Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / ethernet / renesas / sh_eth.c
1 /*
2 * SuperH Ethernet device driver
3 *
4 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 * Copyright (C) 2008-2012 Renesas Solutions Corp.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * The full GNU General Public License is included in this distribution in
20 * the file called "COPYING".
21 */
22
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/spinlock.h>
27 #include <linux/interrupt.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/mdio-bitbang.h>
33 #include <linux/netdevice.h>
34 #include <linux/phy.h>
35 #include <linux/cache.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/slab.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/clk.h>
42 #include <linux/sh_eth.h>
43
44 #include "sh_eth.h"
45
46 #define SH_ETH_DEF_MSG_ENABLE \
47 (NETIF_MSG_LINK | \
48 NETIF_MSG_TIMER | \
49 NETIF_MSG_RX_ERR| \
50 NETIF_MSG_TX_ERR)
51
52 /* There is CPU dependent code */
53 #if defined(CONFIG_CPU_SUBTYPE_SH7724)
54 #define SH_ETH_RESET_DEFAULT 1
55 static void sh_eth_set_duplex(struct net_device *ndev)
56 {
57 struct sh_eth_private *mdp = netdev_priv(ndev);
58
59 if (mdp->duplex) /* Full */
60 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
61 else /* Half */
62 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
63 }
64
65 static void sh_eth_set_rate(struct net_device *ndev)
66 {
67 struct sh_eth_private *mdp = netdev_priv(ndev);
68
69 switch (mdp->speed) {
70 case 10: /* 10BASE */
71 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
72 break;
73 case 100:/* 100BASE */
74 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
75 break;
76 default:
77 break;
78 }
79 }
80
81 /* SH7724 */
82 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
83 .set_duplex = sh_eth_set_duplex,
84 .set_rate = sh_eth_set_rate,
85
86 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
87 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
88 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
89
90 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
91 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
92 EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
93 .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
94
95 .apr = 1,
96 .mpr = 1,
97 .tpauser = 1,
98 .hw_swap = 1,
99 .rpadir = 1,
100 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
101 };
102 #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
103 #define SH_ETH_HAS_BOTH_MODULES 1
104 #define SH_ETH_HAS_TSU 1
105 static void sh_eth_set_duplex(struct net_device *ndev)
106 {
107 struct sh_eth_private *mdp = netdev_priv(ndev);
108
109 if (mdp->duplex) /* Full */
110 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
111 else /* Half */
112 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
113 }
114
115 static void sh_eth_set_rate(struct net_device *ndev)
116 {
117 struct sh_eth_private *mdp = netdev_priv(ndev);
118
119 switch (mdp->speed) {
120 case 10: /* 10BASE */
121 sh_eth_write(ndev, 0, RTRATE);
122 break;
123 case 100:/* 100BASE */
124 sh_eth_write(ndev, 1, RTRATE);
125 break;
126 default:
127 break;
128 }
129 }
130
131 /* SH7757 */
132 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
133 .set_duplex = sh_eth_set_duplex,
134 .set_rate = sh_eth_set_rate,
135
136 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
137 .rmcr_value = 0x00000001,
138
139 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
140 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
141 EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
142 .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
143
144 .apr = 1,
145 .mpr = 1,
146 .tpauser = 1,
147 .hw_swap = 1,
148 .no_ade = 1,
149 .rpadir = 1,
150 .rpadir_value = 2 << 16,
151 };
152
153 #define SH_GIGA_ETH_BASE 0xfee00000
154 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
155 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
156 static void sh_eth_chip_reset_giga(struct net_device *ndev)
157 {
158 int i;
159 unsigned long mahr[2], malr[2];
160
161 /* save MAHR and MALR */
162 for (i = 0; i < 2; i++) {
163 malr[i] = ioread32((void *)GIGA_MALR(i));
164 mahr[i] = ioread32((void *)GIGA_MAHR(i));
165 }
166
167 /* reset device */
168 iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
169 mdelay(1);
170
171 /* restore MAHR and MALR */
172 for (i = 0; i < 2; i++) {
173 iowrite32(malr[i], (void *)GIGA_MALR(i));
174 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
175 }
176 }
177
178 static int sh_eth_is_gether(struct sh_eth_private *mdp);
179 static void sh_eth_reset(struct net_device *ndev)
180 {
181 struct sh_eth_private *mdp = netdev_priv(ndev);
182 int cnt = 100;
183
184 if (sh_eth_is_gether(mdp)) {
185 sh_eth_write(ndev, 0x03, EDSR);
186 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
187 EDMR);
188 while (cnt > 0) {
189 if (!(sh_eth_read(ndev, EDMR) & 0x3))
190 break;
191 mdelay(1);
192 cnt--;
193 }
194 if (cnt < 0)
195 printk(KERN_ERR "Device reset fail\n");
196
197 /* Table Init */
198 sh_eth_write(ndev, 0x0, TDLAR);
199 sh_eth_write(ndev, 0x0, TDFAR);
200 sh_eth_write(ndev, 0x0, TDFXR);
201 sh_eth_write(ndev, 0x0, TDFFR);
202 sh_eth_write(ndev, 0x0, RDLAR);
203 sh_eth_write(ndev, 0x0, RDFAR);
204 sh_eth_write(ndev, 0x0, RDFXR);
205 sh_eth_write(ndev, 0x0, RDFFR);
206 } else {
207 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
208 EDMR);
209 mdelay(3);
210 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
211 EDMR);
212 }
213 }
214
215 static void sh_eth_set_duplex_giga(struct net_device *ndev)
216 {
217 struct sh_eth_private *mdp = netdev_priv(ndev);
218
219 if (mdp->duplex) /* Full */
220 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
221 else /* Half */
222 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
223 }
224
225 static void sh_eth_set_rate_giga(struct net_device *ndev)
226 {
227 struct sh_eth_private *mdp = netdev_priv(ndev);
228
229 switch (mdp->speed) {
230 case 10: /* 10BASE */
231 sh_eth_write(ndev, 0x00000000, GECMR);
232 break;
233 case 100:/* 100BASE */
234 sh_eth_write(ndev, 0x00000010, GECMR);
235 break;
236 case 1000: /* 1000BASE */
237 sh_eth_write(ndev, 0x00000020, GECMR);
238 break;
239 default:
240 break;
241 }
242 }
243
244 /* SH7757(GETHERC) */
245 static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
246 .chip_reset = sh_eth_chip_reset_giga,
247 .set_duplex = sh_eth_set_duplex_giga,
248 .set_rate = sh_eth_set_rate_giga,
249
250 .ecsr_value = ECSR_ICD | ECSR_MPD,
251 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
252 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
253
254 .tx_check = EESR_TC1 | EESR_FTC,
255 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
256 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
257 EESR_ECI,
258 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
259 EESR_TFE,
260 .fdr_value = 0x0000072f,
261 .rmcr_value = 0x00000001,
262
263 .apr = 1,
264 .mpr = 1,
265 .tpauser = 1,
266 .bculr = 1,
267 .hw_swap = 1,
268 .rpadir = 1,
269 .rpadir_value = 2 << 16,
270 .no_trimd = 1,
271 .no_ade = 1,
272 .tsu = 1,
273 };
274
275 static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
276 {
277 if (sh_eth_is_gether(mdp))
278 return &sh_eth_my_cpu_data_giga;
279 else
280 return &sh_eth_my_cpu_data;
281 }
282
283 #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
284 #define SH_ETH_HAS_TSU 1
285 static void sh_eth_reset_hw_crc(struct net_device *ndev);
286 static void sh_eth_chip_reset(struct net_device *ndev)
287 {
288 struct sh_eth_private *mdp = netdev_priv(ndev);
289
290 /* reset device */
291 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
292 mdelay(1);
293 }
294
295 static void sh_eth_reset(struct net_device *ndev)
296 {
297 int cnt = 100;
298
299 sh_eth_write(ndev, EDSR_ENALL, EDSR);
300 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
301 while (cnt > 0) {
302 if (!(sh_eth_read(ndev, EDMR) & 0x3))
303 break;
304 mdelay(1);
305 cnt--;
306 }
