sfc: Pass NIC structure into efx_wanted_parallelism()
[deliverable/linux.git] / drivers / net / ethernet / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include <linux/cpu_rmap.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28
29 #include "mcdi.h"
30 #include "workarounds.h"
31
32 /**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41 const char *const efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
43 [LOOPBACK_DATA] = "DATAPATH",
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
69 };
70
71 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72 const char *const efx_reset_type_names[] = {
73 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
74 [RESET_TYPE_ALL] = "ALL",
75 [RESET_TYPE_WORLD] = "WORLD",
76 [RESET_TYPE_DISABLE] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
80 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
81 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
82 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
83 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
84 };
85
86 #define EFX_MAX_MTU (9 * 1024)
87
88 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 */
92 static struct workqueue_struct *reset_workqueue;
93
94 /**************************************************************************
95 *
96 * Configurable values
97 *
98 *************************************************************************/
99
100 /*
101 * Use separate channels for TX and RX events
102 *
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
105 *
106 * This is only used in MSI-X interrupt mode
107 */
108 static unsigned int separate_tx_channels;
109 module_param(separate_tx_channels, uint, 0444);
110 MODULE_PARM_DESC(separate_tx_channels,
111 "Use separate channels for TX and RX");
112
113 /* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
115 */
116 static int napi_weight = 64;
117
118 /* This is the time (in jiffies) between invocations of the hardware
119 * monitor. On Falcon-based NICs, this will:
120 * - Check the on-board hardware monitor;
121 * - Poll the link state and reconfigure the hardware as necessary.
122 */
123 static unsigned int efx_monitor_interval = 1 * HZ;
124
125 /* Initial interrupt moderation settings. They can be modified after
126 * module load with ethtool.
127 *
128 * The default for RX should strike a balance between increasing the
129 * round-trip latency and reducing overhead.
130 */
131 static unsigned int rx_irq_mod_usec = 60;
132
133 /* Initial interrupt moderation settings. They can be modified after
134 * module load with ethtool.
135 *
136 * This default is chosen to ensure that a 10G link does not go idle
137 * while a TX queue is stopped after it has become full. A queue is
138 * restarted when it drops below half full. The time this takes (assuming
139 * worst case 3 descriptors per packet and 1024 descriptors) is
140 * 512 / 3 * 1.2 = 205 usec.
141 */
142 static unsigned int tx_irq_mod_usec = 150;
143
144 /* This is the first interrupt mode to try out of:
145 * 0 => MSI-X
146 * 1 => MSI
147 * 2 => legacy
148 */
149 static unsigned int interrupt_mode;
150
151 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
152 * i.e. the number of CPUs among which we may distribute simultaneous
153 * interrupt handling.
154 *
155 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
156 * The default (0) means to assign an interrupt to each core.
157 */
158 static unsigned int rss_cpus;
159 module_param(rss_cpus, uint, 0444);
160 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
161
162 static int phy_flash_cfg;
163 module_param(phy_flash_cfg, int, 0644);
164 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
165
166 static unsigned irq_adapt_low_thresh = 10000;
167 module_param(irq_adapt_low_thresh, uint, 0644);
168 MODULE_PARM_DESC(irq_adapt_low_thresh,
169 "Threshold score for reducing IRQ moderation");
170
171 static unsigned irq_adapt_high_thresh = 20000;
172 module_param(irq_adapt_high_thresh, uint, 0644);
173 MODULE_PARM_DESC(irq_adapt_high_thresh,
174 "Threshold score for increasing IRQ moderation");
175
176 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
177 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
178 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
179 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
180 module_param(debug, uint, 0);
181 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
182
183 /**************************************************************************
184 *
185 * Utility functions and prototypes
186 *
187 *************************************************************************/
188
189 static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
190 static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
191 static void efx_remove_channel(struct efx_channel *channel);
192 static void efx_remove_channels(struct efx_nic *efx);
193 static const struct efx_channel_type efx_default_channel_type;
194 static void efx_remove_port(struct efx_nic *efx);
195 static void efx_init_napi_channel(struct efx_channel *channel);
196 static void efx_fini_napi(struct efx_nic *efx);
197 static void efx_fini_napi_channel(struct efx_channel *channel);
198 static void efx_fini_struct(struct efx_nic *efx);
199 static void efx_start_all(struct efx_nic *efx);
200 static void efx_stop_all(struct efx_nic *efx);
201
202 #define EFX_ASSERT_RESET_SERIALISED(efx) \
203 do { \
204 if ((efx->state == STATE_RUNNING) || \
205 (efx->state == STATE_DISABLED)) \
206 ASSERT_RTNL(); \
207 } while (0)
208
209 /**************************************************************************
210 *
211 * Event queue processing
212 *
213 *************************************************************************/
214
215 /* Process channel's event queue
216 *
217 * This function is responsible for processing the event queue of a
218 * single channel. The caller must guarantee that this function will
219 * never be concurrently called more than once on the same channel,
220 * though different channels may be being processed concurrently.
221 */
222 static int efx_process_channel(struct efx_channel *channel, int budget)
223 {
224 int spent;
225
226 if (unlikely(!channel->enabled))
227 return 0;
228
229 spent = efx_nic_process_eventq(channel, budget);
230 if (spent && efx_channel_has_rx_queue(channel)) {
231 struct efx_rx_queue *rx_queue =
232 efx_channel_get_rx_queue(channel);
233
234 /* Deliver last RX packet. */
235 if (channel->rx_pkt) {
236 __efx_rx_packet(channel, channel->rx_pkt);
237 channel->rx_pkt = NULL;
238 }
239 if (rx_queue->enabled) {
240 efx_rx_strategy(channel);
241 efx_fast_push_rx_descriptors(rx_queue);
242 }
243 }
244
245 return spent;
246 }
247
248 /* Mark channel as finished processing
249 *
250 * Note that since we will not receive further interrupts for this
251 * channel before we finish processing and call the eventq_read_ack()
252 * method, there is no need to use the interrupt hold-off timers.
253 */
254 static inline void efx_channel_processed(struct efx_channel *channel)
255 {
256 /* The interrupt handler for this channel may set work_pending
257 * as soon as we acknowledge the events we've seen. Make sure
258 * it's cleared before then. */
259 channel->work_pending = false;
260 smp_wmb();
261
262 efx_nic_eventq_read_ack(channel);
263 }
264
265 /* NAPI poll handler
266 *
267 * NAPI guarantees serialisation of polls of the same device, which
268 * provides the guarantee required by efx_process_channel().
269 */
270 static int efx_poll(struct napi_struct *napi, int budget)
271 {
272 struct efx_channel *channel =
273 container_of(napi, struct efx_channel, napi_str);
274 struct efx_nic *efx = channel->efx;
275 int spent;
276
277 netif_vdbg(efx, intr, efx->net_dev,
278 "channel %d NAPI poll executing on CPU %d\n",
279 channel->channel, raw_smp_processor_id());
280
281 spent = efx_process_channel(channel, budget);
282
283 if (spent < budget) {
284 if (efx_channel_has_rx_queue(channel) &&
285 efx->irq_rx_adaptive &&
286 unlikely(++channel->irq_count == 1000)) {
287 if (unlikely(channel->irq_mod_score <
288 irq_adapt_low_thresh)) {
289 if (channel->irq_moderation > 1) {
290 channel->irq_moderation -= 1;
291 efx->type->push_irq_moderation(channel);
292 }
293 } else if (unlikely(channel->irq_mod_score >
294 irq_adapt_high_thresh)) {
295 if (channel->irq_moderation <
296 efx->irq_rx_moderation) {
297 channel->irq_moderation += 1;
298 efx->type->push_irq_moderation(channel);
299 }
300 }
301 channel->irq_count = 0;
302 channel->irq_mod_score = 0;
303 }
304
305 efx_filter_rfs_expire(channel);
306
307 /* There is no race here; although napi_disable() will
308 * only wait for napi_complete(), this isn't a problem
309 * since efx_channel_processed() will have no effect if
310 * interrupts have already been disabled.
311 */
312 napi_complete(napi);
313 efx_channel_processed(channel);
314 }
315
316 return spent;
317 }
318
319 /* Process the eventq of the specified channel immediately on this CPU
320 *
321 * Disable hardware generated interrupts, wait for any existing
322 * processing to finish, then directly poll (and ack ) the eventq.
323 * Finally reenable NAPI and interrupts.
324 *
325 * This is for use only during a loopback self-test. It must not
326 * deliver any packets up the stack as this can result in deadlock.
327 */
328 void efx_process_channel_now(struct efx_channel *channel)
329 {
330 struct efx_nic *efx = channel->efx;
331
332 BUG_ON(channel->channel >= efx->n_channels);
333 BUG_ON(!channel->enabled);
334 BUG_ON(!efx->loopback_selftest);
335
336 /* Disable interrupts and wait for ISRs to complete */
337 efx_nic_disable_interrupts(efx);
338 if (efx->legacy_irq) {
339 synchronize_irq(efx->legacy_irq);
340 efx->legacy_irq_enabled = false;
341 }
342 if (channel->irq)
343 synchronize_irq(channel->irq);
344
345 /* Wait for any NAPI processing to complete */
346 napi_disable(&channel->napi_str);
347
348 /* Poll the channel */
349 efx_process_channel(channel, channel->eventq_mask + 1);
350
351 /* Ack the eventq. This may cause an interrupt to be generated
352 * when they are reenabled */
353 efx_channel_processed(channel);
354
355 napi_enable(&channel->napi_str);
356 if (efx->legacy_irq)
357 efx->legacy_irq_enabled = true;
358 efx_nic_enable_interrupts(efx);
359 }
360
361 /* Create event queue
362 * Event queue memory allocations are done only once. If the channel
363 * is reset, the memory buffer will be reused; this guards against
364 * errors during channel reset and also simplifies interrupt handling.
365 */
366 static int efx_probe_eventq(struct efx_channel *channel)
367 {
368 struct efx_nic *efx = channel->efx;
369 unsigned long entries;
370
371 netif_dbg(efx, probe, efx->net_dev,
372 "chan %d create event queue\n", channel->channel);
373
374 /* Build an event queue with room for one event per tx and rx buffer,
375 * plus some extra for link state events and MCDI completions. */
376 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
377 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
378 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
379
380 return efx_nic_probe_eventq(channel);
381 }
382
383 /* Prepare channel's event queue */
384 static void efx_init_eventq(struct efx_channel *channel)
385 {
386 netif_dbg(channel->efx, drv, channel->efx->net_dev,
387 "chan %d init event queue\n", channel->channel);
388
389 channel->eventq_read_ptr = 0;
390
391 efx_nic_init_eventq(channel);
392 }
393
394 /* Enable event queue processing and NAPI */
395 static void efx_start_eventq(struct efx_channel *channel)
396 {
397 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
398 "chan %d start event queue\n", channel->channel);
399
400 /* The interrupt handler for this channel may set work_pending
401 * as soon as we enable it. Make sure it's cleared before
402 * then. Similarly, make sure it sees the enabled flag set.
