sh_eth: use ETH_ZLEN instead of home-grown #define
[deliverable/linux.git] / drivers / net / ethernet / renesas / sh_eth.c
1 /* SuperH Ethernet device driver
2 *
3 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
4 * Copyright (C) 2008-2013 Renesas Solutions Corp.
5 * Copyright (C) 2013 Cogent Embedded, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 */
19
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/etherdevice.h>
26 #include <linux/delay.h>
27 #include <linux/platform_device.h>
28 #include <linux/mdio-bitbang.h>
29 #include <linux/netdevice.h>
30 #include <linux/phy.h>
31 #include <linux/cache.h>
32 #include <linux/io.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/slab.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/clk.h>
38 #include <linux/sh_eth.h>
39
40 #include "sh_eth.h"
41
42 #define SH_ETH_DEF_MSG_ENABLE \
43 (NETIF_MSG_LINK | \
44 NETIF_MSG_TIMER | \
45 NETIF_MSG_RX_ERR| \
46 NETIF_MSG_TX_ERR)
47
48 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
49 [EDSR] = 0x0000,
50 [EDMR] = 0x0400,
51 [EDTRR] = 0x0408,
52 [EDRRR] = 0x0410,
53 [EESR] = 0x0428,
54 [EESIPR] = 0x0430,
55 [TDLAR] = 0x0010,
56 [TDFAR] = 0x0014,
57 [TDFXR] = 0x0018,
58 [TDFFR] = 0x001c,
59 [RDLAR] = 0x0030,
60 [RDFAR] = 0x0034,
61 [RDFXR] = 0x0038,
62 [RDFFR] = 0x003c,
63 [TRSCER] = 0x0438,
64 [RMFCR] = 0x0440,
65 [TFTR] = 0x0448,
66 [FDR] = 0x0450,
67 [RMCR] = 0x0458,
68 [RPADIR] = 0x0460,
69 [FCFTR] = 0x0468,
70 [CSMR] = 0x04E4,
71
72 [ECMR] = 0x0500,
73 [ECSR] = 0x0510,
74 [ECSIPR] = 0x0518,
75 [PIR] = 0x0520,
76 [PSR] = 0x0528,
77 [PIPR] = 0x052c,
78 [RFLR] = 0x0508,
79 [APR] = 0x0554,
80 [MPR] = 0x0558,
81 [PFTCR] = 0x055c,
82 [PFRCR] = 0x0560,
83 [TPAUSER] = 0x0564,
84 [GECMR] = 0x05b0,
85 [BCULR] = 0x05b4,
86 [MAHR] = 0x05c0,
87 [MALR] = 0x05c8,
88 [TROCR] = 0x0700,
89 [CDCR] = 0x0708,
90 [LCCR] = 0x0710,
91 [CEFCR] = 0x0740,
92 [FRECR] = 0x0748,
93 [TSFRCR] = 0x0750,
94 [TLFRCR] = 0x0758,
95 [RFCR] = 0x0760,
96 [CERCR] = 0x0768,
97 [CEECR] = 0x0770,
98 [MAFCR] = 0x0778,
99 [RMII_MII] = 0x0790,
100
101 [ARSTR] = 0x0000,
102 [TSU_CTRST] = 0x0004,
103 [TSU_FWEN0] = 0x0010,
104 [TSU_FWEN1] = 0x0014,
105 [TSU_FCM] = 0x0018,
106 [TSU_BSYSL0] = 0x0020,
107 [TSU_BSYSL1] = 0x0024,
108 [TSU_PRISL0] = 0x0028,
109 [TSU_PRISL1] = 0x002c,
110 [TSU_FWSL0] = 0x0030,
111 [TSU_FWSL1] = 0x0034,
112 [TSU_FWSLC] = 0x0038,
113 [TSU_QTAG0] = 0x0040,
114 [TSU_QTAG1] = 0x0044,
115 [TSU_FWSR] = 0x0050,
116 [TSU_FWINMK] = 0x0054,
117 [TSU_ADQT0] = 0x0048,
118 [TSU_ADQT1] = 0x004c,
119 [TSU_VTAG0] = 0x0058,
120 [TSU_VTAG1] = 0x005c,
121 [TSU_ADSBSY] = 0x0060,
122 [TSU_TEN] = 0x0064,
123 [TSU_POST1] = 0x0070,
124 [TSU_POST2] = 0x0074,
125 [TSU_POST3] = 0x0078,
126 [TSU_POST4] = 0x007c,
127 [TSU_ADRH0] = 0x0100,
128 [TSU_ADRL0] = 0x0104,
129 [TSU_ADRH31] = 0x01f8,
130 [TSU_ADRL31] = 0x01fc,
131
132 [TXNLCR0] = 0x0080,
133 [TXALCR0] = 0x0084,
134 [RXNLCR0] = 0x0088,
135 [RXALCR0] = 0x008c,
136 [FWNLCR0] = 0x0090,
137 [FWALCR0] = 0x0094,
138 [TXNLCR1] = 0x00a0,
139 [TXALCR1] = 0x00a0,
140 [RXNLCR1] = 0x00a8,
141 [RXALCR1] = 0x00ac,
142 [FWNLCR1] = 0x00b0,
143 [FWALCR1] = 0x00b4,
144 };
145
146 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
147 [EDSR] = 0x0000,
148 [EDMR] = 0x0400,
149 [EDTRR] = 0x0408,
150 [EDRRR] = 0x0410,
151 [EESR] = 0x0428,
152 [EESIPR] = 0x0430,
153 [TDLAR] = 0x0010,
154 [TDFAR] = 0x0014,
155 [TDFXR] = 0x0018,
156 [TDFFR] = 0x001c,
157 [RDLAR] = 0x0030,
158 [RDFAR] = 0x0034,
159 [RDFXR] = 0x0038,
160 [RDFFR] = 0x003c,
161 [TRSCER] = 0x0438,
162 [RMFCR] = 0x0440,
163 [TFTR] = 0x0448,
164 [FDR] = 0x0450,
165 [RMCR] = 0x0458,
166 [RPADIR] = 0x0460,
167 [FCFTR] = 0x0468,
168 [CSMR] = 0x04E4,
169
170 [ECMR] = 0x0500,
171 [RFLR] = 0x0508,
172 [ECSR] = 0x0510,
173 [ECSIPR] = 0x0518,
174 [PIR] = 0x0520,
175 [APR] = 0x0554,
176 [MPR] = 0x0558,
177 [PFTCR] = 0x055c,
178 [PFRCR] = 0x0560,
179 [TPAUSER] = 0x0564,
180 [MAHR] = 0x05c0,
181 [MALR] = 0x05c8,
182 [CEFCR] = 0x0740,
183 [FRECR] = 0x0748,
184 [TSFRCR] = 0x0750,
185 [TLFRCR] = 0x0758,
186 [RFCR] = 0x0760,
187 [MAFCR] = 0x0778,
188
189 [ARSTR] = 0x0000,
190 [TSU_CTRST] = 0x0004,
191 [TSU_VTAG0] = 0x0058,
192 [TSU_ADSBSY] = 0x0060,
193 [TSU_TEN] = 0x0064,
194 [TSU_ADRH0] = 0x0100,
195 [TSU_ADRL0] = 0x0104,
196 [TSU_ADRH31] = 0x01f8,
197 [TSU_ADRL31] = 0x01fc,
198
199 [TXNLCR0] = 0x0080,
200 [TXALCR0] = 0x0084,
201 [RXNLCR0] = 0x0088,
202 [RXALCR0] = 0x008C,
203 };
204
205 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
206 [ECMR] = 0x0300,
207 [RFLR] = 0x0308,
208 [ECSR] = 0x0310,
209 [ECSIPR] = 0x0318,
210 [PIR] = 0x0320,
211 [PSR] = 0x0328,
212 [RDMLR] = 0x0340,
213 [IPGR] = 0x0350,
214 [APR] = 0x0354,
215 [MPR] = 0x0358,
216 [RFCF] = 0x0360,
217 [TPAUSER] = 0x0364,
218 [TPAUSECR] = 0x0368,
219 [MAHR] = 0x03c0,
220 [MALR] = 0x03c8,
221 [TROCR] = 0x03d0,
222 [CDCR] = 0x03d4,
223 [LCCR] = 0x03d8,
224 [CNDCR] = 0x03dc,
225 [CEFCR] = 0x03e4,
226 [FRECR] = 0x03e8,
227 [TSFRCR] = 0x03ec,
228 [TLFRCR] = 0x03f0,
229 [RFCR] = 0x03f4,
230 [MAFCR] = 0x03f8,
231
232 [EDMR] = 0x0200,
233 [EDTRR] = 0x0208,
234 [EDRRR] = 0x0210,
235 [TDLAR] = 0x0218,
236 [RDLAR] = 0x0220,
237 [EESR] = 0x0228,
238 [EESIPR] = 0x0230,
239 [TRSCER] = 0x0238,
240 [RMFCR] = 0x0240,
241 [TFTR] = 0x0248,
242 [FDR] = 0x0250,
243 [RMCR] = 0x0258,
244 [TFUCR] = 0x0264,
245 [RFOCR] = 0x0268,
246 [RMIIMODE] = 0x026c,
247 [FCFTR] = 0x0270,
248 [TRIMD] = 0x027c,
249 };
250
251 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
252 [ECMR] = 0x0100,
253 [RFLR] = 0x0108,
254 [ECSR] = 0x0110,
255 [ECSIPR] = 0x0118,
256 [PIR] = 0x0120,
257 [PSR] = 0x0128,
258 [RDMLR] = 0x0140,
259 [IPGR] = 0x0150,
260 [APR] = 0x0154,
261 [MPR] = 0x0158,
262 [TPAUSER] = 0x0164,
263 [RFCF] = 0x0160,
264 [TPAUSECR] = 0x0168,
265 [BCFRR] = 0x016c,
266 [MAHR] = 0x01c0,
267 [MALR] = 0x01c8,
268 [TROCR] = 0x01d0,
269 [CDCR] = 0x01d4,
270 [LCCR] = 0x01d8,
271 [CNDCR] = 0x01dc,
272 [CEFCR] = 0x01e4,
273 [FRECR] = 0x01e8,
274 [TSFRCR] = 0x01ec,
275 [TLFRCR] = 0x01f0,
276 [RFCR] = 0x01f4,
277 [MAFCR] = 0x01f8,
278 [RTRATE] = 0x01fc,
279
280 [EDMR] = 0x0000,
281 [EDTRR] = 0x0008,
282 [EDRRR] = 0x0010,
283 [TDLAR] = 0x0018,
284 [RDLAR] = 0x0020,
285 [EESR] = 0x0028,
286 [EESIPR] = 0x0030,
287 [TRSCER] = 0x0038,
288 [RMFCR] = 0x0040,
289 [TFTR] = 0x0048,
290 [FDR] = 0x0050,
291 [RMCR] = 0x0058,
292 [TFUCR] = 0x0064,
293 [RFOCR] = 0x0068,
294 [FCFTR] = 0x0070,
295 [RPADIR] = 0x0078,
296 [TRIMD] = 0x007c,
297 [RBWAR] = 0x00c8,
298 [RDFAR] = 0x00cc,
299 [TBRAR] = 0x00d4,
300 [TDFAR] = 0x00d8,
301 };
302
303 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
304 [ECMR] = 0x0160,
305 [ECSR] = 0x0164,
306 [ECSIPR] = 0x0168,
307 [PIR] = 0x016c,
308 [MAHR] = 0x0170,
309 [MALR] = 0x0174,
310 [RFLR] = 0x0178,
311 [PSR] = 0x017c,
312 [TROCR] = 0x0180,
313 [CDCR] = 0x0184,
314 [LCCR] = 0x0188,
315 [CNDCR] = 0x018c,
316 [CEFCR] = 0x0194,
317 [FRECR] = 0x0198,
318 [TSFRCR] = 0x019c,
319 [TLFRCR] = 0x01a0,
320 [RFCR] = 0x01a4,
321 [MAFCR] = 0x01a8,
322 [IPGR] = 0x01b4,
323 [APR] = 0x01b8,
324 [MPR] = 0x01bc,
325 [TPAUSER] = 0x01c4,
326 [BCFR] = 0x01cc,
327
328 [ARSTR] = 0x0000,
329 [TSU_CTRST] = 0x0004,
330 [TSU_FWEN0] = 0x0010,
331 [TSU_FWEN1] = 0x0014,
332 [TSU_FCM] = 0x0018,
333 [TSU_BSYSL0] = 0x0020,
334 [TSU_BSYSL1] = 0x0024,
335 [TSU_PRISL0] = 0x0028,
336 [TSU_PRISL1] = 0x002c,
337 [TSU_FWSL0] = 0x0030,
338 [TSU_FWSL1] = 0x0034,
339 [TSU_FWSLC] = 0x0038,
340 [TSU_QTAGM0] = 0x0040,
341 [TSU_QTAGM1] = 0x0044,
342 [TSU_ADQT0] = 0x0048,
343 [TSU_ADQT1] = 0x004c,
344 [TSU_FWSR] = 0x0050,
345 [TSU_FWINMK] = 0x0054,
346 [TSU_ADSBSY] = 0x0060,
347 [TSU_TEN] = 0x0064,
348 [TSU_POST1] = 0x0070,
349 [TSU_POST2] = 0x0074,
350 [TSU_POST3] = 0x0078,
351 [TSU_POST4] = 0x007c,
352
353 [TXNLCR0] = 0x0080,
354 [TXALCR0] = 0x0084,
355 [RXNLCR0] = 0x0088,
356 [RXALCR0] = 0x008c,
357 [FWNLCR0] = 0x0090,
358 [FWALCR0] = 0x0094,
359 [TXNLCR1] = 0x00a0,
360 [TXALCR1] = 0x00a0,
361 [RXNLCR1] = 0x00a8,
362 [RXALCR1] = 0x00ac,
363 [FWNLCR1] = 0x00b0,
364 [FWALCR1] = 0x00b4,
365
366 [TSU_ADRH0] = 0x0100,
367 [TSU_ADRL0] = 0x0104,
368 [TSU_ADRL31] = 0x01fc,
369 };
370
371 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
372 {
373 return mdp->reg_offset == sh_eth_offset_gigabit;
374 }
375
376 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
377 {
378 return mdp->reg_offset == sh_eth_offset_fast_rz;
379 }
380
381 static void sh_eth_select_mii(struct net_device *ndev)
382 {
383 u32 value = 0x0;
384 struct sh_eth_private *mdp = netdev_priv(ndev);
385
386 switch (mdp->phy_interface) {
387 case PHY_INTERFACE_MODE_GMII:
388 value = 0x2;
389 break;
390 case PHY_INTERFACE_MODE_MII:
391 value = 0x1;
392 break;
393 case PHY_INTERFACE_MODE_RMII:
394 value = 0x0;
395 break;
396 default:
397 pr_warn("PHY interface mode was not setup. Set to MII.\n");
398 value = 0x1;
399 break;
400 }
401
402 sh_eth_write(ndev, value, RMII_MII);
403 }
404
405 static void sh_eth_set_duplex(struct net_device *ndev)
406 {
407 struct sh_eth_private *mdp = netdev_priv(ndev);
408
409 if (mdp->duplex) /* Full */
410 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
411 else /* Half */
412 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
413 }
414
415 /* There is CPU dependent code */
416 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
417 {
418 struct sh_eth_private *mdp = netdev_priv(ndev);
419
420 switch (mdp->speed) {
421 case 10: /* 10BASE */
422 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
423 break;
424 case 100:/* 100BASE */
425 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
426 break;
427 default:
428 break;
429 }
430 }
431
432 /* R8A7778/9 */
433 static struct sh_eth_cpu_data r8a777x_data = {
434 .set_duplex = sh_eth_set_duplex,
435 .set_rate = sh_eth_set_rate_r8a777x,
436
