sfc: Add PCI ID for Solarflare 8000 series 10/40G NIC
[deliverable/linux.git] / drivers / net / ethernet / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 #include "sriov.h"
30
31 #include "mcdi.h"
32 #include "workarounds.h"
33
34 /**************************************************************************
35 *
36 * Type name strings
37 *
38 **************************************************************************
39 */
40
41 /* Loopback mode names (see LOOPBACK_MODE()) */
42 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43 const char *const efx_loopback_mode_names[] = {
44 [LOOPBACK_NONE] = "NONE",
45 [LOOPBACK_DATA] = "DATAPATH",
46 [LOOPBACK_GMAC] = "GMAC",
47 [LOOPBACK_XGMII] = "XGMII",
48 [LOOPBACK_XGXS] = "XGXS",
49 [LOOPBACK_XAUI] = "XAUI",
50 [LOOPBACK_GMII] = "GMII",
51 [LOOPBACK_SGMII] = "SGMII",
52 [LOOPBACK_XGBR] = "XGBR",
53 [LOOPBACK_XFI] = "XFI",
54 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
55 [LOOPBACK_GMII_FAR] = "GMII_FAR",
56 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
57 [LOOPBACK_XFI_FAR] = "XFI_FAR",
58 [LOOPBACK_GPHY] = "GPHY",
59 [LOOPBACK_PHYXS] = "PHYXS",
60 [LOOPBACK_PCS] = "PCS",
61 [LOOPBACK_PMAPMD] = "PMA/PMD",
62 [LOOPBACK_XPORT] = "XPORT",
63 [LOOPBACK_XGMII_WS] = "XGMII_WS",
64 [LOOPBACK_XAUI_WS] = "XAUI_WS",
65 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
66 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67 [LOOPBACK_GMII_WS] = "GMII_WS",
68 [LOOPBACK_XFI_WS] = "XFI_WS",
69 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
70 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
71 };
72
73 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74 const char *const efx_reset_type_names[] = {
75 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
76 [RESET_TYPE_ALL] = "ALL",
77 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
78 [RESET_TYPE_WORLD] = "WORLD",
79 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80 [RESET_TYPE_DATAPATH] = "DATAPATH",
81 [RESET_TYPE_MC_BIST] = "MC_BIST",
82 [RESET_TYPE_DISABLE] = "DISABLE",
83 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
84 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
85 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
86 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
87 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
88 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
89 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)",
90 };
91
92 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
93 * queued onto this work queue. This is not a per-nic work queue, because
94 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
95 */
96 static struct workqueue_struct *reset_workqueue;
97
98 /* How often and how many times to poll for a reset while waiting for a
99 * BIST that another function started to complete.
100 */
101 #define BIST_WAIT_DELAY_MS 100
102 #define BIST_WAIT_DELAY_COUNT 100
103
104 /**************************************************************************
105 *
106 * Configurable values
107 *
108 *************************************************************************/
109
110 /*
111 * Use separate channels for TX and RX events
112 *
113 * Set this to 1 to use separate channels for TX and RX. It allows us
114 * to control interrupt affinity separately for TX and RX.
115 *
116 * This is only used in MSI-X interrupt mode
117 */
118 bool efx_separate_tx_channels;
119 module_param(efx_separate_tx_channels, bool, 0444);
120 MODULE_PARM_DESC(efx_separate_tx_channels,
121 "Use separate channels for TX and RX");
122
123 /* This is the weight assigned to each of the (per-channel) virtual
124 * NAPI devices.
125 */
126 static int napi_weight = 64;
127
128 /* This is the time (in jiffies) between invocations of the hardware
129 * monitor.
130 * On Falcon-based NICs, this will:
131 * - Check the on-board hardware monitor;
132 * - Poll the link state and reconfigure the hardware as necessary.
133 * On Siena-based NICs for power systems with EEH support, this will give EEH a
134 * chance to start.
135 */
136 static unsigned int efx_monitor_interval = 1 * HZ;
137
138 /* Initial interrupt moderation settings. They can be modified after
139 * module load with ethtool.
140 *
141 * The default for RX should strike a balance between increasing the
142 * round-trip latency and reducing overhead.
143 */
144 static unsigned int rx_irq_mod_usec = 60;
145
146 /* Initial interrupt moderation settings. They can be modified after
147 * module load with ethtool.
148 *
149 * This default is chosen to ensure that a 10G link does not go idle
150 * while a TX queue is stopped after it has become full. A queue is
151 * restarted when it drops below half full. The time this takes (assuming
152 * worst case 3 descriptors per packet and 1024 descriptors) is
153 * 512 / 3 * 1.2 = 205 usec.
154 */
155 static unsigned int tx_irq_mod_usec = 150;
156
157 /* This is the first interrupt mode to try out of:
158 * 0 => MSI-X
159 * 1 => MSI
160 * 2 => legacy
161 */
162 static unsigned int interrupt_mode;
163
164 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
165 * i.e. the number of CPUs among which we may distribute simultaneous
166 * interrupt handling.
167 *
168 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
169 * The default (0) means to assign an interrupt to each core.
170 */
171 static unsigned int rss_cpus;
172 module_param(rss_cpus, uint, 0444);
173 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
174
175 static bool phy_flash_cfg;
176 module_param(phy_flash_cfg, bool, 0644);
177 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
178
179 static unsigned irq_adapt_low_thresh = 8000;
180 module_param(irq_adapt_low_thresh, uint, 0644);
181 MODULE_PARM_DESC(irq_adapt_low_thresh,
182 "Threshold score for reducing IRQ moderation");
183
184 static unsigned irq_adapt_high_thresh = 16000;
185 module_param(irq_adapt_high_thresh, uint, 0644);
186 MODULE_PARM_DESC(irq_adapt_high_thresh,
187 "Threshold score for increasing IRQ moderation");
188
189 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
190 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
191 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
192 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
193 module_param(debug, uint, 0);
194 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
195
196 /**************************************************************************
197 *
198 * Utility functions and prototypes
199 *
200 *************************************************************************/
201
202 static int efx_soft_enable_interrupts(struct efx_nic *efx);
203 static void efx_soft_disable_interrupts(struct efx_nic *efx);
204 static void efx_remove_channel(struct efx_channel *channel);
205 static void efx_remove_channels(struct efx_nic *efx);
206 static const struct efx_channel_type efx_default_channel_type;
207 static void efx_remove_port(struct efx_nic *efx);
208 static void efx_init_napi_channel(struct efx_channel *channel);
209 static void efx_fini_napi(struct efx_nic *efx);
210 static void efx_fini_napi_channel(struct efx_channel *channel);
211 static void efx_fini_struct(struct efx_nic *efx);
212 static void efx_start_all(struct efx_nic *efx);
213 static void efx_stop_all(struct efx_nic *efx);
214
215 #define EFX_ASSERT_RESET_SERIALISED(efx) \
216 do { \
217 if ((efx->state == STATE_READY) || \
218 (efx->state == STATE_RECOVERY) || \
219 (efx->state == STATE_DISABLED)) \
220 ASSERT_RTNL(); \
221 } while (0)
222
223 static int efx_check_disabled(struct efx_nic *efx)
224 {
225 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
226 netif_err(efx, drv, efx->net_dev,
227 "device is disabled due to earlier errors\n");
228 return -EIO;
229 }
230 return 0;
231 }
232
233 /**************************************************************************
234 *
235 * Event queue processing
236 *
237 *************************************************************************/
238
239 /* Process channel's event queue
240 *
241 * This function is responsible for processing the event queue of a
242 * single channel. The caller must guarantee that this function will
243 * never be concurrently called more than once on the same channel,
244 * though different channels may be being processed concurrently.
245 */
246 static int efx_process_channel(struct efx_channel *channel, int budget)
247 {
248 struct efx_tx_queue *tx_queue;
249 int spent;
250
251 if (unlikely(!channel->enabled))
252 return 0;
253
254 efx_for_each_channel_tx_queue(tx_queue, channel) {
255 tx_queue->pkts_compl = 0;
256 tx_queue->bytes_compl = 0;
257 }
258
259 spent = efx_nic_process_eventq(channel, budget);
260 if (spent && efx_channel_has_rx_queue(channel)) {
261 struct efx_rx_queue *rx_queue =
262 efx_channel_get_rx_queue(channel);
263
264 efx_rx_flush_packet(channel);
265 efx_fast_push_rx_descriptors(rx_queue, true);
266 }
267
268 /* Update BQL */
269 efx_for_each_channel_tx_queue(tx_queue, channel) {
270 if (tx_queue->bytes_compl) {
271 netdev_tx_completed_queue(tx_queue->core_txq,
272 tx_queue->pkts_compl, tx_queue->bytes_compl);
273 }
274 }
275
276 return spent;
277 }
278
279 /* NAPI poll handler
280 *
281 * NAPI guarantees serialisation of polls of the same device, which
282 * provides the guarantee required by efx_process_channel().
283 */
284 static int efx_poll(struct napi_struct *napi, int budget)
285 {
286 struct efx_channel *channel =
287 container_of(napi, struct efx_channel, napi_str);
288 struct efx_nic *efx = channel->efx;
289 int spent;
290
291 if (!efx_channel_lock_napi(channel))
292 return budget;
293
294 netif_vdbg(efx, intr, efx->net_dev,
295 "channel %d NAPI poll executing on CPU %d\n",
296 channel->channel, raw_smp_processor_id());
297
298 spent = efx_process_channel(channel, budget);
299
300 if (spent < budget) {
301 if (efx_channel_has_rx_queue(channel) &&
302 efx->irq_rx_adaptive &&
303 unlikely(++channel->irq_count == 1000)) {
304 if (unlikely(channel->irq_mod_score <
305 irq_adapt_low_thresh)) {
306 if (channel->irq_moderation > 1) {
307 channel->irq_moderation -= 1;
308 efx->type->push_irq_moderation(channel);
309 }
310 } else if (unlikely(channel->irq_mod_score >
311 irq_adapt_high_thresh)) {
312 if (channel->irq_moderation <
313 efx->irq_rx_moderation) {
314 channel->irq_moderation += 1;
315 efx->type->push_irq_moderation(channel);
316 }
317 }
318 channel->irq_count = 0;
319 channel->irq_mod_score = 0;
320 }
321
322 efx_filter_rfs_expire(channel);
323
324 /* There is no race here; although napi_disable() will
325 * only wait for napi_complete(), this isn't a problem
326 * since efx_nic_eventq_read_ack() will have no effect if
327 * interrupts have already been disabled.
328 */
329 napi_complete(napi);
330 efx_nic_eventq_read_ack(channel);
331 }
332
333 efx_channel_unlock_napi(channel);
334 return spent;
335 }
336
337 /* Create event queue
338 * Event queue memory allocations are done only once. If the channel
339 * is reset, the memory buffer will be reused; this guards against
340 * errors during channel reset and also simplifies interrupt handling.
341 */
342 static int efx_probe_eventq(struct efx_channel *channel)
343 {
344 struct efx_nic *efx = channel->efx;
345 unsigned long entries;
346
347 netif_dbg(efx, probe, efx->net_dev,
348 "chan %d create event queue\n", channel->channel);
349
350 /* Build an event queue with room for one event per tx and rx buffer,
351 * plus some extra for link state events and MCDI completions. */
352 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
353 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
354 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
355
356 return efx_nic_probe_eventq(channel);
357 }
358
359 /* Prepare channel's event queue */
360 static int efx_init_eventq(struct efx_channel *channel)
361 {
362 struct efx_nic *efx = channel->efx;
363 int rc;
364
365 EFX_WARN_ON_PARANOID(channel->eventq_init);
366
367 netif_dbg(efx, drv, efx->net_dev,
368 "chan %d init event queue\n", channel->channel);
369
370 rc = efx_nic_init_eventq(channel);
371 if (rc == 0) {
372 efx->type->push_irq_moderation(channel);
373 channel->eventq_read_ptr = 0;
374 channel->eventq_init = true;
375 }
376 return rc;
377 }
378
379 /* Enable event queue processing and NAPI */
380 void efx_start_eventq(struct efx_channel *channel)
381 {
382 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
383 "chan %d start event queue\n", channel->channel);
384
385 /* Make sure the NAPI handler sees the enabled flag set */
386 channel->enabled = true;
387 smp_wmb();
388
389 efx_channel_enable(channel);
390 napi_enable(&channel->napi_str);
391 efx_nic_eventq_read_ack(channel);
392 }
393
394 /* Disable event queue processing and NAPI */
395 void efx_stop_eventq(struct efx_channel *channel)
396 {
397 if (!channel->enabled)
398 return;
399
400 napi_disable(&channel->napi_str);
401 while (!efx_channel_disable(channel))
402 usleep_range(1000, 20000);
403 channel->enabled = false;
404 }
405
406 static void efx_fini_eventq(struct efx_channel *channel)
407 {
408 if (!channel->eventq_init)
409 return;
410
411 netif_dbg(channel->efx, drv, channel->efx->net_dev,
412 "chan %d fini event queue\n", channel->channel);
413
414 efx_nic_fini_eventq(channel);
415 channel->eventq_init = false;
416 }
417
418 static void efx_remove_eventq(struct efx_channel *channel)
419 {
420 netif_dbg(channel->efx, drv, channel->efx->net_dev,
421 "chan %d remove event queue\n", channel->channel);
422
423 efx_nic_remove_eventq(channel);
424 }
425
426 /**************************************************************************
427 *
428 * Channel handling
429 *
430 *************************************************************************/
431
432 /* Allocate and initialise a channel structure. */
433 static struct efx_channel *
434 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
435 {
436 struct efx_channel *channel;
437 struct efx_rx_queue *rx_queue;
438 struct efx_tx_queue *tx_queue;
439 int j;
440
441 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
442 if (!channel)
443 return NULL;
444
445 channel->efx = efx;
446 channel->channel = i;
447 channel->type = &efx_default_channel_type;
448
449 for (j = 0; j < EFX_TXQ_TYPES; j++) {
450 tx_queue = &channel->tx_queue[j];
451 tx_queue->efx = efx;
452 tx_queue->queue = i * EFX_TXQ_TYPES + j;
453 tx_queue->channel = channel;
454 }
455
456 rx_queue = &channel->rx_queue;
457 rx_queue->efx = efx;
458 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
459 (unsigned long)rx_queue);
460
461 return channel;
462 }
463
464 /* Allocate and initialise a channel structure, copying parameters
465 * (but not resources) from an old channel structure.
