sfc: Assert filter_sem write locked when required
[deliverable/linux.git] / drivers / net / ethernet / sfc / ef10.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25
26 #define EFX_EF10_DRVGEN_EV 7
27 enum {
28 EFX_EF10_TEST = 1,
29 EFX_EF10_REFILL,
30 };
31
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37
38 /* The filter table(s) are managed by firmware and we have write-only
39 * access. When removing filters we must identify them to the
40 * firmware by a 64-bit handle, but this is too wide for Linux kernel
41 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
42 * be able to tell in advance whether a requested insertion will
43 * replace an existing filter. Therefore we maintain a software hash
44 * table, which should be at least as large as the hardware hash
45 * table.
46 *
47 * Huntington has a single 8K filter table shared between all filter
48 * types and both ports.
49 */
50 #define HUNT_FILTER_TBL_ROWS 8192
51
52 #define EFX_EF10_FILTER_ID_INVALID 0xffff
53 struct efx_ef10_dev_addr {
54 u8 addr[ETH_ALEN];
55 u16 id;
56 };
57
58 struct efx_ef10_filter_table {
59 /* The RX match field masks supported by this fw & hw, in order of priority */
60 enum efx_filter_match_flags rx_match_flags[
61 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
62 unsigned int rx_match_count;
63
64 struct {
65 unsigned long spec; /* pointer to spec plus flag bits */
66 /* BUSY flag indicates that an update is in progress. AUTO_OLD is
67 * used to mark and sweep MAC filters for the device address lists.
68 */
69 #define EFX_EF10_FILTER_FLAG_BUSY 1UL
70 #define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL
71 #define EFX_EF10_FILTER_FLAGS 3UL
72 u64 handle; /* firmware handle */
73 } *entry;
74 wait_queue_head_t waitq;
75 /* Shadow of net_device address lists, guarded by mac_lock */
76 #define EFX_EF10_FILTER_DEV_UC_MAX 32
77 #define EFX_EF10_FILTER_DEV_MC_MAX 256
78 struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
79 struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
80 int dev_uc_count;
81 int dev_mc_count;
82 /* Indices (like efx_ef10_dev_addr.id) for promisc/allmulti filters */
83 u16 ucdef_id;
84 u16 bcast_id;
85 u16 mcdef_id;
86 /* Whether in multicast promiscuous mode when last changed */
87 bool mc_promisc_last;
88 };
89
90 /* An arbitrary search limit for the software hash table */
91 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
92
93 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
94 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
95
96 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
97 {
98 efx_dword_t reg;
99
100 efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
101 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
102 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
103 }
104
105 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
106 {
107 int bar;
108
109 bar = efx->type->mem_bar;
110 return resource_size(&efx->pci_dev->resource[bar]);
111 }
112
113 static bool efx_ef10_is_vf(struct efx_nic *efx)
114 {
115 return efx->type->is_vf;
116 }
117
118 static int efx_ef10_get_pf_index(struct efx_nic *efx)
119 {
120 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
121 struct efx_ef10_nic_data *nic_data = efx->nic_data;
122 size_t outlen;
123 int rc;
124
125 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
126 sizeof(outbuf), &outlen);
127 if (rc)
128 return rc;
129 if (outlen < sizeof(outbuf))
130 return -EIO;
131
132 nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
133 return 0;
134 }
135
136 #ifdef CONFIG_SFC_SRIOV
137 static int efx_ef10_get_vf_index(struct efx_nic *efx)
138 {
139 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
140 struct efx_ef10_nic_data *nic_data = efx->nic_data;
141 size_t outlen;
142 int rc;
143
144 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
145 sizeof(outbuf), &outlen);
146 if (rc)
147 return rc;
148 if (outlen < sizeof(outbuf))
149 return -EIO;
150
151 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
152 return 0;
153 }
154 #endif
155
156 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
157 {
158 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
159 struct efx_ef10_nic_data *nic_data = efx->nic_data;
160 size_t outlen;
161 int rc;
162
163 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
164
165 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
166 outbuf, sizeof(outbuf), &outlen);
167 if (rc)
168 return rc;
169 if (outlen < sizeof(outbuf)) {
170 netif_err(efx, drv, efx->net_dev,
171 "unable to read datapath firmware capabilities\n");
172 return -EIO;
173 }
174
175 nic_data->datapath_caps =
176 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
177
178 /* record the DPCPU firmware IDs to determine VEB vswitching support.
179 */
180 nic_data->rx_dpcpu_fw_id =
181 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
182 nic_data->tx_dpcpu_fw_id =
183 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
184
185 if (!(nic_data->datapath_caps &
186 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
187 netif_err(efx, probe, efx->net_dev,
188 "current firmware does not support an RX prefix\n");
189 return -ENODEV;
190 }
191
192 return 0;
193 }
194
195 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
196 {
197 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
198 int rc;
199
200 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
201 outbuf, sizeof(outbuf), NULL);
202 if (rc)
203 return rc;
204 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
205 return rc > 0 ? rc : -ERANGE;
206 }
207
208 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
209 {
210 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
211 size_t outlen;
212 int rc;
213
214 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
215
216 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
217 outbuf, sizeof(outbuf), &outlen);
218 if (rc)
219 return rc;
220 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
221 return -EIO;
222
223 ether_addr_copy(mac_address,
224 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
225 return 0;
226 }
227
228 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
229 {
230 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
231 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
232 size_t outlen;
233 int num_addrs, rc;
234
235 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
236 EVB_PORT_ID_ASSIGNED);
237 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
238 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
239
240 if (rc)
241 return rc;
242 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
243 return -EIO;
244
245 num_addrs = MCDI_DWORD(outbuf,
246 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
247
248 WARN_ON(num_addrs != 1);
249
250 ether_addr_copy(mac_address,
251 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
252
253 return 0;
254 }
255
256 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
257 struct device_attribute *attr,
258 char *buf)
259 {
260 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
261
262 return sprintf(buf, "%d\n",
263 ((efx->mcdi->fn_flags) &
264 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
265 ? 1 : 0);
266 }
267
268 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
269 struct device_attribute *attr,
270 char *buf)
271 {
272 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
273
274 return sprintf(buf, "%d\n",
275 ((efx->mcdi->fn_flags) &
276 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
277 ? 1 : 0);
278 }
279
280 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
281 NULL);
282 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
283
284 static int efx_ef10_probe(struct efx_nic *efx)
285 {
286 struct efx_ef10_nic_data *nic_data;
287 struct net_device *net_dev = efx->net_dev;
288 int i, rc;
289
290 /* We can have one VI for each 8K region. However, until we
291 * use TX option descriptors we need two TX queues per channel.
292 */
293 efx->max_channels = min_t(unsigned int,
294 EFX_MAX_CHANNELS,
295 efx_ef10_mem_map_size(efx) /
296 (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
297 efx->max_tx_channels = efx->max_channels;
298 if (WARN_ON(efx->max_channels == 0))
299 return -EIO;
300
301 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
302 if (!nic_data)
303 return -ENOMEM;
304 efx->nic_data = nic_data;
305
306 /* we assume later that we can copy from this buffer in dwords */
307 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
308
309 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
310 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
311 if (rc)
312 goto fail1;
313
314 /* Get the MC's warm boot count. In case it's rebooting right
315 * now, be prepared to retry.
316 */
317 i = 0;
318 for (;;) {
319 rc = efx_ef10_get_warm_boot_count(efx);
320 if (rc >= 0)
321 break;
322 if (++i == 5)
323 goto fail2;
324 ssleep(1);
325 }
326 nic_data->warm_boot_count = rc;
327
328 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
329
330 nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
331
332 /* In case we're recovering from a crash (kexec), we want to
333 * cancel any outstanding request by the previous user of this
334 * function. We send a special message using the least
335 * significant bits of the 'high' (doorbell) register.
336 */
337 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
338
339 rc = efx_mcdi_init(efx);
340 if (rc)
341 goto fail2;
342
343 /* Reset (most) configuration for this function */
344 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
345 if (rc)
346 goto fail3;
347
348 /* Enable event logging */
349 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
350 if (rc)
351 goto fail3;
352
353 rc = device_create_file(&efx->pci_dev->dev,
354 &dev_attr_link_control_flag);
355 if (rc)
356 goto fail3;
357
358 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
359 if (rc)
360 goto fail4;
361
362 rc = efx_ef10_get_pf_index(efx);
363 if (rc)
364 goto fail5;
365
366 rc = efx_ef10_init_datapath_caps(efx);
367 if (rc < 0)
368 goto fail5;
369
370 efx->rx_packet_len_offset =
371 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
372
373 rc = efx_mcdi_port_get_number(efx);
374 if (rc < 0)
375 goto fail5;
376 efx->port_num = rc;
377 net_dev->dev_port = rc;
378
379 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
380 if (rc)
381 goto fail5;
382
383 rc = efx_ef10_get_sysclk_freq(efx);
384 if (rc < 0)
385 goto fail5;
386 efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
387
388 /* Check whether firmware supports bug 35388 workaround.
389 * First try to enable it, then if we get EPERM, just
390 * ask if it's already enabled
391 */
392 rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true, NULL);
393 if (rc == 0) {
394 nic_data->workaround_35388 = true;
395 } else if (rc == -EPERM) {
396 unsigned int enabled;
397
398 rc = efx_mcdi_get_workarounds(efx, NULL, &enabled);
399 if (rc)
400 goto fail3;
401 nic_data->workaround_35388 = enabled &
402 MC_CMD_GET_WORKAROUNDS_OUT_BUG35388;
403 } else if (rc != -ENOSYS && rc != -ENOENT) {
404 goto fail5;
405 }
406 netif_dbg(efx, probe, efx->net_dev,
407 "workaround for bug 35388 is %sabled\n",
408 nic_data->workaround_35388 ? "en" : "dis");
409
410 rc = efx_mcdi_mon_probe(efx);
411 if (rc && rc != -EPERM)
412 goto fail5;
413
414 efx_ptp_probe(efx, NULL);
415
416 #ifdef CONFIG_SFC_SRIOV
417 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
418 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
419 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
420
421 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
422 } else
423 #endif
424 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
425
426 return 0;
427
428 fail5:
429 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
430 fail4:
431 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
432 fail3:
433 efx_mcdi_fini(efx);
434 fail2:
435 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
436 fail1:
437 kfree(nic_data);
438 efx->nic_data = NULL;
439 return rc;
440 }
441
442 static int efx_ef10_free_vis(struct efx_nic *efx)
443 {
444 MCDI_DECLARE_BUF_ERR(outbuf);
445 size_t outlen;
446 int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
447 outbuf, sizeof(outbuf), &outlen);
448
449 /* -EALREADY means nothing to free, so ignore */
450 if (rc == -EALREADY)
451 rc = 0;
452 if (rc)
453 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
454 rc);
455 return rc;
456 }
457
458 #ifdef EFX_USE_PIO
459
460 static void efx_ef10_free_piobufs(struct efx_nic *efx)
461 {
462 struct efx_ef10_nic_data *nic_data = efx->nic_data;
463 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
464 unsigned int i;
465 int rc;
466
467 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
468
469 for (i = 0; i < nic_data->n_piobufs; i++) {
470 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
471 nic_data->piobuf_handle[i]);
472 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
473 NULL, 0, NULL);
474 WARN_ON(rc);
475 }
476
477 nic_data->n_piobufs = 0;
478 }
479
480 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
481 {
482 struct efx_ef10_nic_data *nic_data = efx->nic_data;
483 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
484 unsigned int i;
485 size_t outlen;
486 int rc = 0;
487
488 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
489
490 for (i = 0; i < n; i++) {
491 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
492 outbuf, sizeof(outbuf), &outlen);
493 if (rc) {
494 /* Don't display the MC error if we didn't have space
495 * for a VF.
496 */
497 if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
498 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
499 0, outbuf, outlen, rc);
500 break;
501 }
502 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
503 rc = -EIO;
504 break;
505 }
506 nic_data->piobuf_handle[i] =
507 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
508 netif_dbg(efx, probe, efx->net_dev,
509 "allocated PIO buffer %u handle %x\n", i,
510 nic_data->piobuf_handle[i]);
511 }
512
513 nic_data->n_piobufs = i;
514 if (rc)
515 efx_ef10_free_piobufs(efx);
516 return rc;
517 }
518
519 static int efx_ef10_link_piobufs(struct efx_nic *efx)
520 {
521 struct efx_ef10_nic_data *nic_data = efx->nic_data;
522 _MCDI_DECLARE_BUF(inbuf,
523 max(MC_CMD_LINK_PIOBUF_IN_LEN,
524 MC_CMD_UNLINK_PIOBUF_IN_LEN));
525 struct efx_channel *channel;
526 struct efx_tx_queue *tx_queue;
527 unsigned int offset, index;
528 int rc;
529
530 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
531 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
532
533 memset(inbuf, 0, sizeof(inbuf));
534
535 /* Link a buffer to each VI in the write-combining mapping */
536 for (index = 0; index < nic_data->n_piobufs; ++index) {
537 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
538 nic_data->piobuf_handle[index]);
539 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
540 nic_data->pio_write_vi_base + index);
541 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
542 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
543 NULL, 0, NULL);
544 if (rc) {
545 netif_err(efx, drv, efx->net_dev,
546 "failed to link VI %u to PIO buffer %u (%d)\n",
547 nic_data->pio_write_vi_base + index, index,
548 rc);
549 goto fail;
550 }
551 netif_dbg(efx, probe, efx->net_dev,
552 "linked VI %u to PIO buffer %u\n",
553 nic_data->pio_write_vi_base + index, index);
554 }
555
556 /* Link a buffer to each TX queue */
557 efx_for_each_channel(channel, efx) {
558 efx_for_each_channel_tx_queue(tx_queue, channel) {
559 /* We assign the PIO buffers to queues in
560 * reverse order to allow for the following
561 * special case.
562 */
563 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
564 tx_queue->channel->channel - 1) *
565 efx_piobuf_size);
566 index = offset / ER_DZ_TX_PIOBUF_SIZE;
567 offset = offset % ER_DZ_TX_PIOBUF_SIZE;
568
569 /* When the host page size is 4K, the first
570 * host page in the WC mapping may be within
571 * the same VI page as the last TX queue. We
572 * can only link one buffer to each VI.
573 */
574 if (tx_queue->queue == nic_data->pio_write_vi_base) {
575 BUG_ON(index != 0);
576 rc = 0;
577 } else {
578 MCDI_SET_DWORD(inbuf,
579 LINK_PIOBUF_IN_PIOBUF_HANDLE,
580 nic_data->piobuf_handle[index]);
581 MCDI_SET_DWORD(inbuf,
582 LINK_PIOBUF_IN_TXQ_INSTANCE,
583 tx_queue->queue);
584 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
585 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
586 NULL, 0, NULL);
587 }
588
589 if (rc) {
590 /* This is non-fatal; the TX path just
591 * won't use PIO for this queue
592 */
593 netif_err(efx, drv, efx->net_dev,
594 "failed to link VI %u to PIO buffer %u (%d)\n",
595 tx_queue->queue, index, rc);
596 tx_queue->piobuf = NULL;
597 } else {
598 tx_queue->piobuf =
599 nic_data->pio_write_base +
600 index * EFX_VI_PAGE_SIZE + offset;
601 tx_queue->piobuf_offset = offset;
602 netif_dbg(efx, probe, efx->net_dev,
603 "linked VI %u to PIO buffer %u offset %x addr %p\n",
604 tx_queue->queue, index,
605 tx_queue->piobuf_offset,
606 tx_queue->piobuf);
607 }
608 }
609 }
610
611 return 0;
612
613 fail:
614 while (index--) {
615 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
616 nic_data->pio_write_vi_base + index);
617 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
618 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
619 NULL, 0, NULL);
620 }
621 return rc;
622 }
623
624 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
625 {
626 struct efx_channel *channel;
627 struct efx_tx_queue *tx_queue;
628
629 /* All our existing PIO buffers went away */
630 efx_for_each_channel(channel, efx)
631 efx_for_each_channel_tx_queue(tx_queue, channel)
632 tx_queue->piobuf = NULL;
633 }
634
635 #else /* !EFX_USE_PIO */
636
637 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
638 {
639 return n == 0 ? 0 : -ENOBUFS;
640 }
641
642 static int efx_ef10_link_piobufs(struct efx_nic *efx)
643 {
644 return 0;
645 }
646
647 static void efx_ef10_free_piobufs(struct efx_nic *efx)
648 {
649 }
650
651 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
652 {
653 }
654
655 #endif /* EFX_USE_PIO */
656
657 static void efx_ef10_remove(struct efx_nic *efx)
658 {
659 struct efx_ef10_nic_data *nic_data = efx->nic_data;
660 int rc;
661
662 #ifdef CONFIG_SFC_SRIOV
663 struct efx_ef10_nic_data *nic_data_pf;
664 struct pci_dev *pci_dev_pf;
665 struct efx_nic *efx_pf;
666 struct ef10_vf *vf;
667
668 if (efx->pci_dev->is_virtfn) {
669 pci_dev_pf = efx->pci_dev->physfn;
670 if (pci_dev_pf) {
671 efx_pf = pci_get_drvdata(pci_dev_pf);
672 nic_data_pf = efx_pf->nic_data;
673 vf = nic_data_pf->vf + nic_data->vf_index;
674 vf->efx = NULL;
675 } else
676 netif_info(efx, drv, efx->net_dev,
677 "Could not get the PF id from VF\n");
678 }
679 #endif
680
681 efx_ptp_remove(efx);
682
683 efx_mcdi_mon_remove(efx);
684
685 efx_ef10_rx_free_indir_table(efx);
686
687 if (nic_data->wc_membase)
688 iounmap(nic_data->wc_membase);
689
690 rc = efx_ef10_free_vis(efx);
691 WARN_ON(rc != 0);
692
693 if (!nic_data->must_restore_piobufs)
694 efx_ef10_free_piobufs(efx);
695
696 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
697 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
698
699 efx_mcdi_fini(efx);
700 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
701 kfree(nic_data);
702 }
703
704 static int efx_ef10_probe_pf(struct efx_nic *efx)
705 {
706 return efx_ef10_probe(efx);
707 }
708
709 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
710 {
711 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
712
713 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
714 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
715 NULL, 0, NULL);
716 }
717
718 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
719 {
720 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
721
722 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
723 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
724 NULL, 0, NULL);
725 }
726
727 int efx_ef10_vport_add_mac(struct efx_nic *efx,
728 unsigned int port_id, u8 *mac)
729 {
730 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
731
732 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
733 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
734
735 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
736 sizeof(inbuf), NULL, 0, NULL);
737 }
738
739 int efx_ef10_vport_del_mac(struct efx_nic *efx,
740 unsigned int port_id, u8 *mac)
741 {
742 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
743
744 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
745 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
746
747 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
748 sizeof(inbuf), NULL, 0, NULL);
749 }
750
751 #ifdef CONFIG_SFC_SRIOV
752 static int efx_ef10_probe_vf(struct efx_nic *efx)
753 {
754 int rc;
755 struct pci_dev *pci_dev_pf;
756
757 /* If the parent PF has no VF data structure, it doesn't know about this
758 * VF so fail probe. The VF needs to be re-created. This can happen
759 * if the PF driver is unloaded while the VF is assigned to a guest.
