN];
2329 int entry;
2330
2331 memset(blank, 0, sizeof(blank));
2332 entry = sh_eth_tsu_find_entry(ndev, blank);
2333 return (entry < 0) ? -ENOMEM : entry;
2334 }
2335
2336 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2337 int entry)
2338 {
2339 struct sh_eth_private *mdp = netdev_priv(ndev);
2340 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2341 int ret;
2342 u8 blank[ETH_ALEN];
2343
2344 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2345 ~(1 << (31 - entry)), TSU_TEN);
2346
2347 memset(blank, 0, sizeof(blank));
2348 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2349 if (ret < 0)
2350 return ret;
2351 return 0;
2352 }
2353
2354 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2355 {
2356 struct sh_eth_private *mdp = netdev_priv(ndev);
2357 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2358 int i, ret;
2359
2360 if (!mdp->cd->tsu)
2361 return 0;
2362
2363 i = sh_eth_tsu_find_entry(ndev, addr);
2364 if (i < 0) {
2365 /* No entry found, create one */
2366 i = sh_eth_tsu_find_empty(ndev);
2367 if (i < 0)
2368 return -ENOMEM;
2369 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2370 if (ret < 0)
2371 return ret;
2372
2373 /* Enable the entry */
2374 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2375 (1 << (31 - i)), TSU_TEN);
2376 }
2377
2378 /* Entry found or created, enable POST */
2379 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2380
2381 return 0;
2382 }
2383
2384 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2385 {
2386 struct sh_eth_private *mdp = netdev_priv(ndev);
2387 int i, ret;
2388
2389 if (!mdp->cd->tsu)
2390 return 0;
2391
2392 i = sh_eth_tsu_find_entry(ndev, addr);
2393 if (i) {
2394 /* Entry found */
2395 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2396 goto done;
2397
2398 /* Disable the entry if both ports was disabled */
2399 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2400 if (ret < 0)
2401 return ret;
2402 }
2403 done:
2404 return 0;
2405 }
2406
2407 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2408 {
2409 struct sh_eth_private *mdp = netdev_priv(ndev);
2410 int i, ret;
2411
2412 if (unlikely(!mdp->cd->tsu))
2413 return 0;
2414
2415 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2416 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2417 continue;
2418
2419 /* Disable the entry if both ports was disabled */
2420 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2421 if (ret < 0)
2422 return ret;
2423 }
2424
2425 return 0;
2426 }
2427
2428 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2429 {
2430 struct sh_eth_private *mdp = netdev_priv(ndev);
2431 u8 addr[ETH_ALEN];
2432 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2433 int i;
2434
2435 if (unlikely(!mdp->cd->tsu))
2436 return;
2437
2438 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2439 sh_eth_tsu_read_entry(reg_offset, addr);
2440 if (is_multicast_ether_addr(addr))
2441 sh_eth_tsu_del_entry(ndev, addr);
2442 }
2443 }
2444
2445 /* Multicast reception directions set */
2446 static void sh_eth_set_multicast_list(struct net_device *ndev)
2447 {
2448 struct sh_eth_private *mdp = netdev_priv(ndev);
2449 u32 ecmr_bits;
2450 int mcast_all = 0;
2451 unsigned long flags;
2452
2453 spin_lock_irqsave(&mdp->lock, flags);
2454 /* Initial condition is MCT = 1, PRM = 0.
