Merge remote-tracking branch 'spi/fix/atmel' into spi-linus
[deliverable/linux.git] / drivers / net / ethernet / sfc / ef10.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include <linux/in.h>
18 #include <linux/jhash.h>
19 #include <linux/wait.h>
20 #include <linux/workqueue.h>
21
22 /* Hardware control for EF10 architecture including 'Huntington'. */
23
24 #define EFX_EF10_DRVGEN_EV 7
25 enum {
26 EFX_EF10_TEST = 1,
27 EFX_EF10_REFILL,
28 };
29
30 /* The reserved RSS context value */
31 #define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
32
33 /* The filter table(s) are managed by firmware and we have write-only
34 * access. When removing filters we must identify them to the
35 * firmware by a 64-bit handle, but this is too wide for Linux kernel
36 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
37 * be able to tell in advance whether a requested insertion will
38 * replace an existing filter. Therefore we maintain a software hash
39 * table, which should be at least as large as the hardware hash
40 * table.
41 *
42 * Huntington has a single 8K filter table shared between all filter
43 * types and both ports.
44 */
45 #define HUNT_FILTER_TBL_ROWS 8192
46
47 struct efx_ef10_filter_table {
48 /* The RX match field masks supported by this fw & hw, in order of priority */
49 enum efx_filter_match_flags rx_match_flags[
50 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
51 unsigned int rx_match_count;
52
53 struct {
54 unsigned long spec; /* pointer to spec plus flag bits */
55 /* BUSY flag indicates that an update is in progress. STACK_OLD is
56 * used to mark and sweep stack-owned MAC filters.
57 */
58 #define EFX_EF10_FILTER_FLAG_BUSY 1UL
59 #define EFX_EF10_FILTER_FLAG_STACK_OLD 2UL
60 #define EFX_EF10_FILTER_FLAGS 3UL
61 u64 handle; /* firmware handle */
62 } *entry;
63 wait_queue_head_t waitq;
64 /* Shadow of net_device address lists, guarded by mac_lock */
65 #define EFX_EF10_FILTER_STACK_UC_MAX 32
66 #define EFX_EF10_FILTER_STACK_MC_MAX 256
67 struct {
68 u8 addr[ETH_ALEN];
69 u16 id;
70 } stack_uc_list[EFX_EF10_FILTER_STACK_UC_MAX],
71 stack_mc_list[EFX_EF10_FILTER_STACK_MC_MAX];
72 int stack_uc_count; /* negative for PROMISC */
73 int stack_mc_count; /* negative for PROMISC/ALLMULTI */
74 };
75
76 /* An arbitrary search limit for the software hash table */
77 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
78
79 static void efx_ef10_rx_push_indir_table(struct efx_nic *efx);
80 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
81 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
82
83 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
84 {
85 efx_dword_t reg;
86
87 efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
88 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
89 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
90 }
91
92 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
93 {
94 return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
95 }
96
97 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
98 {
99 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
100 struct efx_ef10_nic_data *nic_data = efx->nic_data;
101 size_t outlen;
102 int rc;
103
104 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
105
106 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
107 outbuf, sizeof(outbuf), &outlen);
108 if (rc)
109 return rc;
110 if (outlen < sizeof(outbuf)) {
111 netif_err(efx, drv, efx->net_dev,
112 "unable to read datapath firmware capabilities\n");
113 return -EIO;
114 }
115
116 nic_data->datapath_caps =
117 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
118
119 if (!(nic_data->datapath_caps &
120 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
121 netif_err(efx, drv, efx->net_dev,
122 "current firmware does not support TSO\n");
123 return -ENODEV;
124 }
125
126 if (!(nic_data->datapath_caps &
127 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
128 netif_err(efx, probe, efx->net_dev,
129 "current firmware does not support an RX prefix\n");
130 return -ENODEV;
131 }
132
133 return 0;
134 }
135
136 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
137 {
138 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
139 int rc;
140
141 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
142 outbuf, sizeof(outbuf), NULL);
143 if (rc)
144 return rc;
145 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
146 return rc > 0 ? rc : -ERANGE;
147 }
148
149 static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
150 {
151 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
152 size_t outlen;
153 int rc;
154
155 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
156
157 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
158 outbuf, sizeof(outbuf), &outlen);
159 if (rc)
160 return rc;
161 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
162 return -EIO;
163
164 memcpy(mac_address,
165 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE), ETH_ALEN);
166 return 0;
167 }
168
169 static int efx_ef10_probe(struct efx_nic *efx)
170 {
171 struct efx_ef10_nic_data *nic_data;
172 int i, rc;
173
174 /* We can have one VI for each 8K region. However we need
175 * multiple TX queues per channel.
176 */
177 efx->max_channels =
178 min_t(unsigned int,
179 EFX_MAX_CHANNELS,
180 resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
181 (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
182 BUG_ON(efx->max_channels == 0);
183
184 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
185 if (!nic_data)
186 return -ENOMEM;
187 efx->nic_data = nic_data;
188
189 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
190 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
191 if (rc)
192 goto fail1;
193
194 /* Get the MC's warm boot count. In case it's rebooting right
195 * now, be prepared to retry.
196 */
197 i = 0;
198 for (;;) {
199 rc = efx_ef10_get_warm_boot_count(efx);
200 if (rc >= 0)
201 break;
202 if (++i == 5)
203 goto fail2;
204 ssleep(1);
205 }
206 nic_data->warm_boot_count = rc;
207
208 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
209
210 /* In case we're recovering from a crash (kexec), we want to
211 * cancel any outstanding request by the previous user of this
212 * function. We send a special message using the least
213 * significant bits of the 'high' (doorbell) register.
214 */
215 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
216
217 rc = efx_mcdi_init(efx);
218 if (rc)
219 goto fail2;
220
221 /* Reset (most) configuration for this function */
222 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
223 if (rc)
224 goto fail3;
225
226 /* Enable event logging */
227 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
228 if (rc)
229 goto fail3;
230
231 rc = efx_ef10_init_datapath_caps(efx);
232 if (rc < 0)
233 goto fail3;
234
235 efx->rx_packet_len_offset =
236 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
237
238 rc = efx_mcdi_port_get_number(efx);
239 if (rc < 0)
240 goto fail3;
241 efx->port_num = rc;
242
243 rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
244 if (rc)
245 goto fail3;
246
247 rc = efx_ef10_get_sysclk_freq(efx);
248 if (rc < 0)
249 goto fail3;
250 efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
251
252 /* Check whether firmware supports bug 35388 workaround */
253 rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
254 if (rc == 0)
255 nic_data->workaround_35388 = true;
256 else if (rc != -ENOSYS && rc != -ENOENT)
257 goto fail3;
258 netif_dbg(efx, probe, efx->net_dev,
259 "workaround for bug 35388 is %sabled\n",
260 nic_data->workaround_35388 ? "en" : "dis");
261
262 rc = efx_mcdi_mon_probe(efx);
263 if (rc)
264 goto fail3;
265
266 return 0;
267
268 fail3:
269 efx_mcdi_fini(efx);
270 fail2:
271 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
272 fail1:
273 kfree(nic_data);
274 efx->nic_data = NULL;
275 return rc;
276 }
277
278 static int efx_ef10_free_vis(struct efx_nic *efx)
279 {
280 int rc = efx_mcdi_rpc(efx, MC_CMD_FREE_VIS, NULL, 0, NULL, 0, NULL);
281
282 /* -EALREADY means nothing to free, so ignore */
283 if (rc == -EALREADY)
284 rc = 0;
285 return rc;
286 }
287
288 static void efx_ef10_remove(struct efx_nic *efx)
289 {
290 struct efx_ef10_nic_data *nic_data = efx->nic_data;
291 int rc;
292
293 efx_mcdi_mon_remove(efx);
294
295 /* This needs to be after efx_ptp_remove_channel() with no filters */
296 efx_ef10_rx_free_indir_table(efx);
297
298 rc = efx_ef10_free_vis(efx);
299 WARN_ON(rc != 0);
300
301 efx_mcdi_fini(efx);
302 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
303 kfree(nic_data);
304 }
305
306 static int efx_ef10_alloc_vis(struct efx_nic *efx,
307 unsigned int min_vis, unsigned int max_vis)
308 {
309 MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
310 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
311 struct efx_ef10_nic_data *nic_data = efx->nic_data;
312 size_t outlen;
313 int rc;
314
315 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
316 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
317 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
318 outbuf, sizeof(outbuf), &outlen);
319 if (rc != 0)
320 return rc;
321
322 if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
323 return -EIO;
324
325 netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
326 MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
327
328 nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
329 nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
330 return 0;
331 }
332
333 static int efx_ef10_dimension_resources(struct efx_nic *efx)
334 {
335 unsigned int n_vis =
336 max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
337
338 return efx_ef10_alloc_vis(efx, n_vis, n_vis);
339 }
340
341 static int efx_ef10_init_nic(struct efx_nic *efx)
342 {
343 struct efx_ef10_nic_data *nic_data = efx->nic_data;
344 int rc;
345
346 if (nic_data->must_check_datapath_caps) {
347 rc = efx_ef10_init_datapath_caps(efx);
348 if (rc)
349 return rc;
350 nic_data->must_check_datapath_caps = false;
351 }
352
353 if (nic_data->must_realloc_vis) {
354 /* We cannot let the number of VIs change now */
355 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
356 nic_data->n_allocated_vis);
357 if (rc)
358 return rc;
359 nic_data->must_realloc_vis = false;
360 }
361
362 efx_ef10_rx_push_indir_table(efx);
363 return 0;
364 }
365
366 static int efx_ef10_map_reset_flags(u32 *flags)
367 {
368 enum {
369 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
370 ETH_RESET_SHARED_SHIFT),
371 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
372 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
373 ETH_RESET_PHY | ETH_RESET_MGMT) <<
374 ETH_RESET_SHARED_SHIFT)
375 };
376
377 /* We assume for now that our PCI function is permitted to
378 * reset everything.
