sh_eth: get R8A777x support out of #ifdef
[deliverable/linux.git] / drivers / net / ethernet / renesas / sh_eth.c
1 /*
2 * SuperH Ethernet device driver
3 *
4 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 * Copyright (C) 2008-2013 Renesas Solutions Corp.
6 * Copyright (C) 2013 Cogent Embedded, Inc.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * The full GNU General Public License is included in this distribution in
21 * the file called "COPYING".
22 */
23
24 #include <linux/init.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/spinlock.h>
28 #include <linux/interrupt.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/etherdevice.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <linux/mdio-bitbang.h>
34 #include <linux/netdevice.h>
35 #include <linux/phy.h>
36 #include <linux/cache.h>
37 #include <linux/io.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/clk.h>
43 #include <linux/sh_eth.h>
44
45 #include "sh_eth.h"
46
47 #define SH_ETH_DEF_MSG_ENABLE \
48 (NETIF_MSG_LINK | \
49 NETIF_MSG_TIMER | \
50 NETIF_MSG_RX_ERR| \
51 NETIF_MSG_TX_ERR)
52
53 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
54 [EDSR] = 0x0000,
55 [EDMR] = 0x0400,
56 [EDTRR] = 0x0408,
57 [EDRRR] = 0x0410,
58 [EESR] = 0x0428,
59 [EESIPR] = 0x0430,
60 [TDLAR] = 0x0010,
61 [TDFAR] = 0x0014,
62 [TDFXR] = 0x0018,
63 [TDFFR] = 0x001c,
64 [RDLAR] = 0x0030,
65 [RDFAR] = 0x0034,
66 [RDFXR] = 0x0038,
67 [RDFFR] = 0x003c,
68 [TRSCER] = 0x0438,
69 [RMFCR] = 0x0440,
70 [TFTR] = 0x0448,
71 [FDR] = 0x0450,
72 [RMCR] = 0x0458,
73 [RPADIR] = 0x0460,
74 [FCFTR] = 0x0468,
75 [CSMR] = 0x04E4,
76
77 [ECMR] = 0x0500,
78 [ECSR] = 0x0510,
79 [ECSIPR] = 0x0518,
80 [PIR] = 0x0520,
81 [PSR] = 0x0528,
82 [PIPR] = 0x052c,
83 [RFLR] = 0x0508,
84 [APR] = 0x0554,
85 [MPR] = 0x0558,
86 [PFTCR] = 0x055c,
87 [PFRCR] = 0x0560,
88 [TPAUSER] = 0x0564,
89 [GECMR] = 0x05b0,
90 [BCULR] = 0x05b4,
91 [MAHR] = 0x05c0,
92 [MALR] = 0x05c8,
93 [TROCR] = 0x0700,
94 [CDCR] = 0x0708,
95 [LCCR] = 0x0710,
96 [CEFCR] = 0x0740,
97 [FRECR] = 0x0748,
98 [TSFRCR] = 0x0750,
99 [TLFRCR] = 0x0758,
100 [RFCR] = 0x0760,
101 [CERCR] = 0x0768,
102 [CEECR] = 0x0770,
103 [MAFCR] = 0x0778,
104 [RMII_MII] = 0x0790,
105
106 [ARSTR] = 0x0000,
107 [TSU_CTRST] = 0x0004,
108 [TSU_FWEN0] = 0x0010,
109 [TSU_FWEN1] = 0x0014,
110 [TSU_FCM] = 0x0018,
111 [TSU_BSYSL0] = 0x0020,
112 [TSU_BSYSL1] = 0x0024,
113 [TSU_PRISL0] = 0x0028,
114 [TSU_PRISL1] = 0x002c,
115 [TSU_FWSL0] = 0x0030,
116 [TSU_FWSL1] = 0x0034,
117 [TSU_FWSLC] = 0x0038,
118 [TSU_QTAG0] = 0x0040,
119 [TSU_QTAG1] = 0x0044,
120 [TSU_FWSR] = 0x0050,
121 [TSU_FWINMK] = 0x0054,
122 [TSU_ADQT0] = 0x0048,
123 [TSU_ADQT1] = 0x004c,
124 [TSU_VTAG0] = 0x0058,
125 [TSU_VTAG1] = 0x005c,
126 [TSU_ADSBSY] = 0x0060,
127 [TSU_TEN] = 0x0064,
128 [TSU_POST1] = 0x0070,
129 [TSU_POST2] = 0x0074,
130 [TSU_POST3] = 0x0078,
131 [TSU_POST4] = 0x007c,
132 [TSU_ADRH0] = 0x0100,
133 [TSU_ADRL0] = 0x0104,
134 [TSU_ADRH31] = 0x01f8,
135 [TSU_ADRL31] = 0x01fc,
136
137 [TXNLCR0] = 0x0080,
138 [TXALCR0] = 0x0084,
139 [RXNLCR0] = 0x0088,
140 [RXALCR0] = 0x008c,
141 [FWNLCR0] = 0x0090,
142 [FWALCR0] = 0x0094,
143 [TXNLCR1] = 0x00a0,
144 [TXALCR1] = 0x00a0,
145 [RXNLCR1] = 0x00a8,
146 [RXALCR1] = 0x00ac,
147 [FWNLCR1] = 0x00b0,
148 [FWALCR1] = 0x00b4,
149 };
150
151 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
152 [ECMR] = 0x0300,
153 [RFLR] = 0x0308,
154 [ECSR] = 0x0310,
155 [ECSIPR] = 0x0318,
156 [PIR] = 0x0320,
157 [PSR] = 0x0328,
158 [RDMLR] = 0x0340,
159 [IPGR] = 0x0350,
160 [APR] = 0x0354,
161 [MPR] = 0x0358,
162 [RFCF] = 0x0360,
163 [TPAUSER] = 0x0364,
164 [TPAUSECR] = 0x0368,
165 [MAHR] = 0x03c0,
166 [MALR] = 0x03c8,
167 [TROCR] = 0x03d0,
168 [CDCR] = 0x03d4,
169 [LCCR] = 0x03d8,
170 [CNDCR] = 0x03dc,
171 [CEFCR] = 0x03e4,
172 [FRECR] = 0x03e8,
173 [TSFRCR] = 0x03ec,
174 [TLFRCR] = 0x03f0,
175 [RFCR] = 0x03f4,
176 [MAFCR] = 0x03f8,
177
178 [EDMR] = 0x0200,
179 [EDTRR] = 0x0208,
180 [EDRRR] = 0x0210,
181 [TDLAR] = 0x0218,
182 [RDLAR] = 0x0220,
183 [EESR] = 0x0228,
184 [EESIPR] = 0x0230,
185 [TRSCER] = 0x0238,
186 [RMFCR] = 0x0240,
187 [TFTR] = 0x0248,
188 [FDR] = 0x0250,
189 [RMCR] = 0x0258,
190 [TFUCR] = 0x0264,
191 [RFOCR] = 0x0268,
192 [FCFTR] = 0x0270,
193 [TRIMD] = 0x027c,
194 };
195
196 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
197 [ECMR] = 0x0100,
198 [RFLR] = 0x0108,
199 [ECSR] = 0x0110,
200 [ECSIPR] = 0x0118,
201 [PIR] = 0x0120,
202 [PSR] = 0x0128,
203 [RDMLR] = 0x0140,
204 [IPGR] = 0x0150,
205 [APR] = 0x0154,
206 [MPR] = 0x0158,
207 [TPAUSER] = 0x0164,
208 [RFCF] = 0x0160,
209 [TPAUSECR] = 0x0168,
210 [BCFRR] = 0x016c,
211 [MAHR] = 0x01c0,
212 [MALR] = 0x01c8,
213 [TROCR] = 0x01d0,
214 [CDCR] = 0x01d4,
215 [LCCR] = 0x01d8,
216 [CNDCR] = 0x01dc,
217 [CEFCR] = 0x01e4,
218 [FRECR] = 0x01e8,
219 [TSFRCR] = 0x01ec,
220 [TLFRCR] = 0x01f0,
221 [RFCR] = 0x01f4,
222 [MAFCR] = 0x01f8,
223 [RTRATE] = 0x01fc,
224
225 [EDMR] = 0x0000,
226 [EDTRR] = 0x0008,
227 [EDRRR] = 0x0010,
228 [TDLAR] = 0x0018,
229 [RDLAR] = 0x0020,
230 [EESR] = 0x0028,
231 [EESIPR] = 0x0030,
232 [TRSCER] = 0x0038,
233 [RMFCR] = 0x0040,
234 [TFTR] = 0x0048,
235 [FDR] = 0x0050,
236 [RMCR] = 0x0058,
237 [TFUCR] = 0x0064,
238 [RFOCR] = 0x0068,
239 [FCFTR] = 0x0070,
240 [RPADIR] = 0x0078,
241 [TRIMD] = 0x007c,
242 [RBWAR] = 0x00c8,
243 [RDFAR] = 0x00cc,
244 [TBRAR] = 0x00d4,
245 [TDFAR] = 0x00d8,
246 };
247
248 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
249 [ECMR] = 0x0160,
250 [ECSR] = 0x0164,
251 [ECSIPR] = 0x0168,
252 [PIR] = 0x016c,
253 [MAHR] = 0x0170,
254 [MALR] = 0x0174,
255 [RFLR] = 0x0178,
256 [PSR] = 0x017c,
257 [TROCR] = 0x0180,
258 [CDCR] = 0x0184,
259 [LCCR] = 0x0188,
260 [CNDCR] = 0x018c,
261 [CEFCR] = 0x0194,
262 [FRECR] = 0x0198,
263 [TSFRCR] = 0x019c,
264 [TLFRCR] = 0x01a0,
265 [RFCR] = 0x01a4,
266 [MAFCR] = 0x01a8,
267 [IPGR] = 0x01b4,
268 [APR] = 0x01b8,
269 [MPR] = 0x01bc,
270 [TPAUSER] = 0x01c4,
271 [BCFR] = 0x01cc,
272
273 [ARSTR] = 0x0000,
274 [TSU_CTRST] = 0x0004,
275 [TSU_FWEN0] = 0x0010,
276 [TSU_FWEN1] = 0x0014,
277 [TSU_FCM] = 0x0018,
278 [TSU_BSYSL0] = 0x0020,
279 [TSU_BSYSL1] = 0x0024,
280 [TSU_PRISL0] = 0x0028,
281 [TSU_PRISL1] = 0x002c,
282 [TSU_FWSL0] = 0x0030,
283 [TSU_FWSL1] = 0x0034,
284 [TSU_FWSLC] = 0x0038,
285 [TSU_QTAGM0] = 0x0040,
286 [TSU_QTAGM1] = 0x0044,
287 [TSU_ADQT0] = 0x0048,
288 [TSU_ADQT1] = 0x004c,
289 [TSU_FWSR] = 0x0050,
290 [TSU_FWINMK] = 0x0054,
291 [TSU_ADSBSY] = 0x0060,
292 [TSU_TEN] = 0x0064,
293 [TSU_POST1] = 0x0070,
294 [TSU_POST2] = 0x0074,
295 [TSU_POST3] = 0x0078,
296 [TSU_POST4] = 0x007c,
297
298 [TXNLCR0] = 0x0080,
299 [TXALCR0] = 0x0084,
300 [RXNLCR0] = 0x0088,
301 [RXALCR0] = 0x008c,
302 [FWNLCR0] = 0x0090,
303 [FWALCR0] = 0x0094,
304 [TXNLCR1] = 0x00a0,
305 [TXALCR1] = 0x00a0,
306 [RXNLCR1] = 0x00a8,
307 [RXALCR1] = 0x00ac,
308 [FWNLCR1] = 0x00b0,
309 [FWALCR1] = 0x00b4,
310
311 [TSU_ADRH0] = 0x0100,
312 [TSU_ADRL0] = 0x0104,
313 [TSU_ADRL31] = 0x01fc,
314 };
315
316 static int sh_eth_is_gether(struct sh_eth_private *mdp)
317 {
318 if (mdp->reg_offset == sh_eth_offset_gigabit)
319 return 1;
320 else
321 return 0;
322 }
323
324 static void __maybe_unused sh_eth_select_mii(struct net_device *ndev)
325 {
326 u32 value = 0x0;
327 struct sh_eth_private *mdp = netdev_priv(ndev);
328
329 switch (mdp->phy_interface) {
330 case PHY_INTERFACE_MODE_GMII:
331 value = 0x2;
332 break;
333 case PHY_INTERFACE_MODE_MII:
334 value = 0x1;
335 break;
336 case PHY_INTERFACE_MODE_RMII:
337 value = 0x0;
338 break;
339 default:
340 pr_warn("PHY interface mode was not setup. Set to MII.\n");
341 value = 0x1;
342 break;
343 }
344
345 sh_eth_write(ndev, value, RMII_MII);
346 }
347
348 static void __maybe_unused sh_eth_set_duplex(struct net_device *ndev)
349 {
350 struct sh_eth_private *mdp = netdev_priv(ndev);
351
352 if (mdp->duplex) /* Full */
353 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
354 else /* Half */
355 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
356 }
357
358 /* There is CPU dependent code */
359 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
360 {
361 struct sh_eth_private *mdp = netdev_priv(ndev);
362
363 switch (mdp->speed) {
364 case 10: /* 10BASE */
365 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
366 break;
367 case 100:/* 100BASE */
368 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
369 break;
370 default:
371 break;
372 }
373 }
374
375 /* R8A7778/9 */
376 static struct sh_eth_cpu_data r8a777x_data = {
377 .set_duplex = sh_eth_set_duplex,
378 .set_rate = sh_eth_set_rate_r8a777x,
379
380 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
381 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
382 .eesipr_value = 0x01ff009f,
383
384 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
385 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
