sfc: Make all CPU/IRQ/channel/queue counts unsigned
[deliverable/linux.git] / drivers / net / ethernet / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include <linux/cpu_rmap.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28
29 #include "mcdi.h"
30 #include "workarounds.h"
31
32 /**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41 const char *const efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
43 [LOOPBACK_DATA] = "DATAPATH",
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
69 };
70
71 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72 const char *const efx_reset_type_names[] = {
73 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
74 [RESET_TYPE_ALL] = "ALL",
75 [RESET_TYPE_WORLD] = "WORLD",
76 [RESET_TYPE_DISABLE] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
80 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
81 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
82 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
83 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
84 };
85
86 #define EFX_MAX_MTU (9 * 1024)
87
88 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 */
92 static struct workqueue_struct *reset_workqueue;
93
94 /**************************************************************************
95 *
96 * Configurable values
97 *
98 *************************************************************************/
99
100 /*
101 * Use separate channels for TX and RX events
102 *
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
105 *
106 * This is only used in MSI-X interrupt mode
107 */
108 static unsigned int separate_tx_channels;
109 module_param(separate_tx_channels, uint, 0444);
110 MODULE_PARM_DESC(separate_tx_channels,
111 "Use separate channels for TX and RX");
112
113 /* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
115 */
116 static int napi_weight = 64;
117
118 /* This is the time (in jiffies) between invocations of the hardware
119 * monitor. On Falcon-based NICs, this will:
120 * - Check the on-board hardware monitor;
121 * - Poll the link state and reconfigure the hardware as necessary.
122 */
123 static unsigned int efx_monitor_interval = 1 * HZ;
124
125 /* Initial interrupt moderation settings. They can be modified after
126 * module load with ethtool.
127 *
128 * The default for RX should strike a balance between increasing the
129 * round-trip latency and reducing overhead.
130 */
131 static unsigned int rx_irq_mod_usec = 60;
132
133 /* Initial interrupt moderation settings. They can be modified after
134 * module load with ethtool.
135 *
136 * This default is chosen to ensure that a 10G link does not go idle
137 * while a TX queue is stopped after it has become full. A queue is
138 * restarted when it drops below half full. The time this takes (assuming
139 * worst case 3 descriptors per packet and 1024 descriptors) is
140 * 512 / 3 * 1.2 = 205 usec.
141 */
142 static unsigned int tx_irq_mod_usec = 150;
143
144 /* This is the first interrupt mode to try out of:
145 * 0 => MSI-X
146 * 1 => MSI
147 * 2 => legacy
148 */
149 static unsigned int interrupt_mode;
150
151 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
152 * i.e. the number of CPUs among which we may distribute simultaneous
153 * interrupt handling.
154 *
155 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
156 * The default (0) means to assign an interrupt to each core.
157 */
158 static unsigned int rss_cpus;
159 module_param(rss_cpus, uint, 0444);
160 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
161
162 static int phy_flash_cfg;
163 module_param(phy_flash_cfg, int, 0644);
164 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
165
166 static unsigned irq_adapt_low_thresh = 10000;
167 module_param(irq_adapt_low_thresh, uint, 0644);
168 MODULE_PARM_DESC(irq_adapt_low_thresh,
169 "Threshold score for reducing IRQ moderation");
170
171 static unsigned irq_adapt_high_thresh = 20000;
172 module_param(irq_adapt_high_thresh, uint, 0644);
173 MODULE_PARM_DESC(irq_adapt_high_thresh,
174 "Threshold score for increasing IRQ moderation");
175
176 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
177 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
178 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
179 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
180 module_param(debug, uint, 0);
181 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
182
183 /**************************************************************************
184 *
185 * Utility functions and prototypes
186 *
187 *************************************************************************/
188
189 static void efx_start_interrupts(struct efx_nic *efx);
190 static void efx_stop_interrupts(struct efx_nic *efx);
191 static void efx_remove_channels(struct efx_nic *efx);
192 static void efx_remove_port(struct efx_nic *efx);
193 static void efx_init_napi(struct efx_nic *efx);
194 static void efx_fini_napi(struct efx_nic *efx);
195 static void efx_fini_napi_channel(struct efx_channel *channel);
196 static void efx_fini_struct(struct efx_nic *efx);
197 static void efx_start_all(struct efx_nic *efx);
198 static void efx_stop_all(struct efx_nic *efx);
199
200 #define EFX_ASSERT_RESET_SERIALISED(efx) \
201 do { \
202 if ((efx->state == STATE_RUNNING) || \
203 (efx->state == STATE_DISABLED)) \
204 ASSERT_RTNL(); \
205 } while (0)
206
207 /**************************************************************************
208 *
209 * Event queue processing
210 *
211 *************************************************************************/
212
213 /* Process channel's event queue
214 *
215 * This function is responsible for processing the event queue of a
216 * single channel. The caller must guarantee that this function will
217 * never be concurrently called more than once on the same channel,
218 * though different channels may be being processed concurrently.
219 */
220 static int efx_process_channel(struct efx_channel *channel, int budget)
221 {
222 int spent;
223
224 if (unlikely(!channel->enabled))
225 return 0;
226
227 spent = efx_nic_process_eventq(channel, budget);
228 if (spent && efx_channel_has_rx_queue(channel)) {
229 struct efx_rx_queue *rx_queue =
230 efx_channel_get_rx_queue(channel);
231
232 /* Deliver last RX packet. */
233 if (channel->rx_pkt) {
234 __efx_rx_packet(channel, channel->rx_pkt);
235 channel->rx_pkt = NULL;
236 }
237 if (rx_queue->enabled) {
238 efx_rx_strategy(channel);
239 efx_fast_push_rx_descriptors(rx_queue);
240 }
241 }
242
243 return spent;
244 }
245
246 /* Mark channel as finished processing
247 *
248 * Note that since we will not receive further interrupts for this
249 * channel before we finish processing and call the eventq_read_ack()
250 * method, there is no need to use the interrupt hold-off timers.
251 */
252 static inline void efx_channel_processed(struct efx_channel *channel)
253 {
254 /* The interrupt handler for this channel may set work_pending
255 * as soon as we acknowledge the events we've seen. Make sure
256 * it's cleared before then. */
257 channel->work_pending = false;
258 smp_wmb();
259
260 efx_nic_eventq_read_ack(channel);
261 }
262
263 /* NAPI poll handler
264 *
265 * NAPI guarantees serialisation of polls of the same device, which
266 * provides the guarantee required by efx_process_channel().
267 */
268 static int efx_poll(struct napi_struct *napi, int budget)
269 {
270 struct efx_channel *channel =
271 container_of(napi, struct efx_channel, napi_str);
272 struct efx_nic *efx = channel->efx;
273 int spent;
274
275 netif_vdbg(efx, intr, efx->net_dev,
276 "channel %d NAPI poll executing on CPU %d\n",
277 channel->channel, raw_smp_processor_id());
278
279 spent = efx_process_channel(channel, budget);
280
281 if (spent < budget) {
282 if (efx_channel_has_rx_queue(channel) &&
283 efx->irq_rx_adaptive &&
284 unlikely(++channel->irq_count == 1000)) {
285 if (unlikely(channel->irq_mod_score <
286 irq_adapt_low_thresh)) {
287 if (channel->irq_moderation > 1) {
288 channel->irq_moderation -= 1;
289 efx->type->push_irq_moderation(channel);
290 }
291 } else if (unlikely(channel->irq_mod_score >
292 irq_adapt_high_thresh)) {
293 if (channel->irq_moderation <
294 efx->irq_rx_moderation) {
295 channel->irq_moderation += 1;
296 efx->type->push_irq_moderation(channel);
297 }
298 }
299 channel->irq_count = 0;
300 channel->irq_mod_score = 0;
301 }
302
303 efx_filter_rfs_expire(channel);
304
305 /* There is no race here; although napi_disable() will
306 * only wait for napi_complete(), this isn't a problem
307 * since efx_channel_processed() will have no effect if
308 * interrupts have already been disabled.
309 */
310 napi_complete(napi);
311 efx_channel_processed(channel);
312 }
313
314 return spent;
315 }
316
317 /* Process the eventq of the specified channel immediately on this CPU
318 *
319 * Disable hardware generated interrupts, wait for any existing
320 * processing to finish, then directly poll (and ack ) the eventq.
321 * Finally reenable NAPI and interrupts.
322 *
323 * This is for use only during a loopback self-test. It must not
324 * deliver any packets up the stack as this can result in deadlock.
325 */
326 void efx_process_channel_now(struct efx_channel *channel)
327 {
328 struct efx_nic *efx = channel->efx;
329
330 BUG_ON(channel->channel >= efx->n_channels);
331 BUG_ON(!channel->enabled);
332 BUG_ON(!efx->loopback_selftest);
333
334 /* Disable interrupts and wait for ISRs to complete */
335 efx_nic_disable_interrupts(efx);
336 if (efx->legacy_irq) {
337 synchronize_irq(efx->legacy_irq);
338 efx->legacy_irq_enabled = false;
339 }
340 if (channel->irq)
341 synchronize_irq(channel->irq);
342
343 /* Wait for any NAPI processing to complete */
344 napi_disable(&channel->napi_str);
345
346 /* Poll the channel */
347 efx_process_channel(channel, channel->eventq_mask + 1);
348
349 /* Ack the eventq. This may cause an interrupt to be generated
350 * when they are reenabled */
351 efx_channel_processed(channel);
352
353 napi_enable(&channel->napi_str);
354 if (efx->legacy_irq)
355 efx->legacy_irq_enabled = true;
356 efx_nic_enable_interrupts(efx);
357 }
358
359 /* Create event queue
360 * Event queue memory allocations are done only once. If the channel
361 * is reset, the memory buffer will be reused; this guards against
362 * errors during channel reset and also simplifies interrupt handling.