379 */
380
381 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
382 *flags &= ~EF10_RESET_MC;
383 return RESET_TYPE_WORLD;
384 }
385
386 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
387 *flags &= ~EF10_RESET_PORT;
388 return RESET_TYPE_ALL;
389 }
390
391 /* no invisible reset implemented */
392
393 return -EINVAL;
394 }
395
396 #define EF10_DMA_STAT(ext_name, mcdi_name) \
397 [EF10_STAT_ ## ext_name] = \
398 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
399 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
400 [EF10_STAT_ ## int_name] = \
401 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
402 #define EF10_OTHER_STAT(ext_name) \
403 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
404
405 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
406 EF10_DMA_STAT(tx_bytes, TX_BYTES),
407 EF10_DMA_STAT(tx_packets, TX_PKTS),
408 EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
409 EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
410 EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
411 EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
412 EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
413 EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
414 EF10_DMA_STAT(tx_64, TX_64_PKTS),
415 EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
416 EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
417 EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
418 EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
419 EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
420 EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
421 EF10_DMA_STAT(rx_bytes, RX_BYTES),
422 EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
423 EF10_OTHER_STAT(rx_good_bytes),
424 EF10_OTHER_STAT(rx_bad_bytes),
425 EF10_DMA_STAT(rx_packets, RX_PKTS),
426 EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
427 EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
428 EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
429 EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
430 EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
431 EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
432 EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
433 EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
434 EF10_DMA_STAT(rx_64, RX_64_PKTS),
435 EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
436 EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
437 EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
438 EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
439 EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
440 EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
441 EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
442 EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
443 EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
444 EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
445 EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
446 EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
447 };
448
449 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) | \
450 (1ULL << EF10_STAT_tx_packets) | \
451 (1ULL << EF10_STAT_tx_pause) | \
452 (1ULL << EF10_STAT_tx_unicast) | \
453 (1ULL << EF10_STAT_tx_multicast) | \
454 (1ULL << EF10_STAT_tx_broadcast) | \
455 (1ULL << EF10_STAT_rx_bytes) | \
456 (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
457 (1ULL << EF10_STAT_rx_good_bytes) | \
458 (1ULL << EF10_STAT_rx_bad_bytes) | \
459 (1ULL << EF10_STAT_rx_packets) | \
460 (1ULL << EF10_STAT_rx_good) | \
461 (1ULL << EF10_STAT_rx_bad) | \
462 (1ULL << EF10_STAT_rx_pause) | \
463 (1ULL << EF10_STAT_rx_control) | \
464 (1ULL << EF10_STAT_rx_unicast) | \
465 (1ULL << EF10_STAT_rx_multicast) | \
466 (1ULL << EF10_STAT_rx_broadcast) | \
467 (1ULL << EF10_STAT_rx_lt64) | \
468 (1ULL << EF10_STAT_rx_64) | \
469 (1ULL << EF10_STAT_rx_65_to_127) | \
470 (1ULL << EF10_STAT_rx_128_to_255) | \
471 (1ULL << EF10_STAT_rx_256_to_511) | \
472 (1ULL << EF10_STAT_rx_512_to_1023) | \
473 (1ULL << EF10_STAT_rx_1024_to_15xx) | \
474 (1ULL << EF10_STAT_rx_15xx_to_jumbo) | \
475 (1ULL << EF10_STAT_rx_gtjumbo) | \
476 (1ULL << EF10_STAT_rx_bad_gtjumbo) | \
477 (1ULL << EF10_STAT_rx_overflow) | \
478 (1ULL << EF10_STAT_rx_nodesc_drops))
479
480 /* These statistics are only provided by the 10G MAC. For a 10G/40G
481 * switchable port we do not expose these because they might not
482 * include all the packets they should.
483 */
484 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) | \
485 (1ULL << EF10_STAT_tx_lt64) | \
486 (1ULL << EF10_STAT_tx_64) | \
487 (1ULL << EF10_STAT_tx_65_to_127) | \
488 (1ULL << EF10_STAT_tx_128_to_255) | \
489 (1ULL << EF10_STAT_tx_256_to_511) | \
490 (1ULL << EF10_STAT_tx_512_to_1023) | \
491 (1ULL << EF10_STAT_tx_1024_to_15xx) | \
492 (1ULL << EF10_STAT_tx_15xx_to_jumbo))
493
494 /* These statistics are only provided by the 40G MAC. For a 10G/40G
495 * switchable port we do expose these because the errors will otherwise
496 * be silent.
497 */
498 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) | \
499 (1ULL << EF10_STAT_rx_length_error))
500
501 #if BITS_PER_LONG == 64
502 #define STAT_MASK_BITMAP(bits) (bits)
503 #else
504 #define STAT_MASK_BITMAP(bits) (bits) & 0xffffffff, (bits) >> 32
505 #endif
506
507 static const unsigned long *efx_ef10_stat_mask(struct efx_nic *efx)
508 {
509 static const unsigned long hunt_40g_stat_mask[] = {
510 STAT_MASK_BITMAP(HUNT_COMMON_STAT_MASK |
511 HUNT_40G_EXTRA_STAT_MASK)
512 };
513 static const unsigned long hunt_10g_only_stat_mask[] = {
514 STAT_MASK_BITMAP(HUNT_COMMON_STAT_MASK |
515 HUNT_10G_ONLY_STAT_MASK)
516 };
517 u32 port_caps = efx_mcdi_phy_get_caps(efx);
518
519 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
520 return hunt_40g_stat_mask;
521 else
522 return hunt_10g_only_stat_mask;
523 }
524
525 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
526 {
527 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
528 efx_ef10_stat_mask(efx), names);
529 }
530
531 static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
532 {
533 struct efx_ef10_nic_data *nic_data = efx->nic_data;
534 const unsigned long *stats_mask = efx_ef10_stat_mask(efx);
535 __le64 generation_start, generation_end;
536 u64 *stats = nic_data->stats;
537 __le64 *dma_stats;
538
539 dma_stats = efx->stats_buffer.addr;
540 nic_data = efx->nic_data;
541
542 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
543 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
544 return 0;
545 rmb();
546 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, stats_mask,
547 stats, efx->stats_buffer.addr, false);
548 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
549 if (generation_end != generation_start)
550 return -EAGAIN;
551
552 /* Update derived statistics */
553 stats[EF10_STAT_rx_good_bytes] =
554 stats[EF10_STAT_rx_bytes] -
555 stats[EF10_STAT_rx_bytes_minus_good_bytes];
556 efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
557 stats[EF10_STAT_rx_bytes_minus_good_bytes]);
558
559 return 0;
560 }
561
562
563 static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
564 struct rtnl_link_stats64 *core_stats)
565 {
566 const unsigned long *mask = efx_ef10_stat_mask(efx);
567 struct efx_ef10_nic_data *nic_data = efx->nic_data;
568 u64 *stats = nic_data->stats;
569 size_t stats_count = 0, index;
570 int retry;
571
572 /* If we're unlucky enough to read statistics during the DMA, wait
573 * up to 10ms for it to finish (typically takes <500us)
574 */
575 for (retry = 0; retry < 100; ++retry) {
576 if (efx_ef10_try_update_nic_stats(efx) == 0)
577 break;
578 udelay(100);
579 }
580
581 if (full_stats) {
582 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
583 if (efx_ef10_stat_desc[index].name) {
584 *full_stats++ = stats[index];
585 ++stats_count;
586 }
587 }
588 }
589
590 if (core_stats) {
591 core_stats->rx_packets = stats[EF10_STAT_rx_packets];
592 core_stats->tx_packets = stats[EF10_STAT_tx_packets];
593 core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
594 core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
595 core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops];
596 core_stats->multicast = stats[EF10_STAT_rx_multicast];
597 core_stats->rx_length_errors =
598 stats[EF10_STAT_rx_gtjumbo] +
599 stats[EF10_STAT_rx_length_error];
600 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
601 core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
602 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
603 core_stats->rx_errors = (core_stats->rx_length_errors +
604 core_stats->rx_crc_errors +
605 core_stats->rx_frame_errors);
606 }
607
608 return stats_count;
609 }
610
611 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
612 {
613 struct efx_nic *efx = channel->efx;
614 unsigned int mode, value;
615 efx_dword_t timer_cmd;
616
617 if (channel->irq_moderation) {
618 mode = 3;
619 value = channel->irq_moderation - 1;
620 } else {
621 mode = 0;
622 value = 0;
623 }
624
625 if (EFX_EF10_WORKAROUND_35388(efx)) {
626 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
627 EFE_DD_EVQ_IND_TIMER_FLAGS,
628 ERF_DD_EVQ_IND_TIMER_MODE, mode,
629 ERF_DD_EVQ_IND_TIMER_VAL, value);
630 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
631 channel->channel);
632 } else {
633 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
634 ERF_DZ_TC_TIMER_VAL, value);
635 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
636 channel->channel);
637 }
638 }
639
640 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
641 {
642 wol->supported = 0;
643 wol->wolopts = 0;
644 memset(&wol->sopass, 0, sizeof(wol->sopass));
645 }
646
647 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
648 {
649 if (type != 0)
650 return -EINVAL;
651 return 0;
652 }
653
654 static void efx_ef10_mcdi_request(struct efx_nic *efx,
655 const efx_dword_t *hdr, size_t hdr_len,
656 const efx_dword_t *sdu, size_t sdu_len)
657 {
658 struct efx_ef10_nic_data *nic_data = efx->nic_data;
659 u8 *pdu = nic_data->mcdi_buf.addr;
660
661 memcpy(pdu, hdr, hdr_len);
662 memcpy(pdu + hdr_len, sdu, sdu_len);
663 wmb();
664
665 /* The hardware provides 'low' and 'high' (doorbell) registers
666 * for passing the 64-bit address of an MCDI request to
667 * firmware. However the dwords are swapped by firmware. The
668 * least significant bits of the doorbell are then 0 for all
669 * MCDI requests due to alignment.
670 */
671 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
672 ER_DZ_MC_DB_LWRD);
673 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
674 ER_DZ_MC_DB_HWRD);
675 }
676
677 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
678 {
679 struct efx_ef10_nic_data *nic_data = efx->nic_data;
680 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
681
682 rmb();
683 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
684 }
685
686 static void
687 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
688 size_t offset, size_t outlen)
689 {
690 struct efx_ef10_nic_data *nic_data = efx->nic_data;
691 const u8 *pdu = nic_data->mcdi_buf.addr;
692
693 memcpy(outbuf, pdu + offset, outlen);
694 }
695
696 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
697 {
698 struct efx_ef10_nic_data *nic_data = efx->nic_data;
699 int rc;
700
701 rc = efx_ef10_get_warm_boot_count(efx);
702 if (rc < 0) {
703 /* The firmware is presumably in the process of
704 * rebooting. However, we are supposed to report each
705 * reboot just once, so we must only do that once we
706 * can read and store the updated warm boot count.
707 */
708 return 0;
709 }
710
711 if (rc == nic_data->warm_boot_count)
712 return 0;
713
714 nic_data->warm_boot_count = rc;
715
716 /* All our allocations have been reset */
717 nic_data->must_realloc_vis = true;
718 nic_data->must_restore_filters = true;
719 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
720
721 /* The datapath firmware might have been changed */
722 nic_data->must_check_datapath_caps = true;
723
724 /* MAC statistics have been cleared on the NIC; clear the local
725 * statistic that we update with efx_update_diff_stat().
726 */
727 nic_data->stats[EF10_STAT_rx_bad_bytes] = 0;
728
729 return -EIO;
730 }
731
732 /* Handle an MSI interrupt
733 *
734 * Handle an MSI hardware interrupt. This routine schedules event
735 * queue processing. No interrupt acknowledgement cycle is necessary.
736 * Also, we never need to check that the interrupt is for us, since
737 * MSI interrupts cannot be shared.