386 EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
387 .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
388
389 .apr = 1,
390 .mpr = 1,
391 .tpauser = 1,
392 .hw_swap = 1,
393 };
394
395 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
396 {
397 struct sh_eth_private *mdp = netdev_priv(ndev);
398
399 switch (mdp->speed) {
400 case 10: /* 10BASE */
401 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
402 break;
403 case 100:/* 100BASE */
404 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
405 break;
406 default:
407 break;
408 }
409 }
410
411 /* SH7724 */
412 static struct sh_eth_cpu_data sh7724_data = {
413 .set_duplex = sh_eth_set_duplex,
414 .set_rate = sh_eth_set_rate_sh7724,
415
416 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
417 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
418 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
419
420 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
421 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
422 EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
423 .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
424
425 .apr = 1,
426 .mpr = 1,
427 .tpauser = 1,
428 .hw_swap = 1,
429 .rpadir = 1,
430 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
431 };
432
433 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
434 {
435 struct sh_eth_private *mdp = netdev_priv(ndev);
436
437 switch (mdp->speed) {
438 case 10: /* 10BASE */
439 sh_eth_write(ndev, 0, RTRATE);
440 break;
441 case 100:/* 100BASE */
442 sh_eth_write(ndev, 1, RTRATE);
443 break;
444 default:
445 break;
446 }
447 }
448
449 /* SH7757 */
450 static struct sh_eth_cpu_data sh7757_data = {
451 .set_duplex = sh_eth_set_duplex,
452 .set_rate = sh_eth_set_rate_sh7757,
453
454 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
455 .rmcr_value = 0x00000001,
456
457 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
458 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
459 EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
460 .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
461
462 .irq_flags = IRQF_SHARED,
463 .apr = 1,
464 .mpr = 1,
465 .tpauser = 1,
466 .hw_swap = 1,
467 .no_ade = 1,
468 .rpadir = 1,
469 .rpadir_value = 2 << 16,
470 };
471
472 #define SH_GIGA_ETH_BASE 0xfee00000
473 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
474 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
475 static void sh_eth_chip_reset_giga(struct net_device *ndev)
476 {
477 int i;
478 unsigned long mahr[2], malr[2];
479
480 /* save MAHR and MALR */
481 for (i = 0; i < 2; i++) {
482 malr[i] = ioread32((void *)GIGA_MALR(i));
483 mahr[i] = ioread32((void *)GIGA_MAHR(i));
484 }
485
486 /* reset device */
487 iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
488 mdelay(1);
489
490 /* restore MAHR and MALR */
491 for (i = 0; i < 2; i++) {
492 iowrite32(malr[i], (void *)GIGA_MALR(i));
493 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
494 }
495 }
496
497 static void sh_eth_set_rate_giga(struct net_device *ndev)
498 {
499 struct sh_eth_private *mdp = netdev_priv(ndev);
500
501 switch (mdp->speed) {
502 case 10: /* 10BASE */
503 sh_eth_write(ndev, 0x00000000, GECMR);
504 break;
505 case 100:/* 100BASE */
506 sh_eth_write(ndev, 0x00000010, GECMR);
507 break;
508 case 1000: /* 1000BASE */
509 sh_eth_write(ndev, 0x00000020, GECMR);
510 break;
511 default:
512 break;
513 }
514 }
515
516 /* SH7757(GETHERC) */
517 static struct sh_eth_cpu_data sh7757_data_giga = {
518 .chip_reset = sh_eth_chip_reset_giga,
519 .set_duplex = sh_eth_set_duplex,
520 .set_rate = sh_eth_set_rate_giga,
521
522 .ecsr_value = ECSR_ICD | ECSR_MPD,
523 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
524 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
525
526 .tx_check = EESR_TC1 | EESR_FTC,
527 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
528 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
529 EESR_ECI,
530 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
531 EESR_TFE,
532 .fdr_value = 0x0000072f,
533 .rmcr_value = 0x00000001,
534
535 .irq_flags = IRQF_SHARED,
536 .apr = 1,
537 .mpr = 1,
538 .tpauser = 1,
539 .bculr = 1,
540 .hw_swap = 1,
541 .rpadir = 1,
542 .rpadir_value = 2 << 16,
543 .no_trimd = 1,
544 .no_ade = 1,
545 .tsu = 1,
546 };
547
548 static void sh_eth_chip_reset(struct net_device *ndev)
549 {
550 struct sh_eth_private *mdp = netdev_priv(ndev);
551
552 /* reset device */
553 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
554 mdelay(1);
555 }
556
557 static void sh_eth_set_rate_gether(struct net_device *ndev)
558 {
559 struct sh_eth_private *mdp = netdev_priv(ndev);
560
561 switch (mdp->speed) {
562 case 10: /* 10BASE */
563 sh_eth_write(ndev, GECMR_10, GECMR);
564 break;
565 case 100:/* 100BASE */
566 sh_eth_write(ndev, GECMR_100, GECMR);
567 break;
568 case 1000: /* 1000BASE */
569 sh_eth_write(ndev, GECMR_1000, GECMR);
570 break;
571 default:
572 break;
573 }
574 }
575
576 /* SH7734 */
577 static struct sh_eth_cpu_data sh7734_data = {
578 .chip_reset = sh_eth_chip_reset,
579 .set_duplex = sh_eth_set_duplex,
580 .set_rate = sh_eth_set_rate_gether,
581
582 .ecsr_value = ECSR_ICD | ECSR_MPD,
583 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
584 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
585
586 .tx_check = EESR_TC1 | EESR_FTC,
587 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
588 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
589 EESR_ECI,
590 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
591 EESR_TFE,
592
593 .apr = 1,
594 .mpr = 1,
595 .tpauser = 1,
596 .bculr = 1,
597 .hw_swap = 1,
598 .no_trimd = 1,
599 .no_ade = 1,
600 .tsu = 1,
601 .hw_crc = 1,
602 .select_mii = 1,
603 };
604
605 /* SH7763 */
606 static struct sh_eth_cpu_data sh7763_data = {
607 .chip_reset = sh_eth_chip_reset,
608 .set_duplex = sh_eth_set_duplex,
609 .set_rate = sh_eth_set_rate_gether,
610
611 .ecsr_value = ECSR_ICD | ECSR_MPD,
612 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
613 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
614
615 .tx_check = EESR_TC1 | EESR_FTC,
616 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
617 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
618 EESR_ECI,
619 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
620 EESR_TFE,
621
622 .apr = 1,
623 .mpr = 1,
624 .tpauser = 1,
625 .bculr = 1,
626 .hw_swap = 1,
627 .no_trimd = 1,
628 .no_ade = 1,
629 .tsu = 1,
630 .irq_flags = IRQF_SHARED,
631 };
632
633 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
634 {
635 struct sh_eth_private *mdp = netdev_priv(ndev);
636
637 /* reset device */
638 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
639 mdelay(1);
640
641 sh_eth_select_mii(ndev);
642 }
643
644 /* R8A7740 */
645 static struct sh_eth_cpu_data r8a7740_data = {
646 .chip_reset = sh_eth_chip_reset_r8a7740,
647 .set_duplex = sh_eth_set_duplex,
648 .set_rate = sh_eth_set_rate_gether,
649
650 .ecsr_value = ECSR_ICD | ECSR_MPD,
651 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
652 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
653
654 .tx_check = EESR_TC1 | EESR_FTC,
655 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
656 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
657 EESR_ECI,
658 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
659 EESR_TFE,
660
661 .apr = 1,
662 .mpr = 1,
663 .tpauser = 1,
664 .bculr = 1,
665 .hw_swap = 1,
666 .no_trimd = 1,
667 .no_ade = 1,
668 .tsu = 1,
669 .select_mii = 1,
670 };
671
672 static struct sh_eth_cpu_data sh7619_data = {
673 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
674
675 .apr = 1,
676 .mpr = 1,
677 .tpauser = 1,
678 .hw_swap = 1,
679 };
680
681 static struct sh_eth_cpu_data sh771x_data = {
682 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
683 .tsu = 1,
684 };
685
686 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
687 {
688 if (!cd->ecsr_value)
689 cd->ecsr_value = DEFAULT_ECSR_INIT;
690
691 if (!cd->ecsipr_value)
692 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
693
694 if (!cd->fcftr_value)
695 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
696 DEFAULT_FIFO_F_D_RFD;
697
698 if (!cd->fdr_value)
699 cd->fdr_value = DEFAULT_FDR_INIT;
700
701 if (!cd->rmcr_value)
702 cd->rmcr_value = DEFAULT_RMCR_VALUE;
703
704 if (!cd->tx_check)
705 cd->tx_check = DEFAULT_TX_CHECK;
706
707 if (!cd->eesr_err_check)
708 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
709
710 if (!cd->tx_error_check)
711 cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
712 }
713
714 static int sh_eth_check_reset(struct net_device *ndev)
715 {
716 int ret = 0;
717 int cnt = 100;
718
719 while (cnt > 0) {
720 if (!(sh_eth_read(ndev, EDMR) & 0x3))
721 break;
722 mdelay(1);
723 cnt--;
724 }
725 if (cnt < 0) {