363 */
364 static int efx_probe_eventq(struct efx_channel *channel)
365 {
366 struct efx_nic *efx = channel->efx;
367 unsigned long entries;
368
369 netif_dbg(efx, probe, efx->net_dev,
370 "chan %d create event queue\n", channel->channel);
371
372 /* Build an event queue with room for one event per tx and rx buffer,
373 * plus some extra for link state events and MCDI completions. */
374 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
375 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
376 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
377
378 return efx_nic_probe_eventq(channel);
379 }
380
381 /* Prepare channel's event queue */
382 static void efx_init_eventq(struct efx_channel *channel)
383 {
384 netif_dbg(channel->efx, drv, channel->efx->net_dev,
385 "chan %d init event queue\n", channel->channel);
386
387 channel->eventq_read_ptr = 0;
388
389 efx_nic_init_eventq(channel);
390 }
391
392 /* Enable event queue processing and NAPI */
393 static void efx_start_eventq(struct efx_channel *channel)
394 {
395 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
396 "chan %d start event queue\n", channel->channel);
397
398 /* The interrupt handler for this channel may set work_pending
399 * as soon as we enable it. Make sure it's cleared before
400 * then. Similarly, make sure it sees the enabled flag set.
401 */
402 channel->work_pending = false;
403 channel->enabled = true;
404 smp_wmb();
405
406 napi_enable(&channel->napi_str);
407 efx_nic_eventq_read_ack(channel);
408 }
409
410 /* Disable event queue processing and NAPI */
411 static void efx_stop_eventq(struct efx_channel *channel)
412 {
413 if (!channel->enabled)
414 return;
415
416 napi_disable(&channel->napi_str);
417 channel->enabled = false;
418 }
419
420 static void efx_fini_eventq(struct efx_channel *channel)
421 {
422 netif_dbg(channel->efx, drv, channel->efx->net_dev,
423 "chan %d fini event queue\n", channel->channel);
424
425 efx_nic_fini_eventq(channel);
426 }
427
428 static void efx_remove_eventq(struct efx_channel *channel)
429 {
430 netif_dbg(channel->efx, drv, channel->efx->net_dev,
431 "chan %d remove event queue\n", channel->channel);
432
433 efx_nic_remove_eventq(channel);
434 }
435
436 /**************************************************************************
437 *
438 * Channel handling
439 *
440 *************************************************************************/
441
442 /* Allocate and initialise a channel structure, optionally copying
443 * parameters (but not resources) from an old channel structure. */
444 static struct efx_channel *
445 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
446 {
447 struct efx_channel *channel;
448 struct efx_rx_queue *rx_queue;
449 struct efx_tx_queue *tx_queue;
450 int j;
451
452 if (old_channel) {
453 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
454 if (!channel)
455 return NULL;
456
457 *channel = *old_channel;
458
459 channel->napi_dev = NULL;
460 memset(&channel->eventq, 0, sizeof(channel->eventq));
461
462 rx_queue = &channel->rx_queue;
463 rx_queue->buffer = NULL;
464 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
465
466 for (j = 0; j < EFX_TXQ_TYPES; j++) {
467 tx_queue = &channel->tx_queue[j];
468 if (tx_queue->channel)
469 tx_queue->channel = channel;
470 tx_queue->buffer = NULL;
471 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
472 }
473 } else {
474 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
475 if (!channel)
476 return NULL;
477
478 channel->efx = efx;
479 channel->channel = i;
480
481 for (j = 0; j < EFX_TXQ_TYPES; j++) {
482 tx_queue = &channel->tx_queue[j];
483 tx_queue->efx = efx;
484 tx_queue->queue = i * EFX_TXQ_TYPES + j;
485 tx_queue->channel = channel;
486 }
487 }
488
489 rx_queue = &channel->rx_queue;
490 rx_queue->efx = efx;
491 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
492 (unsigned long)rx_queue);
493
494 return channel;
495 }
496
497 static int efx_probe_channel(struct efx_channel *channel)
498 {
499 struct efx_tx_queue *tx_queue;
500 struct efx_rx_queue *rx_queue;
501 int rc;
502
503 netif_dbg(channel->efx, probe, channel->efx->net_dev,
504 "creating channel %d\n", channel->channel);
505
506 rc = efx_probe_eventq(channel);
507 if (rc)
508 goto fail1;
509
510 efx_for_each_channel_tx_queue(tx_queue, channel) {
511 rc = efx_probe_tx_queue(tx_queue);
512 if (rc)
513 goto fail2;
514 }
515
516 efx_for_each_channel_rx_queue(rx_queue, channel) {
517 rc = efx_probe_rx_queue(rx_queue);
518 if (rc)
519 goto fail3;
520 }
521
522 channel->n_rx_frm_trunc = 0;
523
524 return 0;
525
526 fail3:
527 efx_for_each_channel_rx_queue(rx_queue, channel)
528 efx_remove_rx_queue(rx_queue);
529 fail2:
530 efx_for_each_channel_tx_queue(tx_queue, channel)
531 efx_remove_tx_queue(tx_queue);
532 fail1:
533 return rc;
534 }
535
536
537 static void efx_set_channel_names(struct efx_nic *efx)
538 {
539 struct efx_channel *channel;
540 const char *type = "";
541 int number;
542
543 efx_for_each_channel(channel, efx) {
544 number = channel->channel;
545 if (efx->n_channels > efx->n_rx_channels) {
546 if (channel->channel < efx->n_rx_channels) {
547 type = "-rx";
548 } else {
549 type = "-tx";
550 number -= efx->n_rx_channels;
551 }
552 }
553 snprintf(efx->channel_name[channel->channel],
554 sizeof(efx->channel_name[0]),
555 "%s%s-%d", efx->name, type, number);
556 }
557 }
558
559 static int efx_probe_channels(struct efx_nic *efx)
560 {
561 struct efx_channel *channel;
562 int rc;
563
564 /* Restart special buffer allocation */
565 efx->next_buffer_table = 0;
566
567 efx_for_each_channel(channel, efx) {
568 rc = efx_probe_channel(channel);
569 if (rc) {
570 netif_err(efx, probe, efx->net_dev,
571 "failed to create channel %d\n",
572 channel->channel);
573 goto fail;
574 }
575 }
576 efx_set_channel_names(efx);
577
578 return 0;
579
580 fail:
581 efx_remove_channels(efx);
582 return rc;
583 }
584
585 /* Channels are shutdown and reinitialised whilst the NIC is running
586 * to propagate configuration changes (mtu, checksum offload), or
587 * to clear hardware error conditions
588 */
589 static void efx_start_datapath(struct efx_nic *efx)
590 {
591 struct efx_tx_queue *tx_queue;
592 struct efx_rx_queue *rx_queue;
593 struct efx_channel *channel;
594
595 /* Calculate the rx buffer allocation parameters required to
596 * support the current MTU, including padding for header
597 * alignment and overruns.
598 */
599 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
600 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
601 efx->type->rx_buffer_hash_size +
602 efx->type->rx_buffer_padding);
603 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
604 sizeof(struct efx_rx_page_state));
605
606 /* Initialise the channels */
607 efx_for_each_channel(channel, efx) {
608 efx_for_each_channel_tx_queue(tx_queue, channel)
609 efx_init_tx_queue(tx_queue);
610
611 /* The rx buffer allocation strategy is MTU dependent */
612 efx_rx_strategy(channel);
613
614 efx_for_each_channel_rx_queue(rx_queue, channel) {
615 efx_init_rx_queue(rx_queue);
616 efx_nic_generate_fill_event(rx_queue);
617 }
618
619 WARN_ON(channel->rx_pkt != NULL);
620 efx_rx_strategy(channel);
621 }
622
623 if (netif_device_present(efx->net_dev))
624 netif_tx_wake_all_queues(efx->net_dev);
625 }
626
627 static void efx_stop_datapath(struct efx_nic *efx)
628 {
629 struct efx_channel *channel;
630 struct efx_tx_queue *tx_queue;
631 struct efx_rx_queue *rx_queue;
632 int rc;
633
634 EFX_ASSERT_RESET_SERIALISED(efx);
635 BUG_ON(efx->port_enabled);
636
637 rc = efx_nic_flush_queues(efx);
638 if (rc && EFX_WORKAROUND_7803(efx)) {
639 /* Schedule a reset to recover from the flush failure. The
640 * descriptor caches reference memory we're about to free,
641 * but falcon_reconfigure_mac_wrapper() won't reconnect
642 * the MACs because of the pending reset. */
643 netif_err(efx, drv, efx->net_dev,
644 "Resetting to recover from flush failure\n");
645 efx_schedule_reset(efx, RESET_TYPE_ALL);
646 } else if (rc) {
647 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
648 } else {
649 netif_dbg(efx, drv, efx->net_dev,
650 "successfully flushed all queues\n");
651 }
652
653 efx_for_each_channel(channel, efx) {
654 /* RX packet processing is pipelined, so wait for the
655 * NAPI handler to complete. At least event queue 0
656 * might be kept active by non-data events, so don't
657 * use napi_synchronize() but actually disable NAPI
658 * temporarily.
