net/mlx5_core: Print resource number on QP/SRQ async events
[deliverable/linux.git] / drivers / net / ethernet / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29
30 #include "mcdi.h"
31 #include "workarounds.h"
32
33 /**************************************************************************
34 *
35 * Type name strings
36 *
37 **************************************************************************
38 */
39
40 /* Loopback mode names (see LOOPBACK_MODE()) */
41 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42 const char *const efx_loopback_mode_names[] = {
43 [LOOPBACK_NONE] = "NONE",
44 [LOOPBACK_DATA] = "DATAPATH",
45 [LOOPBACK_GMAC] = "GMAC",
46 [LOOPBACK_XGMII] = "XGMII",
47 [LOOPBACK_XGXS] = "XGXS",
48 [LOOPBACK_XAUI] = "XAUI",
49 [LOOPBACK_GMII] = "GMII",
50 [LOOPBACK_SGMII] = "SGMII",
51 [LOOPBACK_XGBR] = "XGBR",
52 [LOOPBACK_XFI] = "XFI",
53 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
54 [LOOPBACK_GMII_FAR] = "GMII_FAR",
55 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
56 [LOOPBACK_XFI_FAR] = "XFI_FAR",
57 [LOOPBACK_GPHY] = "GPHY",
58 [LOOPBACK_PHYXS] = "PHYXS",
59 [LOOPBACK_PCS] = "PCS",
60 [LOOPBACK_PMAPMD] = "PMA/PMD",
61 [LOOPBACK_XPORT] = "XPORT",
62 [LOOPBACK_XGMII_WS] = "XGMII_WS",
63 [LOOPBACK_XAUI_WS] = "XAUI_WS",
64 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
65 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66 [LOOPBACK_GMII_WS] = "GMII_WS",
67 [LOOPBACK_XFI_WS] = "XFI_WS",
68 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
69 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
70 };
71
72 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73 const char *const efx_reset_type_names[] = {
74 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
75 [RESET_TYPE_ALL] = "ALL",
76 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
77 [RESET_TYPE_WORLD] = "WORLD",
78 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
79 [RESET_TYPE_MC_BIST] = "MC_BIST",
80 [RESET_TYPE_DISABLE] = "DISABLE",
81 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
82 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
83 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
84 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
85 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
86 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
87 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)",
88 };
89
90 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
91 * queued onto this work queue. This is not a per-nic work queue, because
92 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
93 */
94 static struct workqueue_struct *reset_workqueue;
95
96 /* How often and how many times to poll for a reset while waiting for a
97 * BIST that another function started to complete.
98 */
99 #define BIST_WAIT_DELAY_MS 100
100 #define BIST_WAIT_DELAY_COUNT 100
101
102 /**************************************************************************
103 *
104 * Configurable values
105 *
106 *************************************************************************/
107
108 /*
109 * Use separate channels for TX and RX events
110 *
111 * Set this to 1 to use separate channels for TX and RX. It allows us
112 * to control interrupt affinity separately for TX and RX.
113 *
114 * This is only used in MSI-X interrupt mode
115 */
116 static bool separate_tx_channels;
117 module_param(separate_tx_channels, bool, 0444);
118 MODULE_PARM_DESC(separate_tx_channels,
119 "Use separate channels for TX and RX");
120
121 /* This is the weight assigned to each of the (per-channel) virtual
122 * NAPI devices.
123 */
124 static int napi_weight = 64;
125
126 /* This is the time (in jiffies) between invocations of the hardware
127 * monitor.
128 * On Falcon-based NICs, this will:
129 * - Check the on-board hardware monitor;
130 * - Poll the link state and reconfigure the hardware as necessary.
131 * On Siena-based NICs for power systems with EEH support, this will give EEH a
132 * chance to start.
133 */
134 static unsigned int efx_monitor_interval = 1 * HZ;
135
136 /* Initial interrupt moderation settings. They can be modified after
137 * module load with ethtool.
138 *
139 * The default for RX should strike a balance between increasing the
140 * round-trip latency and reducing overhead.
141 */
142 static unsigned int rx_irq_mod_usec = 60;
143
144 /* Initial interrupt moderation settings. They can be modified after
145 * module load with ethtool.
146 *
147 * This default is chosen to ensure that a 10G link does not go idle
148 * while a TX queue is stopped after it has become full. A queue is
149 * restarted when it drops below half full. The time this takes (assuming
150 * worst case 3 descriptors per packet and 1024 descriptors) is
151 * 512 / 3 * 1.2 = 205 usec.
152 */
153 static unsigned int tx_irq_mod_usec = 150;
154
155 /* This is the first interrupt mode to try out of:
156 * 0 => MSI-X
157 * 1 => MSI
158 * 2 => legacy
159 */
160 static unsigned int interrupt_mode;
161
162 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
163 * i.e. the number of CPUs among which we may distribute simultaneous
164 * interrupt handling.
165 *
166 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
167 * The default (0) means to assign an interrupt to each core.
168 */
169 static unsigned int rss_cpus;
170 module_param(rss_cpus, uint, 0444);
171 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
172
173 static bool phy_flash_cfg;
174 module_param(phy_flash_cfg, bool, 0644);
175 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
176
177 static unsigned irq_adapt_low_thresh = 8000;
178 module_param(irq_adapt_low_thresh, uint, 0644);
179 MODULE_PARM_DESC(irq_adapt_low_thresh,
180 "Threshold score for reducing IRQ moderation");
181
182 static unsigned irq_adapt_high_thresh = 16000;
183 module_param(irq_adapt_high_thresh, uint, 0644);
184 MODULE_PARM_DESC(irq_adapt_high_thresh,
185 "Threshold score for increasing IRQ moderation");
186
187 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
188 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
189 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
190 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
191 module_param(debug, uint, 0);
192 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
193
194 /**************************************************************************
195 *
196 * Utility functions and prototypes
197 *
198 *************************************************************************/
199
200 static int efx_soft_enable_interrupts(struct efx_nic *efx);
201 static void efx_soft_disable_interrupts(struct efx_nic *efx);
202 static void efx_remove_channel(struct efx_channel *channel);
203 static void efx_remove_channels(struct efx_nic *efx);
204 static const struct efx_channel_type efx_default_channel_type;
205 static void efx_remove_port(struct efx_nic *efx);
206 static void efx_init_napi_channel(struct efx_channel *channel);
207 static void efx_fini_napi(struct efx_nic *efx);
208 static void efx_fini_napi_channel(struct efx_channel *channel);
209 static void efx_fini_struct(struct efx_nic *efx);
210 static void efx_start_all(struct efx_nic *efx);
211 static void efx_stop_all(struct efx_nic *efx);
212
213 #define EFX_ASSERT_RESET_SERIALISED(efx) \
214 do { \
215 if ((efx->state == STATE_READY) || \
216 (efx->state == STATE_RECOVERY) || \
217 (efx->state == STATE_DISABLED)) \
218 ASSERT_RTNL(); \
219 } while (0)
220
221 static int efx_check_disabled(struct efx_nic *efx)
222 {
223 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
224 netif_err(efx, drv, efx->net_dev,
225 "device is disabled due to earlier errors\n");
226 return -EIO;
227 }
228 return 0;
229 }
230
231 /**************************************************************************
232 *
233 * Event queue processing
234 *
235 *************************************************************************/
236
237 /* Process channel's event queue
238 *
239 * This function is responsible for processing the event queue of a
240 * single channel. The caller must guarantee that this function will
241 * never be concurrently called more than once on the same channel,
242 * though different channels may be being processed concurrently.
243 */
244 static int efx_process_channel(struct efx_channel *channel, int budget)
245 {
246 int spent;
247
248 if (unlikely(!channel->enabled))
249 return 0;
250
251 spent = efx_nic_process_eventq(channel, budget);
252 if (spent && efx_channel_has_rx_queue(channel)) {
253 struct efx_rx_queue *rx_queue =
254 efx_channel_get_rx_queue(channel);
255
256 efx_rx_flush_packet(channel);
257 efx_fast_push_rx_descriptors(rx_queue, true);
258 }
259
260 return spent;
261 }
262
263 /* NAPI poll handler
264 *
265 * NAPI guarantees serialisation of polls of the same device, which
266 * provides the guarantee required by efx_process_channel().
267 */
268 static int efx_poll(struct napi_struct *napi, int budget)
269 {
270 struct efx_channel *channel =
271 container_of(napi, struct efx_channel, napi_str);
272 struct efx_nic *efx = channel->efx;
273 int spent;
274
275 if (!efx_channel_lock_napi(channel))
276 return budget;
277
278 netif_vdbg(efx, intr, efx->net_dev,
279 "channel %d NAPI poll executing on CPU %d\n",
280 channel->channel, raw_smp_processor_id());
281
282 spent = efx_process_channel(channel, budget);
283
284 if (spent < budget) {
285 if (efx_channel_has_rx_queue(channel) &&
286 efx->irq_rx_adaptive &&
287 unlikely(++channel->irq_count == 1000)) {
288 if (unlikely(channel->irq_mod_score <
289 irq_adapt_low_thresh)) {
290 if (channel->irq_moderation > 1) {
291 channel->irq_moderation -= 1;
292 efx->type->push_irq_moderation(channel);
293 }
294 } else if (unlikely(channel->irq_mod_score >
295 irq_adapt_high_thresh)) {
296 if (channel->irq_moderation <
297 efx->irq_rx_moderation) {
298 channel->irq_moderation += 1;
299 efx->type->push_irq_moderation(channel);
300 }
301 }
302 channel->irq_count = 0;
303 channel->irq_mod_score = 0;
304 }
305
306 efx_filter_rfs_expire(channel);
307
308 /* There is no race here; although napi_disable() will
309 * only wait for napi_complete(), this isn't a problem
310 * since efx_nic_eventq_read_ack() will have no effect if
311 * interrupts have already been disabled.
312 */
313 napi_complete(napi);
314 efx_nic_eventq_read_ack(channel);
315 }
316
317 efx_channel_unlock_napi(channel);
318 return spent;
319 }
320
321 /* Create event queue
322 * Event queue memory allocations are done only once. If the channel
323 * is reset, the memory buffer will be reused; this guards against
324 * errors during channel reset and also simplifies interrupt handling.
325 */
326 static int efx_probe_eventq(struct efx_channel *channel)
327 {
328 struct efx_nic *efx = channel->efx;
329 unsigned long entries;
330
331 netif_dbg(efx, probe, efx->net_dev,
332 "chan %d create event queue\n", channel->channel);
333
334 /* Build an event queue with room for one event per tx and rx buffer,
335 * plus some extra for link state events and MCDI completions. */
336 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
337 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
338 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
339
340 return efx_nic_probe_eventq(channel);
341 }
342
343 /* Prepare channel's event queue */
344 static int efx_init_eventq(struct efx_channel *channel)
345 {
346 struct efx_nic *efx = channel->efx;
347 int rc;
348
349 EFX_WARN_ON_PARANOID(channel->eventq_init);
350
351 netif_dbg(efx, drv, efx->net_dev,
352 "chan %d init event queue\n", channel->channel);
353
354 rc = efx_nic_init_eventq(channel);
355 if (rc == 0) {
356 efx->type->push_irq_moderation(channel);
357 channel->eventq_read_ptr = 0;
358 channel->eventq_init = true;
359 }
360 return rc;
361 }
362
363 /* Enable event queue processing and NAPI */
364 void efx_start_eventq(struct efx_channel *channel)
365 {
366 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
367 "chan %d start event queue\n", channel->channel);
368
369 /* Make sure the NAPI handler sees the enabled flag set */
370 channel->enabled = true;
371 smp_wmb();
372
373 efx_channel_enable(channel);
374 napi_enable(&channel->napi_str);
375 efx_nic_eventq_read_ack(channel);
376 }
377
378 /* Disable event queue processing and NAPI */
379 void efx_stop_eventq(struct efx_channel *channel)
380 {
381 if (!channel->enabled)
382 return;
383
384 napi_disable(&channel->napi_str);
385 while (!efx_channel_disable(channel))
386 usleep_range(1000, 20000);
387 channel->enabled = false;
388 }
389
390 static void efx_fini_eventq(struct efx_channel *channel)
391 {
392 if (!channel->eventq_init)
393 return;
394
395 netif_dbg(channel->efx, drv, channel->efx->net_dev,
396 "chan %d fini event queue\n", channel->channel);
397
398 efx_nic_fini_eventq(channel);
399 channel->eventq_init = false;
400 }
401
402 static void efx_remove_eventq(struct efx_channel *channel)
403 {
404 netif_dbg(channel->efx, drv, channel->efx->net_dev,
405 "chan %d remove event queue\n", channel->channel);
406
407 efx_nic_remove_eventq(channel);
408 }
409
410 /**************************************************************************
411 *
412 * Channel handling
413 *
414 *************************************************************************/
415
416 /* Allocate and initialise a channel structure. */
417 static struct efx_channel *
418 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
419 {
420 struct efx_channel *channel;
421 struct efx_rx_queue *rx_queue;
422 struct efx_tx_queue *tx_queue;
423 int j;
424
425 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
426 if (!channel)
427 return NULL;
428
429 channel->efx = efx;
430 channel->channel = i;
431 channel->type = &efx_default_channel_type;
432
433 for (j = 0; j < EFX_TXQ_TYPES; j++) {
434 tx_queue = &channel->tx_queue[j];
435 tx_queue->efx = efx;
436 tx_queue->queue = i * EFX_TXQ_TYPES + j;
437 tx_queue->channel = channel;
438 }
439
440 rx_queue = &channel->rx_queue;
441 rx_queue->efx = efx;
442 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
443 (unsigned long)rx_queue);
444
445 return channel;
446 }
447
448 /* Allocate and initialise a channel structure, copying parameters
449 * (but not resources) from an old channel structure.