726 pr_err("Device reset fail\n");
727 ret = -ETIMEDOUT;
728 }
729 return ret;
730 }
731
732 static int sh_eth_reset(struct net_device *ndev)
733 {
734 struct sh_eth_private *mdp = netdev_priv(ndev);
735 int ret = 0;
736
737 if (sh_eth_is_gether(mdp)) {
738 sh_eth_write(ndev, EDSR_ENALL, EDSR);
739 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
740 EDMR);
741
742 ret = sh_eth_check_reset(ndev);
743 if (ret)
744 goto out;
745
746 /* Table Init */
747 sh_eth_write(ndev, 0x0, TDLAR);
748 sh_eth_write(ndev, 0x0, TDFAR);
749 sh_eth_write(ndev, 0x0, TDFXR);
750 sh_eth_write(ndev, 0x0, TDFFR);
751 sh_eth_write(ndev, 0x0, RDLAR);
752 sh_eth_write(ndev, 0x0, RDFAR);
753 sh_eth_write(ndev, 0x0, RDFXR);
754 sh_eth_write(ndev, 0x0, RDFFR);
755
756 /* Reset HW CRC register */
757 if (mdp->cd->hw_crc)
758 sh_eth_write(ndev, 0x0, CSMR);
759
760 /* Select MII mode */
761 if (mdp->cd->select_mii)
762 sh_eth_select_mii(ndev);
763 } else {
764 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
765 EDMR);
766 mdelay(3);
767 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
768 EDMR);
769 }
770
771 out:
772 return ret;
773 }
774
775 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
776 static void sh_eth_set_receive_align(struct sk_buff *skb)
777 {
778 int reserve;
779
780 reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
781 if (reserve)
782 skb_reserve(skb, reserve);
783 }
784 #else
785 static void sh_eth_set_receive_align(struct sk_buff *skb)
786 {
787 skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
788 }
789 #endif
790
791
792 /* CPU <-> EDMAC endian convert */
793 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
794 {
795 switch (mdp->edmac_endian) {
796 case EDMAC_LITTLE_ENDIAN:
797 return cpu_to_le32(x);
798 case EDMAC_BIG_ENDIAN:
799 return cpu_to_be32(x);
800 }
801 return x;
802 }
803
804 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
805 {
806 switch (mdp->edmac_endian) {
807 case EDMAC_LITTLE_ENDIAN:
808 return le32_to_cpu(x);
809 case EDMAC_BIG_ENDIAN:
810 return be32_to_cpu(x);
811 }
812 return x;
813 }
814
815 /*
816 * Program the hardware MAC address from dev->dev_addr.
817 */
818 static void update_mac_address(struct net_device *ndev)
819 {
820 sh_eth_write(ndev,
821 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
822 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
823 sh_eth_write(ndev,
824 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
825 }
826
827 /*
828 * Get MAC address from SuperH MAC address register
829 *
830 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
831 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
832 * When you want use this device, you must set MAC address in bootloader.
833 *
834 */
835 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
836 {
837 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
838 memcpy(ndev->dev_addr, mac, 6);
839 } else {
840 ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
841 ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
842 ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
843 ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
844 ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
845 ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
846 }
847 }
848
849 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
850 {
851 if (sh_eth_is_gether(mdp))
852 return EDTRR_TRNS_GETHER;
853 else
854 return EDTRR_TRNS_ETHER;
855 }
856
857 struct bb_info {
858 void (*set_gate)(void *addr);
859 struct mdiobb_ctrl ctrl;
860 void *addr;
861 u32 mmd_msk;/* MMD */
862 u32 mdo_msk;
863 u32 mdi_msk;
864 u32 mdc_msk;
865 };
866
867 /* PHY bit set */
868 static void bb_set(void *addr, u32 msk)
869 {
870 iowrite32(ioread32(addr) | msk, addr);
871 }
872
873 /* PHY bit clear */
874 static void bb_clr(void *addr, u32 msk)
875 {
876 iowrite32((ioread32(addr) & ~msk), addr);
877 }
878
879 /* PHY bit read */
880 static int bb_read(void *addr, u32 msk)
881 {
882 return (ioread32(addr) & msk) != 0;
883 }
884
885 /* Data I/O pin control */
886 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
887 {
888 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
889
890 if (bitbang->set_gate)
891 bitbang->set_gate(bitbang->addr);
892
893 if (bit)
894 bb_set(bitbang->addr, bitbang->mmd_msk);
895 else
896 bb_clr(bitbang->addr, bitbang->mmd_msk);
897 }
898
899 /* Set bit data*/
900 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
901 {
902 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
903
904 if (bitbang->set_gate)
905 bitbang->set_gate(bitbang->addr);
906
907 if (bit)
908 bb_set(bitbang->addr, bitbang->mdo_msk);
909 else
910 bb_clr(bitbang->addr, bitbang->mdo_msk);
911 }
912
913 /* Get bit data*/
914 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
915 {
916 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
917
918 if (bitbang->set_gate)
919 bitbang->set_gate(bitbang->addr);
920
921 return bb_read(bitbang->addr, bitbang->mdi_msk);
922 }
923
924 /* MDC pin control */
925 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
926 {
927 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
928
929 if (bitbang->set_gate)
930 bitbang->set_gate(bitbang->addr);
931
932 if (bit)
933 bb_set(bitbang->addr, bitbang->mdc_msk);
934 else
935 bb_clr(bitbang->addr, bitbang->mdc_msk);
936 }
937
938 /* mdio bus control struct */
939 static struct mdiobb_ops bb_ops = {
940 .owner = THIS_MODULE,
941 .set_mdc = sh_mdc_ctrl,
942 .set_mdio_dir = sh_mmd_ctrl,
943 .set_mdio_data = sh_set_mdio,
944 .get_mdio_data = sh_get_mdio,
945 };
946
947 /* free skb and descriptor buffer */
948 static void sh_eth_ring_free(struct net_device *ndev)
949 {
950 struct sh_eth_private *mdp = netdev_priv(ndev);
951 int i;
952
953 /* Free Rx skb ringbuffer */
954 if (mdp->rx_skbuff) {
955 for (i = 0; i < mdp->num_rx_ring; i++) {
956 if (mdp->rx_skbuff[i])
957 dev_kfree_skb(mdp->rx_skbuff[i]);
958 }
959 }
960 kfree(mdp->rx_skbuff);
961 mdp->rx_skbuff = NULL;
962
963 /* Free Tx skb ringbuffer */
964 if (mdp->tx_skbuff) {
965 for (i = 0; i < mdp->num_tx_ring; i++) {
966 if (mdp->tx_skbuff[i])
967 dev_kfree_skb(mdp->tx_skbuff[i]);
968 }
969 }
970 kfree(mdp->tx_skbuff);
971 mdp->tx_skbuff = NULL;
972 }
973
974 /* format skb and descriptor buffer */
975 static void sh_eth_ring_format(struct net_device *ndev)
976 {
977 struct sh_eth_private *mdp = netdev_priv(ndev);
978 int i;
979 struct sk_buff *skb;
980 struct sh_eth_rxdesc *rxdesc = NULL;
981 struct sh_eth_txdesc *txdesc = NULL;
982 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
983 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
984
985 mdp->cur_rx = mdp->cur_tx = 0;
986 mdp->dirty_rx = mdp->dirty_tx = 0;
987
988 memset(mdp->rx_ring, 0, rx_ringsize);
989
990 /* build Rx ring buffer */
991 for (i = 0; i < mdp->num_rx_ring; i++) {
992 /* skb */
993 mdp->rx_skbuff[i] = NULL;
994 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
995 mdp->rx_skbuff[i] = skb;
996 if (skb == NULL)
997 break;
998 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
999 DMA_FROM_DEVICE);
1000 sh_eth_set_receive_align(skb);
1001
1002 /* RX descriptor */
1003 rxdesc = &mdp->rx_ring[i];
1004 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1005 rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1006
1007 /* The size of the buffer is 16 byte boundary. */
1008 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1009 /* Rx descriptor address set */
1010 if (i == 0) {
1011 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1012 if (sh_eth_is_gether(mdp))
1013 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1014 }
1015 }
1016
1017 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1018
1019 /* Mark the last entry as wrapping the ring. */
1020 rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1021
1022 memset(mdp->tx_ring, 0, tx_ringsize);
1023
1024 /* build Tx ring buffer */
1025 for (i = 0; i < mdp->num_tx_ring; i++) {
1026 mdp->tx_skbuff[i] = NULL;
1027 txdesc = &mdp->tx_ring[i];
1028 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1029 txdesc->buffer_length = 0;
1030 if (i == 0) {
1031 /* Tx descriptor address set */
1032 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1033 if (sh_eth_is_gether(mdp))
1034 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1035 }
1036 }
1037
1038 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1039 }
1040
1041 /* Get skb and descriptor buffer */
1042 static int sh_eth_ring_init(struct net_device *ndev)
1043 {
1044 struct sh_eth_private *mdp = netdev_priv(ndev);
1045 int rx_ringsize, tx_ringsize, ret = 0;
1046
1047 /*
1048 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1049 * card needs room to do 8 byte alignment, +2 so we can reserve
1050 * the first 2 bytes, and +16 gets room for the status word from the
1051 * card.