738 */
739 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
740 {
741 struct efx_msi_context *context = dev_id;
742 struct efx_nic *efx = context->efx;
743
744 netif_vdbg(efx, intr, efx->net_dev,
745 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
746
747 if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
748 /* Note test interrupts */
749 if (context->index == efx->irq_level)
750 efx->last_irq_cpu = raw_smp_processor_id();
751
752 /* Schedule processing of the channel */
753 efx_schedule_channel_irq(efx->channel[context->index]);
754 }
755
756 return IRQ_HANDLED;
757 }
758
759 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
760 {
761 struct efx_nic *efx = dev_id;
762 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
763 struct efx_channel *channel;
764 efx_dword_t reg;
765 u32 queues;
766
767 /* Read the ISR which also ACKs the interrupts */
768 efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
769 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
770
771 if (queues == 0)
772 return IRQ_NONE;
773
774 if (likely(soft_enabled)) {
775 /* Note test interrupts */
776 if (queues & (1U << efx->irq_level))
777 efx->last_irq_cpu = raw_smp_processor_id();
778
779 efx_for_each_channel(channel, efx) {
780 if (queues & 1)
781 efx_schedule_channel_irq(channel);
782 queues >>= 1;
783 }
784 }
785
786 netif_vdbg(efx, intr, efx->net_dev,
787 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
788 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
789
790 return IRQ_HANDLED;
791 }
792
793 static void efx_ef10_irq_test_generate(struct efx_nic *efx)
794 {
795 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
796
797 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
798
799 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
800 (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
801 inbuf, sizeof(inbuf), NULL, 0, NULL);
802 }
803
804 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
805 {
806 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
807 (tx_queue->ptr_mask + 1) *
808 sizeof(efx_qword_t),
809 GFP_KERNEL);
810 }
811
812 /* This writes to the TX_DESC_WPTR and also pushes data */
813 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
814 const efx_qword_t *txd)
815 {
816 unsigned int write_ptr;
817 efx_oword_t reg;
818
819 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
820 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
821 reg.qword[0] = *txd;
822 efx_writeo_page(tx_queue->efx, &reg,
823 ER_DZ_TX_DESC_UPD, tx_queue->queue);
824 }
825
826 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
827 {
828 MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
829 EFX_BUF_SIZE));
830 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
831 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
832 size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
833 struct efx_channel *channel = tx_queue->channel;
834 struct efx_nic *efx = tx_queue->efx;
835 size_t inlen, outlen;
836 dma_addr_t dma_addr;
837 efx_qword_t *txd;
838 int rc;
839 int i;
840
841 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
842 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
843 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
844 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
845 MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
846 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
847 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
848 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
849 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
850
851 dma_addr = tx_queue->txd.buf.dma_addr;
852
853 netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
854 tx_queue->queue, entries, (u64)dma_addr);
855
856 for (i = 0; i < entries; ++i) {
857 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
858 dma_addr += EFX_BUF_SIZE;
859 }
860
861 inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
862
863 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
864 outbuf, sizeof(outbuf), &outlen);
865 if (rc)
866 goto fail;
867
868 /* A previous user of this TX queue might have set us up the
869 * bomb by writing a descriptor to the TX push collector but
870 * not the doorbell. (Each collector belongs to a port, not a
871 * queue or function, so cannot easily be reset.) We must
872 * attempt to push a no-op descriptor in its place.
873 */
874 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
875 tx_queue->insert_count = 1;
876 txd = efx_tx_desc(tx_queue, 0);
877 EFX_POPULATE_QWORD_4(*txd,
878 ESF_DZ_TX_DESC_IS_OPT, true,
879 ESF_DZ_TX_OPTION_TYPE,
880 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
881 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
882 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
883 tx_queue->write_count = 1;
884 wmb();
885 efx_ef10_push_tx_desc(tx_queue, txd);
886
887 return;
888
889 fail:
890 WARN_ON(true);
891 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
892 }
893
894 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
895 {
896 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
897 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
898 struct efx_nic *efx = tx_queue->efx;
899 size_t outlen;
900 int rc;
901
902 MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
903 tx_queue->queue);
904
905 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
906 outbuf, sizeof(outbuf), &outlen);
907
908 if (rc && rc != -EALREADY)
909 goto fail;
910
911 return;
912
913 fail:
914 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
915 }
916
917 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
918 {
919 efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
920 }
921
922 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
923 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
924 {
925 unsigned int write_ptr;
926 efx_dword_t reg;
927
928 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
929 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
930 efx_writed_page(tx_queue->efx, &reg,
931 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
932 }
933
934 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
935 {
936 unsigned int old_write_count = tx_queue->write_count;
937 struct efx_tx_buffer *buffer;
938 unsigned int write_ptr;
939 efx_qword_t *txd;
940
941 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
942
943 do {
944 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
945 buffer = &tx_queue->buffer[write_ptr];
946 txd = efx_tx_desc(tx_queue, write_ptr);
947 ++tx_queue->write_count;
948
949 /* Create TX descriptor ring entry */
950 if (buffer->flags & EFX_TX_BUF_OPTION) {
951 *txd = buffer->option;
952 } else {
953 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
954 EFX_POPULATE_QWORD_3(
955 *txd,
956 ESF_DZ_TX_KER_CONT,
957 buffer->flags & EFX_TX_BUF_CONT,
958 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
959 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
960 }
961 } while (tx_queue->write_count != tx_queue->insert_count);
962
963 wmb(); /* Ensure descriptors are written before they are fetched */
964
965 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
966 txd = efx_tx_desc(tx_queue,
967 old_write_count & tx_queue->ptr_mask);
968 efx_ef10_push_tx_desc(tx_queue, txd);
969 ++tx_queue->pushes;
970 } else {
971 efx_ef10_notify_tx_desc(tx_queue);
972 }
973 }
974
975 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
976 {
977 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
978 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
979 size_t outlen;
980 int rc;
981
982 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
983 EVB_PORT_ID_ASSIGNED);
984 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
985 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
986 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
987 EFX_MAX_CHANNELS);
988
989 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
990 outbuf, sizeof(outbuf), &outlen);
991 if (rc != 0)
992 return rc;
993
994 if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
995 return -EIO;
996
997 *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
998
999 return 0;
1000 }
1001
1002 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1003 {
1004 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1005 int rc;
1006
1007 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1008 context);
1009
1010 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1011 NULL, 0, NULL);
1012 WARN_ON(rc != 0);
1013 }
1014
1015 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
1016 {
1017 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1018 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1019 int i, rc;
1020
1021 MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1022 context);
1023 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1024 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1025
1026 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1027 MCDI_PTR(tablebuf,
1028 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1029 (u8) efx->rx_indir_table[i];
1030
1031 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1032 sizeof(tablebuf), NULL, 0, NULL);
1033 if (rc != 0)
1034 return rc;
1035
1036 MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1037 context);
1038 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1039 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1040 for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1041 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1042 efx->rx_hash_key[i];
1043
1044 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1045 sizeof(keybuf), NULL, 0, NULL);
1046 }
1047
1048 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1049 {
1050 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1051
1052 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1053 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1054 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1055 }
1056
1057 static void efx_ef10_rx_push_indir_table(struct efx_nic *efx)
1058 {
1059 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1060 int rc;
1061
1062 netif_dbg(efx, drv, efx->net_dev, "pushing RX indirection table\n");
1063
1064 if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1065 rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1066 if (rc != 0)
1067 goto fail;
1068 }
1069
1070 rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
1071 if (rc != 0)
1072 goto fail;
1073
1074 return;
1075
1076 fail:
1077 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1078 }
1079
1080 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1081 {
1082 return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1083 (rx_queue->ptr_mask + 1) *
1084 sizeof(efx_qword_t),
1085 GFP_KERNEL);
1086 }
1087
1088 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1089 {
1090 MCDI_DECLARE_BUF(inbuf,
1091 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1092 EFX_BUF_SIZE));
1093 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1094 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1095 size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1096 struct efx_nic *efx = rx_queue->efx;
1097 size_t inlen, outlen;
1098 dma_addr_t dma_addr;
1099 int rc;
1100 int i;
1101
1102 rx_queue->scatter_n = 0;
1103 rx_queue->scatter_len = 0;
1104
1105 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1106 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1107 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1108 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1109 efx_rx_queue_index(rx_queue));
1110 MCDI_POPULATE_DWORD_1(inbuf, INIT_RXQ_IN_FLAGS,
1111 INIT_RXQ_IN_FLAG_PREFIX, 1);
1112 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1113 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1114
1115 dma_addr = rx_queue->rxd.buf.dma_addr;
1116
1117 netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1118 efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1119
1120 for (i = 0; i < entries; ++i) {
1121 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1122 dma_addr += EFX_BUF_SIZE;
1123 }
1124
1125 inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1126
1127 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1128 outbuf, sizeof(outbuf), &outlen);
1129 if (rc)
1130 goto fail;
1131
1132 return;
1133
1134 fail:
1135 WARN_ON(true);
1136 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1137 }
1138
1139 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1140 {
1141 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1142 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1143 struct efx_nic *efx = rx_queue->efx;
1144 size_t outlen;
1145 int rc;
1146
1147 MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1148 efx_rx_queue_index(rx_queue));
1149
1150 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1151 outbuf, sizeof(outbuf), &outlen);
1152
1153 if (rc && rc != -EALREADY)
1154 goto fail;
1155
1156 return;
1157
1158 fail:
1159 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1160 }
1161
1162 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1163 {
1164 efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1165 }
1166
1167 /* This creates an entry in the RX descriptor queue */
1168 static inline void
1169 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1170 {
1171 struct efx_rx_buffer *rx_buf;
1172 efx_qword_t *rxd;
1173
1174 rxd = efx_rx_desc(rx_queue, index);
1175 rx_buf = efx_rx_buffer(rx_queue, index);
1176 EFX_POPULATE_QWORD_2(*rxd,
1177 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1178 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1179 }
1180
1181 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1182 {
1183 struct efx_nic *efx = rx_queue->efx;
1184 unsigned int write_count;
1185 efx_dword_t reg;
1186
1187 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1188 write_count = rx_queue->added_count & ~7;
1189 if (rx_queue->notified_count == write_count)
1190 return;
1191
1192 do
1193 efx_ef10_build_rx_desc(
1194 rx_queue,
1195 rx_queue->notified_count & rx_queue->ptr_mask);
1196 while (++rx_queue->notified_count != write_count);
1197
1198 wmb();
1199 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1200 write_count & rx_queue->ptr_mask);
1201 efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
1202 efx_rx_queue_index(rx_queue));
1203 }
1204
1205 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1206
1207 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1208 {
1209 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1210 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1211 efx_qword_t event;
1212
1213 EFX_POPULATE_QWORD_2(event,
1214 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1215 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1216
1217 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1218
1219 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1220 * already swapped the data to little-endian order.