450 */
451 static struct efx_channel *
452 efx_copy_channel(const struct efx_channel *old_channel)
453 {
454 struct efx_channel *channel;
455 struct efx_rx_queue *rx_queue;
456 struct efx_tx_queue *tx_queue;
457 int j;
458
459 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
460 if (!channel)
461 return NULL;
462
463 *channel = *old_channel;
464
465 channel->napi_dev = NULL;
466 memset(&channel->eventq, 0, sizeof(channel->eventq));
467
468 for (j = 0; j < EFX_TXQ_TYPES; j++) {
469 tx_queue = &channel->tx_queue[j];
470 if (tx_queue->channel)
471 tx_queue->channel = channel;
472 tx_queue->buffer = NULL;
473 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
474 }
475
476 rx_queue = &channel->rx_queue;
477 rx_queue->buffer = NULL;
478 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
479 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
480 (unsigned long)rx_queue);
481
482 return channel;
483 }
484
485 static int efx_probe_channel(struct efx_channel *channel)
486 {
487 struct efx_tx_queue *tx_queue;
488 struct efx_rx_queue *rx_queue;
489 int rc;
490
491 netif_dbg(channel->efx, probe, channel->efx->net_dev,
492 "creating channel %d\n", channel->channel);
493
494 rc = channel->type->pre_probe(channel);
495 if (rc)
496 goto fail;
497
498 rc = efx_probe_eventq(channel);
499 if (rc)
500 goto fail;
501
502 efx_for_each_channel_tx_queue(tx_queue, channel) {
503 rc = efx_probe_tx_queue(tx_queue);
504 if (rc)
505 goto fail;
506 }
507
508 efx_for_each_channel_rx_queue(rx_queue, channel) {
509 rc = efx_probe_rx_queue(rx_queue);
510 if (rc)
511 goto fail;
512 }
513
514 return 0;
515
516 fail:
517 efx_remove_channel(channel);
518 return rc;
519 }
520
521 static void
522 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
523 {
524 struct efx_nic *efx = channel->efx;
525 const char *type;
526 int number;
527
528 number = channel->channel;
529 if (efx->tx_channel_offset == 0) {
530 type = "";
531 } else if (channel->channel < efx->tx_channel_offset) {
532 type = "-rx";
533 } else {
534 type = "-tx";
535 number -= efx->tx_channel_offset;
536 }
537 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
538 }
539
540 static void efx_set_channel_names(struct efx_nic *efx)
541 {
542 struct efx_channel *channel;
543
544 efx_for_each_channel(channel, efx)
545 channel->type->get_name(channel,
546 efx->msi_context[channel->channel].name,
547 sizeof(efx->msi_context[0].name));
548 }
549
550 static int efx_probe_channels(struct efx_nic *efx)
551 {
552 struct efx_channel *channel;
553 int rc;
554
555 /* Restart special buffer allocation */
556 efx->next_buffer_table = 0;
557
558 /* Probe channels in reverse, so that any 'extra' channels
559 * use the start of the buffer table. This allows the traffic
560 * channels to be resized without moving them or wasting the
561 * entries before them.
562 */
563 efx_for_each_channel_rev(channel, efx) {
564 rc = efx_probe_channel(channel);
565 if (rc) {
566 netif_err(efx, probe, efx->net_dev,
567 "failed to create channel %d\n",
568 channel->channel);
569 goto fail;
570 }
571 }
572 efx_set_channel_names(efx);
573
574 return 0;
575
576 fail:
577 efx_remove_channels(efx);
578 return rc;
579 }
580
581 /* Channels are shutdown and reinitialised whilst the NIC is running
582 * to propagate configuration changes (mtu, checksum offload), or
583 * to clear hardware error conditions
584 */
585 static void efx_start_datapath(struct efx_nic *efx)
586 {
587 bool old_rx_scatter = efx->rx_scatter;
588 struct efx_tx_queue *tx_queue;
589 struct efx_rx_queue *rx_queue;
590 struct efx_channel *channel;
591 size_t rx_buf_len;
592
593 /* Calculate the rx buffer allocation parameters required to
594 * support the current MTU, including padding for header
595 * alignment and overruns.
596 */
597 efx->rx_dma_len = (efx->rx_prefix_size +
598 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
599 efx->type->rx_buffer_padding);
600 rx_buf_len = (sizeof(struct efx_rx_page_state) +
601 efx->rx_ip_align + efx->rx_dma_len);
602 if (rx_buf_len <= PAGE_SIZE) {
603 efx->rx_scatter = efx->type->always_rx_scatter;
604 efx->rx_buffer_order = 0;
605 } else if (efx->type->can_rx_scatter) {
606 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
607 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
608 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
609 EFX_RX_BUF_ALIGNMENT) >
610 PAGE_SIZE);
611 efx->rx_scatter = true;
612 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
613 efx->rx_buffer_order = 0;
614 } else {
615 efx->rx_scatter = false;
616 efx->rx_buffer_order = get_order(rx_buf_len);
617 }
618
619 efx_rx_config_page_split(efx);
620 if (efx->rx_buffer_order)
621 netif_dbg(efx, drv, efx->net_dev,
622 "RX buf len=%u; page order=%u batch=%u\n",
623 efx->rx_dma_len, efx->rx_buffer_order,
624 efx->rx_pages_per_batch);
625 else
626 netif_dbg(efx, drv, efx->net_dev,
627 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
628 efx->rx_dma_len, efx->rx_page_buf_step,
629 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
630
631 /* RX filters may also have scatter-enabled flags */
632 if (efx->rx_scatter != old_rx_scatter)
633 efx->type->filter_update_rx_scatter(efx);
634
635 /* We must keep at least one descriptor in a TX ring empty.
636 * We could avoid this when the queue size does not exactly
637 * match the hardware ring size, but it's not that important.
638 * Therefore we stop the queue when one more skb might fill
639 * the ring completely. We wake it when half way back to
640 * empty.
641 */
642 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
643 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
644
645 /* Initialise the channels */
646 efx_for_each_channel(channel, efx) {
647 efx_for_each_channel_tx_queue(tx_queue, channel) {
648 efx_init_tx_queue(tx_queue);
649 atomic_inc(&efx->active_queues);
650 }
651
652 efx_for_each_channel_rx_queue(rx_queue, channel) {
653 efx_init_rx_queue(rx_queue);
654 atomic_inc(&efx->active_queues);
655 efx_stop_eventq(channel);
656 efx_fast_push_rx_descriptors(rx_queue, false);
657 efx_start_eventq(channel);
658 }
659
660 WARN_ON(channel->rx_pkt_n_frags);
661 }
662
663 efx_ptp_start_datapath(efx);
664
665 if (netif_device_present(efx->net_dev))
666 netif_tx_wake_all_queues(efx->net_dev);
667 }
668
669 static void efx_stop_datapath(struct efx_nic *efx)
670 {
671 struct efx_channel *channel;
672 struct efx_tx_queue *tx_queue;
673 struct efx_rx_queue *rx_queue;
674 int rc;
675
676 EFX_ASSERT_RESET_SERIALISED(efx);
677 BUG_ON(efx->port_enabled);
678
679 efx_ptp_stop_datapath(efx);
680
681 /* Stop RX refill */
682 efx_for_each_channel(channel, efx) {
683 efx_for_each_channel_rx_queue(rx_queue, channel)
684 rx_queue->refill_enabled = false;
685 }
686
687 efx_for_each_channel(channel, efx) {
688 /* RX packet processing is pipelined, so wait for the
689 * NAPI handler to complete. At least event queue 0
690 * might be kept active by non-data events, so don't
691 * use napi_synchronize() but actually disable NAPI
692 * temporarily.
693 */
694 if (efx_channel_has_rx_queue(channel)) {
695 efx_stop_eventq(channel);
696 efx_start_eventq(channel);
697 }
698 }
699
700 rc = efx->type->fini_dmaq(efx);
701 if (rc && EFX_WORKAROUND_7803(efx)) {
702 /* Schedule a reset to recover from the flush failure. The
703 * descriptor caches reference memory we're about to free,
704 * but falcon_reconfigure_mac_wrapper() won't reconnect
705 * the MACs because of the pending reset.
706 */
707 netif_err(efx, drv, efx->net_dev,
708 "Resetting to recover from flush failure\n");
709 efx_schedule_reset(efx, RESET_TYPE_ALL);
710 } else if (rc) {
711 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
712 } else {
713 netif_dbg(efx, drv, efx->net_dev,
714 "successfully flushed all queues\n");
715 }
716
717 efx_for_each_channel(channel, efx) {
718 efx_for_each_channel_rx_queue(rx_queue, channel)
719 efx_fini_rx_queue(rx_queue);
720 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
721 efx_fini_tx_queue(tx_queue);
722 }
723 }
724
725 static void efx_remove_channel(struct efx_channel *channel)
726 {
727 struct efx_tx_queue *tx_queue;
728 struct efx_rx_queue *rx_queue;
729
730 netif_dbg(channel->efx, drv, channel->efx->net_dev,
731 "destroy chan %d\n", channel->channel);
732
733 efx_for_each_channel_rx_queue(rx_queue, channel)
734 efx_remove_rx_queue(rx_queue);
735 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
736 efx_remove_tx_queue(tx_queue);
737 efx_remove_eventq(channel);
738 channel->type->post_remove(channel);
739 }
740
741 static void efx_remove_channels(struct efx_nic *efx)
742 {
743 struct efx_channel *channel;
744
745 efx_for_each_channel(channel, efx)
746 efx_remove_channel(channel);
747 }
748
749 int
750 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
751 {
752 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
753 u32 old_rxq_entries, old_txq_entries;
754 unsigned i, next_buffer_table = 0;
755 int rc, rc2;
756
757 rc = efx_check_disabled(efx);
758 if (rc)
759 return rc;
760
761 /* Not all channels should be reallocated. We must avoid
762 * reallocating their buffer table entries.
763 */
764 efx_for_each_channel(channel, efx) {
765 struct efx_rx_queue *rx_queue;
766 struct efx_tx_queue *tx_queue;
767
768 if (channel->type->copy)
769 continue;
770 next_buffer_table = max(next_buffer_table,
771 channel->eventq.index +
772 channel->eventq.entries);
773 efx_for_each_channel_rx_queue(rx_queue, channel)
774 next_buffer_table = max(next_buffer_table,
775 rx_queue->rxd.index +
776 rx_queue->rxd.entries);
777 efx_for_each_channel_tx_queue(tx_queue, channel)
778 next_buffer_table = max(next_buffer_table,
779 tx_queue->txd.index +
780 tx_queue->txd.entries);
781 }
782
783 efx_device_detach_sync(efx);
784 efx_stop_all(efx);
785 efx_soft_disable_interrupts(efx);
786
787 /* Clone channels (where possible) */
788 memset(other_channel, 0, sizeof(other_channel));
789 for (i = 0; i < efx->n_channels; i++) {
790 channel = efx->channel[i];
791 if (channel->type->copy)
792 channel = channel->type->copy(channel);
793 if (!channel) {
794 rc = -ENOMEM;
795 goto out;
796 }
797 other_channel[i] = channel;
798 }
799
800 /* Swap entry counts and channel pointers */
801 old_rxq_entries = efx->rxq_entries;
802 old_txq_entries = efx->txq_entries;
803 efx->rxq_entries = rxq_entries;
804 efx->txq_entries = txq_entries;
805 for (i = 0; i < efx->n_channels; i++) {
806 channel = efx->channel[i];
807 efx->channel[i] = other_channel[i];
808 other_channel[i] = channel;
809 }
810
811 /* Restart buffer table allocation */
812 efx->next_buffer_table = next_buffer_table;
813
814 for (i = 0; i < efx->n_channels; i++) {
815 channel = efx->channel[i];
816 if (!channel->type->copy)
817 continue;
818 rc = efx_probe_channel(channel);
819 if (rc)
820 goto rollback;
821 efx_init_napi_channel(efx->channel[i]);
822 }
823
824 out:
825 /* Destroy unused channel structures */
826 for (i = 0; i < efx->n_channels; i++) {
827 channel = other_channel[i];
828 if (channel && channel->type->copy) {
829 efx_fini_napi_channel(channel);
830 efx_remove_channel(channel);
831 kfree(channel);
832 }
833 }
834
835 rc2 = efx_soft_enable_interrupts(efx);
836 if (rc2) {
837 rc = rc ? rc : rc2;
838 netif_err(efx, drv, efx->net_dev,
839 "unable to restart interrupts on channel reallocation\n");
840 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
841 } else {
842 efx_start_all(efx);
843 netif_device_attach(efx->net_dev);
844 }
845 return rc;
846
847 rollback:
848 /* Swap back */
849 efx->rxq_entries = old_rxq_entries;
850 efx->txq_entries = old_txq_entries;
851 for (i = 0; i < efx->n_channels; i++) {
852 channel = efx->channel[i];
853 efx->channel[i] = other_channel[i];
854 other_channel[i] = channel;
855 }
856 goto out;
857 }
858
859 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
860 {
861 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
862 }
863
864 static const struct efx_channel_type efx_default_channel_type = {
865 .pre_probe = efx_channel_dummy_op_int,
866 .post_remove = efx_channel_dummy_op_void,
867 .get_name = efx_get_channel_name,
868 .copy = efx_copy_channel,
869 .keep_eventq = false,
870 };
871
872 int efx_channel_dummy_op_int(struct efx_channel *channel)
873 {
874 return 0;
875 }
876
877 void efx_channel_dummy_op_void(struct efx_channel *channel)
878 {
879 }
880
881 /**************************************************************************
882 *
883 * Port handling
884 *
885 **************************************************************************/
886
887 /* This ensures that the kernel is kept informed (via
888 * netif_carrier_on/off) of the link status, and also maintains the
889 * link status's stop on the port's TX queue.