1052 */
1053 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1054 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1055 if (mdp->cd->rpadir)
1056 mdp->rx_buf_sz += NET_IP_ALIGN;
1057
1058 /* Allocate RX and TX skb rings */
1059 mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1060 sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1061 if (!mdp->rx_skbuff) {
1062 ret = -ENOMEM;
1063 return ret;
1064 }
1065
1066 mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1067 sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1068 if (!mdp->tx_skbuff) {
1069 ret = -ENOMEM;
1070 goto skb_ring_free;
1071 }
1072
1073 /* Allocate all Rx descriptors. */
1074 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1075 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1076 GFP_KERNEL);
1077 if (!mdp->rx_ring) {
1078 ret = -ENOMEM;
1079 goto desc_ring_free;
1080 }
1081
1082 mdp->dirty_rx = 0;
1083
1084 /* Allocate all Tx descriptors. */
1085 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1086 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1087 GFP_KERNEL);
1088 if (!mdp->tx_ring) {
1089 ret = -ENOMEM;
1090 goto desc_ring_free;
1091 }
1092 return ret;
1093
1094 desc_ring_free:
1095 /* free DMA buffer */
1096 dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1097
1098 skb_ring_free:
1099 /* Free Rx and Tx skb ring buffer */
1100 sh_eth_ring_free(ndev);
1101 mdp->tx_ring = NULL;
1102 mdp->rx_ring = NULL;
1103
1104 return ret;
1105 }
1106
1107 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1108 {
1109 int ringsize;
1110
1111 if (mdp->rx_ring) {
1112 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1113 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1114 mdp->rx_desc_dma);
1115 mdp->rx_ring = NULL;
1116 }
1117
1118 if (mdp->tx_ring) {
1119 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1120 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1121 mdp->tx_desc_dma);
1122 mdp->tx_ring = NULL;
1123 }
1124 }
1125
1126 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1127 {
1128 int ret = 0;
1129 struct sh_eth_private *mdp = netdev_priv(ndev);
1130 u32 val;
1131
1132 /* Soft Reset */
1133 ret = sh_eth_reset(ndev);
1134 if (ret)
1135 goto out;
1136
1137 /* Descriptor format */
1138 sh_eth_ring_format(ndev);
1139 if (mdp->cd->rpadir)
1140 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1141
1142 /* all sh_eth int mask */
1143 sh_eth_write(ndev, 0, EESIPR);
1144
1145 #if defined(__LITTLE_ENDIAN)
1146 if (mdp->cd->hw_swap)
1147 sh_eth_write(ndev, EDMR_EL, EDMR);
1148 else
1149 #endif
1150 sh_eth_write(ndev, 0, EDMR);
1151
1152 /* FIFO size set */
1153 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1154 sh_eth_write(ndev, 0, TFTR);
1155
1156 /* Frame recv control */
1157 sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
1158
1159 sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1160
1161 if (mdp->cd->bculr)
1162 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
1163
1164 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1165
1166 if (!mdp->cd->no_trimd)
1167 sh_eth_write(ndev, 0, TRIMD);
1168
1169 /* Recv frame limit set register */
1170 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1171 RFLR);
1172
1173 sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1174 if (start)
1175 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1176
1177 /* PAUSE Prohibition */
1178 val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1179 ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1180
1181 sh_eth_write(ndev, val, ECMR);
1182
1183 if (mdp->cd->set_rate)
1184 mdp->cd->set_rate(ndev);
1185
1186 /* E-MAC Status Register clear */
1187 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1188
1189 /* E-MAC Interrupt Enable register */
1190 if (start)
1191 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1192
1193 /* Set MAC address */
1194 update_mac_address(ndev);
1195
1196 /* mask reset */
1197 if (mdp->cd->apr)
1198 sh_eth_write(ndev, APR_AP, APR);
1199 if (mdp->cd->mpr)
1200 sh_eth_write(ndev, MPR_MP, MPR);
1201 if (mdp->cd->tpauser)
1202 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1203
1204 if (start) {
1205 /* Setting the Rx mode will start the Rx process. */
1206 sh_eth_write(ndev, EDRRR_R, EDRRR);
1207
1208 netif_start_queue(ndev);
1209 }
1210
1211 out:
1212 return ret;
1213 }
1214
1215 /* free Tx skb function */
1216 static int sh_eth_txfree(struct net_device *ndev)
1217 {
1218 struct sh_eth_private *mdp = netdev_priv(ndev);
1219 struct sh_eth_txdesc *txdesc;
1220 int freeNum = 0;
1221 int entry = 0;
1222
1223 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1224 entry = mdp->dirty_tx % mdp->num_tx_ring;
1225 txdesc = &mdp->tx_ring[entry];
1226 if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1227 break;
1228 /* Free the original skb. */
1229 if (mdp->tx_skbuff[entry]) {
1230 dma_unmap_single(&ndev->dev, txdesc->addr,
1231 txdesc->buffer_length, DMA_TO_DEVICE);
1232 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1233 mdp->tx_skbuff[entry] = NULL;
1234 freeNum++;
1235 }
1236 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1237 if (entry >= mdp->num_tx_ring - 1)
1238 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1239
1240 ndev->stats.tx_packets++;
1241 ndev->stats.tx_bytes += txdesc->buffer_length;
1242 }
1243 return freeNum;
1244 }
1245
1246 /* Packet receive function */
1247 static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
1248 {
1249 struct sh_eth_private *mdp = netdev_priv(ndev);
1250 struct sh_eth_rxdesc *rxdesc;
1251
1252 int entry = mdp->cur_rx % mdp->num_rx_ring;
1253 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1254 struct sk_buff *skb;
1255 u16 pkt_len = 0;
1256 u32 desc_status;
1257
1258 rxdesc = &mdp->rx_ring[entry];
1259 while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1260 desc_status = edmac_to_cpu(mdp, rxdesc->status);
1261 pkt_len = rxdesc->frame_length;
1262
1263 #if defined(CONFIG_ARCH_R8A7740)
1264 desc_status >>= 16;
1265 #endif
1266
1267 if (--boguscnt < 0)
1268 break;
1269
1270 if (!(desc_status & RDFEND))
1271 ndev->stats.rx_length_errors++;
1272
1273 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1274 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1275 ndev->stats.rx_errors++;
1276 if (desc_status & RD_RFS1)
1277 ndev->stats.rx_crc_errors++;
1278 if (desc_status & RD_RFS2)
1279 ndev->stats.rx_frame_errors++;
1280 if (desc_status & RD_RFS3)
1281 ndev->stats.rx_length_errors++;
1282 if (desc_status & RD_RFS4)
1283 ndev->stats.rx_length_errors++;
1284 if (desc_status & RD_RFS6)
1285 ndev->stats.rx_missed_errors++;
1286 if (desc_status & RD_RFS10)
1287 ndev->stats.rx_over_errors++;
1288 } else {
1289 if (!mdp->cd->hw_swap)
1290 sh_eth_soft_swap(
1291 phys_to_virt(ALIGN(rxdesc->addr, 4)),
1292 pkt_len + 2);
1293 skb = mdp->rx_skbuff[entry];
1294 mdp->rx_skbuff[entry] = NULL;
1295 if (mdp->cd->rpadir)
1296 skb_reserve(skb, NET_IP_ALIGN);
1297 skb_put(skb, pkt_len);
1298 skb->protocol = eth_type_trans(skb, ndev);
1299 netif_rx(skb);
1300 ndev->stats.rx_packets++;
1301 ndev->stats.rx_bytes += pkt_len;
1302 }
1303 rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1304 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1305 rxdesc = &mdp->rx_ring[entry];
1306 }
1307
1308 /* Refill the Rx ring buffers. */
1309 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1310 entry = mdp->dirty_rx % mdp->num_rx_ring;
1311 rxdesc = &mdp->rx_ring[entry];
1312 /* The size of the buffer is 16 byte boundary. */
1313 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1314
1315 if (mdp->rx_skbuff[entry] == NULL) {
1316 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1317 mdp->rx_skbuff[entry] = skb;
1318 if (skb == NULL)
1319 break; /* Better luck next round. */
1320 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1321 DMA_FROM_DEVICE);
1322 sh_eth_set_receive_align(skb);
1323
1324 skb_checksum_none_assert(skb);
1325 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1326 }
1327 if (entry >= mdp->num_rx_ring - 1)
1328 rxdesc->status |=
1329 cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1330 else
1331 rxdesc->status |=
1332 cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1333 }
1334
1335 /* Restart Rx engine if stopped. */
1336 /* If we don't need to check status, don't. -KDU */
1337 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1338 /* fix the values for the next receiving if RDE is set */
1339 if (intr_status & EESR_RDE)
1340 mdp->cur_rx = mdp->dirty_rx =
1341 (sh_eth_read(ndev, RDFAR) -
1342 sh_eth_read(ndev, RDLAR)) >> 4;
1343 sh_eth_write(ndev, EDRRR_R, EDRRR);
1344 }
1345
1346 return 0;
1347 }
1348
1349 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1350 {
1351 /* disable tx and rx */
1352 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1353 ~(ECMR_RE | ECMR_TE), ECMR);
1354 }
1355
1356 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1357 {
1358 /* enable tx and rx */
1359 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1360 (ECMR_RE | ECMR_TE), ECMR);
1361 }
1362
1363 /* error control function */
1364 static void sh_eth_error(struct net_device *ndev, int intr_status)
1365 {
1366 struct sh_eth_private *mdp = netdev_priv(ndev);
1367 u32 felic_stat;
1368 u32 link_stat;
1369 u32 mask;
1370
1371 if (intr_status & EESR_ECI) {
1372 felic_stat = sh_eth_read(ndev, ECSR);