437 .register_type = SH_ETH_REG_FAST_RCAR,
438
439 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
440 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
441 .eesipr_value = 0x01ff009f,
442
443 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
444 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
445 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
446 EESR_ECI,
447
448 .apr = 1,
449 .mpr = 1,
450 .tpauser = 1,
451 .hw_swap = 1,
452 };
453
454 /* R8A7790/1 */
455 static struct sh_eth_cpu_data r8a779x_data = {
456 .set_duplex = sh_eth_set_duplex,
457 .set_rate = sh_eth_set_rate_r8a777x,
458
459 .register_type = SH_ETH_REG_FAST_RCAR,
460
461 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
462 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
463 .eesipr_value = 0x01ff009f,
464
465 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
466 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
467 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
468 EESR_ECI,
469
470 .apr = 1,
471 .mpr = 1,
472 .tpauser = 1,
473 .hw_swap = 1,
474 .rmiimode = 1,
475 .shift_rd0 = 1,
476 };
477
478 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
479 {
480 struct sh_eth_private *mdp = netdev_priv(ndev);
481
482 switch (mdp->speed) {
483 case 10: /* 10BASE */
484 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
485 break;
486 case 100:/* 100BASE */
487 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
488 break;
489 default:
490 break;
491 }
492 }
493
494 /* SH7724 */
495 static struct sh_eth_cpu_data sh7724_data = {
496 .set_duplex = sh_eth_set_duplex,
497 .set_rate = sh_eth_set_rate_sh7724,
498
499 .register_type = SH_ETH_REG_FAST_SH4,
500
501 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
502 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
503 .eesipr_value = 0x01ff009f,
504
505 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
506 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
507 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
508 EESR_ECI,
509
510 .apr = 1,
511 .mpr = 1,
512 .tpauser = 1,
513 .hw_swap = 1,
514 .rpadir = 1,
515 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
516 };
517
518 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
519 {
520 struct sh_eth_private *mdp = netdev_priv(ndev);
521
522 switch (mdp->speed) {
523 case 10: /* 10BASE */
524 sh_eth_write(ndev, 0, RTRATE);
525 break;
526 case 100:/* 100BASE */
527 sh_eth_write(ndev, 1, RTRATE);
528 break;
529 default:
530 break;
531 }
532 }
533
534 /* SH7757 */
535 static struct sh_eth_cpu_data sh7757_data = {
536 .set_duplex = sh_eth_set_duplex,
537 .set_rate = sh_eth_set_rate_sh7757,
538
539 .register_type = SH_ETH_REG_FAST_SH4,
540
541 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
542 .rmcr_value = RMCR_RNC,
543
544 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
545 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
546 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
547 EESR_ECI,
548
549 .irq_flags = IRQF_SHARED,
550 .apr = 1,
551 .mpr = 1,
552 .tpauser = 1,
553 .hw_swap = 1,
554 .no_ade = 1,
555 .rpadir = 1,
556 .rpadir_value = 2 << 16,
557 };
558
559 #define SH_GIGA_ETH_BASE 0xfee00000UL
560 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
561 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
562 static void sh_eth_chip_reset_giga(struct net_device *ndev)
563 {
564 int i;
565 unsigned long mahr[2], malr[2];
566
567 /* save MAHR and MALR */
568 for (i = 0; i < 2; i++) {
569 malr[i] = ioread32((void *)GIGA_MALR(i));
570 mahr[i] = ioread32((void *)GIGA_MAHR(i));
571 }
572
573 /* reset device */
574 iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
575 mdelay(1);
576
577 /* restore MAHR and MALR */
578 for (i = 0; i < 2; i++) {
579 iowrite32(malr[i], (void *)GIGA_MALR(i));
580 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
581 }
582 }
583
584 static void sh_eth_set_rate_giga(struct net_device *ndev)
585 {
586 struct sh_eth_private *mdp = netdev_priv(ndev);
587
588 switch (mdp->speed) {
589 case 10: /* 10BASE */
590 sh_eth_write(ndev, 0x00000000, GECMR);
591 break;
592 case 100:/* 100BASE */
593 sh_eth_write(ndev, 0x00000010, GECMR);
594 break;
595 case 1000: /* 1000BASE */
596 sh_eth_write(ndev, 0x00000020, GECMR);
597 break;
598 default:
599 break;
600 }
601 }
602
603 /* SH7757(GETHERC) */
604 static struct sh_eth_cpu_data sh7757_data_giga = {
605 .chip_reset = sh_eth_chip_reset_giga,
606 .set_duplex = sh_eth_set_duplex,
607 .set_rate = sh_eth_set_rate_giga,
608
609 .register_type = SH_ETH_REG_GIGABIT,
610
611 .ecsr_value = ECSR_ICD | ECSR_MPD,
612 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
613 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
614
615 .tx_check = EESR_TC1 | EESR_FTC,
616 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
617 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
618 EESR_TDE | EESR_ECI,
619 .fdr_value = 0x0000072f,
620 .rmcr_value = RMCR_RNC,
621
622 .irq_flags = IRQF_SHARED,
623 .apr = 1,
624 .mpr = 1,
625 .tpauser = 1,
626 .bculr = 1,
627 .hw_swap = 1,
628 .rpadir = 1,
629 .rpadir_value = 2 << 16,
630 .no_trimd = 1,
631 .no_ade = 1,
632 .tsu = 1,
633 };
634
635 static void sh_eth_chip_reset(struct net_device *ndev)
636 {
637 struct sh_eth_private *mdp = netdev_priv(ndev);
638
639 /* reset device */
640 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
641 mdelay(1);
642 }
643
644 static void sh_eth_set_rate_gether(struct net_device *ndev)
645 {
646 struct sh_eth_private *mdp = netdev_priv(ndev);
647
648 switch (mdp->speed) {
649 case 10: /* 10BASE */
650 sh_eth_write(ndev, GECMR_10, GECMR);
651 break;
652 case 100:/* 100BASE */
653 sh_eth_write(ndev, GECMR_100, GECMR);
654 break;
655 case 1000: /* 1000BASE */
656 sh_eth_write(ndev, GECMR_1000, GECMR);
657 break;
658 default:
659 break;
660 }
661 }
662
663 /* SH7734 */
664 static struct sh_eth_cpu_data sh7734_data = {
665 .chip_reset = sh_eth_chip_reset,
666 .set_duplex = sh_eth_set_duplex,
667 .set_rate = sh_eth_set_rate_gether,
668
669 .register_type = SH_ETH_REG_GIGABIT,
670
671 .ecsr_value = ECSR_ICD | ECSR_MPD,
672 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
673 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
674
675 .tx_check = EESR_TC1 | EESR_FTC,
676 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
677 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
678 EESR_TDE | EESR_ECI,
679
680 .apr = 1,
681 .mpr = 1,
682 .tpauser = 1,
683 .bculr = 1,
684 .hw_swap = 1,
685 .no_trimd = 1,
686 .no_ade = 1,
687 .tsu = 1,
688 .hw_crc = 1,
689 .select_mii = 1,
690 };
691
692 /* SH7763 */
693 static struct sh_eth_cpu_data sh7763_data = {
694 .chip_reset = sh_eth_chip_reset,
695 .set_duplex = sh_eth_set_duplex,
696 .set_rate = sh_eth_set_rate_gether,
697
698 .register_type = SH_ETH_REG_GIGABIT,
699
700 .ecsr_value = ECSR_ICD | ECSR_MPD,
701 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
702 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
703
704 .tx_check = EESR_TC1 | EESR_FTC,
705 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
706 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
707 EESR_ECI,
708
709 .apr = 1,
710 .mpr = 1,
711 .tpauser = 1,
712 .bculr = 1,
713 .hw_swap = 1,
714 .no_trimd = 1,
715 .no_ade = 1,
716 .tsu = 1,
717 .irq_flags = IRQF_SHARED,
718 };
719
720 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
721 {
722 struct sh_eth_private *mdp = netdev_priv(ndev);
723
724 /* reset device */
725 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
726 mdelay(1);
727
728 sh_eth_select_mii(ndev);
729 }
730
731 /* R8A7740 */
732 static struct sh_eth_cpu_data r8a7740_data = {
733 .chip_reset = sh_eth_chip_reset_r8a7740,
734 .set_duplex = sh_eth_set_duplex,
735 .set_rate = sh_eth_set_rate_gether,
736
737 .register_type = SH_ETH_REG_GIGABIT,
738
739 .ecsr_value = ECSR_ICD | ECSR_MPD,
740 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
741 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
742
743 .tx_check = EESR_TC1 | EESR_FTC,
744 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
745 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
746 EESR_TDE | EESR_ECI,
747 .fdr_value = 0x0000070f,
748 .rmcr_value = RMCR_RNC,
749
750 .apr = 1,
751 .mpr = 1,
752 .tpauser = 1,
753 .bculr = 1,
754 .hw_swap = 1,
755 .rpadir = 1,
756 .rpadir_value = 2 << 16,
757 .no_trimd = 1,
758 .no_ade = 1,
759 .tsu = 1,
760 .select_mii = 1,
761 .shift_rd0 = 1,
762 };
763
764 /* R7S72100 */
765 static struct sh_eth_cpu_data r7s72100_data = {
766 .chip_reset = sh_eth_chip_reset,
767 .set_duplex = sh_eth_set_duplex,
768
769 .register_type = SH_ETH_REG_FAST_RZ,
770
771 .ecsr_value = ECSR_ICD,
772 .ecsipr_value = ECSIPR_ICDIP,
773 .eesipr_value = 0xff7f009f,
774
775 .tx_check = EESR_TC1 | EESR_FTC,
776 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
777 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
778 EESR_TDE | EESR_ECI,
779 .fdr_value = 0x0000070f,
780 .rmcr_value = RMCR_RNC,
781
782 .no_psr = 1,
783 .apr = 1,
784 .mpr = 1,
785 .tpauser = 1,
786 .hw_swap = 1,
787 .rpadir = 1,
788 .rpadir_value = 2 << 16,
789 .no_trimd = 1,
790 .no_ade = 1,
791 .hw_crc = 1,
792 .tsu = 1,
793 .shift_rd0 = 1,
794 };
795
796 static struct sh_eth_cpu_data sh7619_data = {
797 .register_type = SH_ETH_REG_FAST_SH3_SH2,
798
799 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
800
801 .apr = 1,
802 .mpr = 1,
803 .tpauser = 1,
804 .hw_swap = 1,
805 };
806
807 static struct sh_eth_cpu_data sh771x_data = {
808 .register_type = SH_ETH_REG_FAST_SH3_SH2,
809
810 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
811 .tsu = 1,
812 };
813
814 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
815 {
816 if (!cd->ecsr_value)
817 cd->ecsr_value = DEFAULT_ECSR_INIT;
818