403 */
404 channel->work_pending = false;
405 channel->enabled = true;
406 smp_wmb();
407
408 napi_enable(&channel->napi_str);
409 efx_nic_eventq_read_ack(channel);
410 }
411
412 /* Disable event queue processing and NAPI */
413 static void efx_stop_eventq(struct efx_channel *channel)
414 {
415 if (!channel->enabled)
416 return;
417
418 napi_disable(&channel->napi_str);
419 channel->enabled = false;
420 }
421
422 static void efx_fini_eventq(struct efx_channel *channel)
423 {
424 netif_dbg(channel->efx, drv, channel->efx->net_dev,
425 "chan %d fini event queue\n", channel->channel);
426
427 efx_nic_fini_eventq(channel);
428 }
429
430 static void efx_remove_eventq(struct efx_channel *channel)
431 {
432 netif_dbg(channel->efx, drv, channel->efx->net_dev,
433 "chan %d remove event queue\n", channel->channel);
434
435 efx_nic_remove_eventq(channel);
436 }
437
438 /**************************************************************************
439 *
440 * Channel handling
441 *
442 *************************************************************************/
443
444 /* Allocate and initialise a channel structure. */
445 static struct efx_channel *
446 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
447 {
448 struct efx_channel *channel;
449 struct efx_rx_queue *rx_queue;
450 struct efx_tx_queue *tx_queue;
451 int j;
452
453 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
454 if (!channel)
455 return NULL;
456
457 channel->efx = efx;
458 channel->channel = i;
459 channel->type = &efx_default_channel_type;
460
461 for (j = 0; j < EFX_TXQ_TYPES; j++) {
462 tx_queue = &channel->tx_queue[j];
463 tx_queue->efx = efx;
464 tx_queue->queue = i * EFX_TXQ_TYPES + j;
465 tx_queue->channel = channel;
466 }
467
468 rx_queue = &channel->rx_queue;
469 rx_queue->efx = efx;
470 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
471 (unsigned long)rx_queue);
472
473 return channel;
474 }
475
476 /* Allocate and initialise a channel structure, copying parameters
477 * (but not resources) from an old channel structure.
478 */
479 static struct efx_channel *
480 efx_copy_channel(const struct efx_channel *old_channel)
481 {
482 struct efx_channel *channel;
483 struct efx_rx_queue *rx_queue;
484 struct efx_tx_queue *tx_queue;
485 int j;
486
487 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
488 if (!channel)
489 return NULL;
490
491 *channel = *old_channel;
492
493 channel->napi_dev = NULL;
494 memset(&channel->eventq, 0, sizeof(channel->eventq));
495
496 for (j = 0; j < EFX_TXQ_TYPES; j++) {
497 tx_queue = &channel->tx_queue[j];
498 if (tx_queue->channel)
499 tx_queue->channel = channel;
500 tx_queue->buffer = NULL;
501 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
502 }
503
504 rx_queue = &channel->rx_queue;
505 rx_queue->buffer = NULL;
506 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
507 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
508 (unsigned long)rx_queue);
509
510 return channel;
511 }
512
513 static int efx_probe_channel(struct efx_channel *channel)
514 {
515 struct efx_tx_queue *tx_queue;
516 struct efx_rx_queue *rx_queue;
517 int rc;
518
519 netif_dbg(channel->efx, probe, channel->efx->net_dev,
520 "creating channel %d\n", channel->channel);
521
522 rc = channel->type->pre_probe(channel);
523 if (rc)
524 goto fail;
525
526 rc = efx_probe_eventq(channel);
527 if (rc)
528 goto fail;
529
530 efx_for_each_channel_tx_queue(tx_queue, channel) {
531 rc = efx_probe_tx_queue(tx_queue);
532 if (rc)
533 goto fail;
534 }
535
536 efx_for_each_channel_rx_queue(rx_queue, channel) {
537 rc = efx_probe_rx_queue(rx_queue);
538 if (rc)
539 goto fail;
540 }
541
542 channel->n_rx_frm_trunc = 0;
543
544 return 0;
545
546 fail:
547 efx_remove_channel(channel);
548 return rc;
549 }
550
551 static void
552 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
553 {
554 struct efx_nic *efx = channel->efx;
555 const char *type;
556 int number;
557
558 number = channel->channel;
559 if (efx->tx_channel_offset == 0) {
560 type = "";
561 } else if (channel->channel < efx->tx_channel_offset) {
562 type = "-rx";
563 } else {
564 type = "-tx";
565 number -= efx->tx_channel_offset;
566 }
567 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
568 }
569
570 static void efx_set_channel_names(struct efx_nic *efx)
571 {
572 struct efx_channel *channel;
573
574 efx_for_each_channel(channel, efx)
575 channel->type->get_name(channel,
576 efx->channel_name[channel->channel],
577 sizeof(efx->channel_name[0]));
578 }
579
580 static int efx_probe_channels(struct efx_nic *efx)
581 {
582 struct efx_channel *channel;
583 int rc;
584
585 /* Restart special buffer allocation */
586 efx->next_buffer_table = 0;
587
588 efx_for_each_channel(channel, efx) {
589 rc = efx_probe_channel(channel);
590 if (rc) {
591 netif_err(efx, probe, efx->net_dev,
592 "failed to create channel %d\n",
593 channel->channel);
594 goto fail;
595 }
596 }
597 efx_set_channel_names(efx);
598
599 return 0;
600
601 fail:
602 efx_remove_channels(efx);
603 return rc;
604 }
605
606 /* Channels are shutdown and reinitialised whilst the NIC is running
607 * to propagate configuration changes (mtu, checksum offload), or
608 * to clear hardware error conditions
609 */
610 static void efx_start_datapath(struct efx_nic *efx)
611 {
612 struct efx_tx_queue *tx_queue;
613 struct efx_rx_queue *rx_queue;
614 struct efx_channel *channel;
615
616 /* Calculate the rx buffer allocation parameters required to
617 * support the current MTU, including padding for header
618 * alignment and overruns.
619 */
620 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
621 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
622 efx->type->rx_buffer_hash_size +
623 efx->type->rx_buffer_padding);
624 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
625 sizeof(struct efx_rx_page_state));
626
627 /* Initialise the channels */
628 efx_for_each_channel(channel, efx) {
629 efx_for_each_channel_tx_queue(tx_queue, channel)
630 efx_init_tx_queue(tx_queue);
631
632 /* The rx buffer allocation strategy is MTU dependent */
633 efx_rx_strategy(channel);
634
635 efx_for_each_channel_rx_queue(rx_queue, channel) {
636 efx_init_rx_queue(rx_queue);
637 efx_nic_generate_fill_event(rx_queue);
638 }
639
640 WARN_ON(channel->rx_pkt != NULL);
641 efx_rx_strategy(channel);
642 }
643
644 if (netif_device_present(efx->net_dev))
645 netif_tx_wake_all_queues(efx->net_dev);
646 }
647
648 static void efx_stop_datapath(struct efx_nic *efx)
649 {
650 struct efx_channel *channel;
651 struct efx_tx_queue *tx_queue;
652 struct efx_rx_queue *rx_queue;
653 int rc;
654
655 EFX_ASSERT_RESET_SERIALISED(efx);
656 BUG_ON(efx->port_enabled);
657
658 rc = efx_nic_flush_queues(efx);
659 if (rc && EFX_WORKAROUND_7803(efx)) {
660 /* Schedule a reset to recover from the flush failure. The
661 * descriptor caches reference memory we're about to free,
662 * but falcon_reconfigure_mac_wrapper() won't reconnect
663 * the MACs because of the pending reset. */
664 netif_err(efx, drv, efx->net_dev,
665 "Resetting to recover from flush failure\n");
666 efx_schedule_reset(efx, RESET_TYPE_ALL);
667 } else if (rc) {
668 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
669 } else {
670 netif_dbg(efx, drv, efx->net_dev,
671 "successfully flushed all queues\n");
672 }
673
674 efx_for_each_channel(channel, efx) {
675 /* RX packet processing is pipelined, so wait for the
676 * NAPI handler to complete. At least event queue 0
677 * might be kept active by non-data events, so don't
678 * use napi_synchronize() but actually disable NAPI
679 * temporarily.
680 */
681 if (efx_channel_has_rx_queue(channel)) {
682 efx_stop_eventq(channel);
683 efx_start_eventq(channel);
684 }
685
686 efx_for_each_channel_rx_queue(rx_queue, channel)
687 efx_fini_rx_queue(rx_queue);
688 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
689 efx_fini_tx_queue(tx_queue);
690 }
691 }
692
693 static void efx_remove_channel(struct efx_channel *channel)
694 {
695 struct efx_tx_queue *tx_queue;
696 struct efx_rx_queue *rx_queue;
697
698 netif_dbg(channel->efx, drv, channel->efx->net_dev,
699 "destroy chan %d\n", channel->channel);
700
701 efx_for_each_channel_rx_queue(rx_queue, channel)
702 efx_remove_rx_queue(rx_queue);
703 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
704 efx_remove_tx_queue(tx_queue);
705 efx_remove_eventq(channel);
706 }
707
708 static void efx_remove_channels(struct efx_nic *efx)
709 {
710 struct efx_channel *channel;
711
712 efx_for_each_channel(channel, efx)
713 efx_remove_channel(channel);
714 }
715
716 int
717 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
718 {
719 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
720 u32 old_rxq_entries, old_txq_entries;
721 unsigned i, next_buffer_table = 0;
722 int rc = 0;
723
724 /* Not all channels should be reallocated. We must avoid
725 * reallocating their buffer table entries.