466 */
467 static struct efx_channel *
468 efx_copy_channel(const struct efx_channel *old_channel)
469 {
470 struct efx_channel *channel;
471 struct efx_rx_queue *rx_queue;
472 struct efx_tx_queue *tx_queue;
473 int j;
474
475 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
476 if (!channel)
477 return NULL;
478
479 *channel = *old_channel;
480
481 channel->napi_dev = NULL;
482 memset(&channel->eventq, 0, sizeof(channel->eventq));
483
484 for (j = 0; j < EFX_TXQ_TYPES; j++) {
485 tx_queue = &channel->tx_queue[j];
486 if (tx_queue->channel)
487 tx_queue->channel = channel;
488 tx_queue->buffer = NULL;
489 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
490 }
491
492 rx_queue = &channel->rx_queue;
493 rx_queue->buffer = NULL;
494 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
495 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
496 (unsigned long)rx_queue);
497
498 return channel;
499 }
500
501 static int efx_probe_channel(struct efx_channel *channel)
502 {
503 struct efx_tx_queue *tx_queue;
504 struct efx_rx_queue *rx_queue;
505 int rc;
506
507 netif_dbg(channel->efx, probe, channel->efx->net_dev,
508 "creating channel %d\n", channel->channel);
509
510 rc = channel->type->pre_probe(channel);
511 if (rc)
512 goto fail;
513
514 rc = efx_probe_eventq(channel);
515 if (rc)
516 goto fail;
517
518 efx_for_each_channel_tx_queue(tx_queue, channel) {
519 rc = efx_probe_tx_queue(tx_queue);
520 if (rc)
521 goto fail;
522 }
523
524 efx_for_each_channel_rx_queue(rx_queue, channel) {
525 rc = efx_probe_rx_queue(rx_queue);
526 if (rc)
527 goto fail;
528 }
529
530 return 0;
531
532 fail:
533 efx_remove_channel(channel);
534 return rc;
535 }
536
537 static void
538 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
539 {
540 struct efx_nic *efx = channel->efx;
541 const char *type;
542 int number;
543
544 number = channel->channel;
545 if (efx->tx_channel_offset == 0) {
546 type = "";
547 } else if (channel->channel < efx->tx_channel_offset) {
548 type = "-rx";
549 } else {
550 type = "-tx";
551 number -= efx->tx_channel_offset;
552 }
553 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
554 }
555
556 static void efx_set_channel_names(struct efx_nic *efx)
557 {
558 struct efx_channel *channel;
559
560 efx_for_each_channel(channel, efx)
561 channel->type->get_name(channel,
562 efx->msi_context[channel->channel].name,
563 sizeof(efx->msi_context[0].name));
564 }
565
566 static int efx_probe_channels(struct efx_nic *efx)
567 {
568 struct efx_channel *channel;
569 int rc;
570
571 /* Restart special buffer allocation */
572 efx->next_buffer_table = 0;
573
574 /* Probe channels in reverse, so that any 'extra' channels
575 * use the start of the buffer table. This allows the traffic
576 * channels to be resized without moving them or wasting the
577 * entries before them.
578 */
579 efx_for_each_channel_rev(channel, efx) {
580 rc = efx_probe_channel(channel);
581 if (rc) {
582 netif_err(efx, probe, efx->net_dev,
583 "failed to create channel %d\n",
584 channel->channel);
585 goto fail;
586 }
587 }
588 efx_set_channel_names(efx);
589
590 return 0;
591
592 fail:
593 efx_remove_channels(efx);
594 return rc;
595 }
596
597 /* Channels are shutdown and reinitialised whilst the NIC is running
598 * to propagate configuration changes (mtu, checksum offload), or
599 * to clear hardware error conditions
600 */
601 static void efx_start_datapath(struct efx_nic *efx)
602 {
603 bool old_rx_scatter = efx->rx_scatter;
604 struct efx_tx_queue *tx_queue;
605 struct efx_rx_queue *rx_queue;
606 struct efx_channel *channel;
607 size_t rx_buf_len;
608
609 /* Calculate the rx buffer allocation parameters required to
610 * support the current MTU, including padding for header
611 * alignment and overruns.
612 */
613 efx->rx_dma_len = (efx->rx_prefix_size +
614 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
615 efx->type->rx_buffer_padding);
616 rx_buf_len = (sizeof(struct efx_rx_page_state) +
617 efx->rx_ip_align + efx->rx_dma_len);
618 if (rx_buf_len <= PAGE_SIZE) {
619 efx->rx_scatter = efx->type->always_rx_scatter;
620 efx->rx_buffer_order = 0;
621 } else if (efx->type->can_rx_scatter) {
622 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
623 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
624 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
625 EFX_RX_BUF_ALIGNMENT) >
626 PAGE_SIZE);
627 efx->rx_scatter = true;
628 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
629 efx->rx_buffer_order = 0;
630 } else {
631 efx->rx_scatter = false;
632 efx->rx_buffer_order = get_order(rx_buf_len);
633 }
634
635 efx_rx_config_page_split(efx);
636 if (efx->rx_buffer_order)
637 netif_dbg(efx, drv, efx->net_dev,
638 "RX buf len=%u; page order=%u batch=%u\n",
639 efx->rx_dma_len, efx->rx_buffer_order,
640 efx->rx_pages_per_batch);
641 else
642 netif_dbg(efx, drv, efx->net_dev,
643 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
644 efx->rx_dma_len, efx->rx_page_buf_step,
645 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
646
647 /* RX filters may also have scatter-enabled flags */
648 if (efx->rx_scatter != old_rx_scatter)
649 efx->type->filter_update_rx_scatter(efx);
650
651 /* We must keep at least one descriptor in a TX ring empty.
652 * We could avoid this when the queue size does not exactly
653 * match the hardware ring size, but it's not that important.
654 * Therefore we stop the queue when one more skb might fill
655 * the ring completely. We wake it when half way back to
656 * empty.
657 */
658 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
659 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
660
661 /* Initialise the channels */
662 efx_for_each_channel(channel, efx) {
663 efx_for_each_channel_tx_queue(tx_queue, channel) {
664 efx_init_tx_queue(tx_queue);
665 atomic_inc(&efx->active_queues);
666 }
667
668 efx_for_each_channel_rx_queue(rx_queue, channel) {
669 efx_init_rx_queue(rx_queue);
670 atomic_inc(&efx->active_queues);
671 efx_stop_eventq(channel);
672 efx_fast_push_rx_descriptors(rx_queue, false);
673 efx_start_eventq(channel);
674 }
675
676 WARN_ON(channel->rx_pkt_n_frags);
677 }
678
679 efx_ptp_start_datapath(efx);
680
681 if (netif_device_present(efx->net_dev))
682 netif_tx_wake_all_queues(efx->net_dev);
683 }
684
685 static void efx_stop_datapath(struct efx_nic *efx)
686 {
687 struct efx_channel *channel;
688 struct efx_tx_queue *tx_queue;
689 struct efx_rx_queue *rx_queue;
690 int rc;
691
692 EFX_ASSERT_RESET_SERIALISED(efx);
693 BUG_ON(efx->port_enabled);
694
695 efx_ptp_stop_datapath(efx);
696
697 /* Stop RX refill */
698 efx_for_each_channel(channel, efx) {
699 efx_for_each_channel_rx_queue(rx_queue, channel)
700 rx_queue->refill_enabled = false;
701 }
702
703 efx_for_each_channel(channel, efx) {
704 /* RX packet processing is pipelined, so wait for the
705 * NAPI handler to complete. At least event queue 0
706 * might be kept active by non-data events, so don't
707 * use napi_synchronize() but actually disable NAPI
708 * temporarily.
709 */
710 if (efx_channel_has_rx_queue(channel)) {
711 efx_stop_eventq(channel);
712 efx_start_eventq(channel);
713 }
714 }
715
716 rc = efx->type->fini_dmaq(efx);
717 if (rc && EFX_WORKAROUND_7803(efx)) {
718 /* Schedule a reset to recover from the flush failure. The
719 * descriptor caches reference memory we're about to free,
720 * but falcon_reconfigure_mac_wrapper() won't reconnect
721 * the MACs because of the pending reset.
722 */
723 netif_err(efx, drv, efx->net_dev,
724 "Resetting to recover from flush failure\n");
725 efx_schedule_reset(efx, RESET_TYPE_ALL);
726 } else if (rc) {
727 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
728 } else {
729 netif_dbg(efx, drv, efx->net_dev,
730 "successfully flushed all queues\n");
731 }
732
733 efx_for_each_channel(channel, efx) {
734 efx_for_each_channel_rx_queue(rx_queue, channel)
735 efx_fini_rx_queue(rx_queue);
736 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
737 efx_fini_tx_queue(tx_queue);
738 }
739 }
740
741 static void efx_remove_channel(struct efx_channel *channel)
742 {
743 struct efx_tx_queue *tx_queue;
744 struct efx_rx_queue *rx_queue;
745
746 netif_dbg(channel->efx, drv, channel->efx->net_dev,
747 "destroy chan %d\n", channel->channel);
748
749 efx_for_each_channel_rx_queue(rx_queue, channel)
750 efx_remove_rx_queue(rx_queue);
751 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
752 efx_remove_tx_queue(tx_queue);
753 efx_remove_eventq(channel);
754 channel->type->post_remove(channel);
755 }
756
757 static void efx_remove_channels(struct efx_nic *efx)
758 {
759 struct efx_channel *channel;
760
761 efx_for_each_channel(channel, efx)
762 efx_remove_channel(channel);
763 }
764
765 int
766 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
767 {
768 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
769 u32 old_rxq_entries, old_txq_entries;
770 unsigned i, next_buffer_table = 0;
771 int rc, rc2;
772
773 rc = efx_check_disabled(efx);
774 if (rc)
775 return rc;
776
777 /* Not all channels should be reallocated. We must avoid
778 * reallocating their buffer table entries.
779 */
780 efx_for_each_channel(channel, efx) {
781 struct efx_rx_queue *rx_queue;
782 struct efx_tx_queue *tx_queue;
783
784 if (channel->type->copy)
785 continue;
786 next_buffer_table = max(next_buffer_table,
787 channel->eventq.index +
788 channel->eventq.entries);
789 efx_for_each_channel_rx_queue(rx_queue, channel)
790 next_buffer_table = max(next_buffer_table,
791 rx_queue->rxd.index +
792 rx_queue->rxd.entries);
793 efx_for_each_channel_tx_queue(tx_queue, channel)
794 next_buffer_table = max(next_buffer_table,
795 tx_queue->txd.index +
796 tx_queue->txd.entries);
797 }
798
799 efx_device_detach_sync(efx);
800 efx_stop_all(efx);
801 efx_soft_disable_interrupts(efx);
802
803 /* Clone channels (where possible) */
804 memset(other_channel, 0, sizeof(other_channel));
805 for (i = 0; i < efx->n_channels; i++) {
806 channel = efx->channel[i];
807 if (channel->type->copy)
808 channel = channel->type->copy(channel);
809 if (!channel) {
810 rc = -ENOMEM;
811 goto out;
812 }
813 other_channel[i] = channel;
814 }
815
816 /* Swap entry counts and channel pointers */
817 old_rxq_entries = efx->rxq_entries;
818 old_txq_entries = efx->txq_entries;
819 efx->rxq_entries = rxq_entries;
820 efx->txq_entries = txq_entries;
821 for (i = 0; i < efx->n_channels; i++) {
822 channel = efx->channel[i];
823 efx->channel[i] = other_channel[i];
824 other_channel[i] = channel;
825 }
826
827 /* Restart buffer table allocation */
828 efx->next_buffer_table = next_buffer_table;
829
830 for (i = 0; i < efx->n_channels; i++) {
831 channel = efx->channel[i];
832 if (!channel->type->copy)
833 continue;
834 rc = efx_probe_channel(channel);
835 if (rc)
836 goto rollback;
837 efx_init_napi_channel(efx->channel[i]);
838 }
839
840 out:
841 /* Destroy unused channel structures */
842 for (i = 0; i < efx->n_channels; i++) {
843 channel = other_channel[i];
844 if (channel && channel->type->copy) {
845 efx_fini_napi_channel(channel);
846 efx_remove_channel(channel);
847 kfree(channel);
848 }
849 }
850
851 rc2 = efx_soft_enable_interrupts(efx);
852 if (rc2) {
853 rc = rc ? rc : rc2;
854 netif_err(efx, drv, efx->net_dev,
855 "unable to restart interrupts on channel reallocation\n");
856 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
857 } else {
858 efx_start_all(efx);
859 netif_device_attach(efx->net_dev);
860 }
861 return rc;
862
863 rollback:
864 /* Swap back */
865 efx->rxq_entries = old_rxq_entries;
866 efx->txq_entries = old_txq_entries;
867 for (i = 0; i < efx->n_channels; i++) {
868 channel = efx->channel[i];
869 efx->channel[i] = other_channel[i];
870 other_channel[i] = channel;
871 }
872 goto out;
873 }
874
875 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
876 {
877 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
878 }
879
880 static const struct efx_channel_type efx_default_channel_type = {
881 .pre_probe = efx_channel_dummy_op_int,
882 .post_remove = efx_channel_dummy_op_void,
883 .get_name = efx_get_channel_name,
884 .copy = efx_copy_channel,
885 .keep_eventq = false,
886 };
887
888 int efx_channel_dummy_op_int(struct efx_channel *channel)
889 {
890 return 0;
891 }
892
893 void efx_channel_dummy_op_void(struct efx_channel *channel)
894 {
895 }
896
897 /**************************************************************************
898 *
899 * Port handling
900 *
901 **************************************************************************/
902
903 /* This ensures that the kernel is kept informed (via
904 * netif_carrier_on/off) of the link status, and also maintains the
905 * link status's stop on the port's TX queue.