819 if (!cd->ecsipr_value)
820 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
821
822 if (!cd->fcftr_value)
823 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
824 DEFAULT_FIFO_F_D_RFD;
825
826 if (!cd->fdr_value)
827 cd->fdr_value = DEFAULT_FDR_INIT;
828
829 if (!cd->rmcr_value)
830 cd->rmcr_value = DEFAULT_RMCR_VALUE;
831
832 if (!cd->tx_check)
833 cd->tx_check = DEFAULT_TX_CHECK;
834
835 if (!cd->eesr_err_check)
836 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
837 }
838
839 static int sh_eth_check_reset(struct net_device *ndev)
840 {
841 int ret = 0;
842 int cnt = 100;
843
844 while (cnt > 0) {
845 if (!(sh_eth_read(ndev, EDMR) & 0x3))
846 break;
847 mdelay(1);
848 cnt--;
849 }
850 if (cnt <= 0) {
851 pr_err("Device reset failed\n");
852 ret = -ETIMEDOUT;
853 }
854 return ret;
855 }
856
857 static int sh_eth_reset(struct net_device *ndev)
858 {
859 struct sh_eth_private *mdp = netdev_priv(ndev);
860 int ret = 0;
861
862 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
863 sh_eth_write(ndev, EDSR_ENALL, EDSR);
864 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
865 EDMR);
866
867 ret = sh_eth_check_reset(ndev);
868 if (ret)
869 goto out;
870
871 /* Table Init */
872 sh_eth_write(ndev, 0x0, TDLAR);
873 sh_eth_write(ndev, 0x0, TDFAR);
874 sh_eth_write(ndev, 0x0, TDFXR);
875 sh_eth_write(ndev, 0x0, TDFFR);
876 sh_eth_write(ndev, 0x0, RDLAR);
877 sh_eth_write(ndev, 0x0, RDFAR);
878 sh_eth_write(ndev, 0x0, RDFXR);
879 sh_eth_write(ndev, 0x0, RDFFR);
880
881 /* Reset HW CRC register */
882 if (mdp->cd->hw_crc)
883 sh_eth_write(ndev, 0x0, CSMR);
884
885 /* Select MII mode */
886 if (mdp->cd->select_mii)
887 sh_eth_select_mii(ndev);
888 } else {
889 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
890 EDMR);
891 mdelay(3);
892 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
893 EDMR);
894 }
895
896 out:
897 return ret;
898 }
899
900 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
901 static void sh_eth_set_receive_align(struct sk_buff *skb)
902 {
903 int reserve;
904
905 reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
906 if (reserve)
907 skb_reserve(skb, reserve);
908 }
909 #else
910 static void sh_eth_set_receive_align(struct sk_buff *skb)
911 {
912 skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
913 }
914 #endif
915
916
917 /* CPU <-> EDMAC endian convert */
918 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
919 {
920 switch (mdp->edmac_endian) {
921 case EDMAC_LITTLE_ENDIAN:
922 return cpu_to_le32(x);
923 case EDMAC_BIG_ENDIAN:
924 return cpu_to_be32(x);
925 }
926 return x;
927 }
928
929 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
930 {
931 switch (mdp->edmac_endian) {
932 case EDMAC_LITTLE_ENDIAN:
933 return le32_to_cpu(x);
934 case EDMAC_BIG_ENDIAN:
935 return be32_to_cpu(x);
936 }
937 return x;
938 }
939
940 /* Program the hardware MAC address from dev->dev_addr. */
941 static void update_mac_address(struct net_device *ndev)
942 {
943 sh_eth_write(ndev,
944 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
945 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
946 sh_eth_write(ndev,
947 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
948 }
949
950 /* Get MAC address from SuperH MAC address register
951 *
952 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
953 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
954 * When you want use this device, you must set MAC address in bootloader.
955 *
956 */
957 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
958 {
959 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
960 memcpy(ndev->dev_addr, mac, ETH_ALEN);
961 } else {
962 ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
963 ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
964 ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
965 ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
966 ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
967 ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
968 }
969 }
970
971 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
972 {
973 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
974 return EDTRR_TRNS_GETHER;
975 else
976 return EDTRR_TRNS_ETHER;
977 }
978
979 struct bb_info {
980 void (*set_gate)(void *addr);
981 struct mdiobb_ctrl ctrl;
982 void *addr;
983 u32 mmd_msk;/* MMD */
984 u32 mdo_msk;
985 u32 mdi_msk;
986 u32 mdc_msk;
987 };
988
989 /* PHY bit set */
990 static void bb_set(void *addr, u32 msk)
991 {
992 iowrite32(ioread32(addr) | msk, addr);
993 }
994
995 /* PHY bit clear */
996 static void bb_clr(void *addr, u32 msk)
997 {
998 iowrite32((ioread32(addr) & ~msk), addr);
999 }
1000
1001 /* PHY bit read */
1002 static int bb_read(void *addr, u32 msk)
1003 {
1004 return (ioread32(addr) & msk) != 0;
1005 }
1006
1007 /* Data I/O pin control */
1008 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1009 {
1010 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1011
1012 if (bitbang->set_gate)
1013 bitbang->set_gate(bitbang->addr);
1014
1015 if (bit)
1016 bb_set(bitbang->addr, bitbang->mmd_msk);
1017 else
1018 bb_clr(bitbang->addr, bitbang->mmd_msk);
1019 }
1020
1021 /* Set bit data*/
1022 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1023 {
1024 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1025
1026 if (bitbang->set_gate)
1027 bitbang->set_gate(bitbang->addr);
1028
1029 if (bit)
1030 bb_set(bitbang->addr, bitbang->mdo_msk);
1031 else
1032 bb_clr(bitbang->addr, bitbang->mdo_msk);
1033 }
1034
1035 /* Get bit data*/
1036 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1037 {
1038 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1039
1040 if (bitbang->set_gate)
1041 bitbang->set_gate(bitbang->addr);
1042
1043 return bb_read(bitbang->addr, bitbang->mdi_msk);
1044 }
1045
1046 /* MDC pin control */
1047 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1048 {
1049 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1050
1051 if (bitbang->set_gate)
1052 bitbang->set_gate(bitbang->addr);
1053
1054 if (bit)
1055 bb_set(bitbang->addr, bitbang->mdc_msk);
1056 else
1057 bb_clr(bitbang->addr, bitbang->mdc_msk);
1058 }
1059
1060 /* mdio bus control struct */
1061 static struct mdiobb_ops bb_ops = {
1062 .owner = THIS_MODULE,
1063 .set_mdc = sh_mdc_ctrl,
1064 .set_mdio_dir = sh_mmd_ctrl,
1065 .set_mdio_data = sh_set_mdio,
1066 .get_mdio_data = sh_get_mdio,
1067 };
1068
1069 /* free skb and descriptor buffer */
1070 static void sh_eth_ring_free(struct net_device *ndev)
1071 {
1072 struct sh_eth_private *mdp = netdev_priv(ndev);
1073 int i;
1074
1075 /* Free Rx skb ringbuffer */
1076 if (mdp->rx_skbuff) {
1077 for (i = 0; i < mdp->num_rx_ring; i++) {
1078 if (mdp->rx_skbuff[i])
1079 dev_kfree_skb(mdp->rx_skbuff[i]);
1080 }
1081 }
1082 kfree(mdp->rx_skbuff);
1083 mdp->rx_skbuff = NULL;
1084
1085 /* Free Tx skb ringbuffer */
1086 if (mdp->tx_skbuff) {
1087 for (i = 0; i < mdp->num_tx_ring; i++) {
1088 if (mdp->tx_skbuff[i])
1089 dev_kfree_skb(mdp->tx_skbuff[i]);
1090 }
1091 }
1092 kfree(mdp->tx_skbuff);
1093 mdp->tx_skbuff = NULL;
1094 }
1095
1096 /* format skb and descriptor buffer */
1097 static void sh_eth_ring_format(struct net_device *ndev)
1098 {
1099 struct sh_eth_private *mdp = netdev_priv(ndev);
1100 int i;
1101 struct sk_buff *skb;
1102 struct sh_eth_rxdesc *rxdesc = NULL;
1103 struct sh_eth_txdesc *txdesc = NULL;
1104 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1105 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1106
1107 mdp->cur_rx = 0;
1108 mdp->cur_tx = 0;
1109 mdp->dirty_rx = 0;
1110 mdp->dirty_tx = 0;
1111
1112 memset(mdp->rx_ring, 0, rx_ringsize);
1113
1114 /* build Rx ring buffer */
1115 for (i = 0; i < mdp->num_rx_ring; i++) {
1116 /* skb */
1117 mdp->rx_skbuff[i] = NULL;
1118 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1119 mdp->rx_skbuff[i] = skb;
1120 if (skb == NULL)
1121 break;
1122 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1123 DMA_FROM_DEVICE);
1124 sh_eth_set_receive_align(skb);
1125
1126 /* RX descriptor */
1127 rxdesc = &mdp->rx_ring[i];
1128 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1129 rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1130
1131 /* The size of the buffer is 16 byte boundary. */
1132 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1133 /* Rx descriptor address set */
1134 if (i == 0) {
1135 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1136 if (sh_eth_is_gether(mdp) ||
1137 sh_eth_is_rz_fast_ether(mdp))
1138 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1139 }
1140 }
1141
1142 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1143
1144 /* Mark the last entry as wrapping the ring. */
1145 rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1146
1147 memset(mdp->tx_ring, 0, tx_ringsize);
1148
1149 /* build Tx ring buffer */
1150 for (i = 0; i < mdp->num_tx_ring; i++) {
1151 mdp->tx_skbuff[i] = NULL;
1152 txdesc = &mdp->tx_ring[i];
1153 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1154 txdesc->buffer_length = 0;
1155 if (i == 0) {
1156 /* Tx descriptor address set */
1157 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1158 if (sh_eth_is_gether(mdp) ||
1159 sh_eth_is_rz_fast_ether(mdp))
1160 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1161 }
1162 }
1163
1164 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1165 }
1166
1167 /* Get skb and descriptor buffer */
1168 static int sh_eth_ring_init(struct net_device *ndev)
1169 {
1170 struct sh_eth_private *mdp = netdev_priv(ndev);
1171 int rx_ringsize, tx_ringsize, ret = 0;
1172
1173 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1174 * card needs room to do 8 byte alignment, +2 so we can reserve
1175 * the first 2 bytes, and +16 gets room for the status word from the
1176 * card.
