sfc: Use proper function to test for RX channel in efx_poll()
[deliverable/linux.git] / drivers / net / ethernet / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include <linux/cpu_rmap.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28
29 #include "mcdi.h"
30 #include "workarounds.h"
31
32 /**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41 const char *const efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
43 [LOOPBACK_DATA] = "DATAPATH",
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
69 };
70
71 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72 const char *const efx_reset_type_names[] = {
73 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
74 [RESET_TYPE_ALL] = "ALL",
75 [RESET_TYPE_WORLD] = "WORLD",
76 [RESET_TYPE_DISABLE] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
80 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
81 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
82 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
83 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
84 };
85
86 #define EFX_MAX_MTU (9 * 1024)
87
88 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 */
92 static struct workqueue_struct *reset_workqueue;
93
94 /**************************************************************************
95 *
96 * Configurable values
97 *
98 *************************************************************************/
99
100 /*
101 * Use separate channels for TX and RX events
102 *
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
105 *
106 * This is only used in MSI-X interrupt mode
107 */
108 static unsigned int separate_tx_channels;
109 module_param(separate_tx_channels, uint, 0444);
110 MODULE_PARM_DESC(separate_tx_channels,
111 "Use separate channels for TX and RX");
112
113 /* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
115 */
116 static int napi_weight = 64;
117
118 /* This is the time (in jiffies) between invocations of the hardware
119 * monitor. On Falcon-based NICs, this will:
120 * - Check the on-board hardware monitor;
121 * - Poll the link state and reconfigure the hardware as necessary.
122 */
123 static unsigned int efx_monitor_interval = 1 * HZ;
124
125 /* Initial interrupt moderation settings. They can be modified after
126 * module load with ethtool.
127 *
128 * The default for RX should strike a balance between increasing the
129 * round-trip latency and reducing overhead.
130 */
131 static unsigned int rx_irq_mod_usec = 60;
132
133 /* Initial interrupt moderation settings. They can be modified after
134 * module load with ethtool.
135 *
136 * This default is chosen to ensure that a 10G link does not go idle
137 * while a TX queue is stopped after it has become full. A queue is
138 * restarted when it drops below half full. The time this takes (assuming
139 * worst case 3 descriptors per packet and 1024 descriptors) is
140 * 512 / 3 * 1.2 = 205 usec.
141 */
142 static unsigned int tx_irq_mod_usec = 150;
143
144 /* This is the first interrupt mode to try out of:
145 * 0 => MSI-X
146 * 1 => MSI
147 * 2 => legacy
148 */
149 static unsigned int interrupt_mode;
150
151 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
152 * i.e. the number of CPUs among which we may distribute simultaneous
153 * interrupt handling.
154 *
155 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
156 * The default (0) means to assign an interrupt to each core.
157 */
158 static unsigned int rss_cpus;
159 module_param(rss_cpus, uint, 0444);
160 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
161
162 static int phy_flash_cfg;
163 module_param(phy_flash_cfg, int, 0644);
164 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
165
166 static unsigned irq_adapt_low_thresh = 10000;
167 module_param(irq_adapt_low_thresh, uint, 0644);
168 MODULE_PARM_DESC(irq_adapt_low_thresh,
169 "Threshold score for reducing IRQ moderation");
170
171 static unsigned irq_adapt_high_thresh = 20000;
172 module_param(irq_adapt_high_thresh, uint, 0644);
173 MODULE_PARM_DESC(irq_adapt_high_thresh,
174 "Threshold score for increasing IRQ moderation");
175
176 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
177 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
178 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
179 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
180 module_param(debug, uint, 0);
181 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
182
183 /**************************************************************************
184 *
185 * Utility functions and prototypes
186 *
187 *************************************************************************/
188
189 static void efx_start_interrupts(struct efx_nic *efx);
190 static void efx_stop_interrupts(struct efx_nic *efx);
191 static void efx_remove_channels(struct efx_nic *efx);
192 static void efx_remove_port(struct efx_nic *efx);
193 static void efx_init_napi(struct efx_nic *efx);
194 static void efx_fini_napi(struct efx_nic *efx);
195 static void efx_fini_napi_channel(struct efx_channel *channel);
196 static void efx_fini_struct(struct efx_nic *efx);
197 static void efx_start_all(struct efx_nic *efx);
198 static void efx_stop_all(struct efx_nic *efx);
199
200 #define EFX_ASSERT_RESET_SERIALISED(efx) \
201 do { \
202 if ((efx->state == STATE_RUNNING) || \
203 (efx->state == STATE_DISABLED)) \
204 ASSERT_RTNL(); \
205 } while (0)
206
207 /**************************************************************************
208 *
209 * Event queue processing
210 *
211 *************************************************************************/
212
213 /* Process channel's event queue
214 *
215 * This function is responsible for processing the event queue of a
216 * single channel. The caller must guarantee that this function will
217 * never be concurrently called more than once on the same channel,
218 * though different channels may be being processed concurrently.
219 */
220 static int efx_process_channel(struct efx_channel *channel, int budget)
221 {
222 int spent;
223
224 if (unlikely(!channel->enabled))
225 return 0;
226
227 spent = efx_nic_process_eventq(channel, budget);
228 if (spent && efx_channel_has_rx_queue(channel)) {
229 struct efx_rx_queue *rx_queue =
230 efx_channel_get_rx_queue(channel);
231
232 /* Deliver last RX packet. */
233 if (channel->rx_pkt) {
234 __efx_rx_packet(channel, channel->rx_pkt);
235 channel->rx_pkt = NULL;
236 }
237 if (rx_queue->enabled) {
238 efx_rx_strategy(channel);
239 efx_fast_push_rx_descriptors(rx_queue);
240 }
241 }
242
243 return spent;
244 }
245
246 /* Mark channel as finished processing
247 *
248 * Note that since we will not receive further interrupts for this
249 * channel before we finish processing and call the eventq_read_ack()
250 * method, there is no need to use the interrupt hold-off timers.
251 */
252 static inline void efx_channel_processed(struct efx_channel *channel)
253 {
254 /* The interrupt handler for this channel may set work_pending
255 * as soon as we acknowledge the events we've seen. Make sure
256 * it's cleared before then. */
257 channel->work_pending = false;
258 smp_wmb();
259
260 efx_nic_eventq_read_ack(channel);
261 }
262
263 /* NAPI poll handler
264 *
265 * NAPI guarantees serialisation of polls of the same device, which
266 * provides the guarantee required by efx_process_channel().
267 */
268 static int efx_poll(struct napi_struct *napi, int budget)
269 {
270 struct efx_channel *channel =
271 container_of(napi, struct efx_channel, napi_str);
272 struct efx_nic *efx = channel->efx;
273 int spent;
274
275 netif_vdbg(efx, intr, efx->net_dev,
276 "channel %d NAPI poll executing on CPU %d\n",
277 channel->channel, raw_smp_processor_id());
278
279 spent = efx_process_channel(channel, budget);
280
281 if (spent < budget) {
282 if (efx_channel_has_rx_queue(channel) &&
283 efx->irq_rx_adaptive &&
284 unlikely(++channel->irq_count == 1000)) {
285 if (unlikely(channel->irq_mod_score <
286 irq_adapt_low_thresh)) {
287 if (channel->irq_moderation > 1) {
288 channel->irq_moderation -= 1;
289 efx->type->push_irq_moderation(channel);
290 }
291 } else if (unlikely(channel->irq_mod_score >
292 irq_adapt_high_thresh)) {
293 if (channel->irq_moderation <
294 efx->irq_rx_moderation) {
295 channel->irq_moderation += 1;
296 efx->type->push_irq_moderation(channel);
297 }
298 }
299 channel->irq_count = 0;
300 channel->irq_mod_score = 0;
301 }
302
303 efx_filter_rfs_expire(channel);
304
305 /* There is no race here; although napi_disable() will
306 * only wait for napi_complete(), this isn't a problem
307 * since efx_channel_processed() will have no effect if
308 * interrupts have already been disabled.
309 */
310 napi_complete(napi);
311 efx_channel_processed(channel);
312 }
313
314 return spent;
315 }
316
317 /* Process the eventq of the specified channel immediately on this CPU
318 *
319 * Disable hardware generated interrupts, wait for any existing
320 * processing to finish, then directly poll (and ack ) the eventq.
321 * Finally reenable NAPI and interrupts.
322 *
323 * This is for use only during a loopback self-test. It must not
324 * deliver any packets up the stack as this can result in deadlock.
325 */
326 void efx_process_channel_now(struct efx_channel *channel)
327 {
328 struct efx_nic *efx = channel->efx;
329
330 BUG_ON(channel->channel >= efx->n_channels);
331 BUG_ON(!channel->enabled);
332 BUG_ON(!efx->loopback_selftest);
333
334 /* Disable interrupts and wait for ISRs to complete */
335 efx_nic_disable_interrupts(efx);
336 if (efx->legacy_irq) {
337 synchronize_irq(efx->legacy_irq);
338 efx->legacy_irq_enabled = false;
339 }
340 if (channel->irq)
341 synchronize_irq(channel->irq);
342
343 /* Wait for any NAPI processing to complete */
344 napi_disable(&channel->napi_str);
345
346 /* Poll the channel */
347 efx_process_channel(channel, channel->eventq_mask + 1);
348
349 /* Ack the eventq. This may cause an interrupt to be generated
350 * when they are reenabled */
351 efx_channel_processed(channel);
352
353 napi_enable(&channel->napi_str);
354 if (efx->legacy_irq)
355 efx->legacy_irq_enabled = true;
356 efx_nic_enable_interrupts(efx);
357 }
358
359 /* Create event queue
360 * Event queue memory allocations are done only once. If the channel
361 * is reset, the memory buffer will be reused; this guards against
362 * errors during channel reset and also simplifies interrupt handling.