890 */
891 void efx_link_status_changed(struct efx_nic *efx)
892 {
893 struct efx_link_state *link_state = &efx->link_state;
894
895 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
896 * that no events are triggered between unregister_netdev() and the
897 * driver unloading. A more general condition is that NETDEV_CHANGE
898 * can only be generated between NETDEV_UP and NETDEV_DOWN */
899 if (!netif_running(efx->net_dev))
900 return;
901
902 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
903 efx->n_link_state_changes++;
904
905 if (link_state->up)
906 netif_carrier_on(efx->net_dev);
907 else
908 netif_carrier_off(efx->net_dev);
909 }
910
911 /* Status message for kernel log */
912 if (link_state->up)
913 netif_info(efx, link, efx->net_dev,
914 "link up at %uMbps %s-duplex (MTU %d)\n",
915 link_state->speed, link_state->fd ? "full" : "half",
916 efx->net_dev->mtu);
917 else
918 netif_info(efx, link, efx->net_dev, "link down\n");
919 }
920
921 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
922 {
923 efx->link_advertising = advertising;
924 if (advertising) {
925 if (advertising & ADVERTISED_Pause)
926 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
927 else
928 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
929 if (advertising & ADVERTISED_Asym_Pause)
930 efx->wanted_fc ^= EFX_FC_TX;
931 }
932 }
933
934 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
935 {
936 efx->wanted_fc = wanted_fc;
937 if (efx->link_advertising) {
938 if (wanted_fc & EFX_FC_RX)
939 efx->link_advertising |= (ADVERTISED_Pause |
940 ADVERTISED_Asym_Pause);
941 else
942 efx->link_advertising &= ~(ADVERTISED_Pause |
943 ADVERTISED_Asym_Pause);
944 if (wanted_fc & EFX_FC_TX)
945 efx->link_advertising ^= ADVERTISED_Asym_Pause;
946 }
947 }
948
949 static void efx_fini_port(struct efx_nic *efx);
950
951 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
952 * the MAC appropriately. All other PHY configuration changes are pushed
953 * through phy_op->set_settings(), and pushed asynchronously to the MAC
954 * through efx_monitor().
955 *
956 * Callers must hold the mac_lock
957 */
958 int __efx_reconfigure_port(struct efx_nic *efx)
959 {
960 enum efx_phy_mode phy_mode;
961 int rc;
962
963 WARN_ON(!mutex_is_locked(&efx->mac_lock));
964
965 /* Disable PHY transmit in mac level loopbacks */
966 phy_mode = efx->phy_mode;
967 if (LOOPBACK_INTERNAL(efx))
968 efx->phy_mode |= PHY_MODE_TX_DISABLED;
969 else
970 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
971
972 rc = efx->type->reconfigure_port(efx);
973
974 if (rc)
975 efx->phy_mode = phy_mode;
976
977 return rc;
978 }
979
980 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
981 * disabled. */
982 int efx_reconfigure_port(struct efx_nic *efx)
983 {
984 int rc;
985
986 EFX_ASSERT_RESET_SERIALISED(efx);
987
988 mutex_lock(&efx->mac_lock);
989 rc = __efx_reconfigure_port(efx);
990 mutex_unlock(&efx->mac_lock);
991
992 return rc;
993 }
994
995 /* Asynchronous work item for changing MAC promiscuity and multicast
996 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
997 * MAC directly. */
998 static void efx_mac_work(struct work_struct *data)
999 {
1000 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1001
1002 mutex_lock(&efx->mac_lock);
1003 if (efx->port_enabled)
1004 efx->type->reconfigure_mac(efx);
1005 mutex_unlock(&efx->mac_lock);
1006 }
1007
1008 static int efx_probe_port(struct efx_nic *efx)
1009 {
1010 int rc;
1011
1012 netif_dbg(efx, probe, efx->net_dev, "create port\n");
1013
1014 if (phy_flash_cfg)
1015 efx->phy_mode = PHY_MODE_SPECIAL;
1016
1017 /* Connect up MAC/PHY operations table */
1018 rc = efx->type->probe_port(efx);
1019 if (rc)
1020 return rc;
1021
1022 /* Initialise MAC address to permanent address */
1023 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1024
1025 return 0;
1026 }
1027
1028 static int efx_init_port(struct efx_nic *efx)
1029 {
1030 int rc;
1031
1032 netif_dbg(efx, drv, efx->net_dev, "init port\n");
1033
1034 mutex_lock(&efx->mac_lock);
1035
1036 rc = efx->phy_op->init(efx);
1037 if (rc)
1038 goto fail1;
1039
1040 efx->port_initialized = true;
1041
1042 /* Reconfigure the MAC before creating dma queues (required for
1043 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1044 efx->type->reconfigure_mac(efx);
1045
1046 /* Ensure the PHY advertises the correct flow control settings */
1047 rc = efx->phy_op->reconfigure(efx);
1048 if (rc)
1049 goto fail2;
1050
1051 mutex_unlock(&efx->mac_lock);
1052 return 0;
1053
1054 fail2:
1055 efx->phy_op->fini(efx);
1056 fail1:
1057 mutex_unlock(&efx->mac_lock);
1058 return rc;
1059 }
1060
1061 static void efx_start_port(struct efx_nic *efx)
1062 {
1063 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1064 BUG_ON(efx->port_enabled);
1065
1066 mutex_lock(&efx->mac_lock);
1067 efx->port_enabled = true;
1068
1069 /* Ensure MAC ingress/egress is enabled */
1070 efx->type->reconfigure_mac(efx);
1071
1072 mutex_unlock(&efx->mac_lock);
1073 }
1074
1075 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1076 * and the async self-test, wait for them to finish and prevent them
1077 * being scheduled again. This doesn't cover online resets, which
1078 * should only be cancelled when removing the device.
1079 */
1080 static void efx_stop_port(struct efx_nic *efx)
1081 {
1082 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1083
1084 EFX_ASSERT_RESET_SERIALISED(efx);
1085
1086 mutex_lock(&efx->mac_lock);
1087 efx->port_enabled = false;
1088 mutex_unlock(&efx->mac_lock);
1089
1090 /* Serialise against efx_set_multicast_list() */
1091 netif_addr_lock_bh(efx->net_dev);
1092 netif_addr_unlock_bh(efx->net_dev);
1093
1094 cancel_delayed_work_sync(&efx->monitor_work);
1095 efx_selftest_async_cancel(efx);
1096 cancel_work_sync(&efx->mac_work);
1097 }
1098
1099 static void efx_fini_port(struct efx_nic *efx)
1100 {
1101 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1102
1103 if (!efx->port_initialized)
1104 return;
1105
1106 efx->phy_op->fini(efx);
1107 efx->port_initialized = false;
1108
1109 efx->link_state.up = false;
1110 efx_link_status_changed(efx);
1111 }
1112
1113 static void efx_remove_port(struct efx_nic *efx)
1114 {
1115 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1116
1117 efx->type->remove_port(efx);
1118 }
1119
1120 /**************************************************************************
1121 *
1122 * NIC handling
1123 *
1124 **************************************************************************/
1125
1126 static LIST_HEAD(efx_primary_list);
1127 static LIST_HEAD(efx_unassociated_list);
1128
1129 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1130 {
1131 return left->type == right->type &&
1132 left->vpd_sn && right->vpd_sn &&
1133 !strcmp(left->vpd_sn, right->vpd_sn);
1134 }
1135
1136 static void efx_associate(struct efx_nic *efx)
1137 {
1138 struct efx_nic *other, *next;
1139
1140 if (efx->primary == efx) {
1141 /* Adding primary function; look for secondaries */
1142
1143 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1144 list_add_tail(&efx->node, &efx_primary_list);
1145
1146 list_for_each_entry_safe(other, next, &efx_unassociated_list,
1147 node) {
1148 if (efx_same_controller(efx, other)) {
1149 list_del(&other->node);
1150 netif_dbg(other, probe, other->net_dev,
1151 "moving to secondary list of %s %s\n",
1152 pci_name(efx->pci_dev),
1153 efx->net_dev->name);
1154 list_add_tail(&other->node,
1155 &efx->secondary_list);
1156 other->primary = efx;
1157 }
1158 }
1159 } else {
1160 /* Adding secondary function; look for primary */
1161
1162 list_for_each_entry(other, &efx_primary_list, node) {
1163 if (efx_same_controller(efx, other)) {
1164 netif_dbg(efx, probe, efx->net_dev,
1165 "adding to secondary list of %s %s\n",
1166 pci_name(other->pci_dev),
1167 other->net_dev->name);
1168 list_add_tail(&efx->node,
1169 &other->secondary_list);
1170 efx->primary = other;
1171 return;
1172 }
1173 }
1174
1175 netif_dbg(efx, probe, efx->net_dev,
1176 "adding to unassociated list\n");
1177 list_add_tail(&efx->node, &efx_unassociated_list);
1178 }
1179 }
1180
1181 static void efx_dissociate(struct efx_nic *efx)
1182 {
1183 struct efx_nic *other, *next;
1184
1185 list_del(&efx->node);
1186 efx->primary = NULL;
1187
1188 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1189 list_del(&other->node);
1190 netif_dbg(other, probe, other->net_dev,
1191 "moving to unassociated list\n");
1192 list_add_tail(&other->node, &efx_unassociated_list);
1193 other->primary = NULL;
1194 }
1195 }
1196
1197 /* This configures the PCI device to enable I/O and DMA. */
1198 static int efx_init_io(struct efx_nic *efx)
1199 {
1200 struct pci_dev *pci_dev = efx->pci_dev;
1201 dma_addr_t dma_mask = efx->type->max_dma_mask;
1202 unsigned int mem_map_size = efx->type->mem_map_size(efx);
1203 int rc;
1204
1205 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1206
1207 rc = pci_enable_device(pci_dev);
1208 if (rc) {
1209 netif_err(efx, probe, efx->net_dev,
1210 "failed to enable PCI device\n");
1211 goto fail1;
1212 }
1213
1214 pci_set_master(pci_dev);
1215
1216 /* Set the PCI DMA mask. Try all possibilities from our
1217 * genuine mask down to 32 bits, because some architectures
1218 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1219 * masks event though they reject 46 bit masks.