726 */
727 efx_for_each_channel(channel, efx) {
728 struct efx_rx_queue *rx_queue;
729 struct efx_tx_queue *tx_queue;
730
731 if (channel->type->copy)
732 continue;
733 next_buffer_table = max(next_buffer_table,
734 channel->eventq.index +
735 channel->eventq.entries);
736 efx_for_each_channel_rx_queue(rx_queue, channel)
737 next_buffer_table = max(next_buffer_table,
738 rx_queue->rxd.index +
739 rx_queue->rxd.entries);
740 efx_for_each_channel_tx_queue(tx_queue, channel)
741 next_buffer_table = max(next_buffer_table,
742 tx_queue->txd.index +
743 tx_queue->txd.entries);
744 }
745
746 efx_stop_all(efx);
747 efx_stop_interrupts(efx, true);
748
749 /* Clone channels (where possible) */
750 memset(other_channel, 0, sizeof(other_channel));
751 for (i = 0; i < efx->n_channels; i++) {
752 channel = efx->channel[i];
753 if (channel->type->copy)
754 channel = channel->type->copy(channel);
755 if (!channel) {
756 rc = -ENOMEM;
757 goto out;
758 }
759 other_channel[i] = channel;
760 }
761
762 /* Swap entry counts and channel pointers */
763 old_rxq_entries = efx->rxq_entries;
764 old_txq_entries = efx->txq_entries;
765 efx->rxq_entries = rxq_entries;
766 efx->txq_entries = txq_entries;
767 for (i = 0; i < efx->n_channels; i++) {
768 channel = efx->channel[i];
769 efx->channel[i] = other_channel[i];
770 other_channel[i] = channel;
771 }
772
773 /* Restart buffer table allocation */
774 efx->next_buffer_table = next_buffer_table;
775
776 for (i = 0; i < efx->n_channels; i++) {
777 channel = efx->channel[i];
778 if (!channel->type->copy)
779 continue;
780 rc = efx_probe_channel(channel);
781 if (rc)
782 goto rollback;
783 efx_init_napi_channel(efx->channel[i]);
784 }
785
786 out:
787 /* Destroy unused channel structures */
788 for (i = 0; i < efx->n_channels; i++) {
789 channel = other_channel[i];
790 if (channel && channel->type->copy) {
791 efx_fini_napi_channel(channel);
792 efx_remove_channel(channel);
793 kfree(channel);
794 }
795 }
796
797 efx_start_interrupts(efx, true);
798 efx_start_all(efx);
799 return rc;
800
801 rollback:
802 /* Swap back */
803 efx->rxq_entries = old_rxq_entries;
804 efx->txq_entries = old_txq_entries;
805 for (i = 0; i < efx->n_channels; i++) {
806 channel = efx->channel[i];
807 efx->channel[i] = other_channel[i];
808 other_channel[i] = channel;
809 }
810 goto out;
811 }
812
813 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
814 {
815 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
816 }
817
818 static const struct efx_channel_type efx_default_channel_type = {
819 .pre_probe = efx_channel_dummy_op_int,
820 .get_name = efx_get_channel_name,
821 .copy = efx_copy_channel,
822 .keep_eventq = false,
823 };
824
825 int efx_channel_dummy_op_int(struct efx_channel *channel)
826 {
827 return 0;
828 }
829
830 /**************************************************************************
831 *
832 * Port handling
833 *
834 **************************************************************************/
835
836 /* This ensures that the kernel is kept informed (via
837 * netif_carrier_on/off) of the link status, and also maintains the
838 * link status's stop on the port's TX queue.
839 */
840 void efx_link_status_changed(struct efx_nic *efx)
841 {
842 struct efx_link_state *link_state = &efx->link_state;
843
844 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
845 * that no events are triggered between unregister_netdev() and the
846 * driver unloading. A more general condition is that NETDEV_CHANGE
847 * can only be generated between NETDEV_UP and NETDEV_DOWN */
848 if (!netif_running(efx->net_dev))
849 return;
850
851 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
852 efx->n_link_state_changes++;
853
854 if (link_state->up)
855 netif_carrier_on(efx->net_dev);
856 else
857 netif_carrier_off(efx->net_dev);
858 }
859
860 /* Status message for kernel log */
861 if (link_state->up)
862 netif_info(efx, link, efx->net_dev,
863 "link up at %uMbps %s-duplex (MTU %d)%s\n",
864 link_state->speed, link_state->fd ? "full" : "half",
865 efx->net_dev->mtu,
866 (efx->promiscuous ? " [PROMISC]" : ""));
867 else
868 netif_info(efx, link, efx->net_dev, "link down\n");
869 }
870
871 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
872 {
873 efx->link_advertising = advertising;
874 if (advertising) {
875 if (advertising & ADVERTISED_Pause)
876 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
877 else
878 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
879 if (advertising & ADVERTISED_Asym_Pause)
880 efx->wanted_fc ^= EFX_FC_TX;
881 }
882 }
883
884 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
885 {
886 efx->wanted_fc = wanted_fc;
887 if (efx->link_advertising) {
888 if (wanted_fc & EFX_FC_RX)
889 efx->link_advertising |= (ADVERTISED_Pause |
890 ADVERTISED_Asym_Pause);
891 else
892 efx->link_advertising &= ~(ADVERTISED_Pause |
893 ADVERTISED_Asym_Pause);
894 if (wanted_fc & EFX_FC_TX)
895 efx->link_advertising ^= ADVERTISED_Asym_Pause;
896 }
897 }
898
899 static void efx_fini_port(struct efx_nic *efx);
900
901 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
902 * the MAC appropriately. All other PHY configuration changes are pushed
903 * through phy_op->set_settings(), and pushed asynchronously to the MAC
904 * through efx_monitor().
905 *
906 * Callers must hold the mac_lock
907 */
908 int __efx_reconfigure_port(struct efx_nic *efx)
909 {
910 enum efx_phy_mode phy_mode;
911 int rc;
912
913 WARN_ON(!mutex_is_locked(&efx->mac_lock));
914
915 /* Serialise the promiscuous flag with efx_set_rx_mode. */
916 netif_addr_lock_bh(efx->net_dev);
917 netif_addr_unlock_bh(efx->net_dev);
918
919 /* Disable PHY transmit in mac level loopbacks */
920 phy_mode = efx->phy_mode;
921 if (LOOPBACK_INTERNAL(efx))
922 efx->phy_mode |= PHY_MODE_TX_DISABLED;
923 else
924 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
925
926 rc = efx->type->reconfigure_port(efx);
927
928 if (rc)
929 efx->phy_mode = phy_mode;
930
931 return rc;
932 }
933
934 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
935 * disabled. */
936 int efx_reconfigure_port(struct efx_nic *efx)
937 {
938 int rc;
939
940 EFX_ASSERT_RESET_SERIALISED(efx);
941
942 mutex_lock(&efx->mac_lock);
943 rc = __efx_reconfigure_port(efx);
944 mutex_unlock(&efx->mac_lock);
945
946 return rc;
947 }
948
949 /* Asynchronous work item for changing MAC promiscuity and multicast
950 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
951 * MAC directly. */
952 static void efx_mac_work(struct work_struct *data)
953 {
954 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
955
956 mutex_lock(&efx->mac_lock);
957 if (efx->port_enabled)
958 efx->type->reconfigure_mac(efx);
959 mutex_unlock(&efx->mac_lock);
960 }
961
962 static int efx_probe_port(struct efx_nic *efx)
963 {
964 int rc;
965
966 netif_dbg(efx, probe, efx->net_dev, "create port\n");
967
968 if (phy_flash_cfg)
969 efx->phy_mode = PHY_MODE_SPECIAL;
970
971 /* Connect up MAC/PHY operations table */
972 rc = efx->type->probe_port(efx);
973 if (rc)
974 return rc;
975
976 /* Initialise MAC address to permanent address */
977 memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
978
979 return 0;
980 }
981
982 static int efx_init_port(struct efx_nic *efx)
983 {
984 int rc;
985
986 netif_dbg(efx, drv, efx->net_dev, "init port\n");
987
988 mutex_lock(&efx->mac_lock);
989
990 rc = efx->phy_op->init(efx);
991 if (rc)
992 goto fail1;
993
994 efx->port_initialized = true;
995
996 /* Reconfigure the MAC before creating dma queues (required for
997 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
998 efx->type->reconfigure_mac(efx);
999
1000 /* Ensure the PHY advertises the correct flow control settings */
1001 rc = efx->phy_op->reconfigure(efx);
1002 if (rc)
1003 goto fail2;
1004
1005 mutex_unlock(&efx->mac_lock);
1006 return 0;
1007
1008 fail2:
1009 efx->phy_op->fini(efx);
1010 fail1:
1011 mutex_unlock(&efx->mac_lock);
1012 return rc;
1013 }
1014
1015 static void efx_start_port(struct efx_nic *efx)
1016 {
1017 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1018 BUG_ON(efx->port_enabled);
1019
1020 mutex_lock(&efx->mac_lock);
1021 efx->port_enabled = true;
1022
1023 /* efx_mac_work() might have been scheduled after efx_stop_port(),
1024 * and then cancelled by efx_flush_all() */
1025 efx->type->reconfigure_mac(efx);
1026
1027 mutex_unlock(&efx->mac_lock);
1028 }
1029
1030 /* Prevent efx_mac_work() and efx_monitor() from working */
1031 static void efx_stop_port(struct efx_nic *efx)
1032 {
1033 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1034
1035 mutex_lock(&efx->mac_lock);
1036 efx->port_enabled = false;
1037 mutex_unlock(&efx->mac_lock);
1038
1039 /* Serialise against efx_set_multicast_list() */
1040 netif_addr_lock_bh(efx->net_dev);
1041 netif_addr_unlock_bh(efx->net_dev);
1042 }
1043
1044 static void efx_fini_port(struct efx_nic *efx)
1045 {
1046 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1047
1048 if (!efx->port_initialized)
1049 return;
1050
1051 efx->phy_op->fini(efx);
1052 efx->port_initialized = false;
1053
1054 efx->link_state.up = false;
1055 efx_link_status_changed(efx);
1056 }
1057
1058 static void efx_remove_port(struct efx_nic *efx)
1059 {
1060 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1061
1062 efx->type->remove_port(efx);
1063 }
1064
1065 /**************************************************************************
1066 *
1067 * NIC handling
1068 *
1069 **************************************************************************/
1070
1071 /* This configures the PCI device to enable I/O and DMA. */
1072 static int efx_init_io(struct efx_nic *efx)
1073 {
1074 struct pci_dev *pci_dev = efx->pci_dev;
1075 dma_addr_t dma_mask = efx->type->max_dma_mask;
1076 int rc;
1077
1078 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1079
1080 rc = pci_enable_device(pci_dev);
1081 if (rc) {
1082 netif_err(efx, probe, efx->net_dev,
1083 "failed to enable PCI device\n");
1084 goto fail1;
1085 }
1086
1087 pci_set_master(pci_dev);
1088
1089 /* Set the PCI DMA mask. Try all possibilities from our
1090 * genuine mask down to 32 bits, because some architectures
1091 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1092 * masks event though they reject 46 bit masks.