1221 */
1222 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1223 sizeof(efx_qword_t));
1224
1225 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1226 inbuf, sizeof(inbuf), 0,
1227 efx_ef10_rx_defer_refill_complete, 0);
1228 }
1229
1230 static void
1231 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1232 int rc, efx_dword_t *outbuf,
1233 size_t outlen_actual)
1234 {
1235 /* nothing to do */
1236 }
1237
1238 static int efx_ef10_ev_probe(struct efx_channel *channel)
1239 {
1240 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1241 (channel->eventq_mask + 1) *
1242 sizeof(efx_qword_t),
1243 GFP_KERNEL);
1244 }
1245
1246 static int efx_ef10_ev_init(struct efx_channel *channel)
1247 {
1248 MCDI_DECLARE_BUF(inbuf,
1249 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1250 EFX_BUF_SIZE));
1251 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1252 size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1253 struct efx_nic *efx = channel->efx;
1254 struct efx_ef10_nic_data *nic_data;
1255 bool supports_rx_merge;
1256 size_t inlen, outlen;
1257 dma_addr_t dma_addr;
1258 int rc;
1259 int i;
1260
1261 nic_data = efx->nic_data;
1262 supports_rx_merge =
1263 !!(nic_data->datapath_caps &
1264 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1265
1266 /* Fill event queue with all ones (i.e. empty events) */
1267 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1268
1269 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1270 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1271 /* INIT_EVQ expects index in vector table, not absolute */
1272 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1273 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1274 INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1275 INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1276 INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1277 INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1278 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1279 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1280 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1281 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1282 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1283 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1284 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1285
1286 dma_addr = channel->eventq.buf.dma_addr;
1287 for (i = 0; i < entries; ++i) {
1288 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1289 dma_addr += EFX_BUF_SIZE;
1290 }
1291
1292 inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1293
1294 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1295 outbuf, sizeof(outbuf), &outlen);
1296 if (rc)
1297 goto fail;
1298
1299 /* IRQ return is ignored */
1300
1301 return 0;
1302
1303 fail:
1304 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1305 return rc;
1306 }
1307
1308 static void efx_ef10_ev_fini(struct efx_channel *channel)
1309 {
1310 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1311 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1312 struct efx_nic *efx = channel->efx;
1313 size_t outlen;
1314 int rc;
1315
1316 MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1317
1318 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1319 outbuf, sizeof(outbuf), &outlen);
1320
1321 if (rc && rc != -EALREADY)
1322 goto fail;
1323
1324 return;
1325
1326 fail:
1327 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1328 }
1329
1330 static void efx_ef10_ev_remove(struct efx_channel *channel)
1331 {
1332 efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1333 }
1334
1335 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1336 unsigned int rx_queue_label)
1337 {
1338 struct efx_nic *efx = rx_queue->efx;
1339
1340 netif_info(efx, hw, efx->net_dev,
1341 "rx event arrived on queue %d labeled as queue %u\n",
1342 efx_rx_queue_index(rx_queue), rx_queue_label);
1343
1344 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1345 }
1346
1347 static void
1348 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1349 unsigned int actual, unsigned int expected)
1350 {
1351 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1352 struct efx_nic *efx = rx_queue->efx;
1353
1354 netif_info(efx, hw, efx->net_dev,
1355 "dropped %d events (index=%d expected=%d)\n",
1356 dropped, actual, expected);
1357
1358 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1359 }
1360
1361 /* partially received RX was aborted. clean up. */
1362 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1363 {
1364 unsigned int rx_desc_ptr;
1365
1366 WARN_ON(rx_queue->scatter_n == 0);
1367
1368 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1369 "scattered RX aborted (dropping %u buffers)\n",
1370 rx_queue->scatter_n);
1371
1372 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1373
1374 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1375 0, EFX_RX_PKT_DISCARD);
1376
1377 rx_queue->removed_count += rx_queue->scatter_n;
1378 rx_queue->scatter_n = 0;
1379 rx_queue->scatter_len = 0;
1380 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1381 }
1382
1383 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1384 const efx_qword_t *event)
1385 {
1386 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
1387 unsigned int n_descs, n_packets, i;
1388 struct efx_nic *efx = channel->efx;
1389 struct efx_rx_queue *rx_queue;
1390 bool rx_cont;
1391 u16 flags = 0;
1392
1393 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1394 return 0;
1395
1396 /* Basic packet information */
1397 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1398 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1399 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1400 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
1401 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
1402
1403 WARN_ON(EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT));
1404
1405 rx_queue = efx_channel_get_rx_queue(channel);
1406
1407 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1408 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1409
1410 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1411 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1412
1413 if (n_descs != rx_queue->scatter_n + 1) {
1414 /* detect rx abort */
1415 if (unlikely(n_descs == rx_queue->scatter_n)) {
1416 WARN_ON(rx_bytes != 0);
1417 efx_ef10_handle_rx_abort(rx_queue);
1418 return 0;
1419 }
1420
1421 if (unlikely(rx_queue->scatter_n != 0)) {
1422 /* Scattered packet completions cannot be
1423 * merged, so something has gone wrong.
1424 */
1425 efx_ef10_handle_rx_bad_lbits(
1426 rx_queue, next_ptr_lbits,
1427 (rx_queue->removed_count +
1428 rx_queue->scatter_n + 1) &
1429 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1430 return 0;
1431 }
1432
1433 /* Merged completion for multiple non-scattered packets */
1434 rx_queue->scatter_n = 1;
1435 rx_queue->scatter_len = 0;
1436 n_packets = n_descs;
1437 ++channel->n_rx_merge_events;
1438 channel->n_rx_merge_packets += n_packets;
1439 flags |= EFX_RX_PKT_PREFIX_LEN;
1440 } else {
1441 ++rx_queue->scatter_n;
1442 rx_queue->scatter_len += rx_bytes;
1443 if (rx_cont)
1444 return 0;
1445 n_packets = 1;
1446 }
1447
1448 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1449 flags |= EFX_RX_PKT_DISCARD;
1450
1451 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1452 channel->n_rx_ip_hdr_chksum_err += n_packets;
1453 } else if (unlikely(EFX_QWORD_FIELD(*event,
1454 ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1455 channel->n_rx_tcp_udp_chksum_err += n_packets;
1456 } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1457 rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1458 flags |= EFX_RX_PKT_CSUMMED;
1459 }
1460
1461 if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1462 flags |= EFX_RX_PKT_TCP;
1463
1464 channel->irq_mod_score += 2 * n_packets;
1465
1466 /* Handle received packet(s) */
1467 for (i = 0; i < n_packets; i++) {
1468 efx_rx_packet(rx_queue,
1469 rx_queue->removed_count & rx_queue->ptr_mask,
1470 rx_queue->scatter_n, rx_queue->scatter_len,
1471 flags);
1472 rx_queue->removed_count += rx_queue->scatter_n;
1473 }
1474
1475 rx_queue->scatter_n = 0;
1476 rx_queue->scatter_len = 0;
1477
1478 return n_packets;
1479 }
1480
1481 static int
1482 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1483 {
1484 struct efx_nic *efx = channel->efx;
1485 struct efx_tx_queue *tx_queue;
1486 unsigned int tx_ev_desc_ptr;
1487 unsigned int tx_ev_q_label;
1488 int tx_descs = 0;
1489
1490 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1491 return 0;
1492
1493 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1494 return 0;
1495
1496 /* Transmit completion */
1497 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1498 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1499 tx_queue = efx_channel_get_tx_queue(channel,
1500 tx_ev_q_label % EFX_TXQ_TYPES);
1501 tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1502 tx_queue->ptr_mask);
1503 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
1504
1505 return tx_descs;
1506 }
1507
1508 static void
1509 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1510 {
1511 struct efx_nic *efx = channel->efx;
1512 int subcode;
1513
1514 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1515
1516 switch (subcode) {
1517 case ESE_DZ_DRV_TIMER_EV:
1518 case ESE_DZ_DRV_WAKE_UP_EV:
1519 break;
1520 case ESE_DZ_DRV_START_UP_EV:
1521 /* event queue init complete. ok. */
1522 break;
1523 default:
1524 netif_err(efx, hw, efx->net_dev,
1525 "channel %d unknown driver event type %d"
1526 " (data " EFX_QWORD_FMT ")\n",
1527 channel->channel, subcode,
1528 EFX_QWORD_VAL(*event));
1529
1530 }
1531 }
1532
1533 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1534 efx_qword_t *event)
1535 {
1536 struct efx_nic *efx = channel->efx;
1537 u32 subcode;
1538
1539 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1540
1541 switch (subcode) {
1542 case EFX_EF10_TEST:
1543 channel->event_test_cpu = raw_smp_processor_id();
1544 break;
1545 case EFX_EF10_REFILL:
1546 /* The queue must be empty, so we won't receive any rx
1547 * events, so efx_process_channel() won't refill the
1548 * queue. Refill it here
1549 */
1550 efx_fast_push_rx_descriptors(&channel->rx_queue);
1551 break;
1552 default:
1553 netif_err(efx, hw, efx->net_dev,
1554 "channel %d unknown driver event type %u"
1555 " (data " EFX_QWORD_FMT ")\n",
1556 channel->channel, (unsigned) subcode,
1557 EFX_QWORD_VAL(*event));
1558 }
1559 }
1560
1561 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1562 {
1563 struct efx_nic *efx = channel->efx;
1564 efx_qword_t event, *p_event;
1565 unsigned int read_ptr;
1566 int ev_code;
1567 int tx_descs = 0;
1568 int spent = 0;
1569
1570 read_ptr = channel->eventq_read_ptr;
1571
1572 for (;;) {
1573 p_event = efx_event(channel, read_ptr);
1574 event = *p_event;
1575
1576 if (!efx_event_present(&event))
1577 break;
1578
1579 EFX_SET_QWORD(*p_event);
1580
1581 ++read_ptr;
1582
1583 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1584
1585 netif_vdbg(efx, drv, efx->net_dev,
1586 "processing event on %d " EFX_QWORD_FMT "\n",
1587 channel->channel, EFX_QWORD_VAL(event));
1588
1589 switch (ev_code) {
1590 case ESE_DZ_EV_CODE_MCDI_EV:
1591 efx_mcdi_process_event(channel, &event);
1592 break;
1593 case ESE_DZ_EV_CODE_RX_EV:
1594 spent += efx_ef10_handle_rx_event(channel, &event);
1595 if (spent >= quota) {
1596 /* XXX can we split a merged event to
1597 * avoid going over-quota?