2455 * Depending on ndev->flags, set PRM or clear MCT
2456 */
2457 ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2458
2459 if (!(ndev->flags & IFF_MULTICAST)) {
2460 sh_eth_tsu_purge_mcast(ndev);
2461 mcast_all = 1;
2462 }
2463 if (ndev->flags & IFF_ALLMULTI) {
2464 sh_eth_tsu_purge_mcast(ndev);
2465 ecmr_bits &= ~ECMR_MCT;
2466 mcast_all = 1;
2467 }
2468
2469 if (ndev->flags & IFF_PROMISC) {
2470 sh_eth_tsu_purge_all(ndev);
2471 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2472 } else if (mdp->cd->tsu) {
2473 struct netdev_hw_addr *ha;
2474 netdev_for_each_mc_addr(ha, ndev) {
2475 if (mcast_all && is_multicast_ether_addr(ha->addr))
2476 continue;
2477
2478 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2479 if (!mcast_all) {
2480 sh_eth_tsu_purge_mcast(ndev);
2481 ecmr_bits &= ~ECMR_MCT;
2482 mcast_all = 1;
2483 }
2484 }
2485 }
2486 } else {
2487 /* Normal, unicast/broadcast-only mode. */
2488 ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2489 }
2490
2491 /* update the ethernet mode */
2492 sh_eth_write(ndev, ecmr_bits, ECMR);
2493
2494 spin_unlock_irqrestore(&mdp->lock, flags);
2495 }
2496
2497 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2498 {
2499 if (!mdp->port)
2500 return TSU_VTAG0;
2501 else
2502 return TSU_VTAG1;
2503 }
2504
2505 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2506 __be16 proto, u16 vid)
2507 {
2508 struct sh_eth_private *mdp = netdev_priv(ndev);
2509 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2510
2511 if (unlikely(!mdp->cd->tsu))
2512 return -EPERM;
2513
2514 /* No filtering if vid = 0 */
2515 if (!vid)
2516 return 0;
2517
2518 mdp->vlan_num_ids++;
2519
2520 /* The controller has one VLAN tag HW filter. So, if the filter is
2521 * already enabled, the driver disables it and the filte
2522 */
2523 if (mdp->vlan_num_ids > 1) {
2524 /* disable VLAN filter */
2525 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2526 return 0;
2527 }
2528
2529 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2530 vtag_reg_index);
2531
2532 return 0;
2533 }
2534
2535 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2536 __be16 proto, u16 vid)
2537 {
2538 struct sh_eth_private *mdp = netdev_priv(ndev);
2539 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2540
2541 if (unlikely(!mdp->cd->tsu))
2542 return -EPERM;
2543
2544 /* No filtering if vid = 0 */
2545 if (!vid)
2546 return 0;
2547
2548 mdp->vlan_num_ids--;
2549 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2550
2551 return 0;
2552 }
2553
2554 /* SuperH's TSU register init function */
2555 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2556 {
2557 if (sh_eth_is_rz_fast_ether(mdp)) {
2558 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2559 return;
2560 }
2561
2562 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2563 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2564 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2565 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2566 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2567 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2568 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2569 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2570 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2571 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2572 if (sh_eth_is_gether(mdp)) {
2573 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
2574 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
2575 } else {
2576 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
2577 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
2578 }
2579 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
2580 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
2581 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2582 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
2583 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
2584 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
2585 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
2586 }