307 if (cnt == 0)
308 printk(KERN_ERR "Device reset fail\n");
309
310 /* Table Init */
311 sh_eth_write(ndev, 0x0, TDLAR);
312 sh_eth_write(ndev, 0x0, TDFAR);
313 sh_eth_write(ndev, 0x0, TDFXR);
314 sh_eth_write(ndev, 0x0, TDFFR);
315 sh_eth_write(ndev, 0x0, RDLAR);
316 sh_eth_write(ndev, 0x0, RDFAR);
317 sh_eth_write(ndev, 0x0, RDFXR);
318 sh_eth_write(ndev, 0x0, RDFFR);
319
320 /* Reset HW CRC register */
321 sh_eth_reset_hw_crc(ndev);
322 }
323
324 static void sh_eth_set_duplex(struct net_device *ndev)
325 {
326 struct sh_eth_private *mdp = netdev_priv(ndev);
327
328 if (mdp->duplex) /* Full */
329 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
330 else /* Half */
331 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
332 }
333
334 static void sh_eth_set_rate(struct net_device *ndev)
335 {
336 struct sh_eth_private *mdp = netdev_priv(ndev);
337
338 switch (mdp->speed) {
339 case 10: /* 10BASE */
340 sh_eth_write(ndev, GECMR_10, GECMR);
341 break;
342 case 100:/* 100BASE */
343 sh_eth_write(ndev, GECMR_100, GECMR);
344 break;
345 case 1000: /* 1000BASE */
346 sh_eth_write(ndev, GECMR_1000, GECMR);
347 break;
348 default:
349 break;
350 }
351 }
352
353 /* sh7763 */
354 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
355 .chip_reset = sh_eth_chip_reset,
356 .set_duplex = sh_eth_set_duplex,
357 .set_rate = sh_eth_set_rate,
358
359 .ecsr_value = ECSR_ICD | ECSR_MPD,
360 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
361 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
362
363 .tx_check = EESR_TC1 | EESR_FTC,
364 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
365 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
366 EESR_ECI,
367 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
368 EESR_TFE,
369
370 .apr = 1,
371 .mpr = 1,
372 .tpauser = 1,
373 .bculr = 1,
374 .hw_swap = 1,
375 .no_trimd = 1,
376 .no_ade = 1,
377 .tsu = 1,
378 #if defined(CONFIG_CPU_SUBTYPE_SH7734)
379 .hw_crc = 1,
380 #endif
381 };
382
383 static void sh_eth_reset_hw_crc(struct net_device *ndev)
384 {
385 if (sh_eth_my_cpu_data.hw_crc)
386 sh_eth_write(ndev, 0x0, CSMR);
387 }
388
389 #elif defined(CONFIG_ARCH_R8A7740)
390 #define SH_ETH_HAS_TSU 1
391 static void sh_eth_chip_reset(struct net_device *ndev)
392 {
393 struct sh_eth_private *mdp = netdev_priv(ndev);
394 unsigned long mii;
395
396 /* reset device */
397 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
398 mdelay(1);
399
400 switch (mdp->phy_interface) {
401 case PHY_INTERFACE_MODE_GMII:
402 mii = 2;
403 break;
404 case PHY_INTERFACE_MODE_MII:
405 mii = 1;
406 break;
407 case PHY_INTERFACE_MODE_RMII:
408 default:
409 mii = 0;
410 break;
411 }
412 sh_eth_write(ndev, mii, RMII_MII);
413 }
414
415 static void sh_eth_reset(struct net_device *ndev)
416 {
417 int cnt = 100;
418
419 sh_eth_write(ndev, EDSR_ENALL, EDSR);
420 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
421 while (cnt > 0) {
422 if (!(sh_eth_read(ndev, EDMR) & 0x3))
423 break;
424 mdelay(1);
425 cnt--;
426 }
427 if (cnt == 0)
428 printk(KERN_ERR "Device reset fail\n");
429
430 /* Table Init */
431 sh_eth_write(ndev, 0x0, TDLAR);
432 sh_eth_write(ndev, 0x0, TDFAR);
433 sh_eth_write(ndev, 0x0, TDFXR);
434 sh_eth_write(ndev, 0x0, TDFFR);
435 sh_eth_write(ndev, 0x0, RDLAR);
436 sh_eth_write(ndev, 0x0, RDFAR);
437 sh_eth_write(ndev, 0x0, RDFXR);
438 sh_eth_write(ndev, 0x0, RDFFR);
439 }
440
441 static void sh_eth_set_duplex(struct net_device *ndev)
442 {
443 struct sh_eth_private *mdp = netdev_priv(ndev);
444
445 if (mdp->duplex) /* Full */
446 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
447 else /* Half */
448 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
449 }
450
451 static void sh_eth_set_rate(struct net_device *ndev)
452 {
453 struct sh_eth_private *mdp = netdev_priv(ndev);
454
455 switch (mdp->speed) {
456 case 10: /* 10BASE */
457 sh_eth_write(ndev, GECMR_10, GECMR);
458 break;
459 case 100:/* 100BASE */
460 sh_eth_write(ndev, GECMR_100, GECMR);
461 break;
462 case 1000: /* 1000BASE */
463 sh_eth_write(ndev, GECMR_1000, GECMR);
464 break;
465 default:
466 break;
467 }
468 }
469
470 /* R8A7740 */
471 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
472 .chip_reset = sh_eth_chip_reset,
473 .set_duplex = sh_eth_set_duplex,
474 .set_rate = sh_eth_set_rate,
475
476 .ecsr_value = ECSR_ICD | ECSR_MPD,
477 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
478 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
479
480 .tx_check = EESR_TC1 | EESR_FTC,
481 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
482 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
483 EESR_ECI,
484 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
485 EESR_TFE,
486
487 .apr = 1,
488 .mpr = 1,
489 .tpauser = 1,
490 .bculr = 1,
491 .hw_swap = 1,
492 .no_trimd = 1,
493 .no_ade = 1,
494 .tsu = 1,
495 };
496
497 #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
498 #define SH_ETH_RESET_DEFAULT 1
499 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
500 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
501
502 .apr = 1,
503 .mpr = 1,
504 .tpauser = 1,
505 .hw_swap = 1,
506 };
507 #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
508 #define SH_ETH_RESET_DEFAULT 1
509 #define SH_ETH_HAS_TSU 1
510 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
511 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
512 .tsu = 1,
513 };
514 #endif
515
516 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
517 {
518 if (!cd->ecsr_value)
519 cd->ecsr_value = DEFAULT_ECSR_INIT;
520
521 if (!cd->ecsipr_value)
522 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
523
524 if (!cd->fcftr_value)
525 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
526 DEFAULT_FIFO_F_D_RFD;
527
528 if (!cd->fdr_value)
529 cd->fdr_value = DEFAULT_FDR_INIT;
530
531 if (!cd->rmcr_value)
532 cd->rmcr_value = DEFAULT_RMCR_VALUE;
533
534 if (!cd->tx_check)
535 cd->tx_check = DEFAULT_TX_CHECK;
536
537 if (!cd->eesr_err_check)
538 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
539
540 if (!cd->tx_error_check)
541 cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
542 }
543
544 #if defined(SH_ETH_RESET_DEFAULT)
545 /* Chip Reset */
546 static void sh_eth_reset(struct net_device *ndev)
547 {
548 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
549 mdelay(3);
550 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
551 }
552 #endif
553
554 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
555 static void sh_eth_set_receive_align(struct sk_buff *skb)
556 {
557 int reserve;
558
559 reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
560 if (reserve)
561 skb_reserve(skb, reserve);
562 }
563 #else
564 static void sh_eth_set_receive_align(struct sk_buff *skb)
565 {
566 skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
567 }
568 #endif
569
570
571 /* CPU <-> EDMAC endian convert */
572 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
573 {
574 switch (mdp->edmac_endian) {
575 case EDMAC_LITTLE_ENDIAN:
576 return cpu_to_le32(x);
577 case EDMAC_BIG_ENDIAN:
578 return cpu_to_be32(x);
579 }
580 return x;
581 }
582
583 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
584 {
585 switch (mdp->edmac_endian) {
586 case EDMAC_LITTLE_ENDIAN:
587 return le32_to_cpu(x);
588 case EDMAC_BIG_ENDIAN:
589 return be32_to_cpu(x);
590 }
591 return x;
592 }
593
594 /*
595 * Program the hardware MAC address from dev->dev_addr.
596 */
597 static void update_mac_address(struct net_device *ndev)
598 {
599 sh_eth_write(ndev,
600 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
601 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
602 sh_eth_write(ndev,
603 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
604 }
605
606 /*
607 * Get MAC address from SuperH MAC address register
608 *
609 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
610 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
611 * When you want use this device, you must set MAC address in bootloader.