1177 */
1178 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1179 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1180 if (mdp->cd->rpadir)
1181 mdp->rx_buf_sz += NET_IP_ALIGN;
1182
1183 /* Allocate RX and TX skb rings */
1184 mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1185 sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1186 if (!mdp->rx_skbuff) {
1187 ret = -ENOMEM;
1188 return ret;
1189 }
1190
1191 mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1192 sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1193 if (!mdp->tx_skbuff) {
1194 ret = -ENOMEM;
1195 goto skb_ring_free;
1196 }
1197
1198 /* Allocate all Rx descriptors. */
1199 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1200 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1201 GFP_KERNEL);
1202 if (!mdp->rx_ring) {
1203 ret = -ENOMEM;
1204 goto desc_ring_free;
1205 }
1206
1207 mdp->dirty_rx = 0;
1208
1209 /* Allocate all Tx descriptors. */
1210 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1211 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1212 GFP_KERNEL);
1213 if (!mdp->tx_ring) {
1214 ret = -ENOMEM;
1215 goto desc_ring_free;
1216 }
1217 return ret;
1218
1219 desc_ring_free:
1220 /* free DMA buffer */
1221 dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1222
1223 skb_ring_free:
1224 /* Free Rx and Tx skb ring buffer */
1225 sh_eth_ring_free(ndev);
1226 mdp->tx_ring = NULL;
1227 mdp->rx_ring = NULL;
1228
1229 return ret;
1230 }
1231
1232 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1233 {
1234 int ringsize;
1235
1236 if (mdp->rx_ring) {
1237 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1238 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1239 mdp->rx_desc_dma);
1240 mdp->rx_ring = NULL;
1241 }
1242
1243 if (mdp->tx_ring) {
1244 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1245 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1246 mdp->tx_desc_dma);
1247 mdp->tx_ring = NULL;
1248 }
1249 }
1250
1251 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1252 {
1253 int ret = 0;
1254 struct sh_eth_private *mdp = netdev_priv(ndev);
1255 u32 val;
1256
1257 /* Soft Reset */
1258 ret = sh_eth_reset(ndev);
1259 if (ret)
1260 goto out;
1261
1262 if (mdp->cd->rmiimode)
1263 sh_eth_write(ndev, 0x1, RMIIMODE);
1264
1265 /* Descriptor format */
1266 sh_eth_ring_format(ndev);
1267 if (mdp->cd->rpadir)
1268 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1269
1270 /* all sh_eth int mask */
1271 sh_eth_write(ndev, 0, EESIPR);
1272
1273 #if defined(__LITTLE_ENDIAN)
1274 if (mdp->cd->hw_swap)
1275 sh_eth_write(ndev, EDMR_EL, EDMR);
1276 else
1277 #endif
1278 sh_eth_write(ndev, 0, EDMR);
1279
1280 /* FIFO size set */
1281 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1282 sh_eth_write(ndev, 0, TFTR);
1283
1284 /* Frame recv control */
1285 sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
1286
1287 sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1288
1289 if (mdp->cd->bculr)
1290 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
1291
1292 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1293
1294 if (!mdp->cd->no_trimd)
1295 sh_eth_write(ndev, 0, TRIMD);
1296
1297 /* Recv frame limit set register */
1298 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1299 RFLR);
1300
1301 sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1302 if (start)
1303 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1304
1305 /* PAUSE Prohibition */
1306 val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1307 ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1308
1309 sh_eth_write(ndev, val, ECMR);
1310
1311 if (mdp->cd->set_rate)
1312 mdp->cd->set_rate(ndev);
1313
1314 /* E-MAC Status Register clear */
1315 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1316
1317 /* E-MAC Interrupt Enable register */
1318 if (start)
1319 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1320
1321 /* Set MAC address */
1322 update_mac_address(ndev);
1323
1324 /* mask reset */
1325 if (mdp->cd->apr)
1326 sh_eth_write(ndev, APR_AP, APR);
1327 if (mdp->cd->mpr)
1328 sh_eth_write(ndev, MPR_MP, MPR);
1329 if (mdp->cd->tpauser)
1330 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1331
1332 if (start) {
1333 /* Setting the Rx mode will start the Rx process. */
1334 sh_eth_write(ndev, EDRRR_R, EDRRR);
1335
1336 netif_start_queue(ndev);
1337 }
1338
1339 out:
1340 return ret;
1341 }
1342
1343 /* free Tx skb function */
1344 static int sh_eth_txfree(struct net_device *ndev)
1345 {
1346 struct sh_eth_private *mdp = netdev_priv(ndev);
1347 struct sh_eth_txdesc *txdesc;
1348 int free_num = 0;
1349 int entry = 0;
1350
1351 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1352 entry = mdp->dirty_tx % mdp->num_tx_ring;
1353 txdesc = &mdp->tx_ring[entry];
1354 if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1355 break;
1356 /* Free the original skb. */
1357 if (mdp->tx_skbuff[entry]) {
1358 dma_unmap_single(&ndev->dev, txdesc->addr,
1359 txdesc->buffer_length, DMA_TO_DEVICE);
1360 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1361 mdp->tx_skbuff[entry] = NULL;
1362 free_num++;
1363 }
1364 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1365 if (entry >= mdp->num_tx_ring - 1)
1366 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1367
1368 ndev->stats.tx_packets++;
1369 ndev->stats.tx_bytes += txdesc->buffer_length;
1370 }
1371 return free_num;
1372 }
1373
1374 /* Packet receive function */
1375 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1376 {
1377 struct sh_eth_private *mdp = netdev_priv(ndev);
1378 struct sh_eth_rxdesc *rxdesc;
1379
1380 int entry = mdp->cur_rx % mdp->num_rx_ring;
1381 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1382 struct sk_buff *skb;
1383 int exceeded = 0;
1384 u16 pkt_len = 0;
1385 u32 desc_status;
1386
1387 rxdesc = &mdp->rx_ring[entry];
1388 while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1389 desc_status = edmac_to_cpu(mdp, rxdesc->status);
1390 pkt_len = rxdesc->frame_length;
1391
1392 if (--boguscnt < 0)
1393 break;
1394
1395 if (*quota <= 0) {
1396 exceeded = 1;
1397 break;
1398 }
1399 (*quota)--;
1400
1401 if (!(desc_status & RDFEND))
1402 ndev->stats.rx_length_errors++;
1403
1404 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1405 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1406 * bit 0. However, in case of the R8A7740, R8A779x, and
1407 * R7S72100 the RFS bits are from bit 25 to bit 16. So, the
1408 * driver needs right shifting by 16.