1220 */
1221 while (dma_mask > 0x7fffffffUL) {
1222 if (dma_supported(&pci_dev->dev, dma_mask)) {
1223 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1224 if (rc == 0)
1225 break;
1226 }
1227 dma_mask >>= 1;
1228 }
1229 if (rc) {
1230 netif_err(efx, probe, efx->net_dev,
1231 "could not find a suitable DMA mask\n");
1232 goto fail2;
1233 }
1234 netif_dbg(efx, probe, efx->net_dev,
1235 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1236
1237 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1238 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1239 if (rc) {
1240 netif_err(efx, probe, efx->net_dev,
1241 "request for memory BAR failed\n");
1242 rc = -EIO;
1243 goto fail3;
1244 }
1245 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1246 if (!efx->membase) {
1247 netif_err(efx, probe, efx->net_dev,
1248 "could not map memory BAR at %llx+%x\n",
1249 (unsigned long long)efx->membase_phys, mem_map_size);
1250 rc = -ENOMEM;
1251 goto fail4;
1252 }
1253 netif_dbg(efx, probe, efx->net_dev,
1254 "memory BAR at %llx+%x (virtual %p)\n",
1255 (unsigned long long)efx->membase_phys, mem_map_size,
1256 efx->membase);
1257
1258 return 0;
1259
1260 fail4:
1261 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1262 fail3:
1263 efx->membase_phys = 0;
1264 fail2:
1265 pci_disable_device(efx->pci_dev);
1266 fail1:
1267 return rc;
1268 }
1269
1270 static void efx_fini_io(struct efx_nic *efx)
1271 {
1272 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1273
1274 if (efx->membase) {
1275 iounmap(efx->membase);
1276 efx->membase = NULL;
1277 }
1278
1279 if (efx->membase_phys) {
1280 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1281 efx->membase_phys = 0;
1282 }
1283
1284 pci_disable_device(efx->pci_dev);
1285 }
1286
1287 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1288 {
1289 cpumask_var_t thread_mask;
1290 unsigned int count;
1291 int cpu;
1292
1293 if (rss_cpus) {
1294 count = rss_cpus;
1295 } else {
1296 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1297 netif_warn(efx, probe, efx->net_dev,
1298 "RSS disabled due to allocation failure\n");
1299 return 1;
1300 }
1301
1302 count = 0;
1303 for_each_online_cpu(cpu) {
1304 if (!cpumask_test_cpu(cpu, thread_mask)) {
1305 ++count;
1306 cpumask_or(thread_mask, thread_mask,
1307 topology_thread_cpumask(cpu));
1308 }
1309 }
1310
1311 free_cpumask_var(thread_mask);
1312 }
1313
1314 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1315 * table entries that are inaccessible to VFs
1316 */
1317 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1318 count > efx_vf_size(efx)) {
1319 netif_warn(efx, probe, efx->net_dev,
1320 "Reducing number of RSS channels from %u to %u for "
1321 "VF support. Increase vf-msix-limit to use more "
1322 "channels on the PF.\n",
1323 count, efx_vf_size(efx));
1324 count = efx_vf_size(efx);
1325 }
1326
1327 return count;
1328 }
1329
1330 /* Probe the number and type of interrupts we are able to obtain, and
1331 * the resulting numbers of channels and RX queues.
1332 */
1333 static int efx_probe_interrupts(struct efx_nic *efx)
1334 {
1335 unsigned int extra_channels = 0;
1336 unsigned int i, j;
1337 int rc;
1338
1339 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1340 if (efx->extra_channel_type[i])
1341 ++extra_channels;
1342
1343 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1344 struct msix_entry xentries[EFX_MAX_CHANNELS];
1345 unsigned int n_channels;
1346
1347 n_channels = efx_wanted_parallelism(efx);
1348 if (separate_tx_channels)
1349 n_channels *= 2;
1350 n_channels += extra_channels;
1351 n_channels = min(n_channels, efx->max_channels);
1352
1353 for (i = 0; i < n_channels; i++)
1354 xentries[i].entry = i;
1355 rc = pci_enable_msix_range(efx->pci_dev,
1356 xentries, 1, n_channels);
1357 if (rc < 0) {
1358 /* Fall back to single channel MSI */
1359 efx->interrupt_mode = EFX_INT_MODE_MSI;
1360 netif_err(efx, drv, efx->net_dev,
1361 "could not enable MSI-X\n");
1362 } else if (rc < n_channels) {
1363 netif_err(efx, drv, efx->net_dev,
1364 "WARNING: Insufficient MSI-X vectors"
1365 " available (%d < %u).\n", rc, n_channels);
1366 netif_err(efx, drv, efx->net_dev,
1367 "WARNING: Performance may be reduced.\n");
1368 n_channels = rc;
1369 }
1370
1371 if (rc > 0) {
1372 efx->n_channels = n_channels;
1373 if (n_channels > extra_channels)
1374 n_channels -= extra_channels;
1375 if (separate_tx_channels) {
1376 efx->n_tx_channels = max(n_channels / 2, 1U);
1377 efx->n_rx_channels = max(n_channels -
1378 efx->n_tx_channels,
1379 1U);
1380 } else {
1381 efx->n_tx_channels = n_channels;
1382 efx->n_rx_channels = n_channels;
1383 }
1384 for (i = 0; i < efx->n_channels; i++)
1385 efx_get_channel(efx, i)->irq =
1386 xentries[i].vector;
1387 }
1388 }
1389
1390 /* Try single interrupt MSI */
1391 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1392 efx->n_channels = 1;
1393 efx->n_rx_channels = 1;
1394 efx->n_tx_channels = 1;
1395 rc = pci_enable_msi(efx->pci_dev);
1396 if (rc == 0) {
1397 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1398 } else {
1399 netif_err(efx, drv, efx->net_dev,
1400 "could not enable MSI\n");
1401 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1402 }
1403 }
1404
1405 /* Assume legacy interrupts */
1406 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1407 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1408 efx->n_rx_channels = 1;
1409 efx->n_tx_channels = 1;
1410 efx->legacy_irq = efx->pci_dev->irq;
1411 }
1412
1413 /* Assign extra channels if possible */
1414 j = efx->n_channels;
1415 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1416 if (!efx->extra_channel_type[i])
1417 continue;
1418 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1419 efx->n_channels <= extra_channels) {
1420 efx->extra_channel_type[i]->handle_no_channel(efx);
1421 } else {
1422 --j;
1423 efx_get_channel(efx, j)->type =
1424 efx->extra_channel_type[i];
1425 }
1426 }
1427
1428 /* RSS might be usable on VFs even if it is disabled on the PF */
1429
1430 efx->rss_spread = ((efx->n_rx_channels > 1 ||
1431 !efx->type->sriov_wanted(efx)) ?
1432 efx->n_rx_channels : efx_vf_size(efx));
1433
1434 return 0;
1435 }
1436
1437 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1438 {
1439 struct efx_channel *channel, *end_channel;
1440 int rc;
1441
1442 BUG_ON(efx->state == STATE_DISABLED);
1443
1444 efx->irq_soft_enabled = true;
1445 smp_wmb();
1446
1447 efx_for_each_channel(channel, efx) {
1448 if (!channel->type->keep_eventq) {
1449 rc = efx_init_eventq(channel);
1450 if (rc)
1451 goto fail;
1452 }
1453 efx_start_eventq(channel);
1454 }
1455
1456 efx_mcdi_mode_event(efx);
1457
1458 return 0;
1459 fail:
1460 end_channel = channel;
1461 efx_for_each_channel(channel, efx) {
1462 if (channel == end_channel)
1463 break;
1464 efx_stop_eventq(channel);
1465 if (!channel->type->keep_eventq)
1466 efx_fini_eventq(channel);
1467 }
1468
1469 return rc;
1470 }
1471
1472 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1473 {
1474 struct efx_channel *channel;
1475
1476 if (efx->state == STATE_DISABLED)
1477 return;
1478
1479 efx_mcdi_mode_poll(efx);
1480
1481 efx->irq_soft_enabled = false;
1482 smp_wmb();
1483
1484 if (efx->legacy_irq)
1485 synchronize_irq(efx->legacy_irq);
1486
1487 efx_for_each_channel(channel, efx) {
1488 if (channel->irq)
1489 synchronize_irq(channel->irq);
1490
1491 efx_stop_eventq(channel);
1492 if (!channel->type->keep_eventq)
1493 efx_fini_eventq(channel);
1494 }
1495
1496 /* Flush the asynchronous MCDI request queue */
1497 efx_mcdi_flush_async(efx);
1498 }
1499
1500 static int efx_enable_interrupts(struct efx_nic *efx)
1501 {
1502 struct efx_channel *channel, *end_channel;
1503 int rc;
1504
1505 BUG_ON(efx->state == STATE_DISABLED);
1506
1507 if (efx->eeh_disabled_legacy_irq) {
1508 enable_irq(efx->legacy_irq);
1509 efx->eeh_disabled_legacy_irq = false;
1510 }
1511
1512 efx->type->irq_enable_master(efx);
1513
1514 efx_for_each_channel(channel, efx) {
1515 if (channel->type->keep_eventq) {
1516 rc = efx_init_eventq(channel);
1517 if (rc)
1518 goto fail;
1519 }
1520 }
1521
1522 rc = efx_soft_enable_interrupts(efx);
1523 if (rc)
1524 goto fail;
1525
1526 return 0;
1527
1528 fail:
1529 end_channel = channel;
1530 efx_for_each_channel(channel, efx) {
1531 if (channel == end_channel)
1532 break;
1533 if (channel->type->keep_eventq)
1534 efx_fini_eventq(channel);
1535 }
1536
1537 efx->type->irq_disable_non_ev(efx);
1538
1539 return rc;
1540 }
1541
1542 static void efx_disable_interrupts(struct efx_nic *efx)
1543 {
1544 struct efx_channel *channel;
1545
1546 efx_soft_disable_interrupts(efx);
1547
1548 efx_for_each_channel(channel, efx) {
1549 if (channel->type->keep_eventq)
1550 efx_fini_eventq(channel);
1551 }
1552
1553 efx->type->irq_disable_non_ev(efx);
1554 }
1555
1556 static void efx_remove_interrupts(struct efx_nic *efx)
1557 {
1558 struct efx_channel *channel;
1559
1560 /* Remove MSI/MSI-X interrupts */
1561 efx_for_each_channel(channel, efx)
1562 channel->irq = 0;
1563 pci_disable_msi(efx->pci_dev);
1564 pci_disable_msix(efx->pci_dev);
1565
1566 /* Remove legacy interrupt */
1567 efx->legacy_irq = 0;
1568 }
1569
1570 static void efx_set_channels(struct efx_nic *efx)
1571 {
1572 struct efx_channel *channel;
1573 struct efx_tx_queue *tx_queue;
1574
1575 efx->tx_channel_offset =
1576 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1577
1578 /* We need to mark which channels really have RX and TX
1579 * queues, and adjust the TX queue numbers if we have separate
1580 * RX-only and TX-only channels.
1581 */
1582 efx_for_each_channel(channel, efx) {
1583 if (channel->channel < efx->n_rx_channels)
1584 channel->rx_queue.core_index = channel->channel;
1585 else
1586 channel->rx_queue.core_index = -1;
1587
1588 efx_for_each_channel_tx_queue(tx_queue, channel)
1589 tx_queue->queue -= (efx->tx_channel_offset *
1590 EFX_TXQ_TYPES);
1591 }
1592 }
1593
1594 static int efx_probe_nic(struct efx_nic *efx)
1595 {
1596 size_t i;
1597 int rc;
1598
1599 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1600
1601 /* Carry out hardware-type specific initialisation */
1602 rc = efx->type->probe(efx);
1603 if (rc)
1604 return rc;
1605
1606 /* Determine the number of channels and queues by trying to hook
1607 * in MSI-X interrupts. */
1608 rc = efx_probe_interrupts(efx);
1609 if (rc)
1610 goto fail1;
1611
1612 efx_set_channels(efx);
1613
1614 rc = efx->type->dimension_resources(efx);
1615 if (rc)
1616 goto fail2;
1617
1618 if (efx->n_channels > 1)
1619 netdev_rss_key_fill(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1620 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1621 efx->rx_indir_table[i] =
1622 ethtool_rxfh_indir_default(i, efx->rss_spread);
1623
1624 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1625 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1626
1627 /* Initialise the interrupt moderation settings */
1628 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1629 true);
1630
1631 return 0;
1632
1633 fail2:
1634 efx_remove_interrupts(efx);
1635 fail1:
1636 efx->type->remove(efx);
1637 return rc;
1638 }
1639
1640 static void efx_remove_nic(struct efx_nic *efx)
1641 {
1642 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1643
1644 efx_remove_interrupts(efx);
1645 efx->type->remove(efx);
1646 }
1647
1648 static int efx_probe_filters(struct efx_nic *efx)
1649 {
1650 int rc;
1651
1652 spin_lock_init(&efx->filter_lock);
1653
1654 rc = efx->type->filter_table_probe(efx);
1655 if (rc)
1656 return rc;
1657
1658 #ifdef CONFIG_RFS_ACCEL
1659 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1660 efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1661 sizeof(*efx->rps_flow_id),
1662 GFP_KERNEL);
1663 if (!efx->rps_flow_id) {
1664 efx->type->filter_table_remove(efx);
1665 return -ENOMEM;
1666 }
1667 }
1668 #endif
1669
1670 return 0;
1671 }
1672
1673 static void efx_remove_filters(struct efx_nic *efx)
1674 {
1675 #ifdef CONFIG_RFS_ACCEL
1676 kfree(efx->rps_flow_id);
1677 #endif
1678 efx->type->filter_table_remove(efx);
1679 }
1680
1681 static void efx_restore_filters(struct efx_nic *efx)
1682 {
1683 efx->type->filter_table_restore(efx);
1684 }
1685
1686 /**************************************************************************
1687 *
1688 * NIC startup/shutdown
1689 *
1690 *************************************************************************/
1691
1692 static int efx_probe_all(struct efx_nic *efx)
1693 {
1694 int rc;
1695
1696 rc = efx_probe_nic(efx);
1697 if (rc) {
1698 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1699 goto fail1;
1700 }
1701
1702 rc = efx_probe_port(efx);
1703 if (rc) {
1704 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1705 goto fail2;
1706 }
1707
1708 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1709 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1710 rc = -EINVAL;
1711 goto fail3;
1712 }
1713 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1714
1715 rc = efx_probe_filters(efx);
1716 if (rc) {
1717 netif_err(efx, probe, efx->net_dev,
1718 "failed to create filter tables\n");
1719 goto fail3;
1720 }
1721
1722 rc = efx_probe_channels(efx);
1723 if (rc)
1724 goto fail4;
1725
1726 return 0;
1727
1728 fail4:
1729 efx_remove_filters(efx);
1730 fail3:
1731 efx_remove_port(efx);
1732 fail2:
1733 efx_remove_nic(efx);
1734 fail1:
1735 return rc;
1736 }
1737
1738 /* If the interface is supposed to be running but is not, start
1739 * the hardware and software data path, regular activity for the port
1740 * (MAC statistics, link polling, etc.) and schedule the port to be
1741 * reconfigured. Interrupts must already be enabled. This function
1742 * is safe to call multiple times, so long as the NIC is not disabled.