906 */
907 void efx_link_status_changed(struct efx_nic *efx)
908 {
909 struct efx_link_state *link_state = &efx->link_state;
910
911 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
912 * that no events are triggered between unregister_netdev() and the
913 * driver unloading. A more general condition is that NETDEV_CHANGE
914 * can only be generated between NETDEV_UP and NETDEV_DOWN */
915 if (!netif_running(efx->net_dev))
916 return;
917
918 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
919 efx->n_link_state_changes++;
920
921 if (link_state->up)
922 netif_carrier_on(efx->net_dev);
923 else
924 netif_carrier_off(efx->net_dev);
925 }
926
927 /* Status message for kernel log */
928 if (link_state->up)
929 netif_info(efx, link, efx->net_dev,
930 "link up at %uMbps %s-duplex (MTU %d)\n",
931 link_state->speed, link_state->fd ? "full" : "half",
932 efx->net_dev->mtu);
933 else
934 netif_info(efx, link, efx->net_dev, "link down\n");
935 }
936
937 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
938 {
939 efx->link_advertising = advertising;
940 if (advertising) {
941 if (advertising & ADVERTISED_Pause)
942 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
943 else
944 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
945 if (advertising & ADVERTISED_Asym_Pause)
946 efx->wanted_fc ^= EFX_FC_TX;
947 }
948 }
949
950 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
951 {
952 efx->wanted_fc = wanted_fc;
953 if (efx->link_advertising) {
954 if (wanted_fc & EFX_FC_RX)
955 efx->link_advertising |= (ADVERTISED_Pause |
956 ADVERTISED_Asym_Pause);
957 else
958 efx->link_advertising &= ~(ADVERTISED_Pause |
959 ADVERTISED_Asym_Pause);
960 if (wanted_fc & EFX_FC_TX)
961 efx->link_advertising ^= ADVERTISED_Asym_Pause;
962 }
963 }
964
965 static void efx_fini_port(struct efx_nic *efx);
966
967 /* We assume that efx->type->reconfigure_mac will always try to sync RX
968 * filters and therefore needs to read-lock the filter table against freeing
969 */
970 void efx_mac_reconfigure(struct efx_nic *efx)
971 {
972 down_read(&efx->filter_sem);
973 efx->type->reconfigure_mac(efx);
974 up_read(&efx->filter_sem);
975 }
976
977 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
978 * the MAC appropriately. All other PHY configuration changes are pushed
979 * through phy_op->set_settings(), and pushed asynchronously to the MAC
980 * through efx_monitor().
981 *
982 * Callers must hold the mac_lock
983 */
984 int __efx_reconfigure_port(struct efx_nic *efx)
985 {
986 enum efx_phy_mode phy_mode;
987 int rc;
988
989 WARN_ON(!mutex_is_locked(&efx->mac_lock));
990
991 /* Disable PHY transmit in mac level loopbacks */
992 phy_mode = efx->phy_mode;
993 if (LOOPBACK_INTERNAL(efx))
994 efx->phy_mode |= PHY_MODE_TX_DISABLED;
995 else
996 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
997
998 rc = efx->type->reconfigure_port(efx);
999
1000 if (rc)
1001 efx->phy_mode = phy_mode;
1002
1003 return rc;
1004 }
1005
1006 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1007 * disabled. */
1008 int efx_reconfigure_port(struct efx_nic *efx)
1009 {
1010 int rc;
1011
1012 EFX_ASSERT_RESET_SERIALISED(efx);
1013
1014 mutex_lock(&efx->mac_lock);
1015 rc = __efx_reconfigure_port(efx);
1016 mutex_unlock(&efx->mac_lock);
1017
1018 return rc;
1019 }
1020
1021 /* Asynchronous work item for changing MAC promiscuity and multicast
1022 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1023 * MAC directly. */
1024 static void efx_mac_work(struct work_struct *data)
1025 {
1026 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1027
1028 mutex_lock(&efx->mac_lock);
1029 if (efx->port_enabled)
1030 efx_mac_reconfigure(efx);
1031 mutex_unlock(&efx->mac_lock);
1032 }
1033
1034 static int efx_probe_port(struct efx_nic *efx)
1035 {
1036 int rc;
1037
1038 netif_dbg(efx, probe, efx->net_dev, "create port\n");
1039
1040 if (phy_flash_cfg)
1041 efx->phy_mode = PHY_MODE_SPECIAL;
1042
1043 /* Connect up MAC/PHY operations table */
1044 rc = efx->type->probe_port(efx);
1045 if (rc)
1046 return rc;
1047
1048 /* Initialise MAC address to permanent address */
1049 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1050
1051 return 0;
1052 }
1053
1054 static int efx_init_port(struct efx_nic *efx)
1055 {
1056 int rc;
1057
1058 netif_dbg(efx, drv, efx->net_dev, "init port\n");
1059
1060 mutex_lock(&efx->mac_lock);
1061
1062 rc = efx->phy_op->init(efx);
1063 if (rc)
1064 goto fail1;
1065
1066 efx->port_initialized = true;
1067
1068 /* Reconfigure the MAC before creating dma queues (required for
1069 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1070 efx_mac_reconfigure(efx);
1071
1072 /* Ensure the PHY advertises the correct flow control settings */
1073 rc = efx->phy_op->reconfigure(efx);
1074 if (rc && rc != -EPERM)
1075 goto fail2;
1076
1077 mutex_unlock(&efx->mac_lock);
1078 return 0;
1079
1080 fail2:
1081 efx->phy_op->fini(efx);
1082 fail1:
1083 mutex_unlock(&efx->mac_lock);
1084 return rc;
1085 }
1086
1087 static void efx_start_port(struct efx_nic *efx)
1088 {
1089 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1090 BUG_ON(efx->port_enabled);
1091
1092 mutex_lock(&efx->mac_lock);
1093 efx->port_enabled = true;
1094
1095 /* Ensure MAC ingress/egress is enabled */
1096 efx_mac_reconfigure(efx);
1097
1098 mutex_unlock(&efx->mac_lock);
1099 }
1100
1101 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1102 * and the async self-test, wait for them to finish and prevent them
1103 * being scheduled again. This doesn't cover online resets, which
1104 * should only be cancelled when removing the device.
1105 */
1106 static void efx_stop_port(struct efx_nic *efx)
1107 {
1108 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1109
1110 EFX_ASSERT_RESET_SERIALISED(efx);
1111
1112 mutex_lock(&efx->mac_lock);
1113 efx->port_enabled = false;
1114 mutex_unlock(&efx->mac_lock);
1115
1116 /* Serialise against efx_set_multicast_list() */
1117 netif_addr_lock_bh(efx->net_dev);
1118 netif_addr_unlock_bh(efx->net_dev);
1119
1120 cancel_delayed_work_sync(&efx->monitor_work);
1121 efx_selftest_async_cancel(efx);
1122 cancel_work_sync(&efx->mac_work);
1123 }
1124
1125 static void efx_fini_port(struct efx_nic *efx)
1126 {
1127 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1128
1129 if (!efx->port_initialized)
1130 return;
1131
1132 efx->phy_op->fini(efx);
1133 efx->port_initialized = false;
1134
1135 efx->link_state.up = false;
1136 efx_link_status_changed(efx);
1137 }
1138
1139 static void efx_remove_port(struct efx_nic *efx)
1140 {
1141 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1142
1143 efx->type->remove_port(efx);
1144 }
1145
1146 /**************************************************************************
1147 *
1148 * NIC handling
1149 *
1150 **************************************************************************/
1151
1152 static LIST_HEAD(efx_primary_list);
1153 static LIST_HEAD(efx_unassociated_list);
1154
1155 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1156 {
1157 return left->type == right->type &&
1158 left->vpd_sn && right->vpd_sn &&
1159 !strcmp(left->vpd_sn, right->vpd_sn);
1160 }
1161
1162 static void efx_associate(struct efx_nic *efx)
1163 {
1164 struct efx_nic *other, *next;
1165
1166 if (efx->primary == efx) {
1167 /* Adding primary function; look for secondaries */
1168
1169 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1170 list_add_tail(&efx->node, &efx_primary_list);
1171
1172 list_for_each_entry_safe(other, next, &efx_unassociated_list,
1173 node) {
1174 if (efx_same_controller(efx, other)) {
1175 list_del(&other->node);
1176 netif_dbg(other, probe, other->net_dev,
1177 "moving to secondary list of %s %s\n",
1178 pci_name(efx->pci_dev),
1179 efx->net_dev->name);
1180 list_add_tail(&other->node,
1181 &efx->secondary_list);
1182 other->primary = efx;
1183 }
1184 }
1185 } else {
1186 /* Adding secondary function; look for primary */
1187
1188 list_for_each_entry(other, &efx_primary_list, node) {
1189 if (efx_same_controller(efx, other)) {
1190 netif_dbg(efx, probe, efx->net_dev,
1191 "adding to secondary list of %s %s\n",
1192 pci_name(other->pci_dev),
1193 other->net_dev->name);
1194 list_add_tail(&efx->node,
1195 &other->secondary_list);
1196 efx->primary = other;
1197 return;
1198 }
1199 }
1200
1201 netif_dbg(efx, probe, efx->net_dev,
1202 "adding to unassociated list\n");
1203 list_add_tail(&efx->node, &efx_unassociated_list);
1204 }
1205 }
1206
1207 static void efx_dissociate(struct efx_nic *efx)
1208 {
1209 struct efx_nic *other, *next;
1210
1211 list_del(&efx->node);
1212 efx->primary = NULL;
1213
1214 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1215 list_del(&other->node);
1216 netif_dbg(other, probe, other->net_dev,
1217 "moving to unassociated list\n");
1218 list_add_tail(&other->node, &efx_unassociated_list);
1219 other->primary = NULL;
1220 }
1221 }
1222
1223 /* This configures the PCI device to enable I/O and DMA. */
1224 static int efx_init_io(struct efx_nic *efx)
1225 {
1226 struct pci_dev *pci_dev = efx->pci_dev;
1227 dma_addr_t dma_mask = efx->type->max_dma_mask;
1228 unsigned int mem_map_size = efx->type->mem_map_size(efx);
1229 int rc, bar;
1230
1231 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1232
1233 bar = efx->type->mem_bar;
1234
1235 rc = pci_enable_device(pci_dev);
1236 if (rc) {
1237 netif_err(efx, probe, efx->net_dev,
1238 "failed to enable PCI device\n");
1239 goto fail1;
1240 }
1241
1242 pci_set_master(pci_dev);
1243
1244 /* Set the PCI DMA mask. Try all possibilities from our
1245 * genuine mask down to 32 bits, because some architectures
1246 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1247 * masks event though they reject 46 bit masks.
1248 */
1249 while (dma_mask > 0x7fffffffUL) {
1250 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1251 if (rc == 0)
1252 break;
1253 dma_mask >>= 1;
1254 }
1255 if (rc) {
1256 netif_err(efx, probe, efx->net_dev,
1257 "could not find a suitable DMA mask\n");
1258 goto fail2;
1259 }
1260 netif_dbg(efx, probe, efx->net_dev,
1261 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1262
1263 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1264 rc = pci_request_region(pci_dev, bar, "sfc");
1265 if (rc) {
1266 netif_err(efx, probe, efx->net_dev,
1267 "request for memory BAR failed\n");
1268 rc = -EIO;
1269 goto fail3;
1270 }
1271 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1272 if (!efx->membase) {
1273 netif_err(efx, probe, efx->net_dev,
1274 "could not map memory BAR at %llx+%x\n",
1275 (unsigned long long)efx->membase_phys, mem_map_size);
1276 rc = -ENOMEM;
1277 goto fail4;
1278 }
1279 netif_dbg(efx, probe, efx->net_dev,
1280 "memory BAR at %llx+%x (virtual %p)\n",
1281 (unsigned long long)efx->membase_phys, mem_map_size,
1282 efx->membase);
1283
1284 return 0;
1285
1286 fail4:
1287 pci_release_region(efx->pci_dev, bar);
1288 fail3:
1289 efx->membase_phys = 0;
1290 fail2:
1291 pci_disable_device(efx->pci_dev);
1292 fail1:
1293 return rc;
1294 }
1295
1296 static void efx_fini_io(struct efx_nic *efx)
1297 {
1298 int bar;
1299
1300 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1301
1302 if (efx->membase) {
1303 iounmap(efx->membase);
1304 efx->membase = NULL;
1305 }
1306
1307 if (efx->membase_phys) {
1308 bar = efx->type->mem_bar;
1309 pci_release_region(efx->pci_dev, bar);
1310 efx->membase_phys = 0;
1311 }
1312
1313 /* Don't disable bus-mastering if VFs are assigned */
1314 if (!pci_vfs_assigned(efx->pci_dev))
1315 pci_disable_device(efx->pci_dev);
1316 }
1317
1318 void efx_set_default_rx_indir_table(struct efx_nic *efx)
1319 {
1320 size_t i;
1321
1322 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1323 efx->rx_indir_table[i] =
1324 ethtool_rxfh_indir_default(i, efx->rss_spread);
1325 }
1326
1327 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1328 {
1329 cpumask_var_t thread_mask;
1330 unsigned int count;
1331 int cpu;
1332
1333 if (rss_cpus) {
1334 count = rss_cpus;
1335 } else {
1336 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1337 netif_warn(efx, probe, efx->net_dev,
1338 "RSS disabled due to allocation failure\n");
1339 return 1;
1340 }
1341
1342 count = 0;
1343 for_each_online_cpu(cpu) {
1344 if (!cpumask_test_cpu(cpu, thread_mask)) {
1345 ++count;
1346 cpumask_or(thread_mask, thread_mask,
1347 topology_sibling_cpumask(cpu));
1348 }
1349 }
1350
1351 free_cpumask_var(thread_mask);
1352 }
1353
1354 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1355 * table entries that are inaccessible to VFs
1356 */
1357 #ifdef CONFIG_SFC_SRIOV
1358 if (efx->type->sriov_wanted) {
1359 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1360 count > efx_vf_size(efx)) {
1361 netif_warn(efx, probe, efx->net_dev,
1362 "Reducing number of RSS channels from %u to %u for "
1363 "VF support. Increase vf-msix-limit to use more "
1364 "channels on the PF.\n",
1365 count, efx_vf_size(efx));
1366 count = efx_vf_size(efx);
1367 }
1368 }
1369 #endif
1370
1371 return count;
1372 }
1373
1374 /* Probe the number and type of interrupts we are able to obtain, and
1375 * the resulting numbers of channels and RX queues.