1093 */
1094 while (dma_mask > 0x7fffffffUL) {
1095 if (pci_dma_supported(pci_dev, dma_mask)) {
1096 rc = pci_set_dma_mask(pci_dev, dma_mask);
1097 if (rc == 0)
1098 break;
1099 }
1100 dma_mask >>= 1;
1101 }
1102 if (rc) {
1103 netif_err(efx, probe, efx->net_dev,
1104 "could not find a suitable DMA mask\n");
1105 goto fail2;
1106 }
1107 netif_dbg(efx, probe, efx->net_dev,
1108 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1109 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1110 if (rc) {
1111 /* pci_set_consistent_dma_mask() is not *allowed* to
1112 * fail with a mask that pci_set_dma_mask() accepted,
1113 * but just in case...
1114 */
1115 netif_err(efx, probe, efx->net_dev,
1116 "failed to set consistent DMA mask\n");
1117 goto fail2;
1118 }
1119
1120 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1121 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1122 if (rc) {
1123 netif_err(efx, probe, efx->net_dev,
1124 "request for memory BAR failed\n");
1125 rc = -EIO;
1126 goto fail3;
1127 }
1128 efx->membase = ioremap_nocache(efx->membase_phys,
1129 efx->type->mem_map_size);
1130 if (!efx->membase) {
1131 netif_err(efx, probe, efx->net_dev,
1132 "could not map memory BAR at %llx+%x\n",
1133 (unsigned long long)efx->membase_phys,
1134 efx->type->mem_map_size);
1135 rc = -ENOMEM;
1136 goto fail4;
1137 }
1138 netif_dbg(efx, probe, efx->net_dev,
1139 "memory BAR at %llx+%x (virtual %p)\n",
1140 (unsigned long long)efx->membase_phys,
1141 efx->type->mem_map_size, efx->membase);
1142
1143 return 0;
1144
1145 fail4:
1146 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1147 fail3:
1148 efx->membase_phys = 0;
1149 fail2:
1150 pci_disable_device(efx->pci_dev);
1151 fail1:
1152 return rc;
1153 }
1154
1155 static void efx_fini_io(struct efx_nic *efx)
1156 {
1157 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1158
1159 if (efx->membase) {
1160 iounmap(efx->membase);
1161 efx->membase = NULL;
1162 }
1163
1164 if (efx->membase_phys) {
1165 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1166 efx->membase_phys = 0;
1167 }
1168
1169 pci_disable_device(efx->pci_dev);
1170 }
1171
1172 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1173 {
1174 cpumask_var_t thread_mask;
1175 unsigned int count;
1176 int cpu;
1177
1178 if (rss_cpus)
1179 return rss_cpus;
1180
1181 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1182 netif_warn(efx, probe, efx->net_dev,
1183 "RSS disabled due to allocation failure\n");
1184 return 1;
1185 }
1186
1187 count = 0;
1188 for_each_online_cpu(cpu) {
1189 if (!cpumask_test_cpu(cpu, thread_mask)) {
1190 ++count;
1191 cpumask_or(thread_mask, thread_mask,
1192 topology_thread_cpumask(cpu));
1193 }
1194 }
1195
1196 free_cpumask_var(thread_mask);
1197 return count;
1198 }
1199
1200 static int
1201 efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1202 {
1203 #ifdef CONFIG_RFS_ACCEL
1204 unsigned int i;
1205 int rc;
1206
1207 efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1208 if (!efx->net_dev->rx_cpu_rmap)
1209 return -ENOMEM;
1210 for (i = 0; i < efx->n_rx_channels; i++) {
1211 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1212 xentries[i].vector);
1213 if (rc) {
1214 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1215 efx->net_dev->rx_cpu_rmap = NULL;
1216 return rc;
1217 }
1218 }
1219 #endif
1220 return 0;
1221 }
1222
1223 /* Probe the number and type of interrupts we are able to obtain, and
1224 * the resulting numbers of channels and RX queues.
1225 */
1226 static int efx_probe_interrupts(struct efx_nic *efx)
1227 {
1228 unsigned int max_channels =
1229 min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1230 unsigned int extra_channels = 0;
1231 unsigned int i, j;
1232 int rc;
1233
1234 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1235 if (efx->extra_channel_type[i])
1236 ++extra_channels;
1237
1238 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1239 struct msix_entry xentries[EFX_MAX_CHANNELS];
1240 unsigned int n_channels;
1241
1242 n_channels = efx_wanted_parallelism(efx);
1243 if (separate_tx_channels)
1244 n_channels *= 2;
1245 n_channels += extra_channels;
1246 n_channels = min(n_channels, max_channels);
1247
1248 for (i = 0; i < n_channels; i++)
1249 xentries[i].entry = i;
1250 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1251 if (rc > 0) {
1252 netif_err(efx, drv, efx->net_dev,
1253 "WARNING: Insufficient MSI-X vectors"
1254 " available (%d < %u).\n", rc, n_channels);
1255 netif_err(efx, drv, efx->net_dev,
1256 "WARNING: Performance may be reduced.\n");
1257 EFX_BUG_ON_PARANOID(rc >= n_channels);
1258 n_channels = rc;
1259 rc = pci_enable_msix(efx->pci_dev, xentries,
1260 n_channels);
1261 }
1262
1263 if (rc == 0) {
1264 efx->n_channels = n_channels;
1265 if (n_channels > extra_channels)
1266 n_channels -= extra_channels;
1267 if (separate_tx_channels) {
1268 efx->n_tx_channels = max(n_channels / 2, 1U);
1269 efx->n_rx_channels = max(n_channels -
1270 efx->n_tx_channels,
1271 1U);
1272 } else {
1273 efx->n_tx_channels = n_channels;
1274 efx->n_rx_channels = n_channels;
1275 }
1276 rc = efx_init_rx_cpu_rmap(efx, xentries);
1277 if (rc) {
1278 pci_disable_msix(efx->pci_dev);
1279 return rc;
1280 }
1281 for (i = 0; i < efx->n_channels; i++)
1282 efx_get_channel(efx, i)->irq =
1283 xentries[i].vector;
1284 } else {
1285 /* Fall back to single channel MSI */
1286 efx->interrupt_mode = EFX_INT_MODE_MSI;
1287 netif_err(efx, drv, efx->net_dev,
1288 "could not enable MSI-X\n");
1289 }
1290 }
1291
1292 /* Try single interrupt MSI */
1293 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1294 efx->n_channels = 1;
1295 efx->n_rx_channels = 1;
1296 efx->n_tx_channels = 1;
1297 rc = pci_enable_msi(efx->pci_dev);
1298 if (rc == 0) {
1299 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1300 } else {
1301 netif_err(efx, drv, efx->net_dev,
1302 "could not enable MSI\n");
1303 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1304 }
1305 }
1306
1307 /* Assume legacy interrupts */
1308 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1309 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1310 efx->n_rx_channels = 1;
1311 efx->n_tx_channels = 1;
1312 efx->legacy_irq = efx->pci_dev->irq;
1313 }
1314
1315 /* Assign extra channels if possible */
1316 j = efx->n_channels;
1317 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1318 if (!efx->extra_channel_type[i])
1319 continue;
1320 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1321 efx->n_channels <= extra_channels) {
1322 efx->extra_channel_type[i]->handle_no_channel(efx);
1323 } else {
1324 --j;
1325 efx_get_channel(efx, j)->type =
1326 efx->extra_channel_type[i];
1327 }
1328 }
1329
1330 return 0;
1331 }
1332
1333 /* Enable interrupts, then probe and start the event queues */
1334 static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1335 {
1336 struct efx_channel *channel;
1337
1338 if (efx->legacy_irq)
1339 efx->legacy_irq_enabled = true;
1340 efx_nic_enable_interrupts(efx);
1341
1342 efx_for_each_channel(channel, efx) {
1343 if (!channel->type->keep_eventq || !may_keep_eventq)
1344 efx_init_eventq(channel);
1345 efx_start_eventq(channel);
1346 }
1347
1348 efx_mcdi_mode_event(efx);
1349 }
1350
1351 static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1352 {
1353 struct efx_channel *channel;
1354
1355 efx_mcdi_mode_poll(efx);
1356
1357 efx_nic_disable_interrupts(efx);
1358 if (efx->legacy_irq) {
1359 synchronize_irq(efx->legacy_irq);
1360 efx->legacy_irq_enabled = false;
1361 }
1362
1363 efx_for_each_channel(channel, efx) {
1364 if (channel->irq)
1365 synchronize_irq(channel->irq);
1366
1367 efx_stop_eventq(channel);
1368 if (!channel->type->keep_eventq || !may_keep_eventq)
1369 efx_fini_eventq(channel);
1370 }
1371 }
1372
1373 static void efx_remove_interrupts(struct efx_nic *efx)
1374 {
1375 struct efx_channel *channel;
1376
1377 /* Remove MSI/MSI-X interrupts */
1378 efx_for_each_channel(channel, efx)
1379 channel->irq = 0;
1380 pci_disable_msi(efx->pci_dev);
1381 pci_disable_msix(efx->pci_dev);
1382
1383 /* Remove legacy interrupt */
1384 efx->legacy_irq = 0;
1385 }
1386
1387 static void efx_set_channels(struct efx_nic *efx)
1388 {
1389 struct efx_channel *channel;
1390 struct efx_tx_queue *tx_queue;
1391
1392 efx->tx_channel_offset =
1393 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1394
1395 /* We need to adjust the TX queue numbers if we have separate
1396 * RX-only and TX-only channels.