1409 */
1410 if (mdp->cd->shift_rd0)
1411 desc_status >>= 16;
1412
1413 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1414 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1415 ndev->stats.rx_errors++;
1416 if (desc_status & RD_RFS1)
1417 ndev->stats.rx_crc_errors++;
1418 if (desc_status & RD_RFS2)
1419 ndev->stats.rx_frame_errors++;
1420 if (desc_status & RD_RFS3)
1421 ndev->stats.rx_length_errors++;
1422 if (desc_status & RD_RFS4)
1423 ndev->stats.rx_length_errors++;
1424 if (desc_status & RD_RFS6)
1425 ndev->stats.rx_missed_errors++;
1426 if (desc_status & RD_RFS10)
1427 ndev->stats.rx_over_errors++;
1428 } else {
1429 if (!mdp->cd->hw_swap)
1430 sh_eth_soft_swap(
1431 phys_to_virt(ALIGN(rxdesc->addr, 4)),
1432 pkt_len + 2);
1433 skb = mdp->rx_skbuff[entry];
1434 mdp->rx_skbuff[entry] = NULL;
1435 if (mdp->cd->rpadir)
1436 skb_reserve(skb, NET_IP_ALIGN);
1437 dma_sync_single_for_cpu(&ndev->dev, rxdesc->addr,
1438 mdp->rx_buf_sz,
1439 DMA_FROM_DEVICE);
1440 skb_put(skb, pkt_len);
1441 skb->protocol = eth_type_trans(skb, ndev);
1442 netif_receive_skb(skb);
1443 ndev->stats.rx_packets++;
1444 ndev->stats.rx_bytes += pkt_len;
1445 }
1446 rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1447 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1448 rxdesc = &mdp->rx_ring[entry];
1449 }
1450
1451 /* Refill the Rx ring buffers. */
1452 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1453 entry = mdp->dirty_rx % mdp->num_rx_ring;
1454 rxdesc = &mdp->rx_ring[entry];
1455 /* The size of the buffer is 16 byte boundary. */
1456 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1457
1458 if (mdp->rx_skbuff[entry] == NULL) {
1459 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1460 mdp->rx_skbuff[entry] = skb;
1461 if (skb == NULL)
1462 break; /* Better luck next round. */
1463 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1464 DMA_FROM_DEVICE);
1465 sh_eth_set_receive_align(skb);
1466
1467 skb_checksum_none_assert(skb);
1468 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1469 }
1470 if (entry >= mdp->num_rx_ring - 1)
1471 rxdesc->status |=
1472 cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1473 else
1474 rxdesc->status |=
1475 cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1476 }
1477
1478 /* Restart Rx engine if stopped. */
1479 /* If we don't need to check status, don't. -KDU */
1480 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1481 /* fix the values for the next receiving if RDE is set */
1482 if (intr_status & EESR_RDE) {
1483 u32 count = (sh_eth_read(ndev, RDFAR) -
1484 sh_eth_read(ndev, RDLAR)) >> 4;
1485
1486 mdp->cur_rx = count;
1487 mdp->dirty_rx = count;
1488 }
1489 sh_eth_write(ndev, EDRRR_R, EDRRR);
1490 }
1491
1492 return exceeded;
1493 }
1494
1495 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1496 {
1497 /* disable tx and rx */
1498 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1499 ~(ECMR_RE | ECMR_TE), ECMR);
1500 }
1501
1502 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1503 {
1504 /* enable tx and rx */
1505 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1506 (ECMR_RE | ECMR_TE), ECMR);
1507 }
1508
1509 /* error control function */
1510 static void sh_eth_error(struct net_device *ndev, int intr_status)
1511 {
1512 struct sh_eth_private *mdp = netdev_priv(ndev);
1513 u32 felic_stat;
1514 u32 link_stat;
1515 u32 mask;
1516
1517 if (intr_status & EESR_ECI) {
1518 felic_stat = sh_eth_read(ndev, ECSR);
1519 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1520 if (felic_stat & ECSR_ICD)
1521 ndev->stats.tx_carrier_errors++;
1522 if (felic_stat & ECSR_LCHNG) {
1523 /* Link Changed */
1524 if (mdp->cd->no_psr || mdp->no_ether_link) {
1525 goto ignore_link;
1526 } else {
1527 link_stat = (sh_eth_read(ndev, PSR));
1528 if (mdp->ether_link_active_low)
1529 link_stat = ~link_stat;
1530 }
1531 if (!(link_stat & PHY_ST_LINK)) {
1532 sh_eth_rcv_snd_disable(ndev);
1533 } else {
1534 /* Link Up */
1535 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1536 ~DMAC_M_ECI, EESIPR);
1537 /* clear int */
1538 sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1539 ECSR);
1540 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1541 DMAC_M_ECI, EESIPR);
1542 /* enable tx and rx */
1543 sh_eth_rcv_snd_enable(ndev);
1544 }
1545 }
1546 }
1547
1548 ignore_link:
1549 if (intr_status & EESR_TWB) {
1550 /* Unused write back interrupt */
1551 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1552 ndev->stats.tx_aborted_errors++;
1553 if (netif_msg_tx_err(mdp))
1554 dev_err(&ndev->dev, "Transmit Abort\n");
1555 }
1556 }
1557
1558 if (intr_status & EESR_RABT) {
1559 /* Receive Abort int */
1560 if (intr_status & EESR_RFRMER) {
1561 /* Receive Frame Overflow int */
1562 ndev->stats.rx_frame_errors++;
1563 if (netif_msg_rx_err(mdp))
1564 dev_err(&ndev->dev, "Receive Abort\n");
1565 }
1566 }
1567
1568 if (intr_status & EESR_TDE) {
1569 /* Transmit Descriptor Empty int */
1570 ndev->stats.tx_fifo_errors++;
1571 if (netif_msg_tx_err(mdp))
1572 dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1573 }
1574
1575 if (intr_status & EESR_TFE) {
1576 /* FIFO under flow */
1577 ndev->stats.tx_fifo_errors++;
1578 if (netif_msg_tx_err(mdp))
1579 dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1580 }
1581
1582 if (intr_status & EESR_RDE) {
1583 /* Receive Descriptor Empty int */
1584 ndev->stats.rx_over_errors++;
1585
1586 if (netif_msg_rx_err(mdp))
1587 dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1588 }
1589
1590 if (intr_status & EESR_RFE) {
1591 /* Receive FIFO Overflow int */
1592 ndev->stats.rx_fifo_errors++;
1593 if (netif_msg_rx_err(mdp))
1594 dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1595 }
1596
1597 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1598 /* Address Error */
1599 ndev->stats.tx_fifo_errors++;
1600 if (netif_msg_tx_err(mdp))
1601 dev_err(&ndev->dev, "Address Error\n");
1602 }
1603
1604 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1605 if (mdp->cd->no_ade)
1606 mask &= ~EESR_ADE;
1607 if (intr_status & mask) {
1608 /* Tx error */
1609 u32 edtrr = sh_eth_read(ndev, EDTRR);
1610
1611 /* dmesg */
1612 dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1613 intr_status, mdp->cur_tx, mdp->dirty_tx,
1614 (u32)ndev->state, edtrr);
1615 /* dirty buffer free */
1616 sh_eth_txfree(ndev);
1617
1618 /* SH7712 BUG */
1619 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1620 /* tx dma start */
1621 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1622 }
1623 /* wakeup */
1624 netif_wake_queue(ndev);
1625 }
1626 }
1627
1628 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1629 {
1630 struct net_device *ndev = netdev;
1631 struct sh_eth_private *mdp = netdev_priv(ndev);
1632 struct sh_eth_cpu_data *cd = mdp->cd;
1633 irqreturn_t ret = IRQ_NONE;
1634 unsigned long intr_status, intr_enable;
1635
1636 spin_lock(&mdp->lock);
1637
1638 /* Get interrupt status */
1639 intr_status = sh_eth_read(ndev, EESR);
1640 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1641 * enabled since it's the one that comes thru regardless of the mask,
1642 * and we need to fully handle it in sh_eth_error() in order to quench
1643 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1644 */
1645 intr_enable = sh_eth_read(ndev, EESIPR);
1646 intr_status &= intr_enable | DMAC_M_ECI;
1647 if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1648 ret = IRQ_HANDLED;
1649 else
1650 goto other_irq;
1651
1652 if (intr_status & EESR_RX_CHECK) {
1653 if (napi_schedule_prep(&mdp->napi)) {
1654 /* Mask Rx interrupts */
1655 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1656 EESIPR);
1657 __napi_schedule(&mdp->napi);
1658 } else {
1659 dev_warn(&ndev->dev,
1660 "ignoring interrupt, status 0x%08lx, mask 0x%08lx.\n",
1661 intr_status, intr_enable);
1662 }
1663 }
1664
1665 /* Tx Check */
1666 if (intr_status & cd->tx_check) {
1667 /* Clear Tx interrupts */
1668 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1669
1670 sh_eth_txfree(ndev);
1671 netif_wake_queue(ndev);
1672 }
1673
1674 if (intr_status & cd->eesr_err_check) {
1675 /* Clear error interrupts */
1676 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1677
1678 sh_eth_error(ndev, intr_status);
1679 }
1680
1681 other_irq:
1682 spin_unlock(&mdp->lock);
1683
1684 return ret;
1685 }
1686
1687 static int sh_eth_poll(struct napi_struct *napi, int budget)
1688 {
1689 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1690 napi);
1691 struct net_device *ndev = napi->dev;
1692 int quota = budget;
1693 unsigned long intr_status;
1694
1695 for (;;) {
1696 intr_status = sh_eth_read(ndev, EESR);
1697 if (!(intr_status & EESR_RX_CHECK))
1698 break;
1699 /* Clear Rx interrupts */
1700 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1701
1702 if (sh_eth_rx(ndev, intr_status, &quota))
1703 goto out;
1704 }
1705
1706 napi_complete(napi);
1707
1708 /* Reenable Rx interrupts */
1709 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1710 out:
1711 return budget - quota;
1712 }
1713
1714 /* PHY state control function */
1715 static void sh_eth_adjust_link(struct net_device *ndev)
1716 {
1717 struct sh_eth_private *mdp = netdev_priv(ndev);
1718 struct phy_device *phydev = mdp->phydev;
1719 int new_state = 0;
1720
1721 if (phydev->link) {
1722 if (phydev->duplex != mdp->duplex) {
1723 new_state = 1;
1724 mdp->duplex = phydev->duplex;
1725 if (mdp->cd->set_duplex)
1726 mdp->cd->set_duplex(ndev);
1727 }
1728
1729 if (phydev->speed != mdp->speed) {
1730 new_state = 1;
1731 mdp->speed = phydev->speed;
1732 if (mdp->cd->set_rate)
1733 mdp->cd->set_rate(ndev);
1734 }
1735 if (!mdp->link) {
1736 sh_eth_write(ndev,
1737 sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1738 ECMR);
1739 new_state = 1;
1740 mdp->link = phydev->link;
1741 if (mdp->cd->no_psr || mdp->no_ether_link)
1742 sh_eth_rcv_snd_enable(ndev);
1743 }
1744 } else if (mdp->link) {
1745 new_state = 1;
1746 mdp->link = 0;
1747 mdp->speed = 0;
1748 mdp->duplex = -1;
1749 if (mdp->cd->no_psr || mdp->no_ether_link)
1750 sh_eth_rcv_snd_disable(ndev);
1751 }
1752
1753 if (new_state && netif_msg_link(mdp))
1754 phy_print_status(phydev);
1755 }
1756
1757 /* PHY init function */
1758 static int sh_eth_phy_init(struct net_device *ndev)
1759 {
1760 struct sh_eth_private *mdp = netdev_priv(ndev);
1761 char phy_id[MII_BUS_ID_SIZE + 3];
1762 struct phy_device *phydev = NULL;
1763
1764 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1765 mdp->mii_bus->id, mdp->phy_id);
1766
1767 mdp->link = 0;
1768 mdp->speed = 0;
1769 mdp->duplex = -1;
1770
1771 /* Try connect to PHY */
1772 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1773 mdp->phy_interface);
1774 if (IS_ERR(phydev)) {
1775 dev_err(&ndev->dev, "phy_connect failed\n");