760 */
761 pci_dev_pf = efx->pci_dev->physfn;
762 if (pci_dev_pf) {
763 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
764 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
765
766 if (!nic_data_pf->vf) {
767 netif_info(efx, drv, efx->net_dev,
768 "The VF cannot link to its parent PF; "
769 "please destroy and re-create the VF\n");
770 return -EBUSY;
771 }
772 }
773
774 rc = efx_ef10_probe(efx);
775 if (rc)
776 return rc;
777
778 rc = efx_ef10_get_vf_index(efx);
779 if (rc)
780 goto fail;
781
782 if (efx->pci_dev->is_virtfn) {
783 if (efx->pci_dev->physfn) {
784 struct efx_nic *efx_pf =
785 pci_get_drvdata(efx->pci_dev->physfn);
786 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
787 struct efx_ef10_nic_data *nic_data = efx->nic_data;
788
789 nic_data_p->vf[nic_data->vf_index].efx = efx;
790 nic_data_p->vf[nic_data->vf_index].pci_dev =
791 efx->pci_dev;
792 } else
793 netif_info(efx, drv, efx->net_dev,
794 "Could not get the PF id from VF\n");
795 }
796
797 return 0;
798
799 fail:
800 efx_ef10_remove(efx);
801 return rc;
802 }
803 #else
804 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
805 {
806 return 0;
807 }
808 #endif
809
810 static int efx_ef10_alloc_vis(struct efx_nic *efx,
811 unsigned int min_vis, unsigned int max_vis)
812 {
813 MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
814 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
815 struct efx_ef10_nic_data *nic_data = efx->nic_data;
816 size_t outlen;
817 int rc;
818
819 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
820 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
821 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
822 outbuf, sizeof(outbuf), &outlen);
823 if (rc != 0)
824 return rc;
825
826 if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
827 return -EIO;
828
829 netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
830 MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
831
832 nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
833 nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
834 return 0;
835 }
836
837 /* Note that the failure path of this function does not free
838 * resources, as this will be done by efx_ef10_remove().
839 */
840 static int efx_ef10_dimension_resources(struct efx_nic *efx)
841 {
842 struct efx_ef10_nic_data *nic_data = efx->nic_data;
843 unsigned int uc_mem_map_size, wc_mem_map_size;
844 unsigned int min_vis = max(EFX_TXQ_TYPES,
845 efx_separate_tx_channels ? 2 : 1);
846 unsigned int channel_vis, pio_write_vi_base, max_vis;
847 void __iomem *membase;
848 int rc;
849
850 channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
851
852 #ifdef EFX_USE_PIO
853 /* Try to allocate PIO buffers if wanted and if the full
854 * number of PIO buffers would be sufficient to allocate one
855 * copy-buffer per TX channel. Failure is non-fatal, as there
856 * are only a small number of PIO buffers shared between all
857 * functions of the controller.
858 */
859 if (efx_piobuf_size != 0 &&
860 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
861 efx->n_tx_channels) {
862 unsigned int n_piobufs =
863 DIV_ROUND_UP(efx->n_tx_channels,
864 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
865
866 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
867 if (rc)
868 netif_err(efx, probe, efx->net_dev,
869 "failed to allocate PIO buffers (%d)\n", rc);
870 else
871 netif_dbg(efx, probe, efx->net_dev,
872 "allocated %u PIO buffers\n", n_piobufs);
873 }
874 #else
875 nic_data->n_piobufs = 0;
876 #endif
877
878 /* PIO buffers should be mapped with write-combining enabled,
879 * and we want to make single UC and WC mappings rather than
880 * several of each (in fact that's the only option if host
881 * page size is >4K). So we may allocate some extra VIs just
882 * for writing PIO buffers through.
883 *
884 * The UC mapping contains (channel_vis - 1) complete VIs and the
885 * first half of the next VI. Then the WC mapping begins with
886 * the second half of this last VI.
887 */
888 uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
889 ER_DZ_TX_PIOBUF);
890 if (nic_data->n_piobufs) {
891 /* pio_write_vi_base rounds down to give the number of complete
892 * VIs inside the UC mapping.
893 */
894 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
895 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
896 nic_data->n_piobufs) *
897 EFX_VI_PAGE_SIZE) -
898 uc_mem_map_size);
899 max_vis = pio_write_vi_base + nic_data->n_piobufs;
900 } else {
901 pio_write_vi_base = 0;
902 wc_mem_map_size = 0;
903 max_vis = channel_vis;
904 }
905
906 /* In case the last attached driver failed to free VIs, do it now */
907 rc = efx_ef10_free_vis(efx);
908 if (rc != 0)
909 return rc;
910
911 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
912 if (rc != 0)
913 return rc;
914
915 if (nic_data->n_allocated_vis < channel_vis) {
916 netif_info(efx, drv, efx->net_dev,
917 "Could not allocate enough VIs to satisfy RSS"
918 " requirements. Performance may not be optimal.\n");
919 /* We didn't get the VIs to populate our channels.
920 * We could keep what we got but then we'd have more
921 * interrupts than we need.
922 * Instead calculate new max_channels and restart
923 */
924 efx->max_channels = nic_data->n_allocated_vis;
925 efx->max_tx_channels =
926 nic_data->n_allocated_vis / EFX_TXQ_TYPES;
927
928 efx_ef10_free_vis(efx);
929 return -EAGAIN;
930 }
931
932 /* If we didn't get enough VIs to map all the PIO buffers, free the
933 * PIO buffers
934 */
935 if (nic_data->n_piobufs &&
936 nic_data->n_allocated_vis <
937 pio_write_vi_base + nic_data->n_piobufs) {
938 netif_dbg(efx, probe, efx->net_dev,
939 "%u VIs are not sufficient to map %u PIO buffers\n",
940 nic_data->n_allocated_vis, nic_data->n_piobufs);
941 efx_ef10_free_piobufs(efx);
942 }
943
944 /* Shrink the original UC mapping of the memory BAR */
945 membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
946 if (!membase) {
947 netif_err(efx, probe, efx->net_dev,
948 "could not shrink memory BAR to %x\n",
949 uc_mem_map_size);
950 return -ENOMEM;
951 }
952 iounmap(efx->membase);
953 efx->membase = membase;
954
955 /* Set up the WC mapping if needed */
956 if (wc_mem_map_size) {
957 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
958 uc_mem_map_size,
959 wc_mem_map_size);
960 if (!nic_data->wc_membase) {
961 netif_err(efx, probe, efx->net_dev,
962 "could not allocate WC mapping of size %x\n",
963 wc_mem_map_size);
964 return -ENOMEM;
965 }
966 nic_data->pio_write_vi_base = pio_write_vi_base;
967 nic_data->pio_write_base =
968 nic_data->wc_membase +
969 (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
970 uc_mem_map_size);
971
972 rc = efx_ef10_link_piobufs(efx);
973 if (rc)
974 efx_ef10_free_piobufs(efx);
975 }
976
977 netif_dbg(efx, probe, efx->net_dev,
978 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
979 &efx->membase_phys, efx->membase, uc_mem_map_size,
980 nic_data->wc_membase, wc_mem_map_size);
981
982 return 0;
983 }
984
985 static int efx_ef10_init_nic(struct efx_nic *efx)
986 {
987 struct efx_ef10_nic_data *nic_data = efx->nic_data;
988 int rc;
989
990 if (nic_data->must_check_datapath_caps) {
991 rc = efx_ef10_init_datapath_caps(efx);
992 if (rc)
993 return rc;
994 nic_data->must_check_datapath_caps = false;
995 }
996
997 if (nic_data->must_realloc_vis) {
998 /* We cannot let the number of VIs change now */
999 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1000 nic_data->n_allocated_vis);
1001 if (rc)
1002 return rc;
1003 nic_data->must_realloc_vis = false;
1004 }
1005
1006 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1007 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1008 if (rc == 0) {
1009 rc = efx_ef10_link_piobufs(efx);
1010 if (rc)
1011 efx_ef10_free_piobufs(efx);
1012 }
1013
1014 /* Log an error on failure, but this is non-fatal */
1015 if (rc)
1016 netif_err(efx, drv, efx->net_dev,
1017 "failed to restore PIO buffers (%d)\n", rc);
1018 nic_data->must_restore_piobufs = false;
1019 }
1020
1021 /* don't fail init if RSS setup doesn't work */
1022 efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table);
1023
1024 return 0;
1025 }
1026
1027 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1028 {
1029 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1030 #ifdef CONFIG_SFC_SRIOV
1031 unsigned int i;
1032 #endif
1033
1034 /* All our allocations have been reset */
1035 nic_data->must_realloc_vis = true;
1036 nic_data->must_restore_filters = true;
1037 nic_data->must_restore_piobufs = true;
1038 efx_ef10_forget_old_piobufs(efx);
1039 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1040
1041 /* Driver-created vswitches and vports must be re-created */
1042 nic_data->must_probe_vswitching = true;
1043 nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1044 #ifdef CONFIG_SFC_SRIOV
1045 if (nic_data->vf)
1046 for (i = 0; i < efx->vf_count; i++)
1047 nic_data->vf[i].vport_id = 0;
1048 #endif
1049 }
1050
1051 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1052 {
1053 if (reason == RESET_TYPE_MC_FAILURE)
1054 return RESET_TYPE_DATAPATH;
1055
1056 return efx_mcdi_map_reset_reason(reason);
1057 }
1058
1059 static int efx_ef10_map_reset_flags(u32 *flags)
1060 {
1061 enum {
1062 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1063 ETH_RESET_SHARED_SHIFT),
1064 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1065 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1066 ETH_RESET_PHY | ETH_RESET_MGMT) <<
1067 ETH_RESET_SHARED_SHIFT)
1068 };
1069
1070 /* We assume for now that our PCI function is permitted to
1071 * reset everything.
1072 */
1073
1074 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1075 *flags &= ~EF10_RESET_MC;
1076 return RESET_TYPE_WORLD;
1077 }
1078
1079 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1080 *flags &= ~EF10_RESET_PORT;
1081 return RESET_TYPE_ALL;
1082 }
1083
1084 /* no invisible reset implemented */
1085
1086 return -EINVAL;
1087 }
1088
1089 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1090 {
1091 int rc = efx_mcdi_reset(efx, reset_type);
1092
1093 /* Unprivileged functions return -EPERM, but need to return success
1094 * here so that the datapath is brought back up.
1095 */
1096 if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1097 rc = 0;
1098
1099 /* If it was a port reset, trigger reallocation of MC resources.
1100 * Note that on an MC reset nothing needs to be done now because we'll
1101 * detect the MC reset later and handle it then.
1102 * For an FLR, we never get an MC reset event, but the MC has reset all
1103 * resources assigned to us, so we have to trigger reallocation now.
1104 */
1105 if ((reset_type == RESET_TYPE_ALL ||
1106 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1107 efx_ef10_reset_mc_allocations(efx);
1108 return rc;
1109 }
1110
1111 #define EF10_DMA_STAT(ext_name, mcdi_name) \
1112 [EF10_STAT_ ## ext_name] = \
1113 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1114 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1115 [EF10_STAT_ ## int_name] = \
1116 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1117 #define EF10_OTHER_STAT(ext_name) \
1118 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1119 #define GENERIC_SW_STAT(ext_name) \
1120 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1121
1122 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1123 EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1124 EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1125 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1126 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1127 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1128 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1129 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1130 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1131 EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1132 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1133 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1134 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1135 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1136 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1137 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1138 EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1139 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1140 EF10_OTHER_STAT(port_rx_good_bytes),
1141 EF10_OTHER_STAT(port_rx_bad_bytes),
1142 EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1143 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1144 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1145 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1146 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1147 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1148 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1149 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1150 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1151 EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1152 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1153 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1154 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1155 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1156 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1157 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1158 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1159 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1160 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1161 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1162 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1163 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1164 GENERIC_SW_STAT(rx_nodesc_trunc),
1165 GENERIC_SW_STAT(rx_noskb_drops),
1166 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1167 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1168 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1169 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1170 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1171 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1172 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1173 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1174 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1175 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1176 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1177 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1178 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1179 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1180 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1181 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1182 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1183 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1184 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1185 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1186 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1187 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1188 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1189 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1190 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1191 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1192 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1193 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1194 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1195 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1196 };
1197
1198 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1199 (1ULL << EF10_STAT_port_tx_packets) | \
1200 (1ULL << EF10_STAT_port_tx_pause) | \
1201 (1ULL << EF10_STAT_port_tx_unicast) | \
1202 (1ULL << EF10_STAT_port_tx_multicast) | \
1203 (1ULL << EF10_STAT_port_tx_broadcast) | \
1204 (1ULL << EF10_STAT_port_rx_bytes) | \
1205 (1ULL << \
1206 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1207 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1208 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1209 (1ULL << EF10_STAT_port_rx_packets) | \
1210 (1ULL << EF10_STAT_port_rx_good) | \
1211 (1ULL << EF10_STAT_port_rx_bad) | \
1212 (1ULL << EF10_STAT_port_rx_pause) | \
1213 (1ULL << EF10_STAT_port_rx_control) | \
1214 (1ULL << EF10_STAT_port_rx_unicast) | \
1215 (1ULL << EF10_STAT_port_rx_multicast) | \
1216 (1ULL << EF10_STAT_port_rx_broadcast) | \
1217 (1ULL << EF10_STAT_port_rx_lt64) | \
1218 (1ULL << EF10_STAT_port_rx_64) | \
1219 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1220 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1221 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1222 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1223 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1224 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1225 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1226 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1227 (1ULL << EF10_STAT_port_rx_overflow) | \
1228 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1229 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1230 (1ULL << GENERIC_STAT_rx_noskb_drops))
1231
1232 /* These statistics are only provided by the 10G MAC. For a 10G/40G
1233 * switchable port we do not expose these because they might not
1234 * include all the packets they should.
1235 */
1236 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1237 (1ULL << EF10_STAT_port_tx_lt64) | \
1238 (1ULL << EF10_STAT_port_tx_64) | \
1239 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1240 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1241 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1242 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1243 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1244 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1245
1246 /* These statistics are only provided by the 40G MAC. For a 10G/40G
1247 * switchable port we do expose these because the errors will otherwise
1248 * be silent.
1249 */
1250 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1251 (1ULL << EF10_STAT_port_rx_length_error))
1252
1253 /* These statistics are only provided if the firmware supports the
1254 * capability PM_AND_RXDP_COUNTERS.