1598 */
1599 spent = quota;
1600 goto out;
1601 }
1602 break;
1603 case ESE_DZ_EV_CODE_TX_EV:
1604 tx_descs += efx_ef10_handle_tx_event(channel, &event);
1605 if (tx_descs > efx->txq_entries) {
1606 spent = quota;
1607 goto out;
1608 } else if (++spent == quota) {
1609 goto out;
1610 }
1611 break;
1612 case ESE_DZ_EV_CODE_DRIVER_EV:
1613 efx_ef10_handle_driver_event(channel, &event);
1614 if (++spent == quota)
1615 goto out;
1616 break;
1617 case EFX_EF10_DRVGEN_EV:
1618 efx_ef10_handle_driver_generated_event(channel, &event);
1619 break;
1620 default:
1621 netif_err(efx, hw, efx->net_dev,
1622 "channel %d unknown event type %d"
1623 " (data " EFX_QWORD_FMT ")\n",
1624 channel->channel, ev_code,
1625 EFX_QWORD_VAL(event));
1626 }
1627 }
1628
1629 out:
1630 channel->eventq_read_ptr = read_ptr;
1631 return spent;
1632 }
1633
1634 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
1635 {
1636 struct efx_nic *efx = channel->efx;
1637 efx_dword_t rptr;
1638
1639 if (EFX_EF10_WORKAROUND_35388(efx)) {
1640 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
1641 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
1642 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
1643 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
1644
1645 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
1646 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
1647 ERF_DD_EVQ_IND_RPTR,
1648 (channel->eventq_read_ptr &
1649 channel->eventq_mask) >>
1650 ERF_DD_EVQ_IND_RPTR_WIDTH);
1651 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
1652 channel->channel);
1653 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
1654 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
1655 ERF_DD_EVQ_IND_RPTR,
1656 channel->eventq_read_ptr &
1657 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
1658 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
1659 channel->channel);
1660 } else {
1661 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
1662 channel->eventq_read_ptr &
1663 channel->eventq_mask);
1664 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
1665 }
1666 }
1667
1668 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
1669 {
1670 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1671 struct efx_nic *efx = channel->efx;
1672 efx_qword_t event;
1673 int rc;
1674
1675 EFX_POPULATE_QWORD_2(event,
1676 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1677 ESF_DZ_EV_DATA, EFX_EF10_TEST);
1678
1679 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1680
1681 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1682 * already swapped the data to little-endian order.
1683 */
1684 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1685 sizeof(efx_qword_t));
1686
1687 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
1688 NULL, 0, NULL);
1689 if (rc != 0)
1690 goto fail;
1691
1692 return;
1693
1694 fail:
1695 WARN_ON(true);
1696 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1697 }
1698
1699 void efx_ef10_handle_drain_event(struct efx_nic *efx)
1700 {
1701 if (atomic_dec_and_test(&efx->active_queues))
1702 wake_up(&efx->flush_wq);
1703
1704 WARN_ON(atomic_read(&efx->active_queues) < 0);
1705 }
1706
1707 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
1708 {
1709 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1710 struct efx_channel *channel;
1711 struct efx_tx_queue *tx_queue;
1712 struct efx_rx_queue *rx_queue;
1713 int pending;
1714
1715 /* If the MC has just rebooted, the TX/RX queues will have already been
1716 * torn down, but efx->active_queues needs to be set to zero.
1717 */
1718 if (nic_data->must_realloc_vis) {
1719 atomic_set(&efx->active_queues, 0);
1720 return 0;
1721 }
1722
1723 /* Do not attempt to write to the NIC during EEH recovery */
1724 if (efx->state != STATE_RECOVERY) {
1725 efx_for_each_channel(channel, efx) {
1726 efx_for_each_channel_rx_queue(rx_queue, channel)
1727 efx_ef10_rx_fini(rx_queue);
1728 efx_for_each_channel_tx_queue(tx_queue, channel)
1729 efx_ef10_tx_fini(tx_queue);
1730 }
1731
1732 wait_event_timeout(efx->flush_wq,
1733 atomic_read(&efx->active_queues) == 0,
1734 msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
1735 pending = atomic_read(&efx->active_queues);
1736 if (pending) {
1737 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
1738 pending);
1739 return -ETIMEDOUT;
1740 }
1741 }
1742
1743 return 0;
1744 }
1745
1746 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
1747 const struct efx_filter_spec *right)
1748 {
1749 if ((left->match_flags ^ right->match_flags) |
1750 ((left->flags ^ right->flags) &
1751 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
1752 return false;
1753
1754 return memcmp(&left->outer_vid, &right->outer_vid,
1755 sizeof(struct efx_filter_spec) -
1756 offsetof(struct efx_filter_spec, outer_vid)) == 0;
1757 }
1758
1759 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
1760 {
1761 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
1762 return jhash2((const u32 *)&spec->outer_vid,
1763 (sizeof(struct efx_filter_spec) -
1764 offsetof(struct efx_filter_spec, outer_vid)) / 4,
1765 0);
1766 /* XXX should we randomise the initval? */
1767 }
1768
1769 /* Decide whether a filter should be exclusive or else should allow
1770 * delivery to additional recipients. Currently we decide that
1771 * filters for specific local unicast MAC and IP addresses are
1772 * exclusive.
1773 */
1774 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
1775 {
1776 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
1777 !is_multicast_ether_addr(spec->loc_mac))
1778 return true;
1779
1780 if ((spec->match_flags &
1781 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
1782 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
1783 if (spec->ether_type == htons(ETH_P_IP) &&
1784 !ipv4_is_multicast(spec->loc_host[0]))
1785 return true;
1786 if (spec->ether_type == htons(ETH_P_IPV6) &&
1787 ((const u8 *)spec->loc_host)[0] != 0xff)
1788 return true;
1789 }
1790
1791 return false;
1792 }
1793
1794 static struct efx_filter_spec *
1795 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
1796 unsigned int filter_idx)
1797 {
1798 return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
1799 ~EFX_EF10_FILTER_FLAGS);
1800 }
1801
1802 static unsigned int
1803 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
1804 unsigned int filter_idx)
1805 {
1806 return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
1807 }
1808
1809 static void
1810 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
1811 unsigned int filter_idx,
1812 const struct efx_filter_spec *spec,
1813 unsigned int flags)
1814 {
1815 table->entry[filter_idx].spec = (unsigned long)spec | flags;
1816 }
1817
1818 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
1819 const struct efx_filter_spec *spec,
1820 efx_dword_t *inbuf, u64 handle,
1821 bool replacing)
1822 {
1823 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1824
1825 memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
1826
1827 if (replacing) {
1828 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
1829 MC_CMD_FILTER_OP_IN_OP_REPLACE);
1830 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
1831 } else {
1832 u32 match_fields = 0;
1833
1834 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
1835 efx_ef10_filter_is_exclusive(spec) ?
1836 MC_CMD_FILTER_OP_IN_OP_INSERT :
1837 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
1838
1839 /* Convert match flags and values. Unlike almost
1840 * everything else in MCDI, these fields are in
1841 * network byte order.
1842 */
1843 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
1844 match_fields |=
1845 is_multicast_ether_addr(spec->loc_mac) ?
1846 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
1847 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
1848 #define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
1849 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
1850 match_fields |= \
1851 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
1852 mcdi_field ## _LBN; \
1853 BUILD_BUG_ON( \
1854 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
1855 sizeof(spec->gen_field)); \
1856 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
1857 &spec->gen_field, sizeof(spec->gen_field)); \
1858 }
1859 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
1860 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
1861 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
1862 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
1863 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
1864 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
1865 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
1866 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
1867 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
1868 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
1869 #undef COPY_FIELD
1870 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
1871 match_fields);
1872 }
1873
1874 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1875 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
1876 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
1877 MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
1878 MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
1879 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
1880 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
1881 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE, spec->dmaq_id);
1882 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
1883 (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
1884 MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
1885 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
1886 if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
1887 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
1888 spec->rss_context !=
1889 EFX_FILTER_RSS_CONTEXT_DEFAULT ?
1890 spec->rss_context : nic_data->rx_rss_context);
1891 }
1892
1893 static int efx_ef10_filter_push(struct efx_nic *efx,
1894 const struct efx_filter_spec *spec,
1895 u64 *handle, bool replacing)
1896 {
1897 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
1898 MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
1899 int rc;
1900
1901 efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
1902 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
1903 outbuf, sizeof(outbuf), NULL);
1904 if (rc == 0)
1905 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
1906 return rc;
1907 }
1908
1909 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
1910 enum efx_filter_match_flags match_flags)
1911 {
1912 unsigned int match_pri;
1913
1914 for (match_pri = 0;
1915 match_pri < table->rx_match_count;
1916 match_pri++)
1917 if (table->rx_match_flags[match_pri] == match_flags)
1918 return match_pri;
1919
1920 return -EPROTONOSUPPORT;
1921 }
1922
1923 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
1924 struct efx_filter_spec *spec,
1925 bool replace_equal)
1926 {
1927 struct efx_ef10_filter_table *table = efx->filter_state;
1928 DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
1929 struct efx_filter_spec *saved_spec;
1930 unsigned int match_pri, hash;
1931 unsigned int priv_flags;
1932 bool replacing = false;
1933 int ins_index = -1;
1934 DEFINE_WAIT(wait);
1935 bool is_mc_recip;
1936 s32 rc;
1937
1938 /* For now, only support RX filters */
1939 if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
1940 EFX_FILTER_FLAG_RX)
1941 return -EINVAL;
1942
1943 rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
1944 if (rc < 0)
1945 return rc;
1946 match_pri = rc;
1947
1948 hash = efx_ef10_filter_hash(spec);
1949 is_mc_recip = efx_filter_is_mc_recipient(spec);
1950 if (is_mc_recip)
1951 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
1952
1953 /* Find any existing filters with the same match tuple or
1954 * else a free slot to insert at. If any of them are busy,
1955 * we have to wait and retry.
1956 */
1957 for (;;) {
1958 unsigned int depth = 1;
1959 unsigned int i;
1960
1961 spin_lock_bh(&efx->filter_lock);
1962
1963 for (;;) {
1964 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
1965 saved_spec = efx_ef10_filter_entry_spec(table, i);
1966
1967 if (!saved_spec) {
1968 if (ins_index < 0)
1969 ins_index = i;
1970 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
1971 if (table->entry[i].spec &
1972 EFX_EF10_FILTER_FLAG_BUSY)
1973 break;
1974 if (spec->priority < saved_spec->priority &&
1975 !(saved_spec->priority ==
1976 EFX_FILTER_PRI_REQUIRED &&
1977 saved_spec->flags &
1978 EFX_FILTER_FLAG_RX_STACK)) {
1979 rc = -EPERM;
1980 goto out_unlock;
1981 }
1982 if (!is_mc_recip) {
1983 /* This is the only one */
1984 if (spec->priority ==
1985 saved_spec->priority &&
1986 !replace_equal) {
1987 rc = -EEXIST;
1988 goto out_unlock;
1989 }
1990 ins_index = i;
1991 goto found;
1992 } else if (spec->priority >
1993 saved_spec->priority ||
1994 (spec->priority ==
1995 saved_spec->priority &&
1996 replace_equal)) {
1997 if (ins_index < 0)
1998 ins_index = i;
1999 else
2000 __set_bit(depth, mc_rem_map);
2001 }
2002 }
2003
2004 /* Once we reach the maximum search depth, use
2005 * the first suitable slot or return -EBUSY if
2006 * there was none
2007 */
2008 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2009 if (ins_index < 0) {
2010 rc = -EBUSY;
2011 goto out_unlock;
2012 }
2013 goto found;
2014 }
2015
2016 ++depth;
2017 }
2018
2019 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2020 spin_unlock_bh(&efx->filter_lock);
2021 schedule();
2022 }
2023
2024 found:
2025 /* Create a software table entry if necessary, and mark it
2026 * busy. We might yet fail to insert, but any attempt to
2027 * insert a conflicting filter while we're waiting for the
2028 * firmware must find the busy entry.