2587
2588 /* MDIO bus release function */
2589 static int sh_mdio_release(struct sh_eth_private *mdp)
2590 {
2591 /* unregister mdio bus */
2592 mdiobus_unregister(mdp->mii_bus);
2593
2594 /* free bitbang info */
2595 free_mdio_bitbang(mdp->mii_bus);
2596
2597 return 0;
2598 }
2599
2600 /* MDIO bus init function */
2601 static int sh_mdio_init(struct sh_eth_private *mdp,
2602 struct sh_eth_plat_data *pd)
2603 {
2604 int ret, i;
2605 struct bb_info *bitbang;
2606 struct platform_device *pdev = mdp->pdev;
2607 struct device *dev = &mdp->pdev->dev;
2608
2609 /* create bit control struct for PHY */
2610 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2611 if (!bitbang)
2612 return -ENOMEM;
2613
2614 /* bitbang init */
2615 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2616 bitbang->set_gate = pd->set_mdio_gate;
2617 bitbang->mdi_msk = PIR_MDI;
2618 bitbang->mdo_msk = PIR_MDO;
2619 bitbang->mmd_msk = PIR_MMD;
2620 bitbang->mdc_msk = PIR_MDC;
2621 bitbang->ctrl.ops = &bb_ops;
2622
2623 /* MII controller setting */
2624 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2625 if (!mdp->mii_bus)
2626 return -ENOMEM;
2627
2628 /* Hook up MII support for ethtool */
2629 mdp->mii_bus->name = "sh_mii";
2630 mdp->mii_bus->parent = dev;
2631 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2632 pdev->name, pdev->id);
2633
2634 /* PHY IRQ */
2635 mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2636 GFP_KERNEL);
2637 if (!mdp->mii_bus->irq) {
2638 ret = -ENOMEM;
2639 goto out_free_bus;
2640 }
2641
2642 /* register MDIO bus */
2643 if (dev->of_node) {
2644 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2645 } else {
2646 for (i = 0; i < PHY_MAX_ADDR; i++)
2647 mdp->mii_bus->irq[i] = PHY_POLL;
2648 if (pd->phy_irq > 0)
2649 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2650
2651 ret = mdiobus_register(mdp->mii_bus);
2652 }
2653
2654 if (ret)
2655 goto out_free_bus;
2656
2657 return 0;
2658
2659 out_free_bus:
2660 free_mdio_bitbang(mdp->mii_bus);
2661 return ret;
2662 }
2663
2664 static const u16 *sh_eth_get_register_offset(int register_type)
2665 {
2666 const u16 *reg_offset = NULL;
2667
2668 switch (register_type) {
2669 case SH_ETH_REG_GIGABIT:
2670 reg_offset = sh_eth_offset_gigabit;
2671 break;
2672 case SH_ETH_REG_FAST_RZ:
2673 reg_offset = sh_eth_offset_fast_rz;
2674 break;
2675 case SH_ETH_REG_FAST_RCAR:
2676 reg_offset = sh_eth_offset_fast_rcar;
2677 break;
2678 case SH_ETH_REG_FAST_SH4:
2679 reg_offset = sh_eth_offset_fast_sh4;
2680 break;
2681 case SH_ETH_REG_FAST_SH3_SH2:
2682 reg_offset = sh_eth_offset_fast_sh3_sh2;
2683 break;
2684 default:
2685 break;
2686 }
2687
2688 return reg_offset;
2689 }
2690
2691 static const struct net_device_ops sh_eth_netdev_ops = {
2692 .ndo_open = sh_eth_open,
2693 .ndo_stop = sh_eth_close,
2694 .ndo_start_xmit = sh_eth_start_xmit,
2695 .ndo_get_stats = sh_eth_get_stats,
2696 .ndo_tx_timeout = sh_eth_tx_timeout,
2697 .ndo_do_ioctl = sh_eth_do_ioctl,
2698 .ndo_validate_addr = eth_validate_addr,
2699 .ndo_set_mac_address = eth_mac_addr,
2700 .ndo_change_mtu = eth_change_mtu,
2701 };
2702
2703 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2704 .ndo_open = sh_eth_open,
2705 .ndo_stop = sh_eth_close,
2706 .ndo_start_xmit = sh_eth_start_xmit,
2707 .ndo_get_stats = sh_eth_get_stats,
2708 .ndo_set_rx_mode = sh_eth_set_multicast_list,
2709 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
2710 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
2711 .ndo_tx_timeout = sh_eth_tx_timeout,
2712 .ndo_do_ioctl = sh_eth_do_ioctl,
2713 .ndo_validate_addr = eth_validate_addr,
2714 .ndo_set_mac_address = eth_mac_addr,
2715 .ndo_change_mtu = eth_change_mtu,
2716 };
2717
2718 #ifdef CONFIG_OF
2719 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2720 {
2721 struct device_node *np = dev->of_node;
2722 struct sh_eth_plat_data *pdata;
2723 const char *mac_addr;
2724
2725 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2726 if (!pdata)
2727 return NULL;
2728
2729 pdata->phy_interface = of_get_phy_mode(np);
2730