659 */
660 if (efx_channel_has_rx_queue(channel)) {
661 efx_stop_eventq(channel);
662 efx_start_eventq(channel);
663 }
664
665 efx_for_each_channel_rx_queue(rx_queue, channel)
666 efx_fini_rx_queue(rx_queue);
667 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
668 efx_fini_tx_queue(tx_queue);
669 }
670 }
671
672 static void efx_remove_channel(struct efx_channel *channel)
673 {
674 struct efx_tx_queue *tx_queue;
675 struct efx_rx_queue *rx_queue;
676
677 netif_dbg(channel->efx, drv, channel->efx->net_dev,
678 "destroy chan %d\n", channel->channel);
679
680 efx_for_each_channel_rx_queue(rx_queue, channel)
681 efx_remove_rx_queue(rx_queue);
682 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
683 efx_remove_tx_queue(tx_queue);
684 efx_remove_eventq(channel);
685 }
686
687 static void efx_remove_channels(struct efx_nic *efx)
688 {
689 struct efx_channel *channel;
690
691 efx_for_each_channel(channel, efx)
692 efx_remove_channel(channel);
693 }
694
695 int
696 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
697 {
698 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
699 u32 old_rxq_entries, old_txq_entries;
700 unsigned i;
701 int rc;
702
703 efx_stop_all(efx);
704 efx_stop_interrupts(efx);
705
706 /* Clone channels */
707 memset(other_channel, 0, sizeof(other_channel));
708 for (i = 0; i < efx->n_channels; i++) {
709 channel = efx_alloc_channel(efx, i, efx->channel[i]);
710 if (!channel) {
711 rc = -ENOMEM;
712 goto out;
713 }
714 other_channel[i] = channel;
715 }
716
717 /* Swap entry counts and channel pointers */
718 old_rxq_entries = efx->rxq_entries;
719 old_txq_entries = efx->txq_entries;
720 efx->rxq_entries = rxq_entries;
721 efx->txq_entries = txq_entries;
722 for (i = 0; i < efx->n_channels; i++) {
723 channel = efx->channel[i];
724 efx->channel[i] = other_channel[i];
725 other_channel[i] = channel;
726 }
727
728 rc = efx_probe_channels(efx);
729 if (rc)
730 goto rollback;
731
732 efx_init_napi(efx);
733
734 /* Destroy old channels */
735 for (i = 0; i < efx->n_channels; i++) {
736 efx_fini_napi_channel(other_channel[i]);
737 efx_remove_channel(other_channel[i]);
738 }
739 out:
740 /* Free unused channel structures */
741 for (i = 0; i < efx->n_channels; i++)
742 kfree(other_channel[i]);
743
744 efx_start_interrupts(efx);
745 efx_start_all(efx);
746 return rc;
747
748 rollback:
749 /* Swap back */
750 efx->rxq_entries = old_rxq_entries;
751 efx->txq_entries = old_txq_entries;
752 for (i = 0; i < efx->n_channels; i++) {
753 channel = efx->channel[i];
754 efx->channel[i] = other_channel[i];
755 other_channel[i] = channel;
756 }
757 goto out;
758 }
759
760 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
761 {
762 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
763 }
764
765 /**************************************************************************
766 *
767 * Port handling
768 *
769 **************************************************************************/
770
771 /* This ensures that the kernel is kept informed (via
772 * netif_carrier_on/off) of the link status, and also maintains the
773 * link status's stop on the port's TX queue.
774 */
775 void efx_link_status_changed(struct efx_nic *efx)
776 {
777 struct efx_link_state *link_state = &efx->link_state;
778
779 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
780 * that no events are triggered between unregister_netdev() and the
781 * driver unloading. A more general condition is that NETDEV_CHANGE
782 * can only be generated between NETDEV_UP and NETDEV_DOWN */
783 if (!netif_running(efx->net_dev))
784 return;
785
786 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
787 efx->n_link_state_changes++;
788
789 if (link_state->up)
790 netif_carrier_on(efx->net_dev);
791 else
792 netif_carrier_off(efx->net_dev);
793 }
794
795 /* Status message for kernel log */
796 if (link_state->up)
797 netif_info(efx, link, efx->net_dev,
798 "link up at %uMbps %s-duplex (MTU %d)%s\n",
799 link_state->speed, link_state->fd ? "full" : "half",
800 efx->net_dev->mtu,
801 (efx->promiscuous ? " [PROMISC]" : ""));
802 else
803 netif_info(efx, link, efx->net_dev, "link down\n");
804 }
805
806 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
807 {
808 efx->link_advertising = advertising;
809 if (advertising) {
810 if (advertising & ADVERTISED_Pause)
811 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
812 else
813 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
814 if (advertising & ADVERTISED_Asym_Pause)
815 efx->wanted_fc ^= EFX_FC_TX;
816 }
817 }
818
819 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
820 {
821 efx->wanted_fc = wanted_fc;
822 if (efx->link_advertising) {
823 if (wanted_fc & EFX_FC_RX)
824 efx->link_advertising |= (ADVERTISED_Pause |
825 ADVERTISED_Asym_Pause);
826 else
827 efx->link_advertising &= ~(ADVERTISED_Pause |
828 ADVERTISED_Asym_Pause);
829 if (wanted_fc & EFX_FC_TX)
830 efx->link_advertising ^= ADVERTISED_Asym_Pause;
831 }
832 }
833
834 static void efx_fini_port(struct efx_nic *efx);
835
836 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
837 * the MAC appropriately. All other PHY configuration changes are pushed
838 * through phy_op->set_settings(), and pushed asynchronously to the MAC
839 * through efx_monitor().
840 *
841 * Callers must hold the mac_lock
842 */
843 int __efx_reconfigure_port(struct efx_nic *efx)
844 {
845 enum efx_phy_mode phy_mode;
846 int rc;
847
848 WARN_ON(!mutex_is_locked(&efx->mac_lock));
849
850 /* Serialise the promiscuous flag with efx_set_rx_mode. */
851 netif_addr_lock_bh(efx->net_dev);
852 netif_addr_unlock_bh(efx->net_dev);
853
854 /* Disable PHY transmit in mac level loopbacks */
855 phy_mode = efx->phy_mode;
856 if (LOOPBACK_INTERNAL(efx))
857 efx->phy_mode |= PHY_MODE_TX_DISABLED;
858 else
859 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
860
861 rc = efx->type->reconfigure_port(efx);
862
863 if (rc)
864 efx->phy_mode = phy_mode;
865
866 return rc;
867 }
868
869 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
870 * disabled. */
871 int efx_reconfigure_port(struct efx_nic *efx)
872 {
873 int rc;
874
875 EFX_ASSERT_RESET_SERIALISED(efx);
876
877 mutex_lock(&efx->mac_lock);
878 rc = __efx_reconfigure_port(efx);
879 mutex_unlock(&efx->mac_lock);
880
881 return rc;
882 }
883
884 /* Asynchronous work item for changing MAC promiscuity and multicast
885 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
886 * MAC directly. */
887 static void efx_mac_work(struct work_struct *data)
888 {
889 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
890
891 mutex_lock(&efx->mac_lock);
892 if (efx->port_enabled)
893 efx->type->reconfigure_mac(efx);
894 mutex_unlock(&efx->mac_lock);
895 }
896
897 static int efx_probe_port(struct efx_nic *efx)
898 {
899 int rc;
900
901 netif_dbg(efx, probe, efx->net_dev, "create port\n");
902
903 if (phy_flash_cfg)
904 efx->phy_mode = PHY_MODE_SPECIAL;
905
906 /* Connect up MAC/PHY operations table */
907 rc = efx->type->probe_port(efx);
908 if (rc)
909 return rc;
910
911 /* Initialise MAC address to permanent address */
912 memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
913
914 return 0;
915 }
916
917 static int efx_init_port(struct efx_nic *efx)
918 {
919 int rc;
920
921 netif_dbg(efx, drv, efx->net_dev, "init port\n");
922
923 mutex_lock(&efx->mac_lock);
924
925 rc = efx->phy_op->init(efx);
926 if (rc)
927 goto fail1;
928
929 efx->port_initialized = true;
930
931 /* Reconfigure the MAC before creating dma queues (required for
932 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
933 efx->type->reconfigure_mac(efx);
934
935 /* Ensure the PHY advertises the correct flow control settings */
936 rc = efx->phy_op->reconfigure(efx);
937 if (rc)
938 goto fail2;
939
940 mutex_unlock(&efx->mac_lock);
941 return 0;
942
943 fail2:
944 efx->phy_op->fini(efx);
945 fail1:
946 mutex_unlock(&efx->mac_lock);
947 return rc;
948 }
949
950 static void efx_start_port(struct efx_nic *efx)
951 {
952 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
953 BUG_ON(efx->port_enabled);
954
955 mutex_lock(&efx->mac_lock);
956 efx->port_enabled = true;
957
958 /* efx_mac_work() might have been scheduled after efx_stop_port(),
959 * and then cancelled by efx_flush_all() */
960 efx->type->reconfigure_mac(efx);
961
962 mutex_unlock(&efx->mac_lock);
963 }
964
965 /* Prevent efx_mac_work() and efx_monitor() from working */
966 static void efx_stop_port(struct efx_nic *efx)
967 {
968 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
969
970 mutex_lock(&efx->mac_lock);
971 efx->port_enabled = false;
972 mutex_unlock(&efx->mac_lock);
973
974 /* Serialise against efx_set_multicast_list() */
975 netif_addr_lock_bh(efx->net_dev);
976 netif_addr_unlock_bh(efx->net_dev);
977 }
978
979 static void efx_fini_port(struct efx_nic *efx)
980 {
981 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
982
983 if (!efx->port_initialized)
984 return;
985
986 efx->phy_op->fini(efx);
987 efx->port_initialized = false;
988
989 efx->link_state.up = false;
990 efx_link_status_changed(efx);
991 }
992
993 static void efx_remove_port(struct efx_nic *efx)
994 {
995 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
996
997 efx->type->remove_port(efx);
998 }
999
1000 /**************************************************************************
1001 *
1002 * NIC handling
1003 *
1004 **************************************************************************/
1005
1006 /* This configures the PCI device to enable I/O and DMA. */
1007 static int efx_init_io(struct efx_nic *efx)
1008 {
1009 struct pci_dev *pci_dev = efx->pci_dev;
1010 dma_addr_t dma_mask = efx->type->max_dma_mask;
1011 int rc;
1012
1013 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1014
1015 rc = pci_enable_device(pci_dev);
1016 if (rc) {
1017 netif_err(efx, probe, efx->net_dev,
1018 "failed to enable PCI device\n");
1019 goto fail1;
1020 }
1021
1022 pci_set_master(pci_dev);
1023
1024 /* Set the PCI DMA mask. Try all possibilities from our
1025 * genuine mask down to 32 bits, because some architectures
1026 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1027 * masks event though they reject 46 bit masks.
1028 */
1029 while (dma_mask > 0x7fffffffUL) {
1030 if (pci_dma_supported(pci_dev, dma_mask)) {
1031 rc = pci_set_dma_mask(pci_dev, dma_mask);
1032 if (rc == 0)
1033 break;
1034 }
1035 dma_mask >>= 1;
1036 }
1037 if (rc) {
1038 netif_err(efx, probe, efx->net_dev,
1039 "could not find a suitable DMA mask\n");
1040 goto fail2;
1041 }
1042 netif_dbg(efx, probe, efx->net_dev,
1043 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1044 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1045 if (rc) {
1046 /* pci_set_consistent_dma_mask() is not *allowed* to
1047 * fail with a mask that pci_set_dma_mask() accepted,
1048 * but just in case...