1255 */
1256 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
1257 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1258 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1259 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1260 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1261 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1262 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1263 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1264 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1265 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1266 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1267 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1268 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1269
1270 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1271 {
1272 u64 raw_mask = HUNT_COMMON_STAT_MASK;
1273 u32 port_caps = efx_mcdi_phy_get_caps(efx);
1274 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1275
1276 if (!(efx->mcdi->fn_flags &
1277 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1278 return 0;
1279
1280 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
1281 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1282 else
1283 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1284
1285 if (nic_data->datapath_caps &
1286 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1287 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1288
1289 return raw_mask;
1290 }
1291
1292 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1293 {
1294 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1295 u64 raw_mask[2];
1296
1297 raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1298
1299 /* Only show vadaptor stats when EVB capability is present */
1300 if (nic_data->datapath_caps &
1301 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1302 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1303 raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1304 } else {
1305 raw_mask[1] = 0;
1306 }
1307
1308 #if BITS_PER_LONG == 64
1309 mask[0] = raw_mask[0];
1310 mask[1] = raw_mask[1];
1311 #else
1312 mask[0] = raw_mask[0] & 0xffffffff;
1313 mask[1] = raw_mask[0] >> 32;
1314 mask[2] = raw_mask[1] & 0xffffffff;
1315 mask[3] = raw_mask[1] >> 32;
1316 #endif
1317 }
1318
1319 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1320 {
1321 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1322
1323 efx_ef10_get_stat_mask(efx, mask);
1324 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1325 mask, names);
1326 }
1327
1328 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1329 struct rtnl_link_stats64 *core_stats)
1330 {
1331 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1332 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1333 u64 *stats = nic_data->stats;
1334 size_t stats_count = 0, index;
1335
1336 efx_ef10_get_stat_mask(efx, mask);
1337
1338 if (full_stats) {
1339 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1340 if (efx_ef10_stat_desc[index].name) {
1341 *full_stats++ = stats[index];
1342 ++stats_count;
1343 }
1344 }
1345 }
1346
1347 if (!core_stats)
1348 return stats_count;
1349
1350 if (nic_data->datapath_caps &
1351 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1352 /* Use vadaptor stats. */
1353 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1354 stats[EF10_STAT_rx_multicast] +
1355 stats[EF10_STAT_rx_broadcast];
1356 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1357 stats[EF10_STAT_tx_multicast] +
1358 stats[EF10_STAT_tx_broadcast];
1359 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1360 stats[EF10_STAT_rx_multicast_bytes] +
1361 stats[EF10_STAT_rx_broadcast_bytes];
1362 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1363 stats[EF10_STAT_tx_multicast_bytes] +
1364 stats[EF10_STAT_tx_broadcast_bytes];
1365 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1366 stats[GENERIC_STAT_rx_noskb_drops];
1367 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1368 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1369 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1370 core_stats->rx_errors = core_stats->rx_crc_errors;
1371 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1372 } else {
1373 /* Use port stats. */
1374 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1375 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1376 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1377 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1378 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1379 stats[GENERIC_STAT_rx_nodesc_trunc] +
1380 stats[GENERIC_STAT_rx_noskb_drops];
1381 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1382 core_stats->rx_length_errors =
1383 stats[EF10_STAT_port_rx_gtjumbo] +
1384 stats[EF10_STAT_port_rx_length_error];
1385 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1386 core_stats->rx_frame_errors =
1387 stats[EF10_STAT_port_rx_align_error];
1388 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1389 core_stats->rx_errors = (core_stats->rx_length_errors +
1390 core_stats->rx_crc_errors +
1391 core_stats->rx_frame_errors);
1392 }
1393
1394 return stats_count;
1395 }
1396
1397 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1398 {
1399 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1400 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1401 __le64 generation_start, generation_end;
1402 u64 *stats = nic_data->stats;
1403 __le64 *dma_stats;
1404
1405 efx_ef10_get_stat_mask(efx, mask);
1406
1407 dma_stats = efx->stats_buffer.addr;
1408 nic_data = efx->nic_data;
1409
1410 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1411 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1412 return 0;
1413 rmb();
1414 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1415 stats, efx->stats_buffer.addr, false);
1416 rmb();
1417 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1418 if (generation_end != generation_start)
1419 return -EAGAIN;
1420
1421 /* Update derived statistics */
1422 efx_nic_fix_nodesc_drop_stat(efx,
1423 &stats[EF10_STAT_port_rx_nodesc_drops]);
1424 stats[EF10_STAT_port_rx_good_bytes] =
1425 stats[EF10_STAT_port_rx_bytes] -
1426 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1427 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1428 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1429 efx_update_sw_stats(efx, stats);
1430 return 0;
1431 }
1432
1433
1434 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1435 struct rtnl_link_stats64 *core_stats)
1436 {
1437 int retry;
1438
1439 /* If we're unlucky enough to read statistics during the DMA, wait
1440 * up to 10ms for it to finish (typically takes <500us)
1441 */
1442 for (retry = 0; retry < 100; ++retry) {
1443 if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1444 break;
1445 udelay(100);
1446 }
1447
1448 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1449 }
1450
1451 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1452 {
1453 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1454 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1455 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1456 __le64 generation_start, generation_end;
1457 u64 *stats = nic_data->stats;
1458 u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1459 struct efx_buffer stats_buf;
1460 __le64 *dma_stats;
1461 int rc;
1462
1463 spin_unlock_bh(&efx->stats_lock);
1464
1465 if (in_interrupt()) {
1466 /* If in atomic context, cannot update stats. Just update the
1467 * software stats and return so the caller can continue.
1468 */
1469 spin_lock_bh(&efx->stats_lock);
1470 efx_update_sw_stats(efx, stats);
1471 return 0;
1472 }
1473
1474 efx_ef10_get_stat_mask(efx, mask);
1475
1476 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1477 if (rc) {
1478 spin_lock_bh(&efx->stats_lock);
1479 return rc;
1480 }
1481
1482 dma_stats = stats_buf.addr;
1483 dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1484
1485 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1486 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1487 MAC_STATS_IN_DMA, 1);
1488 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1489 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1490
1491 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1492 NULL, 0, NULL);
1493 spin_lock_bh(&efx->stats_lock);
1494 if (rc) {
1495 /* Expect ENOENT if DMA queues have not been set up */
1496 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1497 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1498 sizeof(inbuf), NULL, 0, rc);
1499 goto out;
1500 }
1501
1502 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1503 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1504 WARN_ON_ONCE(1);
1505 goto out;
1506 }
1507 rmb();
1508 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1509 stats, stats_buf.addr, false);
1510 rmb();
1511 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1512 if (generation_end != generation_start) {
1513 rc = -EAGAIN;
1514 goto out;
1515 }
1516
1517 efx_update_sw_stats(efx, stats);
1518 out:
1519 efx_nic_free_buffer(efx, &stats_buf);
1520 return rc;
1521 }
1522
1523 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1524 struct rtnl_link_stats64 *core_stats)
1525 {
1526 if (efx_ef10_try_update_nic_stats_vf(efx))
1527 return 0;
1528
1529 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1530 }
1531
1532 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1533 {
1534 struct efx_nic *efx = channel->efx;
1535 unsigned int mode, value;
1536 efx_dword_t timer_cmd;
1537
1538 if (channel->irq_moderation) {
1539 mode = 3;
1540 value = channel->irq_moderation - 1;
1541 } else {
1542 mode = 0;
1543 value = 0;
1544 }
1545
1546 if (EFX_EF10_WORKAROUND_35388(efx)) {
1547 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1548 EFE_DD_EVQ_IND_TIMER_FLAGS,
1549 ERF_DD_EVQ_IND_TIMER_MODE, mode,
1550 ERF_DD_EVQ_IND_TIMER_VAL, value);
1551 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1552 channel->channel);
1553 } else {
1554 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1555 ERF_DZ_TC_TIMER_VAL, value);
1556 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1557 channel->channel);
1558 }
1559 }
1560
1561 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1562 struct ethtool_wolinfo *wol) {}
1563
1564 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1565 {
1566 return -EOPNOTSUPP;
1567 }
1568
1569 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1570 {
1571 wol->supported = 0;
1572 wol->wolopts = 0;
1573 memset(&wol->sopass, 0, sizeof(wol->sopass));
1574 }
1575
1576 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1577 {
1578 if (type != 0)
1579 return -EINVAL;
1580 return 0;
1581 }
1582
1583 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1584 const efx_dword_t *hdr, size_t hdr_len,
1585 const efx_dword_t *sdu, size_t sdu_len)
1586 {
1587 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1588 u8 *pdu = nic_data->mcdi_buf.addr;
1589
1590 memcpy(pdu, hdr, hdr_len);
1591 memcpy(pdu + hdr_len, sdu, sdu_len);
1592 wmb();
1593
1594 /* The hardware provides 'low' and 'high' (doorbell) registers
1595 * for passing the 64-bit address of an MCDI request to
1596 * firmware. However the dwords are swapped by firmware. The
1597 * least significant bits of the doorbell are then 0 for all
1598 * MCDI requests due to alignment.
1599 */
1600 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1601 ER_DZ_MC_DB_LWRD);
1602 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1603 ER_DZ_MC_DB_HWRD);
1604 }
1605
1606 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1607 {
1608 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1609 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1610
1611 rmb();
1612 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1613 }
1614
1615 static void
1616 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1617 size_t offset, size_t outlen)
1618 {
1619 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1620 const u8 *pdu = nic_data->mcdi_buf.addr;
1621
1622 memcpy(outbuf, pdu + offset, outlen);
1623 }
1624
1625 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
1626 {
1627 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1628
1629 /* All our allocations have been reset */
1630 efx_ef10_reset_mc_allocations(efx);
1631
1632 /* The datapath firmware might have been changed */
1633 nic_data->must_check_datapath_caps = true;
1634
1635 /* MAC statistics have been cleared on the NIC; clear the local
1636 * statistic that we update with efx_update_diff_stat().
1637 */
1638 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
1639 }
1640
1641 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1642 {
1643 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1644 int rc;
1645
1646 rc = efx_ef10_get_warm_boot_count(efx);
1647 if (rc < 0) {
1648 /* The firmware is presumably in the process of
1649 * rebooting. However, we are supposed to report each
1650 * reboot just once, so we must only do that once we
1651 * can read and store the updated warm boot count.
1652 */
1653 return 0;
1654 }
1655
1656 if (rc == nic_data->warm_boot_count)
1657 return 0;
1658
1659 nic_data->warm_boot_count = rc;
1660 efx_ef10_mcdi_reboot_detected(efx);
1661
1662 return -EIO;
1663 }
1664
1665 /* Handle an MSI interrupt
1666 *
1667 * Handle an MSI hardware interrupt. This routine schedules event
1668 * queue processing. No interrupt acknowledgement cycle is necessary.
1669 * Also, we never need to check that the interrupt is for us, since
1670 * MSI interrupts cannot be shared.
1671 */
1672 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1673 {
1674 struct efx_msi_context *context = dev_id;
1675 struct efx_nic *efx = context->efx;
1676
1677 netif_vdbg(efx, intr, efx->net_dev,
1678 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1679
1680 if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1681 /* Note test interrupts */
1682 if (context->index == efx->irq_level)
1683 efx->last_irq_cpu = raw_smp_processor_id();
1684
1685 /* Schedule processing of the channel */
1686 efx_schedule_channel_irq(efx->channel[context->index]);
1687 }
1688
1689 return IRQ_HANDLED;
1690 }
1691
1692 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1693 {
1694 struct efx_nic *efx = dev_id;
1695 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1696 struct efx_channel *channel;
1697 efx_dword_t reg;
1698 u32 queues;
1699
1700 /* Read the ISR which also ACKs the interrupts */
1701 efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1702 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1703
1704 if (queues == 0)
1705 return IRQ_NONE;
1706
1707 if (likely(soft_enabled)) {
1708 /* Note test interrupts */
1709 if (queues & (1U << efx->irq_level))
1710 efx->last_irq_cpu = raw_smp_processor_id();
1711
1712 efx_for_each_channel(channel, efx) {
1713 if (queues & 1)
1714 efx_schedule_channel_irq(channel);
1715 queues >>= 1;
1716 }
1717 }
1718
1719 netif_vdbg(efx, intr, efx->net_dev,
1720 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1721 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1722
1723 return IRQ_HANDLED;
1724 }
1725
1726 static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1727 {
1728 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1729
1730 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1731
1732 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1733 (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1734 inbuf, sizeof(inbuf), NULL, 0, NULL);
1735 }
1736
1737 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1738 {
1739 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1740 (tx_queue->ptr_mask + 1) *
1741 sizeof(efx_qword_t),
1742 GFP_KERNEL);
1743 }
1744
1745 /* This writes to the TX_DESC_WPTR and also pushes data */
1746 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1747 const efx_qword_t *txd)
1748 {
1749 unsigned int write_ptr;
1750 efx_oword_t reg;
1751
1752 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1753 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1754 reg.qword[0] = *txd;
1755 efx_writeo_page(tx_queue->efx, &reg,
1756 ER_DZ_TX_DESC_UPD, tx_queue->queue);
1757 }
1758
1759 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1760 {
1761 MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1762 EFX_BUF_SIZE));
1763 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1764 size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1765 struct efx_channel *channel = tx_queue->channel;
1766 struct efx_nic *efx = tx_queue->efx;
1767 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1768 size_t inlen;
1769 dma_addr_t dma_addr;
1770 efx_qword_t *txd;
1771 int rc;
1772 int i;
1773 BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
1774
1775 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1776 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1777 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1778 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1779 MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1780 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1781 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1782 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1783 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
1784
1785 dma_addr = tx_queue->txd.buf.dma_addr;
1786
1787 netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1788 tx_queue->queue, entries, (u64)dma_addr);
1789
1790 for (i = 0; i < entries; ++i) {
1791 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1792 dma_addr += EFX_BUF_SIZE;
1793 }
1794
1795 inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1796
1797 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1798 NULL, 0, NULL);
1799 if (rc)
1800 goto fail;
1801
1802 /* A previous user of this TX queue might have set us up the
1803 * bomb by writing a descriptor to the TX push collector but
1804 * not the doorbell. (Each collector belongs to a port, not a
1805 * queue or function, so cannot easily be reset.) We must
1806 * attempt to push a no-op descriptor in its place.
1807 */
1808 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1809 tx_queue->insert_count = 1;
1810 txd = efx_tx_desc(tx_queue, 0);
1811 EFX_POPULATE_QWORD_4(*txd,
1812 ESF_DZ_TX_DESC_IS_OPT, true,
1813 ESF_DZ_TX_OPTION_TYPE,
1814 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1815 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1816 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1817 tx_queue->write_count = 1;
1818
1819 if (nic_data->datapath_caps &
1820 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
1821 tx_queue->tso_version = 1;
1822 }
1823
1824 wmb();
1825 efx_ef10_push_tx_desc(tx_queue, txd);
1826
1827 return;
1828
1829 fail:
1830 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1831 tx_queue->queue);
1832 }
1833
1834 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1835 {
1836 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1837 MCDI_DECLARE_BUF_ERR(outbuf);
1838 struct efx_nic *efx = tx_queue->efx;
1839 size_t outlen;
1840 int rc;
1841
1842 MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1843 tx_queue->queue);
1844
1845 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1846 outbuf, sizeof(outbuf), &outlen);
1847
1848 if (rc && rc != -EALREADY)
1849 goto fail;
1850
1851 return;
1852
1853 fail:
1854 efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1855 outbuf, outlen, rc);
1856 }
1857
1858 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1859 {
1860 efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1861 }
1862
1863 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1864 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1865 {
1866 unsigned int write_ptr;
1867 efx_dword_t reg;
1868
1869 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1870 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1871 efx_writed_page(tx_queue->efx, &reg,
1872 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1873 }
1874
1875 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1876 {
1877 unsigned int old_write_count = tx_queue->write_count;
1878 struct efx_tx_buffer *buffer;
1879 unsigned int write_ptr;
1880 efx_qword_t *txd;
1881
1882 tx_queue->xmit_more_available = false;
1883 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
1884 return;
1885
1886 do {
1887 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1888 buffer = &tx_queue->buffer[write_ptr];
1889 txd = efx_tx_desc(tx_queue, write_ptr);
1890 ++tx_queue->write_count;
1891
1892 /* Create TX descriptor ring entry */
1893 if (buffer->flags & EFX_TX_BUF_OPTION) {
1894 *txd = buffer->option;
1895 } else {
1896 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1897 EFX_POPULATE_QWORD_3(
1898 *txd,
1899 ESF_DZ_TX_KER_CONT,
1900 buffer->flags & EFX_TX_BUF_CONT,
1901 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1902 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1903 }
1904 } while (tx_queue->write_count != tx_queue->insert_count);
1905
1906 wmb(); /* Ensure descriptors are written before they are fetched */
1907
1908 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1909 txd = efx_tx_desc(tx_queue,
1910 old_write_count & tx_queue->ptr_mask);
1911 efx_ef10_push_tx_desc(tx_queue, txd);
1912 ++tx_queue->pushes;
1913 } else {
1914 efx_ef10_notify_tx_desc(tx_queue);
1915 }
1916 }
1917
1918 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
1919 bool exclusive, unsigned *context_size)
1920 {
1921 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1922 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1923 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1924 size_t outlen;
1925 int rc;
1926 u32 alloc_type = exclusive ?
1927 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
1928 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
1929 unsigned rss_spread = exclusive ?