1743 * Requires the RTNL lock.
1744 */
1745 static void efx_start_all(struct efx_nic *efx)
1746 {
1747 EFX_ASSERT_RESET_SERIALISED(efx);
1748 BUG_ON(efx->state == STATE_DISABLED);
1749
1750 /* Check that it is appropriate to restart the interface. All
1751 * of these flags are safe to read under just the rtnl lock */
1752 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1753 efx->reset_pending)
1754 return;
1755
1756 efx_start_port(efx);
1757 efx_start_datapath(efx);
1758
1759 /* Start the hardware monitor if there is one */
1760 if (efx->type->monitor != NULL)
1761 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1762 efx_monitor_interval);
1763
1764 /* If link state detection is normally event-driven, we have
1765 * to poll now because we could have missed a change
1766 */
1767 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1768 mutex_lock(&efx->mac_lock);
1769 if (efx->phy_op->poll(efx))
1770 efx_link_status_changed(efx);
1771 mutex_unlock(&efx->mac_lock);
1772 }
1773
1774 efx->type->start_stats(efx);
1775 efx->type->pull_stats(efx);
1776 spin_lock_bh(&efx->stats_lock);
1777 efx->type->update_stats(efx, NULL, NULL);
1778 spin_unlock_bh(&efx->stats_lock);
1779 }
1780
1781 /* Quiesce the hardware and software data path, and regular activity
1782 * for the port without bringing the link down. Safe to call multiple
1783 * times with the NIC in almost any state, but interrupts should be
1784 * enabled. Requires the RTNL lock.
1785 */
1786 static void efx_stop_all(struct efx_nic *efx)
1787 {
1788 EFX_ASSERT_RESET_SERIALISED(efx);
1789
1790 /* port_enabled can be read safely under the rtnl lock */
1791 if (!efx->port_enabled)
1792 return;
1793
1794 /* update stats before we go down so we can accurately count
1795 * rx_nodesc_drops
1796 */
1797 efx->type->pull_stats(efx);
1798 spin_lock_bh(&efx->stats_lock);
1799 efx->type->update_stats(efx, NULL, NULL);
1800 spin_unlock_bh(&efx->stats_lock);
1801 efx->type->stop_stats(efx);
1802 efx_stop_port(efx);
1803
1804 /* Stop the kernel transmit interface. This is only valid if
1805 * the device is stopped or detached; otherwise the watchdog
1806 * may fire immediately.
1807 */
1808 WARN_ON(netif_running(efx->net_dev) &&
1809 netif_device_present(efx->net_dev));
1810 netif_tx_disable(efx->net_dev);
1811
1812 efx_stop_datapath(efx);
1813 }
1814
1815 static void efx_remove_all(struct efx_nic *efx)
1816 {
1817 efx_remove_channels(efx);
1818 efx_remove_filters(efx);
1819 efx_remove_port(efx);
1820 efx_remove_nic(efx);
1821 }
1822
1823 /**************************************************************************
1824 *
1825 * Interrupt moderation
1826 *
1827 **************************************************************************/
1828
1829 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1830 {
1831 if (usecs == 0)
1832 return 0;
1833 if (usecs * 1000 < quantum_ns)
1834 return 1; /* never round down to 0 */
1835 return usecs * 1000 / quantum_ns;
1836 }
1837
1838 /* Set interrupt moderation parameters */
1839 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1840 unsigned int rx_usecs, bool rx_adaptive,
1841 bool rx_may_override_tx)
1842 {
1843 struct efx_channel *channel;
1844 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1845 efx->timer_quantum_ns,
1846 1000);
1847 unsigned int tx_ticks;
1848 unsigned int rx_ticks;
1849
1850 EFX_ASSERT_RESET_SERIALISED(efx);
1851
1852 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1853 return -EINVAL;
1854
1855 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1856 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1857
1858 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1859 !rx_may_override_tx) {
1860 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1861 "RX and TX IRQ moderation must be equal\n");
1862 return -EINVAL;
1863 }
1864
1865 efx->irq_rx_adaptive = rx_adaptive;
1866 efx->irq_rx_moderation = rx_ticks;
1867 efx_for_each_channel(channel, efx) {
1868 if (efx_channel_has_rx_queue(channel))
1869 channel->irq_moderation = rx_ticks;
1870 else if (efx_channel_has_tx_queues(channel))
1871 channel->irq_moderation = tx_ticks;
1872 }
1873
1874 return 0;
1875 }
1876
1877 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1878 unsigned int *rx_usecs, bool *rx_adaptive)
1879 {
1880 /* We must round up when converting ticks to microseconds
1881 * because we round down when converting the other way.
1882 */
1883
1884 *rx_adaptive = efx->irq_rx_adaptive;
1885 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1886 efx->timer_quantum_ns,
1887 1000);
1888
1889 /* If channels are shared between RX and TX, so is IRQ
1890 * moderation. Otherwise, IRQ moderation is the same for all
1891 * TX channels and is not adaptive.
1892 */
1893 if (efx->tx_channel_offset == 0)
1894 *tx_usecs = *rx_usecs;
1895 else
1896 *tx_usecs = DIV_ROUND_UP(
1897 efx->channel[efx->tx_channel_offset]->irq_moderation *
1898 efx->timer_quantum_ns,
1899 1000);
1900 }
1901
1902 /**************************************************************************
1903 *
1904 * Hardware monitor
1905 *
1906 **************************************************************************/
1907
1908 /* Run periodically off the general workqueue */
1909 static void efx_monitor(struct work_struct *data)
1910 {
1911 struct efx_nic *efx = container_of(data, struct efx_nic,
1912 monitor_work.work);
1913
1914 netif_vdbg(efx, timer, efx->net_dev,
1915 "hardware monitor executing on CPU %d\n",
1916 raw_smp_processor_id());
1917 BUG_ON(efx->type->monitor == NULL);
1918
1919 /* If the mac_lock is already held then it is likely a port
1920 * reconfiguration is already in place, which will likely do
1921 * most of the work of monitor() anyway. */
1922 if (mutex_trylock(&efx->mac_lock)) {
1923 if (efx->port_enabled)
1924 efx->type->monitor(efx);
1925 mutex_unlock(&efx->mac_lock);
1926 }
1927
1928 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1929 efx_monitor_interval);
1930 }
1931
1932 /**************************************************************************
1933 *
1934 * ioctls
1935 *
1936 *************************************************************************/
1937
1938 /* Net device ioctl
1939 * Context: process, rtnl_lock() held.
1940 */
1941 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1942 {
1943 struct efx_nic *efx = netdev_priv(net_dev);
1944 struct mii_ioctl_data *data = if_mii(ifr);
1945
1946 if (cmd == SIOCSHWTSTAMP)
1947 return efx_ptp_set_ts_config(efx, ifr);
1948 if (cmd == SIOCGHWTSTAMP)
1949 return efx_ptp_get_ts_config(efx, ifr);
1950
1951 /* Convert phy_id from older PRTAD/DEVAD format */
1952 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1953 (data->phy_id & 0xfc00) == 0x0400)
1954 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1955
1956 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1957 }
1958
1959 /**************************************************************************
1960 *
1961 * NAPI interface
1962 *
1963 **************************************************************************/
1964
1965 static void efx_init_napi_channel(struct efx_channel *channel)
1966 {
1967 struct efx_nic *efx = channel->efx;
1968
1969 channel->napi_dev = efx->net_dev;
1970 netif_napi_add(channel->napi_dev, &channel->napi_str,
1971 efx_poll, napi_weight);
1972 napi_hash_add(&channel->napi_str);
1973 efx_channel_init_lock(channel);
1974 }
1975
1976 static void efx_init_napi(struct efx_nic *efx)
1977 {
1978 struct efx_channel *channel;
1979
1980 efx_for_each_channel(channel, efx)
1981 efx_init_napi_channel(channel);
1982 }
1983
1984 static void efx_fini_napi_channel(struct efx_channel *channel)
1985 {
1986 if (channel->napi_dev) {
1987 netif_napi_del(&channel->napi_str);
1988 napi_hash_del(&channel->napi_str);
1989 }
1990 channel->napi_dev = NULL;
1991 }
1992
1993 static void efx_fini_napi(struct efx_nic *efx)
1994 {
1995 struct efx_channel *channel;
1996
1997 efx_for_each_channel(channel, efx)
1998 efx_fini_napi_channel(channel);
1999 }
2000
2001 /**************************************************************************
2002 *
2003 * Kernel netpoll interface
2004 *
2005 *************************************************************************/
2006
2007 #ifdef CONFIG_NET_POLL_CONTROLLER
2008
2009 /* Although in the common case interrupts will be disabled, this is not
2010 * guaranteed. However, all our work happens inside the NAPI callback,
2011 * so no locking is required.
2012 */
2013 static void efx_netpoll(struct net_device *net_dev)
2014 {
2015 struct efx_nic *efx = netdev_priv(net_dev);
2016 struct efx_channel *channel;
2017
2018 efx_for_each_channel(channel, efx)
2019 efx_schedule_channel(channel);
2020 }
2021
2022 #endif
2023
2024 #ifdef CONFIG_NET_RX_BUSY_POLL
2025 static int efx_busy_poll(struct napi_struct *napi)
2026 {
2027 struct efx_channel *channel =
2028 container_of(napi, struct efx_channel, napi_str);
2029 struct efx_nic *efx = channel->efx;
2030 int budget = 4;
2031 int old_rx_packets, rx_packets;
2032
2033 if (!netif_running(efx->net_dev))
2034 return LL_FLUSH_FAILED;
2035
2036 if (!efx_channel_lock_poll(channel))
2037 return LL_FLUSH_BUSY;
2038
2039 old_rx_packets = channel->rx_queue.rx_packets;
2040 efx_process_channel(channel, budget);
2041
2042 rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2043
2044 /* There is no race condition with NAPI here.
2045 * NAPI will automatically be rescheduled if it yielded during busy
2046 * polling, because it was not able to take the lock and thus returned
2047 * the full budget.
2048 */
2049 efx_channel_unlock_poll(channel);
2050
2051 return rx_packets;
2052 }
2053 #endif
2054
2055 /**************************************************************************
2056 *
2057 * Kernel net device interface
2058 *
2059 *************************************************************************/
2060
2061 /* Context: process, rtnl_lock() held. */
2062 static int efx_net_open(struct net_device *net_dev)
2063 {
2064 struct efx_nic *efx = netdev_priv(net_dev);
2065 int rc;
2066
2067 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2068 raw_smp_processor_id());
2069
2070 rc = efx_check_disabled(efx);
2071 if (rc)
2072 return rc;
2073 if (efx->phy_mode & PHY_MODE_SPECIAL)
2074 return -EBUSY;
2075 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2076 return -EIO;
2077
2078 /* Notify the kernel of the link state polled during driver load,
2079 * before the monitor starts running */
2080 efx_link_status_changed(efx);
2081
2082 efx_start_all(efx);
2083 efx_selftest_async_start(efx);
2084 return 0;
2085 }
2086
2087 /* Context: process, rtnl_lock() held.
2088 * Note that the kernel will ignore our return code; this method
2089 * should really be a void.