1049 */
1050 netif_err(efx, probe, efx->net_dev,
1051 "failed to set consistent DMA mask\n");
1052 goto fail2;
1053 }
1054
1055 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1056 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1057 if (rc) {
1058 netif_err(efx, probe, efx->net_dev,
1059 "request for memory BAR failed\n");
1060 rc = -EIO;
1061 goto fail3;
1062 }
1063 efx->membase = ioremap_nocache(efx->membase_phys,
1064 efx->type->mem_map_size);
1065 if (!efx->membase) {
1066 netif_err(efx, probe, efx->net_dev,
1067 "could not map memory BAR at %llx+%x\n",
1068 (unsigned long long)efx->membase_phys,
1069 efx->type->mem_map_size);
1070 rc = -ENOMEM;
1071 goto fail4;
1072 }
1073 netif_dbg(efx, probe, efx->net_dev,
1074 "memory BAR at %llx+%x (virtual %p)\n",
1075 (unsigned long long)efx->membase_phys,
1076 efx->type->mem_map_size, efx->membase);
1077
1078 return 0;
1079
1080 fail4:
1081 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1082 fail3:
1083 efx->membase_phys = 0;
1084 fail2:
1085 pci_disable_device(efx->pci_dev);
1086 fail1:
1087 return rc;
1088 }
1089
1090 static void efx_fini_io(struct efx_nic *efx)
1091 {
1092 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1093
1094 if (efx->membase) {
1095 iounmap(efx->membase);
1096 efx->membase = NULL;
1097 }
1098
1099 if (efx->membase_phys) {
1100 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1101 efx->membase_phys = 0;
1102 }
1103
1104 pci_disable_device(efx->pci_dev);
1105 }
1106
1107 static unsigned int efx_wanted_parallelism(void)
1108 {
1109 cpumask_var_t thread_mask;
1110 unsigned int count;
1111 int cpu;
1112
1113 if (rss_cpus)
1114 return rss_cpus;
1115
1116 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1117 printk(KERN_WARNING
1118 "sfc: RSS disabled due to allocation failure\n");
1119 return 1;
1120 }
1121
1122 count = 0;
1123 for_each_online_cpu(cpu) {
1124 if (!cpumask_test_cpu(cpu, thread_mask)) {
1125 ++count;
1126 cpumask_or(thread_mask, thread_mask,
1127 topology_thread_cpumask(cpu));
1128 }
1129 }
1130
1131 free_cpumask_var(thread_mask);
1132 return count;
1133 }
1134
1135 static int
1136 efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1137 {
1138 #ifdef CONFIG_RFS_ACCEL
1139 unsigned int i;
1140 int rc;
1141
1142 efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1143 if (!efx->net_dev->rx_cpu_rmap)
1144 return -ENOMEM;
1145 for (i = 0; i < efx->n_rx_channels; i++) {
1146 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1147 xentries[i].vector);
1148 if (rc) {
1149 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1150 efx->net_dev->rx_cpu_rmap = NULL;
1151 return rc;
1152 }
1153 }
1154 #endif
1155 return 0;
1156 }
1157
1158 /* Probe the number and type of interrupts we are able to obtain, and
1159 * the resulting numbers of channels and RX queues.
1160 */
1161 static int efx_probe_interrupts(struct efx_nic *efx)
1162 {
1163 unsigned int max_channels =
1164 min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1165 unsigned int i;
1166 int rc;
1167
1168 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1169 struct msix_entry xentries[EFX_MAX_CHANNELS];
1170 unsigned int n_channels;
1171
1172 n_channels = efx_wanted_parallelism();
1173 if (separate_tx_channels)
1174 n_channels *= 2;
1175 n_channels = min(n_channels, max_channels);
1176
1177 for (i = 0; i < n_channels; i++)
1178 xentries[i].entry = i;
1179 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1180 if (rc > 0) {
1181 netif_err(efx, drv, efx->net_dev,
1182 "WARNING: Insufficient MSI-X vectors"
1183 " available (%d < %u).\n", rc, n_channels);
1184 netif_err(efx, drv, efx->net_dev,
1185 "WARNING: Performance may be reduced.\n");
1186 EFX_BUG_ON_PARANOID(rc >= n_channels);
1187 n_channels = rc;
1188 rc = pci_enable_msix(efx->pci_dev, xentries,
1189 n_channels);
1190 }
1191
1192 if (rc == 0) {
1193 efx->n_channels = n_channels;
1194 if (separate_tx_channels) {
1195 efx->n_tx_channels =
1196 max(efx->n_channels / 2, 1U);
1197 efx->n_rx_channels =
1198 max(efx->n_channels -
1199 efx->n_tx_channels, 1U);
1200 } else {
1201 efx->n_tx_channels = efx->n_channels;
1202 efx->n_rx_channels = efx->n_channels;
1203 }
1204 rc = efx_init_rx_cpu_rmap(efx, xentries);
1205 if (rc) {
1206 pci_disable_msix(efx->pci_dev);
1207 return rc;
1208 }
1209 for (i = 0; i < n_channels; i++)
1210 efx_get_channel(efx, i)->irq =
1211 xentries[i].vector;
1212 } else {
1213 /* Fall back to single channel MSI */
1214 efx->interrupt_mode = EFX_INT_MODE_MSI;
1215 netif_err(efx, drv, efx->net_dev,
1216 "could not enable MSI-X\n");
1217 }
1218 }
1219
1220 /* Try single interrupt MSI */
1221 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1222 efx->n_channels = 1;
1223 efx->n_rx_channels = 1;
1224 efx->n_tx_channels = 1;
1225 rc = pci_enable_msi(efx->pci_dev);
1226 if (rc == 0) {
1227 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1228 } else {
1229 netif_err(efx, drv, efx->net_dev,
1230 "could not enable MSI\n");
1231 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1232 }
1233 }
1234
1235 /* Assume legacy interrupts */
1236 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1237 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1238 efx->n_rx_channels = 1;
1239 efx->n_tx_channels = 1;
1240 efx->legacy_irq = efx->pci_dev->irq;
1241 }
1242
1243 return 0;
1244 }
1245
1246 /* Enable interrupts, then probe and start the event queues */
1247 static void efx_start_interrupts(struct efx_nic *efx)
1248 {
1249 struct efx_channel *channel;
1250
1251 if (efx->legacy_irq)
1252 efx->legacy_irq_enabled = true;
1253 efx_nic_enable_interrupts(efx);
1254
1255 efx_for_each_channel(channel, efx) {
1256 efx_init_eventq(channel);
1257 efx_start_eventq(channel);
1258 }
1259
1260 efx_mcdi_mode_event(efx);
1261 }
1262
1263 static void efx_stop_interrupts(struct efx_nic *efx)
1264 {
1265 struct efx_channel *channel;
1266
1267 efx_mcdi_mode_poll(efx);
1268
1269 efx_nic_disable_interrupts(efx);
1270 if (efx->legacy_irq) {
1271 synchronize_irq(efx->legacy_irq);
1272 efx->legacy_irq_enabled = false;
1273 }
1274
1275 efx_for_each_channel(channel, efx) {
1276 if (channel->irq)
1277 synchronize_irq(channel->irq);
1278
1279 efx_stop_eventq(channel);
1280 efx_fini_eventq(channel);
1281 }
1282 }
1283
1284 static void efx_remove_interrupts(struct efx_nic *efx)
1285 {
1286 struct efx_channel *channel;
1287
1288 /* Remove MSI/MSI-X interrupts */
1289 efx_for_each_channel(channel, efx)
1290 channel->irq = 0;
1291 pci_disable_msi(efx->pci_dev);
1292 pci_disable_msix(efx->pci_dev);
1293
1294 /* Remove legacy interrupt */
1295 efx->legacy_irq = 0;
1296 }
1297
1298 static void efx_set_channels(struct efx_nic *efx)
1299 {
1300 struct efx_channel *channel;
1301 struct efx_tx_queue *tx_queue;
1302
1303 efx->tx_channel_offset =
1304 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1305
1306 /* We need to adjust the TX queue numbers if we have separate
1307 * RX-only and TX-only channels.
1308 */
1309 efx_for_each_channel(channel, efx) {
1310 efx_for_each_channel_tx_queue(tx_queue, channel)
1311 tx_queue->queue -= (efx->tx_channel_offset *
1312 EFX_TXQ_TYPES);
1313 }
1314 }
1315
1316 static int efx_probe_nic(struct efx_nic *efx)
1317 {
1318 size_t i;
1319 int rc;
1320
1321 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1322
1323 /* Carry out hardware-type specific initialisation */
1324 rc = efx->type->probe(efx);
1325 if (rc)
1326 return rc;
1327
1328 /* Determine the number of channels and queues by trying to hook
1329 * in MSI-X interrupts. */
1330 rc = efx_probe_interrupts(efx);
1331 if (rc)
1332 goto fail;
1333
1334 if (efx->n_channels > 1)
1335 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1336 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1337 efx->rx_indir_table[i] =
1338 ethtool_rxfh_indir_default(i, efx->n_rx_channels);
1339
1340 efx_set_channels(efx);
1341 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1342 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1343
1344 /* Initialise the interrupt moderation settings */
1345 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1346 true);
1347
1348 return 0;
1349
1350 fail:
1351 efx->type->remove(efx);
1352 return rc;
1353 }
1354
1355 static void efx_remove_nic(struct efx_nic *efx)
1356 {
1357 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1358
1359 efx_remove_interrupts(efx);
1360 efx->type->remove(efx);
1361 }
1362
1363 /**************************************************************************
1364 *
1365 * NIC startup/shutdown
1366 *
1367 *************************************************************************/
1368
1369 static int efx_probe_all(struct efx_nic *efx)
1370 {
1371 int rc;
1372
1373 rc = efx_probe_nic(efx);
1374 if (rc) {
1375 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1376 goto fail1;
1377 }
1378
1379 rc = efx_probe_port(efx);
1380 if (rc) {
1381 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1382 goto fail2;
1383 }
1384
1385 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1386 rc = efx_probe_channels(efx);
1387 if (rc)
1388 goto fail3;
1389
1390 rc = efx_probe_filters(efx);
1391 if (rc) {
1392 netif_err(efx, probe, efx->net_dev,
1393 "failed to create filter tables\n");
1394 goto fail4;
1395 }
1396
1397 return 0;
1398
1399 fail4:
1400 efx_remove_channels(efx);
1401 fail3:
1402 efx_remove_port(efx);
1403 fail2:
1404 efx_remove_nic(efx);
1405 fail1:
1406 return rc;
1407 }
1408
1409 /* Called after previous invocation(s) of efx_stop_all, restarts the port,
1410 * kernel transmit queues and NAPI processing, and ensures that the port is
1411 * scheduled to be reconfigured. This function is safe to call multiple
1412 * times when the NIC is in any state.