1376 */
1377 static int efx_probe_interrupts(struct efx_nic *efx)
1378 {
1379 unsigned int extra_channels = 0;
1380 unsigned int i, j;
1381 int rc;
1382
1383 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1384 if (efx->extra_channel_type[i])
1385 ++extra_channels;
1386
1387 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1388 struct msix_entry xentries[EFX_MAX_CHANNELS];
1389 unsigned int n_channels;
1390
1391 n_channels = efx_wanted_parallelism(efx);
1392 if (efx_separate_tx_channels)
1393 n_channels *= 2;
1394 n_channels += extra_channels;
1395 n_channels = min(n_channels, efx->max_channels);
1396
1397 for (i = 0; i < n_channels; i++)
1398 xentries[i].entry = i;
1399 rc = pci_enable_msix_range(efx->pci_dev,
1400 xentries, 1, n_channels);
1401 if (rc < 0) {
1402 /* Fall back to single channel MSI */
1403 efx->interrupt_mode = EFX_INT_MODE_MSI;
1404 netif_err(efx, drv, efx->net_dev,
1405 "could not enable MSI-X\n");
1406 } else if (rc < n_channels) {
1407 netif_err(efx, drv, efx->net_dev,
1408 "WARNING: Insufficient MSI-X vectors"
1409 " available (%d < %u).\n", rc, n_channels);
1410 netif_err(efx, drv, efx->net_dev,
1411 "WARNING: Performance may be reduced.\n");
1412 n_channels = rc;
1413 }
1414
1415 if (rc > 0) {
1416 efx->n_channels = n_channels;
1417 if (n_channels > extra_channels)
1418 n_channels -= extra_channels;
1419 if (efx_separate_tx_channels) {
1420 efx->n_tx_channels = min(max(n_channels / 2,
1421 1U),
1422 efx->max_tx_channels);
1423 efx->n_rx_channels = max(n_channels -
1424 efx->n_tx_channels,
1425 1U);
1426 } else {
1427 efx->n_tx_channels = min(n_channels,
1428 efx->max_tx_channels);
1429 efx->n_rx_channels = n_channels;
1430 }
1431 for (i = 0; i < efx->n_channels; i++)
1432 efx_get_channel(efx, i)->irq =
1433 xentries[i].vector;
1434 }
1435 }
1436
1437 /* Try single interrupt MSI */
1438 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1439 efx->n_channels = 1;
1440 efx->n_rx_channels = 1;
1441 efx->n_tx_channels = 1;
1442 rc = pci_enable_msi(efx->pci_dev);
1443 if (rc == 0) {
1444 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1445 } else {
1446 netif_err(efx, drv, efx->net_dev,
1447 "could not enable MSI\n");
1448 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1449 }
1450 }
1451
1452 /* Assume legacy interrupts */
1453 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1454 efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
1455 efx->n_rx_channels = 1;
1456 efx->n_tx_channels = 1;
1457 efx->legacy_irq = efx->pci_dev->irq;
1458 }
1459
1460 /* Assign extra channels if possible */
1461 j = efx->n_channels;
1462 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1463 if (!efx->extra_channel_type[i])
1464 continue;
1465 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1466 efx->n_channels <= extra_channels) {
1467 efx->extra_channel_type[i]->handle_no_channel(efx);
1468 } else {
1469 --j;
1470 efx_get_channel(efx, j)->type =
1471 efx->extra_channel_type[i];
1472 }
1473 }
1474
1475 /* RSS might be usable on VFs even if it is disabled on the PF */
1476 #ifdef CONFIG_SFC_SRIOV
1477 if (efx->type->sriov_wanted) {
1478 efx->rss_spread = ((efx->n_rx_channels > 1 ||
1479 !efx->type->sriov_wanted(efx)) ?
1480 efx->n_rx_channels : efx_vf_size(efx));
1481 return 0;
1482 }
1483 #endif
1484 efx->rss_spread = efx->n_rx_channels;
1485
1486 return 0;
1487 }
1488
1489 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1490 {
1491 struct efx_channel *channel, *end_channel;
1492 int rc;
1493
1494 BUG_ON(efx->state == STATE_DISABLED);
1495
1496 efx->irq_soft_enabled = true;
1497 smp_wmb();
1498
1499 efx_for_each_channel(channel, efx) {
1500 if (!channel->type->keep_eventq) {
1501 rc = efx_init_eventq(channel);
1502 if (rc)
1503 goto fail;
1504 }
1505 efx_start_eventq(channel);
1506 }
1507
1508 efx_mcdi_mode_event(efx);
1509
1510 return 0;
1511 fail:
1512 end_channel = channel;
1513 efx_for_each_channel(channel, efx) {
1514 if (channel == end_channel)
1515 break;
1516 efx_stop_eventq(channel);
1517 if (!channel->type->keep_eventq)
1518 efx_fini_eventq(channel);
1519 }
1520
1521 return rc;
1522 }
1523
1524 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1525 {
1526 struct efx_channel *channel;
1527
1528 if (efx->state == STATE_DISABLED)
1529 return;
1530
1531 efx_mcdi_mode_poll(efx);
1532
1533 efx->irq_soft_enabled = false;
1534 smp_wmb();
1535
1536 if (efx->legacy_irq)
1537 synchronize_irq(efx->legacy_irq);
1538
1539 efx_for_each_channel(channel, efx) {
1540 if (channel->irq)
1541 synchronize_irq(channel->irq);
1542
1543 efx_stop_eventq(channel);
1544 if (!channel->type->keep_eventq)
1545 efx_fini_eventq(channel);
1546 }
1547
1548 /* Flush the asynchronous MCDI request queue */
1549 efx_mcdi_flush_async(efx);
1550 }
1551
1552 static int efx_enable_interrupts(struct efx_nic *efx)
1553 {
1554 struct efx_channel *channel, *end_channel;
1555 int rc;
1556
1557 BUG_ON(efx->state == STATE_DISABLED);
1558
1559 if (efx->eeh_disabled_legacy_irq) {
1560 enable_irq(efx->legacy_irq);
1561 efx->eeh_disabled_legacy_irq = false;
1562 }
1563
1564 efx->type->irq_enable_master(efx);
1565
1566 efx_for_each_channel(channel, efx) {
1567 if (channel->type->keep_eventq) {
1568 rc = efx_init_eventq(channel);
1569 if (rc)
1570 goto fail;
1571 }
1572 }
1573
1574 rc = efx_soft_enable_interrupts(efx);
1575 if (rc)
1576 goto fail;
1577
1578 return 0;
1579
1580 fail:
1581 end_channel = channel;
1582 efx_for_each_channel(channel, efx) {
1583 if (channel == end_channel)
1584 break;
1585 if (channel->type->keep_eventq)
1586 efx_fini_eventq(channel);
1587 }
1588
1589 efx->type->irq_disable_non_ev(efx);
1590
1591 return rc;
1592 }
1593
1594 static void efx_disable_interrupts(struct efx_nic *efx)
1595 {
1596 struct efx_channel *channel;
1597
1598 efx_soft_disable_interrupts(efx);
1599
1600 efx_for_each_channel(channel, efx) {
1601 if (channel->type->keep_eventq)
1602 efx_fini_eventq(channel);
1603 }
1604
1605 efx->type->irq_disable_non_ev(efx);
1606 }
1607
1608 static void efx_remove_interrupts(struct efx_nic *efx)
1609 {
1610 struct efx_channel *channel;
1611
1612 /* Remove MSI/MSI-X interrupts */
1613 efx_for_each_channel(channel, efx)
1614 channel->irq = 0;
1615 pci_disable_msi(efx->pci_dev);
1616 pci_disable_msix(efx->pci_dev);
1617
1618 /* Remove legacy interrupt */
1619 efx->legacy_irq = 0;
1620 }
1621
1622 static void efx_set_channels(struct efx_nic *efx)
1623 {
1624 struct efx_channel *channel;
1625 struct efx_tx_queue *tx_queue;
1626
1627 efx->tx_channel_offset =
1628 efx_separate_tx_channels ?
1629 efx->n_channels - efx->n_tx_channels : 0;
1630
1631 /* We need to mark which channels really have RX and TX
1632 * queues, and adjust the TX queue numbers if we have separate
1633 * RX-only and TX-only channels.
1634 */
1635 efx_for_each_channel(channel, efx) {
1636 if (channel->channel < efx->n_rx_channels)
1637 channel->rx_queue.core_index = channel->channel;
1638 else
1639 channel->rx_queue.core_index = -1;
1640
1641 efx_for_each_channel_tx_queue(tx_queue, channel)
1642 tx_queue->queue -= (efx->tx_channel_offset *
1643 EFX_TXQ_TYPES);
1644 }
1645 }
1646
1647 static int efx_probe_nic(struct efx_nic *efx)
1648 {
1649 int rc;
1650
1651 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1652
1653 /* Carry out hardware-type specific initialisation */
1654 rc = efx->type->probe(efx);
1655 if (rc)
1656 return rc;
1657
1658 do {
1659 if (!efx->max_channels || !efx->max_tx_channels) {
1660 netif_err(efx, drv, efx->net_dev,
1661 "Insufficient resources to allocate"
1662 " any channels\n");
1663 rc = -ENOSPC;
1664 goto fail1;
1665 }
1666
1667 /* Determine the number of channels and queues by trying
1668 * to hook in MSI-X interrupts.
1669 */
1670 rc = efx_probe_interrupts(efx);
1671 if (rc)
1672 goto fail1;
1673
1674 efx_set_channels(efx);
1675
1676 /* dimension_resources can fail with EAGAIN */
1677 rc = efx->type->dimension_resources(efx);
1678 if (rc != 0 && rc != -EAGAIN)
1679 goto fail2;
1680
1681 if (rc == -EAGAIN)
1682 /* try again with new max_channels */
1683 efx_remove_interrupts(efx);
1684
1685 } while (rc == -EAGAIN);
1686
1687 if (efx->n_channels > 1)
1688 netdev_rss_key_fill(&efx->rx_hash_key,
1689 sizeof(efx->rx_hash_key));
1690 efx_set_default_rx_indir_table(efx);
1691
1692 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1693 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1694
1695 /* Initialise the interrupt moderation settings */
1696 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1697 true);
1698
1699 return 0;
1700
1701 fail2:
1702 efx_remove_interrupts(efx);
1703 fail1:
1704 efx->type->remove(efx);
1705 return rc;
1706 }
1707
1708 static void efx_remove_nic(struct efx_nic *efx)
1709 {
1710 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1711
1712 efx_remove_interrupts(efx);
1713 efx->type->remove(efx);
1714 }
1715
1716 static int efx_probe_filters(struct efx_nic *efx)
1717 {
1718 int rc;
1719
1720 spin_lock_init(&efx->filter_lock);
1721 init_rwsem(&efx->filter_sem);
1722 down_write(&efx->filter_sem);
1723 rc = efx->type->filter_table_probe(efx);
1724 if (rc)
1725 goto out_unlock;
1726
1727 #ifdef CONFIG_RFS_ACCEL
1728 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1729 efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1730 sizeof(*efx->rps_flow_id),
1731 GFP_KERNEL);
1732 if (!efx->rps_flow_id) {
1733 efx->type->filter_table_remove(efx);
1734 rc = -ENOMEM;
1735 goto out_unlock;
1736 }
1737 }
1738 #endif
1739 out_unlock:
1740 up_write(&efx->filter_sem);
1741 return rc;
1742 }
1743
1744 static void efx_remove_filters(struct efx_nic *efx)
1745 {
1746 #ifdef CONFIG_RFS_ACCEL
1747 kfree(efx->rps_flow_id);
1748 #endif
1749 down_write(&efx->filter_sem);
1750 efx->type->filter_table_remove(efx);
1751 up_write(&efx->filter_sem);
1752 }
1753
1754 static void efx_restore_filters(struct efx_nic *efx)
1755 {
1756 down_read(&efx->filter_sem);
1757 efx->type->filter_table_restore(efx);
1758 up_read(&efx->filter_sem);
1759 }
1760
1761 /**************************************************************************
1762 *
1763 * NIC startup/shutdown
1764 *
1765 *************************************************************************/
1766
1767 static int efx_probe_all(struct efx_nic *efx)
1768 {
1769 int rc;
1770
1771 rc = efx_probe_nic(efx);
1772 if (rc) {
1773 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1774 goto fail1;
1775 }
1776
1777 rc = efx_probe_port(efx);
1778 if (rc) {
1779 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1780 goto fail2;
1781 }
1782
1783 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1784 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1785 rc = -EINVAL;
1786 goto fail3;
1787 }
1788 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1789
1790 #ifdef CONFIG_SFC_SRIOV
1791 rc = efx->type->vswitching_probe(efx);
1792 if (rc) /* not fatal; the PF will still work fine */
1793 netif_warn(efx, probe, efx->net_dev,
1794 "failed to setup vswitching rc=%d;"
1795 " VFs may not function\n", rc);
1796 #endif
1797
1798 rc = efx_probe_filters(efx);
1799 if (rc) {
1800 netif_err(efx, probe, efx->net_dev,
1801 "failed to create filter tables\n");
1802 goto fail4;
1803 }
1804
1805 rc = efx_probe_channels(efx);
1806 if (rc)
1807 goto fail5;
1808
1809 return 0;
1810
1811 fail5:
1812 efx_remove_filters(efx);
1813 fail4:
1814 #ifdef CONFIG_SFC_SRIOV
1815 efx->type->vswitching_remove(efx);
1816 #endif
1817 fail3:
1818 efx_remove_port(efx);
1819 fail2:
1820 efx_remove_nic(efx);
1821 fail1:
1822 return rc;
1823 }
1824
1825 /* If the interface is supposed to be running but is not, start
1826 * the hardware and software data path, regular activity for the port
1827 * (MAC statistics, link polling, etc.) and schedule the port to be
1828 * reconfigured. Interrupts must already be enabled. This function
1829 * is safe to call multiple times, so long as the NIC is not disabled.