1373 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1374 if (felic_stat & ECSR_ICD)
1375 ndev->stats.tx_carrier_errors++;
1376 if (felic_stat & ECSR_LCHNG) {
1377 /* Link Changed */
1378 if (mdp->cd->no_psr || mdp->no_ether_link) {
1379 goto ignore_link;
1380 } else {
1381 link_stat = (sh_eth_read(ndev, PSR));
1382 if (mdp->ether_link_active_low)
1383 link_stat = ~link_stat;
1384 }
1385 if (!(link_stat & PHY_ST_LINK))
1386 sh_eth_rcv_snd_disable(ndev);
1387 else {
1388 /* Link Up */
1389 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1390 ~DMAC_M_ECI, EESIPR);
1391 /*clear int */
1392 sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1393 ECSR);
1394 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1395 DMAC_M_ECI, EESIPR);
1396 /* enable tx and rx */
1397 sh_eth_rcv_snd_enable(ndev);
1398 }
1399 }
1400 }
1401
1402 ignore_link:
1403 if (intr_status & EESR_TWB) {
1404 /* Write buck end. unused write back interrupt */
1405 if (intr_status & EESR_TABT) /* Transmit Abort int */
1406 ndev->stats.tx_aborted_errors++;
1407 if (netif_msg_tx_err(mdp))
1408 dev_err(&ndev->dev, "Transmit Abort\n");
1409 }
1410
1411 if (intr_status & EESR_RABT) {
1412 /* Receive Abort int */
1413 if (intr_status & EESR_RFRMER) {
1414 /* Receive Frame Overflow int */
1415 ndev->stats.rx_frame_errors++;
1416 if (netif_msg_rx_err(mdp))
1417 dev_err(&ndev->dev, "Receive Abort\n");
1418 }
1419 }
1420
1421 if (intr_status & EESR_TDE) {
1422 /* Transmit Descriptor Empty int */
1423 ndev->stats.tx_fifo_errors++;
1424 if (netif_msg_tx_err(mdp))
1425 dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1426 }
1427
1428 if (intr_status & EESR_TFE) {
1429 /* FIFO under flow */
1430 ndev->stats.tx_fifo_errors++;
1431 if (netif_msg_tx_err(mdp))
1432 dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1433 }
1434
1435 if (intr_status & EESR_RDE) {
1436 /* Receive Descriptor Empty int */
1437 ndev->stats.rx_over_errors++;
1438
1439 if (netif_msg_rx_err(mdp))
1440 dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1441 }
1442
1443 if (intr_status & EESR_RFE) {
1444 /* Receive FIFO Overflow int */
1445 ndev->stats.rx_fifo_errors++;
1446 if (netif_msg_rx_err(mdp))
1447 dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1448 }
1449
1450 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1451 /* Address Error */
1452 ndev->stats.tx_fifo_errors++;
1453 if (netif_msg_tx_err(mdp))
1454 dev_err(&ndev->dev, "Address Error\n");
1455 }
1456
1457 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1458 if (mdp->cd->no_ade)
1459 mask &= ~EESR_ADE;
1460 if (intr_status & mask) {
1461 /* Tx error */
1462 u32 edtrr = sh_eth_read(ndev, EDTRR);
1463 /* dmesg */
1464 dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1465 intr_status, mdp->cur_tx);
1466 dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1467 mdp->dirty_tx, (u32) ndev->state, edtrr);
1468 /* dirty buffer free */
1469 sh_eth_txfree(ndev);
1470
1471 /* SH7712 BUG */
1472 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1473 /* tx dma start */
1474 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1475 }
1476 /* wakeup */
1477 netif_wake_queue(ndev);
1478 }
1479 }
1480
1481 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1482 {
1483 struct net_device *ndev = netdev;
1484 struct sh_eth_private *mdp = netdev_priv(ndev);
1485 struct sh_eth_cpu_data *cd = mdp->cd;
1486 irqreturn_t ret = IRQ_NONE;
1487 unsigned long intr_status;
1488
1489 spin_lock(&mdp->lock);
1490
1491 /* Get interrupt status */
1492 intr_status = sh_eth_read(ndev, EESR);
1493 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1494 * enabled since it's the one that comes thru regardless of the mask,
1495 * and we need to fully handle it in sh_eth_error() in order to quench
1496 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1497 */
1498 intr_status &= sh_eth_read(ndev, EESIPR) | DMAC_M_ECI;
1499 /* Clear interrupt */
1500 if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1501 EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1502 cd->tx_check | cd->eesr_err_check)) {
1503 sh_eth_write(ndev, intr_status, EESR);
1504 ret = IRQ_HANDLED;
1505 } else
1506 goto other_irq;
1507
1508 if (intr_status & (EESR_FRC | /* Frame recv*/
1509 EESR_RMAF | /* Multi cast address recv*/
1510 EESR_RRF | /* Bit frame recv */
1511 EESR_RTLF | /* Long frame recv*/
1512 EESR_RTSF | /* short frame recv */
1513 EESR_PRE | /* PHY-LSI recv error */
1514 EESR_CERF)){ /* recv frame CRC error */
1515 sh_eth_rx(ndev, intr_status);
1516 }
1517
1518 /* Tx Check */
1519 if (intr_status & cd->tx_check) {
1520 sh_eth_txfree(ndev);
1521 netif_wake_queue(ndev);
1522 }
1523
1524 if (intr_status & cd->eesr_err_check)
1525 sh_eth_error(ndev, intr_status);
1526
1527 other_irq:
1528 spin_unlock(&mdp->lock);
1529
1530 return ret;
1531 }
1532
1533 /* PHY state control function */
1534 static void sh_eth_adjust_link(struct net_device *ndev)
1535 {
1536 struct sh_eth_private *mdp = netdev_priv(ndev);
1537 struct phy_device *phydev = mdp->phydev;
1538 int new_state = 0;
1539
1540 if (phydev->link) {
1541 if (phydev->duplex != mdp->duplex) {
1542 new_state = 1;
1543 mdp->duplex = phydev->duplex;
1544 if (mdp->cd->set_duplex)
1545 mdp->cd->set_duplex(ndev);
1546 }
1547
1548 if (phydev->speed != mdp->speed) {
1549 new_state = 1;
1550 mdp->speed = phydev->speed;
1551 if (mdp->cd->set_rate)
1552 mdp->cd->set_rate(ndev);
1553 }
1554 if (!mdp->link) {
1555 sh_eth_write(ndev,
1556 (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1557 new_state = 1;
1558 mdp->link = phydev->link;
1559 if (mdp->cd->no_psr || mdp->no_ether_link)
1560 sh_eth_rcv_snd_enable(ndev);
1561 }
1562 } else if (mdp->link) {
1563 new_state = 1;
1564 mdp->link = 0;
1565 mdp->speed = 0;
1566 mdp->duplex = -1;
1567 if (mdp->cd->no_psr || mdp->no_ether_link)
1568 sh_eth_rcv_snd_disable(ndev);
1569 }
1570
1571 if (new_state && netif_msg_link(mdp))
1572 phy_print_status(phydev);
1573 }
1574
1575 /* PHY init function */
1576 static int sh_eth_phy_init(struct net_device *ndev)
1577 {
1578 struct sh_eth_private *mdp = netdev_priv(ndev);
1579 char phy_id[MII_BUS_ID_SIZE + 3];
1580 struct phy_device *phydev = NULL;
1581
1582 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1583 mdp->mii_bus->id , mdp->phy_id);
1584
1585 mdp->link = 0;
1586 mdp->speed = 0;
1587 mdp->duplex = -1;
1588
1589 /* Try connect to PHY */
1590 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1591 mdp->phy_interface);
1592 if (IS_ERR(phydev)) {
1593 dev_err(&ndev->dev, "phy_connect failed\n");
1594 return PTR_ERR(phydev);
1595 }
1596
1597 dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1598 phydev->addr, phydev->drv->name);
1599
1600 mdp->phydev = phydev;
1601
1602 return 0;
1603 }
1604
1605 /* PHY control start function */
1606 static int sh_eth_phy_start(struct net_device *ndev)
1607 {
1608 struct sh_eth_private *mdp = netdev_priv(ndev);
1609 int ret;
1610
1611 ret = sh_eth_phy_init(ndev);
1612 if (ret)
1613 return ret;
1614
1615 /* reset phy - this also wakes it from PDOWN */
1616 phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1617 phy_start(mdp->phydev);
1618
1619 return 0;
1620 }
1621
1622 static int sh_eth_get_settings(struct net_device *ndev,
1623 struct ethtool_cmd *ecmd)
1624 {
1625 struct sh_eth_private *mdp = netdev_priv(ndev);
1626 unsigned long flags;
1627 int ret;
1628
1629 spin_lock_irqsave(&mdp->lock, flags);
1630 ret = phy_ethtool_gset(mdp->phydev, ecmd);
1631 spin_unlock_irqrestore(&mdp->lock, flags);
1632
1633 return ret;
1634 }
1635
1636 static int sh_eth_set_settings(struct net_device *ndev,
1637 struct ethtool_cmd *ecmd)
1638 {
1639 struct sh_eth_private *mdp = netdev_priv(ndev);
1640 unsigned long flags;
1641 int ret;
1642
1643 spin_lock_irqsave(&mdp->lock, flags);
1644
1645 /* disable tx and rx */
1646 sh_eth_rcv_snd_disable(ndev);
1647
1648 ret = phy_ethtool_sset(mdp->phydev, ecmd);
1649 if (ret)
1650 goto error_exit;
1651
1652 if (ecmd->duplex == DUPLEX_FULL)
1653 mdp->duplex = 1;
1654 else
1655 mdp->duplex = 0;
1656
1657 if (mdp->cd->set_duplex)
1658 mdp->cd->set_duplex(ndev);
1659
1660 error_exit:
1661 mdelay(1);
1662
1663 /* enable tx and rx */
1664 sh_eth_rcv_snd_enable(ndev);
1665
1666 spin_unlock_irqrestore(&mdp->lock, flags);
1667
1668 return ret;
1669 }
1670
1671 static int sh_eth_nway_reset(struct net_device *ndev)
1672 {
1673 struct sh_eth_private *mdp = netdev_priv(ndev);
1674 unsigned long flags;
1675 int ret;
1676
1677 spin_lock_irqsave(&mdp->lock, flags);
1678 ret = phy_start_aneg(mdp->phydev);
1679 spin_unlock_irqrestore(&mdp->lock, flags);
1680
1681 return ret;
1682 }
1683
1684 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1685 {
1686 struct sh_eth_private *mdp = netdev_priv(ndev);
1687 return mdp->msg_enable;
1688 }
1689
1690 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1691 {
1692 struct sh_eth_private *mdp = netdev_priv(ndev);
1693 mdp->msg_enable = value;
1694 }
1695
1696 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1697 "rx_current", "tx_current",
1698 "rx_dirty", "tx_dirty",
1699 };
1700 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
1701
1702 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1703 {
1704 switch (sset) {
1705 case ETH_SS_STATS:
1706 return SH_ETH_STATS_LEN;
1707 default:
1708 return -EOPNOTSUPP;
1709 }
1710 }
1711
1712 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1713 struct ethtool_stats *stats, u64 *data)