2090 */
2091 static int efx_net_stop(struct net_device *net_dev)
2092 {
2093 struct efx_nic *efx = netdev_priv(net_dev);
2094
2095 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2096 raw_smp_processor_id());
2097
2098 /* Stop the device and flush all the channels */
2099 efx_stop_all(efx);
2100
2101 return 0;
2102 }
2103
2104 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2105 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2106 struct rtnl_link_stats64 *stats)
2107 {
2108 struct efx_nic *efx = netdev_priv(net_dev);
2109
2110 spin_lock_bh(&efx->stats_lock);
2111 efx->type->update_stats(efx, NULL, stats);
2112 spin_unlock_bh(&efx->stats_lock);
2113
2114 return stats;
2115 }
2116
2117 /* Context: netif_tx_lock held, BHs disabled. */
2118 static void efx_watchdog(struct net_device *net_dev)
2119 {
2120 struct efx_nic *efx = netdev_priv(net_dev);
2121
2122 netif_err(efx, tx_err, efx->net_dev,
2123 "TX stuck with port_enabled=%d: resetting channels\n",
2124 efx->port_enabled);
2125
2126 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2127 }
2128
2129
2130 /* Context: process, rtnl_lock() held. */
2131 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2132 {
2133 struct efx_nic *efx = netdev_priv(net_dev);
2134 int rc;
2135
2136 rc = efx_check_disabled(efx);
2137 if (rc)
2138 return rc;
2139 if (new_mtu > EFX_MAX_MTU)
2140 return -EINVAL;
2141
2142 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2143
2144 efx_device_detach_sync(efx);
2145 efx_stop_all(efx);
2146
2147 mutex_lock(&efx->mac_lock);
2148 net_dev->mtu = new_mtu;
2149 efx->type->reconfigure_mac(efx);
2150 mutex_unlock(&efx->mac_lock);
2151
2152 efx_start_all(efx);
2153 netif_device_attach(efx->net_dev);
2154 return 0;
2155 }
2156
2157 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2158 {
2159 struct efx_nic *efx = netdev_priv(net_dev);
2160 struct sockaddr *addr = data;
2161 u8 *new_addr = addr->sa_data;
2162
2163 if (!is_valid_ether_addr(new_addr)) {
2164 netif_err(efx, drv, efx->net_dev,
2165 "invalid ethernet MAC address requested: %pM\n",
2166 new_addr);
2167 return -EADDRNOTAVAIL;
2168 }
2169
2170 ether_addr_copy(net_dev->dev_addr, new_addr);
2171 efx->type->sriov_mac_address_changed(efx);
2172
2173 /* Reconfigure the MAC */
2174 mutex_lock(&efx->mac_lock);
2175 efx->type->reconfigure_mac(efx);
2176 mutex_unlock(&efx->mac_lock);
2177
2178 return 0;
2179 }
2180
2181 /* Context: netif_addr_lock held, BHs disabled. */
2182 static void efx_set_rx_mode(struct net_device *net_dev)
2183 {
2184 struct efx_nic *efx = netdev_priv(net_dev);
2185
2186 if (efx->port_enabled)
2187 queue_work(efx->workqueue, &efx->mac_work);
2188 /* Otherwise efx_start_port() will do this */
2189 }
2190
2191 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2192 {
2193 struct efx_nic *efx = netdev_priv(net_dev);
2194
2195 /* If disabling RX n-tuple filtering, clear existing filters */
2196 if (net_dev->features & ~data & NETIF_F_NTUPLE)
2197 return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2198
2199 return 0;
2200 }
2201
2202 static const struct net_device_ops efx_farch_netdev_ops = {
2203 .ndo_open = efx_net_open,
2204 .ndo_stop = efx_net_stop,
2205 .ndo_get_stats64 = efx_net_stats,
2206 .ndo_tx_timeout = efx_watchdog,
2207 .ndo_start_xmit = efx_hard_start_xmit,
2208 .ndo_validate_addr = eth_validate_addr,
2209 .ndo_do_ioctl = efx_ioctl,
2210 .ndo_change_mtu = efx_change_mtu,
2211 .ndo_set_mac_address = efx_set_mac_address,
2212 .ndo_set_rx_mode = efx_set_rx_mode,
2213 .ndo_set_features = efx_set_features,
2214 #ifdef CONFIG_SFC_SRIOV
2215 .ndo_set_vf_mac = efx_siena_sriov_set_vf_mac,
2216 .ndo_set_vf_vlan = efx_siena_sriov_set_vf_vlan,
2217 .ndo_set_vf_spoofchk = efx_siena_sriov_set_vf_spoofchk,
2218 .ndo_get_vf_config = efx_siena_sriov_get_vf_config,
2219 #endif
2220 #ifdef CONFIG_NET_POLL_CONTROLLER
2221 .ndo_poll_controller = efx_netpoll,
2222 #endif
2223 .ndo_setup_tc = efx_setup_tc,
2224 #ifdef CONFIG_NET_RX_BUSY_POLL
2225 .ndo_busy_poll = efx_busy_poll,
2226 #endif
2227 #ifdef CONFIG_RFS_ACCEL
2228 .ndo_rx_flow_steer = efx_filter_rfs,
2229 #endif
2230 };
2231
2232 static const struct net_device_ops efx_ef10_netdev_ops = {
2233 .ndo_open = efx_net_open,
2234 .ndo_stop = efx_net_stop,
2235 .ndo_get_stats64 = efx_net_stats,
2236 .ndo_tx_timeout = efx_watchdog,
2237 .ndo_start_xmit = efx_hard_start_xmit,
2238 .ndo_validate_addr = eth_validate_addr,
2239 .ndo_do_ioctl = efx_ioctl,
2240 .ndo_change_mtu = efx_change_mtu,
2241 .ndo_set_mac_address = efx_set_mac_address,
2242 .ndo_set_rx_mode = efx_set_rx_mode,
2243 .ndo_set_features = efx_set_features,
2244 #ifdef CONFIG_NET_POLL_CONTROLLER
2245 .ndo_poll_controller = efx_netpoll,
2246 #endif
2247 #ifdef CONFIG_NET_RX_BUSY_POLL
2248 .ndo_busy_poll = efx_busy_poll,
2249 #endif
2250 #ifdef CONFIG_RFS_ACCEL
2251 .ndo_rx_flow_steer = efx_filter_rfs,
2252 #endif
2253 };
2254
2255 static void efx_update_name(struct efx_nic *efx)
2256 {
2257 strcpy(efx->name, efx->net_dev->name);
2258 efx_mtd_rename(efx);
2259 efx_set_channel_names(efx);
2260 }
2261
2262 static int efx_netdev_event(struct notifier_block *this,
2263 unsigned long event, void *ptr)
2264 {
2265 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2266
2267 if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
2268 net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2269 event == NETDEV_CHANGENAME)
2270 efx_update_name(netdev_priv(net_dev));
2271
2272 return NOTIFY_DONE;
2273 }
2274
2275 static struct notifier_block efx_netdev_notifier = {
2276 .notifier_call = efx_netdev_event,
2277 };
2278
2279 static ssize_t
2280 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2281 {
2282 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2283 return sprintf(buf, "%d\n", efx->phy_type);
2284 }
2285 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2286
2287 static int efx_register_netdev(struct efx_nic *efx)
2288 {
2289 struct net_device *net_dev = efx->net_dev;
2290 struct efx_channel *channel;
2291 int rc;
2292
2293 net_dev->watchdog_timeo = 5 * HZ;
2294 net_dev->irq = efx->pci_dev->irq;
2295 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
2296 net_dev->netdev_ops = &efx_ef10_netdev_ops;
2297 net_dev->priv_flags |= IFF_UNICAST_FLT;
2298 } else {
2299 net_dev->netdev_ops = &efx_farch_netdev_ops;
2300 }
2301 net_dev->ethtool_ops = &efx_ethtool_ops;
2302 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2303
2304 rtnl_lock();
2305
2306 /* Enable resets to be scheduled and check whether any were
2307 * already requested. If so, the NIC is probably hosed so we
2308 * abort.
2309 */
2310 efx->state = STATE_READY;
2311 smp_mb(); /* ensure we change state before checking reset_pending */
2312 if (efx->reset_pending) {
2313 netif_err(efx, probe, efx->net_dev,
2314 "aborting probe due to scheduled reset\n");
2315 rc = -EIO;
2316 goto fail_locked;
2317 }
2318
2319 rc = dev_alloc_name(net_dev, net_dev->name);
2320 if (rc < 0)
2321 goto fail_locked;
2322 efx_update_name(efx);
2323
2324 /* Always start with carrier off; PHY events will detect the link */
2325 netif_carrier_off(net_dev);
2326
2327 rc = register_netdevice(net_dev);
2328 if (rc)
2329 goto fail_locked;
2330
2331 efx_for_each_channel(channel, efx) {
2332 struct efx_tx_queue *tx_queue;
2333 efx_for_each_channel_tx_queue(tx_queue, channel)
2334 efx_init_tx_queue_core_txq(tx_queue);
2335 }
2336
2337 efx_associate(efx);
2338
2339 rtnl_unlock();
2340
2341 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2342 if (rc) {
2343 netif_err(efx, drv, efx->net_dev,
2344 "failed to init net dev attributes\n");
2345 goto fail_registered;
2346 }
2347
2348 return 0;
2349
2350 fail_registered:
2351 rtnl_lock();
2352 efx_dissociate(efx);
2353 unregister_netdevice(net_dev);
2354 fail_locked:
2355 efx->state = STATE_UNINIT;
2356 rtnl_unlock();
2357 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2358 return rc;
2359 }
2360
2361 static void efx_unregister_netdev(struct efx_nic *efx)
2362 {
2363 if (!efx->net_dev)
2364 return;
2365
2366 BUG_ON(netdev_priv(efx->net_dev) != efx);
2367
2368 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2369 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2370
2371 rtnl_lock();
2372 unregister_netdevice(efx->net_dev);
2373 efx->state = STATE_UNINIT;
2374 rtnl_unlock();
2375 }
2376
2377 /**************************************************************************
2378 *
2379 * Device reset and suspend
2380 *
2381 **************************************************************************/
2382
2383 /* Tears down the entire software state and most of the hardware state
2384 * before reset. */
2385 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2386 {
2387 EFX_ASSERT_RESET_SERIALISED(efx);
2388
2389 if (method == RESET_TYPE_MCDI_TIMEOUT)
2390 efx->type->prepare_flr(efx);
2391
2392 efx_stop_all(efx);
2393 efx_disable_interrupts(efx);
2394
2395 mutex_lock(&efx->mac_lock);
2396 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2397 efx->phy_op->fini(efx);
2398 efx->type->fini(efx);
2399 }
2400
2401 /* This function will always ensure that the locks acquired in
2402 * efx_reset_down() are released. A failure return code indicates
2403 * that we were unable to reinitialise the hardware, and the
2404 * driver should be disabled. If ok is false, then the rx and tx
2405 * engines are not restarted, pending a RESET_DISABLE. */
2406 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2407 {
2408 int rc;
2409
2410 EFX_ASSERT_RESET_SERIALISED(efx);
2411
2412 if (method == RESET_TYPE_MCDI_TIMEOUT)
2413 efx->type->finish_flr(efx);
2414
2415 /* Ensure that SRAM is initialised even if we're disabling the device */
2416 rc = efx->type->init(efx);
2417 if (rc) {
2418 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2419 goto fail;
2420 }
2421
2422 if (!ok)
2423 goto fail;
2424
2425 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2426 rc = efx->phy_op->init(efx);
2427 if (rc)
2428 goto fail;
2429 if (efx->phy_op->reconfigure(efx))
2430 netif_err(efx, drv, efx->net_dev,
2431 "could not restore PHY settings\n");
2432 }
2433
2434 rc = efx_enable_interrupts(efx);
2435 if (rc)
2436 goto fail;
2437 efx_restore_filters(efx);
2438 efx->type->sriov_reset(efx);
2439
2440 mutex_unlock(&efx->mac_lock);
2441
2442 efx_start_all(efx);
2443
2444 return 0;
2445
2446 fail:
2447 efx->port_initialized = false;
2448
2449 mutex_unlock(&efx->mac_lock);
2450
2451 return rc;
2452 }
2453
2454 /* Reset the NIC using the specified method. Note that the reset may
2455 * fail, in which case the card will be left in an unusable state.
2456 *
2457 * Caller must hold the rtnl_lock.
2458 */
2459 int efx_reset(struct efx_nic *efx, enum reset_type method)
2460 {
2461 int rc, rc2;
2462 bool disabled;
2463
2464 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2465 RESET_TYPE(method));
2466
2467 efx_device_detach_sync(efx);
2468 efx_reset_down(efx, method);
2469
2470 rc = efx->type->reset(efx, method);
2471 if (rc) {
2472 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2473 goto out;
2474 }
2475
2476 /* Clear flags for the scopes we covered. We assume the NIC and
2477 * driver are now quiescent so that there is no race here.