363 */
364 static int efx_probe_eventq(struct efx_channel *channel)
365 {
366 struct efx_nic *efx = channel->efx;
367 unsigned long entries;
368
369 netif_dbg(efx, probe, efx->net_dev,
370 "chan %d create event queue\n", channel->channel);
371
372 /* Build an event queue with room for one event per tx and rx buffer,
373 * plus some extra for link state events and MCDI completions. */
374 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
375 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
376 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
377
378 return efx_nic_probe_eventq(channel);
379 }
380
381 /* Prepare channel's event queue */
382 static void efx_init_eventq(struct efx_channel *channel)
383 {
384 netif_dbg(channel->efx, drv, channel->efx->net_dev,
385 "chan %d init event queue\n", channel->channel);
386
387 channel->eventq_read_ptr = 0;
388
389 efx_nic_init_eventq(channel);
390 }
391
392 /* Enable event queue processing and NAPI */
393 static void efx_start_eventq(struct efx_channel *channel)
394 {
395 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
396 "chan %d start event queue\n", channel->channel);
397
398 /* The interrupt handler for this channel may set work_pending
399 * as soon as we enable it. Make sure it's cleared before
400 * then. Similarly, make sure it sees the enabled flag set.
401 */
402 channel->work_pending = false;
403 channel->enabled = true;
404 smp_wmb();
405
406 napi_enable(&channel->napi_str);
407 efx_nic_eventq_read_ack(channel);
408 }
409
410 /* Disable event queue processing and NAPI */
411 static void efx_stop_eventq(struct efx_channel *channel)
412 {
413 if (!channel->enabled)
414 return;
415
416 napi_disable(&channel->napi_str);
417 channel->enabled = false;
418 }
419
420 static void efx_fini_eventq(struct efx_channel *channel)
421 {
422 netif_dbg(channel->efx, drv, channel->efx->net_dev,
423 "chan %d fini event queue\n", channel->channel);
424
425 efx_nic_fini_eventq(channel);
426 }
427
428 static void efx_remove_eventq(struct efx_channel *channel)
429 {
430 netif_dbg(channel->efx, drv, channel->efx->net_dev,
431 "chan %d remove event queue\n", channel->channel);
432
433 efx_nic_remove_eventq(channel);
434 }
435
436 /**************************************************************************
437 *
438 * Channel handling
439 *
440 *************************************************************************/
441
442 /* Allocate and initialise a channel structure, optionally copying
443 * parameters (but not resources) from an old channel structure. */
444 static struct efx_channel *
445 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
446 {
447 struct efx_channel *channel;
448 struct efx_rx_queue *rx_queue;
449 struct efx_tx_queue *tx_queue;
450 int j;
451
452 if (old_channel) {
453 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
454 if (!channel)
455 return NULL;
456
457 *channel = *old_channel;
458
459 channel->napi_dev = NULL;
460 memset(&channel->eventq, 0, sizeof(channel->eventq));
461
462 rx_queue = &channel->rx_queue;
463 rx_queue->buffer = NULL;
464 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
465
466 for (j = 0; j < EFX_TXQ_TYPES; j++) {
467 tx_queue = &channel->tx_queue[j];
468 if (tx_queue->channel)
469 tx_queue->channel = channel;
470 tx_queue->buffer = NULL;
471 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
472 }
473 } else {
474 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
475 if (!channel)
476 return NULL;
477
478 channel->efx = efx;
479 channel->channel = i;
480
481 for (j = 0; j < EFX_TXQ_TYPES; j++) {
482 tx_queue = &channel->tx_queue[j];
483 tx_queue->efx = efx;
484 tx_queue->queue = i * EFX_TXQ_TYPES + j;
485 tx_queue->channel = channel;
486 }
487 }
488
489 rx_queue = &channel->rx_queue;
490 rx_queue->efx = efx;
491 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
492 (unsigned long)rx_queue);
493
494 return channel;
495 }
496
497 static int efx_probe_channel(struct efx_channel *channel)
498 {
499 struct efx_tx_queue *tx_queue;
500 struct efx_rx_queue *rx_queue;
501 int rc;
502
503 netif_dbg(channel->efx, probe, channel->efx->net_dev,
504 "creating channel %d\n", channel->channel);
505
506 rc = efx_probe_eventq(channel);
507 if (rc)
508 goto fail1;
509
510 efx_for_each_channel_tx_queue(tx_queue, channel) {
511 rc = efx_probe_tx_queue(tx_queue);
512 if (rc)
513 goto fail2;
514 }
515
516 efx_for_each_channel_rx_queue(rx_queue, channel) {
517 rc = efx_probe_rx_queue(rx_queue);
518 if (rc)
519 goto fail3;
520 }
521
522 channel->n_rx_frm_trunc = 0;
523
524 return 0;
525
526 fail3:
527 efx_for_each_channel_rx_queue(rx_queue, channel)
528 efx_remove_rx_queue(rx_queue);
529 fail2:
530 efx_for_each_channel_tx_queue(tx_queue, channel)
531 efx_remove_tx_queue(tx_queue);
532 fail1:
533 return rc;
534 }
535
536
537 static void efx_set_channel_names(struct efx_nic *efx)
538 {
539 struct efx_channel *channel;
540 const char *type = "";
541 int number;
542
543 efx_for_each_channel(channel, efx) {
544 number = channel->channel;
545 if (efx->n_channels > efx->n_rx_channels) {
546 if (channel->channel < efx->n_rx_channels) {
547 type = "-rx";
548 } else {
549 type = "-tx";
550 number -= efx->n_rx_channels;
551 }
552 }
553 snprintf(efx->channel_name[channel->channel],
554 sizeof(efx->channel_name[0]),
555 "%s%s-%d", efx->name, type, number);
556 }
557 }
558
559 static int efx_probe_channels(struct efx_nic *efx)
560 {
561 struct efx_channel *channel;
562 int rc;
563
564 /* Restart special buffer allocation */
565 efx->next_buffer_table = 0;
566
567 efx_for_each_channel(channel, efx) {
568 rc = efx_probe_channel(channel);
569 if (rc) {
570 netif_err(efx, probe, efx->net_dev,
571 "failed to create channel %d\n",
572 channel->channel);
573 goto fail;
574 }
575 }
576 efx_set_channel_names(efx);
577
578 return 0;
579
580 fail:
581 efx_remove_channels(efx);
582 return rc;
583 }
584
585 /* Channels are shutdown and reinitialised whilst the NIC is running
586 * to propagate configuration changes (mtu, checksum offload), or
587 * to clear hardware error conditions
588 */
589 static void efx_start_datapath(struct efx_nic *efx)
590 {
591 struct efx_tx_queue *tx_queue;
592 struct efx_rx_queue *rx_queue;
593 struct efx_channel *channel;
594
595 /* Calculate the rx buffer allocation parameters required to
596 * support the current MTU, including padding for header
597 * alignment and overruns.
598 */
599 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
600 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
601 efx->type->rx_buffer_hash_size +
602 efx->type->rx_buffer_padding);
603 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
604 sizeof(struct efx_rx_page_state));
605
606 /* Initialise the channels */
607 efx_for_each_channel(channel, efx) {
608 efx_for_each_channel_tx_queue(tx_queue, channel)
609 efx_init_tx_queue(tx_queue);
610
611 /* The rx buffer allocation strategy is MTU dependent */
612 efx_rx_strategy(channel);
613
614 efx_for_each_channel_rx_queue(rx_queue, channel) {
615 efx_init_rx_queue(rx_queue);
616 efx_nic_generate_fill_event(rx_queue);
617 }
618
619 WARN_ON(channel->rx_pkt != NULL);
620 efx_rx_strategy(channel);
621 }
622
623 if (netif_device_present(efx->net_dev))
624 netif_tx_wake_all_queues(efx->net_dev);
625 }
626
627 static void efx_stop_datapath(struct efx_nic *efx)
628 {
629 struct efx_channel *channel;
630 struct efx_tx_queue *tx_queue;
631 struct efx_rx_queue *rx_queue;
632 int rc;
633
634 EFX_ASSERT_RESET_SERIALISED(efx);
635 BUG_ON(efx->port_enabled);
636
637 rc = efx_nic_flush_queues(efx);
638 if (rc && EFX_WORKAROUND_7803(efx)) {
639 /* Schedule a reset to recover from the flush failure. The
640 * descriptor caches reference memory we're about to free,
641 * but falcon_reconfigure_mac_wrapper() won't reconnect
642 * the MACs because of the pending reset. */
643 netif_err(efx, drv, efx->net_dev,
644 "Resetting to recover from flush failure\n");
645 efx_schedule_reset(efx, RESET_TYPE_ALL);
646 } else if (rc) {
647 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
648 } else {
649 netif_dbg(efx, drv, efx->net_dev,
650 "successfully flushed all queues\n");
651 }
652
653 efx_for_each_channel(channel, efx) {
654 /* RX packet processing is pipelined, so wait for the
655 * NAPI handler to complete. At least event queue 0
656 * might be kept active by non-data events, so don't
657 * use napi_synchronize() but actually disable NAPI
658 * temporarily.