612 *
613 */
614 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
615 {
616 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
617 memcpy(ndev->dev_addr, mac, 6);
618 } else {
619 ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
620 ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
621 ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
622 ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
623 ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
624 ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
625 }
626 }
627
628 static int sh_eth_is_gether(struct sh_eth_private *mdp)
629 {
630 if (mdp->reg_offset == sh_eth_offset_gigabit)
631 return 1;
632 else
633 return 0;
634 }
635
636 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
637 {
638 if (sh_eth_is_gether(mdp))
639 return EDTRR_TRNS_GETHER;
640 else
641 return EDTRR_TRNS_ETHER;
642 }
643
644 struct bb_info {
645 void (*set_gate)(void *addr);
646 struct mdiobb_ctrl ctrl;
647 void *addr;
648 u32 mmd_msk;/* MMD */
649 u32 mdo_msk;
650 u32 mdi_msk;
651 u32 mdc_msk;
652 };
653
654 /* PHY bit set */
655 static void bb_set(void *addr, u32 msk)
656 {
657 iowrite32(ioread32(addr) | msk, addr);
658 }
659
660 /* PHY bit clear */
661 static void bb_clr(void *addr, u32 msk)
662 {
663 iowrite32((ioread32(addr) & ~msk), addr);
664 }
665
666 /* PHY bit read */
667 static int bb_read(void *addr, u32 msk)
668 {
669 return (ioread32(addr) & msk) != 0;
670 }
671
672 /* Data I/O pin control */
673 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
674 {
675 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
676
677 if (bitbang->set_gate)
678 bitbang->set_gate(bitbang->addr);
679
680 if (bit)
681 bb_set(bitbang->addr, bitbang->mmd_msk);
682 else
683 bb_clr(bitbang->addr, bitbang->mmd_msk);
684 }
685
686 /* Set bit data*/
687 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
688 {
689 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
690
691 if (bitbang->set_gate)
692 bitbang->set_gate(bitbang->addr);
693
694 if (bit)
695 bb_set(bitbang->addr, bitbang->mdo_msk);
696 else
697 bb_clr(bitbang->addr, bitbang->mdo_msk);
698 }
699
700 /* Get bit data*/
701 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
702 {
703 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
704
705 if (bitbang->set_gate)
706 bitbang->set_gate(bitbang->addr);
707
708 return bb_read(bitbang->addr, bitbang->mdi_msk);
709 }
710
711 /* MDC pin control */
712 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
713 {
714 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
715
716 if (bitbang->set_gate)
717 bitbang->set_gate(bitbang->addr);
718
719 if (bit)
720 bb_set(bitbang->addr, bitbang->mdc_msk);
721 else
722 bb_clr(bitbang->addr, bitbang->mdc_msk);
723 }
724
725 /* mdio bus control struct */
726 static struct mdiobb_ops bb_ops = {
727 .owner = THIS_MODULE,
728 .set_mdc = sh_mdc_ctrl,
729 .set_mdio_dir = sh_mmd_ctrl,
730 .set_mdio_data = sh_set_mdio,
731 .get_mdio_data = sh_get_mdio,
732 };
733
734 /* free skb and descriptor buffer */
735 static void sh_eth_ring_free(struct net_device *ndev)
736 {
737 struct sh_eth_private *mdp = netdev_priv(ndev);
738 int i;
739
740 /* Free Rx skb ringbuffer */
741 if (mdp->rx_skbuff) {
742 for (i = 0; i < RX_RING_SIZE; i++) {
743 if (mdp->rx_skbuff[i])
744 dev_kfree_skb(mdp->rx_skbuff[i]);
745 }
746 }
747 kfree(mdp->rx_skbuff);
748
749 /* Free Tx skb ringbuffer */
750 if (mdp->tx_skbuff) {
751 for (i = 0; i < TX_RING_SIZE; i++) {
752 if (mdp->tx_skbuff[i])
753 dev_kfree_skb(mdp->tx_skbuff[i]);
754 }
755 }
756 kfree(mdp->tx_skbuff);
757 }
758
759 /* format skb and descriptor buffer */
760 static void sh_eth_ring_format(struct net_device *ndev)
761 {
762 struct sh_eth_private *mdp = netdev_priv(ndev);
763 int i;
764 struct sk_buff *skb;
765 struct sh_eth_rxdesc *rxdesc = NULL;
766 struct sh_eth_txdesc *txdesc = NULL;
767 int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
768 int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
769
770 mdp->cur_rx = mdp->cur_tx = 0;
771 mdp->dirty_rx = mdp->dirty_tx = 0;
772
773 memset(mdp->rx_ring, 0, rx_ringsize);
774
775 /* build Rx ring buffer */
776 for (i = 0; i < RX_RING_SIZE; i++) {
777 /* skb */
778 mdp->rx_skbuff[i] = NULL;
779 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
780 mdp->rx_skbuff[i] = skb;
781 if (skb == NULL)
782 break;
783 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
784 DMA_FROM_DEVICE);
785 sh_eth_set_receive_align(skb);
786
787 /* RX descriptor */
788 rxdesc = &mdp->rx_ring[i];
789 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
790 rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
791
792 /* The size of the buffer is 16 byte boundary. */
793 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
794 /* Rx descriptor address set */
795 if (i == 0) {
796 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
797 if (sh_eth_is_gether(mdp))
798 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
799 }
800 }
801
802 mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
803
804 /* Mark the last entry as wrapping the ring. */
805 rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
806
807 memset(mdp->tx_ring, 0, tx_ringsize);
808
809 /* build Tx ring buffer */
810 for (i = 0; i < TX_RING_SIZE; i++) {
811 mdp->tx_skbuff[i] = NULL;
812 txdesc = &mdp->tx_ring[i];
813 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
814 txdesc->buffer_length = 0;
815 if (i == 0) {
816 /* Tx descriptor address set */
817 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
818 if (sh_eth_is_gether(mdp))
819 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
820 }
821 }
822
823 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
824 }
825
826 /* Get skb and descriptor buffer */
827 static int sh_eth_ring_init(struct net_device *ndev)
828 {
829 struct sh_eth_private *mdp = netdev_priv(ndev);
830 int rx_ringsize, tx_ringsize, ret = 0;
831
832 /*
833 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
834 * card needs room to do 8 byte alignment, +2 so we can reserve
835 * the first 2 bytes, and +16 gets room for the status word from the
836 * card.
837 */
838 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
839 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
840 if (mdp->cd->rpadir)
841 mdp->rx_buf_sz += NET_IP_ALIGN;
842
843 /* Allocate RX and TX skb rings */
844 mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
845 GFP_KERNEL);
846 if (!mdp->rx_skbuff) {
847 dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
848 ret = -ENOMEM;
849 return ret;
850 }
851
852 mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
853 GFP_KERNEL);
854 if (!mdp->tx_skbuff) {
855 dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
856 ret = -ENOMEM;
857 goto skb_ring_free;
858 }
859
860 /* Allocate all Rx descriptors. */
861 rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
862 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
863 GFP_KERNEL);
864
865 if (!mdp->rx_ring) {
866 dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
867 rx_ringsize);
868 ret = -ENOMEM;
869 goto desc_ring_free;
870 }
871
872 mdp->dirty_rx = 0;
873
874 /* Allocate all Tx descriptors. */
875 tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
876 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
877 GFP_KERNEL);
878 if (!mdp->tx_ring) {
879 dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
880 tx_ringsize);
881 ret = -ENOMEM;
882 goto desc_ring_free;
883 }
884 return ret;
885
886 desc_ring_free:
887 /* free DMA buffer */
888 dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
889
890 skb_ring_free:
891 /* Free Rx and Tx skb ring buffer */
892 sh_eth_ring_free(ndev);
893
894 return ret;
895 }
896
897 static int sh_eth_dev_init(struct net_device *ndev)
898 {
899 int ret = 0;
900 struct sh_eth_private *mdp = netdev_priv(ndev);
901 u_int32_t rx_int_var, tx_int_var;
902 u32 val;
903
904 /* Soft Reset */
905 sh_eth_reset(ndev);
906
907 /* Descriptor format */
908 sh_eth_ring_format(ndev);
909 if (mdp->cd->rpadir)
910 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
911
912 /* all sh_eth int mask */
913 sh_eth_write(ndev, 0, EESIPR);
914
915 #if defined(__LITTLE_ENDIAN)
916 if (mdp->cd->hw_swap)
917 sh_eth_write(ndev, EDMR_EL, EDMR);
918 else
919 #endif
920 sh_eth_write(ndev, 0, EDMR);
921
922 /* FIFO size set */
923 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
924 sh_eth_write(ndev, 0, TFTR);