2478 */
2479 if (method < RESET_TYPE_MAX_METHOD)
2480 efx->reset_pending &= -(1 << (method + 1));
2481 else /* it doesn't fit into the well-ordered scope hierarchy */
2482 __clear_bit(method, &efx->reset_pending);
2483
2484 /* Reinitialise bus-mastering, which may have been turned off before
2485 * the reset was scheduled. This is still appropriate, even in the
2486 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2487 * can respond to requests. */
2488 pci_set_master(efx->pci_dev);
2489
2490 out:
2491 /* Leave device stopped if necessary */
2492 disabled = rc ||
2493 method == RESET_TYPE_DISABLE ||
2494 method == RESET_TYPE_RECOVER_OR_DISABLE;
2495 rc2 = efx_reset_up(efx, method, !disabled);
2496 if (rc2) {
2497 disabled = true;
2498 if (!rc)
2499 rc = rc2;
2500 }
2501
2502 if (disabled) {
2503 dev_close(efx->net_dev);
2504 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2505 efx->state = STATE_DISABLED;
2506 } else {
2507 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2508 netif_device_attach(efx->net_dev);
2509 }
2510 return rc;
2511 }
2512
2513 /* Try recovery mechanisms.
2514 * For now only EEH is supported.
2515 * Returns 0 if the recovery mechanisms are unsuccessful.
2516 * Returns a non-zero value otherwise.
2517 */
2518 int efx_try_recovery(struct efx_nic *efx)
2519 {
2520 #ifdef CONFIG_EEH
2521 /* A PCI error can occur and not be seen by EEH because nothing
2522 * happens on the PCI bus. In this case the driver may fail and
2523 * schedule a 'recover or reset', leading to this recovery handler.
2524 * Manually call the eeh failure check function.
2525 */
2526 struct eeh_dev *eehdev =
2527 of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
2528
2529 if (eeh_dev_check_failure(eehdev)) {
2530 /* The EEH mechanisms will handle the error and reset the
2531 * device if necessary.
2532 */
2533 return 1;
2534 }
2535 #endif
2536 return 0;
2537 }
2538
2539 static void efx_wait_for_bist_end(struct efx_nic *efx)
2540 {
2541 int i;
2542
2543 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2544 if (efx_mcdi_poll_reboot(efx))
2545 goto out;
2546 msleep(BIST_WAIT_DELAY_MS);
2547 }
2548
2549 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2550 out:
2551 /* Either way unset the BIST flag. If we found no reboot we probably
2552 * won't recover, but we should try.
2553 */
2554 efx->mc_bist_for_other_fn = false;
2555 }
2556
2557 /* The worker thread exists so that code that cannot sleep can
2558 * schedule a reset for later.
2559 */
2560 static void efx_reset_work(struct work_struct *data)
2561 {
2562 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2563 unsigned long pending;
2564 enum reset_type method;
2565
2566 pending = ACCESS_ONCE(efx->reset_pending);
2567 method = fls(pending) - 1;
2568
2569 if (method == RESET_TYPE_MC_BIST)
2570 efx_wait_for_bist_end(efx);
2571
2572 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2573 method == RESET_TYPE_RECOVER_OR_ALL) &&
2574 efx_try_recovery(efx))
2575 return;
2576
2577 if (!pending)
2578 return;
2579
2580 rtnl_lock();
2581
2582 /* We checked the state in efx_schedule_reset() but it may
2583 * have changed by now. Now that we have the RTNL lock,
2584 * it cannot change again.
2585 */
2586 if (efx->state == STATE_READY)
2587 (void)efx_reset(efx, method);
2588
2589 rtnl_unlock();
2590 }
2591
2592 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2593 {
2594 enum reset_type method;
2595
2596 if (efx->state == STATE_RECOVERY) {
2597 netif_dbg(efx, drv, efx->net_dev,
2598 "recovering: skip scheduling %s reset\n",
2599 RESET_TYPE(type));
2600 return;
2601 }
2602
2603 switch (type) {
2604 case RESET_TYPE_INVISIBLE:
2605 case RESET_TYPE_ALL:
2606 case RESET_TYPE_RECOVER_OR_ALL:
2607 case RESET_TYPE_WORLD:
2608 case RESET_TYPE_DISABLE:
2609 case RESET_TYPE_RECOVER_OR_DISABLE:
2610 case RESET_TYPE_MC_BIST:
2611 case RESET_TYPE_MCDI_TIMEOUT:
2612 method = type;
2613 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2614 RESET_TYPE(method));
2615 break;
2616 default:
2617 method = efx->type->map_reset_reason(type);
2618 netif_dbg(efx, drv, efx->net_dev,
2619 "scheduling %s reset for %s\n",
2620 RESET_TYPE(method), RESET_TYPE(type));
2621 break;
2622 }
2623
2624 set_bit(method, &efx->reset_pending);
2625 smp_mb(); /* ensure we change reset_pending before checking state */
2626
2627 /* If we're not READY then just leave the flags set as the cue
2628 * to abort probing or reschedule the reset later.
2629 */
2630 if (ACCESS_ONCE(efx->state) != STATE_READY)
2631 return;
2632
2633 /* efx_process_channel() will no longer read events once a
2634 * reset is scheduled. So switch back to poll'd MCDI completions. */
2635 efx_mcdi_mode_poll(efx);
2636
2637 queue_work(reset_workqueue, &efx->reset_work);
2638 }
2639
2640 /**************************************************************************
2641 *
2642 * List of NICs we support
2643 *
2644 **************************************************************************/
2645
2646 /* PCI device ID table */
2647 static const struct pci_device_id efx_pci_table[] = {
2648 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2649 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2650 .driver_data = (unsigned long) &falcon_a1_nic_type},
2651 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2652 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2653 .driver_data = (unsigned long) &falcon_b0_nic_type},
2654 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
2655 .driver_data = (unsigned long) &siena_a0_nic_type},
2656 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
2657 .driver_data = (unsigned long) &siena_a0_nic_type},
2658 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
2659 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2660 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
2661 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2662 {0} /* end of list */
2663 };
2664
2665 /**************************************************************************
2666 *
2667 * Dummy PHY/MAC operations
2668 *
2669 * Can be used for some unimplemented operations
2670 * Needed so all function pointers are valid and do not have to be tested
2671 * before use
2672 *
2673 **************************************************************************/
2674 int efx_port_dummy_op_int(struct efx_nic *efx)
2675 {
2676 return 0;
2677 }
2678 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2679
2680 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2681 {
2682 return false;
2683 }
2684
2685 static const struct efx_phy_operations efx_dummy_phy_operations = {
2686 .init = efx_port_dummy_op_int,
2687 .reconfigure = efx_port_dummy_op_int,
2688 .poll = efx_port_dummy_op_poll,
2689 .fini = efx_port_dummy_op_void,
2690 };
2691
2692 /**************************************************************************
2693 *
2694 * Data housekeeping
2695 *
2696 **************************************************************************/
2697
2698 /* This zeroes out and then fills in the invariants in a struct
2699 * efx_nic (including all sub-structures).
2700 */
2701 static int efx_init_struct(struct efx_nic *efx,
2702 struct pci_dev *pci_dev, struct net_device *net_dev)
2703 {
2704 int i;
2705
2706 /* Initialise common structures */
2707 INIT_LIST_HEAD(&efx->node);
2708 INIT_LIST_HEAD(&efx->secondary_list);
2709 spin_lock_init(&efx->biu_lock);
2710 #ifdef CONFIG_SFC_MTD
2711 INIT_LIST_HEAD(&efx->mtd_list);
2712 #endif
2713 INIT_WORK(&efx->reset_work, efx_reset_work);
2714 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2715 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2716 efx->pci_dev = pci_dev;
2717 efx->msg_enable = debug;
2718 efx->state = STATE_UNINIT;
2719 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2720
2721 efx->net_dev = net_dev;
2722 efx->rx_prefix_size = efx->type->rx_prefix_size;
2723 efx->rx_ip_align =
2724 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2725 efx->rx_packet_hash_offset =
2726 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2727 efx->rx_packet_ts_offset =
2728 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2729 spin_lock_init(&efx->stats_lock);
2730 mutex_init(&efx->mac_lock);
2731 efx->phy_op = &efx_dummy_phy_operations;
2732 efx->mdio.dev = net_dev;
2733 INIT_WORK(&efx->mac_work, efx_mac_work);
2734 init_waitqueue_head(&efx->flush_wq);
2735
2736 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2737 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2738 if (!efx->channel[i])
2739 goto fail;
2740 efx->msi_context[i].efx = efx;
2741 efx->msi_context[i].index = i;
2742 }
2743
2744 /* Higher numbered interrupt modes are less capable! */
2745 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2746 interrupt_mode);
2747
2748 /* Would be good to use the net_dev name, but we're too early */
2749 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2750 pci_name(pci_dev));
2751 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2752 if (!efx->workqueue)
2753 goto fail;
2754
2755 return 0;
2756
2757 fail:
2758 efx_fini_struct(efx);
2759 return -ENOMEM;
2760 }
2761
2762 static void efx_fini_struct(struct efx_nic *efx)
2763 {
2764 int i;
2765
2766 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2767 kfree(efx->channel[i]);
2768
2769 kfree(efx->vpd_sn);
2770
2771 if (efx->workqueue) {
2772 destroy_workqueue(efx->workqueue);
2773 efx->workqueue = NULL;
2774 }
2775 }
2776
2777 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2778 {
2779 u64 n_rx_nodesc_trunc = 0;
2780 struct efx_channel *channel;
2781
2782 efx_for_each_channel(channel, efx)
2783 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2784 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2785 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2786 }
2787
2788 /**************************************************************************
2789 *
2790 * PCI interface
2791 *
2792 **************************************************************************/
2793
2794 /* Main body of final NIC shutdown code
2795 * This is called only at module unload (or hotplug removal).
2796 */
2797 static void efx_pci_remove_main(struct efx_nic *efx)
2798 {
2799 /* Flush reset_work. It can no longer be scheduled since we
2800 * are not READY.
2801 */
2802 BUG_ON(efx->state == STATE_READY);
2803 cancel_work_sync(&efx->reset_work);
2804
2805 efx_disable_interrupts(efx);
2806 efx_nic_fini_interrupt(efx);
2807 efx_fini_port(efx);
2808 efx->type->fini(efx);
2809 efx_fini_napi(efx);
2810 efx_remove_all(efx);
2811 }
2812
2813 /* Final NIC shutdown
2814 * This is called only at module unload (or hotplug removal).
2815 */
2816 static void efx_pci_remove(struct pci_dev *pci_dev)
2817 {
2818 struct efx_nic *efx;
2819
2820 efx = pci_get_drvdata(pci_dev);
2821 if (!efx)
2822 return;
2823
2824 /* Mark the NIC as fini, then stop the interface */
2825 rtnl_lock();
2826 efx_dissociate(efx);
2827 dev_close(efx->net_dev);
2828 efx_disable_interrupts(efx);
2829 rtnl_unlock();
2830
2831 efx->type->sriov_fini(efx);
2832 efx_unregister_netdev(efx);
2833
2834 efx_mtd_remove(efx);
2835
2836 efx_pci_remove_main(efx);
2837
2838 efx_fini_io(efx);
2839 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2840
2841 efx_fini_struct(efx);
2842 free_netdev(efx->net_dev);
2843
2844 pci_disable_pcie_error_reporting(pci_dev);
2845 };
2846
2847 /* NIC VPD information
2848 * Called during probe to display the part number of the
2849 * installed NIC. VPD is potentially very large but this should
2850 * always appear within the first 512 bytes.
2851 */
2852 #define SFC_VPD_LEN 512
2853 static void efx_probe_vpd_strings(struct efx_nic *efx)
2854 {
2855 struct pci_dev *dev = efx->pci_dev;
2856 char vpd_data[SFC_VPD_LEN];
2857 ssize_t vpd_size;
2858 int ro_start, ro_size, i, j;
2859
2860 /* Get the vpd data from the device */
2861 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2862 if (vpd_size <= 0) {
2863 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2864 return;
2865 }
2866
2867 /* Get the Read only section */
2868 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2869 if (ro_start < 0) {
2870 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2871 return;
2872 }
2873
2874 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2875 j = ro_size;
2876 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2877 if (i + j > vpd_size)
2878 j = vpd_size - i;
2879
2880 /* Get the Part number */
2881 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2882 if (i < 0) {
2883 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2884 return;
2885 }
2886
2887 j = pci_vpd_info_field_size(&vpd_data[i]);
2888 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2889 if (i + j > vpd_size) {
2890 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2891 return;
2892 }
2893
2894 netif_info(efx, drv, efx->net_dev,
2895 "Part Number : %.*s\n", j, &vpd_data[i]);
2896
2897 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2898 j = ro_size;
2899 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2900 if (i < 0) {
2901 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2902 return;
2903 }
2904
2905 j = pci_vpd_info_field_size(&vpd_data[i]);
2906 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2907 if (i + j > vpd_size) {
2908 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2909 return;
2910 }
2911
2912 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2913 if (!efx->vpd_sn)
2914 return;
2915
2916 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2917 }
2918
2919
2920 /* Main body of NIC initialisation
2921 * This is called at module load (or hotplug insertion, theoretically).