2029 */
2030 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2031 if (saved_spec) {
2032 if (spec->flags & EFX_FILTER_FLAG_RX_STACK) {
2033 /* Just make sure it won't be removed */
2034 saved_spec->flags |= EFX_FILTER_FLAG_RX_STACK;
2035 table->entry[ins_index].spec &=
2036 ~EFX_EF10_FILTER_FLAG_STACK_OLD;
2037 rc = ins_index;
2038 goto out_unlock;
2039 }
2040 replacing = true;
2041 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2042 } else {
2043 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2044 if (!saved_spec) {
2045 rc = -ENOMEM;
2046 goto out_unlock;
2047 }
2048 *saved_spec = *spec;
2049 priv_flags = 0;
2050 }
2051 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2052 priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2053
2054 /* Mark lower-priority multicast recipients busy prior to removal */
2055 if (is_mc_recip) {
2056 unsigned int depth, i;
2057
2058 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2059 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2060 if (test_bit(depth, mc_rem_map))
2061 table->entry[i].spec |=
2062 EFX_EF10_FILTER_FLAG_BUSY;
2063 }
2064 }
2065
2066 spin_unlock_bh(&efx->filter_lock);
2067
2068 rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2069 replacing);
2070
2071 /* Finalise the software table entry */
2072 spin_lock_bh(&efx->filter_lock);
2073 if (rc == 0) {
2074 if (replacing) {
2075 /* Update the fields that may differ */
2076 saved_spec->priority = spec->priority;
2077 saved_spec->flags &= EFX_FILTER_FLAG_RX_STACK;
2078 saved_spec->flags |= spec->flags;
2079 saved_spec->rss_context = spec->rss_context;
2080 saved_spec->dmaq_id = spec->dmaq_id;
2081 }
2082 } else if (!replacing) {
2083 kfree(saved_spec);
2084 saved_spec = NULL;
2085 }
2086 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2087
2088 /* Remove and finalise entries for lower-priority multicast
2089 * recipients
2090 */
2091 if (is_mc_recip) {
2092 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2093 unsigned int depth, i;
2094
2095 memset(inbuf, 0, sizeof(inbuf));
2096
2097 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2098 if (!test_bit(depth, mc_rem_map))
2099 continue;
2100
2101 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2102 saved_spec = efx_ef10_filter_entry_spec(table, i);
2103 priv_flags = efx_ef10_filter_entry_flags(table, i);
2104
2105 if (rc == 0) {
2106 spin_unlock_bh(&efx->filter_lock);
2107 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2108 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2109 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2110 table->entry[i].handle);
2111 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2112 inbuf, sizeof(inbuf),
2113 NULL, 0, NULL);
2114 spin_lock_bh(&efx->filter_lock);
2115 }
2116
2117 if (rc == 0) {
2118 kfree(saved_spec);
2119 saved_spec = NULL;
2120 priv_flags = 0;
2121 } else {
2122 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2123 }
2124 efx_ef10_filter_set_entry(table, i, saved_spec,
2125 priv_flags);
2126 }
2127 }
2128
2129 /* If successful, return the inserted filter ID */
2130 if (rc == 0)
2131 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2132
2133 wake_up_all(&table->waitq);
2134 out_unlock:
2135 spin_unlock_bh(&efx->filter_lock);
2136 finish_wait(&table->waitq, &wait);
2137 return rc;
2138 }
2139
2140 void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
2141 {
2142 /* no need to do anything here on EF10 */
2143 }
2144
2145 /* Remove a filter.
2146 * If !stack_requested, remove by ID
2147 * If stack_requested, remove by index
2148 * Filter ID may come from userland and must be range-checked.
2149 */
2150 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2151 enum efx_filter_priority priority,
2152 u32 filter_id, bool stack_requested)
2153 {
2154 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2155 struct efx_ef10_filter_table *table = efx->filter_state;
2156 MCDI_DECLARE_BUF(inbuf,
2157 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2158 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2159 struct efx_filter_spec *spec;
2160 DEFINE_WAIT(wait);
2161 int rc;
2162
2163 /* Find the software table entry and mark it busy. Don't
2164 * remove it yet; any attempt to update while we're waiting
2165 * for the firmware must find the busy entry.
2166 */
2167 for (;;) {
2168 spin_lock_bh(&efx->filter_lock);
2169 if (!(table->entry[filter_idx].spec &
2170 EFX_EF10_FILTER_FLAG_BUSY))
2171 break;
2172 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2173 spin_unlock_bh(&efx->filter_lock);
2174 schedule();
2175 }
2176 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2177 if (!spec || spec->priority > priority ||
2178 (!stack_requested &&
2179 efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2180 filter_id / HUNT_FILTER_TBL_ROWS)) {
2181 rc = -ENOENT;
2182 goto out_unlock;
2183 }
2184 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2185 spin_unlock_bh(&efx->filter_lock);
2186
2187 if (spec->flags & EFX_FILTER_FLAG_RX_STACK && !stack_requested) {
2188 /* Reset steering of a stack-owned filter */
2189
2190 struct efx_filter_spec new_spec = *spec;
2191
2192 new_spec.priority = EFX_FILTER_PRI_REQUIRED;
2193 new_spec.flags = (EFX_FILTER_FLAG_RX |
2194 EFX_FILTER_FLAG_RX_RSS |
2195 EFX_FILTER_FLAG_RX_STACK);
2196 new_spec.dmaq_id = 0;
2197 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2198 rc = efx_ef10_filter_push(efx, &new_spec,
2199 &table->entry[filter_idx].handle,
2200 true);
2201
2202 spin_lock_bh(&efx->filter_lock);
2203 if (rc == 0)
2204 *spec = new_spec;
2205 } else {
2206 /* Really remove the filter */
2207
2208 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2209 efx_ef10_filter_is_exclusive(spec) ?
2210 MC_CMD_FILTER_OP_IN_OP_REMOVE :
2211 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2212 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2213 table->entry[filter_idx].handle);
2214 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2215 inbuf, sizeof(inbuf), NULL, 0, NULL);
2216
2217 spin_lock_bh(&efx->filter_lock);
2218 if (rc == 0) {
2219 kfree(spec);
2220 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2221 }
2222 }
2223 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2224 wake_up_all(&table->waitq);
2225 out_unlock:
2226 spin_unlock_bh(&efx->filter_lock);
2227 finish_wait(&table->waitq, &wait);
2228 return rc;
2229 }
2230
2231 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2232 enum efx_filter_priority priority,
2233 u32 filter_id)
2234 {
2235 return efx_ef10_filter_remove_internal(efx, priority, filter_id, false);
2236 }
2237
2238 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2239 enum efx_filter_priority priority,
2240 u32 filter_id, struct efx_filter_spec *spec)
2241 {
2242 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2243 struct efx_ef10_filter_table *table = efx->filter_state;
2244 const struct efx_filter_spec *saved_spec;
2245 int rc;
2246
2247 spin_lock_bh(&efx->filter_lock);
2248 saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2249 if (saved_spec && saved_spec->priority == priority &&
2250 efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2251 filter_id / HUNT_FILTER_TBL_ROWS) {
2252 *spec = *saved_spec;
2253 rc = 0;
2254 } else {
2255 rc = -ENOENT;
2256 }
2257 spin_unlock_bh(&efx->filter_lock);
2258 return rc;
2259 }
2260
2261 static void efx_ef10_filter_clear_rx(struct efx_nic *efx,
2262 enum efx_filter_priority priority)
2263 {
2264 /* TODO */
2265 }
2266
2267 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2268 enum efx_filter_priority priority)
2269 {
2270 struct efx_ef10_filter_table *table = efx->filter_state;
2271 unsigned int filter_idx;
2272 s32 count = 0;
2273
2274 spin_lock_bh(&efx->filter_lock);
2275 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2276 if (table->entry[filter_idx].spec &&
2277 efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2278 priority)
2279 ++count;
2280 }
2281 spin_unlock_bh(&efx->filter_lock);
2282 return count;
2283 }
2284
2285 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2286 {
2287 struct efx_ef10_filter_table *table = efx->filter_state;
2288
2289 return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2290 }
2291
2292 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2293 enum efx_filter_priority priority,
2294 u32 *buf, u32 size)
2295 {
2296 struct efx_ef10_filter_table *table = efx->filter_state;
2297 struct efx_filter_spec *spec;
2298 unsigned int filter_idx;
2299 s32 count = 0;
2300
2301 spin_lock_bh(&efx->filter_lock);
2302 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2303 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2304 if (spec && spec->priority == priority) {
2305 if (count == size) {
2306 count = -EMSGSIZE;
2307 break;
2308 }
2309 buf[count++] = (efx_ef10_filter_rx_match_pri(
2310 table, spec->match_flags) *
2311 HUNT_FILTER_TBL_ROWS +
2312 filter_idx);
2313 }
2314 }
2315 spin_unlock_bh(&efx->filter_lock);
2316 return count;
2317 }
2318
2319 #ifdef CONFIG_RFS_ACCEL
2320
2321 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2322
2323 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2324 struct efx_filter_spec *spec)
2325 {
2326 struct efx_ef10_filter_table *table = efx->filter_state;
2327 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2328 struct efx_filter_spec *saved_spec;
2329 unsigned int hash, i, depth = 1;
2330 bool replacing = false;
2331 int ins_index = -1;
2332 u64 cookie;
2333 s32 rc;
2334
2335 /* Must be an RX filter without RSS and not for a multicast
2336 * destination address (RFS only works for connected sockets).
2337 * These restrictions allow us to pass only a tiny amount of
2338 * data through to the completion function.
2339 */
2340 EFX_WARN_ON_PARANOID(spec->flags !=
2341 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2342 EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2343 EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2344
2345 hash = efx_ef10_filter_hash(spec);
2346
2347 spin_lock_bh(&efx->filter_lock);
2348
2349 /* Find any existing filter with the same match tuple or else
2350 * a free slot to insert at. If an existing filter is busy,
2351 * we have to give up.
2352 */
2353 for (;;) {
2354 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2355 saved_spec = efx_ef10_filter_entry_spec(table, i);
2356
2357 if (!saved_spec) {
2358 if (ins_index < 0)
2359 ins_index = i;
2360 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2361 if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2362 rc = -EBUSY;
2363 goto fail_unlock;
2364 }
2365 EFX_WARN_ON_PARANOID(saved_spec->flags &
2366 EFX_FILTER_FLAG_RX_STACK);
2367 if (spec->priority < saved_spec->priority) {
2368 rc = -EPERM;
2369 goto fail_unlock;
2370 }
2371 ins_index = i;
2372 break;
2373 }
2374
2375 /* Once we reach the maximum search depth, use the
2376 * first suitable slot or return -EBUSY if there was
2377 * none
2378 */
2379 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2380 if (ins_index < 0) {
2381 rc = -EBUSY;
2382 goto fail_unlock;
2383 }
2384 break;
2385 }
2386
2387 ++depth;
2388 }
2389
2390 /* Create a software table entry if necessary, and mark it
2391 * busy. We might yet fail to insert, but any attempt to
2392 * insert a conflicting filter while we're waiting for the
2393 * firmware must find the busy entry.