1930 efx->rss_spread :
1931 min(rounddown_pow_of_two(efx->rss_spread),
1932 EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
1933
1934 if (!exclusive && rss_spread == 1) {
1935 *context = EFX_EF10_RSS_CONTEXT_INVALID;
1936 if (context_size)
1937 *context_size = 1;
1938 return 0;
1939 }
1940
1941 if (nic_data->datapath_caps &
1942 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
1943 return -EOPNOTSUPP;
1944
1945 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1946 nic_data->vport_id);
1947 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
1948 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
1949
1950 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1951 outbuf, sizeof(outbuf), &outlen);
1952 if (rc != 0)
1953 return rc;
1954
1955 if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1956 return -EIO;
1957
1958 *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1959
1960 if (context_size)
1961 *context_size = rss_spread;
1962
1963 return 0;
1964 }
1965
1966 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1967 {
1968 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1969 int rc;
1970
1971 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1972 context);
1973
1974 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1975 NULL, 0, NULL);
1976 WARN_ON(rc != 0);
1977 }
1978
1979 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
1980 const u32 *rx_indir_table)
1981 {
1982 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1983 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1984 int i, rc;
1985
1986 MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1987 context);
1988 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1989 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1990
1991 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1992 MCDI_PTR(tablebuf,
1993 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1994 (u8) rx_indir_table[i];
1995
1996 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1997 sizeof(tablebuf), NULL, 0, NULL);
1998 if (rc != 0)
1999 return rc;
2000
2001 MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2002 context);
2003 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2004 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2005 for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2006 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
2007 efx->rx_hash_key[i];
2008
2009 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2010 sizeof(keybuf), NULL, 0, NULL);
2011 }
2012
2013 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2014 {
2015 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2016
2017 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2018 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
2019 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
2020 }
2021
2022 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2023 unsigned *context_size)
2024 {
2025 u32 new_rx_rss_context;
2026 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2027 int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2028 false, context_size);
2029
2030 if (rc != 0)
2031 return rc;
2032
2033 nic_data->rx_rss_context = new_rx_rss_context;
2034 nic_data->rx_rss_context_exclusive = false;
2035 efx_set_default_rx_indir_table(efx);
2036 return 0;
2037 }
2038
2039 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2040 const u32 *rx_indir_table)
2041 {
2042 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2043 int rc;
2044 u32 new_rx_rss_context;
2045
2046 if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
2047 !nic_data->rx_rss_context_exclusive) {
2048 rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2049 true, NULL);
2050 if (rc == -EOPNOTSUPP)
2051 return rc;
2052 else if (rc != 0)
2053 goto fail1;
2054 } else {
2055 new_rx_rss_context = nic_data->rx_rss_context;
2056 }
2057
2058 rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2059 rx_indir_table);
2060 if (rc != 0)
2061 goto fail2;
2062
2063 if (nic_data->rx_rss_context != new_rx_rss_context)
2064 efx_ef10_rx_free_indir_table(efx);
2065 nic_data->rx_rss_context = new_rx_rss_context;
2066 nic_data->rx_rss_context_exclusive = true;
2067 if (rx_indir_table != efx->rx_indir_table)
2068 memcpy(efx->rx_indir_table, rx_indir_table,
2069 sizeof(efx->rx_indir_table));
2070 return 0;
2071
2072 fail2:
2073 if (new_rx_rss_context != nic_data->rx_rss_context)
2074 efx_ef10_free_rss_context(efx, new_rx_rss_context);
2075 fail1:
2076 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2077 return rc;
2078 }
2079
2080 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2081 const u32 *rx_indir_table)
2082 {
2083 int rc;
2084
2085 if (efx->rss_spread == 1)
2086 return 0;
2087
2088 rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table);
2089
2090 if (rc == -ENOBUFS && !user) {
2091 unsigned context_size;
2092 bool mismatch = false;
2093 size_t i;
2094
2095 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2096 i++)
2097 mismatch = rx_indir_table[i] !=
2098 ethtool_rxfh_indir_default(i, efx->rss_spread);
2099
2100 rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2101 if (rc == 0) {
2102 if (context_size != efx->rss_spread)
2103 netif_warn(efx, probe, efx->net_dev,
2104 "Could not allocate an exclusive RSS"
2105 " context; allocated a shared one of"
2106 " different size."
2107 " Wanted %u, got %u.\n",
2108 efx->rss_spread, context_size);
2109 else if (mismatch)
2110 netif_warn(efx, probe, efx->net_dev,
2111 "Could not allocate an exclusive RSS"
2112 " context; allocated a shared one but"
2113 " could not apply custom"
2114 " indirection.\n");
2115 else
2116 netif_info(efx, probe, efx->net_dev,
2117 "Could not allocate an exclusive RSS"
2118 " context; allocated a shared one.\n");
2119 }
2120 }
2121 return rc;
2122 }
2123
2124 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2125 const u32 *rx_indir_table
2126 __attribute__ ((unused)))
2127 {
2128 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2129
2130 if (user)
2131 return -EOPNOTSUPP;
2132 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2133 return 0;
2134 return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2135 }
2136
2137 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2138 {
2139 return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2140 (rx_queue->ptr_mask + 1) *
2141 sizeof(efx_qword_t),
2142 GFP_KERNEL);
2143 }
2144
2145 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2146 {
2147 MCDI_DECLARE_BUF(inbuf,
2148 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2149 EFX_BUF_SIZE));
2150 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2151 size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2152 struct efx_nic *efx = rx_queue->efx;
2153 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2154 size_t inlen;
2155 dma_addr_t dma_addr;
2156 int rc;
2157 int i;
2158 BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2159
2160 rx_queue->scatter_n = 0;
2161 rx_queue->scatter_len = 0;
2162
2163 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2164 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2165 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2166 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2167 efx_rx_queue_index(rx_queue));
2168 MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2169 INIT_RXQ_IN_FLAG_PREFIX, 1,
2170 INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2171 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2172 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2173
2174 dma_addr = rx_queue->rxd.buf.dma_addr;
2175
2176 netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2177 efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2178
2179 for (i = 0; i < entries; ++i) {
2180 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2181 dma_addr += EFX_BUF_SIZE;
2182 }
2183
2184 inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2185
2186 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2187 NULL, 0, NULL);
2188 if (rc)
2189 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2190 efx_rx_queue_index(rx_queue));
2191 }
2192
2193 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2194 {
2195 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2196 MCDI_DECLARE_BUF_ERR(outbuf);
2197 struct efx_nic *efx = rx_queue->efx;
2198 size_t outlen;
2199 int rc;
2200
2201 MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2202 efx_rx_queue_index(rx_queue));
2203
2204 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2205 outbuf, sizeof(outbuf), &outlen);
2206
2207 if (rc && rc != -EALREADY)
2208 goto fail;
2209
2210 return;
2211
2212 fail:
2213 efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2214 outbuf, outlen, rc);
2215 }
2216
2217 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2218 {
2219 efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2220 }
2221
2222 /* This creates an entry in the RX descriptor queue */
2223 static inline void
2224 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2225 {
2226 struct efx_rx_buffer *rx_buf;
2227 efx_qword_t *rxd;
2228
2229 rxd = efx_rx_desc(rx_queue, index);
2230 rx_buf = efx_rx_buffer(rx_queue, index);
2231 EFX_POPULATE_QWORD_2(*rxd,
2232 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2233 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2234 }
2235
2236 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2237 {
2238 struct efx_nic *efx = rx_queue->efx;
2239 unsigned int write_count;
2240 efx_dword_t reg;
2241
2242 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2243 write_count = rx_queue->added_count & ~7;
2244 if (rx_queue->notified_count == write_count)
2245 return;
2246
2247 do
2248 efx_ef10_build_rx_desc(
2249 rx_queue,
2250 rx_queue->notified_count & rx_queue->ptr_mask);
2251 while (++rx_queue->notified_count != write_count);
2252
2253 wmb();
2254 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2255 write_count & rx_queue->ptr_mask);
2256 efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2257 efx_rx_queue_index(rx_queue));
2258 }
2259
2260 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2261
2262 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2263 {
2264 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2265 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2266 efx_qword_t event;
2267
2268 EFX_POPULATE_QWORD_2(event,
2269 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2270 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2271
2272 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2273
2274 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2275 * already swapped the data to little-endian order.
2276 */
2277 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2278 sizeof(efx_qword_t));
2279
2280 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2281 inbuf, sizeof(inbuf), 0,
2282 efx_ef10_rx_defer_refill_complete, 0);
2283 }
2284
2285 static void
2286 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2287 int rc, efx_dword_t *outbuf,
2288 size_t outlen_actual)
2289 {
2290 /* nothing to do */
2291 }
2292
2293 static int efx_ef10_ev_probe(struct efx_channel *channel)
2294 {
2295 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2296 (channel->eventq_mask + 1) *
2297 sizeof(efx_qword_t),
2298 GFP_KERNEL);
2299 }
2300
2301 static void efx_ef10_ev_fini(struct efx_channel *channel)
2302 {
2303 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2304 MCDI_DECLARE_BUF_ERR(outbuf);
2305 struct efx_nic *efx = channel->efx;
2306 size_t outlen;
2307 int rc;
2308
2309 MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
2310
2311 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
2312 outbuf, sizeof(outbuf), &outlen);
2313
2314 if (rc && rc != -EALREADY)
2315 goto fail;
2316
2317 return;
2318
2319 fail:
2320 efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
2321 outbuf, outlen, rc);
2322 }
2323
2324 static int efx_ef10_ev_init(struct efx_channel *channel)
2325 {
2326 MCDI_DECLARE_BUF(inbuf,
2327 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
2328 EFX_BUF_SIZE));
2329 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
2330 size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
2331 struct efx_nic *efx = channel->efx;
2332 struct efx_ef10_nic_data *nic_data;
2333 bool supports_rx_merge;
2334 size_t inlen, outlen;
2335 unsigned int enabled, implemented;
2336 dma_addr_t dma_addr;
2337 int rc;
2338 int i;
2339
2340 nic_data = efx->nic_data;
2341 supports_rx_merge =
2342 !!(nic_data->datapath_caps &
2343 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2344
2345 /* Fill event queue with all ones (i.e. empty events) */
2346 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
2347
2348 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
2349 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
2350 /* INIT_EVQ expects index in vector table, not absolute */
2351 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
2352 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
2353 INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
2354 INIT_EVQ_IN_FLAG_RX_MERGE, 1,
2355 INIT_EVQ_IN_FLAG_TX_MERGE, 1,
2356 INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
2357 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
2358 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
2359 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
2360 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
2361 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
2362 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
2363 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
2364
2365 dma_addr = channel->eventq.buf.dma_addr;
2366 for (i = 0; i < entries; ++i) {
2367 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
2368 dma_addr += EFX_BUF_SIZE;
2369 }
2370
2371 inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
2372
2373 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
2374 outbuf, sizeof(outbuf), &outlen);
2375 /* IRQ return is ignored */
2376 if (channel->channel || rc)
2377 return rc;
2378
2379 /* Successfully created event queue on channel 0 */
2380 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2381 if (rc == -ENOSYS) {
2382 /* GET_WORKAROUNDS was implemented before the bug26807
2383 * workaround, thus the latter must be unavailable in this fw
2384 */
2385 nic_data->workaround_26807 = false;
2386 rc = 0;
2387 } else if (rc) {
2388 goto fail;
2389 } else {
2390 nic_data->workaround_26807 =
2391 !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2392
2393 if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
2394 !nic_data->workaround_26807) {
2395 unsigned int flags;
2396
2397 rc = efx_mcdi_set_workaround(efx,
2398 MC_CMD_WORKAROUND_BUG26807,
2399 true, &flags);
2400
2401 if (!rc) {
2402 if (flags &
2403 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2404 netif_info(efx, drv, efx->net_dev,
2405 "other functions on NIC have been reset\n");
2406
2407 /* With MCFW v4.6.x and earlier, the
2408 * boot count will have incremented,
2409 * so re-read the warm_boot_count
2410 * value now to ensure this function
2411 * doesn't think it has changed next
2412 * time it checks.
2413 */
2414 rc = efx_ef10_get_warm_boot_count(efx);
2415 if (rc >= 0) {
2416 nic_data->warm_boot_count = rc;
2417 rc = 0;
2418 }
2419 }
2420 nic_data->workaround_26807 = true;
2421 } else if (rc == -EPERM) {
2422 rc = 0;
2423 }
2424 }
2425 }
2426
2427 if (!rc)
2428 return 0;
2429
2430 fail:
2431 efx_ef10_ev_fini(channel);
2432 return rc;
2433 }
2434
2435 static void efx_ef10_ev_remove(struct efx_channel *channel)
2436 {
2437 efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
2438 }
2439
2440 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2441 unsigned int rx_queue_label)
2442 {
2443 struct efx_nic *efx = rx_queue->efx;
2444
2445 netif_info(efx, hw, efx->net_dev,
2446 "rx event arrived on queue %d labeled as queue %u\n",
2447 efx_rx_queue_index(rx_queue), rx_queue_label);
2448
2449 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2450 }
2451
2452 static void
2453 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2454 unsigned int actual, unsigned int expected)
2455 {
2456 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2457 struct efx_nic *efx = rx_queue->efx;
2458
2459 netif_info(efx, hw, efx->net_dev,
2460 "dropped %d events (index=%d expected=%d)\n",
2461 dropped, actual, expected);
2462
2463 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2464 }
2465
2466 /* partially received RX was aborted. clean up. */
2467 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2468 {
2469 unsigned int rx_desc_ptr;
2470
2471 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2472 "scattered RX aborted (dropping %u buffers)\n",
2473 rx_queue->scatter_n);
2474
2475 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2476
2477 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2478 0, EFX_RX_PKT_DISCARD);
2479
2480 rx_queue->removed_count += rx_queue->scatter_n;
2481 rx_queue->scatter_n = 0;
2482 rx_queue->scatter_len = 0;
2483 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2484 }
2485
2486 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2487 const efx_qword_t *event)
2488 {
2489 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
2490 unsigned int n_descs, n_packets, i;
2491 struct efx_nic *efx = channel->efx;
2492 struct efx_rx_queue *rx_queue;
2493 bool rx_cont;
2494 u16 flags = 0;
2495
2496 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2497 return 0;
2498
2499 /* Basic packet information */
2500 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2501 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2502 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2503 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
2504 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2505
2506 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2507 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2508 EFX_QWORD_FMT "\n",
2509 EFX_QWORD_VAL(*event));
2510
2511 rx_queue = efx_channel_get_rx_queue(channel);
2512
2513 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2514 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2515
2516 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2517 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2518
2519 if (n_descs != rx_queue->scatter_n + 1) {
2520 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2521
2522 /* detect rx abort */
2523 if (unlikely(n_descs == rx_queue->scatter_n)) {
2524 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2525 netdev_WARN(efx->net_dev,
2526 "invalid RX abort: scatter_n=%u event="
2527 EFX_QWORD_FMT "\n",
2528 rx_queue->scatter_n,
2529 EFX_QWORD_VAL(*event));
2530 efx_ef10_handle_rx_abort(rx_queue);
2531 return 0;
2532 }
2533
2534 /* Check that RX completion merging is valid, i.e.
2535 * the current firmware supports it and this is a
2536 * non-scattered packet.
2537 */
2538 if (!(nic_data->datapath_caps &
2539 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2540 rx_queue->scatter_n != 0 || rx_cont) {
2541 efx_ef10_handle_rx_bad_lbits(
2542 rx_queue, next_ptr_lbits,
2543 (rx_queue->removed_count +
2544 rx_queue->scatter_n + 1) &
2545 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2546 return 0;
2547 }
2548
2549 /* Merged completion for multiple non-scattered packets */
2550 rx_queue->scatter_n = 1;
2551 rx_queue->scatter_len = 0;
2552 n_packets = n_descs;
2553 ++channel->n_rx_merge_events;
2554 channel->n_rx_merge_packets += n_packets;
2555 flags |= EFX_RX_PKT_PREFIX_LEN;
2556 } else {
2557 ++rx_queue->scatter_n;
2558 rx_queue->scatter_len += rx_bytes;
2559 if (rx_cont)
2560 return 0;
2561 n_packets = 1;
2562 }
2563
2564 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
2565 flags |= EFX_RX_PKT_DISCARD;
2566
2567 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
2568 channel->n_rx_ip_hdr_chksum_err += n_packets;
2569 } else if (unlikely(EFX_QWORD_FIELD(*event,
2570 ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
2571 channel->n_rx_tcp_udp_chksum_err += n_packets;
2572 } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
2573 rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
2574 flags |= EFX_RX_PKT_CSUMMED;
2575 }
2576
2577 if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
2578 flags |= EFX_RX_PKT_TCP;
2579
2580 channel->irq_mod_score += 2 * n_packets;
2581
2582 /* Handle received packet(s) */
2583 for (i = 0; i < n_packets; i++) {
2584 efx_rx_packet(rx_queue,
2585 rx_queue->removed_count & rx_queue->ptr_mask,
2586 rx_queue->scatter_n, rx_queue->scatter_len,
2587 flags);
2588 rx_queue->removed_count += rx_queue->scatter_n;
2589 }
2590
2591 rx_queue->scatter_n = 0;
2592 rx_queue->scatter_len = 0;
2593
2594 return n_packets;
2595 }
2596
2597 static int
2598 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2599 {
2600 struct efx_nic *efx = channel->efx;
2601 struct efx_tx_queue *tx_queue;
2602 unsigned int tx_ev_desc_ptr;
2603 unsigned int tx_ev_q_label;
2604 int tx_descs = 0;
2605
2606 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2607 return 0;
2608
2609 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2610 return 0;
2611
2612 /* Transmit completion */
2613 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2614 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2615 tx_queue = efx_channel_get_tx_queue(channel,
2616 tx_ev_q_label % EFX_TXQ_TYPES);
2617 tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
2618 tx_queue->ptr_mask);
2619 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2620
2621 return tx_descs;
2622 }
2623
2624 static void
2625 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2626 {
2627 struct efx_nic *efx = channel->efx;
2628 int subcode;
2629
2630 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2631
2632 switch (subcode) {
2633 case ESE_DZ_DRV_TIMER_EV:
2634 case ESE_DZ_DRV_WAKE_UP_EV:
2635 break;
2636 case ESE_DZ_DRV_START_UP_EV:
2637 /* event queue init complete. ok. */
2638 break;
2639 default:
2640 netif_err(efx, hw, efx->net_dev,
2641 "channel %d unknown driver event type %d"
2642 " (data " EFX_QWORD_FMT ")\n",
2643 channel->channel, subcode,
2644 EFX_QWORD_VAL(*event));
2645
2646 }
2647 }
2648
2649 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2650 efx_qword_t *event)
2651 {
2652 struct efx_nic *efx = channel->efx;
2653 u32 subcode;
2654
2655 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2656
2657 switch (subcode) {
2658 case EFX_EF10_TEST:
2659 channel->event_test_cpu = raw_smp_processor_id();
2660 break;
2661 case EFX_EF10_REFILL:
2662 /* The queue must be empty, so we won't receive any rx
2663 * events, so efx_process_channel() won't refill the
2664 * queue. Refill it here
2665 */
2666 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2667 break;
2668 default:
2669 netif_err(efx, hw, efx->net_dev,
2670 "channel %d unknown driver event type %u"
2671 " (data " EFX_QWORD_FMT ")\n",
2672 channel->channel, (unsigned) subcode,
2673 EFX_QWORD_VAL(*event));
2674 }
2675 }
2676
2677 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2678 {
2679 struct efx_nic *efx = channel->efx;
2680 efx_qword_t event, *p_event;
2681 unsigned int read_ptr;
2682 int ev_code;
2683 int tx_descs = 0;
2684 int spent = 0;
2685
2686 if (quota <= 0)
2687 return spent;
2688
2689 read_ptr = channel->eventq_read_ptr;
2690
2691 for (;;) {
2692 p_event = efx_event(channel, read_ptr);
2693 event = *p_event;
2694
2695 if (!efx_event_present(&event))
2696 break;
2697
2698 EFX_SET_QWORD(*p_event);
2699
2700 ++read_ptr;
2701
2702 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
2703
2704 netif_vdbg(efx, drv, efx->net_dev,
2705 "processing event on %d " EFX_QWORD_FMT "\n",
2706 channel->channel, EFX_QWORD_VAL(event));
2707
2708 switch (ev_code) {
2709 case ESE_DZ_EV_CODE_MCDI_EV:
2710 efx_mcdi_process_event(channel, &event);
2711 break;
2712 case ESE_DZ_EV_CODE_RX_EV:
2713 spent += efx_ef10_handle_rx_event(channel, &event);
2714 if (spent >= quota) {
2715 /* XXX can we split a merged event to
2716 * avoid going over-quota?