659 */
660 if (efx_channel_has_rx_queue(channel)) {
661 efx_stop_eventq(channel);
662 efx_start_eventq(channel);
663 }
664
665 efx_for_each_channel_rx_queue(rx_queue, channel)
666 efx_fini_rx_queue(rx_queue);
667 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
668 efx_fini_tx_queue(tx_queue);
669 }
670 }
671
672 static void efx_remove_channel(struct efx_channel *channel)
673 {
674 struct efx_tx_queue *tx_queue;
675 struct efx_rx_queue *rx_queue;
676
677 netif_dbg(channel->efx, drv, channel->efx->net_dev,
678 "destroy chan %d\n", channel->channel);
679
680 efx_for_each_channel_rx_queue(rx_queue, channel)
681 efx_remove_rx_queue(rx_queue);
682 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
683 efx_remove_tx_queue(tx_queue);
684 efx_remove_eventq(channel);
685 }
686
687 static void efx_remove_channels(struct efx_nic *efx)
688 {
689 struct efx_channel *channel;
690
691 efx_for_each_channel(channel, efx)
692 efx_remove_channel(channel);
693 }
694
695 int
696 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
697 {
698 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
699 u32 old_rxq_entries, old_txq_entries;
700 unsigned i;
701 int rc;
702
703 efx_stop_all(efx);
704 efx_stop_interrupts(efx);
705
706 /* Clone channels */
707 memset(other_channel, 0, sizeof(other_channel));
708 for (i = 0; i < efx->n_channels; i++) {
709 channel = efx_alloc_channel(efx, i, efx->channel[i]);
710 if (!channel) {
711 rc = -ENOMEM;
712 goto out;
713 }
714 other_channel[i] = channel;
715 }
716
717 /* Swap entry counts and channel pointers */
718 old_rxq_entries = efx->rxq_entries;
719 old_txq_entries = efx->txq_entries;
720 efx->rxq_entries = rxq_entries;
721 efx->txq_entries = txq_entries;
722 for (i = 0; i < efx->n_channels; i++) {
723 channel = efx->channel[i];
724 efx->channel[i] = other_channel[i];
725 other_channel[i] = channel;
726 }
727
728 rc = efx_probe_channels(efx);
729 if (rc)
730 goto rollback;
731
732 efx_init_napi(efx);
733
734 /* Destroy old channels */
735 for (i = 0; i < efx->n_channels; i++) {
736 efx_fini_napi_channel(other_channel[i]);
737 efx_remove_channel(other_channel[i]);
738 }
739 out:
740 /* Free unused channel structures */
741 for (i = 0; i < efx->n_channels; i++)
742 kfree(other_channel[i]);
743
744 efx_start_interrupts(efx);
745 efx_start_all(efx);
746 return rc;
747
748 rollback:
749 /* Swap back */
750 efx->rxq_entries = old_rxq_entries;
751 efx->txq_entries = old_txq_entries;
752 for (i = 0; i < efx->n_channels; i++) {
753 channel = efx->channel[i];
754 efx->channel[i] = other_channel[i];
755 other_channel[i] = channel;
756 }
757 goto out;
758 }
759
760 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
761 {
762 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
763 }
764
765 /**************************************************************************
766 *
767 * Port handling
768 *
769 **************************************************************************/
770
771 /* This ensures that the kernel is kept informed (via
772 * netif_carrier_on/off) of the link status, and also maintains the
773 * link status's stop on the port's TX queue.
774 */
775 void efx_link_status_changed(struct efx_nic *efx)
776 {
777 struct efx_link_state *link_state = &efx->link_state;
778
779 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
780 * that no events are triggered between unregister_netdev() and the
781 * driver unloading. A more general condition is that NETDEV_CHANGE
782 * can only be generated between NETDEV_UP and NETDEV_DOWN */
783 if (!netif_running(efx->net_dev))
784 return;
785
786 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
787 efx->n_link_state_changes++;
788
789 if (link_state->up)
790 netif_carrier_on(efx->net_dev);
791 else
792 netif_carrier_off(efx->net_dev);
793 }
794
795 /* Status message for kernel log */
796 if (link_state->up)
797 netif_info(efx, link, efx->net_dev,
798 "link up at %uMbps %s-duplex (MTU %d)%s\n",
799 link_state->speed, link_state->fd ? "full" : "half",
800 efx->net_dev->mtu,
801 (efx->promiscuous ? " [PROMISC]" : ""));
802 else
803 netif_info(efx, link, efx->net_dev, "link down\n");
804 }
805
806 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
807 {
808 efx->link_advertising = advertising;
809 if (advertising) {
810 if (advertising & ADVERTISED_Pause)
811 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
812 else
813 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
814 if (advertising & ADVERTISED_Asym_Pause)
815 efx->wanted_fc ^= EFX_FC_TX;
816 }
817 }
818
819 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
820 {
821 efx->wanted_fc = wanted_fc;
822 if (efx->link_advertising) {
823 if (wanted_fc & EFX_FC_RX)
824 efx->link_advertising |= (ADVERTISED_Pause |
825 ADVERTISED_Asym_Pause);
826 else
827 efx->link_advertising &= ~(ADVERTISED_Pause |
828 ADVERTISED_Asym_Pause);
829 if (wanted_fc & EFX_FC_TX)
830 efx->link_advertising ^= ADVERTISED_Asym_Pause;
831 }
832 }
833
834 static void efx_fini_port(struct efx_nic *efx);
835
836 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
837 * the MAC appropriately. All other PHY configuration changes are pushed
838 * through phy_op->set_settings(), and pushed asynchronously to the MAC
839 * through efx_monitor().
840 *
841 * Callers must hold the mac_lock
842 */
843 int __efx_reconfigure_port(struct efx_nic *efx)
844 {
845 enum efx_phy_mode phy_mode;
846 int rc;
847
848 WARN_ON(!mutex_is_locked(&efx->mac_lock));
849
850 /* Serialise the promiscuous flag with efx_set_rx_mode. */
851 netif_addr_lock_bh(efx->net_dev);
852 netif_addr_unlock_bh(efx->net_dev);
853
854 /* Disable PHY transmit in mac level loopbacks */
855 phy_mode = efx->phy_mode;
856 if (LOOPBACK_INTERNAL(efx))
857 efx->phy_mode |= PHY_MODE_TX_DISABLED;
858 else
859 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
860
861 rc = efx->type->reconfigure_port(efx);
862
863 if (rc)
864 efx->phy_mode = phy_mode;
865
866 return rc;
867 }
868
869 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
870 * disabled. */
871 int efx_reconfigure_port(struct efx_nic *efx)
872 {
873 int rc;
874
875 EFX_ASSERT_RESET_SERIALISED(efx);
876
877 mutex_lock(&efx->mac_lock);
878 rc = __efx_reconfigure_port(efx);
879 mutex_unlock(&efx->mac_lock);
880
881 return rc;
882 }
883
884 /* Asynchronous work item for changing MAC promiscuity and multicast
885 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
886 * MAC directly. */
887 static void efx_mac_work(struct work_struct *data)
888 {
889 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
890
891 mutex_lock(&efx->mac_lock);
892 if (efx->port_enabled)
893 efx->type->reconfigure_mac(efx);
894 mutex_unlock(&efx->mac_lock);
895 }
896
897 static int efx_probe_port(struct efx_nic *efx)
898 {
899 int rc;
900
901 netif_dbg(efx, probe, efx->net_dev, "create port\n");
902
903 if (phy_flash_cfg)
904 efx->phy_mode = PHY_MODE_SPECIAL;
905
906 /* Connect up MAC/PHY operations table */
907 rc = efx->type->probe_port(efx);
908 if (rc)
909 return rc;
910
911 /* Initialise MAC address to permanent address */
912 memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
913
914 return 0;
915 }
916
917 static int efx_init_port(struct efx_nic *efx)
918 {
919 int rc;
920
921 netif_dbg(efx, drv, efx->net_dev, "init port\n");
922
923 mutex_lock(&efx->mac_lock);
924
925 rc = efx->phy_op->init(efx);
926 if (rc)
927 goto fail1;
928
929 efx->port_initialized = true;
930
931 /* Reconfigure the MAC before creating dma queues (required for
932 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
933 efx->type->reconfigure_mac(efx);
934
935 /* Ensure the PHY advertises the correct flow control settings */
936 rc = efx->phy_op->reconfigure(efx);
937 if (rc)
938 goto fail2;
939
940 mutex_unlock(&efx->mac_lock);
941 return 0;
942
943 fail2:
944 efx->phy_op->fini(efx);
945 fail1:
946 mutex_unlock(&efx->mac_lock);
947 return rc;
948 }
949
950 static void efx_start_port(struct efx_nic *efx)
951 {
952 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
953 BUG_ON(efx->port_enabled);
954
955 mutex_lock(&efx->mac_lock);
956 efx->port_enabled = true;
957
958 /* efx_mac_work() might have been scheduled after efx_stop_port(),
959 * and then cancelled by efx_flush_all() */
960 efx->type->reconfigure_mac(efx);
961
962 mutex_unlock(&efx->mac_lock);
963 }
964
965 /* Prevent efx_mac_work() and efx_monitor() from working */
966 static void efx_stop_port(struct efx_nic *efx)
967 {
968 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
969
970 mutex_lock(&efx->mac_lock);
971 efx->port_enabled = false;
972 mutex_unlock(&efx->mac_lock);
973
974 /* Serialise against efx_set_multicast_list() */
975 netif_addr_lock_bh(efx->net_dev);
976 netif_addr_unlock_bh(efx->net_dev);
977 }
978
979 static void efx_fini_port(struct efx_nic *efx)
980 {
981 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
982
983 if (!efx->port_initialized)
984 return;
985
986 efx->phy_op->fini(efx);
987 efx->port_initialized = false;
988
989 efx->link_state.up = false;
990 efx_link_status_changed(efx);
991 }
992
993 static void efx_remove_port(struct efx_nic *efx)
994 {
995 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
996
997 efx->type->remove_port(efx);
998 }
999
1000 /**************************************************************************
1001 *
1002 * NIC handling
1003 *
1004 **************************************************************************/
1005
1006 /* This configures the PCI device to enable I/O and DMA. */
1007 static int efx_init_io(struct efx_nic *efx)
1008 {
1009 struct pci_dev *pci_dev = efx->pci_dev;
1010 dma_addr_t dma_mask = efx->type->max_dma_mask;
1011 int rc;
1012
1013 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1014
1015 rc = pci_enable_device(pci_dev);
1016 if (rc) {
1017 netif_err(efx, probe, efx->net_dev,
1018 "failed to enable PCI device\n");
1019 goto fail1;
1020 }
1021
1022 pci_set_master(pci_dev);
1023
1024 /* Set the PCI DMA mask. Try all possibilities from our
1025 * genuine mask down to 32 bits, because some architectures
1026 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1027 * masks event though they reject 46 bit masks.
1028 */
1029 while (dma_mask > 0x7fffffffUL) {
1030 if (pci_dma_supported(pci_dev, dma_mask)) {
1031 rc = pci_set_dma_mask(pci_dev, dma_mask);
1032 if (rc == 0)
1033 break;
1034 }
1035 dma_mask >>= 1;
1036 }
1037 if (rc) {
1038 netif_err(efx, probe, efx->net_dev,
1039 "could not find a suitable DMA mask\n");
1040 goto fail2;
1041 }
1042 netif_dbg(efx, probe, efx->net_dev,
1043 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1044 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1045 if (rc) {
1046 /* pci_set_consistent_dma_mask() is not *allowed* to
1047 * fail with a mask that pci_set_dma_mask() accepted,
1048 * but just in case...