2922 */
2923 static int efx_pci_probe_main(struct efx_nic *efx)
2924 {
2925 int rc;
2926
2927 /* Do start-of-day initialisation */
2928 rc = efx_probe_all(efx);
2929 if (rc)
2930 goto fail1;
2931
2932 efx_init_napi(efx);
2933
2934 rc = efx->type->init(efx);
2935 if (rc) {
2936 netif_err(efx, probe, efx->net_dev,
2937 "failed to initialise NIC\n");
2938 goto fail3;
2939 }
2940
2941 rc = efx_init_port(efx);
2942 if (rc) {
2943 netif_err(efx, probe, efx->net_dev,
2944 "failed to initialise port\n");
2945 goto fail4;
2946 }
2947
2948 rc = efx_nic_init_interrupt(efx);
2949 if (rc)
2950 goto fail5;
2951 rc = efx_enable_interrupts(efx);
2952 if (rc)
2953 goto fail6;
2954
2955 return 0;
2956
2957 fail6:
2958 efx_nic_fini_interrupt(efx);
2959 fail5:
2960 efx_fini_port(efx);
2961 fail4:
2962 efx->type->fini(efx);
2963 fail3:
2964 efx_fini_napi(efx);
2965 efx_remove_all(efx);
2966 fail1:
2967 return rc;
2968 }
2969
2970 /* NIC initialisation
2971 *
2972 * This is called at module load (or hotplug insertion,
2973 * theoretically). It sets up PCI mappings, resets the NIC,
2974 * sets up and registers the network devices with the kernel and hooks
2975 * the interrupt service routine. It does not prepare the device for
2976 * transmission; this is left to the first time one of the network
2977 * interfaces is brought up (i.e. efx_net_open).
2978 */
2979 static int efx_pci_probe(struct pci_dev *pci_dev,
2980 const struct pci_device_id *entry)
2981 {
2982 struct net_device *net_dev;
2983 struct efx_nic *efx;
2984 int rc;
2985
2986 /* Allocate and initialise a struct net_device and struct efx_nic */
2987 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2988 EFX_MAX_RX_QUEUES);
2989 if (!net_dev)
2990 return -ENOMEM;
2991 efx = netdev_priv(net_dev);
2992 efx->type = (const struct efx_nic_type *) entry->driver_data;
2993 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2994 NETIF_F_HIGHDMA | NETIF_F_TSO |
2995 NETIF_F_RXCSUM);
2996 if (efx->type->offload_features & NETIF_F_V6_CSUM)
2997 net_dev->features |= NETIF_F_TSO6;
2998 /* Mask for features that also apply to VLAN devices */
2999 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
3000 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3001 NETIF_F_RXCSUM);
3002 /* All offloads can be toggled */
3003 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
3004 pci_set_drvdata(pci_dev, efx);
3005 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3006 rc = efx_init_struct(efx, pci_dev, net_dev);
3007 if (rc)
3008 goto fail1;
3009
3010 netif_info(efx, probe, efx->net_dev,
3011 "Solarflare NIC detected\n");
3012
3013 efx_probe_vpd_strings(efx);
3014
3015 /* Set up basic I/O (BAR mappings etc) */
3016 rc = efx_init_io(efx);
3017 if (rc)
3018 goto fail2;
3019
3020 rc = efx_pci_probe_main(efx);
3021 if (rc)
3022 goto fail3;
3023
3024 rc = efx_register_netdev(efx);
3025 if (rc)
3026 goto fail4;
3027
3028 rc = efx->type->sriov_init(efx);
3029 if (rc)
3030 netif_err(efx, probe, efx->net_dev,
3031 "SR-IOV can't be enabled rc %d\n", rc);
3032
3033 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3034
3035 /* Try to create MTDs, but allow this to fail */
3036 rtnl_lock();
3037 rc = efx_mtd_probe(efx);
3038 rtnl_unlock();
3039 if (rc)
3040 netif_warn(efx, probe, efx->net_dev,
3041 "failed to create MTDs (%d)\n", rc);
3042
3043 rc = pci_enable_pcie_error_reporting(pci_dev);
3044 if (rc && rc != -EINVAL)
3045 netif_warn(efx, probe, efx->net_dev,
3046 "pci_enable_pcie_error_reporting failed (%d)\n", rc);
3047
3048 return 0;
3049
3050 fail4:
3051 efx_pci_remove_main(efx);
3052 fail3:
3053 efx_fini_io(efx);
3054 fail2:
3055 efx_fini_struct(efx);
3056 fail1:
3057 WARN_ON(rc > 0);
3058 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3059 free_netdev(net_dev);
3060 return rc;
3061 }
3062
3063 static int efx_pm_freeze(struct device *dev)
3064 {
3065 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3066
3067 rtnl_lock();
3068
3069 if (efx->state != STATE_DISABLED) {
3070 efx->state = STATE_UNINIT;
3071
3072 efx_device_detach_sync(efx);
3073
3074 efx_stop_all(efx);
3075 efx_disable_interrupts(efx);
3076 }
3077
3078 rtnl_unlock();
3079
3080 return 0;
3081 }
3082
3083 static int efx_pm_thaw(struct device *dev)
3084 {
3085 int rc;
3086 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3087
3088 rtnl_lock();
3089
3090 if (efx->state != STATE_DISABLED) {
3091 rc = efx_enable_interrupts(efx);
3092 if (rc)
3093 goto fail;
3094
3095 mutex_lock(&efx->mac_lock);
3096 efx->phy_op->reconfigure(efx);
3097 mutex_unlock(&efx->mac_lock);
3098
3099 efx_start_all(efx);
3100
3101 netif_device_attach(efx->net_dev);
3102
3103 efx->state = STATE_READY;
3104
3105 efx->type->resume_wol(efx);
3106 }
3107
3108 rtnl_unlock();
3109
3110 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3111 queue_work(reset_workqueue, &efx->reset_work);
3112
3113 return 0;
3114
3115 fail:
3116 rtnl_unlock();
3117
3118 return rc;
3119 }
3120
3121 static int efx_pm_poweroff(struct device *dev)
3122 {
3123 struct pci_dev *pci_dev = to_pci_dev(dev);
3124 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3125
3126 efx->type->fini(efx);
3127
3128 efx->reset_pending = 0;
3129
3130 pci_save_state(pci_dev);
3131 return pci_set_power_state(pci_dev, PCI_D3hot);
3132 }
3133
3134 /* Used for both resume and restore */
3135 static int efx_pm_resume(struct device *dev)
3136 {
3137 struct pci_dev *pci_dev = to_pci_dev(dev);
3138 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3139 int rc;
3140
3141 rc = pci_set_power_state(pci_dev, PCI_D0);
3142 if (rc)
3143 return rc;
3144 pci_restore_state(pci_dev);
3145 rc = pci_enable_device(pci_dev);
3146 if (rc)
3147 return rc;
3148 pci_set_master(efx->pci_dev);
3149 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3150 if (rc)
3151 return rc;
3152 rc = efx->type->init(efx);
3153 if (rc)
3154 return rc;
3155 rc = efx_pm_thaw(dev);
3156 return rc;
3157 }
3158
3159 static int efx_pm_suspend(struct device *dev)
3160 {
3161 int rc;
3162
3163 efx_pm_freeze(dev);
3164 rc = efx_pm_poweroff(dev);
3165 if (rc)
3166 efx_pm_resume(dev);
3167 return rc;
3168 }
3169
3170 static const struct dev_pm_ops efx_pm_ops = {
3171 .suspend = efx_pm_suspend,
3172 .resume = efx_pm_resume,
3173 .freeze = efx_pm_freeze,
3174 .thaw = efx_pm_thaw,
3175 .poweroff = efx_pm_poweroff,
3176 .restore = efx_pm_resume,
3177 };
3178
3179 /* A PCI error affecting this device was detected.
3180 * At this point MMIO and DMA may be disabled.
3181 * Stop the software path and request a slot reset.
3182 */
3183 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3184 enum pci_channel_state state)
3185 {
3186 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3187 struct efx_nic *efx = pci_get_drvdata(pdev);
3188
3189 if (state == pci_channel_io_perm_failure)
3190 return PCI_ERS_RESULT_DISCONNECT;
3191
3192 rtnl_lock();
3193
3194 if (efx->state != STATE_DISABLED) {
3195 efx->state = STATE_RECOVERY;
3196 efx->reset_pending = 0;
3197
3198 efx_device_detach_sync(efx);
3199
3200 efx_stop_all(efx);
3201 efx_disable_interrupts(efx);
3202
3203 status = PCI_ERS_RESULT_NEED_RESET;
3204 } else {
3205 /* If the interface is disabled we don't want to do anything
3206 * with it.
3207 */
3208 status = PCI_ERS_RESULT_RECOVERED;
3209 }
3210
3211 rtnl_unlock();
3212
3213 pci_disable_device(pdev);
3214
3215 return status;
3216 }
3217
3218 /* Fake a successfull reset, which will be performed later in efx_io_resume. */
3219 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3220 {
3221 struct efx_nic *efx = pci_get_drvdata(pdev);
3222 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3223 int rc;
3224
3225 if (pci_enable_device(pdev)) {
3226 netif_err(efx, hw, efx->net_dev,
3227 "Cannot re-enable PCI device after reset.\n");
3228 status = PCI_ERS_RESULT_DISCONNECT;
3229 }
3230
3231 rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3232 if (rc) {
3233 netif_err(efx, hw, efx->net_dev,
3234 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3235 /* Non-fatal error. Continue. */
3236 }
3237
3238 return status;
3239 }
3240
3241 /* Perform the actual reset and resume I/O operations. */
3242 static void efx_io_resume(struct pci_dev *pdev)
3243 {
3244 struct efx_nic *efx = pci_get_drvdata(pdev);
3245 int rc;
3246
3247 rtnl_lock();
3248
3249 if (efx->state == STATE_DISABLED)
3250 goto out;
3251
3252 rc = efx_reset(efx, RESET_TYPE_ALL);
3253 if (rc) {
3254 netif_err(efx, hw, efx->net_dev,
3255 "efx_reset failed after PCI error (%d)\n", rc);
3256 } else {
3257 efx->state = STATE_READY;
3258 netif_dbg(efx, hw, efx->net_dev,
3259 "Done resetting and resuming IO after PCI error.\n");
3260 }
3261
3262 out:
3263 rtnl_unlock();
3264 }
3265
3266 /* For simplicity and reliability, we always require a slot reset and try to
3267 * reset the hardware when a pci error affecting the device is detected.
3268 * We leave both the link_reset and mmio_enabled callback unimplemented:
3269 * with our request for slot reset the mmio_enabled callback will never be
3270 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3271 */
3272 static struct pci_error_handlers efx_err_handlers = {
3273 .error_detected = efx_io_error_detected,
3274 .slot_reset = efx_io_slot_reset,
3275 .resume = efx_io_resume,
3276 };
3277
3278 static struct pci_driver efx_pci_driver = {
3279 .name = KBUILD_MODNAME,
3280 .id_table = efx_pci_table,
3281 .probe = efx_pci_probe,
3282 .remove = efx_pci_remove,
3283 .driver.pm = &efx_pm_ops,
3284 .err_handler = &efx_err_handlers,
3285 };
3286
3287 /**************************************************************************
3288 *
3289 * Kernel module interface
3290 *
3291 *************************************************************************/
3292
3293 module_param(interrupt_mode, uint, 0444);
3294 MODULE_PARM_DESC(interrupt_mode,
3295 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3296
3297 static int __init efx_init_module(void)
3298 {
3299 int rc;
3300
3301 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3302
3303 rc = register_netdevice_notifier(&efx_netdev_notifier);
3304 if (rc)
3305 goto err_notifier;
3306
3307 rc = efx_init_sriov();
3308 if (rc)
3309 goto err_sriov;
3310
3311 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3312 if (!reset_workqueue) {
3313 rc = -ENOMEM;
3314 goto err_reset;
3315 }
3316
3317 rc = pci_register_driver(&efx_pci_driver);
3318 if (rc < 0)
3319 goto err_pci;
3320
3321 return 0;
3322
3323 err_pci:
3324 destroy_workqueue(reset_workqueue);
3325 err_reset:
3326 efx_fini_sriov();
3327 err_sriov:
3328 unregister_netdevice_notifier(&efx_netdev_notifier);
3329 err_notifier:
3330 return rc;
3331 }
3332
3333 static void __exit efx_exit_module(void)
3334 {
3335 printk(KERN_INFO "Solarflare NET driver unloading\n");
3336
3337 pci_unregister_driver(&efx_pci_driver);
3338 destroy_workqueue(reset_workqueue);
3339 efx_fini_sriov();
3340 unregister_netdevice_notifier(&efx_netdev_notifier);
3341
3342 }
3343
3344 module_init(efx_init_module);
3345 module_exit(efx_exit_module);
3346
3347 MODULE_AUTHOR("Solarflare Communications and "
3348 "Michael Brown <mbrown@fensystems.co.uk>");
3349 MODULE_DESCRIPTION("Solarflare network driver");
3350 MODULE_LICENSE("GPL");
3351 MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.150553 seconds and 5 git commands to generate.