2717 */
2718 spent = quota;
2719 goto out;
2720 }
2721 break;
2722 case ESE_DZ_EV_CODE_TX_EV:
2723 tx_descs += efx_ef10_handle_tx_event(channel, &event);
2724 if (tx_descs > efx->txq_entries) {
2725 spent = quota;
2726 goto out;
2727 } else if (++spent == quota) {
2728 goto out;
2729 }
2730 break;
2731 case ESE_DZ_EV_CODE_DRIVER_EV:
2732 efx_ef10_handle_driver_event(channel, &event);
2733 if (++spent == quota)
2734 goto out;
2735 break;
2736 case EFX_EF10_DRVGEN_EV:
2737 efx_ef10_handle_driver_generated_event(channel, &event);
2738 break;
2739 default:
2740 netif_err(efx, hw, efx->net_dev,
2741 "channel %d unknown event type %d"
2742 " (data " EFX_QWORD_FMT ")\n",
2743 channel->channel, ev_code,
2744 EFX_QWORD_VAL(event));
2745 }
2746 }
2747
2748 out:
2749 channel->eventq_read_ptr = read_ptr;
2750 return spent;
2751 }
2752
2753 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2754 {
2755 struct efx_nic *efx = channel->efx;
2756 efx_dword_t rptr;
2757
2758 if (EFX_EF10_WORKAROUND_35388(efx)) {
2759 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2760 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2761 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2762 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2763
2764 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2765 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2766 ERF_DD_EVQ_IND_RPTR,
2767 (channel->eventq_read_ptr &
2768 channel->eventq_mask) >>
2769 ERF_DD_EVQ_IND_RPTR_WIDTH);
2770 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2771 channel->channel);
2772 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2773 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2774 ERF_DD_EVQ_IND_RPTR,
2775 channel->eventq_read_ptr &
2776 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2777 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2778 channel->channel);
2779 } else {
2780 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2781 channel->eventq_read_ptr &
2782 channel->eventq_mask);
2783 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2784 }
2785 }
2786
2787 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2788 {
2789 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2790 struct efx_nic *efx = channel->efx;
2791 efx_qword_t event;
2792 int rc;
2793
2794 EFX_POPULATE_QWORD_2(event,
2795 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2796 ESF_DZ_EV_DATA, EFX_EF10_TEST);
2797
2798 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2799
2800 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2801 * already swapped the data to little-endian order.
2802 */
2803 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2804 sizeof(efx_qword_t));
2805
2806 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2807 NULL, 0, NULL);
2808 if (rc != 0)
2809 goto fail;
2810
2811 return;
2812
2813 fail:
2814 WARN_ON(true);
2815 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2816 }
2817
2818 void efx_ef10_handle_drain_event(struct efx_nic *efx)
2819 {
2820 if (atomic_dec_and_test(&efx->active_queues))
2821 wake_up(&efx->flush_wq);
2822
2823 WARN_ON(atomic_read(&efx->active_queues) < 0);
2824 }
2825
2826 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2827 {
2828 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2829 struct efx_channel *channel;
2830 struct efx_tx_queue *tx_queue;
2831 struct efx_rx_queue *rx_queue;
2832 int pending;
2833
2834 /* If the MC has just rebooted, the TX/RX queues will have already been
2835 * torn down, but efx->active_queues needs to be set to zero.
2836 */
2837 if (nic_data->must_realloc_vis) {
2838 atomic_set(&efx->active_queues, 0);
2839 return 0;
2840 }
2841
2842 /* Do not attempt to write to the NIC during EEH recovery */
2843 if (efx->state != STATE_RECOVERY) {
2844 efx_for_each_channel(channel, efx) {
2845 efx_for_each_channel_rx_queue(rx_queue, channel)
2846 efx_ef10_rx_fini(rx_queue);
2847 efx_for_each_channel_tx_queue(tx_queue, channel)
2848 efx_ef10_tx_fini(tx_queue);
2849 }
2850
2851 wait_event_timeout(efx->flush_wq,
2852 atomic_read(&efx->active_queues) == 0,
2853 msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2854 pending = atomic_read(&efx->active_queues);
2855 if (pending) {
2856 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2857 pending);
2858 return -ETIMEDOUT;
2859 }
2860 }
2861
2862 return 0;
2863 }
2864
2865 static void efx_ef10_prepare_flr(struct efx_nic *efx)
2866 {
2867 atomic_set(&efx->active_queues, 0);
2868 }
2869
2870 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2871 const struct efx_filter_spec *right)
2872 {
2873 if ((left->match_flags ^ right->match_flags) |
2874 ((left->flags ^ right->flags) &
2875 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2876 return false;
2877
2878 return memcmp(&left->outer_vid, &right->outer_vid,
2879 sizeof(struct efx_filter_spec) -
2880 offsetof(struct efx_filter_spec, outer_vid)) == 0;
2881 }
2882
2883 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2884 {
2885 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2886 return jhash2((const u32 *)&spec->outer_vid,
2887 (sizeof(struct efx_filter_spec) -
2888 offsetof(struct efx_filter_spec, outer_vid)) / 4,
2889 0);
2890 /* XXX should we randomise the initval? */
2891 }
2892
2893 /* Decide whether a filter should be exclusive or else should allow
2894 * delivery to additional recipients. Currently we decide that
2895 * filters for specific local unicast MAC and IP addresses are
2896 * exclusive.
2897 */
2898 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2899 {
2900 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2901 !is_multicast_ether_addr(spec->loc_mac))
2902 return true;
2903
2904 if ((spec->match_flags &
2905 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2906 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2907 if (spec->ether_type == htons(ETH_P_IP) &&
2908 !ipv4_is_multicast(spec->loc_host[0]))
2909 return true;
2910 if (spec->ether_type == htons(ETH_P_IPV6) &&
2911 ((const u8 *)spec->loc_host)[0] != 0xff)
2912 return true;
2913 }
2914
2915 return false;
2916 }
2917
2918 static struct efx_filter_spec *
2919 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2920 unsigned int filter_idx)
2921 {
2922 return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2923 ~EFX_EF10_FILTER_FLAGS);
2924 }
2925
2926 static unsigned int
2927 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2928 unsigned int filter_idx)
2929 {
2930 return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2931 }
2932
2933 static void
2934 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2935 unsigned int filter_idx,
2936 const struct efx_filter_spec *spec,
2937 unsigned int flags)
2938 {
2939 table->entry[filter_idx].spec = (unsigned long)spec | flags;
2940 }
2941
2942 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2943 const struct efx_filter_spec *spec,
2944 efx_dword_t *inbuf, u64 handle,
2945 bool replacing)
2946 {
2947 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2948 u32 flags = spec->flags;
2949
2950 memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2951
2952 /* Remove RSS flag if we don't have an RSS context. */
2953 if (flags & EFX_FILTER_FLAG_RX_RSS &&
2954 spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
2955 nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
2956 flags &= ~EFX_FILTER_FLAG_RX_RSS;
2957
2958 if (replacing) {
2959 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2960 MC_CMD_FILTER_OP_IN_OP_REPLACE);
2961 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2962 } else {
2963 u32 match_fields = 0;
2964
2965 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2966 efx_ef10_filter_is_exclusive(spec) ?
2967 MC_CMD_FILTER_OP_IN_OP_INSERT :
2968 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2969
2970 /* Convert match flags and values. Unlike almost
2971 * everything else in MCDI, these fields are in
2972 * network byte order.
2973 */
2974 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2975 match_fields |=
2976 is_multicast_ether_addr(spec->loc_mac) ?
2977 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2978 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2979 #define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
2980 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
2981 match_fields |= \
2982 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2983 mcdi_field ## _LBN; \
2984 BUILD_BUG_ON( \
2985 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2986 sizeof(spec->gen_field)); \
2987 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
2988 &spec->gen_field, sizeof(spec->gen_field)); \
2989 }
2990 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2991 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2992 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2993 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2994 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2995 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2996 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2997 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2998 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2999 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
3000 #undef COPY_FIELD
3001 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
3002 match_fields);
3003 }
3004
3005 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
3006 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
3007 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3008 MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
3009 MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
3010 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
3011 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
3012 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
3013 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
3014 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3015 0 : spec->dmaq_id);
3016 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
3017 (flags & EFX_FILTER_FLAG_RX_RSS) ?
3018 MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
3019 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
3020 if (flags & EFX_FILTER_FLAG_RX_RSS)
3021 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
3022 spec->rss_context !=
3023 EFX_FILTER_RSS_CONTEXT_DEFAULT ?
3024 spec->rss_context : nic_data->rx_rss_context);
3025 }
3026
3027 static int efx_ef10_filter_push(struct efx_nic *efx,
3028 const struct efx_filter_spec *spec,
3029 u64 *handle, bool replacing)
3030 {
3031 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3032 MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
3033 int rc;
3034
3035 efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
3036 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3037 outbuf, sizeof(outbuf), NULL);
3038 if (rc == 0)
3039 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3040 if (rc == -ENOSPC)
3041 rc = -EBUSY; /* to match efx_farch_filter_insert() */
3042 return rc;
3043 }
3044
3045 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
3046 enum efx_filter_match_flags match_flags)
3047 {
3048 unsigned int match_pri;
3049
3050 for (match_pri = 0;
3051 match_pri < table->rx_match_count;
3052 match_pri++)
3053 if (table->rx_match_flags[match_pri] == match_flags)
3054 return match_pri;
3055
3056 return -EPROTONOSUPPORT;
3057 }
3058
3059 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
3060 struct efx_filter_spec *spec,
3061 bool replace_equal)
3062 {
3063 struct efx_ef10_filter_table *table = efx->filter_state;
3064 DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3065 struct efx_filter_spec *saved_spec;
3066 unsigned int match_pri, hash;
3067 unsigned int priv_flags;
3068 bool replacing = false;
3069 int ins_index = -1;
3070 DEFINE_WAIT(wait);
3071 bool is_mc_recip;
3072 s32 rc;
3073
3074 /* For now, only support RX filters */
3075 if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
3076 EFX_FILTER_FLAG_RX)
3077 return -EINVAL;
3078
3079 rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
3080 if (rc < 0)
3081 return rc;
3082 match_pri = rc;
3083
3084 hash = efx_ef10_filter_hash(spec);
3085 is_mc_recip = efx_filter_is_mc_recipient(spec);
3086 if (is_mc_recip)
3087 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3088
3089 /* Find any existing filters with the same match tuple or
3090 * else a free slot to insert at. If any of them are busy,
3091 * we have to wait and retry.
3092 */
3093 for (;;) {
3094 unsigned int depth = 1;
3095 unsigned int i;
3096
3097 spin_lock_bh(&efx->filter_lock);
3098
3099 for (;;) {
3100 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3101 saved_spec = efx_ef10_filter_entry_spec(table, i);
3102
3103 if (!saved_spec) {
3104 if (ins_index < 0)
3105 ins_index = i;
3106 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
3107 if (table->entry[i].spec &
3108 EFX_EF10_FILTER_FLAG_BUSY)
3109 break;
3110 if (spec->priority < saved_spec->priority &&
3111 spec->priority != EFX_FILTER_PRI_AUTO) {
3112 rc = -EPERM;
3113 goto out_unlock;
3114 }
3115 if (!is_mc_recip) {
3116 /* This is the only one */
3117 if (spec->priority ==
3118 saved_spec->priority &&
3119 !replace_equal) {
3120 rc = -EEXIST;
3121 goto out_unlock;
3122 }
3123 ins_index = i;
3124 goto found;
3125 } else if (spec->priority >
3126 saved_spec->priority ||
3127 (spec->priority ==
3128 saved_spec->priority &&
3129 replace_equal)) {
3130 if (ins_index < 0)
3131 ins_index = i;
3132 else
3133 __set_bit(depth, mc_rem_map);
3134 }
3135 }
3136
3137 /* Once we reach the maximum search depth, use
3138 * the first suitable slot or return -EBUSY if
3139 * there was none
3140 */
3141 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3142 if (ins_index < 0) {
3143 rc = -EBUSY;
3144 goto out_unlock;
3145 }
3146 goto found;
3147 }
3148
3149 ++depth;
3150 }
3151
3152 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3153 spin_unlock_bh(&efx->filter_lock);
3154 schedule();
3155 }
3156
3157 found:
3158 /* Create a software table entry if necessary, and mark it
3159 * busy. We might yet fail to insert, but any attempt to
3160 * insert a conflicting filter while we're waiting for the
3161 * firmware must find the busy entry.
3162 */
3163 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3164 if (saved_spec) {
3165 if (spec->priority == EFX_FILTER_PRI_AUTO &&
3166 saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
3167 /* Just make sure it won't be removed */
3168 if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
3169 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
3170 table->entry[ins_index].spec &=
3171 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3172 rc = ins_index;
3173 goto out_unlock;
3174 }
3175 replacing = true;
3176 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
3177 } else {
3178 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3179 if (!saved_spec) {
3180 rc = -ENOMEM;
3181 goto out_unlock;
3182 }
3183 *saved_spec = *spec;
3184 priv_flags = 0;
3185 }
3186 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3187 priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
3188
3189 /* Mark lower-priority multicast recipients busy prior to removal */
3190 if (is_mc_recip) {
3191 unsigned int depth, i;
3192
3193 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3194 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3195 if (test_bit(depth, mc_rem_map))
3196 table->entry[i].spec |=
3197 EFX_EF10_FILTER_FLAG_BUSY;
3198 }
3199 }
3200
3201 spin_unlock_bh(&efx->filter_lock);
3202
3203 rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
3204 replacing);
3205
3206 /* Finalise the software table entry */
3207 spin_lock_bh(&efx->filter_lock);
3208 if (rc == 0) {
3209 if (replacing) {
3210 /* Update the fields that may differ */
3211 if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
3212 saved_spec->flags |=
3213 EFX_FILTER_FLAG_RX_OVER_AUTO;
3214 saved_spec->priority = spec->priority;
3215 saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
3216 saved_spec->flags |= spec->flags;
3217 saved_spec->rss_context = spec->rss_context;
3218 saved_spec->dmaq_id = spec->dmaq_id;
3219 }
3220 } else if (!replacing) {
3221 kfree(saved_spec);
3222 saved_spec = NULL;
3223 }
3224 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
3225
3226 /* Remove and finalise entries for lower-priority multicast
3227 * recipients
3228 */
3229 if (is_mc_recip) {
3230 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3231 unsigned int depth, i;
3232
3233 memset(inbuf, 0, sizeof(inbuf));
3234
3235 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3236 if (!test_bit(depth, mc_rem_map))
3237 continue;
3238
3239 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3240 saved_spec = efx_ef10_filter_entry_spec(table, i);
3241 priv_flags = efx_ef10_filter_entry_flags(table, i);
3242
3243 if (rc == 0) {
3244 spin_unlock_bh(&efx->filter_lock);
3245 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3246 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3247 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3248 table->entry[i].handle);
3249 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3250 inbuf, sizeof(inbuf),
3251 NULL, 0, NULL);
3252 spin_lock_bh(&efx->filter_lock);
3253 }
3254
3255 if (rc == 0) {
3256 kfree(saved_spec);
3257 saved_spec = NULL;
3258 priv_flags = 0;
3259 } else {
3260 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
3261 }
3262 efx_ef10_filter_set_entry(table, i, saved_spec,
3263 priv_flags);
3264 }
3265 }
3266
3267 /* If successful, return the inserted filter ID */
3268 if (rc == 0)
3269 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
3270
3271 wake_up_all(&table->waitq);
3272 out_unlock:
3273 spin_unlock_bh(&efx->filter_lock);
3274 finish_wait(&table->waitq, &wait);
3275 return rc;
3276 }
3277
3278 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
3279 {
3280 /* no need to do anything here on EF10 */
3281 }
3282
3283 /* Remove a filter.
3284 * If !by_index, remove by ID
3285 * If by_index, remove by index
3286 * Filter ID may come from userland and must be range-checked.
3287 */
3288 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
3289 unsigned int priority_mask,
3290 u32 filter_id, bool by_index)
3291 {
3292 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3293 struct efx_ef10_filter_table *table = efx->filter_state;
3294 MCDI_DECLARE_BUF(inbuf,
3295 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3296 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3297 struct efx_filter_spec *spec;
3298 DEFINE_WAIT(wait);
3299 int rc;
3300
3301 /* Find the software table entry and mark it busy. Don't
3302 * remove it yet; any attempt to update while we're waiting
3303 * for the firmware must find the busy entry.