1049 */
1050 netif_err(efx, probe, efx->net_dev,
1051 "failed to set consistent DMA mask\n");
1052 goto fail2;
1053 }
1054
1055 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1056 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1057 if (rc) {
1058 netif_err(efx, probe, efx->net_dev,
1059 "request for memory BAR failed\n");
1060 rc = -EIO;
1061 goto fail3;
1062 }
1063 efx->membase = ioremap_nocache(efx->membase_phys,
1064 efx->type->mem_map_size);
1065 if (!efx->membase) {
1066 netif_err(efx, probe, efx->net_dev,
1067 "could not map memory BAR at %llx+%x\n",
1068 (unsigned long long)efx->membase_phys,
1069 efx->type->mem_map_size);
1070 rc = -ENOMEM;
1071 goto fail4;
1072 }
1073 netif_dbg(efx, probe, efx->net_dev,
1074 "memory BAR at %llx+%x (virtual %p)\n",
1075 (unsigned long long)efx->membase_phys,
1076 efx->type->mem_map_size, efx->membase);
1077
1078 return 0;
1079
1080 fail4:
1081 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1082 fail3:
1083 efx->membase_phys = 0;
1084 fail2:
1085 pci_disable_device(efx->pci_dev);
1086 fail1:
1087 return rc;
1088 }
1089
1090 static void efx_fini_io(struct efx_nic *efx)
1091 {
1092 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1093
1094 if (efx->membase) {
1095 iounmap(efx->membase);
1096 efx->membase = NULL;
1097 }
1098
1099 if (efx->membase_phys) {
1100 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1101 efx->membase_phys = 0;
1102 }
1103
1104 pci_disable_device(efx->pci_dev);
1105 }
1106
1107 static int efx_wanted_parallelism(void)
1108 {
1109 cpumask_var_t thread_mask;
1110 int count;
1111 int cpu;
1112
1113 if (rss_cpus)
1114 return rss_cpus;
1115
1116 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1117 printk(KERN_WARNING
1118 "sfc: RSS disabled due to allocation failure\n");
1119 return 1;
1120 }
1121
1122 count = 0;
1123 for_each_online_cpu(cpu) {
1124 if (!cpumask_test_cpu(cpu, thread_mask)) {
1125 ++count;
1126 cpumask_or(thread_mask, thread_mask,
1127 topology_thread_cpumask(cpu));
1128 }
1129 }
1130
1131 free_cpumask_var(thread_mask);
1132 return count;
1133 }
1134
1135 static int
1136 efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1137 {
1138 #ifdef CONFIG_RFS_ACCEL
1139 int i, rc;
1140
1141 efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1142 if (!efx->net_dev->rx_cpu_rmap)
1143 return -ENOMEM;
1144 for (i = 0; i < efx->n_rx_channels; i++) {
1145 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1146 xentries[i].vector);
1147 if (rc) {
1148 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1149 efx->net_dev->rx_cpu_rmap = NULL;
1150 return rc;
1151 }
1152 }
1153 #endif
1154 return 0;
1155 }
1156
1157 /* Probe the number and type of interrupts we are able to obtain, and
1158 * the resulting numbers of channels and RX queues.
1159 */
1160 static int efx_probe_interrupts(struct efx_nic *efx)
1161 {
1162 int max_channels =
1163 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1164 int rc, i;
1165
1166 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1167 struct msix_entry xentries[EFX_MAX_CHANNELS];
1168 int n_channels;
1169
1170 n_channels = efx_wanted_parallelism();
1171 if (separate_tx_channels)
1172 n_channels *= 2;
1173 n_channels = min(n_channels, max_channels);
1174
1175 for (i = 0; i < n_channels; i++)
1176 xentries[i].entry = i;
1177 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1178 if (rc > 0) {
1179 netif_err(efx, drv, efx->net_dev,
1180 "WARNING: Insufficient MSI-X vectors"
1181 " available (%d < %d).\n", rc, n_channels);
1182 netif_err(efx, drv, efx->net_dev,
1183 "WARNING: Performance may be reduced.\n");
1184 EFX_BUG_ON_PARANOID(rc >= n_channels);
1185 n_channels = rc;
1186 rc = pci_enable_msix(efx->pci_dev, xentries,
1187 n_channels);
1188 }
1189
1190 if (rc == 0) {
1191 efx->n_channels = n_channels;
1192 if (separate_tx_channels) {
1193 efx->n_tx_channels =
1194 max(efx->n_channels / 2, 1U);
1195 efx->n_rx_channels =
1196 max(efx->n_channels -
1197 efx->n_tx_channels, 1U);
1198 } else {
1199 efx->n_tx_channels = efx->n_channels;
1200 efx->n_rx_channels = efx->n_channels;
1201 }
1202 rc = efx_init_rx_cpu_rmap(efx, xentries);
1203 if (rc) {
1204 pci_disable_msix(efx->pci_dev);
1205 return rc;
1206 }
1207 for (i = 0; i < n_channels; i++)
1208 efx_get_channel(efx, i)->irq =
1209 xentries[i].vector;
1210 } else {
1211 /* Fall back to single channel MSI */
1212 efx->interrupt_mode = EFX_INT_MODE_MSI;
1213 netif_err(efx, drv, efx->net_dev,
1214 "could not enable MSI-X\n");
1215 }
1216 }
1217
1218 /* Try single interrupt MSI */
1219 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1220 efx->n_channels = 1;
1221 efx->n_rx_channels = 1;
1222 efx->n_tx_channels = 1;
1223 rc = pci_enable_msi(efx->pci_dev);
1224 if (rc == 0) {
1225 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1226 } else {
1227 netif_err(efx, drv, efx->net_dev,
1228 "could not enable MSI\n");
1229 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1230 }
1231 }
1232
1233 /* Assume legacy interrupts */
1234 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1235 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1236 efx->n_rx_channels = 1;
1237 efx->n_tx_channels = 1;
1238 efx->legacy_irq = efx->pci_dev->irq;
1239 }
1240
1241 return 0;
1242 }
1243
1244 /* Enable interrupts, then probe and start the event queues */
1245 static void efx_start_interrupts(struct efx_nic *efx)
1246 {
1247 struct efx_channel *channel;
1248
1249 if (efx->legacy_irq)
1250 efx->legacy_irq_enabled = true;
1251 efx_nic_enable_interrupts(efx);
1252
1253 efx_for_each_channel(channel, efx) {
1254 efx_init_eventq(channel);
1255 efx_start_eventq(channel);
1256 }
1257
1258 efx_mcdi_mode_event(efx);
1259 }
1260
1261 static void efx_stop_interrupts(struct efx_nic *efx)
1262 {
1263 struct efx_channel *channel;
1264
1265 efx_mcdi_mode_poll(efx);
1266
1267 efx_nic_disable_interrupts(efx);
1268 if (efx->legacy_irq) {
1269 synchronize_irq(efx->legacy_irq);
1270 efx->legacy_irq_enabled = false;
1271 }
1272
1273 efx_for_each_channel(channel, efx) {
1274 if (channel->irq)
1275 synchronize_irq(channel->irq);
1276
1277 efx_stop_eventq(channel);
1278 efx_fini_eventq(channel);
1279 }
1280 }
1281
1282 static void efx_remove_interrupts(struct efx_nic *efx)
1283 {
1284 struct efx_channel *channel;
1285
1286 /* Remove MSI/MSI-X interrupts */
1287 efx_for_each_channel(channel, efx)
1288 channel->irq = 0;
1289 pci_disable_msi(efx->pci_dev);
1290 pci_disable_msix(efx->pci_dev);
1291
1292 /* Remove legacy interrupt */
1293 efx->legacy_irq = 0;
1294 }
1295
1296 static void efx_set_channels(struct efx_nic *efx)
1297 {
1298 struct efx_channel *channel;
1299 struct efx_tx_queue *tx_queue;
1300
1301 efx->tx_channel_offset =
1302 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1303
1304 /* We need to adjust the TX queue numbers if we have separate
1305 * RX-only and TX-only channels.
1306 */
1307 efx_for_each_channel(channel, efx) {
1308 efx_for_each_channel_tx_queue(tx_queue, channel)
1309 tx_queue->queue -= (efx->tx_channel_offset *
1310 EFX_TXQ_TYPES);
1311 }
1312 }
1313
1314 static int efx_probe_nic(struct efx_nic *efx)
1315 {
1316 size_t i;
1317 int rc;
1318
1319 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1320
1321 /* Carry out hardware-type specific initialisation */
1322 rc = efx->type->probe(efx);
1323 if (rc)
1324 return rc;
1325
1326 /* Determine the number of channels and queues by trying to hook
1327 * in MSI-X interrupts. */
1328 rc = efx_probe_interrupts(efx);
1329 if (rc)
1330 goto fail;
1331
1332 if (efx->n_channels > 1)
1333 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1334 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1335 efx->rx_indir_table[i] =
1336 ethtool_rxfh_indir_default(i, efx->n_rx_channels);
1337
1338 efx_set_channels(efx);
1339 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1340 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1341
1342 /* Initialise the interrupt moderation settings */
1343 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1344 true);
1345
1346 return 0;
1347
1348 fail:
1349 efx->type->remove(efx);
1350 return rc;
1351 }
1352
1353 static void efx_remove_nic(struct efx_nic *efx)
1354 {
1355 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1356
1357 efx_remove_interrupts(efx);
1358 efx->type->remove(efx);
1359 }
1360
1361 /**************************************************************************
1362 *
1363 * NIC startup/shutdown
1364 *
1365 *************************************************************************/
1366
1367 static int efx_probe_all(struct efx_nic *efx)
1368 {
1369 int rc;
1370
1371 rc = efx_probe_nic(efx);
1372 if (rc) {
1373 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1374 goto fail1;
1375 }
1376
1377 rc = efx_probe_port(efx);
1378 if (rc) {
1379 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1380 goto fail2;
1381 }
1382
1383 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1384 rc = efx_probe_channels(efx);
1385 if (rc)
1386 goto fail3;
1387
1388 rc = efx_probe_filters(efx);
1389 if (rc) {
1390 netif_err(efx, probe, efx->net_dev,
1391 "failed to create filter tables\n");
1392 goto fail4;
1393 }
1394
1395 return 0;
1396
1397 fail4:
1398 efx_remove_channels(efx);
1399 fail3:
1400 efx_remove_port(efx);
1401 fail2:
1402 efx_remove_nic(efx);
1403 fail1:
1404 return rc;
1405 }
1406
1407 /* Called after previous invocation(s) of efx_stop_all, restarts the port,
1408 * kernel transmit queues and NAPI processing, and ensures that the port is
1409 * scheduled to be reconfigured. This function is safe to call multiple
1410 * times when the NIC is in any state.