1413 */
1414 static void efx_start_all(struct efx_nic *efx)
1415 {
1416 EFX_ASSERT_RESET_SERIALISED(efx);
1417
1418 /* Check that it is appropriate to restart the interface. All
1419 * of these flags are safe to read under just the rtnl lock */
1420 if (efx->port_enabled)
1421 return;
1422 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1423 return;
1424 if (!netif_running(efx->net_dev))
1425 return;
1426
1427 efx_start_port(efx);
1428 efx_start_datapath(efx);
1429
1430 /* Start the hardware monitor if there is one. Otherwise (we're link
1431 * event driven), we have to poll the PHY because after an event queue
1432 * flush, we could have a missed a link state change */
1433 if (efx->type->monitor != NULL) {
1434 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1435 efx_monitor_interval);
1436 } else {
1437 mutex_lock(&efx->mac_lock);
1438 if (efx->phy_op->poll(efx))
1439 efx_link_status_changed(efx);
1440 mutex_unlock(&efx->mac_lock);
1441 }
1442
1443 efx->type->start_stats(efx);
1444 }
1445
1446 /* Flush all delayed work. Should only be called when no more delayed work
1447 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1448 * since we're holding the rtnl_lock at this point. */
1449 static void efx_flush_all(struct efx_nic *efx)
1450 {
1451 /* Make sure the hardware monitor is stopped */
1452 cancel_delayed_work_sync(&efx->monitor_work);
1453 /* Stop scheduled port reconfigurations */
1454 cancel_work_sync(&efx->mac_work);
1455 }
1456
1457 /* Quiesce hardware and software without bringing the link down.
1458 * Safe to call multiple times, when the nic and interface is in any
1459 * state. The caller is guaranteed to subsequently be in a position
1460 * to modify any hardware and software state they see fit without
1461 * taking locks. */
1462 static void efx_stop_all(struct efx_nic *efx)
1463 {
1464 EFX_ASSERT_RESET_SERIALISED(efx);
1465
1466 /* port_enabled can be read safely under the rtnl lock */
1467 if (!efx->port_enabled)
1468 return;
1469
1470 efx->type->stop_stats(efx);
1471 efx_stop_port(efx);
1472
1473 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1474 efx_flush_all(efx);
1475
1476 /* Stop the kernel transmit interface late, so the watchdog
1477 * timer isn't ticking over the flush */
1478 netif_tx_disable(efx->net_dev);
1479
1480 efx_stop_datapath(efx);
1481 }
1482
1483 static void efx_remove_all(struct efx_nic *efx)
1484 {
1485 efx_remove_filters(efx);
1486 efx_remove_channels(efx);
1487 efx_remove_port(efx);
1488 efx_remove_nic(efx);
1489 }
1490
1491 /**************************************************************************
1492 *
1493 * Interrupt moderation
1494 *
1495 **************************************************************************/
1496
1497 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1498 {
1499 if (usecs == 0)
1500 return 0;
1501 if (usecs * 1000 < quantum_ns)
1502 return 1; /* never round down to 0 */
1503 return usecs * 1000 / quantum_ns;
1504 }
1505
1506 /* Set interrupt moderation parameters */
1507 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1508 unsigned int rx_usecs, bool rx_adaptive,
1509 bool rx_may_override_tx)
1510 {
1511 struct efx_channel *channel;
1512 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1513 efx->timer_quantum_ns,
1514 1000);
1515 unsigned int tx_ticks;
1516 unsigned int rx_ticks;
1517
1518 EFX_ASSERT_RESET_SERIALISED(efx);
1519
1520 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1521 return -EINVAL;
1522
1523 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1524 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1525
1526 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1527 !rx_may_override_tx) {
1528 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1529 "RX and TX IRQ moderation must be equal\n");
1530 return -EINVAL;
1531 }
1532
1533 efx->irq_rx_adaptive = rx_adaptive;
1534 efx->irq_rx_moderation = rx_ticks;
1535 efx_for_each_channel(channel, efx) {
1536 if (efx_channel_has_rx_queue(channel))
1537 channel->irq_moderation = rx_ticks;
1538 else if (efx_channel_has_tx_queues(channel))
1539 channel->irq_moderation = tx_ticks;
1540 }
1541
1542 return 0;
1543 }
1544
1545 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1546 unsigned int *rx_usecs, bool *rx_adaptive)
1547 {
1548 /* We must round up when converting ticks to microseconds
1549 * because we round down when converting the other way.
1550 */
1551
1552 *rx_adaptive = efx->irq_rx_adaptive;
1553 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1554 efx->timer_quantum_ns,
1555 1000);
1556
1557 /* If channels are shared between RX and TX, so is IRQ
1558 * moderation. Otherwise, IRQ moderation is the same for all
1559 * TX channels and is not adaptive.
1560 */
1561 if (efx->tx_channel_offset == 0)
1562 *tx_usecs = *rx_usecs;
1563 else
1564 *tx_usecs = DIV_ROUND_UP(
1565 efx->channel[efx->tx_channel_offset]->irq_moderation *
1566 efx->timer_quantum_ns,
1567 1000);
1568 }
1569
1570 /**************************************************************************
1571 *
1572 * Hardware monitor
1573 *
1574 **************************************************************************/
1575
1576 /* Run periodically off the general workqueue */
1577 static void efx_monitor(struct work_struct *data)
1578 {
1579 struct efx_nic *efx = container_of(data, struct efx_nic,
1580 monitor_work.work);
1581
1582 netif_vdbg(efx, timer, efx->net_dev,
1583 "hardware monitor executing on CPU %d\n",
1584 raw_smp_processor_id());
1585 BUG_ON(efx->type->monitor == NULL);
1586
1587 /* If the mac_lock is already held then it is likely a port
1588 * reconfiguration is already in place, which will likely do
1589 * most of the work of monitor() anyway. */
1590 if (mutex_trylock(&efx->mac_lock)) {
1591 if (efx->port_enabled)
1592 efx->type->monitor(efx);
1593 mutex_unlock(&efx->mac_lock);
1594 }
1595
1596 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1597 efx_monitor_interval);
1598 }
1599
1600 /**************************************************************************
1601 *
1602 * ioctls
1603 *
1604 *************************************************************************/
1605
1606 /* Net device ioctl
1607 * Context: process, rtnl_lock() held.
1608 */
1609 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1610 {
1611 struct efx_nic *efx = netdev_priv(net_dev);
1612 struct mii_ioctl_data *data = if_mii(ifr);
1613
1614 EFX_ASSERT_RESET_SERIALISED(efx);
1615
1616 /* Convert phy_id from older PRTAD/DEVAD format */
1617 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1618 (data->phy_id & 0xfc00) == 0x0400)
1619 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1620
1621 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1622 }
1623
1624 /**************************************************************************
1625 *
1626 * NAPI interface
1627 *
1628 **************************************************************************/
1629
1630 static void efx_init_napi(struct efx_nic *efx)
1631 {
1632 struct efx_channel *channel;
1633
1634 efx_for_each_channel(channel, efx) {
1635 channel->napi_dev = efx->net_dev;
1636 netif_napi_add(channel->napi_dev, &channel->napi_str,
1637 efx_poll, napi_weight);
1638 }
1639 }
1640
1641 static void efx_fini_napi_channel(struct efx_channel *channel)
1642 {
1643 if (channel->napi_dev)
1644 netif_napi_del(&channel->napi_str);
1645 channel->napi_dev = NULL;
1646 }
1647
1648 static void efx_fini_napi(struct efx_nic *efx)
1649 {
1650 struct efx_channel *channel;
1651
1652 efx_for_each_channel(channel, efx)
1653 efx_fini_napi_channel(channel);
1654 }
1655
1656 /**************************************************************************
1657 *
1658 * Kernel netpoll interface
1659 *
1660 *************************************************************************/
1661
1662 #ifdef CONFIG_NET_POLL_CONTROLLER
1663
1664 /* Although in the common case interrupts will be disabled, this is not
1665 * guaranteed. However, all our work happens inside the NAPI callback,
1666 * so no locking is required.
1667 */
1668 static void efx_netpoll(struct net_device *net_dev)
1669 {
1670 struct efx_nic *efx = netdev_priv(net_dev);
1671 struct efx_channel *channel;
1672
1673 efx_for_each_channel(channel, efx)
1674 efx_schedule_channel(channel);
1675 }
1676
1677 #endif
1678
1679 /**************************************************************************
1680 *
1681 * Kernel net device interface
1682 *
1683 *************************************************************************/
1684
1685 /* Context: process, rtnl_lock() held. */
1686 static int efx_net_open(struct net_device *net_dev)
1687 {
1688 struct efx_nic *efx = netdev_priv(net_dev);
1689 EFX_ASSERT_RESET_SERIALISED(efx);
1690
1691 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1692 raw_smp_processor_id());
1693
1694 if (efx->state == STATE_DISABLED)
1695 return -EIO;
1696 if (efx->phy_mode & PHY_MODE_SPECIAL)
1697 return -EBUSY;
1698 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1699 return -EIO;
1700
1701 /* Notify the kernel of the link state polled during driver load,
1702 * before the monitor starts running */
1703 efx_link_status_changed(efx);
1704
1705 efx_start_all(efx);
1706 return 0;
1707 }
1708
1709 /* Context: process, rtnl_lock() held.