3304 */
3305 for (;;) {
3306 spin_lock_bh(&efx->filter_lock);
3307 if (!(table->entry[filter_idx].spec &
3308 EFX_EF10_FILTER_FLAG_BUSY))
3309 break;
3310 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3311 spin_unlock_bh(&efx->filter_lock);
3312 schedule();
3313 }
3314
3315 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3316 if (!spec ||
3317 (!by_index &&
3318 efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
3319 filter_id / HUNT_FILTER_TBL_ROWS)) {
3320 rc = -ENOENT;
3321 goto out_unlock;
3322 }
3323
3324 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
3325 priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
3326 /* Just remove flags */
3327 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
3328 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3329 rc = 0;
3330 goto out_unlock;
3331 }
3332
3333 if (!(priority_mask & (1U << spec->priority))) {
3334 rc = -ENOENT;
3335 goto out_unlock;
3336 }
3337
3338 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3339 spin_unlock_bh(&efx->filter_lock);
3340
3341 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
3342 /* Reset to an automatic filter */
3343
3344 struct efx_filter_spec new_spec = *spec;
3345
3346 new_spec.priority = EFX_FILTER_PRI_AUTO;
3347 new_spec.flags = (EFX_FILTER_FLAG_RX |
3348 (efx_rss_enabled(efx) ?
3349 EFX_FILTER_FLAG_RX_RSS : 0));
3350 new_spec.dmaq_id = 0;
3351 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
3352 rc = efx_ef10_filter_push(efx, &new_spec,
3353 &table->entry[filter_idx].handle,
3354 true);
3355
3356 spin_lock_bh(&efx->filter_lock);
3357 if (rc == 0)
3358 *spec = new_spec;
3359 } else {
3360 /* Really remove the filter */
3361
3362 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3363 efx_ef10_filter_is_exclusive(spec) ?
3364 MC_CMD_FILTER_OP_IN_OP_REMOVE :
3365 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3366 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3367 table->entry[filter_idx].handle);
3368 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3369 inbuf, sizeof(inbuf), NULL, 0, NULL);
3370
3371 spin_lock_bh(&efx->filter_lock);
3372 if (rc == 0) {
3373 kfree(spec);
3374 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3375 }
3376 }
3377
3378 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3379 wake_up_all(&table->waitq);
3380 out_unlock:
3381 spin_unlock_bh(&efx->filter_lock);
3382 finish_wait(&table->waitq, &wait);
3383 return rc;
3384 }
3385
3386 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
3387 enum efx_filter_priority priority,
3388 u32 filter_id)
3389 {
3390 return efx_ef10_filter_remove_internal(efx, 1U << priority,
3391 filter_id, false);
3392 }
3393
3394 static u32 efx_ef10_filter_get_unsafe_id(struct efx_nic *efx, u32 filter_id)
3395 {
3396 return filter_id % HUNT_FILTER_TBL_ROWS;
3397 }
3398
3399 static int efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
3400 enum efx_filter_priority priority,
3401 u32 filter_id)
3402 {
3403 return efx_ef10_filter_remove_internal(efx, 1U << priority,
3404 filter_id, true);
3405 }
3406
3407 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
3408 enum efx_filter_priority priority,
3409 u32 filter_id, struct efx_filter_spec *spec)
3410 {
3411 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3412 struct efx_ef10_filter_table *table = efx->filter_state;
3413 const struct efx_filter_spec *saved_spec;
3414 int rc;
3415
3416 spin_lock_bh(&efx->filter_lock);
3417 saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
3418 if (saved_spec && saved_spec->priority == priority &&
3419 efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
3420 filter_id / HUNT_FILTER_TBL_ROWS) {
3421 *spec = *saved_spec;
3422 rc = 0;
3423 } else {
3424 rc = -ENOENT;
3425 }
3426 spin_unlock_bh(&efx->filter_lock);
3427 return rc;
3428 }
3429
3430 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
3431 enum efx_filter_priority priority)
3432 {
3433 unsigned int priority_mask;
3434 unsigned int i;
3435 int rc;
3436
3437 priority_mask = (((1U << (priority + 1)) - 1) &
3438 ~(1U << EFX_FILTER_PRI_AUTO));
3439
3440 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3441 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
3442 i, true);
3443 if (rc && rc != -ENOENT)
3444 return rc;
3445 }
3446
3447 return 0;
3448 }
3449
3450 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
3451 enum efx_filter_priority priority)
3452 {
3453 struct efx_ef10_filter_table *table = efx->filter_state;
3454 unsigned int filter_idx;
3455 s32 count = 0;
3456
3457 spin_lock_bh(&efx->filter_lock);
3458 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3459 if (table->entry[filter_idx].spec &&
3460 efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
3461 priority)
3462 ++count;
3463 }
3464 spin_unlock_bh(&efx->filter_lock);
3465 return count;
3466 }
3467
3468 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
3469 {
3470 struct efx_ef10_filter_table *table = efx->filter_state;
3471
3472 return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
3473 }
3474
3475 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
3476 enum efx_filter_priority priority,
3477 u32 *buf, u32 size)
3478 {
3479 struct efx_ef10_filter_table *table = efx->filter_state;
3480 struct efx_filter_spec *spec;
3481 unsigned int filter_idx;
3482 s32 count = 0;
3483
3484 spin_lock_bh(&efx->filter_lock);
3485 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3486 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3487 if (spec && spec->priority == priority) {
3488 if (count == size) {
3489 count = -EMSGSIZE;
3490 break;
3491 }
3492 buf[count++] = (efx_ef10_filter_rx_match_pri(
3493 table, spec->match_flags) *
3494 HUNT_FILTER_TBL_ROWS +
3495 filter_idx);
3496 }
3497 }
3498 spin_unlock_bh(&efx->filter_lock);
3499 return count;
3500 }
3501
3502 #ifdef CONFIG_RFS_ACCEL
3503
3504 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
3505
3506 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
3507 struct efx_filter_spec *spec)
3508 {
3509 struct efx_ef10_filter_table *table = efx->filter_state;
3510 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3511 struct efx_filter_spec *saved_spec;
3512 unsigned int hash, i, depth = 1;
3513 bool replacing = false;
3514 int ins_index = -1;
3515 u64 cookie;
3516 s32 rc;
3517
3518 /* Must be an RX filter without RSS and not for a multicast
3519 * destination address (RFS only works for connected sockets).
3520 * These restrictions allow us to pass only a tiny amount of
3521 * data through to the completion function.
3522 */
3523 EFX_WARN_ON_PARANOID(spec->flags !=
3524 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
3525 EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
3526 EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
3527
3528 hash = efx_ef10_filter_hash(spec);
3529
3530 spin_lock_bh(&efx->filter_lock);
3531
3532 /* Find any existing filter with the same match tuple or else
3533 * a free slot to insert at. If an existing filter is busy,
3534 * we have to give up.
3535 */
3536 for (;;) {
3537 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3538 saved_spec = efx_ef10_filter_entry_spec(table, i);
3539
3540 if (!saved_spec) {
3541 if (ins_index < 0)
3542 ins_index = i;
3543 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
3544 if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
3545 rc = -EBUSY;
3546 goto fail_unlock;
3547 }
3548 if (spec->priority < saved_spec->priority) {
3549 rc = -EPERM;
3550 goto fail_unlock;
3551 }
3552 ins_index = i;
3553 break;
3554 }
3555
3556 /* Once we reach the maximum search depth, use the
3557 * first suitable slot or return -EBUSY if there was
3558 * none
3559 */
3560 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3561 if (ins_index < 0) {
3562 rc = -EBUSY;
3563 goto fail_unlock;
3564 }
3565 break;
3566 }
3567
3568 ++depth;
3569 }
3570
3571 /* Create a software table entry if necessary, and mark it
3572 * busy. We might yet fail to insert, but any attempt to
3573 * insert a conflicting filter while we're waiting for the
3574 * firmware must find the busy entry.
3575 */
3576 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3577 if (saved_spec) {
3578 replacing = true;
3579 } else {
3580 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3581 if (!saved_spec) {
3582 rc = -ENOMEM;
3583 goto fail_unlock;
3584 }
3585 *saved_spec = *spec;
3586 }
3587 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3588 EFX_EF10_FILTER_FLAG_BUSY);
3589
3590 spin_unlock_bh(&efx->filter_lock);
3591
3592 /* Pack up the variables needed on completion */
3593 cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
3594
3595 efx_ef10_filter_push_prep(efx, spec, inbuf,
3596 table->entry[ins_index].handle, replacing);
3597 efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3598 MC_CMD_FILTER_OP_OUT_LEN,
3599 efx_ef10_filter_rfs_insert_complete, cookie);
3600
3601 return ins_index;
3602
3603 fail_unlock:
3604 spin_unlock_bh(&efx->filter_lock);
3605 return rc;
3606 }
3607
3608 static void
3609 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
3610 int rc, efx_dword_t *outbuf,
3611 size_t outlen_actual)
3612 {
3613 struct efx_ef10_filter_table *table = efx->filter_state;
3614 unsigned int ins_index, dmaq_id;
3615 struct efx_filter_spec *spec;
3616 bool replacing;
3617
3618 /* Unpack the cookie */
3619 replacing = cookie >> 31;
3620 ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
3621 dmaq_id = cookie & 0xffff;
3622
3623 spin_lock_bh(&efx->filter_lock);
3624 spec = efx_ef10_filter_entry_spec(table, ins_index);
3625 if (rc == 0) {
3626 table->entry[ins_index].handle =
3627 MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3628 if (replacing)
3629 spec->dmaq_id = dmaq_id;
3630 } else if (!replacing) {
3631 kfree(spec);
3632 spec = NULL;
3633 }
3634 efx_ef10_filter_set_entry(table, ins_index, spec, 0);
3635 spin_unlock_bh(&efx->filter_lock);
3636
3637 wake_up_all(&table->waitq);
3638 }
3639
3640 static void
3641 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3642 unsigned long filter_idx,
3643 int rc, efx_dword_t *outbuf,
3644 size_t outlen_actual);
3645
3646 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
3647 unsigned int filter_idx)
3648 {
3649 struct efx_ef10_filter_table *table = efx->filter_state;
3650 struct efx_filter_spec *spec =
3651 efx_ef10_filter_entry_spec(table, filter_idx);
3652 MCDI_DECLARE_BUF(inbuf,
3653 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3654 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3655
3656 if (!spec ||
3657 (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
3658 spec->priority != EFX_FILTER_PRI_HINT ||
3659 !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
3660 flow_id, filter_idx))
3661 return false;
3662
3663 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3664 MC_CMD_FILTER_OP_IN_OP_REMOVE);
3665 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3666 table->entry[filter_idx].handle);
3667 if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
3668 efx_ef10_filter_rfs_expire_complete, filter_idx))
3669 return false;
3670
3671 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3672 return true;
3673 }
3674
3675 static void
3676 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3677 unsigned long filter_idx,
3678 int rc, efx_dword_t *outbuf,
3679 size_t outlen_actual)
3680 {
3681 struct efx_ef10_filter_table *table = efx->filter_state;
3682 struct efx_filter_spec *spec =
3683 efx_ef10_filter_entry_spec(table, filter_idx);
3684
3685 spin_lock_bh(&efx->filter_lock);
3686 if (rc == 0) {
3687 kfree(spec);
3688 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3689 }
3690 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3691 wake_up_all(&table->waitq);
3692 spin_unlock_bh(&efx->filter_lock);
3693 }
3694
3695 #endif /* CONFIG_RFS_ACCEL */
3696
3697 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
3698 {
3699 int match_flags = 0;
3700
3701 #define MAP_FLAG(gen_flag, mcdi_field) { \
3702 u32 old_mcdi_flags = mcdi_flags; \
3703 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
3704 mcdi_field ## _LBN); \
3705 if (mcdi_flags != old_mcdi_flags) \
3706 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
3707 }
3708 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
3709 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
3710 MAP_FLAG(REM_HOST, SRC_IP);
3711 MAP_FLAG(LOC_HOST, DST_IP);
3712 MAP_FLAG(REM_MAC, SRC_MAC);
3713 MAP_FLAG(REM_PORT, SRC_PORT);
3714 MAP_FLAG(LOC_MAC, DST_MAC);
3715 MAP_FLAG(LOC_PORT, DST_PORT);
3716 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
3717 MAP_FLAG(INNER_VID, INNER_VLAN);
3718 MAP_FLAG(OUTER_VID, OUTER_VLAN);
3719 MAP_FLAG(IP_PROTO, IP_PROTO);
3720 #undef MAP_FLAG
3721
3722 /* Did we map them all? */
3723 if (mcdi_flags)
3724 return -EINVAL;
3725
3726 return match_flags;
3727 }
3728
3729 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
3730 {
3731 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
3732 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
3733 unsigned int pd_match_pri, pd_match_count;
3734 struct efx_ef10_filter_table *table;
3735 size_t outlen;
3736 int rc;
3737
3738 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
3739 return -EINVAL;
3740
3741 if (efx->filter_state) /* already probed */
3742 return 0;
3743
3744 table = kzalloc(sizeof(*table), GFP_KERNEL);
3745 if (!table)
3746 return -ENOMEM;
3747
3748 /* Find out which RX filter types are supported, and their priorities */
3749 MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
3750 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
3751 rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
3752 inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
3753 &outlen);
3754 if (rc)
3755 goto fail;
3756 pd_match_count = MCDI_VAR_ARRAY_LEN(
3757 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3758 table->rx_match_count = 0;
3759
3760 for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3761 u32 mcdi_flags =
3762 MCDI_ARRAY_DWORD(
3763 outbuf,
3764 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3765 pd_match_pri);
3766 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3767 if (rc < 0) {
3768 netif_dbg(efx, probe, efx->net_dev,
3769 "%s: fw flags %#x pri %u not supported in driver\n",
3770 __func__, mcdi_flags, pd_match_pri);
3771 } else {
3772 netif_dbg(efx, probe, efx->net_dev,
3773 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3774 __func__, mcdi_flags, pd_match_pri,
3775 rc, table->rx_match_count);
3776 table->rx_match_flags[table->rx_match_count++] = rc;
3777 }
3778 }
3779
3780 table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3781 if (!table->entry) {
3782 rc = -ENOMEM;
3783 goto fail;
3784 }
3785
3786 table->ucdef_id = EFX_EF10_FILTER_ID_INVALID;
3787 table->bcast_id = EFX_EF10_FILTER_ID_INVALID;
3788 table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
3789 table->mc_promisc_last = false;
3790
3791 efx->filter_state = table;
3792 init_waitqueue_head(&table->waitq);
3793 return 0;
3794
3795 fail:
3796 kfree(table);
3797 return rc;
3798 }
3799
3800 /* Caller must hold efx->filter_sem for read if race against
3801 * efx_ef10_filter_table_remove() is possible
3802 */
3803 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3804 {
3805 struct efx_ef10_filter_table *table = efx->filter_state;
3806 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3807 struct efx_filter_spec *spec;
3808 unsigned int filter_idx;
3809 bool failed = false;
3810 int rc;
3811
3812 WARN_ON(!rwsem_is_locked(&efx->filter_sem));
3813
3814 if (!nic_data->must_restore_filters)
3815 return;
3816
3817 if (!table)
3818 return;
3819
3820 spin_lock_bh(&efx->filter_lock);
3821
3822 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3823 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3824 if (!spec)
3825 continue;
3826
3827 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3828 spin_unlock_bh(&efx->filter_lock);
3829
3830 rc = efx_ef10_filter_push(efx, spec,
3831 &table->entry[filter_idx].handle,
3832 false);
3833 if (rc)
3834 failed = true;
3835
3836 spin_lock_bh(&efx->filter_lock);
3837 if (rc) {
3838 kfree(spec);
3839 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3840 } else {
3841 table->entry[filter_idx].spec &=
3842 ~EFX_EF10_FILTER_FLAG_BUSY;
3843 }
3844 }
3845
3846 spin_unlock_bh(&efx->filter_lock);
3847
3848 if (failed)
3849 netif_err(efx, hw, efx->net_dev,
3850 "unable to restore all filters\n");
3851 else
3852 nic_data->must_restore_filters = false;
3853 }
3854
3855 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3856 {
3857 struct efx_ef10_filter_table *table = efx->filter_state;
3858 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3859 struct efx_filter_spec *spec;
3860 unsigned int filter_idx;
3861 int rc;
3862
3863 efx->filter_state = NULL;
3864 /* If we were called without locking, then it's not safe to free
3865 * the table as others might be using it. So we just WARN, leak
3866 * the memory, and potentially get an inconsistent filter table
3867 * state.
3868 * This should never actually happen.
3869 */
3870 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
3871 return;
3872
3873 if (!table)
3874 return;
3875
3876 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3877 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3878 if (!spec)
3879 continue;
3880
3881 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3882 efx_ef10_filter_is_exclusive(spec) ?