1830 * Requires the RTNL lock.
1831 */
1832 static void efx_start_all(struct efx_nic *efx)
1833 {
1834 EFX_ASSERT_RESET_SERIALISED(efx);
1835 BUG_ON(efx->state == STATE_DISABLED);
1836
1837 /* Check that it is appropriate to restart the interface. All
1838 * of these flags are safe to read under just the rtnl lock */
1839 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1840 efx->reset_pending)
1841 return;
1842
1843 efx_start_port(efx);
1844 efx_start_datapath(efx);
1845
1846 /* Start the hardware monitor if there is one */
1847 if (efx->type->monitor != NULL)
1848 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1849 efx_monitor_interval);
1850
1851 /* If link state detection is normally event-driven, we have
1852 * to poll now because we could have missed a change
1853 */
1854 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1855 mutex_lock(&efx->mac_lock);
1856 if (efx->phy_op->poll(efx))
1857 efx_link_status_changed(efx);
1858 mutex_unlock(&efx->mac_lock);
1859 }
1860
1861 efx->type->start_stats(efx);
1862 efx->type->pull_stats(efx);
1863 spin_lock_bh(&efx->stats_lock);
1864 efx->type->update_stats(efx, NULL, NULL);
1865 spin_unlock_bh(&efx->stats_lock);
1866 }
1867
1868 /* Quiesce the hardware and software data path, and regular activity
1869 * for the port without bringing the link down. Safe to call multiple
1870 * times with the NIC in almost any state, but interrupts should be
1871 * enabled. Requires the RTNL lock.
1872 */
1873 static void efx_stop_all(struct efx_nic *efx)
1874 {
1875 EFX_ASSERT_RESET_SERIALISED(efx);
1876
1877 /* port_enabled can be read safely under the rtnl lock */
1878 if (!efx->port_enabled)
1879 return;
1880
1881 /* update stats before we go down so we can accurately count
1882 * rx_nodesc_drops
1883 */
1884 efx->type->pull_stats(efx);
1885 spin_lock_bh(&efx->stats_lock);
1886 efx->type->update_stats(efx, NULL, NULL);
1887 spin_unlock_bh(&efx->stats_lock);
1888 efx->type->stop_stats(efx);
1889 efx_stop_port(efx);
1890
1891 /* Stop the kernel transmit interface. This is only valid if
1892 * the device is stopped or detached; otherwise the watchdog
1893 * may fire immediately.
1894 */
1895 WARN_ON(netif_running(efx->net_dev) &&
1896 netif_device_present(efx->net_dev));
1897 netif_tx_disable(efx->net_dev);
1898
1899 efx_stop_datapath(efx);
1900 }
1901
1902 static void efx_remove_all(struct efx_nic *efx)
1903 {
1904 efx_remove_channels(efx);
1905 efx_remove_filters(efx);
1906 #ifdef CONFIG_SFC_SRIOV
1907 efx->type->vswitching_remove(efx);
1908 #endif
1909 efx_remove_port(efx);
1910 efx_remove_nic(efx);
1911 }
1912
1913 /**************************************************************************
1914 *
1915 * Interrupt moderation
1916 *
1917 **************************************************************************/
1918
1919 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1920 {
1921 if (usecs == 0)
1922 return 0;
1923 if (usecs * 1000 < quantum_ns)
1924 return 1; /* never round down to 0 */
1925 return usecs * 1000 / quantum_ns;
1926 }
1927
1928 /* Set interrupt moderation parameters */
1929 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1930 unsigned int rx_usecs, bool rx_adaptive,
1931 bool rx_may_override_tx)
1932 {
1933 struct efx_channel *channel;
1934 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1935 efx->timer_quantum_ns,
1936 1000);
1937 unsigned int tx_ticks;
1938 unsigned int rx_ticks;
1939
1940 EFX_ASSERT_RESET_SERIALISED(efx);
1941
1942 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1943 return -EINVAL;
1944
1945 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1946 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1947
1948 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1949 !rx_may_override_tx) {
1950 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1951 "RX and TX IRQ moderation must be equal\n");
1952 return -EINVAL;
1953 }
1954
1955 efx->irq_rx_adaptive = rx_adaptive;
1956 efx->irq_rx_moderation = rx_ticks;
1957 efx_for_each_channel(channel, efx) {
1958 if (efx_channel_has_rx_queue(channel))
1959 channel->irq_moderation = rx_ticks;
1960 else if (efx_channel_has_tx_queues(channel))
1961 channel->irq_moderation = tx_ticks;
1962 }
1963
1964 return 0;
1965 }
1966
1967 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1968 unsigned int *rx_usecs, bool *rx_adaptive)
1969 {
1970 /* We must round up when converting ticks to microseconds
1971 * because we round down when converting the other way.
1972 */
1973
1974 *rx_adaptive = efx->irq_rx_adaptive;
1975 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1976 efx->timer_quantum_ns,
1977 1000);
1978
1979 /* If channels are shared between RX and TX, so is IRQ
1980 * moderation. Otherwise, IRQ moderation is the same for all
1981 * TX channels and is not adaptive.
1982 */
1983 if (efx->tx_channel_offset == 0)
1984 *tx_usecs = *rx_usecs;
1985 else
1986 *tx_usecs = DIV_ROUND_UP(
1987 efx->channel[efx->tx_channel_offset]->irq_moderation *
1988 efx->timer_quantum_ns,
1989 1000);
1990 }
1991
1992 /**************************************************************************
1993 *
1994 * Hardware monitor
1995 *
1996 **************************************************************************/
1997
1998 /* Run periodically off the general workqueue */
1999 static void efx_monitor(struct work_struct *data)
2000 {
2001 struct efx_nic *efx = container_of(data, struct efx_nic,
2002 monitor_work.work);
2003
2004 netif_vdbg(efx, timer, efx->net_dev,
2005 "hardware monitor executing on CPU %d\n",
2006 raw_smp_processor_id());
2007 BUG_ON(efx->type->monitor == NULL);
2008
2009 /* If the mac_lock is already held then it is likely a port
2010 * reconfiguration is already in place, which will likely do
2011 * most of the work of monitor() anyway. */
2012 if (mutex_trylock(&efx->mac_lock)) {
2013 if (efx->port_enabled)
2014 efx->type->monitor(efx);
2015 mutex_unlock(&efx->mac_lock);
2016 }
2017
2018 queue_delayed_work(efx->workqueue, &efx->monitor_work,
2019 efx_monitor_interval);
2020 }
2021
2022 /**************************************************************************
2023 *
2024 * ioctls
2025 *
2026 *************************************************************************/
2027
2028 /* Net device ioctl
2029 * Context: process, rtnl_lock() held.
2030 */
2031 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2032 {
2033 struct efx_nic *efx = netdev_priv(net_dev);
2034 struct mii_ioctl_data *data = if_mii(ifr);
2035
2036 if (cmd == SIOCSHWTSTAMP)
2037 return efx_ptp_set_ts_config(efx, ifr);
2038 if (cmd == SIOCGHWTSTAMP)
2039 return efx_ptp_get_ts_config(efx, ifr);
2040
2041 /* Convert phy_id from older PRTAD/DEVAD format */
2042 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2043 (data->phy_id & 0xfc00) == 0x0400)
2044 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2045
2046 return mdio_mii_ioctl(&efx->mdio, data, cmd);
2047 }
2048
2049 /**************************************************************************
2050 *
2051 * NAPI interface
2052 *
2053 **************************************************************************/
2054
2055 static void efx_init_napi_channel(struct efx_channel *channel)
2056 {
2057 struct efx_nic *efx = channel->efx;
2058
2059 channel->napi_dev = efx->net_dev;
2060 netif_napi_add(channel->napi_dev, &channel->napi_str,
2061 efx_poll, napi_weight);
2062 efx_channel_busy_poll_init(channel);
2063 }
2064
2065 static void efx_init_napi(struct efx_nic *efx)
2066 {
2067 struct efx_channel *channel;
2068
2069 efx_for_each_channel(channel, efx)
2070 efx_init_napi_channel(channel);
2071 }
2072
2073 static void efx_fini_napi_channel(struct efx_channel *channel)
2074 {
2075 if (channel->napi_dev) {
2076 netif_napi_del(&channel->napi_str);
2077 napi_hash_del(&channel->napi_str);
2078 }
2079 channel->napi_dev = NULL;
2080 }
2081
2082 static void efx_fini_napi(struct efx_nic *efx)
2083 {
2084 struct efx_channel *channel;
2085
2086 efx_for_each_channel(channel, efx)
2087 efx_fini_napi_channel(channel);
2088 }
2089
2090 /**************************************************************************
2091 *
2092 * Kernel netpoll interface
2093 *
2094 *************************************************************************/
2095
2096 #ifdef CONFIG_NET_POLL_CONTROLLER
2097
2098 /* Although in the common case interrupts will be disabled, this is not
2099 * guaranteed. However, all our work happens inside the NAPI callback,
2100 * so no locking is required.
2101 */
2102 static void efx_netpoll(struct net_device *net_dev)
2103 {
2104 struct efx_nic *efx = netdev_priv(net_dev);
2105 struct efx_channel *channel;
2106
2107 efx_for_each_channel(channel, efx)
2108 efx_schedule_channel(channel);
2109 }
2110
2111 #endif
2112
2113 #ifdef CONFIG_NET_RX_BUSY_POLL
2114 static int efx_busy_poll(struct napi_struct *napi)
2115 {
2116 struct efx_channel *channel =
2117 container_of(napi, struct efx_channel, napi_str);
2118 struct efx_nic *efx = channel->efx;
2119 int budget = 4;
2120 int old_rx_packets, rx_packets;
2121
2122 if (!netif_running(efx->net_dev))
2123 return LL_FLUSH_FAILED;
2124
2125 if (!efx_channel_try_lock_poll(channel))
2126 return LL_FLUSH_BUSY;
2127
2128 old_rx_packets = channel->rx_queue.rx_packets;
2129 efx_process_channel(channel, budget);
2130
2131 rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2132
2133 /* There is no race condition with NAPI here.
2134 * NAPI will automatically be rescheduled if it yielded during busy
2135 * polling, because it was not able to take the lock and thus returned
2136 * the full budget.
2137 */
2138 efx_channel_unlock_poll(channel);
2139
2140 return rx_packets;
2141 }
2142 #endif
2143
2144 /**************************************************************************
2145 *
2146 * Kernel net device interface
2147 *
2148 *************************************************************************/
2149
2150 /* Context: process, rtnl_lock() held. */
2151 int efx_net_open(struct net_device *net_dev)
2152 {
2153 struct efx_nic *efx = netdev_priv(net_dev);
2154 int rc;
2155
2156 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2157 raw_smp_processor_id());
2158
2159 rc = efx_check_disabled(efx);
2160 if (rc)
2161 return rc;
2162 if (efx->phy_mode & PHY_MODE_SPECIAL)
2163 return -EBUSY;
2164 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2165 return -EIO;
2166
2167 /* Notify the kernel of the link state polled during driver load,
2168 * before the monitor starts running */
2169 efx_link_status_changed(efx);
2170
2171 efx_start_all(efx);
2172 efx_selftest_async_start(efx);
2173 return 0;
2174 }
2175
2176 /* Context: process, rtnl_lock() held.
2177 * Note that the kernel will ignore our return code; this method
2178 * should really be a void.