1710 * Note that the kernel will ignore our return code; this method
1711 * should really be a void.
1712 */
1713 static int efx_net_stop(struct net_device *net_dev)
1714 {
1715 struct efx_nic *efx = netdev_priv(net_dev);
1716
1717 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1718 raw_smp_processor_id());
1719
1720 if (efx->state != STATE_DISABLED) {
1721 /* Stop the device and flush all the channels */
1722 efx_stop_all(efx);
1723 }
1724
1725 return 0;
1726 }
1727
1728 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1729 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1730 struct rtnl_link_stats64 *stats)
1731 {
1732 struct efx_nic *efx = netdev_priv(net_dev);
1733 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1734
1735 spin_lock_bh(&efx->stats_lock);
1736
1737 efx->type->update_stats(efx);
1738
1739 stats->rx_packets = mac_stats->rx_packets;
1740 stats->tx_packets = mac_stats->tx_packets;
1741 stats->rx_bytes = mac_stats->rx_bytes;
1742 stats->tx_bytes = mac_stats->tx_bytes;
1743 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1744 stats->multicast = mac_stats->rx_multicast;
1745 stats->collisions = mac_stats->tx_collision;
1746 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1747 mac_stats->rx_length_error);
1748 stats->rx_crc_errors = mac_stats->rx_bad;
1749 stats->rx_frame_errors = mac_stats->rx_align_error;
1750 stats->rx_fifo_errors = mac_stats->rx_overflow;
1751 stats->rx_missed_errors = mac_stats->rx_missed;
1752 stats->tx_window_errors = mac_stats->tx_late_collision;
1753
1754 stats->rx_errors = (stats->rx_length_errors +
1755 stats->rx_crc_errors +
1756 stats->rx_frame_errors +
1757 mac_stats->rx_symbol_error);
1758 stats->tx_errors = (stats->tx_window_errors +
1759 mac_stats->tx_bad);
1760
1761 spin_unlock_bh(&efx->stats_lock);
1762
1763 return stats;
1764 }
1765
1766 /* Context: netif_tx_lock held, BHs disabled. */
1767 static void efx_watchdog(struct net_device *net_dev)
1768 {
1769 struct efx_nic *efx = netdev_priv(net_dev);
1770
1771 netif_err(efx, tx_err, efx->net_dev,
1772 "TX stuck with port_enabled=%d: resetting channels\n",
1773 efx->port_enabled);
1774
1775 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1776 }
1777
1778
1779 /* Context: process, rtnl_lock() held. */
1780 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1781 {
1782 struct efx_nic *efx = netdev_priv(net_dev);
1783
1784 EFX_ASSERT_RESET_SERIALISED(efx);
1785
1786 if (new_mtu > EFX_MAX_MTU)
1787 return -EINVAL;
1788
1789 efx_stop_all(efx);
1790
1791 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1792
1793 mutex_lock(&efx->mac_lock);
1794 /* Reconfigure the MAC before enabling the dma queues so that
1795 * the RX buffers don't overflow */
1796 net_dev->mtu = new_mtu;
1797 efx->type->reconfigure_mac(efx);
1798 mutex_unlock(&efx->mac_lock);
1799
1800 efx_start_all(efx);
1801 return 0;
1802 }
1803
1804 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1805 {
1806 struct efx_nic *efx = netdev_priv(net_dev);
1807 struct sockaddr *addr = data;
1808 char *new_addr = addr->sa_data;
1809
1810 EFX_ASSERT_RESET_SERIALISED(efx);
1811
1812 if (!is_valid_ether_addr(new_addr)) {
1813 netif_err(efx, drv, efx->net_dev,
1814 "invalid ethernet MAC address requested: %pM\n",
1815 new_addr);
1816 return -EINVAL;
1817 }
1818
1819 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1820
1821 /* Reconfigure the MAC */
1822 mutex_lock(&efx->mac_lock);
1823 efx->type->reconfigure_mac(efx);
1824 mutex_unlock(&efx->mac_lock);
1825
1826 return 0;
1827 }
1828
1829 /* Context: netif_addr_lock held, BHs disabled. */
1830 static void efx_set_rx_mode(struct net_device *net_dev)
1831 {
1832 struct efx_nic *efx = netdev_priv(net_dev);
1833 struct netdev_hw_addr *ha;
1834 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1835 u32 crc;
1836 int bit;
1837
1838 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1839
1840 /* Build multicast hash table */
1841 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1842 memset(mc_hash, 0xff, sizeof(*mc_hash));
1843 } else {
1844 memset(mc_hash, 0x00, sizeof(*mc_hash));
1845 netdev_for_each_mc_addr(ha, net_dev) {
1846 crc = ether_crc_le(ETH_ALEN, ha->addr);
1847 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1848 set_bit_le(bit, mc_hash->byte);
1849 }
1850
1851 /* Broadcast packets go through the multicast hash filter.
1852 * ether_crc_le() of the broadcast address is 0xbe2612ff
1853 * so we always add bit 0xff to the mask.
1854 */
1855 set_bit_le(0xff, mc_hash->byte);
1856 }
1857
1858 if (efx->port_enabled)
1859 queue_work(efx->workqueue, &efx->mac_work);
1860 /* Otherwise efx_start_port() will do this */
1861 }
1862
1863 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
1864 {
1865 struct efx_nic *efx = netdev_priv(net_dev);
1866
1867 /* If disabling RX n-tuple filtering, clear existing filters */
1868 if (net_dev->features & ~data & NETIF_F_NTUPLE)
1869 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1870
1871 return 0;
1872 }
1873
1874 static const struct net_device_ops efx_netdev_ops = {
1875 .ndo_open = efx_net_open,
1876 .ndo_stop = efx_net_stop,
1877 .ndo_get_stats64 = efx_net_stats,
1878 .ndo_tx_timeout = efx_watchdog,
1879 .ndo_start_xmit = efx_hard_start_xmit,
1880 .ndo_validate_addr = eth_validate_addr,
1881 .ndo_do_ioctl = efx_ioctl,
1882 .ndo_change_mtu = efx_change_mtu,
1883 .ndo_set_mac_address = efx_set_mac_address,
1884 .ndo_set_rx_mode = efx_set_rx_mode,
1885 .ndo_set_features = efx_set_features,
1886 #ifdef CONFIG_NET_POLL_CONTROLLER
1887 .ndo_poll_controller = efx_netpoll,
1888 #endif
1889 .ndo_setup_tc = efx_setup_tc,
1890 #ifdef CONFIG_RFS_ACCEL
1891 .ndo_rx_flow_steer = efx_filter_rfs,
1892 #endif
1893 };
1894
1895 static void efx_update_name(struct efx_nic *efx)
1896 {
1897 strcpy(efx->name, efx->net_dev->name);
1898 efx_mtd_rename(efx);
1899 efx_set_channel_names(efx);
1900 }
1901
1902 static int efx_netdev_event(struct notifier_block *this,
1903 unsigned long event, void *ptr)
1904 {
1905 struct net_device *net_dev = ptr;
1906
1907 if (net_dev->netdev_ops == &efx_netdev_ops &&
1908 event == NETDEV_CHANGENAME)
1909 efx_update_name(netdev_priv(net_dev));
1910
1911 return NOTIFY_DONE;
1912 }
1913
1914 static struct notifier_block efx_netdev_notifier = {
1915 .notifier_call = efx_netdev_event,
1916 };
1917
1918 static ssize_t
1919 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1920 {
1921 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1922 return sprintf(buf, "%d\n", efx->phy_type);
1923 }
1924 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1925
1926 static int efx_register_netdev(struct efx_nic *efx)
1927 {
1928 struct net_device *net_dev = efx->net_dev;
1929 struct efx_channel *channel;
1930 int rc;
1931
1932 net_dev->watchdog_timeo = 5 * HZ;
1933 net_dev->irq = efx->pci_dev->irq;
1934 net_dev->netdev_ops = &efx_netdev_ops;
1935 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1936
1937 rtnl_lock();
1938
1939 rc = dev_alloc_name(net_dev, net_dev->name);
1940 if (rc < 0)
1941 goto fail_locked;
1942 efx_update_name(efx);
1943
1944 rc = register_netdevice(net_dev);
1945 if (rc)
1946 goto fail_locked;
1947
1948 efx_for_each_channel(channel, efx) {
1949 struct efx_tx_queue *tx_queue;
1950 efx_for_each_channel_tx_queue(tx_queue, channel)
1951 efx_init_tx_queue_core_txq(tx_queue);
1952 }
1953
1954 /* Always start with carrier off; PHY events will detect the link */
1955 netif_carrier_off(net_dev);
1956
1957 rtnl_unlock();
1958
1959 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1960 if (rc) {
1961 netif_err(efx, drv, efx->net_dev,
1962 "failed to init net dev attributes\n");
1963 goto fail_registered;
1964 }
1965
1966 return 0;
1967
1968 fail_locked:
1969 rtnl_unlock();
1970 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1971 return rc;
1972
1973 fail_registered:
1974 unregister_netdev(net_dev);
1975 return rc;
1976 }
1977
1978 static void efx_unregister_netdev(struct efx_nic *efx)
1979 {
1980 struct efx_channel *channel;
1981 struct efx_tx_queue *tx_queue;
1982
1983 if (!efx->net_dev)
1984 return;
1985
1986 BUG_ON(netdev_priv(efx->net_dev) != efx);
1987
1988 /* Free up any skbs still remaining. This has to happen before
1989 * we try to unregister the netdev as running their destructors
1990 * may be needed to get the device ref. count to 0. */
1991 efx_for_each_channel(channel, efx) {
1992 efx_for_each_channel_tx_queue(tx_queue, channel)
1993 efx_release_tx_buffers(tx_queue);
1994 }
1995
1996 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1997 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1998 unregister_netdev(efx->net_dev);
1999 }
2000
2001 /**************************************************************************
2002 *
2003 * Device reset and suspend
2004 *
2005 **************************************************************************/
2006
2007 /* Tears down the entire software state and most of the hardware state
2008 * before reset. */
2009 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2010 {
2011 EFX_ASSERT_RESET_SERIALISED(efx);
2012
2013 efx_stop_all(efx);
2014 mutex_lock(&efx->mac_lock);
2015
2016 efx_stop_interrupts(efx);
2017 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2018 efx->phy_op->fini(efx);
2019 efx->type->fini(efx);
2020 }
2021
2022 /* This function will always ensure that the locks acquired in
2023 * efx_reset_down() are released. A failure return code indicates
2024 * that we were unable to reinitialise the hardware, and the
2025 * driver should be disabled. If ok is false, then the rx and tx
2026 * engines are not restarted, pending a RESET_DISABLE. */
2027 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2028 {
2029 int rc;
2030
2031 EFX_ASSERT_RESET_SERIALISED(efx);
2032
2033 rc = efx->type->init(efx);
2034 if (rc) {
2035 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2036 goto fail;
2037 }
2038
2039 if (!ok)
2040 goto fail;
2041
2042 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2043 rc = efx->phy_op->init(efx);
2044 if (rc)
2045 goto fail;
2046 if (efx->phy_op->reconfigure(efx))
2047 netif_err(efx, drv, efx->net_dev,
2048 "could not restore PHY settings\n");
2049 }
2050
2051 efx->type->reconfigure_mac(efx);
2052
2053 efx_start_interrupts(efx);
2054 efx_restore_filters(efx);
2055
2056 mutex_unlock(&efx->mac_lock);
2057
2058 efx_start_all(efx);
2059
2060 return 0;
2061
2062 fail:
2063 efx->port_initialized = false;
2064
2065 mutex_unlock(&efx->mac_lock);
2066
2067 return rc;
2068 }
2069
2070 /* Reset the NIC using the specified method. Note that the reset may
2071 * fail, in which case the card will be left in an unusable state.