2394 */
2395 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2396 if (saved_spec) {
2397 replacing = true;
2398 } else {
2399 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2400 if (!saved_spec) {
2401 rc = -ENOMEM;
2402 goto fail_unlock;
2403 }
2404 *saved_spec = *spec;
2405 }
2406 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2407 EFX_EF10_FILTER_FLAG_BUSY);
2408
2409 spin_unlock_bh(&efx->filter_lock);
2410
2411 /* Pack up the variables needed on completion */
2412 cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2413
2414 efx_ef10_filter_push_prep(efx, spec, inbuf,
2415 table->entry[ins_index].handle, replacing);
2416 efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2417 MC_CMD_FILTER_OP_OUT_LEN,
2418 efx_ef10_filter_rfs_insert_complete, cookie);
2419
2420 return ins_index;
2421
2422 fail_unlock:
2423 spin_unlock_bh(&efx->filter_lock);
2424 return rc;
2425 }
2426
2427 static void
2428 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2429 int rc, efx_dword_t *outbuf,
2430 size_t outlen_actual)
2431 {
2432 struct efx_ef10_filter_table *table = efx->filter_state;
2433 unsigned int ins_index, dmaq_id;
2434 struct efx_filter_spec *spec;
2435 bool replacing;
2436
2437 /* Unpack the cookie */
2438 replacing = cookie >> 31;
2439 ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2440 dmaq_id = cookie & 0xffff;
2441
2442 spin_lock_bh(&efx->filter_lock);
2443 spec = efx_ef10_filter_entry_spec(table, ins_index);
2444 if (rc == 0) {
2445 table->entry[ins_index].handle =
2446 MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2447 if (replacing)
2448 spec->dmaq_id = dmaq_id;
2449 } else if (!replacing) {
2450 kfree(spec);
2451 spec = NULL;
2452 }
2453 efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2454 spin_unlock_bh(&efx->filter_lock);
2455
2456 wake_up_all(&table->waitq);
2457 }
2458
2459 static void
2460 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2461 unsigned long filter_idx,
2462 int rc, efx_dword_t *outbuf,
2463 size_t outlen_actual);
2464
2465 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2466 unsigned int filter_idx)
2467 {
2468 struct efx_ef10_filter_table *table = efx->filter_state;
2469 struct efx_filter_spec *spec =
2470 efx_ef10_filter_entry_spec(table, filter_idx);
2471 MCDI_DECLARE_BUF(inbuf,
2472 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2473 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2474
2475 if (!spec ||
2476 (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2477 spec->priority != EFX_FILTER_PRI_HINT ||
2478 !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2479 flow_id, filter_idx))
2480 return false;
2481
2482 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2483 MC_CMD_FILTER_OP_IN_OP_REMOVE);
2484 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2485 table->entry[filter_idx].handle);
2486 if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2487 efx_ef10_filter_rfs_expire_complete, filter_idx))
2488 return false;
2489
2490 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2491 return true;
2492 }
2493
2494 static void
2495 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2496 unsigned long filter_idx,
2497 int rc, efx_dword_t *outbuf,
2498 size_t outlen_actual)
2499 {
2500 struct efx_ef10_filter_table *table = efx->filter_state;
2501 struct efx_filter_spec *spec =
2502 efx_ef10_filter_entry_spec(table, filter_idx);
2503
2504 spin_lock_bh(&efx->filter_lock);
2505 if (rc == 0) {
2506 kfree(spec);
2507 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2508 }
2509 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2510 wake_up_all(&table->waitq);
2511 spin_unlock_bh(&efx->filter_lock);
2512 }
2513
2514 #endif /* CONFIG_RFS_ACCEL */
2515
2516 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2517 {
2518 int match_flags = 0;
2519
2520 #define MAP_FLAG(gen_flag, mcdi_field) { \
2521 u32 old_mcdi_flags = mcdi_flags; \
2522 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2523 mcdi_field ## _LBN); \
2524 if (mcdi_flags != old_mcdi_flags) \
2525 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
2526 }
2527 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2528 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2529 MAP_FLAG(REM_HOST, SRC_IP);
2530 MAP_FLAG(LOC_HOST, DST_IP);
2531 MAP_FLAG(REM_MAC, SRC_MAC);
2532 MAP_FLAG(REM_PORT, SRC_PORT);
2533 MAP_FLAG(LOC_MAC, DST_MAC);
2534 MAP_FLAG(LOC_PORT, DST_PORT);
2535 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2536 MAP_FLAG(INNER_VID, INNER_VLAN);
2537 MAP_FLAG(OUTER_VID, OUTER_VLAN);
2538 MAP_FLAG(IP_PROTO, IP_PROTO);
2539 #undef MAP_FLAG
2540
2541 /* Did we map them all? */
2542 if (mcdi_flags)
2543 return -EINVAL;
2544
2545 return match_flags;
2546 }
2547
2548 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2549 {
2550 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
2551 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
2552 unsigned int pd_match_pri, pd_match_count;
2553 struct efx_ef10_filter_table *table;
2554 size_t outlen;
2555 int rc;
2556
2557 table = kzalloc(sizeof(*table), GFP_KERNEL);
2558 if (!table)
2559 return -ENOMEM;
2560
2561 /* Find out which RX filter types are supported, and their priorities */
2562 MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
2563 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
2564 rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
2565 inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
2566 &outlen);
2567 if (rc)
2568 goto fail;
2569 pd_match_count = MCDI_VAR_ARRAY_LEN(
2570 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
2571 table->rx_match_count = 0;
2572
2573 for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
2574 u32 mcdi_flags =
2575 MCDI_ARRAY_DWORD(
2576 outbuf,
2577 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
2578 pd_match_pri);
2579 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
2580 if (rc < 0) {
2581 netif_dbg(efx, probe, efx->net_dev,
2582 "%s: fw flags %#x pri %u not supported in driver\n",
2583 __func__, mcdi_flags, pd_match_pri);
2584 } else {
2585 netif_dbg(efx, probe, efx->net_dev,
2586 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
2587 __func__, mcdi_flags, pd_match_pri,
2588 rc, table->rx_match_count);
2589 table->rx_match_flags[table->rx_match_count++] = rc;
2590 }
2591 }
2592
2593 table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
2594 if (!table->entry) {
2595 rc = -ENOMEM;
2596 goto fail;
2597 }
2598
2599 efx->filter_state = table;
2600 init_waitqueue_head(&table->waitq);
2601 return 0;
2602
2603 fail:
2604 kfree(table);
2605 return rc;
2606 }
2607
2608 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
2609 {
2610 struct efx_ef10_filter_table *table = efx->filter_state;
2611 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2612 struct efx_filter_spec *spec;
2613 unsigned int filter_idx;
2614 bool failed = false;
2615 int rc;
2616
2617 if (!nic_data->must_restore_filters)
2618 return;
2619
2620 spin_lock_bh(&efx->filter_lock);
2621
2622 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2623 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2624 if (!spec)
2625 continue;
2626
2627 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2628 spin_unlock_bh(&efx->filter_lock);
2629
2630 rc = efx_ef10_filter_push(efx, spec,
2631 &table->entry[filter_idx].handle,
2632 false);
2633 if (rc)
2634 failed = true;
2635
2636 spin_lock_bh(&efx->filter_lock);
2637 if (rc) {
2638 kfree(spec);
2639 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2640 } else {
2641 table->entry[filter_idx].spec &=
2642 ~EFX_EF10_FILTER_FLAG_BUSY;
2643 }
2644 }
2645
2646 spin_unlock_bh(&efx->filter_lock);
2647
2648 if (failed)
2649 netif_err(efx, hw, efx->net_dev,
2650 "unable to restore all filters\n");
2651 else
2652 nic_data->must_restore_filters = false;
2653 }
2654
2655 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
2656 {
2657 struct efx_ef10_filter_table *table = efx->filter_state;
2658 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2659 struct efx_filter_spec *spec;
2660 unsigned int filter_idx;
2661 int rc;
2662
2663 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2664 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2665 if (!spec)
2666 continue;
2667
2668 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2669 efx_ef10_filter_is_exclusive(spec) ?
2670 MC_CMD_FILTER_OP_IN_OP_REMOVE :
2671 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2672 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2673 table->entry[filter_idx].handle);
2674 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2675 NULL, 0, NULL);
2676
2677 WARN_ON(rc != 0);
2678 kfree(spec);
2679 }
2680
2681 vfree(table->entry);
2682 kfree(table);
2683 }
2684
2685 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
2686 {
2687 struct efx_ef10_filter_table *table = efx->filter_state;
2688 struct net_device *net_dev = efx->net_dev;
2689 struct efx_filter_spec spec;
2690 bool remove_failed = false;
2691 struct netdev_hw_addr *uc;
2692 struct netdev_hw_addr *mc;
2693 unsigned int filter_idx;
2694 int i, n, rc;
2695
2696 if (!efx_dev_registered(efx))
2697 return;
2698
2699 /* Mark old filters that may need to be removed */
2700 spin_lock_bh(&efx->filter_lock);
2701 n = table->stack_uc_count < 0 ? 1 : table->stack_uc_count;
2702 for (i = 0; i < n; i++) {
2703 filter_idx = table->stack_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
2704 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_STACK_OLD;
2705 }
2706 n = table->stack_mc_count < 0 ? 1 : table->stack_mc_count;
2707 for (i = 0; i < n; i++) {
2708 filter_idx = table->stack_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
2709 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_STACK_OLD;
2710 }
2711 spin_unlock_bh(&efx->filter_lock);
2712
2713 /* Copy/convert the address lists; add the primary station
2714 * address and broadcast address
2715 */
2716 netif_addr_lock_bh(net_dev);
2717 if (net_dev->flags & IFF_PROMISC ||
2718 netdev_uc_count(net_dev) >= EFX_EF10_FILTER_STACK_UC_MAX) {
2719 table->stack_uc_count = -1;
2720 } else {
2721 table->stack_uc_count = 1 + netdev_uc_count(net_dev);
2722 memcpy(table->stack_uc_list[0].addr, net_dev->dev_addr,
2723 ETH_ALEN);
2724 i = 1;
2725 netdev_for_each_uc_addr(uc, net_dev) {
2726 memcpy(table->stack_uc_list[i].addr,
2727 uc->addr, ETH_ALEN);
2728 i++;
2729 }
2730 }
2731 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
2732 netdev_mc_count(net_dev) >= EFX_EF10_FILTER_STACK_MC_MAX) {
2733 table->stack_mc_count = -1;
2734 } else {
2735 table->stack_mc_count = 1 + netdev_mc_count(net_dev);
2736 eth_broadcast_addr(table->stack_mc_list[0].addr);
2737 i = 1;
2738 netdev_for_each_mc_addr(mc, net_dev) {
2739 memcpy(table->stack_mc_list[i].addr,
2740 mc->addr, ETH_ALEN);
2741 i++;
2742 }
2743 }
2744 netif_addr_unlock_bh(net_dev);
2745
2746 /* Insert/renew unicast filters */
2747 if (table->stack_uc_count >= 0) {
2748 for (i = 0; i < table->stack_uc_count; i++) {
2749 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
2750 EFX_FILTER_FLAG_RX_RSS |
2751 EFX_FILTER_FLAG_RX_STACK,
2752 0);
2753 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
2754 table->stack_uc_list[i].addr);
2755 rc = efx_ef10_filter_insert(efx, &spec, true);
2756 if (rc < 0) {
2757 /* Fall back to unicast-promisc */
2758 while (i--)
2759 efx_ef10_filter_remove_safe(
2760 efx, EFX_FILTER_PRI_REQUIRED,
2761 table->stack_uc_list[i].id);
2762 table->stack_uc_count = -1;
2763 break;
2764 }
2765 table->stack_uc_list[i].id = rc;
2766 }
2767 }
2768 if (table->stack_uc_count < 0) {
2769 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
2770 EFX_FILTER_FLAG_RX_RSS |
2771 EFX_FILTER_FLAG_RX_STACK,
2772 0);
2773 efx_filter_set_uc_def(&spec);
2774 rc = efx_ef10_filter_insert(efx, &spec, true);
2775 if (rc < 0) {
2776 WARN_ON(1);
2777 table->stack_uc_count = 0;
2778 } else {
2779 table->stack_uc_list[0].id = rc;
2780 }
2781 }
2782
2783 /* Insert/renew multicast filters */
2784 if (table->stack_mc_count >= 0) {
2785 for (i = 0; i < table->stack_mc_count; i++) {
2786 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
2787 EFX_FILTER_FLAG_RX_RSS |
2788 EFX_FILTER_FLAG_RX_STACK,
2789 0);
2790 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
2791 table->stack_mc_list[i].addr);
2792 rc = efx_ef10_filter_insert(efx, &spec, true);
2793 if (rc < 0) {
2794 /* Fall back to multicast-promisc */
2795 while (i--)
2796 efx_ef10_filter_remove_safe(
2797 efx, EFX_FILTER_PRI_REQUIRED,
2798 table->stack_mc_list[i].id);
2799 table->stack_mc_count = -1;
2800 break;
2801 }
2802 table->stack_mc_list[i].id = rc;
2803 }
2804 }
2805 if (table->stack_mc_count < 0) {
2806 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
2807 EFX_FILTER_FLAG_RX_RSS |
2808 EFX_FILTER_FLAG_RX_STACK,
2809 0);
2810 efx_filter_set_mc_def(&spec);
2811 rc = efx_ef10_filter_insert(efx, &spec, true);
2812 if (rc < 0) {
2813 WARN_ON(1);
2814 table->stack_mc_count = 0;
2815 } else {
2816 table->stack_mc_list[0].id = rc;
2817 }
2818 }
2819
2820 /* Remove filters that weren't renewed. Since nothing else
2821 * changes the STACK_OLD flag or removes these filters, we
2822 * don't need to hold the filter_lock while scanning for
2823 * these filters.