925
926 /* Frame recv control */
927 sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
928
929 rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
930 tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
931 sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
932
933 if (mdp->cd->bculr)
934 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
935
936 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
937
938 if (!mdp->cd->no_trimd)
939 sh_eth_write(ndev, 0, TRIMD);
940
941 /* Recv frame limit set register */
942 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
943 RFLR);
944
945 sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
946 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
947
948 /* PAUSE Prohibition */
949 val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
950 ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
951
952 sh_eth_write(ndev, val, ECMR);
953
954 if (mdp->cd->set_rate)
955 mdp->cd->set_rate(ndev);
956
957 /* E-MAC Status Register clear */
958 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
959
960 /* E-MAC Interrupt Enable register */
961 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
962
963 /* Set MAC address */
964 update_mac_address(ndev);
965
966 /* mask reset */
967 if (mdp->cd->apr)
968 sh_eth_write(ndev, APR_AP, APR);
969 if (mdp->cd->mpr)
970 sh_eth_write(ndev, MPR_MP, MPR);
971 if (mdp->cd->tpauser)
972 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
973
974 /* Setting the Rx mode will start the Rx process. */
975 sh_eth_write(ndev, EDRRR_R, EDRRR);
976
977 netif_start_queue(ndev);
978
979 return ret;
980 }
981
982 /* free Tx skb function */
983 static int sh_eth_txfree(struct net_device *ndev)
984 {
985 struct sh_eth_private *mdp = netdev_priv(ndev);
986 struct sh_eth_txdesc *txdesc;
987 int freeNum = 0;
988 int entry = 0;
989
990 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
991 entry = mdp->dirty_tx % TX_RING_SIZE;
992 txdesc = &mdp->tx_ring[entry];
993 if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
994 break;
995 /* Free the original skb. */
996 if (mdp->tx_skbuff[entry]) {
997 dma_unmap_single(&ndev->dev, txdesc->addr,
998 txdesc->buffer_length, DMA_TO_DEVICE);
999 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1000 mdp->tx_skbuff[entry] = NULL;
1001 freeNum++;
1002 }
1003 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1004 if (entry >= TX_RING_SIZE - 1)
1005 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1006
1007 ndev->stats.tx_packets++;
1008 ndev->stats.tx_bytes += txdesc->buffer_length;
1009 }
1010 return freeNum;
1011 }
1012
1013 /* Packet receive function */
1014 static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
1015 {
1016 struct sh_eth_private *mdp = netdev_priv(ndev);
1017 struct sh_eth_rxdesc *rxdesc;
1018
1019 int entry = mdp->cur_rx % RX_RING_SIZE;
1020 int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
1021 struct sk_buff *skb;
1022 u16 pkt_len = 0;
1023 u32 desc_status;
1024
1025 rxdesc = &mdp->rx_ring[entry];
1026 while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1027 desc_status = edmac_to_cpu(mdp, rxdesc->status);
1028 pkt_len = rxdesc->frame_length;
1029
1030 #if defined(CONFIG_ARCH_R8A7740)
1031 desc_status >>= 16;
1032 #endif
1033
1034 if (--boguscnt < 0)
1035 break;
1036
1037 if (!(desc_status & RDFEND))
1038 ndev->stats.rx_length_errors++;
1039
1040 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1041 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1042 ndev->stats.rx_errors++;
1043 if (desc_status & RD_RFS1)
1044 ndev->stats.rx_crc_errors++;
1045 if (desc_status & RD_RFS2)
1046 ndev->stats.rx_frame_errors++;
1047 if (desc_status & RD_RFS3)
1048 ndev->stats.rx_length_errors++;
1049 if (desc_status & RD_RFS4)
1050 ndev->stats.rx_length_errors++;
1051 if (desc_status & RD_RFS6)
1052 ndev->stats.rx_missed_errors++;
1053 if (desc_status & RD_RFS10)
1054 ndev->stats.rx_over_errors++;
1055 } else {
1056 if (!mdp->cd->hw_swap)
1057 sh_eth_soft_swap(
1058 phys_to_virt(ALIGN(rxdesc->addr, 4)),
1059 pkt_len + 2);
1060 skb = mdp->rx_skbuff[entry];
1061 mdp->rx_skbuff[entry] = NULL;
1062 if (mdp->cd->rpadir)
1063 skb_reserve(skb, NET_IP_ALIGN);
1064 skb_put(skb, pkt_len);
1065 skb->protocol = eth_type_trans(skb, ndev);
1066 netif_rx(skb);
1067 ndev->stats.rx_packets++;
1068 ndev->stats.rx_bytes += pkt_len;
1069 }
1070 rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1071 entry = (++mdp->cur_rx) % RX_RING_SIZE;
1072 rxdesc = &mdp->rx_ring[entry];
1073 }
1074
1075 /* Refill the Rx ring buffers. */
1076 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1077 entry = mdp->dirty_rx % RX_RING_SIZE;
1078 rxdesc = &mdp->rx_ring[entry];
1079 /* The size of the buffer is 16 byte boundary. */
1080 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1081
1082 if (mdp->rx_skbuff[entry] == NULL) {
1083 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1084 mdp->rx_skbuff[entry] = skb;
1085 if (skb == NULL)
1086 break; /* Better luck next round. */
1087 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1088 DMA_FROM_DEVICE);
1089 sh_eth_set_receive_align(skb);
1090
1091 skb_checksum_none_assert(skb);
1092 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1093 }
1094 if (entry >= RX_RING_SIZE - 1)
1095 rxdesc->status |=
1096 cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1097 else
1098 rxdesc->status |=
1099 cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1100 }
1101
1102 /* Restart Rx engine if stopped. */
1103 /* If we don't need to check status, don't. -KDU */
1104 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1105 /* fix the values for the next receiving if RDE is set */
1106 if (intr_status & EESR_RDE)
1107 mdp->cur_rx = mdp->dirty_rx =
1108 (sh_eth_read(ndev, RDFAR) -
1109 sh_eth_read(ndev, RDLAR)) >> 4;
1110 sh_eth_write(ndev, EDRRR_R, EDRRR);
1111 }
1112
1113 return 0;
1114 }
1115
1116 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1117 {
1118 /* disable tx and rx */
1119 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1120 ~(ECMR_RE | ECMR_TE), ECMR);
1121 }
1122
1123 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1124 {
1125 /* enable tx and rx */
1126 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1127 (ECMR_RE | ECMR_TE), ECMR);
1128 }
1129
1130 /* error control function */
1131 static void sh_eth_error(struct net_device *ndev, int intr_status)
1132 {
1133 struct sh_eth_private *mdp = netdev_priv(ndev);
1134 u32 felic_stat;
1135 u32 link_stat;
1136 u32 mask;
1137
1138 if (intr_status & EESR_ECI) {
1139 felic_stat = sh_eth_read(ndev, ECSR);
1140 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1141 if (felic_stat & ECSR_ICD)
1142 ndev->stats.tx_carrier_errors++;
1143 if (felic_stat & ECSR_LCHNG) {
1144 /* Link Changed */
1145 if (mdp->cd->no_psr || mdp->no_ether_link) {
1146 if (mdp->link == PHY_DOWN)
1147 link_stat = 0;
1148 else
1149 link_stat = PHY_ST_LINK;
1150 } else {
1151 link_stat = (sh_eth_read(ndev, PSR));
1152 if (mdp->ether_link_active_low)
1153 link_stat = ~link_stat;
1154 }
1155 if (!(link_stat & PHY_ST_LINK))
1156 sh_eth_rcv_snd_disable(ndev);
1157 else {
1158 /* Link Up */
1159 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1160 ~DMAC_M_ECI, EESIPR);
1161 /*clear int */
1162 sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1163 ECSR);
1164 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1165 DMAC_M_ECI, EESIPR);
1166 /* enable tx and rx */
1167 sh_eth_rcv_snd_enable(ndev);
1168 }
1169 }
1170 }
1171
1172 if (intr_status & EESR_TWB) {
1173 /* Write buck end. unused write back interrupt */
1174 if (intr_status & EESR_TABT) /* Transmit Abort int */
1175 ndev->stats.tx_aborted_errors++;
1176 if (netif_msg_tx_err(mdp))
1177 dev_err(&ndev->dev, "Transmit Abort\n");
1178 }
1179
1180 if (intr_status & EESR_RABT) {
1181 /* Receive Abort int */
1182 if (intr_status & EESR_RFRMER) {
1183 /* Receive Frame Overflow int */
1184 ndev->stats.rx_frame_errors++;
1185 if (netif_msg_rx_err(mdp))
1186 dev_err(&ndev->dev, "Receive Abort\n");
1187 }
1188 }
1189
1190 if (intr_status & EESR_TDE) {
1191 /* Transmit Descriptor Empty int */
1192 ndev->stats.tx_fifo_errors++;
1193 if (netif_msg_tx_err(mdp))
1194 dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1195 }
1196
1197 if (intr_status & EESR_TFE) {
1198 /* FIFO under flow */
1199 ndev->stats.tx_fifo_errors++;
1200 if (netif_msg_tx_err(mdp))