1397 */
1398 efx_for_each_channel(channel, efx) {
1399 efx_for_each_channel_tx_queue(tx_queue, channel)
1400 tx_queue->queue -= (efx->tx_channel_offset *
1401 EFX_TXQ_TYPES);
1402 }
1403 }
1404
1405 static int efx_probe_nic(struct efx_nic *efx)
1406 {
1407 size_t i;
1408 int rc;
1409
1410 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1411
1412 /* Carry out hardware-type specific initialisation */
1413 rc = efx->type->probe(efx);
1414 if (rc)
1415 return rc;
1416
1417 /* Determine the number of channels and queues by trying to hook
1418 * in MSI-X interrupts. */
1419 rc = efx_probe_interrupts(efx);
1420 if (rc)
1421 goto fail;
1422
1423 if (efx->n_channels > 1)
1424 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1425 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1426 efx->rx_indir_table[i] =
1427 ethtool_rxfh_indir_default(i, efx->n_rx_channels);
1428
1429 efx_set_channels(efx);
1430 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1431 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1432
1433 /* Initialise the interrupt moderation settings */
1434 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1435 true);
1436
1437 return 0;
1438
1439 fail:
1440 efx->type->remove(efx);
1441 return rc;
1442 }
1443
1444 static void efx_remove_nic(struct efx_nic *efx)
1445 {
1446 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1447
1448 efx_remove_interrupts(efx);
1449 efx->type->remove(efx);
1450 }
1451
1452 /**************************************************************************
1453 *
1454 * NIC startup/shutdown
1455 *
1456 *************************************************************************/
1457
1458 static int efx_probe_all(struct efx_nic *efx)
1459 {
1460 int rc;
1461
1462 rc = efx_probe_nic(efx);
1463 if (rc) {
1464 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1465 goto fail1;
1466 }
1467
1468 rc = efx_probe_port(efx);
1469 if (rc) {
1470 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1471 goto fail2;
1472 }
1473
1474 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1475
1476 rc = efx_probe_filters(efx);
1477 if (rc) {
1478 netif_err(efx, probe, efx->net_dev,
1479 "failed to create filter tables\n");
1480 goto fail3;
1481 }
1482
1483 rc = efx_probe_channels(efx);
1484 if (rc)
1485 goto fail4;
1486
1487 return 0;
1488
1489 fail4:
1490 efx_remove_filters(efx);
1491 fail3:
1492 efx_remove_port(efx);
1493 fail2:
1494 efx_remove_nic(efx);
1495 fail1:
1496 return rc;
1497 }
1498
1499 /* Called after previous invocation(s) of efx_stop_all, restarts the port,
1500 * kernel transmit queues and NAPI processing, and ensures that the port is
1501 * scheduled to be reconfigured. This function is safe to call multiple
1502 * times when the NIC is in any state.
1503 */
1504 static void efx_start_all(struct efx_nic *efx)
1505 {
1506 EFX_ASSERT_RESET_SERIALISED(efx);
1507
1508 /* Check that it is appropriate to restart the interface. All
1509 * of these flags are safe to read under just the rtnl lock */
1510 if (efx->port_enabled)
1511 return;
1512 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1513 return;
1514 if (!netif_running(efx->net_dev))
1515 return;
1516
1517 efx_start_port(efx);
1518 efx_start_datapath(efx);
1519
1520 /* Start the hardware monitor if there is one. Otherwise (we're link
1521 * event driven), we have to poll the PHY because after an event queue
1522 * flush, we could have a missed a link state change */
1523 if (efx->type->monitor != NULL) {
1524 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1525 efx_monitor_interval);
1526 } else {
1527 mutex_lock(&efx->mac_lock);
1528 if (efx->phy_op->poll(efx))
1529 efx_link_status_changed(efx);
1530 mutex_unlock(&efx->mac_lock);
1531 }
1532
1533 efx->type->start_stats(efx);
1534 }
1535
1536 /* Flush all delayed work. Should only be called when no more delayed work
1537 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1538 * since we're holding the rtnl_lock at this point. */
1539 static void efx_flush_all(struct efx_nic *efx)
1540 {
1541 /* Make sure the hardware monitor is stopped */
1542 cancel_delayed_work_sync(&efx->monitor_work);
1543 /* Stop scheduled port reconfigurations */
1544 cancel_work_sync(&efx->mac_work);
1545 }
1546
1547 /* Quiesce hardware and software without bringing the link down.
1548 * Safe to call multiple times, when the nic and interface is in any
1549 * state. The caller is guaranteed to subsequently be in a position
1550 * to modify any hardware and software state they see fit without
1551 * taking locks. */
1552 static void efx_stop_all(struct efx_nic *efx)
1553 {
1554 EFX_ASSERT_RESET_SERIALISED(efx);
1555
1556 /* port_enabled can be read safely under the rtnl lock */
1557 if (!efx->port_enabled)
1558 return;
1559
1560 efx->type->stop_stats(efx);
1561 efx_stop_port(efx);
1562
1563 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1564 efx_flush_all(efx);
1565
1566 /* Stop the kernel transmit interface late, so the watchdog
1567 * timer isn't ticking over the flush */
1568 netif_tx_disable(efx->net_dev);
1569
1570 efx_stop_datapath(efx);
1571 }
1572
1573 static void efx_remove_all(struct efx_nic *efx)
1574 {
1575 efx_remove_channels(efx);
1576 efx_remove_filters(efx);
1577 efx_remove_port(efx);
1578 efx_remove_nic(efx);
1579 }
1580
1581 /**************************************************************************
1582 *
1583 * Interrupt moderation
1584 *
1585 **************************************************************************/
1586
1587 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1588 {
1589 if (usecs == 0)
1590 return 0;
1591 if (usecs * 1000 < quantum_ns)
1592 return 1; /* never round down to 0 */
1593 return usecs * 1000 / quantum_ns;
1594 }
1595
1596 /* Set interrupt moderation parameters */
1597 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1598 unsigned int rx_usecs, bool rx_adaptive,
1599 bool rx_may_override_tx)
1600 {
1601 struct efx_channel *channel;
1602 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1603 efx->timer_quantum_ns,
1604 1000);
1605 unsigned int tx_ticks;
1606 unsigned int rx_ticks;
1607
1608 EFX_ASSERT_RESET_SERIALISED(efx);
1609
1610 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1611 return -EINVAL;
1612
1613 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1614 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1615
1616 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1617 !rx_may_override_tx) {
1618 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1619 "RX and TX IRQ moderation must be equal\n");
1620 return -EINVAL;
1621 }
1622
1623 efx->irq_rx_adaptive = rx_adaptive;
1624 efx->irq_rx_moderation = rx_ticks;
1625 efx_for_each_channel(channel, efx) {
1626 if (efx_channel_has_rx_queue(channel))
1627 channel->irq_moderation = rx_ticks;
1628 else if (efx_channel_has_tx_queues(channel))
1629 channel->irq_moderation = tx_ticks;
1630 }
1631
1632 return 0;
1633 }
1634
1635 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1636 unsigned int *rx_usecs, bool *rx_adaptive)
1637 {
1638 /* We must round up when converting ticks to microseconds
1639 * because we round down when converting the other way.
1640 */
1641
1642 *rx_adaptive = efx->irq_rx_adaptive;
1643 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1644 efx->timer_quantum_ns,
1645 1000);
1646
1647 /* If channels are shared between RX and TX, so is IRQ
1648 * moderation. Otherwise, IRQ moderation is the same for all
1649 * TX channels and is not adaptive.
1650 */
1651 if (efx->tx_channel_offset == 0)
1652 *tx_usecs = *rx_usecs;
1653 else
1654 *tx_usecs = DIV_ROUND_UP(
1655 efx->channel[efx->tx_channel_offset]->irq_moderation *
1656 efx->timer_quantum_ns,
1657 1000);
1658 }
1659
1660 /**************************************************************************
1661 *
1662 * Hardware monitor
1663 *
1664 **************************************************************************/
1665
1666 /* Run periodically off the general workqueue */
1667 static void efx_monitor(struct work_struct *data)
1668 {
1669 struct efx_nic *efx = container_of(data, struct efx_nic,
1670 monitor_work.work);
1671
1672 netif_vdbg(efx, timer, efx->net_dev,
1673 "hardware monitor executing on CPU %d\n",
1674 raw_smp_processor_id());
1675 BUG_ON(efx->type->monitor == NULL);
1676
1677 /* If the mac_lock is already held then it is likely a port
1678 * reconfiguration is already in place, which will likely do
1679 * most of the work of monitor() anyway. */
1680 if (mutex_trylock(&efx->mac_lock)) {
1681 if (efx->port_enabled)
1682 efx->type->monitor(efx);
1683 mutex_unlock(&efx->mac_lock);
1684 }
1685
1686 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1687 efx_monitor_interval);
1688 }
1689
1690 /**************************************************************************
1691 *
1692 * ioctls
1693 *
1694 *************************************************************************/
1695
1696 /* Net device ioctl
1697 * Context: process, rtnl_lock() held.
1698 */
1699 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1700 {
1701 struct efx_nic *efx = netdev_priv(net_dev);
1702 struct mii_ioctl_data *data = if_mii(ifr);
1703
1704 EFX_ASSERT_RESET_SERIALISED(efx);
1705
1706 /* Convert phy_id from older PRTAD/DEVAD format */
1707 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1708 (data->phy_id & 0xfc00) == 0x0400)
1709 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1710
1711 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1712 }
1713
1714 /**************************************************************************
1715 *
1716 * NAPI interface
1717 *
1718 **************************************************************************/
1719
1720 static void efx_init_napi_channel(struct efx_channel *channel)
1721 {
1722 struct efx_nic *efx = channel->efx;
1723
1724 channel->napi_dev = efx->net_dev;
1725 netif_napi_add(channel->napi_dev, &channel->napi_str,
1726 efx_poll, napi_weight);
1727 }
1728
1729 static void efx_init_napi(struct efx_nic *efx)
1730 {
1731 struct efx_channel *channel;
1732
1733 efx_for_each_channel(channel, efx)
1734 efx_init_napi_channel(channel);
1735 }
1736
1737 static void efx_fini_napi_channel(struct efx_channel *channel)
1738 {
1739 if (channel->napi_dev)
1740 netif_napi_del(&channel->napi_str);
1741 channel->napi_dev = NULL;
1742 }
1743
1744 static void efx_fini_napi(struct efx_nic *efx)
1745 {
1746 struct efx_channel *channel;
1747
1748 efx_for_each_channel(channel, efx)
1749 efx_fini_napi_channel(channel);
1750 }
1751
1752 /**************************************************************************
1753 *
1754 * Kernel netpoll interface
1755 *
1756 *************************************************************************/
1757
1758 #ifdef CONFIG_NET_POLL_CONTROLLER
1759
1760 /* Although in the common case interrupts will be disabled, this is not
1761 * guaranteed. However, all our work happens inside the NAPI callback,
1762 * so no locking is required.