1714 {
1715 struct sh_eth_private *mdp = netdev_priv(ndev);
1716 int i = 0;
1717
1718 /* device-specific stats */
1719 data[i++] = mdp->cur_rx;
1720 data[i++] = mdp->cur_tx;
1721 data[i++] = mdp->dirty_rx;
1722 data[i++] = mdp->dirty_tx;
1723 }
1724
1725 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1726 {
1727 switch (stringset) {
1728 case ETH_SS_STATS:
1729 memcpy(data, *sh_eth_gstrings_stats,
1730 sizeof(sh_eth_gstrings_stats));
1731 break;
1732 }
1733 }
1734
1735 static void sh_eth_get_ringparam(struct net_device *ndev,
1736 struct ethtool_ringparam *ring)
1737 {
1738 struct sh_eth_private *mdp = netdev_priv(ndev);
1739
1740 ring->rx_max_pending = RX_RING_MAX;
1741 ring->tx_max_pending = TX_RING_MAX;
1742 ring->rx_pending = mdp->num_rx_ring;
1743 ring->tx_pending = mdp->num_tx_ring;
1744 }
1745
1746 static int sh_eth_set_ringparam(struct net_device *ndev,
1747 struct ethtool_ringparam *ring)
1748 {
1749 struct sh_eth_private *mdp = netdev_priv(ndev);
1750 int ret;
1751
1752 if (ring->tx_pending > TX_RING_MAX ||
1753 ring->rx_pending > RX_RING_MAX ||
1754 ring->tx_pending < TX_RING_MIN ||
1755 ring->rx_pending < RX_RING_MIN)
1756 return -EINVAL;
1757 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1758 return -EINVAL;
1759
1760 if (netif_running(ndev)) {
1761 netif_tx_disable(ndev);
1762 /* Disable interrupts by clearing the interrupt mask. */
1763 sh_eth_write(ndev, 0x0000, EESIPR);
1764 /* Stop the chip's Tx and Rx processes. */
1765 sh_eth_write(ndev, 0, EDTRR);
1766 sh_eth_write(ndev, 0, EDRRR);
1767 synchronize_irq(ndev->irq);
1768 }
1769
1770 /* Free all the skbuffs in the Rx queue. */
1771 sh_eth_ring_free(ndev);
1772 /* Free DMA buffer */
1773 sh_eth_free_dma_buffer(mdp);
1774
1775 /* Set new parameters */
1776 mdp->num_rx_ring = ring->rx_pending;
1777 mdp->num_tx_ring = ring->tx_pending;
1778
1779 ret = sh_eth_ring_init(ndev);
1780 if (ret < 0) {
1781 dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1782 return ret;
1783 }
1784 ret = sh_eth_dev_init(ndev, false);
1785 if (ret < 0) {
1786 dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1787 return ret;
1788 }
1789
1790 if (netif_running(ndev)) {
1791 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1792 /* Setting the Rx mode will start the Rx process. */
1793 sh_eth_write(ndev, EDRRR_R, EDRRR);
1794 netif_wake_queue(ndev);
1795 }
1796
1797 return 0;
1798 }
1799
1800 static const struct ethtool_ops sh_eth_ethtool_ops = {
1801 .get_settings = sh_eth_get_settings,
1802 .set_settings = sh_eth_set_settings,
1803 .nway_reset = sh_eth_nway_reset,
1804 .get_msglevel = sh_eth_get_msglevel,
1805 .set_msglevel = sh_eth_set_msglevel,
1806 .get_link = ethtool_op_get_link,
1807 .get_strings = sh_eth_get_strings,
1808 .get_ethtool_stats = sh_eth_get_ethtool_stats,
1809 .get_sset_count = sh_eth_get_sset_count,
1810 .get_ringparam = sh_eth_get_ringparam,
1811 .set_ringparam = sh_eth_set_ringparam,
1812 };
1813
1814 /* network device open function */
1815 static int sh_eth_open(struct net_device *ndev)
1816 {
1817 int ret = 0;
1818 struct sh_eth_private *mdp = netdev_priv(ndev);
1819
1820 pm_runtime_get_sync(&mdp->pdev->dev);
1821
1822 ret = request_irq(ndev->irq, sh_eth_interrupt,
1823 mdp->cd->irq_flags, ndev->name, ndev);
1824 if (ret) {
1825 dev_err(&ndev->dev, "Can not assign IRQ number\n");
1826 return ret;
1827 }
1828
1829 /* Descriptor set */
1830 ret = sh_eth_ring_init(ndev);
1831 if (ret)
1832 goto out_free_irq;
1833
1834 /* device init */
1835 ret = sh_eth_dev_init(ndev, true);
1836 if (ret)
1837 goto out_free_irq;
1838
1839 /* PHY control start*/
1840 ret = sh_eth_phy_start(ndev);
1841 if (ret)
1842 goto out_free_irq;
1843
1844 return ret;
1845
1846 out_free_irq:
1847 free_irq(ndev->irq, ndev);
1848 pm_runtime_put_sync(&mdp->pdev->dev);
1849 return ret;
1850 }
1851
1852 /* Timeout function */
1853 static void sh_eth_tx_timeout(struct net_device *ndev)
1854 {
1855 struct sh_eth_private *mdp = netdev_priv(ndev);
1856 struct sh_eth_rxdesc *rxdesc;
1857 int i;
1858
1859 netif_stop_queue(ndev);
1860
1861 if (netif_msg_timer(mdp))
1862 dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1863 " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1864
1865 /* tx_errors count up */
1866 ndev->stats.tx_errors++;
1867
1868 /* Free all the skbuffs in the Rx queue. */
1869 for (i = 0; i < mdp->num_rx_ring; i++) {
1870 rxdesc = &mdp->rx_ring[i];
1871 rxdesc->status = 0;
1872 rxdesc->addr = 0xBADF00D0;
1873 if (mdp->rx_skbuff[i])
1874 dev_kfree_skb(mdp->rx_skbuff[i]);
1875 mdp->rx_skbuff[i] = NULL;
1876 }
1877 for (i = 0; i < mdp->num_tx_ring; i++) {
1878 if (mdp->tx_skbuff[i])
1879 dev_kfree_skb(mdp->tx_skbuff[i]);
1880 mdp->tx_skbuff[i] = NULL;
1881 }
1882
1883 /* device init */
1884 sh_eth_dev_init(ndev, true);
1885 }
1886
1887 /* Packet transmit function */
1888 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1889 {
1890 struct sh_eth_private *mdp = netdev_priv(ndev);
1891 struct sh_eth_txdesc *txdesc;
1892 u32 entry;
1893 unsigned long flags;
1894
1895 spin_lock_irqsave(&mdp->lock, flags);
1896 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
1897 if (!sh_eth_txfree(ndev)) {
1898 if (netif_msg_tx_queued(mdp))
1899 dev_warn(&ndev->dev, "TxFD exhausted.\n");
1900 netif_stop_queue(ndev);
1901 spin_unlock_irqrestore(&mdp->lock, flags);
1902 return NETDEV_TX_BUSY;
1903 }
1904 }
1905 spin_unlock_irqrestore(&mdp->lock, flags);
1906
1907 entry = mdp->cur_tx % mdp->num_tx_ring;
1908 mdp->tx_skbuff[entry] = skb;
1909 txdesc = &mdp->tx_ring[entry];
1910 /* soft swap. */
1911 if (!mdp->cd->hw_swap)
1912 sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
1913 skb->len + 2);
1914 txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
1915 DMA_TO_DEVICE);
1916 if (skb->len < ETHERSMALL)
1917 txdesc->buffer_length = ETHERSMALL;
1918 else
1919 txdesc->buffer_length = skb->len;
1920
1921 if (entry >= mdp->num_tx_ring - 1)
1922 txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1923 else
1924 txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1925
1926 mdp->cur_tx++;
1927
1928 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
1929 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1930
1931 return NETDEV_TX_OK;
1932 }
1933
1934 /* device close function */
1935 static int sh_eth_close(struct net_device *ndev)
1936 {
1937 struct sh_eth_private *mdp = netdev_priv(ndev);
1938
1939 netif_stop_queue(ndev);
1940
1941 /* Disable interrupts by clearing the interrupt mask. */
1942 sh_eth_write(ndev, 0x0000, EESIPR);
1943
1944 /* Stop the chip's Tx and Rx processes. */
1945 sh_eth_write(ndev, 0, EDTRR);
1946 sh_eth_write(ndev, 0, EDRRR);
1947
1948 /* PHY Disconnect */
1949 if (mdp->phydev) {
1950 phy_stop(mdp->phydev);
1951 phy_disconnect(mdp->phydev);
1952 }
1953
1954 free_irq(ndev->irq, ndev);
1955
1956 /* Free all the skbuffs in the Rx queue. */
1957 sh_eth_ring_free(ndev);
1958
1959 /* free DMA buffer */
1960 sh_eth_free_dma_buffer(mdp);
1961
1962 pm_runtime_put_sync(&mdp->pdev->dev);
1963
1964 return 0;
1965 }
1966
1967 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
1968 {
1969 struct sh_eth_private *mdp = netdev_priv(ndev);
1970
1971 pm_runtime_get_sync(&mdp->pdev->dev);
1972
1973 ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
1974 sh_eth_write(ndev, 0, TROCR); /* (write clear) */
1975 ndev->stats.collisions += sh_eth_read(ndev, CDCR);
1976 sh_eth_write(ndev, 0, CDCR); /* (write clear) */
1977 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
1978 sh_eth_write(ndev, 0, LCCR); /* (write clear) */
1979 if (sh_eth_is_gether(mdp)) {
1980 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
1981 sh_eth_write(ndev, 0, CERCR); /* (write clear) */
1982 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
1983 sh_eth_write(ndev, 0, CEECR); /* (write clear) */
1984 } else {
1985 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
1986 sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
1987 }
1988 pm_runtime_put_sync(&mdp->pdev->dev);
1989
1990 return &ndev->stats;
1991 }
1992
1993 /* ioctl to device function */
1994 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
1995 int cmd)
1996 {
1997 struct sh_eth_private *mdp = netdev_priv(ndev);
1998 struct phy_device *phydev = mdp->phydev;
1999
2000 if (!netif_running(ndev))
2001 return -EINVAL;
2002
2003 if (!phydev)
2004 return -ENODEV;
2005
2006 return phy_mii_ioctl(phydev, rq, cmd);
2007 }
2008
2009 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2010 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2011 int entry)
2012 {
2013 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2014 }
2015
2016 static u32 sh_eth_tsu_get_post_mask(int entry)
2017 {
2018 return 0x0f << (28 - ((entry % 8) * 4));
2019 }
2020
2021 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2022 {
2023 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2024 }
2025
2026 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2027 int entry)
2028 {
2029 struct sh_eth_private *mdp = netdev_priv(ndev);
2030 u32 tmp;
2031 void *reg_offset;
2032
2033 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2034 tmp = ioread32(reg_offset);
2035 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2036 }
2037
2038 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2039 int entry)
2040 {
2041 struct sh_eth_private *mdp = netdev_priv(ndev);