1201 dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1202 }
1203
1204 if (intr_status & EESR_RDE) {
1205 /* Receive Descriptor Empty int */
1206 ndev->stats.rx_over_errors++;
1207
1208 if (netif_msg_rx_err(mdp))
1209 dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1210 }
1211
1212 if (intr_status & EESR_RFE) {
1213 /* Receive FIFO Overflow int */
1214 ndev->stats.rx_fifo_errors++;
1215 if (netif_msg_rx_err(mdp))
1216 dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1217 }
1218
1219 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1220 /* Address Error */
1221 ndev->stats.tx_fifo_errors++;
1222 if (netif_msg_tx_err(mdp))
1223 dev_err(&ndev->dev, "Address Error\n");
1224 }
1225
1226 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1227 if (mdp->cd->no_ade)
1228 mask &= ~EESR_ADE;
1229 if (intr_status & mask) {
1230 /* Tx error */
1231 u32 edtrr = sh_eth_read(ndev, EDTRR);
1232 /* dmesg */
1233 dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1234 intr_status, mdp->cur_tx);
1235 dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1236 mdp->dirty_tx, (u32) ndev->state, edtrr);
1237 /* dirty buffer free */
1238 sh_eth_txfree(ndev);
1239
1240 /* SH7712 BUG */
1241 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1242 /* tx dma start */
1243 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1244 }
1245 /* wakeup */
1246 netif_wake_queue(ndev);
1247 }
1248 }
1249
1250 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1251 {
1252 struct net_device *ndev = netdev;
1253 struct sh_eth_private *mdp = netdev_priv(ndev);
1254 struct sh_eth_cpu_data *cd = mdp->cd;
1255 irqreturn_t ret = IRQ_NONE;
1256 u32 intr_status = 0;
1257
1258 spin_lock(&mdp->lock);
1259
1260 /* Get interrpt stat */
1261 intr_status = sh_eth_read(ndev, EESR);
1262 /* Clear interrupt */
1263 if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1264 EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1265 cd->tx_check | cd->eesr_err_check)) {
1266 sh_eth_write(ndev, intr_status, EESR);
1267 ret = IRQ_HANDLED;
1268 } else
1269 goto other_irq;
1270
1271 if (intr_status & (EESR_FRC | /* Frame recv*/
1272 EESR_RMAF | /* Multi cast address recv*/
1273 EESR_RRF | /* Bit frame recv */
1274 EESR_RTLF | /* Long frame recv*/
1275 EESR_RTSF | /* short frame recv */
1276 EESR_PRE | /* PHY-LSI recv error */
1277 EESR_CERF)){ /* recv frame CRC error */
1278 sh_eth_rx(ndev, intr_status);
1279 }
1280
1281 /* Tx Check */
1282 if (intr_status & cd->tx_check) {
1283 sh_eth_txfree(ndev);
1284 netif_wake_queue(ndev);
1285 }
1286
1287 if (intr_status & cd->eesr_err_check)
1288 sh_eth_error(ndev, intr_status);
1289
1290 other_irq:
1291 spin_unlock(&mdp->lock);
1292
1293 return ret;
1294 }
1295
1296 static void sh_eth_timer(unsigned long data)
1297 {
1298 struct net_device *ndev = (struct net_device *)data;
1299 struct sh_eth_private *mdp = netdev_priv(ndev);
1300
1301 mod_timer(&mdp->timer, jiffies + (10 * HZ));
1302 }
1303
1304 /* PHY state control function */
1305 static void sh_eth_adjust_link(struct net_device *ndev)
1306 {
1307 struct sh_eth_private *mdp = netdev_priv(ndev);
1308 struct phy_device *phydev = mdp->phydev;
1309 int new_state = 0;
1310
1311 if (phydev->link != PHY_DOWN) {
1312 if (phydev->duplex != mdp->duplex) {
1313 new_state = 1;
1314 mdp->duplex = phydev->duplex;
1315 if (mdp->cd->set_duplex)
1316 mdp->cd->set_duplex(ndev);
1317 }
1318
1319 if (phydev->speed != mdp->speed) {
1320 new_state = 1;
1321 mdp->speed = phydev->speed;
1322 if (mdp->cd->set_rate)
1323 mdp->cd->set_rate(ndev);
1324 }
1325 if (mdp->link == PHY_DOWN) {
1326 sh_eth_write(ndev,
1327 (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1328 new_state = 1;
1329 mdp->link = phydev->link;
1330 }
1331 } else if (mdp->link) {
1332 new_state = 1;
1333 mdp->link = PHY_DOWN;
1334 mdp->speed = 0;
1335 mdp->duplex = -1;
1336 }
1337
1338 if (new_state && netif_msg_link(mdp))
1339 phy_print_status(phydev);
1340 }
1341
1342 /* PHY init function */
1343 static int sh_eth_phy_init(struct net_device *ndev)
1344 {
1345 struct sh_eth_private *mdp = netdev_priv(ndev);
1346 char phy_id[MII_BUS_ID_SIZE + 3];
1347 struct phy_device *phydev = NULL;
1348
1349 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1350 mdp->mii_bus->id , mdp->phy_id);
1351
1352 mdp->link = PHY_DOWN;
1353 mdp->speed = 0;
1354 mdp->duplex = -1;
1355
1356 /* Try connect to PHY */
1357 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1358 0, mdp->phy_interface);
1359 if (IS_ERR(phydev)) {
1360 dev_err(&ndev->dev, "phy_connect failed\n");
1361 return PTR_ERR(phydev);
1362 }
1363
1364 dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1365 phydev->addr, phydev->drv->name);
1366
1367 mdp->phydev = phydev;
1368
1369 return 0;
1370 }
1371
1372 /* PHY control start function */
1373 static int sh_eth_phy_start(struct net_device *ndev)
1374 {
1375 struct sh_eth_private *mdp = netdev_priv(ndev);
1376 int ret;
1377
1378 ret = sh_eth_phy_init(ndev);
1379 if (ret)
1380 return ret;
1381
1382 /* reset phy - this also wakes it from PDOWN */
1383 phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1384 phy_start(mdp->phydev);
1385
1386 return 0;
1387 }
1388
1389 static int sh_eth_get_settings(struct net_device *ndev,
1390 struct ethtool_cmd *ecmd)
1391 {
1392 struct sh_eth_private *mdp = netdev_priv(ndev);
1393 unsigned long flags;
1394 int ret;
1395
1396 spin_lock_irqsave(&mdp->lock, flags);
1397 ret = phy_ethtool_gset(mdp->phydev, ecmd);
1398 spin_unlock_irqrestore(&mdp->lock, flags);
1399
1400 return ret;
1401 }
1402
1403 static int sh_eth_set_settings(struct net_device *ndev,
1404 struct ethtool_cmd *ecmd)
1405 {
1406 struct sh_eth_private *mdp = netdev_priv(ndev);
1407 unsigned long flags;
1408 int ret;
1409
1410 spin_lock_irqsave(&mdp->lock, flags);
1411
1412 /* disable tx and rx */
1413 sh_eth_rcv_snd_disable(ndev);
1414
1415 ret = phy_ethtool_sset(mdp->phydev, ecmd);
1416 if (ret)
1417 goto error_exit;
1418
1419 if (ecmd->duplex == DUPLEX_FULL)
1420 mdp->duplex = 1;
1421 else
1422 mdp->duplex = 0;
1423
1424 if (mdp->cd->set_duplex)
1425 mdp->cd->set_duplex(ndev);
1426
1427 error_exit:
1428 mdelay(1);
1429
1430 /* enable tx and rx */
1431 sh_eth_rcv_snd_enable(ndev);
1432
1433 spin_unlock_irqrestore(&mdp->lock, flags);
1434
1435 return ret;
1436 }
1437
1438 static int sh_eth_nway_reset(struct net_device *ndev)
1439 {
1440 struct sh_eth_private *mdp = netdev_priv(ndev);
1441 unsigned long flags;
1442 int ret;
1443
1444 spin_lock_irqsave(&mdp->lock, flags);
1445 ret = phy_start_aneg(mdp->phydev);
1446 spin_unlock_irqrestore(&mdp->lock, flags);
1447
1448 return ret;
1449 }
1450
1451 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1452 {
1453 struct sh_eth_private *mdp = netdev_priv(ndev);
1454 return mdp->msg_enable;
1455 }
1456
1457 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1458 {
1459 struct sh_eth_private *mdp = netdev_priv(ndev);
1460 mdp->msg_enable = value;
1461 }
1462
1463 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1464 "rx_current", "tx_current",
1465 "rx_dirty", "tx_dirty",
1466 };
1467 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
1468
1469 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1470 {
1471 switch (sset) {
1472 case ETH_SS_STATS:
1473 return SH_ETH_STATS_LEN;
1474 default:
1475 return -EOPNOTSUPP;
1476 }
1477 }
1478
1479 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1480 struct ethtool_stats *stats, u64 *data)
1481 {
1482 struct sh_eth_private *mdp = netdev_priv(ndev);
1483 int i = 0;
1484
1485 /* device-specific stats */
1486 data[i++] = mdp->cur_rx;
1487 data[i++] = mdp->cur_tx;
1488 data[i++] = mdp->dirty_rx;
1489 data[i++] = mdp->dirty_tx;
1490 }
1491
1492 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1493 {
1494 switch (stringset) {
1495 case ETH_SS_STATS:
1496 memcpy(data, *sh_eth_gstrings_stats,
1497 sizeof(sh_eth_gstrings_stats));
1498 break;
1499 }
1500 }
1501
1502 static const struct ethtool_ops sh_eth_ethtool_ops = {
1503 .get_settings = sh_eth_get_settings,
1504 .set_settings = sh_eth_set_settings,
1505 .nway_reset = sh_eth_nway_reset,
1506 .get_msglevel = sh_eth_get_msglevel,
1507 .set_msglevel = sh_eth_set_msglevel,
1508 .get_link = ethtool_op_get_link,
1509 .get_strings = sh_eth_get_strings,
1510 .get_ethtool_stats = sh_eth_get_ethtool_stats,
1511 .get_sset_count = sh_eth_get_sset_count,
1512 };
1513
1514 /* network device open function */
1515 static int sh_eth_open(struct net_device *ndev)