1776 return PTR_ERR(phydev);
1777 }
1778
1779 dev_info(&ndev->dev, "attached PHY %d (IRQ %d) to driver %s\n",
1780 phydev->addr, phydev->irq, phydev->drv->name);
1781
1782 mdp->phydev = phydev;
1783
1784 return 0;
1785 }
1786
1787 /* PHY control start function */
1788 static int sh_eth_phy_start(struct net_device *ndev)
1789 {
1790 struct sh_eth_private *mdp = netdev_priv(ndev);
1791 int ret;
1792
1793 ret = sh_eth_phy_init(ndev);
1794 if (ret)
1795 return ret;
1796
1797 phy_start(mdp->phydev);
1798
1799 return 0;
1800 }
1801
1802 static int sh_eth_get_settings(struct net_device *ndev,
1803 struct ethtool_cmd *ecmd)
1804 {
1805 struct sh_eth_private *mdp = netdev_priv(ndev);
1806 unsigned long flags;
1807 int ret;
1808
1809 spin_lock_irqsave(&mdp->lock, flags);
1810 ret = phy_ethtool_gset(mdp->phydev, ecmd);
1811 spin_unlock_irqrestore(&mdp->lock, flags);
1812
1813 return ret;
1814 }
1815
1816 static int sh_eth_set_settings(struct net_device *ndev,
1817 struct ethtool_cmd *ecmd)
1818 {
1819 struct sh_eth_private *mdp = netdev_priv(ndev);
1820 unsigned long flags;
1821 int ret;
1822
1823 spin_lock_irqsave(&mdp->lock, flags);
1824
1825 /* disable tx and rx */
1826 sh_eth_rcv_snd_disable(ndev);
1827
1828 ret = phy_ethtool_sset(mdp->phydev, ecmd);
1829 if (ret)
1830 goto error_exit;
1831
1832 if (ecmd->duplex == DUPLEX_FULL)
1833 mdp->duplex = 1;
1834 else
1835 mdp->duplex = 0;
1836
1837 if (mdp->cd->set_duplex)
1838 mdp->cd->set_duplex(ndev);
1839
1840 error_exit:
1841 mdelay(1);
1842
1843 /* enable tx and rx */
1844 sh_eth_rcv_snd_enable(ndev);
1845
1846 spin_unlock_irqrestore(&mdp->lock, flags);
1847
1848 return ret;
1849 }
1850
1851 static int sh_eth_nway_reset(struct net_device *ndev)
1852 {
1853 struct sh_eth_private *mdp = netdev_priv(ndev);
1854 unsigned long flags;
1855 int ret;
1856
1857 spin_lock_irqsave(&mdp->lock, flags);
1858 ret = phy_start_aneg(mdp->phydev);
1859 spin_unlock_irqrestore(&mdp->lock, flags);
1860
1861 return ret;
1862 }
1863
1864 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1865 {
1866 struct sh_eth_private *mdp = netdev_priv(ndev);
1867 return mdp->msg_enable;
1868 }
1869
1870 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1871 {
1872 struct sh_eth_private *mdp = netdev_priv(ndev);
1873 mdp->msg_enable = value;
1874 }
1875
1876 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1877 "rx_current", "tx_current",
1878 "rx_dirty", "tx_dirty",
1879 };
1880 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
1881
1882 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1883 {
1884 switch (sset) {
1885 case ETH_SS_STATS:
1886 return SH_ETH_STATS_LEN;
1887 default:
1888 return -EOPNOTSUPP;
1889 }
1890 }
1891
1892 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1893 struct ethtool_stats *stats, u64 *data)
1894 {
1895 struct sh_eth_private *mdp = netdev_priv(ndev);
1896 int i = 0;
1897
1898 /* device-specific stats */
1899 data[i++] = mdp->cur_rx;
1900 data[i++] = mdp->cur_tx;
1901 data[i++] = mdp->dirty_rx;
1902 data[i++] = mdp->dirty_tx;
1903 }
1904
1905 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1906 {
1907 switch (stringset) {
1908 case ETH_SS_STATS:
1909 memcpy(data, *sh_eth_gstrings_stats,
1910 sizeof(sh_eth_gstrings_stats));
1911 break;
1912 }
1913 }
1914
1915 static void sh_eth_get_ringparam(struct net_device *ndev,
1916 struct ethtool_ringparam *ring)
1917 {
1918 struct sh_eth_private *mdp = netdev_priv(ndev);
1919
1920 ring->rx_max_pending = RX_RING_MAX;
1921 ring->tx_max_pending = TX_RING_MAX;
1922 ring->rx_pending = mdp->num_rx_ring;
1923 ring->tx_pending = mdp->num_tx_ring;
1924 }
1925
1926 static int sh_eth_set_ringparam(struct net_device *ndev,
1927 struct ethtool_ringparam *ring)
1928 {
1929 struct sh_eth_private *mdp = netdev_priv(ndev);
1930 int ret;
1931
1932 if (ring->tx_pending > TX_RING_MAX ||
1933 ring->rx_pending > RX_RING_MAX ||
1934 ring->tx_pending < TX_RING_MIN ||
1935 ring->rx_pending < RX_RING_MIN)
1936 return -EINVAL;
1937 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1938 return -EINVAL;
1939
1940 if (netif_running(ndev)) {
1941 netif_tx_disable(ndev);
1942 /* Disable interrupts by clearing the interrupt mask. */
1943 sh_eth_write(ndev, 0x0000, EESIPR);
1944 /* Stop the chip's Tx and Rx processes. */
1945 sh_eth_write(ndev, 0, EDTRR);
1946 sh_eth_write(ndev, 0, EDRRR);
1947 synchronize_irq(ndev->irq);
1948 }
1949
1950 /* Free all the skbuffs in the Rx queue. */
1951 sh_eth_ring_free(ndev);
1952 /* Free DMA buffer */
1953 sh_eth_free_dma_buffer(mdp);
1954
1955 /* Set new parameters */
1956 mdp->num_rx_ring = ring->rx_pending;
1957 mdp->num_tx_ring = ring->tx_pending;
1958
1959 ret = sh_eth_ring_init(ndev);
1960 if (ret < 0) {
1961 dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1962 return ret;
1963 }
1964 ret = sh_eth_dev_init(ndev, false);
1965 if (ret < 0) {
1966 dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1967 return ret;
1968 }
1969
1970 if (netif_running(ndev)) {
1971 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1972 /* Setting the Rx mode will start the Rx process. */
1973 sh_eth_write(ndev, EDRRR_R, EDRRR);
1974 netif_wake_queue(ndev);
1975 }
1976
1977 return 0;
1978 }
1979
1980 static const struct ethtool_ops sh_eth_ethtool_ops = {
1981 .get_settings = sh_eth_get_settings,
1982 .set_settings = sh_eth_set_settings,
1983 .nway_reset = sh_eth_nway_reset,
1984 .get_msglevel = sh_eth_get_msglevel,
1985 .set_msglevel = sh_eth_set_msglevel,
1986 .get_link = ethtool_op_get_link,
1987 .get_strings = sh_eth_get_strings,
1988 .get_ethtool_stats = sh_eth_get_ethtool_stats,
1989 .get_sset_count = sh_eth_get_sset_count,
1990 .get_ringparam = sh_eth_get_ringparam,
1991 .set_ringparam = sh_eth_set_ringparam,
1992 };
1993
1994 /* network device open function */
1995 static int sh_eth_open(struct net_device *ndev)
1996 {
1997 int ret = 0;
1998 struct sh_eth_private *mdp = netdev_priv(ndev);
1999
2000 pm_runtime_get_sync(&mdp->pdev->dev);
2001
2002 napi_enable(&mdp->napi);
2003
2004 ret = request_irq(ndev->irq, sh_eth_interrupt,
2005 mdp->cd->irq_flags, ndev->name, ndev);
2006 if (ret) {
2007 dev_err(&ndev->dev, "Can not assign IRQ number\n");
2008 goto out_napi_off;
2009 }
2010
2011 /* Descriptor set */
2012 ret = sh_eth_ring_init(ndev);
2013 if (ret)
2014 goto out_free_irq;
2015
2016 /* device init */
2017 ret = sh_eth_dev_init(ndev, true);
2018 if (ret)
2019 goto out_free_irq;
2020
2021 /* PHY control start*/
2022 ret = sh_eth_phy_start(ndev);
2023 if (ret)
2024 goto out_free_irq;
2025
2026 return ret;
2027
2028 out_free_irq:
2029 free_irq(ndev->irq, ndev);
2030 out_napi_off:
2031 napi_disable(&mdp->napi);
2032 pm_runtime_put_sync(&mdp->pdev->dev);
2033 return ret;
2034 }
2035
2036 /* Timeout function */
2037 static void sh_eth_tx_timeout(struct net_device *ndev)
2038 {
2039 struct sh_eth_private *mdp = netdev_priv(ndev);
2040 struct sh_eth_rxdesc *rxdesc;
2041 int i;
2042
2043 netif_stop_queue(ndev);
2044
2045 if (netif_msg_timer(mdp)) {
2046 dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x, resetting...\n",
2047 ndev->name, (int)sh_eth_read(ndev, EESR));
2048 }
2049
2050 /* tx_errors count up */
2051 ndev->stats.tx_errors++;
2052
2053 /* Free all the skbuffs in the Rx queue. */
2054 for (i = 0; i < mdp->num_rx_ring; i++) {
2055 rxdesc = &mdp->rx_ring[i];
2056 rxdesc->status = 0;
2057 rxdesc->addr = 0xBADF00D0;
2058 if (mdp->rx_skbuff[i])
2059 dev_kfree_skb(mdp->rx_skbuff[i]);
2060 mdp->rx_skbuff[i] = NULL;
2061 }
2062 for (i = 0; i < mdp->num_tx_ring; i++) {
2063 if (mdp->tx_skbuff[i])
2064 dev_kfree_skb(mdp->tx_skbuff[i]);
2065 mdp->tx_skbuff[i] = NULL;
2066 }
2067
2068 /* device init */
2069 sh_eth_dev_init(ndev, true);
2070 }
2071
2072 /* Packet transmit function */
2073 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2074 {
2075 struct sh_eth_private *mdp = netdev_priv(ndev);
2076 struct sh_eth_txdesc *txdesc;
2077 u32 entry;
2078 unsigned long flags;
2079
2080 spin_lock_irqsave(&mdp->lock, flags);
2081 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2082 if (!sh_eth_txfree(ndev)) {
2083 if (netif_msg_tx_queued(mdp))
2084 dev_warn(&ndev->dev, "TxFD exhausted.\n");
2085 netif_stop_queue(ndev);
2086 spin_unlock_irqrestore(&mdp->lock, flags);
2087 return NETDEV_TX_BUSY;
2088 }
2089 }
2090 spin_unlock_irqrestore(&mdp->lock, flags);
2091
2092 entry = mdp->cur_tx % mdp->num_tx_ring;
2093 mdp->tx_skbuff[entry] = skb;
2094 txdesc = &mdp->tx_ring[entry];
2095 /* soft swap. */
2096 if (!mdp->cd->hw_swap)
2097 sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2098 skb->len + 2);
2099 txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2100 DMA_TO_DEVICE);
2101 if (skb->len < ETH_ZLEN)
2102 txdesc->buffer_length = ETH_ZLEN;
2103 else
2104 txdesc->buffer_length = skb->len;
2105
2106 if (entry >= mdp->num_tx_ring - 1)
2107 txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2108 else
2109 txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2110
2111 mdp->cur_tx++;
2112
2113 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2114 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2115
2116 return NETDEV_TX_OK;
2117 }
2118
2119 /* device close function */
2120 static int sh_eth_close(struct net_device *ndev)
2121 {
2122 struct sh_eth_private *mdp = netdev_priv(ndev);
2123
2124 netif_stop_queue(ndev);
2125
2126 /* Disable interrupts by clearing the interrupt mask. */
2127 sh_eth_write(ndev, 0x0000, EESIPR);
2128
2129 /* Stop the chip's Tx and Rx processes. */
2130 sh_eth_write(ndev, 0, EDTRR);
2131 sh_eth_write(ndev, 0, EDRRR);
2132
2133 /* PHY Disconnect */
2134 if (mdp->phydev) {
2135 phy_stop(mdp->phydev);
2136 phy_disconnect(mdp->phydev);
2137 }
2138
2139 free_irq(ndev->irq, ndev);
2140
2141 napi_disable(&mdp->napi);
2142
2143 /* Free all the skbuffs in the Rx queue. */
2144 sh_eth_ring_free(ndev);
2145
2146 /* free DMA buffer */
2147 sh_eth_free_dma_buffer(mdp);
2148
2149 pm_runtime_put_sync(&mdp->pdev->dev);
2150
2151 return 0;
2152 }
2153
2154 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2155 {
2156 struct sh_eth_private *mdp = netdev_priv(ndev);
2157
2158 if (sh_eth_is_rz_fast_ether(mdp))
2159 return &ndev->stats;
2160
2161 pm_runtime_get_sync(&mdp->pdev->dev);
2162
2163 ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2164 sh_eth_write(ndev, 0, TROCR); /* (write clear) */
2165 ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2166 sh_eth_write(ndev, 0, CDCR); /* (write clear) */
2167 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2168 sh_eth_write(ndev, 0, LCCR); /* (write clear) */
2169 if (sh_eth_is_gether(mdp)) {
2170 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2171 sh_eth_write(ndev, 0, CERCR); /* (write clear) */