2731 mac_addr = of_get_mac_address(np);
2732 if (mac_addr)
2733 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2734
2735 pdata->no_ether_link =
2736 of_property_read_bool(np, "renesas,no-ether-link");
2737 pdata->ether_link_active_low =
2738 of_property_read_bool(np, "renesas,ether-link-active-low");
2739
2740 return pdata;
2741 }
2742
2743 static const struct of_device_id sh_eth_match_table[] = {
2744 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2745 { .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2746 { .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2747 { .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2748 { .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2749 { .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2750 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2751 { }
2752 };
2753 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2754 #else
2755 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2756 {
2757 return NULL;
2758 }
2759 #endif
2760
2761 static int sh_eth_drv_probe(struct platform_device *pdev)
2762 {
2763 int ret, devno = 0;
2764 struct resource *res;
2765 struct net_device *ndev = NULL;
2766 struct sh_eth_private *mdp = NULL;
2767 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2768 const struct platform_device_id *id = platform_get_device_id(pdev);
2769
2770 /* get base addr */
2771 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2772 if (unlikely(res == NULL)) {
2773 dev_err(&pdev->dev, "invalid resource\n");
2774 return -EINVAL;
2775 }
2776
2777 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2778 if (!ndev)
2779 return -ENOMEM;
2780
2781 pm_runtime_enable(&pdev->dev);
2782 pm_runtime_get_sync(&pdev->dev);
2783
2784 /* The sh Ether-specific entries in the device structure. */
2785 ndev->base_addr = res->start;
2786 devno = pdev->id;
2787 if (devno < 0)
2788 devno = 0;
2789
2790 ndev->dma = -1;
2791 ret = platform_get_irq(pdev, 0);
2792 if (ret < 0) {
2793 ret = -ENODEV;
2794 goto out_release;
2795 }
2796 ndev->irq = ret;
2797
2798 SET_NETDEV_DEV(ndev, &pdev->dev);
2799
2800 mdp = netdev_priv(ndev);
2801 mdp->num_tx_ring = TX_RING_SIZE;
2802 mdp->num_rx_ring = RX_RING_SIZE;
2803 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2804 if (IS_ERR(mdp->addr)) {
2805 ret = PTR_ERR(mdp->addr);
2806 goto out_release;
2807 }
2808
2809 spin_lock_init(&mdp->lock);
2810 mdp->pdev = pdev;
2811
2812 if (pdev->dev.of_node)
2813 pd = sh_eth_parse_dt(&pdev->dev);
2814 if (!pd) {
2815 dev_err(&pdev->dev, "no platform data\n");
2816 ret = -EINVAL;
2817 goto out_release;
2818 }
2819
2820 /* get PHY ID */
2821 mdp->phy_id = pd->phy;
2822 mdp->phy_interface = pd->phy_interface;
2823 /* EDMAC endian */
2824 mdp->edmac_endian = pd->edmac_endian;
2825 mdp->no_ether_link = pd->no_ether_link;
2826 mdp->ether_link_active_low = pd->ether_link_active_low;
2827
2828 /* set cpu data */
2829 if (id) {
2830 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2831 } else {
2832 const struct of_device_id *match;
2833
2834 match = of_match_device(of_match_ptr(sh_eth_match_table),
2835 &pdev->dev);
2836 mdp->cd = (struct sh_eth_cpu_data *)match->data;
2837 }
2838 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2839 if (!mdp->reg_offset) {
2840 dev_err(&pdev->dev, "Unknown register type (%d)\n",
2841 mdp->cd->register_type);
2842 ret = -EINVAL;
2843 goto out_release;
2844 }
2845 sh_eth_set_default_cpu_data(mdp->cd);
2846
2847 /* set function */
2848 if (mdp->cd->tsu)
2849 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2850 else
2851 ndev->netdev_ops = &sh_eth_netdev_ops;
2852 ndev->ethtool_ops = &sh_eth_ethtool_ops;
2853 ndev->watchdog_timeo = TX_TIMEOUT;
2854
2855 /* debug message level */
2856 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2857
2858 /* read and set MAC address */
2859 read_mac_address(ndev, pd->mac_addr);
2860 if (!is_valid_ether_addr(ndev->dev_addr)) {
2861 dev_warn(&pdev->dev,
2862 "no valid MAC address supplied, using a random one.\n");
2863 eth_hw_addr_random(ndev);
2864 }