2072 *
2073 * Caller must hold the rtnl_lock.
2074 */
2075 int efx_reset(struct efx_nic *efx, enum reset_type method)
2076 {
2077 int rc, rc2;
2078 bool disabled;
2079
2080 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2081 RESET_TYPE(method));
2082
2083 netif_device_detach(efx->net_dev);
2084 efx_reset_down(efx, method);
2085
2086 rc = efx->type->reset(efx, method);
2087 if (rc) {
2088 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2089 goto out;
2090 }
2091
2092 /* Clear flags for the scopes we covered. We assume the NIC and
2093 * driver are now quiescent so that there is no race here.
2094 */
2095 efx->reset_pending &= -(1 << (method + 1));
2096
2097 /* Reinitialise bus-mastering, which may have been turned off before
2098 * the reset was scheduled. This is still appropriate, even in the
2099 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2100 * can respond to requests. */
2101 pci_set_master(efx->pci_dev);
2102
2103 out:
2104 /* Leave device stopped if necessary */
2105 disabled = rc || method == RESET_TYPE_DISABLE;
2106 rc2 = efx_reset_up(efx, method, !disabled);
2107 if (rc2) {
2108 disabled = true;
2109 if (!rc)
2110 rc = rc2;
2111 }
2112
2113 if (disabled) {
2114 dev_close(efx->net_dev);
2115 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2116 efx->state = STATE_DISABLED;
2117 } else {
2118 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2119 netif_device_attach(efx->net_dev);
2120 }
2121 return rc;
2122 }
2123
2124 /* The worker thread exists so that code that cannot sleep can
2125 * schedule a reset for later.
2126 */
2127 static void efx_reset_work(struct work_struct *data)
2128 {
2129 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2130 unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2131
2132 if (!pending)
2133 return;
2134
2135 /* If we're not RUNNING then don't reset. Leave the reset_pending
2136 * flags set so that efx_pci_probe_main will be retried */
2137 if (efx->state != STATE_RUNNING) {
2138 netif_info(efx, drv, efx->net_dev,
2139 "scheduled reset quenched. NIC not RUNNING\n");
2140 return;
2141 }
2142
2143 rtnl_lock();
2144 (void)efx_reset(efx, fls(pending) - 1);
2145 rtnl_unlock();
2146 }
2147
2148 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2149 {
2150 enum reset_type method;
2151
2152 switch (type) {
2153 case RESET_TYPE_INVISIBLE:
2154 case RESET_TYPE_ALL:
2155 case RESET_TYPE_WORLD:
2156 case RESET_TYPE_DISABLE:
2157 method = type;
2158 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2159 RESET_TYPE(method));
2160 break;
2161 default:
2162 method = efx->type->map_reset_reason(type);
2163 netif_dbg(efx, drv, efx->net_dev,
2164 "scheduling %s reset for %s\n",
2165 RESET_TYPE(method), RESET_TYPE(type));
2166 break;
2167 }
2168
2169 set_bit(method, &efx->reset_pending);
2170
2171 /* efx_process_channel() will no longer read events once a
2172 * reset is scheduled. So switch back to poll'd MCDI completions. */
2173 efx_mcdi_mode_poll(efx);
2174
2175 queue_work(reset_workqueue, &efx->reset_work);
2176 }
2177
2178 /**************************************************************************
2179 *
2180 * List of NICs we support
2181 *
2182 **************************************************************************/
2183
2184 /* PCI device ID table */
2185 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2186 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2187 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2188 .driver_data = (unsigned long) &falcon_a1_nic_type},
2189 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2190 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2191 .driver_data = (unsigned long) &falcon_b0_nic_type},
2192 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
2193 .driver_data = (unsigned long) &siena_a0_nic_type},
2194 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
2195 .driver_data = (unsigned long) &siena_a0_nic_type},
2196 {0} /* end of list */
2197 };
2198
2199 /**************************************************************************
2200 *
2201 * Dummy PHY/MAC operations
2202 *
2203 * Can be used for some unimplemented operations
2204 * Needed so all function pointers are valid and do not have to be tested
2205 * before use
2206 *
2207 **************************************************************************/
2208 int efx_port_dummy_op_int(struct efx_nic *efx)
2209 {
2210 return 0;
2211 }
2212 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2213
2214 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2215 {
2216 return false;
2217 }
2218
2219 static const struct efx_phy_operations efx_dummy_phy_operations = {
2220 .init = efx_port_dummy_op_int,
2221 .reconfigure = efx_port_dummy_op_int,
2222 .poll = efx_port_dummy_op_poll,
2223 .fini = efx_port_dummy_op_void,
2224 };
2225
2226 /**************************************************************************
2227 *
2228 * Data housekeeping
2229 *
2230 **************************************************************************/
2231
2232 /* This zeroes out and then fills in the invariants in a struct
2233 * efx_nic (including all sub-structures).
2234 */
2235 static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2236 struct pci_dev *pci_dev, struct net_device *net_dev)
2237 {
2238 int i;
2239
2240 /* Initialise common structures */
2241 memset(efx, 0, sizeof(*efx));
2242 spin_lock_init(&efx->biu_lock);
2243 #ifdef CONFIG_SFC_MTD
2244 INIT_LIST_HEAD(&efx->mtd_list);
2245 #endif
2246 INIT_WORK(&efx->reset_work, efx_reset_work);
2247 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2248 efx->pci_dev = pci_dev;
2249 efx->msg_enable = debug;
2250 efx->state = STATE_INIT;
2251 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2252
2253 efx->net_dev = net_dev;
2254 spin_lock_init(&efx->stats_lock);
2255 mutex_init(&efx->mac_lock);
2256 efx->phy_op = &efx_dummy_phy_operations;
2257 efx->mdio.dev = net_dev;
2258 INIT_WORK(&efx->mac_work, efx_mac_work);
2259 init_waitqueue_head(&efx->flush_wq);
2260
2261 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2262 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2263 if (!efx->channel[i])
2264 goto fail;
2265 }
2266
2267 efx->type = type;
2268
2269 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2270
2271 /* Higher numbered interrupt modes are less capable! */
2272 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2273 interrupt_mode);
2274
2275 /* Would be good to use the net_dev name, but we're too early */
2276 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2277 pci_name(pci_dev));
2278 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2279 if (!efx->workqueue)
2280 goto fail;
2281
2282 return 0;
2283
2284 fail:
2285 efx_fini_struct(efx);
2286 return -ENOMEM;
2287 }
2288
2289 static void efx_fini_struct(struct efx_nic *efx)
2290 {
2291 int i;
2292
2293 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2294 kfree(efx->channel[i]);
2295
2296 if (efx->workqueue) {
2297 destroy_workqueue(efx->workqueue);
2298 efx->workqueue = NULL;
2299 }
2300 }
2301
2302 /**************************************************************************
2303 *
2304 * PCI interface
2305 *
2306 **************************************************************************/
2307
2308 /* Main body of final NIC shutdown code
2309 * This is called only at module unload (or hotplug removal).
2310 */
2311 static void efx_pci_remove_main(struct efx_nic *efx)
2312 {
2313 #ifdef CONFIG_RFS_ACCEL
2314 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2315 efx->net_dev->rx_cpu_rmap = NULL;
2316 #endif
2317 efx_stop_interrupts(efx);
2318 efx_nic_fini_interrupt(efx);
2319 efx_fini_port(efx);
2320 efx->type->fini(efx);
2321 efx_fini_napi(efx);
2322 efx_remove_all(efx);
2323 }
2324
2325 /* Final NIC shutdown
2326 * This is called only at module unload (or hotplug removal).