2179 */
2180 int efx_net_stop(struct net_device *net_dev)
2181 {
2182 struct efx_nic *efx = netdev_priv(net_dev);
2183
2184 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2185 raw_smp_processor_id());
2186
2187 /* Stop the device and flush all the channels */
2188 efx_stop_all(efx);
2189
2190 return 0;
2191 }
2192
2193 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2194 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2195 struct rtnl_link_stats64 *stats)
2196 {
2197 struct efx_nic *efx = netdev_priv(net_dev);
2198
2199 spin_lock_bh(&efx->stats_lock);
2200 efx->type->update_stats(efx, NULL, stats);
2201 spin_unlock_bh(&efx->stats_lock);
2202
2203 return stats;
2204 }
2205
2206 /* Context: netif_tx_lock held, BHs disabled. */
2207 static void efx_watchdog(struct net_device *net_dev)
2208 {
2209 struct efx_nic *efx = netdev_priv(net_dev);
2210
2211 netif_err(efx, tx_err, efx->net_dev,
2212 "TX stuck with port_enabled=%d: resetting channels\n",
2213 efx->port_enabled);
2214
2215 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2216 }
2217
2218
2219 /* Context: process, rtnl_lock() held. */
2220 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2221 {
2222 struct efx_nic *efx = netdev_priv(net_dev);
2223 int rc;
2224
2225 rc = efx_check_disabled(efx);
2226 if (rc)
2227 return rc;
2228 if (new_mtu > EFX_MAX_MTU)
2229 return -EINVAL;
2230
2231 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2232
2233 efx_device_detach_sync(efx);
2234 efx_stop_all(efx);
2235
2236 mutex_lock(&efx->mac_lock);
2237 net_dev->mtu = new_mtu;
2238 efx_mac_reconfigure(efx);
2239 mutex_unlock(&efx->mac_lock);
2240
2241 efx_start_all(efx);
2242 netif_device_attach(efx->net_dev);
2243 return 0;
2244 }
2245
2246 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2247 {
2248 struct efx_nic *efx = netdev_priv(net_dev);
2249 struct sockaddr *addr = data;
2250 u8 *new_addr = addr->sa_data;
2251 u8 old_addr[6];
2252 int rc;
2253
2254 if (!is_valid_ether_addr(new_addr)) {
2255 netif_err(efx, drv, efx->net_dev,
2256 "invalid ethernet MAC address requested: %pM\n",
2257 new_addr);
2258 return -EADDRNOTAVAIL;
2259 }
2260
2261 /* save old address */
2262 ether_addr_copy(old_addr, net_dev->dev_addr);
2263 ether_addr_copy(net_dev->dev_addr, new_addr);
2264 if (efx->type->set_mac_address) {
2265 rc = efx->type->set_mac_address(efx);
2266 if (rc) {
2267 ether_addr_copy(net_dev->dev_addr, old_addr);
2268 return rc;
2269 }
2270 }
2271
2272 /* Reconfigure the MAC */
2273 mutex_lock(&efx->mac_lock);
2274 efx_mac_reconfigure(efx);
2275 mutex_unlock(&efx->mac_lock);
2276
2277 return 0;
2278 }
2279
2280 /* Context: netif_addr_lock held, BHs disabled. */
2281 static void efx_set_rx_mode(struct net_device *net_dev)
2282 {
2283 struct efx_nic *efx = netdev_priv(net_dev);
2284
2285 if (efx->port_enabled)
2286 queue_work(efx->workqueue, &efx->mac_work);
2287 /* Otherwise efx_start_port() will do this */
2288 }
2289
2290 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2291 {
2292 struct efx_nic *efx = netdev_priv(net_dev);
2293
2294 /* If disabling RX n-tuple filtering, clear existing filters */
2295 if (net_dev->features & ~data & NETIF_F_NTUPLE)
2296 return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2297
2298 return 0;
2299 }
2300
2301 static const struct net_device_ops efx_netdev_ops = {
2302 .ndo_open = efx_net_open,
2303 .ndo_stop = efx_net_stop,
2304 .ndo_get_stats64 = efx_net_stats,
2305 .ndo_tx_timeout = efx_watchdog,
2306 .ndo_start_xmit = efx_hard_start_xmit,
2307 .ndo_validate_addr = eth_validate_addr,
2308 .ndo_do_ioctl = efx_ioctl,
2309 .ndo_change_mtu = efx_change_mtu,
2310 .ndo_set_mac_address = efx_set_mac_address,
2311 .ndo_set_rx_mode = efx_set_rx_mode,
2312 .ndo_set_features = efx_set_features,
2313 #ifdef CONFIG_SFC_SRIOV
2314 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
2315 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
2316 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
2317 .ndo_get_vf_config = efx_sriov_get_vf_config,
2318 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state,
2319 .ndo_get_phys_port_id = efx_sriov_get_phys_port_id,
2320 #endif
2321 #ifdef CONFIG_NET_POLL_CONTROLLER
2322 .ndo_poll_controller = efx_netpoll,
2323 #endif
2324 .ndo_setup_tc = efx_setup_tc,
2325 #ifdef CONFIG_NET_RX_BUSY_POLL
2326 .ndo_busy_poll = efx_busy_poll,
2327 #endif
2328 #ifdef CONFIG_RFS_ACCEL
2329 .ndo_rx_flow_steer = efx_filter_rfs,
2330 #endif
2331 };
2332
2333 static void efx_update_name(struct efx_nic *efx)
2334 {
2335 strcpy(efx->name, efx->net_dev->name);
2336 efx_mtd_rename(efx);
2337 efx_set_channel_names(efx);
2338 }
2339
2340 static int efx_netdev_event(struct notifier_block *this,
2341 unsigned long event, void *ptr)
2342 {
2343 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2344
2345 if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2346 event == NETDEV_CHANGENAME)
2347 efx_update_name(netdev_priv(net_dev));
2348
2349 return NOTIFY_DONE;
2350 }
2351
2352 static struct notifier_block efx_netdev_notifier = {
2353 .notifier_call = efx_netdev_event,
2354 };
2355
2356 static ssize_t
2357 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2358 {
2359 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2360 return sprintf(buf, "%d\n", efx->phy_type);
2361 }
2362 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2363
2364 #ifdef CONFIG_SFC_MCDI_LOGGING
2365 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2366 char *buf)
2367 {
2368 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2369 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2370
2371 return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2372 }
2373 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2374 const char *buf, size_t count)
2375 {
2376 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2377 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2378 bool enable = count > 0 && *buf != '0';
2379
2380 mcdi->logging_enabled = enable;
2381 return count;
2382 }
2383 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2384 #endif
2385
2386 static int efx_register_netdev(struct efx_nic *efx)
2387 {
2388 struct net_device *net_dev = efx->net_dev;
2389 struct efx_channel *channel;
2390 int rc;
2391
2392 net_dev->watchdog_timeo = 5 * HZ;
2393 net_dev->irq = efx->pci_dev->irq;
2394 net_dev->netdev_ops = &efx_netdev_ops;
2395 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2396 net_dev->priv_flags |= IFF_UNICAST_FLT;
2397 net_dev->ethtool_ops = &efx_ethtool_ops;
2398 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2399
2400 rtnl_lock();
2401
2402 /* Enable resets to be scheduled and check whether any were
2403 * already requested. If so, the NIC is probably hosed so we
2404 * abort.
2405 */
2406 efx->state = STATE_READY;
2407 smp_mb(); /* ensure we change state before checking reset_pending */
2408 if (efx->reset_pending) {
2409 netif_err(efx, probe, efx->net_dev,
2410 "aborting probe due to scheduled reset\n");
2411 rc = -EIO;
2412 goto fail_locked;
2413 }
2414
2415 rc = dev_alloc_name(net_dev, net_dev->name);
2416 if (rc < 0)
2417 goto fail_locked;
2418 efx_update_name(efx);
2419
2420 /* Always start with carrier off; PHY events will detect the link */
2421 netif_carrier_off(net_dev);
2422
2423 rc = register_netdevice(net_dev);
2424 if (rc)
2425 goto fail_locked;
2426
2427 efx_for_each_channel(channel, efx) {
2428 struct efx_tx_queue *tx_queue;
2429 efx_for_each_channel_tx_queue(tx_queue, channel)
2430 efx_init_tx_queue_core_txq(tx_queue);
2431 }
2432
2433 efx_associate(efx);
2434
2435 rtnl_unlock();
2436
2437 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2438 if (rc) {
2439 netif_err(efx, drv, efx->net_dev,
2440 "failed to init net dev attributes\n");
2441 goto fail_registered;
2442 }
2443 #ifdef CONFIG_SFC_MCDI_LOGGING
2444 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2445 if (rc) {
2446 netif_err(efx, drv, efx->net_dev,
2447 "failed to init net dev attributes\n");
2448 goto fail_attr_mcdi_logging;
2449 }
2450 #endif
2451
2452 return 0;
2453
2454 #ifdef CONFIG_SFC_MCDI_LOGGING
2455 fail_attr_mcdi_logging:
2456 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2457 #endif
2458 fail_registered:
2459 rtnl_lock();
2460 efx_dissociate(efx);
2461 unregister_netdevice(net_dev);
2462 fail_locked:
2463 efx->state = STATE_UNINIT;
2464 rtnl_unlock();
2465 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2466 return rc;
2467 }
2468
2469 static void efx_unregister_netdev(struct efx_nic *efx)
2470 {
2471 if (!efx->net_dev)
2472 return;
2473
2474 BUG_ON(netdev_priv(efx->net_dev) != efx);
2475
2476 if (efx_dev_registered(efx)) {
2477 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2478 #ifdef CONFIG_SFC_MCDI_LOGGING
2479 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2480 #endif
2481 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2482 unregister_netdev(efx->net_dev);
2483 }
2484 }
2485
2486 /**************************************************************************
2487 *
2488 * Device reset and suspend
2489 *
2490 **************************************************************************/
2491
2492 /* Tears down the entire software state and most of the hardware state
2493 * before reset. */
2494 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2495 {
2496 EFX_ASSERT_RESET_SERIALISED(efx);
2497
2498 if (method == RESET_TYPE_MCDI_TIMEOUT)
2499 efx->type->prepare_flr(efx);
2500
2501 efx_stop_all(efx);
2502 efx_disable_interrupts(efx);
2503
2504 mutex_lock(&efx->mac_lock);
2505 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2506 method != RESET_TYPE_DATAPATH)
2507 efx->phy_op->fini(efx);
2508 efx->type->fini(efx);
2509 }
2510
2511 /* This function will always ensure that the locks acquired in
2512 * efx_reset_down() are released. A failure return code indicates
2513 * that we were unable to reinitialise the hardware, and the
2514 * driver should be disabled. If ok is false, then the rx and tx
2515 * engines are not restarted, pending a RESET_DISABLE. */
2516 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2517 {
2518 int rc;
2519
2520 EFX_ASSERT_RESET_SERIALISED(efx);
2521
2522 if (method == RESET_TYPE_MCDI_TIMEOUT)
2523 efx->type->finish_flr(efx);
2524
2525 /* Ensure that SRAM is initialised even if we're disabling the device */
2526 rc = efx->type->init(efx);
2527 if (rc) {
2528 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2529 goto fail;
2530 }
2531
2532 if (!ok)
2533 goto fail;
2534
2535 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2536 method != RESET_TYPE_DATAPATH) {
2537 rc = efx->phy_op->init(efx);
2538 if (rc)
2539 goto fail;
2540 rc = efx->phy_op->reconfigure(efx);
2541 if (rc && rc != -EPERM)
2542 netif_err(efx, drv, efx->net_dev,
2543 "could not restore PHY settings\n");
2544 }
2545
2546 rc = efx_enable_interrupts(efx);
2547 if (rc)
2548 goto fail;
2549
2550 #ifdef CONFIG_SFC_SRIOV
2551 rc = efx->type->vswitching_restore(efx);
2552 if (rc) /* not fatal; the PF will still work fine */
2553 netif_warn(efx, probe, efx->net_dev,
2554 "failed to restore vswitching rc=%d;"
2555 " VFs may not function\n", rc);
2556 #endif
2557
2558 down_read(&efx->filter_sem);
2559 efx_restore_filters(efx);
2560 up_read(&efx->filter_sem);
2561 if (efx->type->sriov_reset)
2562 efx->type->sriov_reset(efx);
2563
2564 mutex_unlock(&efx->mac_lock);
2565
2566 efx_start_all(efx);
2567
2568 return 0;
2569
2570 fail:
2571 efx->port_initialized = false;
2572
2573 mutex_unlock(&efx->mac_lock);
2574
2575 return rc;
2576 }
2577
2578 /* Reset the NIC using the specified method. Note that the reset may
2579 * fail, in which case the card will be left in an unusable state.
2580 *
2581 * Caller must hold the rtnl_lock.
2582 */
2583 int efx_reset(struct efx_nic *efx, enum reset_type method)
2584 {
2585 int rc, rc2;
2586 bool disabled;
2587
2588 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2589 RESET_TYPE(method));
2590
2591 efx_device_detach_sync(efx);
2592 efx_reset_down(efx, method);
2593
2594 rc = efx->type->reset(efx, method);
2595 if (rc) {
2596 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2597 goto out;
2598 }
2599
2600 /* Clear flags for the scopes we covered. We assume the NIC and
2601 * driver are now quiescent so that there is no race here.