1411 */
1412 static void efx_start_all(struct efx_nic *efx)
1413 {
1414 EFX_ASSERT_RESET_SERIALISED(efx);
1415
1416 /* Check that it is appropriate to restart the interface. All
1417 * of these flags are safe to read under just the rtnl lock */
1418 if (efx->port_enabled)
1419 return;
1420 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1421 return;
1422 if (!netif_running(efx->net_dev))
1423 return;
1424
1425 efx_start_port(efx);
1426 efx_start_datapath(efx);
1427
1428 /* Start the hardware monitor if there is one. Otherwise (we're link
1429 * event driven), we have to poll the PHY because after an event queue
1430 * flush, we could have a missed a link state change */
1431 if (efx->type->monitor != NULL) {
1432 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1433 efx_monitor_interval);
1434 } else {
1435 mutex_lock(&efx->mac_lock);
1436 if (efx->phy_op->poll(efx))
1437 efx_link_status_changed(efx);
1438 mutex_unlock(&efx->mac_lock);
1439 }
1440
1441 efx->type->start_stats(efx);
1442 }
1443
1444 /* Flush all delayed work. Should only be called when no more delayed work
1445 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1446 * since we're holding the rtnl_lock at this point. */
1447 static void efx_flush_all(struct efx_nic *efx)
1448 {
1449 /* Make sure the hardware monitor is stopped */
1450 cancel_delayed_work_sync(&efx->monitor_work);
1451 /* Stop scheduled port reconfigurations */
1452 cancel_work_sync(&efx->mac_work);
1453 }
1454
1455 /* Quiesce hardware and software without bringing the link down.
1456 * Safe to call multiple times, when the nic and interface is in any
1457 * state. The caller is guaranteed to subsequently be in a position
1458 * to modify any hardware and software state they see fit without
1459 * taking locks. */
1460 static void efx_stop_all(struct efx_nic *efx)
1461 {
1462 EFX_ASSERT_RESET_SERIALISED(efx);
1463
1464 /* port_enabled can be read safely under the rtnl lock */
1465 if (!efx->port_enabled)
1466 return;
1467
1468 efx->type->stop_stats(efx);
1469 efx_stop_port(efx);
1470
1471 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1472 efx_flush_all(efx);
1473
1474 /* Stop the kernel transmit interface late, so the watchdog
1475 * timer isn't ticking over the flush */
1476 netif_tx_disable(efx->net_dev);
1477
1478 efx_stop_datapath(efx);
1479 }
1480
1481 static void efx_remove_all(struct efx_nic *efx)
1482 {
1483 efx_remove_filters(efx);
1484 efx_remove_channels(efx);
1485 efx_remove_port(efx);
1486 efx_remove_nic(efx);
1487 }
1488
1489 /**************************************************************************
1490 *
1491 * Interrupt moderation
1492 *
1493 **************************************************************************/
1494
1495 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1496 {
1497 if (usecs == 0)
1498 return 0;
1499 if (usecs * 1000 < quantum_ns)
1500 return 1; /* never round down to 0 */
1501 return usecs * 1000 / quantum_ns;
1502 }
1503
1504 /* Set interrupt moderation parameters */
1505 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1506 unsigned int rx_usecs, bool rx_adaptive,
1507 bool rx_may_override_tx)
1508 {
1509 struct efx_channel *channel;
1510 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1511 efx->timer_quantum_ns,
1512 1000);
1513 unsigned int tx_ticks;
1514 unsigned int rx_ticks;
1515
1516 EFX_ASSERT_RESET_SERIALISED(efx);
1517
1518 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1519 return -EINVAL;
1520
1521 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1522 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1523
1524 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1525 !rx_may_override_tx) {
1526 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1527 "RX and TX IRQ moderation must be equal\n");
1528 return -EINVAL;
1529 }
1530
1531 efx->irq_rx_adaptive = rx_adaptive;
1532 efx->irq_rx_moderation = rx_ticks;
1533 efx_for_each_channel(channel, efx) {
1534 if (efx_channel_has_rx_queue(channel))
1535 channel->irq_moderation = rx_ticks;
1536 else if (efx_channel_has_tx_queues(channel))
1537 channel->irq_moderation = tx_ticks;
1538 }
1539
1540 return 0;
1541 }
1542
1543 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1544 unsigned int *rx_usecs, bool *rx_adaptive)
1545 {
1546 /* We must round up when converting ticks to microseconds
1547 * because we round down when converting the other way.
1548 */
1549
1550 *rx_adaptive = efx->irq_rx_adaptive;
1551 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1552 efx->timer_quantum_ns,
1553 1000);
1554
1555 /* If channels are shared between RX and TX, so is IRQ
1556 * moderation. Otherwise, IRQ moderation is the same for all
1557 * TX channels and is not adaptive.
1558 */
1559 if (efx->tx_channel_offset == 0)
1560 *tx_usecs = *rx_usecs;
1561 else
1562 *tx_usecs = DIV_ROUND_UP(
1563 efx->channel[efx->tx_channel_offset]->irq_moderation *
1564 efx->timer_quantum_ns,
1565 1000);
1566 }
1567
1568 /**************************************************************************
1569 *
1570 * Hardware monitor
1571 *
1572 **************************************************************************/
1573
1574 /* Run periodically off the general workqueue */
1575 static void efx_monitor(struct work_struct *data)
1576 {
1577 struct efx_nic *efx = container_of(data, struct efx_nic,
1578 monitor_work.work);
1579
1580 netif_vdbg(efx, timer, efx->net_dev,
1581 "hardware monitor executing on CPU %d\n",
1582 raw_smp_processor_id());
1583 BUG_ON(efx->type->monitor == NULL);
1584
1585 /* If the mac_lock is already held then it is likely a port
1586 * reconfiguration is already in place, which will likely do
1587 * most of the work of monitor() anyway. */
1588 if (mutex_trylock(&efx->mac_lock)) {
1589 if (efx->port_enabled)
1590 efx->type->monitor(efx);
1591 mutex_unlock(&efx->mac_lock);
1592 }
1593
1594 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1595 efx_monitor_interval);
1596 }
1597
1598 /**************************************************************************
1599 *
1600 * ioctls
1601 *
1602 *************************************************************************/
1603
1604 /* Net device ioctl
1605 * Context: process, rtnl_lock() held.
1606 */
1607 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1608 {
1609 struct efx_nic *efx = netdev_priv(net_dev);
1610 struct mii_ioctl_data *data = if_mii(ifr);
1611
1612 EFX_ASSERT_RESET_SERIALISED(efx);
1613
1614 /* Convert phy_id from older PRTAD/DEVAD format */
1615 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1616 (data->phy_id & 0xfc00) == 0x0400)
1617 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1618
1619 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1620 }
1621
1622 /**************************************************************************
1623 *
1624 * NAPI interface
1625 *
1626 **************************************************************************/
1627
1628 static void efx_init_napi(struct efx_nic *efx)
1629 {
1630 struct efx_channel *channel;
1631
1632 efx_for_each_channel(channel, efx) {
1633 channel->napi_dev = efx->net_dev;
1634 netif_napi_add(channel->napi_dev, &channel->napi_str,
1635 efx_poll, napi_weight);
1636 }
1637 }
1638
1639 static void efx_fini_napi_channel(struct efx_channel *channel)
1640 {
1641 if (channel->napi_dev)
1642 netif_napi_del(&channel->napi_str);
1643 channel->napi_dev = NULL;
1644 }
1645
1646 static void efx_fini_napi(struct efx_nic *efx)
1647 {
1648 struct efx_channel *channel;
1649
1650 efx_for_each_channel(channel, efx)
1651 efx_fini_napi_channel(channel);
1652 }
1653
1654 /**************************************************************************
1655 *
1656 * Kernel netpoll interface
1657 *
1658 *************************************************************************/
1659
1660 #ifdef CONFIG_NET_POLL_CONTROLLER
1661
1662 /* Although in the common case interrupts will be disabled, this is not
1663 * guaranteed. However, all our work happens inside the NAPI callback,
1664 * so no locking is required.
1665 */
1666 static void efx_netpoll(struct net_device *net_dev)
1667 {
1668 struct efx_nic *efx = netdev_priv(net_dev);
1669 struct efx_channel *channel;
1670
1671 efx_for_each_channel(channel, efx)
1672 efx_schedule_channel(channel);
1673 }
1674
1675 #endif
1676
1677 /**************************************************************************
1678 *
1679 * Kernel net device interface
1680 *
1681 *************************************************************************/
1682
1683 /* Context: process, rtnl_lock() held. */
1684 static int efx_net_open(struct net_device *net_dev)
1685 {
1686 struct efx_nic *efx = netdev_priv(net_dev);
1687 EFX_ASSERT_RESET_SERIALISED(efx);
1688
1689 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1690 raw_smp_processor_id());
1691
1692 if (efx->state == STATE_DISABLED)
1693 return -EIO;
1694 if (efx->phy_mode & PHY_MODE_SPECIAL)
1695 return -EBUSY;
1696 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1697 return -EIO;
1698
1699 /* Notify the kernel of the link state polled during driver load,
1700 * before the monitor starts running */
1701 efx_link_status_changed(efx);
1702
1703 efx_start_all(efx);
1704 return 0;
1705 }
1706
1707 /* Context: process, rtnl_lock() held.