2824 */
2825 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
2826 if (ACCESS_ONCE(table->entry[i].spec) &
2827 EFX_EF10_FILTER_FLAG_STACK_OLD) {
2828 if (efx_ef10_filter_remove_internal(efx,
2829 EFX_FILTER_PRI_REQUIRED,
2830 i, true) < 0)
2831 remove_failed = true;
2832 }
2833 }
2834 WARN_ON(remove_failed);
2835 }
2836
2837 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
2838 {
2839 efx_ef10_filter_sync_rx_mode(efx);
2840
2841 return efx_mcdi_set_mac(efx);
2842 }
2843
2844 #ifdef CONFIG_SFC_MTD
2845
2846 struct efx_ef10_nvram_type_info {
2847 u16 type, type_mask;
2848 u8 port;
2849 const char *name;
2850 };
2851
2852 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
2853 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
2854 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
2855 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
2856 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
2857 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
2858 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
2859 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
2860 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
2861 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
2862 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
2863 };
2864
2865 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
2866 struct efx_mcdi_mtd_partition *part,
2867 unsigned int type)
2868 {
2869 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
2870 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
2871 const struct efx_ef10_nvram_type_info *info;
2872 size_t size, erase_size, outlen;
2873 bool protected;
2874 int rc;
2875
2876 for (info = efx_ef10_nvram_types; ; info++) {
2877 if (info ==
2878 efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
2879 return -ENODEV;
2880 if ((type & ~info->type_mask) == info->type)
2881 break;
2882 }
2883 if (info->port != efx_port_num(efx))
2884 return -ENODEV;
2885
2886 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
2887 if (rc)
2888 return rc;
2889 if (protected)
2890 return -ENODEV; /* hide it */
2891
2892 part->nvram_type = type;
2893
2894 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
2895 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
2896 outbuf, sizeof(outbuf), &outlen);
2897 if (rc)
2898 return rc;
2899 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
2900 return -EIO;
2901 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
2902 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
2903 part->fw_subtype = MCDI_DWORD(outbuf,
2904 NVRAM_METADATA_OUT_SUBTYPE);
2905
2906 part->common.dev_type_name = "EF10 NVRAM manager";
2907 part->common.type_name = info->name;
2908
2909 part->common.mtd.type = MTD_NORFLASH;
2910 part->common.mtd.flags = MTD_CAP_NORFLASH;
2911 part->common.mtd.size = size;
2912 part->common.mtd.erasesize = erase_size;
2913
2914 return 0;
2915 }
2916
2917 static int efx_ef10_mtd_probe(struct efx_nic *efx)
2918 {
2919 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
2920 struct efx_mcdi_mtd_partition *parts;
2921 size_t outlen, n_parts_total, i, n_parts;
2922 unsigned int type;
2923 int rc;
2924
2925 ASSERT_RTNL();
2926
2927 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
2928 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
2929 outbuf, sizeof(outbuf), &outlen);
2930 if (rc)
2931 return rc;
2932 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
2933 return -EIO;
2934
2935 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
2936 if (n_parts_total >
2937 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
2938 return -EIO;
2939
2940 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
2941 if (!parts)
2942 return -ENOMEM;
2943
2944 n_parts = 0;
2945 for (i = 0; i < n_parts_total; i++) {
2946 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
2947 i);
2948 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
2949 if (rc == 0)
2950 n_parts++;
2951 else if (rc != -ENODEV)
2952 goto fail;
2953 }
2954
2955 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
2956 fail:
2957 if (rc)
2958 kfree(parts);
2959 return rc;
2960 }
2961
2962 #endif /* CONFIG_SFC_MTD */
2963
2964 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
2965 {
2966 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
2967 }
2968
2969 const struct efx_nic_type efx_hunt_a0_nic_type = {
2970 .mem_map_size = efx_ef10_mem_map_size,
2971 .probe = efx_ef10_probe,
2972 .remove = efx_ef10_remove,
2973 .dimension_resources = efx_ef10_dimension_resources,
2974 .init = efx_ef10_init_nic,
2975 .fini = efx_port_dummy_op_void,
2976 .map_reset_reason = efx_mcdi_map_reset_reason,
2977 .map_reset_flags = efx_ef10_map_reset_flags,
2978 .reset = efx_mcdi_reset,
2979 .probe_port = efx_mcdi_port_probe,
2980 .remove_port = efx_mcdi_port_remove,
2981 .fini_dmaq = efx_ef10_fini_dmaq,
2982 .describe_stats = efx_ef10_describe_stats,
2983 .update_stats = efx_ef10_update_stats,
2984 .start_stats = efx_mcdi_mac_start_stats,
2985 .stop_stats = efx_mcdi_mac_stop_stats,
2986 .set_id_led = efx_mcdi_set_id_led,
2987 .push_irq_moderation = efx_ef10_push_irq_moderation,
2988 .reconfigure_mac = efx_ef10_mac_reconfigure,
2989 .check_mac_fault = efx_mcdi_mac_check_fault,
2990 .reconfigure_port = efx_mcdi_port_reconfigure,
2991 .get_wol = efx_ef10_get_wol,
2992 .set_wol = efx_ef10_set_wol,
2993 .resume_wol = efx_port_dummy_op_void,
2994 /* TODO: test_chip */
2995 .test_nvram = efx_mcdi_nvram_test_all,
2996 .mcdi_request = efx_ef10_mcdi_request,
2997 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
2998 .mcdi_read_response = efx_ef10_mcdi_read_response,
2999 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
3000 .irq_enable_master = efx_port_dummy_op_void,
3001 .irq_test_generate = efx_ef10_irq_test_generate,
3002 .irq_disable_non_ev = efx_port_dummy_op_void,
3003 .irq_handle_msi = efx_ef10_msi_interrupt,
3004 .irq_handle_legacy = efx_ef10_legacy_interrupt,
3005 .tx_probe = efx_ef10_tx_probe,
3006 .tx_init = efx_ef10_tx_init,
3007 .tx_remove = efx_ef10_tx_remove,
3008 .tx_write = efx_ef10_tx_write,
3009 .rx_push_indir_table = efx_ef10_rx_push_indir_table,
3010 .rx_probe = efx_ef10_rx_probe,
3011 .rx_init = efx_ef10_rx_init,
3012 .rx_remove = efx_ef10_rx_remove,
3013 .rx_write = efx_ef10_rx_write,
3014 .rx_defer_refill = efx_ef10_rx_defer_refill,
3015 .ev_probe = efx_ef10_ev_probe,
3016 .ev_init = efx_ef10_ev_init,
3017 .ev_fini = efx_ef10_ev_fini,
3018 .ev_remove = efx_ef10_ev_remove,
3019 .ev_process = efx_ef10_ev_process,
3020 .ev_read_ack = efx_ef10_ev_read_ack,
3021 .ev_test_generate = efx_ef10_ev_test_generate,
3022 .filter_table_probe = efx_ef10_filter_table_probe,
3023 .filter_table_restore = efx_ef10_filter_table_restore,
3024 .filter_table_remove = efx_ef10_filter_table_remove,
3025 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3026 .filter_insert = efx_ef10_filter_insert,
3027 .filter_remove_safe = efx_ef10_filter_remove_safe,
3028 .filter_get_safe = efx_ef10_filter_get_safe,
3029 .filter_clear_rx = efx_ef10_filter_clear_rx,
3030 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
3031 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3032 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3033 #ifdef CONFIG_RFS_ACCEL
3034 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
3035 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3036 #endif
3037 #ifdef CONFIG_SFC_MTD
3038 .mtd_probe = efx_ef10_mtd_probe,
3039 .mtd_rename = efx_mcdi_mtd_rename,
3040 .mtd_read = efx_mcdi_mtd_read,
3041 .mtd_erase = efx_mcdi_mtd_erase,
3042 .mtd_write = efx_mcdi_mtd_write,
3043 .mtd_sync = efx_mcdi_mtd_sync,
3044 #endif
3045 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
3046
3047 .revision = EFX_REV_HUNT_A0,
3048 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3049 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3050 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3051 .can_rx_scatter = true,
3052 .always_rx_scatter = true,
3053 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3054 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3055 .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3056 NETIF_F_RXHASH | NETIF_F_NTUPLE),
3057 .mcdi_max_ver = 2,
3058 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3059 };
This page took 0.138568 seconds and 5 git commands to generate.