3883 MC_CMD_FILTER_OP_IN_OP_REMOVE :
3884 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3885 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3886 table->entry[filter_idx].handle);
3887 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
3888 sizeof(inbuf), NULL, 0, NULL);
3889 if (rc)
3890 netif_info(efx, drv, efx->net_dev,
3891 "%s: filter %04x remove failed\n",
3892 __func__, filter_idx);
3893 kfree(spec);
3894 }
3895
3896 vfree(table->entry);
3897 kfree(table);
3898 }
3899
3900 #define EFX_EF10_FILTER_DO_MARK_OLD(id) \
3901 if (id != EFX_EF10_FILTER_ID_INVALID) { \
3902 filter_idx = efx_ef10_filter_get_unsafe_id(efx, id); \
3903 if (!table->entry[filter_idx].spec) \
3904 netif_dbg(efx, drv, efx->net_dev, \
3905 "%s: marked null spec old %04x:%04x\n", \
3906 __func__, id, filter_idx); \
3907 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;\
3908 }
3909 static void efx_ef10_filter_mark_old(struct efx_nic *efx)
3910 {
3911 struct efx_ef10_filter_table *table = efx->filter_state;
3912 unsigned int filter_idx, i;
3913
3914 if (!table)
3915 return;
3916
3917 /* Mark old filters that may need to be removed */
3918 spin_lock_bh(&efx->filter_lock);
3919 for (i = 0; i < table->dev_uc_count; i++)
3920 EFX_EF10_FILTER_DO_MARK_OLD(table->dev_uc_list[i].id);
3921 for (i = 0; i < table->dev_mc_count; i++)
3922 EFX_EF10_FILTER_DO_MARK_OLD(table->dev_mc_list[i].id);
3923 EFX_EF10_FILTER_DO_MARK_OLD(table->ucdef_id);
3924 EFX_EF10_FILTER_DO_MARK_OLD(table->bcast_id);
3925 EFX_EF10_FILTER_DO_MARK_OLD(table->mcdef_id);
3926 spin_unlock_bh(&efx->filter_lock);
3927 }
3928 #undef EFX_EF10_FILTER_DO_MARK_OLD
3929
3930 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx, bool *promisc)
3931 {
3932 struct efx_ef10_filter_table *table = efx->filter_state;
3933 struct net_device *net_dev = efx->net_dev;
3934 struct netdev_hw_addr *uc;
3935 int addr_count;
3936 unsigned int i;
3937
3938 table->ucdef_id = EFX_EF10_FILTER_ID_INVALID;
3939 addr_count = netdev_uc_count(net_dev);
3940 if (net_dev->flags & IFF_PROMISC)
3941 *promisc = true;
3942 table->dev_uc_count = 1 + addr_count;
3943 ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3944 i = 1;
3945 netdev_for_each_uc_addr(uc, net_dev) {
3946 if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
3947 *promisc = true;
3948 break;
3949 }
3950 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3951 table->dev_uc_list[i].id = EFX_EF10_FILTER_ID_INVALID;
3952 i++;
3953 }
3954 }
3955
3956 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx, bool *promisc)
3957 {
3958 struct efx_ef10_filter_table *table = efx->filter_state;
3959 struct net_device *net_dev = efx->net_dev;
3960 struct netdev_hw_addr *mc;
3961 unsigned int i, addr_count;
3962
3963 table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
3964 table->bcast_id = EFX_EF10_FILTER_ID_INVALID;
3965 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI))
3966 *promisc = true;
3967
3968 addr_count = netdev_mc_count(net_dev);
3969 i = 0;
3970 netdev_for_each_mc_addr(mc, net_dev) {
3971 if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
3972 *promisc = true;
3973 break;
3974 }
3975 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3976 table->dev_mc_list[i].id = EFX_EF10_FILTER_ID_INVALID;
3977 i++;
3978 }
3979
3980 table->dev_mc_count = i;
3981 }
3982
3983 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
3984 bool multicast, bool rollback)
3985 {
3986 struct efx_ef10_filter_table *table = efx->filter_state;
3987 struct efx_ef10_dev_addr *addr_list;
3988 enum efx_filter_flags filter_flags;
3989 struct efx_filter_spec spec;
3990 u8 baddr[ETH_ALEN];
3991 unsigned int i, j;
3992 int addr_count;
3993 int rc;
3994
3995 if (multicast) {
3996 addr_list = table->dev_mc_list;
3997 addr_count = table->dev_mc_count;
3998 } else {
3999 addr_list = table->dev_uc_list;
4000 addr_count = table->dev_uc_count;
4001 }
4002
4003 filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
4004
4005 /* Insert/renew filters */
4006 for (i = 0; i < addr_count; i++) {
4007 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4008 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
4009 addr_list[i].addr);
4010 rc = efx_ef10_filter_insert(efx, &spec, true);
4011 if (rc < 0) {
4012 if (rollback) {
4013 netif_info(efx, drv, efx->net_dev,
4014 "efx_ef10_filter_insert failed rc=%d\n",
4015 rc);
4016 /* Fall back to promiscuous */
4017 for (j = 0; j < i; j++) {
4018 if (addr_list[j].id == EFX_EF10_FILTER_ID_INVALID)
4019 continue;
4020 efx_ef10_filter_remove_unsafe(
4021 efx, EFX_FILTER_PRI_AUTO,
4022 addr_list[j].id);
4023 addr_list[j].id = EFX_EF10_FILTER_ID_INVALID;
4024 }
4025 return rc;
4026 } else {
4027 /* mark as not inserted, and carry on */
4028 rc = EFX_EF10_FILTER_ID_INVALID;
4029 }
4030 }
4031 addr_list[i].id = efx_ef10_filter_get_unsafe_id(efx, rc);
4032 }
4033
4034 if (multicast && rollback) {
4035 /* Also need an Ethernet broadcast filter */
4036 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4037 eth_broadcast_addr(baddr);
4038 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, baddr);
4039 rc = efx_ef10_filter_insert(efx, &spec, true);
4040 if (rc < 0) {
4041 netif_warn(efx, drv, efx->net_dev,
4042 "Broadcast filter insert failed rc=%d\n", rc);
4043 /* Fall back to promiscuous */
4044 for (j = 0; j < i; j++) {
4045 if (addr_list[j].id == EFX_EF10_FILTER_ID_INVALID)
4046 continue;
4047 efx_ef10_filter_remove_unsafe(
4048 efx, EFX_FILTER_PRI_AUTO,
4049 addr_list[j].id);
4050 addr_list[j].id = EFX_EF10_FILTER_ID_INVALID;
4051 }
4052 return rc;
4053 } else {
4054 table->bcast_id = efx_ef10_filter_get_unsafe_id(efx, rc);
4055 }
4056 }
4057
4058 return 0;
4059 }
4060
4061 static int efx_ef10_filter_insert_def(struct efx_nic *efx, bool multicast,
4062 bool rollback)
4063 {
4064 struct efx_ef10_filter_table *table = efx->filter_state;
4065 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4066 enum efx_filter_flags filter_flags;
4067 struct efx_filter_spec spec;
4068 u8 baddr[ETH_ALEN];
4069 int rc;
4070
4071 filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
4072
4073 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4074
4075 if (multicast)
4076 efx_filter_set_mc_def(&spec);
4077 else
4078 efx_filter_set_uc_def(&spec);
4079
4080 rc = efx_ef10_filter_insert(efx, &spec, true);
4081 if (rc < 0) {
4082 netif_printk(efx, drv, rc == -EPERM ? KERN_DEBUG : KERN_WARNING,
4083 efx->net_dev,
4084 "%scast mismatch filter insert failed rc=%d\n",
4085 multicast ? "Multi" : "Uni", rc);
4086 } else if (multicast) {
4087 table->mcdef_id = efx_ef10_filter_get_unsafe_id(efx, rc);
4088 if (!nic_data->workaround_26807) {
4089 /* Also need an Ethernet broadcast filter */
4090 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
4091 filter_flags, 0);
4092 eth_broadcast_addr(baddr);
4093 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
4094 baddr);
4095 rc = efx_ef10_filter_insert(efx, &spec, true);
4096 if (rc < 0) {
4097 netif_warn(efx, drv, efx->net_dev,
4098 "Broadcast filter insert failed rc=%d\n",
4099 rc);
4100 if (rollback) {
4101 /* Roll back the mc_def filter */
4102 efx_ef10_filter_remove_unsafe(
4103 efx, EFX_FILTER_PRI_AUTO,
4104 table->mcdef_id);
4105 table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
4106 return rc;
4107 }
4108 } else {
4109 table->bcast_id = efx_ef10_filter_get_unsafe_id(efx, rc);
4110 }
4111 }
4112 rc = 0;
4113 } else {
4114 table->ucdef_id = rc;
4115 rc = 0;
4116 }
4117 return rc;
4118 }
4119
4120 /* Remove filters that weren't renewed. Since nothing else changes the AUTO_OLD
4121 * flag or removes these filters, we don't need to hold the filter_lock while
4122 * scanning for these filters.
4123 */
4124 static void efx_ef10_filter_remove_old(struct efx_nic *efx)
4125 {
4126 struct efx_ef10_filter_table *table = efx->filter_state;
4127 int remove_failed = 0;
4128 int remove_noent = 0;
4129 int rc;
4130 int i;
4131
4132 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4133 if (ACCESS_ONCE(table->entry[i].spec) &
4134 EFX_EF10_FILTER_FLAG_AUTO_OLD) {
4135 rc = efx_ef10_filter_remove_internal(efx,
4136 1U << EFX_FILTER_PRI_AUTO, i, true);
4137 if (rc == -ENOENT)
4138 remove_noent++;
4139 else if (rc)
4140 remove_failed++;
4141 }
4142 }
4143
4144 if (remove_failed)
4145 netif_info(efx, drv, efx->net_dev,
4146 "%s: failed to remove %d filters\n",
4147 __func__, remove_failed);
4148 if (remove_noent)
4149 netif_info(efx, drv, efx->net_dev,
4150 "%s: failed to remove %d non-existent filters\n",
4151 __func__, remove_noent);
4152 }
4153
4154 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
4155 {
4156 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4157 u8 mac_old[ETH_ALEN];
4158 int rc, rc2;
4159
4160 /* Only reconfigure a PF-created vport */
4161 if (is_zero_ether_addr(nic_data->vport_mac))
4162 return 0;
4163
4164 efx_device_detach_sync(efx);
4165 efx_net_stop(efx->net_dev);
4166 down_write(&efx->filter_sem);
4167 efx_ef10_filter_table_remove(efx);
4168 up_write(&efx->filter_sem);
4169
4170 rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
4171 if (rc)
4172 goto restore_filters;
4173
4174 ether_addr_copy(mac_old, nic_data->vport_mac);
4175 rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
4176 nic_data->vport_mac);
4177 if (rc)
4178 goto restore_vadaptor;
4179
4180 rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
4181 efx->net_dev->dev_addr);
4182 if (!rc) {
4183 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
4184 } else {
4185 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
4186 if (rc2) {
4187 /* Failed to add original MAC, so clear vport_mac */
4188 eth_zero_addr(nic_data->vport_mac);
4189 goto reset_nic;
4190 }
4191 }
4192
4193 restore_vadaptor:
4194 rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
4195 if (rc2)
4196 goto reset_nic;
4197 restore_filters:
4198 down_write(&efx->filter_sem);
4199 rc2 = efx_ef10_filter_table_probe(efx);
4200 up_write(&efx->filter_sem);
4201 if (rc2)
4202 goto reset_nic;
4203
4204 rc2 = efx_net_open(efx->net_dev);
4205 if (rc2)
4206 goto reset_nic;
4207
4208 netif_device_attach(efx->net_dev);
4209
4210 return rc;
4211
4212 reset_nic:
4213 netif_err(efx, drv, efx->net_dev,
4214 "Failed to restore when changing MAC address - scheduling reset\n");
4215 efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
4216
4217 return rc ? rc : rc2;
4218 }
4219
4220 /* Caller must hold efx->filter_sem for read if race against
4221 * efx_ef10_filter_table_remove() is possible
4222 */
4223 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
4224 {
4225 struct efx_ef10_filter_table *table = efx->filter_state;
4226 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4227 struct net_device *net_dev = efx->net_dev;
4228 bool uc_promisc = false, mc_promisc = false;
4229
4230 if (!efx_dev_registered(efx))
4231 return;
4232
4233 if (!table)
4234 return;
4235
4236 efx_ef10_filter_mark_old(efx);
4237
4238 /* Copy/convert the address lists; add the primary station
4239 * address and broadcast address
4240 */
4241 netif_addr_lock_bh(net_dev);
4242 efx_ef10_filter_uc_addr_list(efx, &uc_promisc);
4243 efx_ef10_filter_mc_addr_list(efx, &mc_promisc);
4244 netif_addr_unlock_bh(net_dev);
4245
4246 /* Insert/renew unicast filters */
4247 if (uc_promisc) {
4248 efx_ef10_filter_insert_def(efx, false, false);
4249 efx_ef10_filter_insert_addr_list(efx, false, false);
4250 } else {
4251 /* If any of the filters failed to insert, fall back to
4252 * promiscuous mode - add in the uc_def filter. But keep
4253 * our individual unicast filters.
4254 */
4255 if (efx_ef10_filter_insert_addr_list(efx, false, false))
4256 efx_ef10_filter_insert_def(efx, false, false);
4257 }
4258
4259 /* Insert/renew multicast filters */
4260 /* If changing promiscuous state with cascaded multicast filters, remove
4261 * old filters first, so that packets are dropped rather than duplicated
4262 */
4263 if (nic_data->workaround_26807 && table->mc_promisc_last != mc_promisc)
4264 efx_ef10_filter_remove_old(efx);
4265 if (mc_promisc) {
4266 if (nic_data->workaround_26807) {
4267 /* If we failed to insert promiscuous filters, rollback
4268 * and fall back to individual multicast filters
4269 */
4270 if (efx_ef10_filter_insert_def(efx, true, true)) {
4271 /* Changing promisc state, so remove old filters */
4272 efx_ef10_filter_remove_old(efx);
4273 efx_ef10_filter_insert_addr_list(efx, true, false);
4274 }
4275 } else {
4276 /* If we failed to insert promiscuous filters, don't
4277 * rollback. Regardless, also insert the mc_list
4278 */
4279 efx_ef10_filter_insert_def(efx, true, false);
4280 efx_ef10_filter_insert_addr_list(efx, true, false);
4281 }
4282 } else {
4283 /* If any filters failed to insert, rollback and fall back to
4284 * promiscuous mode - mc_def filter and maybe broadcast. If
4285 * that fails, roll back again and insert as many of our
4286 * individual multicast filters as we can.
4287 */
4288 if (efx_ef10_filter_insert_addr_list(efx, true, true)) {
4289 /* Changing promisc state, so remove old filters */
4290 if (nic_data->workaround_26807)
4291 efx_ef10_filter_remove_old(efx);
4292 if (efx_ef10_filter_insert_def(efx, true, true))
4293 efx_ef10_filter_insert_addr_list(efx, true, false);
4294 }
4295 }
4296
4297 efx_ef10_filter_remove_old(efx);
4298 table->mc_promisc_last = mc_promisc;
4299 }
4300
4301 static int efx_ef10_set_mac_address(struct efx_nic *efx)
4302 {
4303 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
4304 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4305 bool was_enabled = efx->port_enabled;
4306 int rc;
4307
4308 efx_device_detach_sync(efx);
4309 efx_net_stop(efx->net_dev);
4310 down_write(&efx->filter_sem);
4311 efx_ef10_filter_table_remove(efx);
4312
4313 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
4314 efx->net_dev->dev_addr);
4315 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
4316 nic_data->vport_id);
4317 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
4318 sizeof(inbuf), NULL, 0, NULL);
4319
4320 efx_ef10_filter_table_probe(efx);
4321 up_write(&efx->filter_sem);
4322 if (was_enabled)
4323 efx_net_open(efx->net_dev);
4324 netif_device_attach(efx->net_dev);
4325
4326 #ifdef CONFIG_SFC_SRIOV
4327 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
4328 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
4329
4330 if (rc == -EPERM) {
4331 struct efx_nic *efx_pf;
4332
4333 /* Switch to PF and change MAC address on vport */
4334 efx_pf = pci_get_drvdata(pci_dev_pf);
4335
4336 rc = efx_ef10_sriov_set_vf_mac(efx_pf,
4337 nic_data->vf_index,
4338 efx->net_dev->dev_addr);
4339 } else if (!rc) {
4340 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
4341 struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
4342 unsigned int i;
4343
4344 /* MAC address successfully changed by VF (with MAC
4345 * spoofing) so update the parent PF if possible.
4346 */
4347 for (i = 0; i < efx_pf->vf_count; ++i) {
4348 struct ef10_vf *vf = nic_data->vf + i;
4349
4350 if (vf->efx == efx) {
4351 ether_addr_copy(vf->mac,
4352 efx->net_dev->dev_addr);
4353 return 0;
4354 }
4355 }
4356 }
4357 } else
4358 #endif
4359 if (rc == -EPERM) {
4360 netif_err(efx, drv, efx->net_dev,
4361 "Cannot change MAC address; use sfboot to enable"
4362 " mac-spoofing on this interface\n");
4363 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
4364 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
4365 * fall-back to the method of changing the MAC address on the
4366 * vport. This only applies to PFs because such versions of
4367 * MCFW do not support VFs.
4368 */
4369 rc = efx_ef10_vport_set_mac_address(efx);
4370 } else {
4371 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
4372 sizeof(inbuf), NULL, 0, rc);
4373 }
4374
4375 return rc;
4376 }
4377
4378 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
4379 {
4380 efx_ef10_filter_sync_rx_mode(efx);
4381
4382 return efx_mcdi_set_mac(efx);
4383 }
4384
4385 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
4386 {
4387 efx_ef10_filter_sync_rx_mode(efx);
4388
4389 return 0;
4390 }
4391
4392 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
4393 {
4394 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
4395
4396 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
4397 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
4398 NULL, 0, NULL);
4399 }
4400
4401 /* MC BISTs follow a different poll mechanism to phy BISTs.
4402 * The BIST is done in the poll handler on the MC, and the MCDI command
4403 * will block until the BIST is done.