2865
2866 /* ioremap the TSU registers */
2867 if (mdp->cd->tsu) {
2868 struct resource *rtsu;
2869 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2870 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2871 if (IS_ERR(mdp->tsu_addr)) {
2872 ret = PTR_ERR(mdp->tsu_addr);
2873 goto out_release;
2874 }
2875 mdp->port = devno % 2;
2876 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2877 }
2878
2879 /* initialize first or needed device */
2880 if (!devno || pd->needs_init) {
2881 if (mdp->cd->chip_reset)
2882 mdp->cd->chip_reset(ndev);
2883
2884 if (mdp->cd->tsu) {
2885 /* TSU init (Init only)*/
2886 sh_eth_tsu_init(mdp);
2887 }
2888 }
2889
2890 /* MDIO bus init */
2891 ret = sh_mdio_init(mdp, pd);
2892 if (ret) {
2893 dev_err(&ndev->dev, "failed to initialise MDIO\n");
2894 goto out_release;
2895 }
2896
2897 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2898
2899 /* network device register */
2900 ret = register_netdev(ndev);
2901 if (ret)
2902 goto out_napi_del;
2903
2904 /* print device information */
2905 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
2906 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2907
2908 pm_runtime_put(&pdev->dev);
2909 platform_set_drvdata(pdev, ndev);
2910
2911 return ret;
2912
2913 out_napi_del:
2914 netif_napi_del(&mdp->napi);
2915 sh_mdio_release(mdp);
2916
2917 out_release:
2918 /* net_dev free */
2919 if (ndev)
2920 free_netdev(ndev);
2921
2922 pm_runtime_put(&pdev->dev);
2923 pm_runtime_disable(&pdev->dev);
2924 return ret;
2925 }
2926
2927 static int sh_eth_drv_remove(struct platform_device *pdev)
2928 {
2929 struct net_device *ndev = platform_get_drvdata(pdev);
2930 struct sh_eth_private *mdp = netdev_priv(ndev);
2931
2932 unregister_netdev(ndev);
2933 netif_napi_del(&mdp->napi);
2934 sh_mdio_release(mdp);
2935 pm_runtime_disable(&pdev->dev);
2936 free_netdev(ndev);
2937
2938 return 0;
2939 }
2940
2941 #ifdef CONFIG_PM
2942 static int sh_eth_runtime_nop(struct device *dev)
2943 {
2944 /* Runtime PM callback shared between ->runtime_suspend()
2945 * and ->runtime_resume(). Simply returns success.
2946 *
2947 * This driver re-initializes all registers after
2948 * pm_runtime_get_sync() anyway so there is no need
2949 * to save and restore registers here.
2950 */
2951 return 0;
2952 }
2953
2954 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
2955 .runtime_suspend = sh_eth_runtime_nop,
2956 .runtime_resume = sh_eth_runtime_nop,
2957 };
2958 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
2959 #else
2960 #define SH_ETH_PM_OPS NULL
2961 #endif
2962
2963 static struct platform_device_id sh_eth_id_table[] = {
2964 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
2965 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
2966 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
2967 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
2968 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
2969 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
2970 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
2971 { "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
2972 { "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
2973 { "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
2974 { "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
2975 { "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
2976 { "r8a7794-ether", (kernel_ulong_t)&r8a779x_data },
2977 { }
2978 };
2979 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
2980
2981 static struct platform_driver sh_eth_driver = {
2982 .probe = sh_eth_drv_probe,
2983 .remove = sh_eth_drv_remove,
2984 .id_table = sh_eth_id_table,
2985 .driver = {
2986 .name = CARDNAME,
2987 .pm = SH_ETH_PM_OPS,
2988 .of_match_table = of_match_ptr(sh_eth_match_table),
2989 },
2990 };
2991
2992 module_platform_driver(sh_eth_driver);
2993
2994 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2995 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2996 MODULE_LICENSE("GPL v2");
This page took 0.091429 seconds and 4 git commands to generate.