1763 */
1764 static void efx_netpoll(struct net_device *net_dev)
1765 {
1766 struct efx_nic *efx = netdev_priv(net_dev);
1767 struct efx_channel *channel;
1768
1769 efx_for_each_channel(channel, efx)
1770 efx_schedule_channel(channel);
1771 }
1772
1773 #endif
1774
1775 /**************************************************************************
1776 *
1777 * Kernel net device interface
1778 *
1779 *************************************************************************/
1780
1781 /* Context: process, rtnl_lock() held. */
1782 static int efx_net_open(struct net_device *net_dev)
1783 {
1784 struct efx_nic *efx = netdev_priv(net_dev);
1785 EFX_ASSERT_RESET_SERIALISED(efx);
1786
1787 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1788 raw_smp_processor_id());
1789
1790 if (efx->state == STATE_DISABLED)
1791 return -EIO;
1792 if (efx->phy_mode & PHY_MODE_SPECIAL)
1793 return -EBUSY;
1794 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1795 return -EIO;
1796
1797 /* Notify the kernel of the link state polled during driver load,
1798 * before the monitor starts running */
1799 efx_link_status_changed(efx);
1800
1801 efx_start_all(efx);
1802 return 0;
1803 }
1804
1805 /* Context: process, rtnl_lock() held.
1806 * Note that the kernel will ignore our return code; this method
1807 * should really be a void.
1808 */
1809 static int efx_net_stop(struct net_device *net_dev)
1810 {
1811 struct efx_nic *efx = netdev_priv(net_dev);
1812
1813 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1814 raw_smp_processor_id());
1815
1816 if (efx->state != STATE_DISABLED) {
1817 /* Stop the device and flush all the channels */
1818 efx_stop_all(efx);
1819 }
1820
1821 return 0;
1822 }
1823
1824 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1825 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1826 struct rtnl_link_stats64 *stats)
1827 {
1828 struct efx_nic *efx = netdev_priv(net_dev);
1829 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1830
1831 spin_lock_bh(&efx->stats_lock);
1832
1833 efx->type->update_stats(efx);
1834
1835 stats->rx_packets = mac_stats->rx_packets;
1836 stats->tx_packets = mac_stats->tx_packets;
1837 stats->rx_bytes = mac_stats->rx_bytes;
1838 stats->tx_bytes = mac_stats->tx_bytes;
1839 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1840 stats->multicast = mac_stats->rx_multicast;
1841 stats->collisions = mac_stats->tx_collision;
1842 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1843 mac_stats->rx_length_error);
1844 stats->rx_crc_errors = mac_stats->rx_bad;
1845 stats->rx_frame_errors = mac_stats->rx_align_error;
1846 stats->rx_fifo_errors = mac_stats->rx_overflow;
1847 stats->rx_missed_errors = mac_stats->rx_missed;
1848 stats->tx_window_errors = mac_stats->tx_late_collision;
1849
1850 stats->rx_errors = (stats->rx_length_errors +
1851 stats->rx_crc_errors +
1852 stats->rx_frame_errors +
1853 mac_stats->rx_symbol_error);
1854 stats->tx_errors = (stats->tx_window_errors +
1855 mac_stats->tx_bad);
1856
1857 spin_unlock_bh(&efx->stats_lock);
1858
1859 return stats;
1860 }
1861
1862 /* Context: netif_tx_lock held, BHs disabled. */
1863 static void efx_watchdog(struct net_device *net_dev)
1864 {
1865 struct efx_nic *efx = netdev_priv(net_dev);
1866
1867 netif_err(efx, tx_err, efx->net_dev,
1868 "TX stuck with port_enabled=%d: resetting channels\n",
1869 efx->port_enabled);
1870
1871 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1872 }
1873
1874
1875 /* Context: process, rtnl_lock() held. */
1876 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1877 {
1878 struct efx_nic *efx = netdev_priv(net_dev);
1879
1880 EFX_ASSERT_RESET_SERIALISED(efx);
1881
1882 if (new_mtu > EFX_MAX_MTU)
1883 return -EINVAL;
1884
1885 efx_stop_all(efx);
1886
1887 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1888
1889 mutex_lock(&efx->mac_lock);
1890 /* Reconfigure the MAC before enabling the dma queues so that
1891 * the RX buffers don't overflow */
1892 net_dev->mtu = new_mtu;
1893 efx->type->reconfigure_mac(efx);
1894 mutex_unlock(&efx->mac_lock);
1895
1896 efx_start_all(efx);
1897 return 0;
1898 }
1899
1900 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1901 {
1902 struct efx_nic *efx = netdev_priv(net_dev);
1903 struct sockaddr *addr = data;
1904 char *new_addr = addr->sa_data;
1905
1906 EFX_ASSERT_RESET_SERIALISED(efx);
1907
1908 if (!is_valid_ether_addr(new_addr)) {
1909 netif_err(efx, drv, efx->net_dev,
1910 "invalid ethernet MAC address requested: %pM\n",
1911 new_addr);
1912 return -EINVAL;
1913 }
1914
1915 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1916
1917 /* Reconfigure the MAC */
1918 mutex_lock(&efx->mac_lock);
1919 efx->type->reconfigure_mac(efx);
1920 mutex_unlock(&efx->mac_lock);
1921
1922 return 0;
1923 }
1924
1925 /* Context: netif_addr_lock held, BHs disabled. */
1926 static void efx_set_rx_mode(struct net_device *net_dev)
1927 {
1928 struct efx_nic *efx = netdev_priv(net_dev);
1929 struct netdev_hw_addr *ha;
1930 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1931 u32 crc;
1932 int bit;
1933
1934 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1935
1936 /* Build multicast hash table */
1937 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1938 memset(mc_hash, 0xff, sizeof(*mc_hash));
1939 } else {
1940 memset(mc_hash, 0x00, sizeof(*mc_hash));
1941 netdev_for_each_mc_addr(ha, net_dev) {
1942 crc = ether_crc_le(ETH_ALEN, ha->addr);
1943 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1944 set_bit_le(bit, mc_hash->byte);
1945 }
1946
1947 /* Broadcast packets go through the multicast hash filter.
1948 * ether_crc_le() of the broadcast address is 0xbe2612ff
1949 * so we always add bit 0xff to the mask.
1950 */
1951 set_bit_le(0xff, mc_hash->byte);
1952 }
1953
1954 if (efx->port_enabled)
1955 queue_work(efx->workqueue, &efx->mac_work);
1956 /* Otherwise efx_start_port() will do this */
1957 }
1958
1959 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
1960 {
1961 struct efx_nic *efx = netdev_priv(net_dev);
1962
1963 /* If disabling RX n-tuple filtering, clear existing filters */
1964 if (net_dev->features & ~data & NETIF_F_NTUPLE)
1965 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1966
1967 return 0;
1968 }
1969
1970 static const struct net_device_ops efx_netdev_ops = {
1971 .ndo_open = efx_net_open,
1972 .ndo_stop = efx_net_stop,
1973 .ndo_get_stats64 = efx_net_stats,
1974 .ndo_tx_timeout = efx_watchdog,
1975 .ndo_start_xmit = efx_hard_start_xmit,
1976 .ndo_validate_addr = eth_validate_addr,
1977 .ndo_do_ioctl = efx_ioctl,
1978 .ndo_change_mtu = efx_change_mtu,
1979 .ndo_set_mac_address = efx_set_mac_address,
1980 .ndo_set_rx_mode = efx_set_rx_mode,
1981 .ndo_set_features = efx_set_features,
1982 #ifdef CONFIG_NET_POLL_CONTROLLER
1983 .ndo_poll_controller = efx_netpoll,
1984 #endif
1985 .ndo_setup_tc = efx_setup_tc,
1986 #ifdef CONFIG_RFS_ACCEL
1987 .ndo_rx_flow_steer = efx_filter_rfs,
1988 #endif
1989 };
1990
1991 static void efx_update_name(struct efx_nic *efx)
1992 {
1993 strcpy(efx->name, efx->net_dev->name);
1994 efx_mtd_rename(efx);
1995 efx_set_channel_names(efx);
1996 }
1997
1998 static int efx_netdev_event(struct notifier_block *this,
1999 unsigned long event, void *ptr)
2000 {
2001 struct net_device *net_dev = ptr;
2002
2003 if (net_dev->netdev_ops == &efx_netdev_ops &&
2004 event == NETDEV_CHANGENAME)
2005 efx_update_name(netdev_priv(net_dev));
2006
2007 return NOTIFY_DONE;
2008 }
2009
2010 static struct notifier_block efx_netdev_notifier = {
2011 .notifier_call = efx_netdev_event,
2012 };
2013
2014 static ssize_t
2015 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2016 {
2017 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2018 return sprintf(buf, "%d\n", efx->phy_type);
2019 }
2020 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
2021
2022 static int efx_register_netdev(struct efx_nic *efx)
2023 {
2024 struct net_device *net_dev = efx->net_dev;
2025 struct efx_channel *channel;
2026 int rc;
2027
2028 net_dev->watchdog_timeo = 5 * HZ;
2029 net_dev->irq = efx->pci_dev->irq;
2030 net_dev->netdev_ops = &efx_netdev_ops;
2031 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2032
2033 rtnl_lock();
2034
2035 rc = dev_alloc_name(net_dev, net_dev->name);
2036 if (rc < 0)
2037 goto fail_locked;
2038 efx_update_name(efx);
2039
2040 rc = register_netdevice(net_dev);
2041 if (rc)
2042 goto fail_locked;
2043
2044 efx_for_each_channel(channel, efx) {
2045 struct efx_tx_queue *tx_queue;
2046 efx_for_each_channel_tx_queue(tx_queue, channel)
2047 efx_init_tx_queue_core_txq(tx_queue);
2048 }
2049
2050 /* Always start with carrier off; PHY events will detect the link */
2051 netif_carrier_off(net_dev);
2052
2053 rtnl_unlock();
2054
2055 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2056 if (rc) {
2057 netif_err(efx, drv, efx->net_dev,
2058 "failed to init net dev attributes\n");
2059 goto fail_registered;
2060 }
2061
2062 return 0;
2063
2064 fail_locked:
2065 rtnl_unlock();
2066 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2067 return rc;
2068
2069 fail_registered:
2070 unregister_netdev(net_dev);
2071 return rc;
2072 }
2073
2074 static void efx_unregister_netdev(struct efx_nic *efx)
2075 {
2076 struct efx_channel *channel;
2077 struct efx_tx_queue *tx_queue;
2078
2079 if (!efx->net_dev)
2080 return;
2081
2082 BUG_ON(netdev_priv(efx->net_dev) != efx);
2083
2084 /* Free up any skbs still remaining. This has to happen before
2085 * we try to unregister the netdev as running their destructors
2086 * may be needed to get the device ref. count to 0. */
2087 efx_for_each_channel(channel, efx) {
2088 efx_for_each_channel_tx_queue(tx_queue, channel)
2089 efx_release_tx_buffers(tx_queue);
2090 }
2091
2092 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2093 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2094 unregister_netdev(efx->net_dev);
2095 }
2096
2097 /**************************************************************************
2098 *
2099 * Device reset and suspend
2100 *
2101 **************************************************************************/
2102
2103 /* Tears down the entire software state and most of the hardware state
2104 * before reset. */
2105 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2106 {
2107 EFX_ASSERT_RESET_SERIALISED(efx);
2108
2109 efx_stop_all(efx);
2110 mutex_lock(&efx->mac_lock);
2111
2112 efx_stop_interrupts(efx, false);
2113 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2114 efx->phy_op->fini(efx);
2115 efx->type->fini(efx);
2116 }
2117
2118 /* This function will always ensure that the locks acquired in
2119 * efx_reset_down() are released. A failure return code indicates
2120 * that we were unable to reinitialise the hardware, and the
2121 * driver should be disabled. If ok is false, then the rx and tx
2122 * engines are not restarted, pending a RESET_DISABLE. */
2123 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2124 {
2125 int rc;
2126
2127 EFX_ASSERT_RESET_SERIALISED(efx);
2128
2129 rc = efx->type->init(efx);
2130 if (rc) {
2131 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2132 goto fail;
2133 }
2134
2135 if (!ok)
2136 goto fail;
2137
2138 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2139 rc = efx->phy_op->init(efx);
2140 if (rc)
2141 goto fail;
2142 if (efx->phy_op->reconfigure(efx))
2143 netif_err(efx, drv, efx->net_dev,
2144 "could not restore PHY settings\n");
2145 }
2146
2147 efx->type->reconfigure_mac(efx);
2148
2149 efx_start_interrupts(efx, false);
2150 efx_restore_filters(efx);
2151
2152 mutex_unlock(&efx->mac_lock);
2153
2154 efx_start_all(efx);
2155
2156 return 0;
2157
2158 fail:
2159 efx->port_initialized = false;
2160
2161 mutex_unlock(&efx->mac_lock);
2162
2163 return rc;
2164 }
2165
2166 /* Reset the NIC using the specified method. Note that the reset may
2167 * fail, in which case the card will be left in an unusable state.