4404 */
4405 static int efx_ef10_poll_bist(struct efx_nic *efx)
4406 {
4407 int rc;
4408 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
4409 size_t outlen;
4410 u32 result;
4411
4412 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
4413 outbuf, sizeof(outbuf), &outlen);
4414 if (rc != 0)
4415 return rc;
4416
4417 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
4418 return -EIO;
4419
4420 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
4421 switch (result) {
4422 case MC_CMD_POLL_BIST_PASSED:
4423 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
4424 return 0;
4425 case MC_CMD_POLL_BIST_TIMEOUT:
4426 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
4427 return -EIO;
4428 case MC_CMD_POLL_BIST_FAILED:
4429 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
4430 return -EIO;
4431 default:
4432 netif_err(efx, hw, efx->net_dev,
4433 "BIST returned unknown result %u", result);
4434 return -EIO;
4435 }
4436 }
4437
4438 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
4439 {
4440 int rc;
4441
4442 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
4443
4444 rc = efx_ef10_start_bist(efx, bist_type);
4445 if (rc != 0)
4446 return rc;
4447
4448 return efx_ef10_poll_bist(efx);
4449 }
4450
4451 static int
4452 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
4453 {
4454 int rc, rc2;
4455
4456 efx_reset_down(efx, RESET_TYPE_WORLD);
4457
4458 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
4459 NULL, 0, NULL, 0, NULL);
4460 if (rc != 0)
4461 goto out;
4462
4463 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
4464 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
4465
4466 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
4467
4468 out:
4469 if (rc == -EPERM)
4470 rc = 0;
4471 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
4472 return rc ? rc : rc2;
4473 }
4474
4475 #ifdef CONFIG_SFC_MTD
4476
4477 struct efx_ef10_nvram_type_info {
4478 u16 type, type_mask;
4479 u8 port;
4480 const char *name;
4481 };
4482
4483 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
4484 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
4485 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
4486 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
4487 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
4488 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
4489 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
4490 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
4491 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
4492 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
4493 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
4494 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
4495 };
4496
4497 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
4498 struct efx_mcdi_mtd_partition *part,
4499 unsigned int type)
4500 {
4501 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
4502 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
4503 const struct efx_ef10_nvram_type_info *info;
4504 size_t size, erase_size, outlen;
4505 bool protected;
4506 int rc;
4507
4508 for (info = efx_ef10_nvram_types; ; info++) {
4509 if (info ==
4510 efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
4511 return -ENODEV;
4512 if ((type & ~info->type_mask) == info->type)
4513 break;
4514 }
4515 if (info->port != efx_port_num(efx))
4516 return -ENODEV;
4517
4518 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
4519 if (rc)
4520 return rc;
4521 if (protected)
4522 return -ENODEV; /* hide it */
4523
4524 part->nvram_type = type;
4525
4526 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
4527 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
4528 outbuf, sizeof(outbuf), &outlen);
4529 if (rc)
4530 return rc;
4531 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
4532 return -EIO;
4533 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
4534 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
4535 part->fw_subtype = MCDI_DWORD(outbuf,
4536 NVRAM_METADATA_OUT_SUBTYPE);
4537
4538 part->common.dev_type_name = "EF10 NVRAM manager";
4539 part->common.type_name = info->name;
4540
4541 part->common.mtd.type = MTD_NORFLASH;
4542 part->common.mtd.flags = MTD_CAP_NORFLASH;
4543 part->common.mtd.size = size;
4544 part->common.mtd.erasesize = erase_size;
4545
4546 return 0;
4547 }
4548
4549 static int efx_ef10_mtd_probe(struct efx_nic *efx)
4550 {
4551 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
4552 struct efx_mcdi_mtd_partition *parts;
4553 size_t outlen, n_parts_total, i, n_parts;
4554 unsigned int type;
4555 int rc;
4556
4557 ASSERT_RTNL();
4558
4559 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
4560 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
4561 outbuf, sizeof(outbuf), &outlen);
4562 if (rc)
4563 return rc;
4564 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
4565 return -EIO;
4566
4567 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
4568 if (n_parts_total >
4569 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
4570 return -EIO;
4571
4572 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
4573 if (!parts)
4574 return -ENOMEM;
4575
4576 n_parts = 0;
4577 for (i = 0; i < n_parts_total; i++) {
4578 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
4579 i);
4580 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
4581 if (rc == 0)
4582 n_parts++;
4583 else if (rc != -ENODEV)
4584 goto fail;
4585 }
4586
4587 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
4588 fail:
4589 if (rc)
4590 kfree(parts);
4591 return rc;
4592 }
4593
4594 #endif /* CONFIG_SFC_MTD */
4595
4596 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
4597 {
4598 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
4599 }
4600
4601 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
4602 u32 host_time) {}
4603
4604 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
4605 bool temp)
4606 {
4607 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
4608 int rc;
4609
4610 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
4611 channel->sync_events_state == SYNC_EVENTS_VALID ||
4612 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
4613 return 0;
4614 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
4615
4616 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
4617 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
4618 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
4619 channel->channel);
4620
4621 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
4622 inbuf, sizeof(inbuf), NULL, 0, NULL);
4623
4624 if (rc != 0)
4625 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
4626 SYNC_EVENTS_DISABLED;
4627
4628 return rc;
4629 }
4630
4631 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
4632 bool temp)
4633 {
4634 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
4635 int rc;
4636
4637 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
4638 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
4639 return 0;
4640 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
4641 channel->sync_events_state = SYNC_EVENTS_DISABLED;
4642 return 0;
4643 }
4644 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
4645 SYNC_EVENTS_DISABLED;
4646
4647 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
4648 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
4649 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
4650 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
4651 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
4652 channel->channel);
4653
4654 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
4655 inbuf, sizeof(inbuf), NULL, 0, NULL);
4656
4657 return rc;
4658 }
4659
4660 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
4661 bool temp)
4662 {
4663 int (*set)(struct efx_channel *channel, bool temp);
4664 struct efx_channel *channel;
4665
4666 set = en ?
4667 efx_ef10_rx_enable_timestamping :
4668 efx_ef10_rx_disable_timestamping;
4669
4670 efx_for_each_channel(channel, efx) {
4671 int rc = set(channel, temp);
4672 if (en && rc != 0) {
4673 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
4674 return rc;
4675 }
4676 }
4677
4678 return 0;
4679 }
4680
4681 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
4682 struct hwtstamp_config *init)
4683 {
4684 return -EOPNOTSUPP;
4685 }
4686
4687 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
4688 struct hwtstamp_config *init)
4689 {
4690 int rc;
4691
4692 switch (init->rx_filter) {
4693 case HWTSTAMP_FILTER_NONE:
4694 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
4695 /* if TX timestamping is still requested then leave PTP on */
4696 return efx_ptp_change_mode(efx,
4697 init->tx_type != HWTSTAMP_TX_OFF, 0);
4698 case HWTSTAMP_FILTER_ALL:
4699 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4700 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4701 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4702 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4703 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4704 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4705 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4706 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4707 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4708 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4709 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4710 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4711 init->rx_filter = HWTSTAMP_FILTER_ALL;
4712 rc = efx_ptp_change_mode(efx, true, 0);
4713 if (!rc)
4714 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
4715 if (rc)
4716 efx_ptp_change_mode(efx, false, 0);
4717 return rc;
4718 default:
4719 return -ERANGE;
4720 }
4721 }
4722
4723 #define EF10_OFFLOAD_FEATURES \
4724 (NETIF_F_IP_CSUM | \
4725 NETIF_F_IPV6_CSUM | \
4726 NETIF_F_RXHASH | \
4727 NETIF_F_NTUPLE)
4728
4729 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4730 .is_vf = true,
4731 .mem_bar = EFX_MEM_VF_BAR,
4732 .mem_map_size = efx_ef10_mem_map_size,
4733 .probe = efx_ef10_probe_vf,
4734 .remove = efx_ef10_remove,
4735 .dimension_resources = efx_ef10_dimension_resources,
4736 .init = efx_ef10_init_nic,
4737 .fini = efx_port_dummy_op_void,
4738 .map_reset_reason = efx_ef10_map_reset_reason,
4739 .map_reset_flags = efx_ef10_map_reset_flags,
4740 .reset = efx_ef10_reset,
4741 .probe_port = efx_mcdi_port_probe,
4742 .remove_port = efx_mcdi_port_remove,
4743 .fini_dmaq = efx_ef10_fini_dmaq,
4744 .prepare_flr = efx_ef10_prepare_flr,
4745 .finish_flr = efx_port_dummy_op_void,
4746 .describe_stats = efx_ef10_describe_stats,
4747 .update_stats = efx_ef10_update_stats_vf,
4748 .start_stats = efx_port_dummy_op_void,
4749 .pull_stats = efx_port_dummy_op_void,
4750 .stop_stats = efx_port_dummy_op_void,
4751 .set_id_led = efx_mcdi_set_id_led,
4752 .push_irq_moderation = efx_ef10_push_irq_moderation,
4753 .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
4754 .check_mac_fault = efx_mcdi_mac_check_fault,
4755 .reconfigure_port = efx_mcdi_port_reconfigure,
4756 .get_wol = efx_ef10_get_wol_vf,
4757 .set_wol = efx_ef10_set_wol_vf,
4758 .resume_wol = efx_port_dummy_op_void,
4759 .mcdi_request = efx_ef10_mcdi_request,
4760 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4761 .mcdi_read_response = efx_ef10_mcdi_read_response,
4762 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4763 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4764 .irq_enable_master = efx_port_dummy_op_void,
4765 .irq_test_generate = efx_ef10_irq_test_generate,
4766 .irq_disable_non_ev = efx_port_dummy_op_void,
4767 .irq_handle_msi = efx_ef10_msi_interrupt,
4768 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4769 .tx_probe = efx_ef10_tx_probe,
4770 .tx_init = efx_ef10_tx_init,
4771 .tx_remove = efx_ef10_tx_remove,
4772 .tx_write = efx_ef10_tx_write,
4773 .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
4774 .rx_probe = efx_ef10_rx_probe,
4775 .rx_init = efx_ef10_rx_init,
4776 .rx_remove = efx_ef10_rx_remove,
4777 .rx_write = efx_ef10_rx_write,
4778 .rx_defer_refill = efx_ef10_rx_defer_refill,
4779 .ev_probe = efx_ef10_ev_probe,
4780 .ev_init = efx_ef10_ev_init,
4781 .ev_fini = efx_ef10_ev_fini,
4782 .ev_remove = efx_ef10_ev_remove,
4783 .ev_process = efx_ef10_ev_process,
4784 .ev_read_ack = efx_ef10_ev_read_ack,
4785 .ev_test_generate = efx_ef10_ev_test_generate,
4786 .filter_table_probe = efx_ef10_filter_table_probe,
4787 .filter_table_restore = efx_ef10_filter_table_restore,
4788 .filter_table_remove = efx_ef10_filter_table_remove,
4789 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
4790 .filter_insert = efx_ef10_filter_insert,
4791 .filter_remove_safe = efx_ef10_filter_remove_safe,
4792 .filter_get_safe = efx_ef10_filter_get_safe,
4793 .filter_clear_rx = efx_ef10_filter_clear_rx,
4794 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
4795 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
4796 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
4797 #ifdef CONFIG_RFS_ACCEL
4798 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
4799 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
4800 #endif
4801 #ifdef CONFIG_SFC_MTD
4802 .mtd_probe = efx_port_dummy_op_int,
4803 #endif
4804 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4805 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4806 #ifdef CONFIG_SFC_SRIOV
4807 .vswitching_probe = efx_ef10_vswitching_probe_vf,
4808 .vswitching_restore = efx_ef10_vswitching_restore_vf,
4809 .vswitching_remove = efx_ef10_vswitching_remove_vf,
4810 .sriov_get_phys_port_id = efx_ef10_sriov_get_phys_port_id,
4811 #endif
4812 .get_mac_address = efx_ef10_get_mac_address_vf,
4813 .set_mac_address = efx_ef10_set_mac_address,
4814
4815 .revision = EFX_REV_HUNT_A0,
4816 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4817 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4818 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4819 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4820 .can_rx_scatter = true,
4821 .always_rx_scatter = true,
4822 .max_interrupt_mode = EFX_INT_MODE_MSIX,
4823 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4824 .offload_features = EF10_OFFLOAD_FEATURES,
4825 .mcdi_max_ver = 2,
4826 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
4827 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4828 1 << HWTSTAMP_FILTER_ALL,
4829 };
4830
4831 const struct efx_nic_type efx_hunt_a0_nic_type = {
4832 .is_vf = false,
4833 .mem_bar = EFX_MEM_BAR,
4834 .mem_map_size = efx_ef10_mem_map_size,
4835 .probe = efx_ef10_probe_pf,
4836 .remove = efx_ef10_remove,
4837 .dimension_resources = efx_ef10_dimension_resources,
4838 .init = efx_ef10_init_nic,
4839 .fini = efx_port_dummy_op_void,
4840 .map_reset_reason = efx_ef10_map_reset_reason,
4841 .map_reset_flags = efx_ef10_map_reset_flags,
4842 .reset = efx_ef10_reset,
4843 .probe_port = efx_mcdi_port_probe,
4844 .remove_port = efx_mcdi_port_remove,
4845 .fini_dmaq = efx_ef10_fini_dmaq,
4846 .prepare_flr = efx_ef10_prepare_flr,
4847 .finish_flr = efx_port_dummy_op_void,
4848 .describe_stats = efx_ef10_describe_stats,
4849 .update_stats = efx_ef10_update_stats_pf,
4850 .start_stats = efx_mcdi_mac_start_stats,
4851 .pull_stats = efx_mcdi_mac_pull_stats,
4852 .stop_stats = efx_mcdi_mac_stop_stats,
4853 .set_id_led = efx_mcdi_set_id_led,
4854 .push_irq_moderation = efx_ef10_push_irq_moderation,
4855 .reconfigure_mac = efx_ef10_mac_reconfigure,
4856 .check_mac_fault = efx_mcdi_mac_check_fault,
4857 .reconfigure_port = efx_mcdi_port_reconfigure,
4858 .get_wol = efx_ef10_get_wol,
4859 .set_wol = efx_ef10_set_wol,
4860 .resume_wol = efx_port_dummy_op_void,
4861 .test_chip = efx_ef10_test_chip,
4862 .test_nvram = efx_mcdi_nvram_test_all,
4863 .mcdi_request = efx_ef10_mcdi_request,
4864 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4865 .mcdi_read_response = efx_ef10_mcdi_read_response,
4866 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4867 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4868 .irq_enable_master = efx_port_dummy_op_void,
4869 .irq_test_generate = efx_ef10_irq_test_generate,
4870 .irq_disable_non_ev = efx_port_dummy_op_void,
4871 .irq_handle_msi = efx_ef10_msi_interrupt,
4872 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4873 .tx_probe = efx_ef10_tx_probe,
4874 .tx_init = efx_ef10_tx_init,
4875 .tx_remove = efx_ef10_tx_remove,
4876 .tx_write = efx_ef10_tx_write,
4877 .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
4878 .rx_probe = efx_ef10_rx_probe,
4879 .rx_init = efx_ef10_rx_init,
4880 .rx_remove = efx_ef10_rx_remove,
4881 .rx_write = efx_ef10_rx_write,
4882 .rx_defer_refill = efx_ef10_rx_defer_refill,
4883 .ev_probe = efx_ef10_ev_probe,
4884 .ev_init = efx_ef10_ev_init,
4885 .ev_fini = efx_ef10_ev_fini,
4886 .ev_remove = efx_ef10_ev_remove,
4887 .ev_process = efx_ef10_ev_process,
4888 .ev_read_ack = efx_ef10_ev_read_ack,
4889 .ev_test_generate = efx_ef10_ev_test_generate,
4890 .filter_table_probe = efx_ef10_filter_table_probe,
4891 .filter_table_restore = efx_ef10_filter_table_restore,
4892 .filter_table_remove = efx_ef10_filter_table_remove,
4893 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
4894 .filter_insert = efx_ef10_filter_insert,
4895 .filter_remove_safe = efx_ef10_filter_remove_safe,
4896 .filter_get_safe = efx_ef10_filter_get_safe,
4897 .filter_clear_rx = efx_ef10_filter_clear_rx,
4898 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
4899 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
4900 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
4901 #ifdef CONFIG_RFS_ACCEL
4902 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
4903 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
4904 #endif
4905 #ifdef CONFIG_SFC_MTD
4906 .mtd_probe = efx_ef10_mtd_probe,
4907 .mtd_rename = efx_mcdi_mtd_rename,
4908 .mtd_read = efx_mcdi_mtd_read,
4909 .mtd_erase = efx_mcdi_mtd_erase,
4910 .mtd_write = efx_mcdi_mtd_write,
4911 .mtd_sync = efx_mcdi_mtd_sync,
4912 #endif
4913 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
4914 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4915 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4916 #ifdef CONFIG_SFC_SRIOV
4917 .sriov_configure = efx_ef10_sriov_configure,
4918 .sriov_init = efx_ef10_sriov_init,
4919 .sriov_fini = efx_ef10_sriov_fini,
4920 .sriov_wanted = efx_ef10_sriov_wanted,
4921 .sriov_reset = efx_ef10_sriov_reset,
4922 .sriov_flr = efx_ef10_sriov_flr,
4923 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4924 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4925 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4926 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4927 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4928 .vswitching_probe = efx_ef10_vswitching_probe_pf,
4929 .vswitching_restore = efx_ef10_vswitching_restore_pf,
4930 .vswitching_remove = efx_ef10_vswitching_remove_pf,
4931 #endif
4932 .get_mac_address = efx_ef10_get_mac_address_pf,
4933 .set_mac_address = efx_ef10_set_mac_address,
4934
4935 .revision = EFX_REV_HUNT_A0,
4936 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4937 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4938 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4939 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4940 .can_rx_scatter = true,
4941 .always_rx_scatter = true,
4942 .max_interrupt_mode = EFX_INT_MODE_MSIX,
4943 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4944 .offload_features = EF10_OFFLOAD_FEATURES,
4945 .mcdi_max_ver = 2,
4946 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
4947 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4948 1 << HWTSTAMP_FILTER_ALL,
4949 };
This page took 0.125557 seconds and 6 git commands to generate.