1708 * Note that the kernel will ignore our return code; this method
1709 * should really be a void.
1710 */
1711 static int efx_net_stop(struct net_device *net_dev)
1712 {
1713 struct efx_nic *efx = netdev_priv(net_dev);
1714
1715 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1716 raw_smp_processor_id());
1717
1718 if (efx->state != STATE_DISABLED) {
1719 /* Stop the device and flush all the channels */
1720 efx_stop_all(efx);
1721 }
1722
1723 return 0;
1724 }
1725
1726 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1727 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1728 struct rtnl_link_stats64 *stats)
1729 {
1730 struct efx_nic *efx = netdev_priv(net_dev);
1731 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1732
1733 spin_lock_bh(&efx->stats_lock);
1734
1735 efx->type->update_stats(efx);
1736
1737 stats->rx_packets = mac_stats->rx_packets;
1738 stats->tx_packets = mac_stats->tx_packets;
1739 stats->rx_bytes = mac_stats->rx_bytes;
1740 stats->tx_bytes = mac_stats->tx_bytes;
1741 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1742 stats->multicast = mac_stats->rx_multicast;
1743 stats->collisions = mac_stats->tx_collision;
1744 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1745 mac_stats->rx_length_error);
1746 stats->rx_crc_errors = mac_stats->rx_bad;
1747 stats->rx_frame_errors = mac_stats->rx_align_error;
1748 stats->rx_fifo_errors = mac_stats->rx_overflow;
1749 stats->rx_missed_errors = mac_stats->rx_missed;
1750 stats->tx_window_errors = mac_stats->tx_late_collision;
1751
1752 stats->rx_errors = (stats->rx_length_errors +
1753 stats->rx_crc_errors +
1754 stats->rx_frame_errors +
1755 mac_stats->rx_symbol_error);
1756 stats->tx_errors = (stats->tx_window_errors +
1757 mac_stats->tx_bad);
1758
1759 spin_unlock_bh(&efx->stats_lock);
1760
1761 return stats;
1762 }
1763
1764 /* Context: netif_tx_lock held, BHs disabled. */
1765 static void efx_watchdog(struct net_device *net_dev)
1766 {
1767 struct efx_nic *efx = netdev_priv(net_dev);
1768
1769 netif_err(efx, tx_err, efx->net_dev,
1770 "TX stuck with port_enabled=%d: resetting channels\n",
1771 efx->port_enabled);
1772
1773 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1774 }
1775
1776
1777 /* Context: process, rtnl_lock() held. */
1778 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1779 {
1780 struct efx_nic *efx = netdev_priv(net_dev);
1781
1782 EFX_ASSERT_RESET_SERIALISED(efx);
1783
1784 if (new_mtu > EFX_MAX_MTU)
1785 return -EINVAL;
1786
1787 efx_stop_all(efx);
1788
1789 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1790
1791 mutex_lock(&efx->mac_lock);
1792 /* Reconfigure the MAC before enabling the dma queues so that
1793 * the RX buffers don't overflow */
1794 net_dev->mtu = new_mtu;
1795 efx->type->reconfigure_mac(efx);
1796 mutex_unlock(&efx->mac_lock);
1797
1798 efx_start_all(efx);
1799 return 0;
1800 }
1801
1802 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1803 {
1804 struct efx_nic *efx = netdev_priv(net_dev);
1805 struct sockaddr *addr = data;
1806 char *new_addr = addr->sa_data;
1807
1808 EFX_ASSERT_RESET_SERIALISED(efx);
1809
1810 if (!is_valid_ether_addr(new_addr)) {
1811 netif_err(efx, drv, efx->net_dev,
1812 "invalid ethernet MAC address requested: %pM\n",
1813 new_addr);
1814 return -EINVAL;
1815 }
1816
1817 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1818
1819 /* Reconfigure the MAC */
1820 mutex_lock(&efx->mac_lock);
1821 efx->type->reconfigure_mac(efx);
1822 mutex_unlock(&efx->mac_lock);
1823
1824 return 0;
1825 }
1826
1827 /* Context: netif_addr_lock held, BHs disabled. */
1828 static void efx_set_rx_mode(struct net_device *net_dev)
1829 {
1830 struct efx_nic *efx = netdev_priv(net_dev);
1831 struct netdev_hw_addr *ha;
1832 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1833 u32 crc;
1834 int bit;
1835
1836 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1837
1838 /* Build multicast hash table */
1839 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1840 memset(mc_hash, 0xff, sizeof(*mc_hash));
1841 } else {
1842 memset(mc_hash, 0x00, sizeof(*mc_hash));
1843 netdev_for_each_mc_addr(ha, net_dev) {
1844 crc = ether_crc_le(ETH_ALEN, ha->addr);
1845 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1846 set_bit_le(bit, mc_hash->byte);
1847 }
1848
1849 /* Broadcast packets go through the multicast hash filter.
1850 * ether_crc_le() of the broadcast address is 0xbe2612ff
1851 * so we always add bit 0xff to the mask.
1852 */
1853 set_bit_le(0xff, mc_hash->byte);
1854 }
1855
1856 if (efx->port_enabled)
1857 queue_work(efx->workqueue, &efx->mac_work);
1858 /* Otherwise efx_start_port() will do this */
1859 }
1860
1861 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
1862 {
1863 struct efx_nic *efx = netdev_priv(net_dev);
1864
1865 /* If disabling RX n-tuple filtering, clear existing filters */
1866 if (net_dev->features & ~data & NETIF_F_NTUPLE)
1867 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1868
1869 return 0;
1870 }
1871
1872 static const struct net_device_ops efx_netdev_ops = {
1873 .ndo_open = efx_net_open,
1874 .ndo_stop = efx_net_stop,
1875 .ndo_get_stats64 = efx_net_stats,
1876 .ndo_tx_timeout = efx_watchdog,
1877 .ndo_start_xmit = efx_hard_start_xmit,
1878 .ndo_validate_addr = eth_validate_addr,
1879 .ndo_do_ioctl = efx_ioctl,
1880 .ndo_change_mtu = efx_change_mtu,
1881 .ndo_set_mac_address = efx_set_mac_address,
1882 .ndo_set_rx_mode = efx_set_rx_mode,
1883 .ndo_set_features = efx_set_features,
1884 #ifdef CONFIG_NET_POLL_CONTROLLER
1885 .ndo_poll_controller = efx_netpoll,
1886 #endif
1887 .ndo_setup_tc = efx_setup_tc,
1888 #ifdef CONFIG_RFS_ACCEL
1889 .ndo_rx_flow_steer = efx_filter_rfs,
1890 #endif
1891 };
1892
1893 static void efx_update_name(struct efx_nic *efx)
1894 {
1895 strcpy(efx->name, efx->net_dev->name);
1896 efx_mtd_rename(efx);
1897 efx_set_channel_names(efx);
1898 }
1899
1900 static int efx_netdev_event(struct notifier_block *this,
1901 unsigned long event, void *ptr)
1902 {
1903 struct net_device *net_dev = ptr;
1904
1905 if (net_dev->netdev_ops == &efx_netdev_ops &&
1906 event == NETDEV_CHANGENAME)
1907 efx_update_name(netdev_priv(net_dev));
1908
1909 return NOTIFY_DONE;
1910 }
1911
1912 static struct notifier_block efx_netdev_notifier = {
1913 .notifier_call = efx_netdev_event,
1914 };
1915
1916 static ssize_t
1917 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1918 {
1919 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1920 return sprintf(buf, "%d\n", efx->phy_type);
1921 }
1922 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1923
1924 static int efx_register_netdev(struct efx_nic *efx)
1925 {
1926 struct net_device *net_dev = efx->net_dev;
1927 struct efx_channel *channel;
1928 int rc;
1929
1930 net_dev->watchdog_timeo = 5 * HZ;
1931 net_dev->irq = efx->pci_dev->irq;
1932 net_dev->netdev_ops = &efx_netdev_ops;
1933 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1934
1935 rtnl_lock();
1936
1937 rc = dev_alloc_name(net_dev, net_dev->name);
1938 if (rc < 0)
1939 goto fail_locked;
1940 efx_update_name(efx);
1941
1942 rc = register_netdevice(net_dev);
1943 if (rc)
1944 goto fail_locked;
1945
1946 efx_for_each_channel(channel, efx) {
1947 struct efx_tx_queue *tx_queue;
1948 efx_for_each_channel_tx_queue(tx_queue, channel)
1949 efx_init_tx_queue_core_txq(tx_queue);
1950 }
1951
1952 /* Always start with carrier off; PHY events will detect the link */
1953 netif_carrier_off(net_dev);
1954
1955 rtnl_unlock();
1956
1957 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1958 if (rc) {
1959 netif_err(efx, drv, efx->net_dev,
1960 "failed to init net dev attributes\n");
1961 goto fail_registered;
1962 }
1963
1964 return 0;
1965
1966 fail_locked:
1967 rtnl_unlock();
1968 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1969 return rc;
1970
1971 fail_registered:
1972 unregister_netdev(net_dev);
1973 return rc;
1974 }
1975
1976 static void efx_unregister_netdev(struct efx_nic *efx)
1977 {
1978 struct efx_channel *channel;
1979 struct efx_tx_queue *tx_queue;
1980
1981 if (!efx->net_dev)
1982 return;
1983
1984 BUG_ON(netdev_priv(efx->net_dev) != efx);
1985
1986 /* Free up any skbs still remaining. This has to happen before
1987 * we try to unregister the netdev as running their destructors
1988 * may be needed to get the device ref. count to 0. */
1989 efx_for_each_channel(channel, efx) {
1990 efx_for_each_channel_tx_queue(tx_queue, channel)
1991 efx_release_tx_buffers(tx_queue);
1992 }
1993
1994 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1995 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1996 unregister_netdev(efx->net_dev);
1997 }
1998
1999 /**************************************************************************
2000 *
2001 * Device reset and suspend
2002 *
2003 **************************************************************************/
2004
2005 /* Tears down the entire software state and most of the hardware state
2006 * before reset. */
2007 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2008 {
2009 EFX_ASSERT_RESET_SERIALISED(efx);
2010
2011 efx_stop_all(efx);
2012 mutex_lock(&efx->mac_lock);
2013
2014 efx_stop_interrupts(efx);
2015 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2016 efx->phy_op->fini(efx);
2017 efx->type->fini(efx);
2018 }
2019
2020 /* This function will always ensure that the locks acquired in
2021 * efx_reset_down() are released. A failure return code indicates
2022 * that we were unable to reinitialise the hardware, and the
2023 * driver should be disabled. If ok is false, then the rx and tx
2024 * engines are not restarted, pending a RESET_DISABLE. */
2025 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2026 {
2027 int rc;
2028
2029 EFX_ASSERT_RESET_SERIALISED(efx);
2030
2031 rc = efx->type->init(efx);
2032 if (rc) {
2033 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2034 goto fail;
2035 }
2036
2037 if (!ok)
2038 goto fail;
2039
2040 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2041 rc = efx->phy_op->init(efx);
2042 if (rc)
2043 goto fail;
2044 if (efx->phy_op->reconfigure(efx))
2045 netif_err(efx, drv, efx->net_dev,
2046 "could not restore PHY settings\n");
2047 }
2048
2049 efx->type->reconfigure_mac(efx);
2050
2051 efx_start_interrupts(efx);
2052 efx_restore_filters(efx);
2053
2054 mutex_unlock(&efx->mac_lock);
2055
2056 efx_start_all(efx);
2057
2058 return 0;
2059
2060 fail:
2061 efx->port_initialized = false;
2062
2063 mutex_unlock(&efx->mac_lock);
2064
2065 return rc;
2066 }
2067
2068 /* Reset the NIC using the specified method. Note that the reset may
2069 * fail, in which case the card will be left in an unusable state.