2602 */
2603 if (method < RESET_TYPE_MAX_METHOD)
2604 efx->reset_pending &= -(1 << (method + 1));
2605 else /* it doesn't fit into the well-ordered scope hierarchy */
2606 __clear_bit(method, &efx->reset_pending);
2607
2608 /* Reinitialise bus-mastering, which may have been turned off before
2609 * the reset was scheduled. This is still appropriate, even in the
2610 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2611 * can respond to requests. */
2612 pci_set_master(efx->pci_dev);
2613
2614 out:
2615 /* Leave device stopped if necessary */
2616 disabled = rc ||
2617 method == RESET_TYPE_DISABLE ||
2618 method == RESET_TYPE_RECOVER_OR_DISABLE;
2619 rc2 = efx_reset_up(efx, method, !disabled);
2620 if (rc2) {
2621 disabled = true;
2622 if (!rc)
2623 rc = rc2;
2624 }
2625
2626 if (disabled) {
2627 dev_close(efx->net_dev);
2628 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2629 efx->state = STATE_DISABLED;
2630 } else {
2631 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2632 netif_device_attach(efx->net_dev);
2633 }
2634 return rc;
2635 }
2636
2637 /* Try recovery mechanisms.
2638 * For now only EEH is supported.
2639 * Returns 0 if the recovery mechanisms are unsuccessful.
2640 * Returns a non-zero value otherwise.
2641 */
2642 int efx_try_recovery(struct efx_nic *efx)
2643 {
2644 #ifdef CONFIG_EEH
2645 /* A PCI error can occur and not be seen by EEH because nothing
2646 * happens on the PCI bus. In this case the driver may fail and
2647 * schedule a 'recover or reset', leading to this recovery handler.
2648 * Manually call the eeh failure check function.
2649 */
2650 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2651 if (eeh_dev_check_failure(eehdev)) {
2652 /* The EEH mechanisms will handle the error and reset the
2653 * device if necessary.
2654 */
2655 return 1;
2656 }
2657 #endif
2658 return 0;
2659 }
2660
2661 static void efx_wait_for_bist_end(struct efx_nic *efx)
2662 {
2663 int i;
2664
2665 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2666 if (efx_mcdi_poll_reboot(efx))
2667 goto out;
2668 msleep(BIST_WAIT_DELAY_MS);
2669 }
2670
2671 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2672 out:
2673 /* Either way unset the BIST flag. If we found no reboot we probably
2674 * won't recover, but we should try.
2675 */
2676 efx->mc_bist_for_other_fn = false;
2677 }
2678
2679 /* The worker thread exists so that code that cannot sleep can
2680 * schedule a reset for later.
2681 */
2682 static void efx_reset_work(struct work_struct *data)
2683 {
2684 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2685 unsigned long pending;
2686 enum reset_type method;
2687
2688 pending = ACCESS_ONCE(efx->reset_pending);
2689 method = fls(pending) - 1;
2690
2691 if (method == RESET_TYPE_MC_BIST)
2692 efx_wait_for_bist_end(efx);
2693
2694 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2695 method == RESET_TYPE_RECOVER_OR_ALL) &&
2696 efx_try_recovery(efx))
2697 return;
2698
2699 if (!pending)
2700 return;
2701
2702 rtnl_lock();
2703
2704 /* We checked the state in efx_schedule_reset() but it may
2705 * have changed by now. Now that we have the RTNL lock,
2706 * it cannot change again.
2707 */
2708 if (efx->state == STATE_READY)
2709 (void)efx_reset(efx, method);
2710
2711 rtnl_unlock();
2712 }
2713
2714 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2715 {
2716 enum reset_type method;
2717
2718 if (efx->state == STATE_RECOVERY) {
2719 netif_dbg(efx, drv, efx->net_dev,
2720 "recovering: skip scheduling %s reset\n",
2721 RESET_TYPE(type));
2722 return;
2723 }
2724
2725 switch (type) {
2726 case RESET_TYPE_INVISIBLE:
2727 case RESET_TYPE_ALL:
2728 case RESET_TYPE_RECOVER_OR_ALL:
2729 case RESET_TYPE_WORLD:
2730 case RESET_TYPE_DISABLE:
2731 case RESET_TYPE_RECOVER_OR_DISABLE:
2732 case RESET_TYPE_DATAPATH:
2733 case RESET_TYPE_MC_BIST:
2734 case RESET_TYPE_MCDI_TIMEOUT:
2735 method = type;
2736 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2737 RESET_TYPE(method));
2738 break;
2739 default:
2740 method = efx->type->map_reset_reason(type);
2741 netif_dbg(efx, drv, efx->net_dev,
2742 "scheduling %s reset for %s\n",
2743 RESET_TYPE(method), RESET_TYPE(type));
2744 break;
2745 }
2746
2747 set_bit(method, &efx->reset_pending);
2748 smp_mb(); /* ensure we change reset_pending before checking state */
2749
2750 /* If we're not READY then just leave the flags set as the cue
2751 * to abort probing or reschedule the reset later.
2752 */
2753 if (ACCESS_ONCE(efx->state) != STATE_READY)
2754 return;
2755
2756 /* efx_process_channel() will no longer read events once a
2757 * reset is scheduled. So switch back to poll'd MCDI completions. */
2758 efx_mcdi_mode_poll(efx);
2759
2760 queue_work(reset_workqueue, &efx->reset_work);
2761 }
2762
2763 /**************************************************************************
2764 *
2765 * List of NICs we support
2766 *
2767 **************************************************************************/
2768
2769 /* PCI device ID table */
2770 static const struct pci_device_id efx_pci_table[] = {
2771 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2772 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2773 .driver_data = (unsigned long) &falcon_a1_nic_type},
2774 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2775 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2776 .driver_data = (unsigned long) &falcon_b0_nic_type},
2777 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
2778 .driver_data = (unsigned long) &siena_a0_nic_type},
2779 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
2780 .driver_data = (unsigned long) &siena_a0_nic_type},
2781 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
2782 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2783 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */
2784 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2785 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
2786 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2787 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */
2788 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2789 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */
2790 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2791 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */
2792 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2793 {0} /* end of list */
2794 };
2795
2796 /**************************************************************************
2797 *
2798 * Dummy PHY/MAC operations
2799 *
2800 * Can be used for some unimplemented operations
2801 * Needed so all function pointers are valid and do not have to be tested
2802 * before use
2803 *
2804 **************************************************************************/
2805 int efx_port_dummy_op_int(struct efx_nic *efx)
2806 {
2807 return 0;
2808 }
2809 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2810
2811 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2812 {
2813 return false;
2814 }
2815
2816 static const struct efx_phy_operations efx_dummy_phy_operations = {
2817 .init = efx_port_dummy_op_int,
2818 .reconfigure = efx_port_dummy_op_int,
2819 .poll = efx_port_dummy_op_poll,
2820 .fini = efx_port_dummy_op_void,
2821 };
2822
2823 /**************************************************************************
2824 *
2825 * Data housekeeping
2826 *
2827 **************************************************************************/
2828
2829 /* This zeroes out and then fills in the invariants in a struct
2830 * efx_nic (including all sub-structures).
2831 */
2832 static int efx_init_struct(struct efx_nic *efx,
2833 struct pci_dev *pci_dev, struct net_device *net_dev)
2834 {
2835 int i;
2836
2837 /* Initialise common structures */
2838 INIT_LIST_HEAD(&efx->node);
2839 INIT_LIST_HEAD(&efx->secondary_list);
2840 spin_lock_init(&efx->biu_lock);
2841 #ifdef CONFIG_SFC_MTD
2842 INIT_LIST_HEAD(&efx->mtd_list);
2843 #endif
2844 INIT_WORK(&efx->reset_work, efx_reset_work);
2845 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2846 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2847 efx->pci_dev = pci_dev;
2848 efx->msg_enable = debug;
2849 efx->state = STATE_UNINIT;
2850 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2851
2852 efx->net_dev = net_dev;
2853 efx->rx_prefix_size = efx->type->rx_prefix_size;
2854 efx->rx_ip_align =
2855 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2856 efx->rx_packet_hash_offset =
2857 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2858 efx->rx_packet_ts_offset =
2859 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2860 spin_lock_init(&efx->stats_lock);
2861 mutex_init(&efx->mac_lock);
2862 efx->phy_op = &efx_dummy_phy_operations;
2863 efx->mdio.dev = net_dev;
2864 INIT_WORK(&efx->mac_work, efx_mac_work);
2865 init_waitqueue_head(&efx->flush_wq);
2866
2867 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2868 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2869 if (!efx->channel[i])
2870 goto fail;
2871 efx->msi_context[i].efx = efx;
2872 efx->msi_context[i].index = i;
2873 }
2874
2875 /* Higher numbered interrupt modes are less capable! */
2876 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2877 interrupt_mode);
2878
2879 /* Would be good to use the net_dev name, but we're too early */
2880 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2881 pci_name(pci_dev));
2882 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2883 if (!efx->workqueue)
2884 goto fail;
2885
2886 return 0;
2887
2888 fail:
2889 efx_fini_struct(efx);
2890 return -ENOMEM;
2891 }
2892
2893 static void efx_fini_struct(struct efx_nic *efx)
2894 {
2895 int i;
2896
2897 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2898 kfree(efx->channel[i]);
2899
2900 kfree(efx->vpd_sn);
2901
2902 if (efx->workqueue) {
2903 destroy_workqueue(efx->workqueue);
2904 efx->workqueue = NULL;
2905 }
2906 }
2907
2908 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2909 {
2910 u64 n_rx_nodesc_trunc = 0;
2911 struct efx_channel *channel;
2912
2913 efx_for_each_channel(channel, efx)
2914 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2915 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2916 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2917 }
2918
2919 /**************************************************************************
2920 *
2921 * PCI interface
2922 *
2923 **************************************************************************/
2924
2925 /* Main body of final NIC shutdown code
2926 * This is called only at module unload (or hotplug removal).
2927 */
2928 static void efx_pci_remove_main(struct efx_nic *efx)
2929 {
2930 /* Flush reset_work. It can no longer be scheduled since we
2931 * are not READY.
2932 */
2933 BUG_ON(efx->state == STATE_READY);
2934 cancel_work_sync(&efx->reset_work);
2935
2936 efx_disable_interrupts(efx);
2937 efx_nic_fini_interrupt(efx);
2938 efx_fini_port(efx);
2939 efx->type->fini(efx);
2940 efx_fini_napi(efx);
2941 efx_remove_all(efx);
2942 }
2943
2944 /* Final NIC shutdown
2945 * This is called only at module unload (or hotplug removal). A PF can call
2946 * this on its VFs to ensure they are unbound first.
2947 */
2948 static void efx_pci_remove(struct pci_dev *pci_dev)
2949 {
2950 struct efx_nic *efx;
2951
2952 efx = pci_get_drvdata(pci_dev);
2953 if (!efx)
2954 return;
2955
2956 /* Mark the NIC as fini, then stop the interface */
2957 rtnl_lock();
2958 efx_dissociate(efx);
2959 dev_close(efx->net_dev);
2960 efx_disable_interrupts(efx);
2961 efx->state = STATE_UNINIT;
2962 rtnl_unlock();
2963
2964 if (efx->type->sriov_fini)
2965 efx->type->sriov_fini(efx);
2966
2967 efx_unregister_netdev(efx);
2968
2969 efx_mtd_remove(efx);
2970
2971 efx_pci_remove_main(efx);
2972
2973 efx_fini_io(efx);
2974 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2975
2976 efx_fini_struct(efx);
2977 free_netdev(efx->net_dev);
2978
2979 pci_disable_pcie_error_reporting(pci_dev);
2980 };
2981
2982 /* NIC VPD information
2983 * Called during probe to display the part number of the
2984 * installed NIC. VPD is potentially very large but this should
2985 * always appear within the first 512 bytes.
2986 */
2987 #define SFC_VPD_LEN 512
2988 static void efx_probe_vpd_strings(struct efx_nic *efx)
2989 {
2990 struct pci_dev *dev = efx->pci_dev;
2991 char vpd_data[SFC_VPD_LEN];
2992 ssize_t vpd_size;
2993 int ro_start, ro_size, i, j;
2994
2995 /* Get the vpd data from the device */
2996 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2997 if (vpd_size <= 0) {
2998 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2999 return;
3000 }
3001
3002 /* Get the Read only section */
3003 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
3004 if (ro_start < 0) {
3005 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
3006 return;
3007 }
3008
3009 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
3010 j = ro_size;
3011 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3012 if (i + j > vpd_size)
3013 j = vpd_size - i;
3014
3015 /* Get the Part number */
3016 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
3017 if (i < 0) {
3018 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
3019 return;
3020 }
3021
3022 j = pci_vpd_info_field_size(&vpd_data[i]);
3023 i += PCI_VPD_INFO_FLD_HDR_SIZE;
3024 if (i + j > vpd_size) {
3025 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3026 return;
3027 }
3028
3029 netif_info(efx, drv, efx->net_dev,
3030 "Part Number : %.*s\n", j, &vpd_data[i]);
3031
3032 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3033 j = ro_size;
3034 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3035 if (i < 0) {
3036 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3037 return;
3038 }
3039
3040 j = pci_vpd_info_field_size(&vpd_data[i]);
3041 i += PCI_VPD_INFO_FLD_HDR_SIZE;
3042 if (i + j > vpd_size) {
3043 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3044 return;
3045 }
3046
3047 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3048 if (!efx->vpd_sn)
3049 return;
3050
3051 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3052 }
3053
3054
3055 /* Main body of NIC initialisation
3056 * This is called at module load (or hotplug insertion, theoretically).