2327 */
2328 static void efx_pci_remove(struct pci_dev *pci_dev)
2329 {
2330 struct efx_nic *efx;
2331
2332 efx = pci_get_drvdata(pci_dev);
2333 if (!efx)
2334 return;
2335
2336 /* Mark the NIC as fini, then stop the interface */
2337 rtnl_lock();
2338 efx->state = STATE_FINI;
2339 dev_close(efx->net_dev);
2340
2341 /* Allow any queued efx_resets() to complete */
2342 rtnl_unlock();
2343
2344 efx_stop_interrupts(efx);
2345 efx_unregister_netdev(efx);
2346
2347 efx_mtd_remove(efx);
2348
2349 /* Wait for any scheduled resets to complete. No more will be
2350 * scheduled from this point because efx_stop_all() has been
2351 * called, we are no longer registered with driverlink, and
2352 * the net_device's have been removed. */
2353 cancel_work_sync(&efx->reset_work);
2354
2355 efx_pci_remove_main(efx);
2356
2357 efx_fini_io(efx);
2358 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2359
2360 pci_set_drvdata(pci_dev, NULL);
2361 efx_fini_struct(efx);
2362 free_netdev(efx->net_dev);
2363 };
2364
2365 /* Main body of NIC initialisation
2366 * This is called at module load (or hotplug insertion, theoretically).
2367 */
2368 static int efx_pci_probe_main(struct efx_nic *efx)
2369 {
2370 int rc;
2371
2372 /* Do start-of-day initialisation */
2373 rc = efx_probe_all(efx);
2374 if (rc)
2375 goto fail1;
2376
2377 efx_init_napi(efx);
2378
2379 rc = efx->type->init(efx);
2380 if (rc) {
2381 netif_err(efx, probe, efx->net_dev,
2382 "failed to initialise NIC\n");
2383 goto fail3;
2384 }
2385
2386 rc = efx_init_port(efx);
2387 if (rc) {
2388 netif_err(efx, probe, efx->net_dev,
2389 "failed to initialise port\n");
2390 goto fail4;
2391 }
2392
2393 rc = efx_nic_init_interrupt(efx);
2394 if (rc)
2395 goto fail5;
2396 efx_start_interrupts(efx);
2397
2398 return 0;
2399
2400 fail5:
2401 efx_fini_port(efx);
2402 fail4:
2403 efx->type->fini(efx);
2404 fail3:
2405 efx_fini_napi(efx);
2406 efx_remove_all(efx);
2407 fail1:
2408 return rc;
2409 }
2410
2411 /* NIC initialisation
2412 *
2413 * This is called at module load (or hotplug insertion,
2414 * theoretically). It sets up PCI mappings, resets the NIC,
2415 * sets up and registers the network devices with the kernel and hooks
2416 * the interrupt service routine. It does not prepare the device for
2417 * transmission; this is left to the first time one of the network
2418 * interfaces is brought up (i.e. efx_net_open).
2419 */
2420 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2421 const struct pci_device_id *entry)
2422 {
2423 const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2424 struct net_device *net_dev;
2425 struct efx_nic *efx;
2426 int rc;
2427
2428 /* Allocate and initialise a struct net_device and struct efx_nic */
2429 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2430 EFX_MAX_RX_QUEUES);
2431 if (!net_dev)
2432 return -ENOMEM;
2433 net_dev->features |= (type->offload_features | NETIF_F_SG |
2434 NETIF_F_HIGHDMA | NETIF_F_TSO |
2435 NETIF_F_RXCSUM);
2436 if (type->offload_features & NETIF_F_V6_CSUM)
2437 net_dev->features |= NETIF_F_TSO6;
2438 /* Mask for features that also apply to VLAN devices */
2439 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2440 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2441 NETIF_F_RXCSUM);
2442 /* All offloads can be toggled */
2443 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2444 efx = netdev_priv(net_dev);
2445 pci_set_drvdata(pci_dev, efx);
2446 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2447 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2448 if (rc)
2449 goto fail1;
2450
2451 netif_info(efx, probe, efx->net_dev,
2452 "Solarflare NIC detected\n");
2453
2454 /* Set up basic I/O (BAR mappings etc) */
2455 rc = efx_init_io(efx);
2456 if (rc)
2457 goto fail2;
2458
2459 rc = efx_pci_probe_main(efx);
2460
2461 /* Serialise against efx_reset(). No more resets will be
2462 * scheduled since efx_stop_all() has been called, and we have
2463 * not and never have been registered.
2464 */
2465 cancel_work_sync(&efx->reset_work);
2466
2467 if (rc)
2468 goto fail3;
2469
2470 /* If there was a scheduled reset during probe, the NIC is
2471 * probably hosed anyway.
2472 */
2473 if (efx->reset_pending) {
2474 rc = -EIO;
2475 goto fail4;
2476 }
2477
2478 /* Switch to the running state before we expose the device to the OS,
2479 * so that dev_open()|efx_start_all() will actually start the device */
2480 efx->state = STATE_RUNNING;
2481
2482 rc = efx_register_netdev(efx);
2483 if (rc)
2484 goto fail4;
2485
2486 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2487
2488 /* Try to create MTDs, but allow this to fail */
2489 rtnl_lock();
2490 rc = efx_mtd_probe(efx);
2491 rtnl_unlock();
2492 if (rc)
2493 netif_warn(efx, probe, efx->net_dev,
2494 "failed to create MTDs (%d)\n", rc);
2495
2496 return 0;
2497
2498 fail4:
2499 efx_pci_remove_main(efx);
2500 fail3:
2501 efx_fini_io(efx);
2502 fail2:
2503 efx_fini_struct(efx);
2504 fail1:
2505 WARN_ON(rc > 0);
2506 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2507 free_netdev(net_dev);
2508 return rc;
2509 }
2510
2511 static int efx_pm_freeze(struct device *dev)
2512 {
2513 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2514
2515 efx->state = STATE_FINI;
2516
2517 netif_device_detach(efx->net_dev);
2518
2519 efx_stop_all(efx);
2520 efx_stop_interrupts(efx);
2521
2522 return 0;
2523 }
2524
2525 static int efx_pm_thaw(struct device *dev)
2526 {
2527 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2528
2529 efx->state = STATE_INIT;
2530
2531 efx_start_interrupts(efx);
2532
2533 mutex_lock(&efx->mac_lock);
2534 efx->phy_op->reconfigure(efx);
2535 mutex_unlock(&efx->mac_lock);
2536
2537 efx_start_all(efx);
2538
2539 netif_device_attach(efx->net_dev);
2540
2541 efx->state = STATE_RUNNING;
2542
2543 efx->type->resume_wol(efx);
2544
2545 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2546 queue_work(reset_workqueue, &efx->reset_work);
2547
2548 return 0;
2549 }
2550
2551 static int efx_pm_poweroff(struct device *dev)
2552 {
2553 struct pci_dev *pci_dev = to_pci_dev(dev);
2554 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2555
2556 efx->type->fini(efx);
2557
2558 efx->reset_pending = 0;
2559
2560 pci_save_state(pci_dev);
2561 return pci_set_power_state(pci_dev, PCI_D3hot);
2562 }
2563
2564 /* Used for both resume and restore */
2565 static int efx_pm_resume(struct device *dev)
2566 {
2567 struct pci_dev *pci_dev = to_pci_dev(dev);
2568 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2569 int rc;
2570
2571 rc = pci_set_power_state(pci_dev, PCI_D0);
2572 if (rc)
2573 return rc;
2574 pci_restore_state(pci_dev);
2575 rc = pci_enable_device(pci_dev);
2576 if (rc)
2577 return rc;
2578 pci_set_master(efx->pci_dev);
2579 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2580 if (rc)
2581 return rc;
2582 rc = efx->type->init(efx);
2583 if (rc)
2584 return rc;
2585 efx_pm_thaw(dev);
2586 return 0;
2587 }
2588
2589 static int efx_pm_suspend(struct device *dev)
2590 {
2591 int rc;
2592
2593 efx_pm_freeze(dev);
2594 rc = efx_pm_poweroff(dev);
2595 if (rc)
2596 efx_pm_resume(dev);
2597 return rc;
2598 }
2599
2600 static const struct dev_pm_ops efx_pm_ops = {
2601 .suspend = efx_pm_suspend,
2602 .resume = efx_pm_resume,
2603 .freeze = efx_pm_freeze,
2604 .thaw = efx_pm_thaw,
2605 .poweroff = efx_pm_poweroff,
2606 .restore = efx_pm_resume,
2607 };
2608
2609 static struct pci_driver efx_pci_driver = {
2610 .name = KBUILD_MODNAME,
2611 .id_table = efx_pci_table,
2612 .probe = efx_pci_probe,
2613 .remove = efx_pci_remove,
2614 .driver.pm = &efx_pm_ops,
2615 };
2616
2617 /**************************************************************************
2618 *
2619 * Kernel module interface
2620 *
2621 *************************************************************************/
2622
2623 module_param(interrupt_mode, uint, 0444);
2624 MODULE_PARM_DESC(interrupt_mode,
2625 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2626
2627 static int __init efx_init_module(void)
2628 {
2629 int rc;
2630
2631 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2632
2633 rc = register_netdevice_notifier(&efx_netdev_notifier);
2634 if (rc)
2635 goto err_notifier;
2636
2637 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2638 if (!reset_workqueue) {
2639 rc = -ENOMEM;
2640 goto err_reset;
2641 }
2642
2643 rc = pci_register_driver(&efx_pci_driver);
2644 if (rc < 0)
2645 goto err_pci;
2646
2647 return 0;
2648
2649 err_pci:
2650 destroy_workqueue(reset_workqueue);
2651 err_reset:
2652 unregister_netdevice_notifier(&efx_netdev_notifier);
2653 err_notifier:
2654 return rc;
2655 }
2656
2657 static void __exit efx_exit_module(void)
2658 {
2659 printk(KERN_INFO "Solarflare NET driver unloading\n");
2660
2661 pci_unregister_driver(&efx_pci_driver);
2662 destroy_workqueue(reset_workqueue);
2663 unregister_netdevice_notifier(&efx_netdev_notifier);
2664
2665 }
2666
2667 module_init(efx_init_module);
2668 module_exit(efx_exit_module);
2669
2670 MODULE_AUTHOR("Solarflare Communications and "
2671 "Michael Brown <mbrown@fensystems.co.uk>");
2672 MODULE_DESCRIPTION("Solarflare Communications network driver");
2673 MODULE_LICENSE("GPL");
2674 MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.09119 seconds and 6 git commands to generate.