2070 *
2071 * Caller must hold the rtnl_lock.
2072 */
2073 int efx_reset(struct efx_nic *efx, enum reset_type method)
2074 {
2075 int rc, rc2;
2076 bool disabled;
2077
2078 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2079 RESET_TYPE(method));
2080
2081 netif_device_detach(efx->net_dev);
2082 efx_reset_down(efx, method);
2083
2084 rc = efx->type->reset(efx, method);
2085 if (rc) {
2086 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2087 goto out;
2088 }
2089
2090 /* Clear flags for the scopes we covered. We assume the NIC and
2091 * driver are now quiescent so that there is no race here.
2092 */
2093 efx->reset_pending &= -(1 << (method + 1));
2094
2095 /* Reinitialise bus-mastering, which may have been turned off before
2096 * the reset was scheduled. This is still appropriate, even in the
2097 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2098 * can respond to requests. */
2099 pci_set_master(efx->pci_dev);
2100
2101 out:
2102 /* Leave device stopped if necessary */
2103 disabled = rc || method == RESET_TYPE_DISABLE;
2104 rc2 = efx_reset_up(efx, method, !disabled);
2105 if (rc2) {
2106 disabled = true;
2107 if (!rc)
2108 rc = rc2;
2109 }
2110
2111 if (disabled) {
2112 dev_close(efx->net_dev);
2113 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2114 efx->state = STATE_DISABLED;
2115 } else {
2116 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2117 netif_device_attach(efx->net_dev);
2118 }
2119 return rc;
2120 }
2121
2122 /* The worker thread exists so that code that cannot sleep can
2123 * schedule a reset for later.
2124 */
2125 static void efx_reset_work(struct work_struct *data)
2126 {
2127 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2128 unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2129
2130 if (!pending)
2131 return;
2132
2133 /* If we're not RUNNING then don't reset. Leave the reset_pending
2134 * flags set so that efx_pci_probe_main will be retried */
2135 if (efx->state != STATE_RUNNING) {
2136 netif_info(efx, drv, efx->net_dev,
2137 "scheduled reset quenched. NIC not RUNNING\n");
2138 return;
2139 }
2140
2141 rtnl_lock();
2142 (void)efx_reset(efx, fls(pending) - 1);
2143 rtnl_unlock();
2144 }
2145
2146 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2147 {
2148 enum reset_type method;
2149
2150 switch (type) {
2151 case RESET_TYPE_INVISIBLE:
2152 case RESET_TYPE_ALL:
2153 case RESET_TYPE_WORLD:
2154 case RESET_TYPE_DISABLE:
2155 method = type;
2156 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2157 RESET_TYPE(method));
2158 break;
2159 default:
2160 method = efx->type->map_reset_reason(type);
2161 netif_dbg(efx, drv, efx->net_dev,
2162 "scheduling %s reset for %s\n",
2163 RESET_TYPE(method), RESET_TYPE(type));
2164 break;
2165 }
2166
2167 set_bit(method, &efx->reset_pending);
2168
2169 /* efx_process_channel() will no longer read events once a
2170 * reset is scheduled. So switch back to poll'd MCDI completions. */
2171 efx_mcdi_mode_poll(efx);
2172
2173 queue_work(reset_workqueue, &efx->reset_work);
2174 }
2175
2176 /**************************************************************************
2177 *
2178 * List of NICs we support
2179 *
2180 **************************************************************************/
2181
2182 /* PCI device ID table */
2183 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2184 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2185 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2186 .driver_data = (unsigned long) &falcon_a1_nic_type},
2187 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2188 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2189 .driver_data = (unsigned long) &falcon_b0_nic_type},
2190 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
2191 .driver_data = (unsigned long) &siena_a0_nic_type},
2192 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
2193 .driver_data = (unsigned long) &siena_a0_nic_type},
2194 {0} /* end of list */
2195 };
2196
2197 /**************************************************************************
2198 *
2199 * Dummy PHY/MAC operations
2200 *
2201 * Can be used for some unimplemented operations
2202 * Needed so all function pointers are valid and do not have to be tested
2203 * before use
2204 *
2205 **************************************************************************/
2206 int efx_port_dummy_op_int(struct efx_nic *efx)
2207 {
2208 return 0;
2209 }
2210 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2211
2212 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2213 {
2214 return false;
2215 }
2216
2217 static const struct efx_phy_operations efx_dummy_phy_operations = {
2218 .init = efx_port_dummy_op_int,
2219 .reconfigure = efx_port_dummy_op_int,
2220 .poll = efx_port_dummy_op_poll,
2221 .fini = efx_port_dummy_op_void,
2222 };
2223
2224 /**************************************************************************
2225 *
2226 * Data housekeeping
2227 *
2228 **************************************************************************/
2229
2230 /* This zeroes out and then fills in the invariants in a struct
2231 * efx_nic (including all sub-structures).
2232 */
2233 static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2234 struct pci_dev *pci_dev, struct net_device *net_dev)
2235 {
2236 int i;
2237
2238 /* Initialise common structures */
2239 memset(efx, 0, sizeof(*efx));
2240 spin_lock_init(&efx->biu_lock);
2241 #ifdef CONFIG_SFC_MTD
2242 INIT_LIST_HEAD(&efx->mtd_list);
2243 #endif
2244 INIT_WORK(&efx->reset_work, efx_reset_work);
2245 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2246 efx->pci_dev = pci_dev;
2247 efx->msg_enable = debug;
2248 efx->state = STATE_INIT;
2249 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2250
2251 efx->net_dev = net_dev;
2252 spin_lock_init(&efx->stats_lock);
2253 mutex_init(&efx->mac_lock);
2254 efx->phy_op = &efx_dummy_phy_operations;
2255 efx->mdio.dev = net_dev;
2256 INIT_WORK(&efx->mac_work, efx_mac_work);
2257 init_waitqueue_head(&efx->flush_wq);
2258
2259 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2260 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2261 if (!efx->channel[i])
2262 goto fail;
2263 }
2264
2265 efx->type = type;
2266
2267 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2268
2269 /* Higher numbered interrupt modes are less capable! */
2270 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2271 interrupt_mode);
2272
2273 /* Would be good to use the net_dev name, but we're too early */
2274 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2275 pci_name(pci_dev));
2276 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2277 if (!efx->workqueue)
2278 goto fail;
2279
2280 return 0;
2281
2282 fail:
2283 efx_fini_struct(efx);
2284 return -ENOMEM;
2285 }
2286
2287 static void efx_fini_struct(struct efx_nic *efx)
2288 {
2289 int i;
2290
2291 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2292 kfree(efx->channel[i]);
2293
2294 if (efx->workqueue) {
2295 destroy_workqueue(efx->workqueue);
2296 efx->workqueue = NULL;
2297 }
2298 }
2299
2300 /**************************************************************************
2301 *
2302 * PCI interface
2303 *
2304 **************************************************************************/
2305
2306 /* Main body of final NIC shutdown code
2307 * This is called only at module unload (or hotplug removal).
2308 */
2309 static void efx_pci_remove_main(struct efx_nic *efx)
2310 {
2311 #ifdef CONFIG_RFS_ACCEL
2312 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2313 efx->net_dev->rx_cpu_rmap = NULL;
2314 #endif
2315 efx_stop_interrupts(efx);
2316 efx_nic_fini_interrupt(efx);
2317 efx_fini_port(efx);
2318 efx->type->fini(efx);
2319 efx_fini_napi(efx);
2320 efx_remove_all(efx);
2321 }
2322
2323 /* Final NIC shutdown
2324 * This is called only at module unload (or hotplug removal).