2172 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2173 sh_eth_write(ndev, 0, CEECR); /* (write clear) */
2174 } else {
2175 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2176 sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
2177 }
2178 pm_runtime_put_sync(&mdp->pdev->dev);
2179
2180 return &ndev->stats;
2181 }
2182
2183 /* ioctl to device function */
2184 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2185 {
2186 struct sh_eth_private *mdp = netdev_priv(ndev);
2187 struct phy_device *phydev = mdp->phydev;
2188
2189 if (!netif_running(ndev))
2190 return -EINVAL;
2191
2192 if (!phydev)
2193 return -ENODEV;
2194
2195 return phy_mii_ioctl(phydev, rq, cmd);
2196 }
2197
2198 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2199 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2200 int entry)
2201 {
2202 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2203 }
2204
2205 static u32 sh_eth_tsu_get_post_mask(int entry)
2206 {
2207 return 0x0f << (28 - ((entry % 8) * 4));
2208 }
2209
2210 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2211 {
2212 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2213 }
2214
2215 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2216 int entry)
2217 {
2218 struct sh_eth_private *mdp = netdev_priv(ndev);
2219 u32 tmp;
2220 void *reg_offset;
2221
2222 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2223 tmp = ioread32(reg_offset);
2224 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2225 }
2226
2227 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2228 int entry)
2229 {
2230 struct sh_eth_private *mdp = netdev_priv(ndev);
2231 u32 post_mask, ref_mask, tmp;
2232 void *reg_offset;
2233
2234 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2235 post_mask = sh_eth_tsu_get_post_mask(entry);
2236 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2237
2238 tmp = ioread32(reg_offset);
2239 iowrite32(tmp & ~post_mask, reg_offset);
2240
2241 /* If other port enables, the function returns "true" */
2242 return tmp & ref_mask;
2243 }
2244
2245 static int sh_eth_tsu_busy(struct net_device *ndev)
2246 {
2247 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2248 struct sh_eth_private *mdp = netdev_priv(ndev);
2249
2250 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2251 udelay(10);
2252 timeout--;
2253 if (timeout <= 0) {
2254 dev_err(&ndev->dev, "%s: timeout\n", __func__);
2255 return -ETIMEDOUT;
2256 }
2257 }
2258
2259 return 0;
2260 }
2261
2262 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2263 const u8 *addr)
2264 {
2265 u32 val;
2266
2267 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2268 iowrite32(val, reg);
2269 if (sh_eth_tsu_busy(ndev) < 0)
2270 return -EBUSY;
2271
2272 val = addr[4] << 8 | addr[5];
2273 iowrite32(val, reg + 4);
2274 if (sh_eth_tsu_busy(ndev) < 0)
2275 return -EBUSY;
2276
2277 return 0;
2278 }
2279
2280 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2281 {
2282 u32 val;
2283
2284 val = ioread32(reg);
2285 addr[0] = (val >> 24) & 0xff;
2286 addr[1] = (val >> 16) & 0xff;
2287 addr[2] = (val >> 8) & 0xff;
2288 addr[3] = val & 0xff;
2289 val = ioread32(reg + 4);
2290 addr[4] = (val >> 8) & 0xff;
2291 addr[5] = val & 0xff;
2292 }
2293
2294
2295 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2296 {
2297 struct sh_eth_private *mdp = netdev_priv(ndev);
2298 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2299 int i;
2300 u8 c_addr[ETH_ALEN];
2301
2302 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2303 sh_eth_tsu_read_entry(reg_offset, c_addr);
2304 if (ether_addr_equal(addr, c_addr))
2305 return i;
2306 }
2307
2308 return -ENOENT;
2309 }
2310
2311 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2312 {
2313 u8 blank[ETH_ALEN];
2314 int entry;
2315
2316 memset(blank, 0, sizeof(blank));
2317 entry = sh_eth_tsu_find_entry(ndev, blank);
2318 return (entry < 0) ? -ENOMEM : entry;
2319 }
2320
2321 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2322 int entry)
2323 {
2324 struct sh_eth_private *mdp = netdev_priv(ndev);
2325 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2326 int ret;
2327 u8 blank[ETH_ALEN];
2328
2329 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2330 ~(1 << (31 - entry)), TSU_TEN);
2331
2332 memset(blank, 0, sizeof(blank));
2333 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2334 if (ret < 0)
2335 return ret;
2336 return 0;
2337 }
2338
2339 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2340 {
2341 struct sh_eth_private *mdp = netdev_priv(ndev);
2342 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2343 int i, ret;
2344
2345 if (!mdp->cd->tsu)
2346 return 0;
2347
2348 i = sh_eth_tsu_find_entry(ndev, addr);
2349 if (i < 0) {
2350 /* No entry found, create one */
2351 i = sh_eth_tsu_find_empty(ndev);
2352 if (i < 0)
2353 return -ENOMEM;
2354 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2355 if (ret < 0)
2356 return ret;
2357
2358 /* Enable the entry */
2359 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2360 (1 << (31 - i)), TSU_TEN);
2361 }
2362
2363 /* Entry found or created, enable POST */
2364 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2365
2366 return 0;
2367 }
2368
2369 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2370 {
2371 struct sh_eth_private *mdp = netdev_priv(ndev);
2372 int i, ret;
2373
2374 if (!mdp->cd->tsu)
2375 return 0;
2376
2377 i = sh_eth_tsu_find_entry(ndev, addr);
2378 if (i) {
2379 /* Entry found */
2380 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2381 goto done;
2382
2383 /* Disable the entry if both ports was disabled */
2384 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2385 if (ret < 0)
2386 return ret;
2387 }
2388 done:
2389 return 0;
2390 }
2391
2392 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2393 {
2394 struct sh_eth_private *mdp = netdev_priv(ndev);
2395 int i, ret;
2396
2397 if (unlikely(!mdp->cd->tsu))
2398 return 0;
2399
2400 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2401 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2402 continue;
2403
2404 /* Disable the entry if both ports was disabled */
2405 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2406 if (ret < 0)
2407 return ret;
2408 }
2409
2410 return 0;
2411 }
2412
2413 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2414 {
2415 struct sh_eth_private *mdp = netdev_priv(ndev);
2416 u8 addr[ETH_ALEN];
2417 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2418 int i;
2419
2420 if (unlikely(!mdp->cd->tsu))
2421 return;
2422
2423 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2424 sh_eth_tsu_read_entry(reg_offset, addr);
2425 if (is_multicast_ether_addr(addr))
2426 sh_eth_tsu_del_entry(ndev, addr);
2427 }
2428 }
2429
2430 /* Multicast reception directions set */
2431 static void sh_eth_set_multicast_list(struct net_device *ndev)
2432 {
2433 struct sh_eth_private *mdp = netdev_priv(ndev);
2434 u32 ecmr_bits;
2435 int mcast_all = 0;
2436 unsigned long flags;
2437
2438 spin_lock_irqsave(&mdp->lock, flags);
2439 /* Initial condition is MCT = 1, PRM = 0.
2440 * Depending on ndev->flags, set PRM or clear MCT
2441 */
2442 ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2443
2444 if (!(ndev->flags & IFF_MULTICAST)) {
2445 sh_eth_tsu_purge_mcast(ndev);
2446 mcast_all = 1;
2447 }
2448 if (ndev->flags & IFF_ALLMULTI) {
2449 sh_eth_tsu_purge_mcast(ndev);
2450 ecmr_bits &= ~ECMR_MCT;
2451 mcast_all = 1;
2452 }
2453
2454 if (ndev->flags & IFF_PROMISC) {
2455 sh_eth_tsu_purge_all(ndev);
2456 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2457 } else if (mdp->cd->tsu) {
2458 struct netdev_hw_addr *ha;
2459 netdev_for_each_mc_addr(ha, ndev) {
2460 if (mcast_all && is_multicast_ether_addr(ha->addr))
2461 continue;
2462
2463 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2464 if (!mcast_all) {
2465 sh_eth_tsu_purge_mcast(ndev);
2466 ecmr_bits &= ~ECMR_MCT;
2467 mcast_all = 1;
2468 }
2469 }
2470 }
2471 } else {
2472 /* Normal, unicast/broadcast-only mode. */
2473 ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2474 }
2475
2476 /* update the ethernet mode */
2477 sh_eth_write(ndev, ecmr_bits, ECMR);
2478
2479 spin_unlock_irqrestore(&mdp->lock, flags);
2480 }
2481
2482 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2483 {
2484 if (!mdp->port)
2485 return TSU_VTAG0;
2486 else
2487 return TSU_VTAG1;
2488 }
2489
2490 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2491 __be16 proto, u16 vid)
2492 {
2493 struct sh_eth_private *mdp = netdev_priv(ndev);
2494 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2495
2496 if (unlikely(!mdp->cd->tsu))
2497 return -EPERM;
2498
2499 /* No filtering if vid = 0 */
2500 if (!vid)
2501 return 0;
2502
2503 mdp->vlan_num_ids++;
2504
2505 /* The controller has one VLAN tag HW filter. So, if the filter is
2506 * already enabled, the driver disables it and the filte
2507 */
2508 if (mdp->vlan_num_ids > 1) {
2509 /* disable VLAN filter */
2510 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2511 return 0;
2512 }
2513
2514 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2515 vtag_reg_index);
2516
2517 return 0;
2518 }
2519
2520 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2521 __be16 proto, u16 vid)
2522 {
2523 struct sh_eth_private *mdp = netdev_priv(ndev);
2524 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2525
2526 if (unlikely(!mdp->cd->tsu))
2527 return -EPERM;
2528
2529 /* No filtering if vid = 0 */
2530 if (!vid)
2531 return 0;
2532
2533 mdp->vlan_num_ids--;
2534 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2535
2536 return 0;
2537 }
2538
2539 /* SuperH's TSU register init function */
2540 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2541 {
2542 if (sh_eth_is_rz_fast_ether(mdp)) {
2543 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2544 return;
2545 }
2546
2547 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2548 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2549 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2550 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2551 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2552 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2553 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2554 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2555 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2556 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2557 if (sh_eth_is_gether(mdp)) {
2558 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
2559 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
2560 } else {
2561 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
2562 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
2563 }
2564 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