2168 *
2169 * Caller must hold the rtnl_lock.
2170 */
2171 int efx_reset(struct efx_nic *efx, enum reset_type method)
2172 {
2173 int rc, rc2;
2174 bool disabled;
2175
2176 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2177 RESET_TYPE(method));
2178
2179 netif_device_detach(efx->net_dev);
2180 efx_reset_down(efx, method);
2181
2182 rc = efx->type->reset(efx, method);
2183 if (rc) {
2184 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2185 goto out;
2186 }
2187
2188 /* Clear flags for the scopes we covered. We assume the NIC and
2189 * driver are now quiescent so that there is no race here.
2190 */
2191 efx->reset_pending &= -(1 << (method + 1));
2192
2193 /* Reinitialise bus-mastering, which may have been turned off before
2194 * the reset was scheduled. This is still appropriate, even in the
2195 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2196 * can respond to requests. */
2197 pci_set_master(efx->pci_dev);
2198
2199 out:
2200 /* Leave device stopped if necessary */
2201 disabled = rc || method == RESET_TYPE_DISABLE;
2202 rc2 = efx_reset_up(efx, method, !disabled);
2203 if (rc2) {
2204 disabled = true;
2205 if (!rc)
2206 rc = rc2;
2207 }
2208
2209 if (disabled) {
2210 dev_close(efx->net_dev);
2211 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2212 efx->state = STATE_DISABLED;
2213 } else {
2214 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2215 netif_device_attach(efx->net_dev);
2216 }
2217 return rc;
2218 }
2219
2220 /* The worker thread exists so that code that cannot sleep can
2221 * schedule a reset for later.
2222 */
2223 static void efx_reset_work(struct work_struct *data)
2224 {
2225 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2226 unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2227
2228 if (!pending)
2229 return;
2230
2231 /* If we're not RUNNING then don't reset. Leave the reset_pending
2232 * flags set so that efx_pci_probe_main will be retried */
2233 if (efx->state != STATE_RUNNING) {
2234 netif_info(efx, drv, efx->net_dev,
2235 "scheduled reset quenched. NIC not RUNNING\n");
2236 return;
2237 }
2238
2239 rtnl_lock();
2240 (void)efx_reset(efx, fls(pending) - 1);
2241 rtnl_unlock();
2242 }
2243
2244 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2245 {
2246 enum reset_type method;
2247
2248 switch (type) {
2249 case RESET_TYPE_INVISIBLE:
2250 case RESET_TYPE_ALL:
2251 case RESET_TYPE_WORLD:
2252 case RESET_TYPE_DISABLE:
2253 method = type;
2254 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2255 RESET_TYPE(method));
2256 break;
2257 default:
2258 method = efx->type->map_reset_reason(type);
2259 netif_dbg(efx, drv, efx->net_dev,
2260 "scheduling %s reset for %s\n",
2261 RESET_TYPE(method), RESET_TYPE(type));
2262 break;
2263 }
2264
2265 set_bit(method, &efx->reset_pending);
2266
2267 /* efx_process_channel() will no longer read events once a
2268 * reset is scheduled. So switch back to poll'd MCDI completions. */
2269 efx_mcdi_mode_poll(efx);
2270
2271 queue_work(reset_workqueue, &efx->reset_work);
2272 }
2273
2274 /**************************************************************************
2275 *
2276 * List of NICs we support
2277 *
2278 **************************************************************************/
2279
2280 /* PCI device ID table */
2281 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2282 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2283 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2284 .driver_data = (unsigned long) &falcon_a1_nic_type},
2285 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2286 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2287 .driver_data = (unsigned long) &falcon_b0_nic_type},
2288 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
2289 .driver_data = (unsigned long) &siena_a0_nic_type},
2290 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
2291 .driver_data = (unsigned long) &siena_a0_nic_type},
2292 {0} /* end of list */
2293 };
2294
2295 /**************************************************************************
2296 *
2297 * Dummy PHY/MAC operations
2298 *
2299 * Can be used for some unimplemented operations
2300 * Needed so all function pointers are valid and do not have to be tested
2301 * before use
2302 *
2303 **************************************************************************/
2304 int efx_port_dummy_op_int(struct efx_nic *efx)
2305 {
2306 return 0;
2307 }
2308 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2309
2310 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2311 {
2312 return false;
2313 }
2314
2315 static const struct efx_phy_operations efx_dummy_phy_operations = {
2316 .init = efx_port_dummy_op_int,
2317 .reconfigure = efx_port_dummy_op_int,
2318 .poll = efx_port_dummy_op_poll,
2319 .fini = efx_port_dummy_op_void,
2320 };
2321
2322 /**************************************************************************
2323 *
2324 * Data housekeeping
2325 *
2326 **************************************************************************/
2327
2328 /* This zeroes out and then fills in the invariants in a struct
2329 * efx_nic (including all sub-structures).
2330 */
2331 static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2332 struct pci_dev *pci_dev, struct net_device *net_dev)
2333 {
2334 int i;
2335
2336 /* Initialise common structures */
2337 memset(efx, 0, sizeof(*efx));
2338 spin_lock_init(&efx->biu_lock);
2339 #ifdef CONFIG_SFC_MTD
2340 INIT_LIST_HEAD(&efx->mtd_list);
2341 #endif
2342 INIT_WORK(&efx->reset_work, efx_reset_work);
2343 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2344 efx->pci_dev = pci_dev;
2345 efx->msg_enable = debug;
2346 efx->state = STATE_INIT;
2347 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2348
2349 efx->net_dev = net_dev;
2350 spin_lock_init(&efx->stats_lock);
2351 mutex_init(&efx->mac_lock);
2352 efx->phy_op = &efx_dummy_phy_operations;
2353 efx->mdio.dev = net_dev;
2354 INIT_WORK(&efx->mac_work, efx_mac_work);
2355 init_waitqueue_head(&efx->flush_wq);
2356
2357 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2358 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2359 if (!efx->channel[i])
2360 goto fail;
2361 }
2362
2363 efx->type = type;
2364
2365 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2366
2367 /* Higher numbered interrupt modes are less capable! */
2368 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2369 interrupt_mode);
2370
2371 /* Would be good to use the net_dev name, but we're too early */
2372 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2373 pci_name(pci_dev));
2374 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2375 if (!efx->workqueue)
2376 goto fail;
2377
2378 return 0;
2379
2380 fail:
2381 efx_fini_struct(efx);
2382 return -ENOMEM;
2383 }
2384
2385 static void efx_fini_struct(struct efx_nic *efx)
2386 {
2387 int i;
2388
2389 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2390 kfree(efx->channel[i]);
2391
2392 if (efx->workqueue) {
2393 destroy_workqueue(efx->workqueue);
2394 efx->workqueue = NULL;
2395 }
2396 }
2397
2398 /**************************************************************************
2399 *
2400 * PCI interface
2401 *
2402 **************************************************************************/
2403
2404 /* Main body of final NIC shutdown code
2405 * This is called only at module unload (or hotplug removal).
2406 */
2407 static void efx_pci_remove_main(struct efx_nic *efx)
2408 {
2409 #ifdef CONFIG_RFS_ACCEL
2410 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2411 efx->net_dev->rx_cpu_rmap = NULL;
2412 #endif
2413 efx_stop_interrupts(efx, false);
2414 efx_nic_fini_interrupt(efx);
2415 efx_fini_port(efx);
2416 efx->type->fini(efx);
2417 efx_fini_napi(efx);
2418 efx_remove_all(efx);
2419 }
2420
2421 /* Final NIC shutdown
2422 * This is called only at module unload (or hotplug removal).