2325 */
2326 static void efx_pci_remove(struct pci_dev *pci_dev)
2327 {
2328 struct efx_nic *efx;
2329
2330 efx = pci_get_drvdata(pci_dev);
2331 if (!efx)
2332 return;
2333
2334 /* Mark the NIC as fini, then stop the interface */
2335 rtnl_lock();
2336 efx->state = STATE_FINI;
2337 dev_close(efx->net_dev);
2338
2339 /* Allow any queued efx_resets() to complete */
2340 rtnl_unlock();
2341
2342 efx_stop_interrupts(efx);
2343 efx_unregister_netdev(efx);
2344
2345 efx_mtd_remove(efx);
2346
2347 /* Wait for any scheduled resets to complete. No more will be
2348 * scheduled from this point because efx_stop_all() has been
2349 * called, we are no longer registered with driverlink, and
2350 * the net_device's have been removed. */
2351 cancel_work_sync(&efx->reset_work);
2352
2353 efx_pci_remove_main(efx);
2354
2355 efx_fini_io(efx);
2356 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2357
2358 pci_set_drvdata(pci_dev, NULL);
2359 efx_fini_struct(efx);
2360 free_netdev(efx->net_dev);
2361 };
2362
2363 /* Main body of NIC initialisation
2364 * This is called at module load (or hotplug insertion, theoretically).
2365 */
2366 static int efx_pci_probe_main(struct efx_nic *efx)
2367 {
2368 int rc;
2369
2370 /* Do start-of-day initialisation */
2371 rc = efx_probe_all(efx);
2372 if (rc)
2373 goto fail1;
2374
2375 efx_init_napi(efx);
2376
2377 rc = efx->type->init(efx);
2378 if (rc) {
2379 netif_err(efx, probe, efx->net_dev,
2380 "failed to initialise NIC\n");
2381 goto fail3;
2382 }
2383
2384 rc = efx_init_port(efx);
2385 if (rc) {
2386 netif_err(efx, probe, efx->net_dev,
2387 "failed to initialise port\n");
2388 goto fail4;
2389 }
2390
2391 rc = efx_nic_init_interrupt(efx);
2392 if (rc)
2393 goto fail5;
2394 efx_start_interrupts(efx);
2395
2396 return 0;
2397
2398 fail5:
2399 efx_fini_port(efx);
2400 fail4:
2401 efx->type->fini(efx);
2402 fail3:
2403 efx_fini_napi(efx);
2404 efx_remove_all(efx);
2405 fail1:
2406 return rc;
2407 }
2408
2409 /* NIC initialisation
2410 *
2411 * This is called at module load (or hotplug insertion,
2412 * theoretically). It sets up PCI mappings, resets the NIC,
2413 * sets up and registers the network devices with the kernel and hooks
2414 * the interrupt service routine. It does not prepare the device for
2415 * transmission; this is left to the first time one of the network
2416 * interfaces is brought up (i.e. efx_net_open).
2417 */
2418 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2419 const struct pci_device_id *entry)
2420 {
2421 const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2422 struct net_device *net_dev;
2423 struct efx_nic *efx;
2424 int rc;
2425
2426 /* Allocate and initialise a struct net_device and struct efx_nic */
2427 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2428 EFX_MAX_RX_QUEUES);
2429 if (!net_dev)
2430 return -ENOMEM;
2431 net_dev->features |= (type->offload_features | NETIF_F_SG |
2432 NETIF_F_HIGHDMA | NETIF_F_TSO |
2433 NETIF_F_RXCSUM);
2434 if (type->offload_features & NETIF_F_V6_CSUM)
2435 net_dev->features |= NETIF_F_TSO6;
2436 /* Mask for features that also apply to VLAN devices */
2437 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2438 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2439 NETIF_F_RXCSUM);
2440 /* All offloads can be toggled */
2441 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2442 efx = netdev_priv(net_dev);
2443 pci_set_drvdata(pci_dev, efx);
2444 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2445 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2446 if (rc)
2447 goto fail1;
2448
2449 netif_info(efx, probe, efx->net_dev,
2450 "Solarflare NIC detected\n");
2451
2452 /* Set up basic I/O (BAR mappings etc) */
2453 rc = efx_init_io(efx);
2454 if (rc)
2455 goto fail2;
2456
2457 rc = efx_pci_probe_main(efx);
2458
2459 /* Serialise against efx_reset(). No more resets will be
2460 * scheduled since efx_stop_all() has been called, and we have
2461 * not and never have been registered.
2462 */
2463 cancel_work_sync(&efx->reset_work);
2464
2465 if (rc)
2466 goto fail3;
2467
2468 /* If there was a scheduled reset during probe, the NIC is
2469 * probably hosed anyway.
2470 */
2471 if (efx->reset_pending) {
2472 rc = -EIO;
2473 goto fail4;
2474 }
2475
2476 /* Switch to the running state before we expose the device to the OS,
2477 * so that dev_open()|efx_start_all() will actually start the device */
2478 efx->state = STATE_RUNNING;
2479
2480 rc = efx_register_netdev(efx);
2481 if (rc)
2482 goto fail4;
2483
2484 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2485
2486 /* Try to create MTDs, but allow this to fail */
2487 rtnl_lock();
2488 rc = efx_mtd_probe(efx);
2489 rtnl_unlock();
2490 if (rc)
2491 netif_warn(efx, probe, efx->net_dev,
2492 "failed to create MTDs (%d)\n", rc);
2493
2494 return 0;
2495
2496 fail4:
2497 efx_pci_remove_main(efx);
2498 fail3:
2499 efx_fini_io(efx);
2500 fail2:
2501 efx_fini_struct(efx);
2502 fail1:
2503 WARN_ON(rc > 0);
2504 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2505 free_netdev(net_dev);
2506 return rc;
2507 }
2508
2509 static int efx_pm_freeze(struct device *dev)
2510 {
2511 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2512
2513 efx->state = STATE_FINI;
2514
2515 netif_device_detach(efx->net_dev);
2516
2517 efx_stop_all(efx);
2518 efx_stop_interrupts(efx);
2519
2520 return 0;
2521 }
2522
2523 static int efx_pm_thaw(struct device *dev)
2524 {
2525 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2526
2527 efx->state = STATE_INIT;
2528
2529 efx_start_interrupts(efx);
2530
2531 mutex_lock(&efx->mac_lock);
2532 efx->phy_op->reconfigure(efx);
2533 mutex_unlock(&efx->mac_lock);
2534
2535 efx_start_all(efx);
2536
2537 netif_device_attach(efx->net_dev);
2538
2539 efx->state = STATE_RUNNING;
2540
2541 efx->type->resume_wol(efx);
2542
2543 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2544 queue_work(reset_workqueue, &efx->reset_work);
2545
2546 return 0;
2547 }
2548
2549 static int efx_pm_poweroff(struct device *dev)
2550 {
2551 struct pci_dev *pci_dev = to_pci_dev(dev);
2552 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2553
2554 efx->type->fini(efx);
2555
2556 efx->reset_pending = 0;
2557
2558 pci_save_state(pci_dev);
2559 return pci_set_power_state(pci_dev, PCI_D3hot);
2560 }
2561
2562 /* Used for both resume and restore */
2563 static int efx_pm_resume(struct device *dev)
2564 {
2565 struct pci_dev *pci_dev = to_pci_dev(dev);
2566 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2567 int rc;
2568
2569 rc = pci_set_power_state(pci_dev, PCI_D0);
2570 if (rc)
2571 return rc;
2572 pci_restore_state(pci_dev);
2573 rc = pci_enable_device(pci_dev);
2574 if (rc)
2575 return rc;
2576 pci_set_master(efx->pci_dev);
2577 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2578 if (rc)
2579 return rc;
2580 rc = efx->type->init(efx);
2581 if (rc)
2582 return rc;
2583 efx_pm_thaw(dev);
2584 return 0;
2585 }
2586
2587 static int efx_pm_suspend(struct device *dev)
2588 {
2589 int rc;
2590
2591 efx_pm_freeze(dev);
2592 rc = efx_pm_poweroff(dev);
2593 if (rc)
2594 efx_pm_resume(dev);
2595 return rc;
2596 }
2597
2598 static const struct dev_pm_ops efx_pm_ops = {
2599 .suspend = efx_pm_suspend,
2600 .resume = efx_pm_resume,
2601 .freeze = efx_pm_freeze,
2602 .thaw = efx_pm_thaw,
2603 .poweroff = efx_pm_poweroff,
2604 .restore = efx_pm_resume,
2605 };
2606
2607 static struct pci_driver efx_pci_driver = {
2608 .name = KBUILD_MODNAME,
2609 .id_table = efx_pci_table,
2610 .probe = efx_pci_probe,
2611 .remove = efx_pci_remove,
2612 .driver.pm = &efx_pm_ops,
2613 };
2614
2615 /**************************************************************************
2616 *
2617 * Kernel module interface
2618 *
2619 *************************************************************************/
2620
2621 module_param(interrupt_mode, uint, 0444);
2622 MODULE_PARM_DESC(interrupt_mode,
2623 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2624
2625 static int __init efx_init_module(void)
2626 {
2627 int rc;
2628
2629 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2630
2631 rc = register_netdevice_notifier(&efx_netdev_notifier);
2632 if (rc)
2633 goto err_notifier;
2634
2635 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2636 if (!reset_workqueue) {
2637 rc = -ENOMEM;
2638 goto err_reset;
2639 }
2640
2641 rc = pci_register_driver(&efx_pci_driver);
2642 if (rc < 0)
2643 goto err_pci;
2644
2645 return 0;
2646
2647 err_pci:
2648 destroy_workqueue(reset_workqueue);
2649 err_reset:
2650 unregister_netdevice_notifier(&efx_netdev_notifier);
2651 err_notifier:
2652 return rc;
2653 }
2654
2655 static void __exit efx_exit_module(void)
2656 {
2657 printk(KERN_INFO "Solarflare NET driver unloading\n");
2658
2659 pci_unregister_driver(&efx_pci_driver);
2660 destroy_workqueue(reset_workqueue);
2661 unregister_netdevice_notifier(&efx_netdev_notifier);
2662
2663 }
2664
2665 module_init(efx_init_module);
2666 module_exit(efx_exit_module);
2667
2668 MODULE_AUTHOR("Solarflare Communications and "
2669 "Michael Brown <mbrown@fensystems.co.uk>");
2670 MODULE_DESCRIPTION("Solarflare Communications network driver");
2671 MODULE_LICENSE("GPL");
2672 MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.088194 seconds and 6 git commands to generate.