3057 */
3058 static int efx_pci_probe_main(struct efx_nic *efx)
3059 {
3060 int rc;
3061
3062 /* Do start-of-day initialisation */
3063 rc = efx_probe_all(efx);
3064 if (rc)
3065 goto fail1;
3066
3067 efx_init_napi(efx);
3068
3069 rc = efx->type->init(efx);
3070 if (rc) {
3071 netif_err(efx, probe, efx->net_dev,
3072 "failed to initialise NIC\n");
3073 goto fail3;
3074 }
3075
3076 rc = efx_init_port(efx);
3077 if (rc) {
3078 netif_err(efx, probe, efx->net_dev,
3079 "failed to initialise port\n");
3080 goto fail4;
3081 }
3082
3083 rc = efx_nic_init_interrupt(efx);
3084 if (rc)
3085 goto fail5;
3086 rc = efx_enable_interrupts(efx);
3087 if (rc)
3088 goto fail6;
3089
3090 return 0;
3091
3092 fail6:
3093 efx_nic_fini_interrupt(efx);
3094 fail5:
3095 efx_fini_port(efx);
3096 fail4:
3097 efx->type->fini(efx);
3098 fail3:
3099 efx_fini_napi(efx);
3100 efx_remove_all(efx);
3101 fail1:
3102 return rc;
3103 }
3104
3105 /* NIC initialisation
3106 *
3107 * This is called at module load (or hotplug insertion,
3108 * theoretically). It sets up PCI mappings, resets the NIC,
3109 * sets up and registers the network devices with the kernel and hooks
3110 * the interrupt service routine. It does not prepare the device for
3111 * transmission; this is left to the first time one of the network
3112 * interfaces is brought up (i.e. efx_net_open).
3113 */
3114 static int efx_pci_probe(struct pci_dev *pci_dev,
3115 const struct pci_device_id *entry)
3116 {
3117 struct net_device *net_dev;
3118 struct efx_nic *efx;
3119 int rc;
3120
3121 /* Allocate and initialise a struct net_device and struct efx_nic */
3122 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3123 EFX_MAX_RX_QUEUES);
3124 if (!net_dev)
3125 return -ENOMEM;
3126 efx = netdev_priv(net_dev);
3127 efx->type = (const struct efx_nic_type *) entry->driver_data;
3128 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
3129 NETIF_F_HIGHDMA | NETIF_F_TSO |
3130 NETIF_F_RXCSUM);
3131 if (efx->type->offload_features & NETIF_F_V6_CSUM)
3132 net_dev->features |= NETIF_F_TSO6;
3133 /* Mask for features that also apply to VLAN devices */
3134 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
3135 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3136 NETIF_F_RXCSUM);
3137 /* All offloads can be toggled */
3138 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
3139 pci_set_drvdata(pci_dev, efx);
3140 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3141 rc = efx_init_struct(efx, pci_dev, net_dev);
3142 if (rc)
3143 goto fail1;
3144
3145 netif_info(efx, probe, efx->net_dev,
3146 "Solarflare NIC detected\n");
3147
3148 if (!efx->type->is_vf)
3149 efx_probe_vpd_strings(efx);
3150
3151 /* Set up basic I/O (BAR mappings etc) */
3152 rc = efx_init_io(efx);
3153 if (rc)
3154 goto fail2;
3155
3156 rc = efx_pci_probe_main(efx);
3157 if (rc)
3158 goto fail3;
3159
3160 rc = efx_register_netdev(efx);
3161 if (rc)
3162 goto fail4;
3163
3164 if (efx->type->sriov_init) {
3165 rc = efx->type->sriov_init(efx);
3166 if (rc)
3167 netif_err(efx, probe, efx->net_dev,
3168 "SR-IOV can't be enabled rc %d\n", rc);
3169 }
3170
3171 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3172
3173 /* Try to create MTDs, but allow this to fail */
3174 rtnl_lock();
3175 rc = efx_mtd_probe(efx);
3176 rtnl_unlock();
3177 if (rc)
3178 netif_warn(efx, probe, efx->net_dev,
3179 "failed to create MTDs (%d)\n", rc);
3180
3181 rc = pci_enable_pcie_error_reporting(pci_dev);
3182 if (rc && rc != -EINVAL)
3183 netif_warn(efx, probe, efx->net_dev,
3184 "pci_enable_pcie_error_reporting failed (%d)\n", rc);
3185
3186 return 0;
3187
3188 fail4:
3189 efx_pci_remove_main(efx);
3190 fail3:
3191 efx_fini_io(efx);
3192 fail2:
3193 efx_fini_struct(efx);
3194 fail1:
3195 WARN_ON(rc > 0);
3196 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3197 free_netdev(net_dev);
3198 return rc;
3199 }
3200
3201 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
3202 * enabled on success
3203 */
3204 #ifdef CONFIG_SFC_SRIOV
3205 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3206 {
3207 int rc;
3208 struct efx_nic *efx = pci_get_drvdata(dev);
3209
3210 if (efx->type->sriov_configure) {
3211 rc = efx->type->sriov_configure(efx, num_vfs);
3212 if (rc)
3213 return rc;
3214 else
3215 return num_vfs;
3216 } else
3217 return -EOPNOTSUPP;
3218 }
3219 #endif
3220
3221 static int efx_pm_freeze(struct device *dev)
3222 {
3223 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3224
3225 rtnl_lock();
3226
3227 if (efx->state != STATE_DISABLED) {
3228 efx->state = STATE_UNINIT;
3229
3230 efx_device_detach_sync(efx);
3231
3232 efx_stop_all(efx);
3233 efx_disable_interrupts(efx);
3234 }
3235
3236 rtnl_unlock();
3237
3238 return 0;
3239 }
3240
3241 static int efx_pm_thaw(struct device *dev)
3242 {
3243 int rc;
3244 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3245
3246 rtnl_lock();
3247
3248 if (efx->state != STATE_DISABLED) {
3249 rc = efx_enable_interrupts(efx);
3250 if (rc)
3251 goto fail;
3252
3253 mutex_lock(&efx->mac_lock);
3254 efx->phy_op->reconfigure(efx);
3255 mutex_unlock(&efx->mac_lock);
3256
3257 efx_start_all(efx);
3258
3259 netif_device_attach(efx->net_dev);
3260
3261 efx->state = STATE_READY;
3262
3263 efx->type->resume_wol(efx);
3264 }
3265
3266 rtnl_unlock();
3267
3268 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3269 queue_work(reset_workqueue, &efx->reset_work);
3270
3271 return 0;
3272
3273 fail:
3274 rtnl_unlock();
3275
3276 return rc;
3277 }
3278
3279 static int efx_pm_poweroff(struct device *dev)
3280 {
3281 struct pci_dev *pci_dev = to_pci_dev(dev);
3282 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3283
3284 efx->type->fini(efx);
3285
3286 efx->reset_pending = 0;
3287
3288 pci_save_state(pci_dev);
3289 return pci_set_power_state(pci_dev, PCI_D3hot);
3290 }
3291
3292 /* Used for both resume and restore */
3293 static int efx_pm_resume(struct device *dev)
3294 {
3295 struct pci_dev *pci_dev = to_pci_dev(dev);
3296 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3297 int rc;
3298
3299 rc = pci_set_power_state(pci_dev, PCI_D0);
3300 if (rc)
3301 return rc;
3302 pci_restore_state(pci_dev);
3303 rc = pci_enable_device(pci_dev);
3304 if (rc)
3305 return rc;
3306 pci_set_master(efx->pci_dev);
3307 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3308 if (rc)
3309 return rc;
3310 rc = efx->type->init(efx);
3311 if (rc)
3312 return rc;
3313 rc = efx_pm_thaw(dev);
3314 return rc;
3315 }
3316
3317 static int efx_pm_suspend(struct device *dev)
3318 {
3319 int rc;
3320
3321 efx_pm_freeze(dev);
3322 rc = efx_pm_poweroff(dev);
3323 if (rc)
3324 efx_pm_resume(dev);
3325 return rc;
3326 }
3327
3328 static const struct dev_pm_ops efx_pm_ops = {
3329 .suspend = efx_pm_suspend,
3330 .resume = efx_pm_resume,
3331 .freeze = efx_pm_freeze,
3332 .thaw = efx_pm_thaw,
3333 .poweroff = efx_pm_poweroff,
3334 .restore = efx_pm_resume,
3335 };
3336
3337 /* A PCI error affecting this device was detected.
3338 * At this point MMIO and DMA may be disabled.
3339 * Stop the software path and request a slot reset.
3340 */
3341 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3342 enum pci_channel_state state)
3343 {
3344 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3345 struct efx_nic *efx = pci_get_drvdata(pdev);
3346
3347 if (state == pci_channel_io_perm_failure)
3348 return PCI_ERS_RESULT_DISCONNECT;
3349
3350 rtnl_lock();
3351
3352 if (efx->state != STATE_DISABLED) {
3353 efx->state = STATE_RECOVERY;
3354 efx->reset_pending = 0;
3355
3356 efx_device_detach_sync(efx);
3357
3358 efx_stop_all(efx);
3359 efx_disable_interrupts(efx);
3360
3361 status = PCI_ERS_RESULT_NEED_RESET;
3362 } else {
3363 /* If the interface is disabled we don't want to do anything
3364 * with it.
3365 */
3366 status = PCI_ERS_RESULT_RECOVERED;
3367 }
3368
3369 rtnl_unlock();
3370
3371 pci_disable_device(pdev);
3372
3373 return status;
3374 }
3375
3376 /* Fake a successful reset, which will be performed later in efx_io_resume. */
3377 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3378 {
3379 struct efx_nic *efx = pci_get_drvdata(pdev);
3380 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3381 int rc;
3382
3383 if (pci_enable_device(pdev)) {
3384 netif_err(efx, hw, efx->net_dev,
3385 "Cannot re-enable PCI device after reset.\n");
3386 status = PCI_ERS_RESULT_DISCONNECT;
3387 }
3388
3389 rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3390 if (rc) {
3391 netif_err(efx, hw, efx->net_dev,
3392 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3393 /* Non-fatal error. Continue. */
3394 }
3395
3396 return status;
3397 }
3398
3399 /* Perform the actual reset and resume I/O operations. */
3400 static void efx_io_resume(struct pci_dev *pdev)
3401 {
3402 struct efx_nic *efx = pci_get_drvdata(pdev);
3403 int rc;
3404
3405 rtnl_lock();
3406
3407 if (efx->state == STATE_DISABLED)
3408 goto out;
3409
3410 rc = efx_reset(efx, RESET_TYPE_ALL);
3411 if (rc) {
3412 netif_err(efx, hw, efx->net_dev,
3413 "efx_reset failed after PCI error (%d)\n", rc);
3414 } else {
3415 efx->state = STATE_READY;
3416 netif_dbg(efx, hw, efx->net_dev,
3417 "Done resetting and resuming IO after PCI error.\n");
3418 }
3419
3420 out:
3421 rtnl_unlock();
3422 }
3423
3424 /* For simplicity and reliability, we always require a slot reset and try to
3425 * reset the hardware when a pci error affecting the device is detected.
3426 * We leave both the link_reset and mmio_enabled callback unimplemented:
3427 * with our request for slot reset the mmio_enabled callback will never be
3428 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3429 */
3430 static const struct pci_error_handlers efx_err_handlers = {
3431 .error_detected = efx_io_error_detected,
3432 .slot_reset = efx_io_slot_reset,
3433 .resume = efx_io_resume,
3434 };
3435
3436 static struct pci_driver efx_pci_driver = {
3437 .name = KBUILD_MODNAME,
3438 .id_table = efx_pci_table,
3439 .probe = efx_pci_probe,
3440 .remove = efx_pci_remove,
3441 .driver.pm = &efx_pm_ops,
3442 .err_handler = &efx_err_handlers,
3443 #ifdef CONFIG_SFC_SRIOV
3444 .sriov_configure = efx_pci_sriov_configure,
3445 #endif
3446 };
3447
3448 /**************************************************************************
3449 *
3450 * Kernel module interface
3451 *
3452 *************************************************************************/
3453
3454 module_param(interrupt_mode, uint, 0444);
3455 MODULE_PARM_DESC(interrupt_mode,
3456 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3457
3458 static int __init efx_init_module(void)
3459 {
3460 int rc;
3461
3462 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3463
3464 rc = register_netdevice_notifier(&efx_netdev_notifier);
3465 if (rc)
3466 goto err_notifier;
3467
3468 #ifdef CONFIG_SFC_SRIOV
3469 rc = efx_init_sriov();
3470 if (rc)
3471 goto err_sriov;
3472 #endif
3473
3474 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3475 if (!reset_workqueue) {
3476 rc = -ENOMEM;
3477 goto err_reset;
3478 }
3479
3480 rc = pci_register_driver(&efx_pci_driver);
3481 if (rc < 0)
3482 goto err_pci;
3483
3484 return 0;
3485
3486 err_pci:
3487 destroy_workqueue(reset_workqueue);
3488 err_reset:
3489 #ifdef CONFIG_SFC_SRIOV
3490 efx_fini_sriov();
3491 err_sriov:
3492 #endif
3493 unregister_netdevice_notifier(&efx_netdev_notifier);
3494 err_notifier:
3495 return rc;
3496 }
3497
3498 static void __exit efx_exit_module(void)
3499 {
3500 printk(KERN_INFO "Solarflare NET driver unloading\n");
3501
3502 pci_unregister_driver(&efx_pci_driver);
3503 destroy_workqueue(reset_workqueue);
3504 #ifdef CONFIG_SFC_SRIOV
3505 efx_fini_sriov();
3506 #endif
3507 unregister_netdevice_notifier(&efx_netdev_notifier);
3508
3509 }
3510
3511 module_init(efx_init_module);
3512 module_exit(efx_exit_module);
3513
3514 MODULE_AUTHOR("Solarflare Communications and "
3515 "Michael Brown <mbrown@fensystems.co.uk>");
3516 MODULE_DESCRIPTION("Solarflare network driver");
3517 MODULE_LICENSE("GPL");
3518 MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.200567 seconds and 5 git commands to generate.