2042 u32 post_mask, ref_mask, tmp;
2043 void *reg_offset;
2044
2045 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2046 post_mask = sh_eth_tsu_get_post_mask(entry);
2047 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2048
2049 tmp = ioread32(reg_offset);
2050 iowrite32(tmp & ~post_mask, reg_offset);
2051
2052 /* If other port enables, the function returns "true" */
2053 return tmp & ref_mask;
2054 }
2055
2056 static int sh_eth_tsu_busy(struct net_device *ndev)
2057 {
2058 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2059 struct sh_eth_private *mdp = netdev_priv(ndev);
2060
2061 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2062 udelay(10);
2063 timeout--;
2064 if (timeout <= 0) {
2065 dev_err(&ndev->dev, "%s: timeout\n", __func__);
2066 return -ETIMEDOUT;
2067 }
2068 }
2069
2070 return 0;
2071 }
2072
2073 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2074 const u8 *addr)
2075 {
2076 u32 val;
2077
2078 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2079 iowrite32(val, reg);
2080 if (sh_eth_tsu_busy(ndev) < 0)
2081 return -EBUSY;
2082
2083 val = addr[4] << 8 | addr[5];
2084 iowrite32(val, reg + 4);
2085 if (sh_eth_tsu_busy(ndev) < 0)
2086 return -EBUSY;
2087
2088 return 0;
2089 }
2090
2091 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2092 {
2093 u32 val;
2094
2095 val = ioread32(reg);
2096 addr[0] = (val >> 24) & 0xff;
2097 addr[1] = (val >> 16) & 0xff;
2098 addr[2] = (val >> 8) & 0xff;
2099 addr[3] = val & 0xff;
2100 val = ioread32(reg + 4);
2101 addr[4] = (val >> 8) & 0xff;
2102 addr[5] = val & 0xff;
2103 }
2104
2105
2106 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2107 {
2108 struct sh_eth_private *mdp = netdev_priv(ndev);
2109 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2110 int i;
2111 u8 c_addr[ETH_ALEN];
2112
2113 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2114 sh_eth_tsu_read_entry(reg_offset, c_addr);
2115 if (memcmp(addr, c_addr, ETH_ALEN) == 0)
2116 return i;
2117 }
2118
2119 return -ENOENT;
2120 }
2121
2122 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2123 {
2124 u8 blank[ETH_ALEN];
2125 int entry;
2126
2127 memset(blank, 0, sizeof(blank));
2128 entry = sh_eth_tsu_find_entry(ndev, blank);
2129 return (entry < 0) ? -ENOMEM : entry;
2130 }
2131
2132 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2133 int entry)
2134 {
2135 struct sh_eth_private *mdp = netdev_priv(ndev);
2136 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2137 int ret;
2138 u8 blank[ETH_ALEN];
2139
2140 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2141 ~(1 << (31 - entry)), TSU_TEN);
2142
2143 memset(blank, 0, sizeof(blank));
2144 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2145 if (ret < 0)
2146 return ret;
2147 return 0;
2148 }
2149
2150 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2151 {
2152 struct sh_eth_private *mdp = netdev_priv(ndev);
2153 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2154 int i, ret;
2155
2156 if (!mdp->cd->tsu)
2157 return 0;
2158
2159 i = sh_eth_tsu_find_entry(ndev, addr);
2160 if (i < 0) {
2161 /* No entry found, create one */
2162 i = sh_eth_tsu_find_empty(ndev);
2163 if (i < 0)
2164 return -ENOMEM;
2165 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2166 if (ret < 0)
2167 return ret;
2168
2169 /* Enable the entry */
2170 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2171 (1 << (31 - i)), TSU_TEN);
2172 }
2173
2174 /* Entry found or created, enable POST */
2175 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2176
2177 return 0;
2178 }
2179
2180 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2181 {
2182 struct sh_eth_private *mdp = netdev_priv(ndev);
2183 int i, ret;
2184
2185 if (!mdp->cd->tsu)
2186 return 0;
2187
2188 i = sh_eth_tsu_find_entry(ndev, addr);
2189 if (i) {
2190 /* Entry found */
2191 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2192 goto done;
2193
2194 /* Disable the entry if both ports was disabled */
2195 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2196 if (ret < 0)
2197 return ret;
2198 }
2199 done:
2200 return 0;
2201 }
2202
2203 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2204 {
2205 struct sh_eth_private *mdp = netdev_priv(ndev);
2206 int i, ret;
2207
2208 if (unlikely(!mdp->cd->tsu))
2209 return 0;
2210
2211 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2212 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2213 continue;
2214
2215 /* Disable the entry if both ports was disabled */
2216 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2217 if (ret < 0)
2218 return ret;
2219 }
2220
2221 return 0;
2222 }
2223
2224 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2225 {
2226 struct sh_eth_private *mdp = netdev_priv(ndev);
2227 u8 addr[ETH_ALEN];
2228 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2229 int i;
2230
2231 if (unlikely(!mdp->cd->tsu))
2232 return;
2233
2234 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2235 sh_eth_tsu_read_entry(reg_offset, addr);
2236 if (is_multicast_ether_addr(addr))
2237 sh_eth_tsu_del_entry(ndev, addr);
2238 }
2239 }
2240
2241 /* Multicast reception directions set */
2242 static void sh_eth_set_multicast_list(struct net_device *ndev)
2243 {
2244 struct sh_eth_private *mdp = netdev_priv(ndev);
2245 u32 ecmr_bits;
2246 int mcast_all = 0;
2247 unsigned long flags;
2248
2249 spin_lock_irqsave(&mdp->lock, flags);
2250 /*
2251 * Initial condition is MCT = 1, PRM = 0.
2252 * Depending on ndev->flags, set PRM or clear MCT
2253 */
2254 ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2255
2256 if (!(ndev->flags & IFF_MULTICAST)) {
2257 sh_eth_tsu_purge_mcast(ndev);
2258 mcast_all = 1;
2259 }
2260 if (ndev->flags & IFF_ALLMULTI) {
2261 sh_eth_tsu_purge_mcast(ndev);
2262 ecmr_bits &= ~ECMR_MCT;
2263 mcast_all = 1;
2264 }
2265
2266 if (ndev->flags & IFF_PROMISC) {
2267 sh_eth_tsu_purge_all(ndev);
2268 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2269 } else if (mdp->cd->tsu) {
2270 struct netdev_hw_addr *ha;
2271 netdev_for_each_mc_addr(ha, ndev) {
2272 if (mcast_all && is_multicast_ether_addr(ha->addr))
2273 continue;
2274
2275 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2276 if (!mcast_all) {
2277 sh_eth_tsu_purge_mcast(ndev);
2278 ecmr_bits &= ~ECMR_MCT;
2279 mcast_all = 1;
2280 }
2281 }
2282 }
2283 } else {
2284 /* Normal, unicast/broadcast-only mode. */
2285 ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2286 }
2287
2288 /* update the ethernet mode */
2289 sh_eth_write(ndev, ecmr_bits, ECMR);
2290
2291 spin_unlock_irqrestore(&mdp->lock, flags);
2292 }
2293
2294 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2295 {
2296 if (!mdp->port)
2297 return TSU_VTAG0;
2298 else
2299 return TSU_VTAG1;
2300 }
2301
2302 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2303 __be16 proto, u16 vid)
2304 {
2305 struct sh_eth_private *mdp = netdev_priv(ndev);
2306 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2307
2308 if (unlikely(!mdp->cd->tsu))
2309 return -EPERM;
2310
2311 /* No filtering if vid = 0 */
2312 if (!vid)
2313 return 0;
2314
2315 mdp->vlan_num_ids++;
2316
2317 /*
2318 * The controller has one VLAN tag HW filter. So, if the filter is
2319 * already enabled, the driver disables it and the filte
2320 */
2321 if (mdp->vlan_num_ids > 1) {
2322 /* disable VLAN filter */
2323 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2324 return 0;
2325 }
2326
2327 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2328 vtag_reg_index);
2329
2330 return 0;
2331 }
2332
2333 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2334 __be16 proto, u16 vid)
2335 {
2336 struct sh_eth_private *mdp = netdev_priv(ndev);
2337 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2338
2339 if (unlikely(!mdp->cd->tsu))
2340 return -EPERM;
2341
2342 /* No filtering if vid = 0 */
2343 if (!vid)
2344 return 0;
2345
2346 mdp->vlan_num_ids--;
2347 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2348
2349 return 0;
2350 }
2351
2352 /* SuperH's TSU register init function */
2353 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2354 {
2355 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2356 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2357 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2358 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2359 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2360 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2361 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2362 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2363 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2364 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2365 if (sh_eth_is_gether(mdp)) {
2366 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
2367 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
2368 } else {
2369 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
2370 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
2371 }
2372 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
2373 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
2374 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2375 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
2376 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
2377 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
2378 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
2379 }
2380