1516 {
1517 int ret = 0;
1518 struct sh_eth_private *mdp = netdev_priv(ndev);
1519
1520 pm_runtime_get_sync(&mdp->pdev->dev);
1521
1522 ret = request_irq(ndev->irq, sh_eth_interrupt,
1523 #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1524 defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1525 defined(CONFIG_CPU_SUBTYPE_SH7757)
1526 IRQF_SHARED,
1527 #else
1528 0,
1529 #endif
1530 ndev->name, ndev);
1531 if (ret) {
1532 dev_err(&ndev->dev, "Can not assign IRQ number\n");
1533 return ret;
1534 }
1535
1536 /* Descriptor set */
1537 ret = sh_eth_ring_init(ndev);
1538 if (ret)
1539 goto out_free_irq;
1540
1541 /* device init */
1542 ret = sh_eth_dev_init(ndev);
1543 if (ret)
1544 goto out_free_irq;
1545
1546 /* PHY control start*/
1547 ret = sh_eth_phy_start(ndev);
1548 if (ret)
1549 goto out_free_irq;
1550
1551 /* Set the timer to check for link beat. */
1552 init_timer(&mdp->timer);
1553 mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1554 setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
1555
1556 return ret;
1557
1558 out_free_irq:
1559 free_irq(ndev->irq, ndev);
1560 pm_runtime_put_sync(&mdp->pdev->dev);
1561 return ret;
1562 }
1563
1564 /* Timeout function */
1565 static void sh_eth_tx_timeout(struct net_device *ndev)
1566 {
1567 struct sh_eth_private *mdp = netdev_priv(ndev);
1568 struct sh_eth_rxdesc *rxdesc;
1569 int i;
1570
1571 netif_stop_queue(ndev);
1572
1573 if (netif_msg_timer(mdp))
1574 dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1575 " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1576
1577 /* tx_errors count up */
1578 ndev->stats.tx_errors++;
1579
1580 /* timer off */
1581 del_timer_sync(&mdp->timer);
1582
1583 /* Free all the skbuffs in the Rx queue. */
1584 for (i = 0; i < RX_RING_SIZE; i++) {
1585 rxdesc = &mdp->rx_ring[i];
1586 rxdesc->status = 0;
1587 rxdesc->addr = 0xBADF00D0;
1588 if (mdp->rx_skbuff[i])
1589 dev_kfree_skb(mdp->rx_skbuff[i]);
1590 mdp->rx_skbuff[i] = NULL;
1591 }
1592 for (i = 0; i < TX_RING_SIZE; i++) {
1593 if (mdp->tx_skbuff[i])
1594 dev_kfree_skb(mdp->tx_skbuff[i]);
1595 mdp->tx_skbuff[i] = NULL;
1596 }
1597
1598 /* device init */
1599 sh_eth_dev_init(ndev);
1600
1601 /* timer on */
1602 mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1603 add_timer(&mdp->timer);
1604 }
1605
1606 /* Packet transmit function */
1607 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1608 {
1609 struct sh_eth_private *mdp = netdev_priv(ndev);
1610 struct sh_eth_txdesc *txdesc;
1611 u32 entry;
1612 unsigned long flags;
1613
1614 spin_lock_irqsave(&mdp->lock, flags);
1615 if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
1616 if (!sh_eth_txfree(ndev)) {
1617 if (netif_msg_tx_queued(mdp))
1618 dev_warn(&ndev->dev, "TxFD exhausted.\n");
1619 netif_stop_queue(ndev);
1620 spin_unlock_irqrestore(&mdp->lock, flags);
1621 return NETDEV_TX_BUSY;
1622 }
1623 }
1624 spin_unlock_irqrestore(&mdp->lock, flags);
1625
1626 entry = mdp->cur_tx % TX_RING_SIZE;
1627 mdp->tx_skbuff[entry] = skb;
1628 txdesc = &mdp->tx_ring[entry];
1629 /* soft swap. */
1630 if (!mdp->cd->hw_swap)
1631 sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
1632 skb->len + 2);
1633 txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
1634 DMA_TO_DEVICE);
1635 if (skb->len < ETHERSMALL)
1636 txdesc->buffer_length = ETHERSMALL;
1637 else
1638 txdesc->buffer_length = skb->len;
1639
1640 if (entry >= TX_RING_SIZE - 1)
1641 txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1642 else
1643 txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1644
1645 mdp->cur_tx++;
1646
1647 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
1648 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1649
1650 return NETDEV_TX_OK;
1651 }
1652
1653 /* device close function */
1654 static int sh_eth_close(struct net_device *ndev)
1655 {
1656 struct sh_eth_private *mdp = netdev_priv(ndev);
1657 int ringsize;
1658
1659 netif_stop_queue(ndev);
1660
1661 /* Disable interrupts by clearing the interrupt mask. */
1662 sh_eth_write(ndev, 0x0000, EESIPR);
1663
1664 /* Stop the chip's Tx and Rx processes. */
1665 sh_eth_write(ndev, 0, EDTRR);
1666 sh_eth_write(ndev, 0, EDRRR);
1667
1668 /* PHY Disconnect */
1669 if (mdp->phydev) {
1670 phy_stop(mdp->phydev);
1671 phy_disconnect(mdp->phydev);
1672 }
1673
1674 free_irq(ndev->irq, ndev);
1675
1676 del_timer_sync(&mdp->timer);
1677
1678 /* Free all the skbuffs in the Rx queue. */
1679 sh_eth_ring_free(ndev);
1680
1681 /* free DMA buffer */
1682 ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
1683 dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1684
1685 /* free DMA buffer */
1686 ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
1687 dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
1688
1689 pm_runtime_put_sync(&mdp->pdev->dev);
1690
1691 return 0;
1692 }
1693
1694 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
1695 {
1696 struct sh_eth_private *mdp = netdev_priv(ndev);
1697
1698 pm_runtime_get_sync(&mdp->pdev->dev);
1699
1700 ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
1701 sh_eth_write(ndev, 0, TROCR); /* (write clear) */
1702 ndev->stats.collisions += sh_eth_read(ndev, CDCR);
1703 sh_eth_write(ndev, 0, CDCR); /* (write clear) */
1704 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
1705 sh_eth_write(ndev, 0, LCCR); /* (write clear) */
1706 if (sh_eth_is_gether(mdp)) {
1707 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
1708 sh_eth_write(ndev, 0, CERCR); /* (write clear) */
1709 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
1710 sh_eth_write(ndev, 0, CEECR); /* (write clear) */
1711 } else {
1712 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
1713 sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
1714 }
1715 pm_runtime_put_sync(&mdp->pdev->dev);
1716
1717 return &ndev->stats;
1718 }
1719
1720 /* ioctl to device function */
1721 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
1722 int cmd)
1723 {
1724 struct sh_eth_private *mdp = netdev_priv(ndev);
1725 struct phy_device *phydev = mdp->phydev;
1726
1727 if (!netif_running(ndev))
1728 return -EINVAL;
1729
1730 if (!phydev)
1731 return -ENODEV;
1732
1733 return phy_mii_ioctl(phydev, rq, cmd);
1734 }
1735
1736 #if defined(SH_ETH_HAS_TSU)
1737 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
1738 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
1739 int entry)
1740 {
1741 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
1742 }
1743
1744 static u32 sh_eth_tsu_get_post_mask(int entry)
1745 {
1746 return 0x0f << (28 - ((entry % 8) * 4));
1747 }
1748
1749 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
1750 {
1751 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
1752 }
1753
1754 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
1755 int entry)
1756 {
1757 struct sh_eth_private *mdp = netdev_priv(ndev);
1758 u32 tmp;
1759 void *reg_offset;
1760
1761 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
1762 tmp = ioread32(reg_offset);
1763 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
1764 }
1765
1766 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
1767 int entry)
1768 {
1769 struct sh_eth_private *mdp = netdev_priv(ndev);
1770 u32 post_mask, ref_mask, tmp;
1771 void *reg_offset;
1772
1773 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
1774 post_mask = sh_eth_tsu_get_post_mask(entry);
1775 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
1776
1777 tmp = ioread32(reg_offset);
1778 iowrite32(tmp & ~post_mask, reg_offset);
1779
1780 /* If other port enables, the function returns "true" */
1781 return tmp & ref_mask;
1782 }
1783
1784 static int sh_eth_tsu_busy(struct net_device *ndev)
1785 {
1786 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
1787 struct sh_eth_private *mdp = netdev_priv(ndev);
1788
1789 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
1790 udelay(10);
1791 timeout--;
1792 if (timeout <= 0) {
1793 dev_err(&ndev->dev, "%s: timeout\n", __func__);
1794 return -ETIMEDOUT;
1795 }
1796 }
1797
1798 return 0;
1799 }
1800
1801 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
1802 const u8 *addr)
1803 {
1804 u32 val;
1805
1806 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
1807 iowrite32(val, reg);
1808 if (sh_eth_tsu_busy(ndev) < 0)
1809 return -EBUSY;
1810
1811 val = addr[4] << 8 | addr[5];
1812 iowrite32(val, reg + 4);
1813 if (sh_eth_tsu_busy(ndev) < 0)
1814 return -EBUSY;
1815