2565 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
2566 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2567 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
2568 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
2569 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
2570 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
2571 }
2572
2573 /* MDIO bus release function */
2574 static int sh_mdio_release(struct net_device *ndev)
2575 {
2576 struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2577
2578 /* unregister mdio bus */
2579 mdiobus_unregister(bus);
2580
2581 /* remove mdio bus info from net_device */
2582 dev_set_drvdata(&ndev->dev, NULL);
2583
2584 /* free bitbang info */
2585 free_mdio_bitbang(bus);
2586
2587 return 0;
2588 }
2589
2590 /* MDIO bus init function */
2591 static int sh_mdio_init(struct net_device *ndev, int id,
2592 struct sh_eth_plat_data *pd)
2593 {
2594 int ret, i;
2595 struct bb_info *bitbang;
2596 struct sh_eth_private *mdp = netdev_priv(ndev);
2597
2598 /* create bit control struct for PHY */
2599 bitbang = devm_kzalloc(&ndev->dev, sizeof(struct bb_info),
2600 GFP_KERNEL);
2601 if (!bitbang) {
2602 ret = -ENOMEM;
2603 goto out;
2604 }
2605
2606 /* bitbang init */
2607 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2608 bitbang->set_gate = pd->set_mdio_gate;
2609 bitbang->mdi_msk = PIR_MDI;
2610 bitbang->mdo_msk = PIR_MDO;
2611 bitbang->mmd_msk = PIR_MMD;
2612 bitbang->mdc_msk = PIR_MDC;
2613 bitbang->ctrl.ops = &bb_ops;
2614
2615 /* MII controller setting */
2616 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2617 if (!mdp->mii_bus) {
2618 ret = -ENOMEM;
2619 goto out;
2620 }
2621
2622 /* Hook up MII support for ethtool */
2623 mdp->mii_bus->name = "sh_mii";
2624 mdp->mii_bus->parent = &ndev->dev;
2625 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2626 mdp->pdev->name, id);
2627
2628 /* PHY IRQ */
2629 mdp->mii_bus->irq = devm_kzalloc(&ndev->dev,
2630 sizeof(int) * PHY_MAX_ADDR,
2631 GFP_KERNEL);
2632 if (!mdp->mii_bus->irq) {
2633 ret = -ENOMEM;
2634 goto out_free_bus;
2635 }
2636
2637 for (i = 0; i < PHY_MAX_ADDR; i++)
2638 mdp->mii_bus->irq[i] = PHY_POLL;
2639 if (pd->phy_irq > 0)
2640 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2641
2642 /* register mdio bus */
2643 ret = mdiobus_register(mdp->mii_bus);
2644 if (ret)
2645 goto out_free_bus;
2646
2647 dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2648
2649 return 0;
2650
2651 out_free_bus:
2652 free_mdio_bitbang(mdp->mii_bus);
2653
2654 out:
2655 return ret;
2656 }
2657
2658 static const u16 *sh_eth_get_register_offset(int register_type)
2659 {
2660 const u16 *reg_offset = NULL;
2661
2662 switch (register_type) {
2663 case SH_ETH_REG_GIGABIT:
2664 reg_offset = sh_eth_offset_gigabit;
2665 break;
2666 case SH_ETH_REG_FAST_RZ:
2667 reg_offset = sh_eth_offset_fast_rz;
2668 break;
2669 case SH_ETH_REG_FAST_RCAR:
2670 reg_offset = sh_eth_offset_fast_rcar;
2671 break;
2672 case SH_ETH_REG_FAST_SH4:
2673 reg_offset = sh_eth_offset_fast_sh4;
2674 break;
2675 case SH_ETH_REG_FAST_SH3_SH2:
2676 reg_offset = sh_eth_offset_fast_sh3_sh2;
2677 break;
2678 default:
2679 pr_err("Unknown register type (%d)\n", register_type);
2680 break;
2681 }
2682
2683 return reg_offset;
2684 }
2685
2686 static const struct net_device_ops sh_eth_netdev_ops = {
2687 .ndo_open = sh_eth_open,
2688 .ndo_stop = sh_eth_close,
2689 .ndo_start_xmit = sh_eth_start_xmit,
2690 .ndo_get_stats = sh_eth_get_stats,
2691 .ndo_tx_timeout = sh_eth_tx_timeout,
2692 .ndo_do_ioctl = sh_eth_do_ioctl,
2693 .ndo_validate_addr = eth_validate_addr,
2694 .ndo_set_mac_address = eth_mac_addr,
2695 .ndo_change_mtu = eth_change_mtu,
2696 };
2697
2698 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2699 .ndo_open = sh_eth_open,
2700 .ndo_stop = sh_eth_close,
2701 .ndo_start_xmit = sh_eth_start_xmit,
2702 .ndo_get_stats = sh_eth_get_stats,
2703 .ndo_set_rx_mode = sh_eth_set_multicast_list,
2704 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
2705 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
2706 .ndo_tx_timeout = sh_eth_tx_timeout,
2707 .ndo_do_ioctl = sh_eth_do_ioctl,
2708 .ndo_validate_addr = eth_validate_addr,
2709 .ndo_set_mac_address = eth_mac_addr,
2710 .ndo_change_mtu = eth_change_mtu,
2711 };
2712
2713 static int sh_eth_drv_probe(struct platform_device *pdev)
2714 {
2715 int ret, devno = 0;
2716 struct resource *res;
2717 struct net_device *ndev = NULL;
2718 struct sh_eth_private *mdp = NULL;
2719 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2720 const struct platform_device_id *id = platform_get_device_id(pdev);
2721
2722 /* get base addr */
2723 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2724 if (unlikely(res == NULL)) {
2725 dev_err(&pdev->dev, "invalid resource\n");
2726 ret = -EINVAL;
2727 goto out;
2728 }
2729
2730 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2731 if (!ndev) {
2732 ret = -ENOMEM;
2733 goto out;
2734 }
2735
2736 /* The sh Ether-specific entries in the device structure. */
2737 ndev->base_addr = res->start;
2738 devno = pdev->id;
2739 if (devno < 0)
2740 devno = 0;
2741
2742 ndev->dma = -1;
2743 ret = platform_get_irq(pdev, 0);
2744 if (ret < 0) {
2745 ret = -ENODEV;
2746 goto out_release;
2747 }
2748 ndev->irq = ret;
2749
2750 SET_NETDEV_DEV(ndev, &pdev->dev);
2751
2752 mdp = netdev_priv(ndev);
2753 mdp->num_tx_ring = TX_RING_SIZE;
2754 mdp->num_rx_ring = RX_RING_SIZE;
2755 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2756 if (IS_ERR(mdp->addr)) {
2757 ret = PTR_ERR(mdp->addr);
2758 goto out_release;
2759 }
2760
2761 spin_lock_init(&mdp->lock);
2762 mdp->pdev = pdev;
2763 pm_runtime_enable(&pdev->dev);
2764 pm_runtime_resume(&pdev->dev);
2765
2766 if (!pd) {
2767 dev_err(&pdev->dev, "no platform data\n");
2768 ret = -EINVAL;
2769 goto out_release;
2770 }
2771
2772 /* get PHY ID */
2773 mdp->phy_id = pd->phy;
2774 mdp->phy_interface = pd->phy_interface;
2775 /* EDMAC endian */
2776 mdp->edmac_endian = pd->edmac_endian;
2777 mdp->no_ether_link = pd->no_ether_link;
2778 mdp->ether_link_active_low = pd->ether_link_active_low;
2779
2780 /* set cpu data */
2781 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2782 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2783 sh_eth_set_default_cpu_data(mdp->cd);
2784
2785 /* set function */
2786 if (mdp->cd->tsu)
2787 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2788 else
2789 ndev->netdev_ops = &sh_eth_netdev_ops;
2790 SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2791 ndev->watchdog_timeo = TX_TIMEOUT;
2792
2793 /* debug message level */
2794 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2795
2796 /* read and set MAC address */
2797 read_mac_address(ndev, pd->mac_addr);
2798 if (!is_valid_ether_addr(ndev->dev_addr)) {
2799 dev_warn(&pdev->dev,
2800 "no valid MAC address supplied, using a random one.\n");
2801 eth_hw_addr_random(ndev);
2802 }
2803
2804 /* ioremap the TSU registers */
2805 if (mdp->cd->tsu) {
2806 struct resource *rtsu;
2807 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2808 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2809 if (IS_ERR(mdp->tsu_addr)) {
2810 ret = PTR_ERR(mdp->tsu_addr);
2811 goto out_release;
2812 }
2813 mdp->port = devno % 2;
2814 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2815 }
2816
2817 /* initialize first or needed device */
2818 if (!devno || pd->needs_init) {
2819 if (mdp->cd->chip_reset)
2820 mdp->cd->chip_reset(ndev);
2821
2822 if (mdp->cd->tsu) {
2823 /* TSU init (Init only)*/
2824 sh_eth_tsu_init(mdp);
2825 }
2826 }
2827
2828 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2829
2830 /* network device register */
2831 ret = register_netdev(ndev);
2832 if (ret)
2833 goto out_napi_del;
2834
2835 /* mdio bus init */
2836 ret = sh_mdio_init(ndev, pdev->id, pd);
2837 if (ret)
2838 goto out_unregister;
2839
2840 /* print device information */
2841 pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2842 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2843
2844 platform_set_drvdata(pdev, ndev);
2845
2846 return ret;
2847
2848 out_unregister:
2849 unregister_netdev(ndev);
2850
2851 out_napi_del:
2852 netif_napi_del(&mdp->napi);
2853
2854 out_release:
2855 /* net_dev free */
2856 if (ndev)
2857 free_netdev(ndev);
2858
2859 out:
2860 return ret;
2861 }
2862
2863 static int sh_eth_drv_remove(struct platform_device *pdev)
2864 {
2865 struct net_device *ndev = platform_get_drvdata(pdev);
2866 struct sh_eth_private *mdp = netdev_priv(ndev);
2867
2868 sh_mdio_release(ndev);
2869 unregister_netdev(ndev);
2870 netif_napi_del(&mdp->napi);
2871 pm_runtime_disable(&pdev->dev);
2872 free_netdev(ndev);
2873
2874 return 0;
2875 }
2876
2877 #ifdef CONFIG_PM
2878 static int sh_eth_runtime_nop(struct device *dev)
2879 {
2880 /* Runtime PM callback shared between ->runtime_suspend()
2881 * and ->runtime_resume(). Simply returns success.
2882 *
2883 * This driver re-initializes all registers after
2884 * pm_runtime_get_sync() anyway so there is no need
2885 * to save and restore registers here.
2886 */
2887 return 0;
2888 }
2889
2890 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
2891 .runtime_suspend = sh_eth_runtime_nop,
2892 .runtime_resume = sh_eth_runtime_nop,
2893 };
2894 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
2895 #else
2896 #define SH_ETH_PM_OPS NULL
2897 #endif
2898
2899 static struct platform_device_id sh_eth_id_table[] = {
2900 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
2901 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
2902 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
2903 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
2904 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
2905 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
2906 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
2907 { "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
2908 { "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
2909 { "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
2910 { "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
2911 { "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
2912 { }
2913 };
2914 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
2915
2916 static struct platform_driver sh_eth_driver = {
2917 .probe = sh_eth_drv_probe,
2918 .remove = sh_eth_drv_remove,
2919 .id_table = sh_eth_id_table,
2920 .driver = {
2921 .name = CARDNAME,
2922 .pm = SH_ETH_PM_OPS,
2923 },
2924 };
2925
2926 module_platform_driver(sh_eth_driver);
2927
2928 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2929 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2930 MODULE_LICENSE("GPL v2");
This page took 0.135656 seconds and 5 git commands to generate.