2381 /* MDIO bus release function */
2382 static int sh_mdio_release(struct net_device *ndev)
2383 {
2384 struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2385
2386 /* unregister mdio bus */
2387 mdiobus_unregister(bus);
2388
2389 /* remove mdio bus info from net_device */
2390 dev_set_drvdata(&ndev->dev, NULL);
2391
2392 /* free bitbang info */
2393 free_mdio_bitbang(bus);
2394
2395 return 0;
2396 }
2397
2398 /* MDIO bus init function */
2399 static int sh_mdio_init(struct net_device *ndev, int id,
2400 struct sh_eth_plat_data *pd)
2401 {
2402 int ret, i;
2403 struct bb_info *bitbang;
2404 struct sh_eth_private *mdp = netdev_priv(ndev);
2405
2406 /* create bit control struct for PHY */
2407 bitbang = devm_kzalloc(&ndev->dev, sizeof(struct bb_info),
2408 GFP_KERNEL);
2409 if (!bitbang) {
2410 ret = -ENOMEM;
2411 goto out;
2412 }
2413
2414 /* bitbang init */
2415 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2416 bitbang->set_gate = pd->set_mdio_gate;
2417 bitbang->mdi_msk = PIR_MDI;
2418 bitbang->mdo_msk = PIR_MDO;
2419 bitbang->mmd_msk = PIR_MMD;
2420 bitbang->mdc_msk = PIR_MDC;
2421 bitbang->ctrl.ops = &bb_ops;
2422
2423 /* MII controller setting */
2424 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2425 if (!mdp->mii_bus) {
2426 ret = -ENOMEM;
2427 goto out;
2428 }
2429
2430 /* Hook up MII support for ethtool */
2431 mdp->mii_bus->name = "sh_mii";
2432 mdp->mii_bus->parent = &ndev->dev;
2433 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2434 mdp->pdev->name, id);
2435
2436 /* PHY IRQ */
2437 mdp->mii_bus->irq = devm_kzalloc(&ndev->dev,
2438 sizeof(int) * PHY_MAX_ADDR,
2439 GFP_KERNEL);
2440 if (!mdp->mii_bus->irq) {
2441 ret = -ENOMEM;
2442 goto out_free_bus;
2443 }
2444
2445 for (i = 0; i < PHY_MAX_ADDR; i++)
2446 mdp->mii_bus->irq[i] = PHY_POLL;
2447
2448 /* register mdio bus */
2449 ret = mdiobus_register(mdp->mii_bus);
2450 if (ret)
2451 goto out_free_bus;
2452
2453 dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2454
2455 return 0;
2456
2457 out_free_bus:
2458 free_mdio_bitbang(mdp->mii_bus);
2459
2460 out:
2461 return ret;
2462 }
2463
2464 static const u16 *sh_eth_get_register_offset(int register_type)
2465 {
2466 const u16 *reg_offset = NULL;
2467
2468 switch (register_type) {
2469 case SH_ETH_REG_GIGABIT:
2470 reg_offset = sh_eth_offset_gigabit;
2471 break;
2472 case SH_ETH_REG_FAST_RCAR:
2473 reg_offset = sh_eth_offset_fast_rcar;
2474 break;
2475 case SH_ETH_REG_FAST_SH4:
2476 reg_offset = sh_eth_offset_fast_sh4;
2477 break;
2478 case SH_ETH_REG_FAST_SH3_SH2:
2479 reg_offset = sh_eth_offset_fast_sh3_sh2;
2480 break;
2481 default:
2482 pr_err("Unknown register type (%d)\n", register_type);
2483 break;
2484 }
2485
2486 return reg_offset;
2487 }
2488
2489 static struct net_device_ops sh_eth_netdev_ops = {
2490 .ndo_open = sh_eth_open,
2491 .ndo_stop = sh_eth_close,
2492 .ndo_start_xmit = sh_eth_start_xmit,
2493 .ndo_get_stats = sh_eth_get_stats,
2494 .ndo_tx_timeout = sh_eth_tx_timeout,
2495 .ndo_do_ioctl = sh_eth_do_ioctl,
2496 .ndo_validate_addr = eth_validate_addr,
2497 .ndo_set_mac_address = eth_mac_addr,
2498 .ndo_change_mtu = eth_change_mtu,
2499 };
2500
2501 static int sh_eth_drv_probe(struct platform_device *pdev)
2502 {
2503 int ret, devno = 0;
2504 struct resource *res;
2505 struct net_device *ndev = NULL;
2506 struct sh_eth_private *mdp = NULL;
2507 struct sh_eth_plat_data *pd = pdev->dev.platform_data;
2508 const struct platform_device_id *id = platform_get_device_id(pdev);
2509
2510 /* get base addr */
2511 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2512 if (unlikely(res == NULL)) {
2513 dev_err(&pdev->dev, "invalid resource\n");
2514 ret = -EINVAL;
2515 goto out;
2516 }
2517
2518 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2519 if (!ndev) {
2520 ret = -ENOMEM;
2521 goto out;
2522 }
2523
2524 /* The sh Ether-specific entries in the device structure. */
2525 ndev->base_addr = res->start;
2526 devno = pdev->id;
2527 if (devno < 0)
2528 devno = 0;
2529
2530 ndev->dma = -1;
2531 ret = platform_get_irq(pdev, 0);
2532 if (ret < 0) {
2533 ret = -ENODEV;
2534 goto out_release;
2535 }
2536 ndev->irq = ret;
2537
2538 SET_NETDEV_DEV(ndev, &pdev->dev);
2539
2540 /* Fill in the fields of the device structure with ethernet values. */
2541 ether_setup(ndev);
2542
2543 mdp = netdev_priv(ndev);
2544 mdp->num_tx_ring = TX_RING_SIZE;
2545 mdp->num_rx_ring = RX_RING_SIZE;
2546 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2547 if (IS_ERR(mdp->addr)) {
2548 ret = PTR_ERR(mdp->addr);
2549 goto out_release;
2550 }
2551
2552 spin_lock_init(&mdp->lock);
2553 mdp->pdev = pdev;
2554 pm_runtime_enable(&pdev->dev);
2555 pm_runtime_resume(&pdev->dev);
2556
2557 /* get PHY ID */
2558 mdp->phy_id = pd->phy;
2559 mdp->phy_interface = pd->phy_interface;
2560 /* EDMAC endian */
2561 mdp->edmac_endian = pd->edmac_endian;
2562 mdp->no_ether_link = pd->no_ether_link;
2563 mdp->ether_link_active_low = pd->ether_link_active_low;
2564 mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
2565
2566 /* set cpu data */
2567 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2568 sh_eth_set_default_cpu_data(mdp->cd);
2569
2570 /* set function */
2571 if (mdp->cd->tsu) {
2572 sh_eth_netdev_ops.ndo_set_rx_mode = sh_eth_set_multicast_list;
2573 sh_eth_netdev_ops.ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid;
2574 sh_eth_netdev_ops.ndo_vlan_rx_kill_vid =
2575 sh_eth_vlan_rx_kill_vid;
2576 }
2577
2578 ndev->netdev_ops = &sh_eth_netdev_ops;
2579 SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2580 ndev->watchdog_timeo = TX_TIMEOUT;
2581
2582 /* debug message level */
2583 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2584
2585 /* read and set MAC address */
2586 read_mac_address(ndev, pd->mac_addr);
2587 if (!is_valid_ether_addr(ndev->dev_addr)) {
2588 dev_warn(&pdev->dev,
2589 "no valid MAC address supplied, using a random one.\n");
2590 eth_hw_addr_random(ndev);
2591 }
2592
2593 /* ioremap the TSU registers */
2594 if (mdp->cd->tsu) {
2595 struct resource *rtsu;
2596 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2597 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2598 if (IS_ERR(mdp->tsu_addr)) {
2599 ret = PTR_ERR(mdp->tsu_addr);
2600 goto out_release;
2601 }
2602 mdp->port = devno % 2;
2603 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2604 }
2605
2606 /* initialize first or needed device */
2607 if (!devno || pd->needs_init) {
2608 if (mdp->cd->chip_reset)
2609 mdp->cd->chip_reset(ndev);
2610
2611 if (mdp->cd->tsu) {
2612 /* TSU init (Init only)*/
2613 sh_eth_tsu_init(mdp);
2614 }
2615 }
2616
2617 /* network device register */
2618 ret = register_netdev(ndev);
2619 if (ret)
2620 goto out_release;
2621
2622 /* mdio bus init */
2623 ret = sh_mdio_init(ndev, pdev->id, pd);
2624 if (ret)
2625 goto out_unregister;
2626
2627 /* print device information */
2628 pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2629 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2630
2631 platform_set_drvdata(pdev, ndev);
2632
2633 return ret;
2634
2635 out_unregister:
2636 unregister_netdev(ndev);
2637
2638 out_release:
2639 /* net_dev free */
2640 if (ndev)
2641 free_netdev(ndev);
2642
2643 out:
2644 return ret;
2645 }
2646
2647 static int sh_eth_drv_remove(struct platform_device *pdev)
2648 {
2649 struct net_device *ndev = platform_get_drvdata(pdev);
2650
2651 sh_mdio_release(ndev);
2652 unregister_netdev(ndev);
2653 pm_runtime_disable(&pdev->dev);
2654 free_netdev(ndev);
2655
2656 return 0;
2657 }
2658
2659 #ifdef CONFIG_PM
2660 static int sh_eth_runtime_nop(struct device *dev)
2661 {
2662 /*
2663 * Runtime PM callback shared between ->runtime_suspend()
2664 * and ->runtime_resume(). Simply returns success.
2665 *
2666 * This driver re-initializes all registers after
2667 * pm_runtime_get_sync() anyway so there is no need
2668 * to save and restore registers here.
2669 */
2670 return 0;
2671 }
2672
2673 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
2674 .runtime_suspend = sh_eth_runtime_nop,
2675 .runtime_resume = sh_eth_runtime_nop,
2676 };
2677 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
2678 #else
2679 #define SH_ETH_PM_OPS NULL
2680 #endif
2681
2682 static struct platform_device_id sh_eth_id_table[] = {
2683 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
2684 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
2685 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
2686 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
2687 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
2688 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
2689 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
2690 { "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
2691 { "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
2692 { }
2693 };
2694 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
2695
2696 static struct platform_driver sh_eth_driver = {
2697 .probe = sh_eth_drv_probe,
2698 .remove = sh_eth_drv_remove,
2699 .id_table = sh_eth_id_table,
2700 .driver = {
2701 .name = CARDNAME,
2702 .pm = SH_ETH_PM_OPS,
2703 },
2704 };
2705
2706 module_platform_driver(sh_eth_driver);
2707
2708 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2709 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2710 MODULE_LICENSE("GPL v2");
This page took 0.125541 seconds and 5 git commands to generate.