1816 return 0;
1817 }
1818
1819 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
1820 {
1821 u32 val;
1822
1823 val = ioread32(reg);
1824 addr[0] = (val >> 24) & 0xff;
1825 addr[1] = (val >> 16) & 0xff;
1826 addr[2] = (val >> 8) & 0xff;
1827 addr[3] = val & 0xff;
1828 val = ioread32(reg + 4);
1829 addr[4] = (val >> 8) & 0xff;
1830 addr[5] = val & 0xff;
1831 }
1832
1833
1834 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
1835 {
1836 struct sh_eth_private *mdp = netdev_priv(ndev);
1837 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1838 int i;
1839 u8 c_addr[ETH_ALEN];
1840
1841 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
1842 sh_eth_tsu_read_entry(reg_offset, c_addr);
1843 if (memcmp(addr, c_addr, ETH_ALEN) == 0)
1844 return i;
1845 }
1846
1847 return -ENOENT;
1848 }
1849
1850 static int sh_eth_tsu_find_empty(struct net_device *ndev)
1851 {
1852 u8 blank[ETH_ALEN];
1853 int entry;
1854
1855 memset(blank, 0, sizeof(blank));
1856 entry = sh_eth_tsu_find_entry(ndev, blank);
1857 return (entry < 0) ? -ENOMEM : entry;
1858 }
1859
1860 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
1861 int entry)
1862 {
1863 struct sh_eth_private *mdp = netdev_priv(ndev);
1864 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1865 int ret;
1866 u8 blank[ETH_ALEN];
1867
1868 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
1869 ~(1 << (31 - entry)), TSU_TEN);
1870
1871 memset(blank, 0, sizeof(blank));
1872 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
1873 if (ret < 0)
1874 return ret;
1875 return 0;
1876 }
1877
1878 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
1879 {
1880 struct sh_eth_private *mdp = netdev_priv(ndev);
1881 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1882 int i, ret;
1883
1884 if (!mdp->cd->tsu)
1885 return 0;
1886
1887 i = sh_eth_tsu_find_entry(ndev, addr);
1888 if (i < 0) {
1889 /* No entry found, create one */
1890 i = sh_eth_tsu_find_empty(ndev);
1891 if (i < 0)
1892 return -ENOMEM;
1893 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
1894 if (ret < 0)
1895 return ret;
1896
1897 /* Enable the entry */
1898 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
1899 (1 << (31 - i)), TSU_TEN);
1900 }
1901
1902 /* Entry found or created, enable POST */
1903 sh_eth_tsu_enable_cam_entry_post(ndev, i);
1904
1905 return 0;
1906 }
1907
1908 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
1909 {
1910 struct sh_eth_private *mdp = netdev_priv(ndev);
1911 int i, ret;
1912
1913 if (!mdp->cd->tsu)
1914 return 0;
1915
1916 i = sh_eth_tsu_find_entry(ndev, addr);
1917 if (i) {
1918 /* Entry found */
1919 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
1920 goto done;
1921
1922 /* Disable the entry if both ports was disabled */
1923 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
1924 if (ret < 0)
1925 return ret;
1926 }
1927 done:
1928 return 0;
1929 }
1930
1931 static int sh_eth_tsu_purge_all(struct net_device *ndev)
1932 {
1933 struct sh_eth_private *mdp = netdev_priv(ndev);
1934 int i, ret;
1935
1936 if (unlikely(!mdp->cd->tsu))
1937 return 0;
1938
1939 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
1940 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
1941 continue;
1942
1943 /* Disable the entry if both ports was disabled */
1944 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
1945 if (ret < 0)
1946 return ret;
1947 }
1948
1949 return 0;
1950 }
1951
1952 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
1953 {
1954 struct sh_eth_private *mdp = netdev_priv(ndev);
1955 u8 addr[ETH_ALEN];
1956 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1957 int i;
1958
1959 if (unlikely(!mdp->cd->tsu))
1960 return;
1961
1962 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
1963 sh_eth_tsu_read_entry(reg_offset, addr);
1964 if (is_multicast_ether_addr(addr))
1965 sh_eth_tsu_del_entry(ndev, addr);
1966 }
1967 }
1968
1969 /* Multicast reception directions set */
1970 static void sh_eth_set_multicast_list(struct net_device *ndev)
1971 {
1972 struct sh_eth_private *mdp = netdev_priv(ndev);
1973 u32 ecmr_bits;
1974 int mcast_all = 0;
1975 unsigned long flags;
1976
1977 spin_lock_irqsave(&mdp->lock, flags);
1978 /*
1979 * Initial condition is MCT = 1, PRM = 0.
1980 * Depending on ndev->flags, set PRM or clear MCT
1981 */
1982 ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
1983
1984 if (!(ndev->flags & IFF_MULTICAST)) {
1985 sh_eth_tsu_purge_mcast(ndev);
1986 mcast_all = 1;
1987 }
1988 if (ndev->flags & IFF_ALLMULTI) {
1989 sh_eth_tsu_purge_mcast(ndev);
1990 ecmr_bits &= ~ECMR_MCT;
1991 mcast_all = 1;
1992 }
1993
1994 if (ndev->flags & IFF_PROMISC) {
1995 sh_eth_tsu_purge_all(ndev);
1996 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
1997 } else if (mdp->cd->tsu) {
1998 struct netdev_hw_addr *ha;
1999 netdev_for_each_mc_addr(ha, ndev) {
2000 if (mcast_all && is_multicast_ether_addr(ha->addr))
2001 continue;
2002
2003 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2004 if (!mcast_all) {
2005 sh_eth_tsu_purge_mcast(ndev);
2006 ecmr_bits &= ~ECMR_MCT;
2007 mcast_all = 1;
2008 }
2009 }
2010 }
2011 } else {
2012 /* Normal, unicast/broadcast-only mode. */
2013 ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2014 }
2015
2016 /* update the ethernet mode */
2017 sh_eth_write(ndev, ecmr_bits, ECMR);
2018
2019 spin_unlock_irqrestore(&mdp->lock, flags);
2020 }
2021
2022 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2023 {
2024 if (!mdp->port)
2025 return TSU_VTAG0;
2026 else
2027 return TSU_VTAG1;
2028 }
2029
2030 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2031 {
2032 struct sh_eth_private *mdp = netdev_priv(ndev);
2033 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2034
2035 if (unlikely(!mdp->cd->tsu))
2036 return -EPERM;
2037
2038 /* No filtering if vid = 0 */
2039 if (!vid)
2040 return 0;
2041
2042 mdp->vlan_num_ids++;
2043
2044 /*
2045 * The controller has one VLAN tag HW filter. So, if the filter is
2046 * already enabled, the driver disables it and the filte
2047 */
2048 if (mdp->vlan_num_ids > 1) {
2049 /* disable VLAN filter */
2050 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2051 return 0;
2052 }
2053
2054 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2055 vtag_reg_index);
2056
2057 return 0;
2058 }
2059
2060 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2061 {
2062 struct sh_eth_private *mdp = netdev_priv(ndev);
2063 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2064
2065 if (unlikely(!mdp->cd->tsu))
2066 return -EPERM;
2067
2068 /* No filtering if vid = 0 */
2069 if (!vid)
2070 return 0;
2071
2072 mdp->vlan_num_ids--;
2073 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2074
2075 return 0;
2076 }
2077 #endif /* SH_ETH_HAS_TSU */
2078
2079 /* SuperH's TSU register init function */
2080 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2081 {
2082 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2083 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2084 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2085 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2086 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2087 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2088 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2089 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2090 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2091 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2092 if (sh_eth_is_gether(mdp)) {
2093 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
2094 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
2095 } else {
2096 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
2097 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
2098 }
2099 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
2100 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
2101 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2102 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
2103 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
2104 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
2105 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
2106 }
2107
2108 /* MDIO bus release function */
2109 static int sh_mdio_release(struct net_device *ndev)
2110 {
2111 struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2112
2113 /* unregister mdio bus */
2114 mdiobus_unregister(bus);
2115
2116 /* remove mdio bus info from net_device */