2423 */
2424 static void efx_pci_remove(struct pci_dev *pci_dev)
2425 {
2426 struct efx_nic *efx;
2427
2428 efx = pci_get_drvdata(pci_dev);
2429 if (!efx)
2430 return;
2431
2432 /* Mark the NIC as fini, then stop the interface */
2433 rtnl_lock();
2434 efx->state = STATE_FINI;
2435 dev_close(efx->net_dev);
2436
2437 /* Allow any queued efx_resets() to complete */
2438 rtnl_unlock();
2439
2440 efx_stop_interrupts(efx, false);
2441 efx_unregister_netdev(efx);
2442
2443 efx_mtd_remove(efx);
2444
2445 /* Wait for any scheduled resets to complete. No more will be
2446 * scheduled from this point because efx_stop_all() has been
2447 * called, we are no longer registered with driverlink, and
2448 * the net_device's have been removed. */
2449 cancel_work_sync(&efx->reset_work);
2450
2451 efx_pci_remove_main(efx);
2452
2453 efx_fini_io(efx);
2454 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2455
2456 pci_set_drvdata(pci_dev, NULL);
2457 efx_fini_struct(efx);
2458 free_netdev(efx->net_dev);
2459 };
2460
2461 /* Main body of NIC initialisation
2462 * This is called at module load (or hotplug insertion, theoretically).
2463 */
2464 static int efx_pci_probe_main(struct efx_nic *efx)
2465 {
2466 int rc;
2467
2468 /* Do start-of-day initialisation */
2469 rc = efx_probe_all(efx);
2470 if (rc)
2471 goto fail1;
2472
2473 efx_init_napi(efx);
2474
2475 rc = efx->type->init(efx);
2476 if (rc) {
2477 netif_err(efx, probe, efx->net_dev,
2478 "failed to initialise NIC\n");
2479 goto fail3;
2480 }
2481
2482 rc = efx_init_port(efx);
2483 if (rc) {
2484 netif_err(efx, probe, efx->net_dev,
2485 "failed to initialise port\n");
2486 goto fail4;
2487 }
2488
2489 rc = efx_nic_init_interrupt(efx);
2490 if (rc)
2491 goto fail5;
2492 efx_start_interrupts(efx, false);
2493
2494 return 0;
2495
2496 fail5:
2497 efx_fini_port(efx);
2498 fail4:
2499 efx->type->fini(efx);
2500 fail3:
2501 efx_fini_napi(efx);
2502 efx_remove_all(efx);
2503 fail1:
2504 return rc;
2505 }
2506
2507 /* NIC initialisation
2508 *
2509 * This is called at module load (or hotplug insertion,
2510 * theoretically). It sets up PCI mappings, resets the NIC,
2511 * sets up and registers the network devices with the kernel and hooks
2512 * the interrupt service routine. It does not prepare the device for
2513 * transmission; this is left to the first time one of the network
2514 * interfaces is brought up (i.e. efx_net_open).
2515 */
2516 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2517 const struct pci_device_id *entry)
2518 {
2519 const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2520 struct net_device *net_dev;
2521 struct efx_nic *efx;
2522 int rc;
2523
2524 /* Allocate and initialise a struct net_device and struct efx_nic */
2525 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2526 EFX_MAX_RX_QUEUES);
2527 if (!net_dev)
2528 return -ENOMEM;
2529 net_dev->features |= (type->offload_features | NETIF_F_SG |
2530 NETIF_F_HIGHDMA | NETIF_F_TSO |
2531 NETIF_F_RXCSUM);
2532 if (type->offload_features & NETIF_F_V6_CSUM)
2533 net_dev->features |= NETIF_F_TSO6;
2534 /* Mask for features that also apply to VLAN devices */
2535 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2536 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2537 NETIF_F_RXCSUM);
2538 /* All offloads can be toggled */
2539 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2540 efx = netdev_priv(net_dev);
2541 pci_set_drvdata(pci_dev, efx);
2542 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2543 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2544 if (rc)
2545 goto fail1;
2546
2547 netif_info(efx, probe, efx->net_dev,
2548 "Solarflare NIC detected\n");
2549
2550 /* Set up basic I/O (BAR mappings etc) */
2551 rc = efx_init_io(efx);
2552 if (rc)
2553 goto fail2;
2554
2555 rc = efx_pci_probe_main(efx);
2556
2557 /* Serialise against efx_reset(). No more resets will be
2558 * scheduled since efx_stop_all() has been called, and we have
2559 * not and never have been registered.
2560 */
2561 cancel_work_sync(&efx->reset_work);
2562
2563 if (rc)
2564 goto fail3;
2565
2566 /* If there was a scheduled reset during probe, the NIC is
2567 * probably hosed anyway.
2568 */
2569 if (efx->reset_pending) {
2570 rc = -EIO;
2571 goto fail4;
2572 }
2573
2574 /* Switch to the running state before we expose the device to the OS,
2575 * so that dev_open()|efx_start_all() will actually start the device */
2576 efx->state = STATE_RUNNING;
2577
2578 rc = efx_register_netdev(efx);
2579 if (rc)
2580 goto fail4;
2581
2582 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2583
2584 /* Try to create MTDs, but allow this to fail */
2585 rtnl_lock();
2586 rc = efx_mtd_probe(efx);
2587 rtnl_unlock();
2588 if (rc)
2589 netif_warn(efx, probe, efx->net_dev,
2590 "failed to create MTDs (%d)\n", rc);
2591
2592 return 0;
2593
2594 fail4:
2595 efx_pci_remove_main(efx);
2596 fail3:
2597 efx_fini_io(efx);
2598 fail2:
2599 efx_fini_struct(efx);
2600 fail1:
2601 WARN_ON(rc > 0);
2602 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2603 free_netdev(net_dev);
2604 return rc;
2605 }
2606
2607 static int efx_pm_freeze(struct device *dev)
2608 {
2609 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2610
2611 efx->state = STATE_FINI;
2612
2613 netif_device_detach(efx->net_dev);
2614
2615 efx_stop_all(efx);
2616 efx_stop_interrupts(efx, false);
2617
2618 return 0;
2619 }
2620
2621 static int efx_pm_thaw(struct device *dev)
2622 {
2623 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2624
2625 efx->state = STATE_INIT;
2626
2627 efx_start_interrupts(efx, false);
2628
2629 mutex_lock(&efx->mac_lock);
2630 efx->phy_op->reconfigure(efx);
2631 mutex_unlock(&efx->mac_lock);
2632
2633 efx_start_all(efx);
2634
2635 netif_device_attach(efx->net_dev);
2636
2637 efx->state = STATE_RUNNING;
2638
2639 efx->type->resume_wol(efx);
2640
2641 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2642 queue_work(reset_workqueue, &efx->reset_work);
2643
2644 return 0;
2645 }
2646
2647 static int efx_pm_poweroff(struct device *dev)
2648 {
2649 struct pci_dev *pci_dev = to_pci_dev(dev);
2650 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2651
2652 efx->type->fini(efx);
2653
2654 efx->reset_pending = 0;
2655
2656 pci_save_state(pci_dev);
2657 return pci_set_power_state(pci_dev, PCI_D3hot);
2658 }
2659
2660 /* Used for both resume and restore */
2661 static int efx_pm_resume(struct device *dev)
2662 {
2663 struct pci_dev *pci_dev = to_pci_dev(dev);
2664 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2665 int rc;
2666
2667 rc = pci_set_power_state(pci_dev, PCI_D0);
2668 if (rc)
2669 return rc;
2670 pci_restore_state(pci_dev);
2671 rc = pci_enable_device(pci_dev);
2672 if (rc)
2673 return rc;
2674 pci_set_master(efx->pci_dev);
2675 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2676 if (rc)
2677 return rc;
2678 rc = efx->type->init(efx);
2679 if (rc)
2680 return rc;
2681 efx_pm_thaw(dev);
2682 return 0;
2683 }
2684
2685 static int efx_pm_suspend(struct device *dev)
2686 {
2687 int rc;
2688
2689 efx_pm_freeze(dev);
2690 rc = efx_pm_poweroff(dev);
2691 if (rc)
2692 efx_pm_resume(dev);
2693 return rc;
2694 }
2695
2696 static const struct dev_pm_ops efx_pm_ops = {
2697 .suspend = efx_pm_suspend,
2698 .resume = efx_pm_resume,
2699 .freeze = efx_pm_freeze,
2700 .thaw = efx_pm_thaw,
2701 .poweroff = efx_pm_poweroff,
2702 .restore = efx_pm_resume,
2703 };
2704
2705 static struct pci_driver efx_pci_driver = {
2706 .name = KBUILD_MODNAME,
2707 .id_table = efx_pci_table,
2708 .probe = efx_pci_probe,
2709 .remove = efx_pci_remove,
2710 .driver.pm = &efx_pm_ops,
2711 };
2712
2713 /**************************************************************************
2714 *
2715 * Kernel module interface
2716 *
2717 *************************************************************************/
2718
2719 module_param(interrupt_mode, uint, 0444);
2720 MODULE_PARM_DESC(interrupt_mode,
2721 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2722
2723 static int __init efx_init_module(void)
2724 {
2725 int rc;
2726
2727 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2728
2729 rc = register_netdevice_notifier(&efx_netdev_notifier);
2730 if (rc)
2731 goto err_notifier;
2732
2733 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2734 if (!reset_workqueue) {
2735 rc = -ENOMEM;
2736 goto err_reset;
2737 }
2738
2739 rc = pci_register_driver(&efx_pci_driver);
2740 if (rc < 0)
2741 goto err_pci;
2742
2743 return 0;
2744
2745 err_pci:
2746 destroy_workqueue(reset_workqueue);
2747 err_reset:
2748 unregister_netdevice_notifier(&efx_netdev_notifier);
2749 err_notifier:
2750 return rc;
2751 }
2752
2753 static void __exit efx_exit_module(void)
2754 {
2755 printk(KERN_INFO "Solarflare NET driver unloading\n");
2756
2757 pci_unregister_driver(&efx_pci_driver);
2758 destroy_workqueue(reset_workqueue);
2759 unregister_netdevice_notifier(&efx_netdev_notifier);
2760
2761 }
2762
2763 module_init(efx_init_module);
2764 module_exit(efx_exit_module);
2765
2766 MODULE_AUTHOR("Solarflare Communications and "
2767 "Michael Brown <mbrown@fensystems.co.uk>");
2768 MODULE_DESCRIPTION("Solarflare Communications network driver");
2769 MODULE_LICENSE("GPL");
2770 MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.111902 seconds and 6 git commands to generate.