2117 dev_set_drvdata(&ndev->dev, NULL);
2118
2119 /* free interrupts memory */
2120 kfree(bus->irq);
2121
2122 /* free bitbang info */
2123 free_mdio_bitbang(bus);
2124
2125 return 0;
2126 }
2127
2128 /* MDIO bus init function */
2129 static int sh_mdio_init(struct net_device *ndev, int id,
2130 struct sh_eth_plat_data *pd)
2131 {
2132 int ret, i;
2133 struct bb_info *bitbang;
2134 struct sh_eth_private *mdp = netdev_priv(ndev);
2135
2136 /* create bit control struct for PHY */
2137 bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
2138 if (!bitbang) {
2139 ret = -ENOMEM;
2140 goto out;
2141 }
2142
2143 /* bitbang init */
2144 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2145 bitbang->set_gate = pd->set_mdio_gate;
2146 bitbang->mdi_msk = 0x08;
2147 bitbang->mdo_msk = 0x04;
2148 bitbang->mmd_msk = 0x02;/* MMD */
2149 bitbang->mdc_msk = 0x01;
2150 bitbang->ctrl.ops = &bb_ops;
2151
2152 /* MII controller setting */
2153 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2154 if (!mdp->mii_bus) {
2155 ret = -ENOMEM;
2156 goto out_free_bitbang;
2157 }
2158
2159 /* Hook up MII support for ethtool */
2160 mdp->mii_bus->name = "sh_mii";
2161 mdp->mii_bus->parent = &ndev->dev;
2162 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2163 mdp->pdev->name, id);
2164
2165 /* PHY IRQ */
2166 mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
2167 if (!mdp->mii_bus->irq) {
2168 ret = -ENOMEM;
2169 goto out_free_bus;
2170 }
2171
2172 for (i = 0; i < PHY_MAX_ADDR; i++)
2173 mdp->mii_bus->irq[i] = PHY_POLL;
2174
2175 /* regist mdio bus */
2176 ret = mdiobus_register(mdp->mii_bus);
2177 if (ret)
2178 goto out_free_irq;
2179
2180 dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2181
2182 return 0;
2183
2184 out_free_irq:
2185 kfree(mdp->mii_bus->irq);
2186
2187 out_free_bus:
2188 free_mdio_bitbang(mdp->mii_bus);
2189
2190 out_free_bitbang:
2191 kfree(bitbang);
2192
2193 out:
2194 return ret;
2195 }
2196
2197 static const u16 *sh_eth_get_register_offset(int register_type)
2198 {
2199 const u16 *reg_offset = NULL;
2200
2201 switch (register_type) {
2202 case SH_ETH_REG_GIGABIT:
2203 reg_offset = sh_eth_offset_gigabit;
2204 break;
2205 case SH_ETH_REG_FAST_SH4:
2206 reg_offset = sh_eth_offset_fast_sh4;
2207 break;
2208 case SH_ETH_REG_FAST_SH3_SH2:
2209 reg_offset = sh_eth_offset_fast_sh3_sh2;
2210 break;
2211 default:
2212 printk(KERN_ERR "Unknown register type (%d)\n", register_type);
2213 break;
2214 }
2215
2216 return reg_offset;
2217 }
2218
2219 static const struct net_device_ops sh_eth_netdev_ops = {
2220 .ndo_open = sh_eth_open,
2221 .ndo_stop = sh_eth_close,
2222 .ndo_start_xmit = sh_eth_start_xmit,
2223 .ndo_get_stats = sh_eth_get_stats,
2224 #if defined(SH_ETH_HAS_TSU)
2225 .ndo_set_rx_mode = sh_eth_set_multicast_list,
2226 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
2227 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
2228 #endif
2229 .ndo_tx_timeout = sh_eth_tx_timeout,
2230 .ndo_do_ioctl = sh_eth_do_ioctl,
2231 .ndo_validate_addr = eth_validate_addr,
2232 .ndo_set_mac_address = eth_mac_addr,
2233 .ndo_change_mtu = eth_change_mtu,
2234 };
2235
2236 static int sh_eth_drv_probe(struct platform_device *pdev)
2237 {
2238 int ret, devno = 0;
2239 struct resource *res;
2240 struct net_device *ndev = NULL;
2241 struct sh_eth_private *mdp = NULL;
2242 struct sh_eth_plat_data *pd;
2243
2244 /* get base addr */
2245 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2246 if (unlikely(res == NULL)) {
2247 dev_err(&pdev->dev, "invalid resource\n");
2248 ret = -EINVAL;
2249 goto out;
2250 }
2251
2252 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2253 if (!ndev) {
2254 ret = -ENOMEM;
2255 goto out;
2256 }
2257
2258 /* The sh Ether-specific entries in the device structure. */
2259 ndev->base_addr = res->start;
2260 devno = pdev->id;
2261 if (devno < 0)
2262 devno = 0;
2263
2264 ndev->dma = -1;
2265 ret = platform_get_irq(pdev, 0);
2266 if (ret < 0) {
2267 ret = -ENODEV;
2268 goto out_release;
2269 }
2270 ndev->irq = ret;
2271
2272 SET_NETDEV_DEV(ndev, &pdev->dev);
2273
2274 /* Fill in the fields of the device structure with ethernet values. */
2275 ether_setup(ndev);
2276
2277 mdp = netdev_priv(ndev);
2278 mdp->addr = ioremap(res->start, resource_size(res));
2279 if (mdp->addr == NULL) {
2280 ret = -ENOMEM;
2281 dev_err(&pdev->dev, "ioremap failed.\n");
2282 goto out_release;
2283 }
2284
2285 spin_lock_init(&mdp->lock);
2286 mdp->pdev = pdev;
2287 pm_runtime_enable(&pdev->dev);
2288 pm_runtime_resume(&pdev->dev);
2289
2290 pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
2291 /* get PHY ID */
2292 mdp->phy_id = pd->phy;
2293 mdp->phy_interface = pd->phy_interface;
2294 /* EDMAC endian */
2295 mdp->edmac_endian = pd->edmac_endian;
2296 mdp->no_ether_link = pd->no_ether_link;
2297 mdp->ether_link_active_low = pd->ether_link_active_low;
2298 mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
2299
2300 /* set cpu data */
2301 #if defined(SH_ETH_HAS_BOTH_MODULES)
2302 mdp->cd = sh_eth_get_cpu_data(mdp);
2303 #else
2304 mdp->cd = &sh_eth_my_cpu_data;
2305 #endif
2306 sh_eth_set_default_cpu_data(mdp->cd);
2307
2308 /* set function */
2309 ndev->netdev_ops = &sh_eth_netdev_ops;
2310 SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2311 ndev->watchdog_timeo = TX_TIMEOUT;
2312
2313 /* debug message level */
2314 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2315 mdp->post_rx = POST_RX >> (devno << 1);
2316 mdp->post_fw = POST_FW >> (devno << 1);
2317
2318 /* read and set MAC address */
2319 read_mac_address(ndev, pd->mac_addr);
2320
2321 /* ioremap the TSU registers */
2322 if (mdp->cd->tsu) {
2323 struct resource *rtsu;
2324 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2325 if (!rtsu) {
2326 dev_err(&pdev->dev, "Not found TSU resource\n");
2327 goto out_release;
2328 }
2329 mdp->tsu_addr = ioremap(rtsu->start,
2330 resource_size(rtsu));
2331 mdp->port = devno % 2;
2332 ndev->features = NETIF_F_HW_VLAN_FILTER;
2333 }
2334
2335 /* initialize first or needed device */
2336 if (!devno || pd->needs_init) {
2337 if (mdp->cd->chip_reset)
2338 mdp->cd->chip_reset(ndev);
2339
2340 if (mdp->cd->tsu) {
2341 /* TSU init (Init only)*/
2342 sh_eth_tsu_init(mdp);
2343 }
2344 }
2345
2346 /* network device register */
2347 ret = register_netdev(ndev);
2348 if (ret)
2349 goto out_release;
2350
2351 /* mdio bus init */
2352 ret = sh_mdio_init(ndev, pdev->id, pd);
2353 if (ret)
2354 goto out_unregister;
2355
2356 /* print device information */
2357 pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2358 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2359
2360 platform_set_drvdata(pdev, ndev);
2361
2362 return ret;
2363
2364 out_unregister:
2365 unregister_netdev(ndev);
2366
2367 out_release:
2368 /* net_dev free */
2369 if (mdp && mdp->addr)
2370 iounmap(mdp->addr);
2371 if (mdp && mdp->tsu_addr)
2372 iounmap(mdp->tsu_addr);
2373 if (ndev)
2374 free_netdev(ndev);
2375
2376 out:
2377 return ret;
2378 }
2379
2380 static int sh_eth_drv_remove(struct platform_device *pdev)
2381 {
2382 struct net_device *ndev = platform_get_drvdata(pdev);
2383 struct sh_eth_private *mdp = netdev_priv(ndev);
2384
2385 if (mdp->cd->tsu)
2386 iounmap(mdp->tsu_addr);
2387 sh_mdio_release(ndev);
2388 unregister_netdev(ndev);
2389 pm_runtime_disable(&pdev->dev);
2390 iounmap(mdp->addr);
2391 free_netdev(ndev);
2392 platform_set_drvdata(pdev, NULL);
2393
2394 return 0;
2395 }
2396
2397 static int sh_eth_runtime_nop(struct device *dev)
2398 {
2399 /*
2400 * Runtime PM callback shared between ->runtime_suspend()
2401 * and ->runtime_resume(). Simply returns success.
2402 *
2403 * This driver re-initializes all registers after
2404 * pm_runtime_get_sync() anyway so there is no need
2405 * to save and restore registers here.
2406 */
2407 return 0;
2408 }
2409
2410 static struct dev_pm_ops sh_eth_dev_pm_ops = {
2411 .runtime_suspend = sh_eth_runtime_nop,
2412 .runtime_resume = sh_eth_runtime_nop,
2413 };
2414
2415 static struct platform_driver sh_eth_driver = {
2416 .probe = sh_eth_drv_probe,
2417 .remove = sh_eth_drv_remove,
2418 .driver = {
2419 .name = CARDNAME,
2420 .pm = &sh_eth_dev_pm_ops,
2421 },
2422 };
2423
2424 module_platform_driver(sh_eth_driver);
2425
2426 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2427 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2428 MODULE_LICENSE("GPL v2");
This page took 0.129055 seconds and 5 git commands to generate.